OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-stable/] [gcc-4.5.1/] [gcc/] [config/] [v850/] [v850.h] - Blame information for rev 826

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 282 jeremybenn
/* Definitions of target machine for GNU compiler. NEC V850 series
2
   Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
3
   2007, 2008, 2009  Free Software Foundation, Inc.
4
   Contributed by Jeff Law (law@cygnus.com).
5
 
6
   This file is part of GCC.
7
 
8
   GCC is free software; you can redistribute it and/or modify
9
   it under the terms of the GNU General Public License as published by
10
   the Free Software Foundation; either version 3, or (at your option)
11
   any later version.
12
 
13
   GCC is distributed in the hope that it will be useful,
14
   but WITHOUT ANY WARRANTY; without even the implied warranty of
15
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16
   GNU General Public License for more details.
17
 
18
   You should have received a copy of the GNU General Public License
19
   along with GCC; see the file COPYING3.  If not see
20
   <http://www.gnu.org/licenses/>.  */
21
 
22
#ifndef GCC_V850_H
23
#define GCC_V850_H
24
 
25
/* These are defined in svr4.h but we want to override them.  */
26
#undef LIB_SPEC
27
#undef ENDFILE_SPEC
28
#undef LINK_SPEC
29
#undef STARTFILE_SPEC
30
#undef ASM_SPEC
31
 
32
#define TARGET_CPU_generic      1
33
#define TARGET_CPU_v850e        2
34
#define TARGET_CPU_v850e1       3
35
 
36
#ifndef TARGET_CPU_DEFAULT
37
#define TARGET_CPU_DEFAULT      TARGET_CPU_generic
38
#endif
39
 
40
#define MASK_DEFAULT            MASK_V850
41
#define SUBTARGET_ASM_SPEC      "%{!mv*:-mv850}"
42
#define SUBTARGET_CPP_SPEC      "%{!mv*:-D__v850__}"
43
#define TARGET_VERSION          fprintf (stderr, " (NEC V850)");
44
 
45
/* Choose which processor will be the default.
46
   We must pass a -mv850xx option to the assembler if no explicit -mv* option
47
   is given, because the assembler's processor default may not be correct.  */
48
#if TARGET_CPU_DEFAULT == TARGET_CPU_v850e
49
#undef  MASK_DEFAULT
50
#define MASK_DEFAULT            MASK_V850E
51
#undef  SUBTARGET_ASM_SPEC
52
#define SUBTARGET_ASM_SPEC      "%{!mv*:-mv850e}"
53
#undef  SUBTARGET_CPP_SPEC
54
#define SUBTARGET_CPP_SPEC      "%{!mv*:-D__v850e__}"
55
#undef  TARGET_VERSION
56
#define TARGET_VERSION          fprintf (stderr, " (NEC V850E)");
57
#endif
58
 
59
#if TARGET_CPU_DEFAULT == TARGET_CPU_v850e1
60
#undef  MASK_DEFAULT
61
#define MASK_DEFAULT            MASK_V850E      /* No practical difference.  */
62
#undef  SUBTARGET_ASM_SPEC
63
#define SUBTARGET_ASM_SPEC      "%{!mv*:-mv850e1}"
64
#undef  SUBTARGET_CPP_SPEC
65
#define SUBTARGET_CPP_SPEC      "%{!mv*:-D__v850e1__} %{mv850e1:-D__v850e1__}"
66
#undef  TARGET_VERSION
67
#define TARGET_VERSION          fprintf (stderr, " (NEC V850E1)");
68
#endif
69
 
70
#define ASM_SPEC "%{mv*:-mv%*}"
71
#define CPP_SPEC                "%{mv850e:-D__v850e__} %{mv850:-D__v850__} %(subtarget_cpp_spec)"
72
 
73
#define EXTRA_SPECS \
74
 { "subtarget_asm_spec", SUBTARGET_ASM_SPEC }, \
75
 { "subtarget_cpp_spec", SUBTARGET_CPP_SPEC }
76
 
77
/* Names to predefine in the preprocessor for this target machine.  */
78
#define TARGET_CPU_CPP_BUILTINS() do {          \
79
  builtin_define( "__v851__" );                 \
80
  builtin_define( "__v850" );                   \
81
  builtin_assert( "machine=v850" );             \
82
  builtin_assert( "cpu=v850" );                 \
83
  if (TARGET_EP)                                \
84
    builtin_define ("__EP__");                  \
85
} while(0)
86
 
87
#define MASK_CPU (MASK_V850 | MASK_V850E)
88
 
89
/* Information about the various small memory areas.  */
90
struct small_memory_info {
91
  const char *name;
92
  long max;
93
  long physical_max;
94
};
95
 
96
enum small_memory_type {
97
  /* tiny data area, using EP as base register */
98
  SMALL_MEMORY_TDA = 0,
99
  /* small data area using dp as base register */
100
  SMALL_MEMORY_SDA,
101
  /* zero data area using r0 as base register */
102
  SMALL_MEMORY_ZDA,
103
  SMALL_MEMORY_max
104
};
105
 
106
extern struct small_memory_info small_memory[(int)SMALL_MEMORY_max];
107
 
108
/* Show we can debug even without a frame pointer.  */
109
#define CAN_DEBUG_WITHOUT_FP
110
 
111
/* Some machines may desire to change what optimizations are
112
   performed for various optimization levels.   This macro, if
113
   defined, is executed once just after the optimization level is
114
   determined and before the remainder of the command options have
115
   been parsed.  Values set in this macro are used as the default
116
   values for the other command line options.
117
 
118
   LEVEL is the optimization level specified; 2 if `-O2' is
119
   specified, 1 if `-O' is specified, and 0 if neither is specified.
120
 
121
   SIZE is nonzero if `-Os' is specified, 0 otherwise.
122
 
123
   You should not use this macro to change options that are not
124
   machine-specific.  These should uniformly selected by the same
125
   optimization level on all supported machines.  Use this macro to
126
   enable machine-specific optimizations.
127
 
128
   *Do not examine `write_symbols' in this macro!* The debugging
129
   options are not supposed to alter the generated code.  */
130
 
131
#define OPTIMIZATION_OPTIONS(LEVEL,SIZE)                                \
132
{                                                                       \
133
  target_flags |= MASK_STRICT_ALIGN;                                    \
134
  if (LEVEL)                                                            \
135
    /* Note - we no longer enable MASK_EP when optimizing.  This is     \
136
       because of a hardware bug which stops the SLD and SST instructions\
137
       from correctly detecting some hazards.  If the user is sure that \
138
       their hardware is fixed or that their program will not encounter \
139
       the conditions that trigger the bug then they can enable -mep by \
140
       hand.  */                                                        \
141
    target_flags |= MASK_PROLOG_FUNCTION;                               \
142
}
143
 
144
 
145
/* Target machine storage layout */
146
 
147
/* Define this if most significant bit is lowest numbered
148
   in instructions that operate on numbered bit-fields.
149
   This is not true on the NEC V850.  */
150
#define BITS_BIG_ENDIAN 0
151
 
152
/* Define this if most significant byte of a word is the lowest numbered.  */
153
/* This is not true on the NEC V850.  */
154
#define BYTES_BIG_ENDIAN 0
155
 
156
/* Define this if most significant word of a multiword number is lowest
157
   numbered.
158
   This is not true on the NEC V850.  */
159
#define WORDS_BIG_ENDIAN 0
160
 
161
/* Width of a word, in units (bytes).  */
162
#define UNITS_PER_WORD          4
163
 
164
/* Define this macro if it is advisable to hold scalars in registers
165
   in a wider mode than that declared by the program.  In such cases,
166
   the value is constrained to be within the bounds of the declared
167
   type, but kept valid in the wider mode.  The signedness of the
168
   extension may differ from that of the type.
169
 
170
   Some simple experiments have shown that leaving UNSIGNEDP alone
171
   generates the best overall code.  */
172
 
173
#define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE)  \
174
  if (GET_MODE_CLASS (MODE) == MODE_INT \
175
      && GET_MODE_SIZE (MODE) < 4)      \
176
    { (MODE) = SImode; }
177
 
178
/* Allocation boundary (in *bits*) for storing arguments in argument list.  */
179
#define PARM_BOUNDARY           32
180
 
181
/* The stack goes in 32-bit lumps.  */
182
#define STACK_BOUNDARY          32
183
 
184
/* Allocation boundary (in *bits*) for the code of a function.
185
   16 is the minimum boundary; 32 would give better performance.  */
186
#define FUNCTION_BOUNDARY 16
187
 
188
/* No data type wants to be aligned rounder than this.  */
189
#define BIGGEST_ALIGNMENT       32
190
 
191
/* Alignment of field after `int : 0' in a structure.  */
192
#define EMPTY_FIELD_BOUNDARY 32
193
 
194
/* No structure field wants to be aligned rounder than this.  */
195
#define BIGGEST_FIELD_ALIGNMENT 32
196
 
197
/* Define this if move instructions will actually fail to work
198
   when given unaligned data.  */
199
#define STRICT_ALIGNMENT  TARGET_STRICT_ALIGN
200
 
201
/* Define this as 1 if `char' should by default be signed; else as 0.
202
 
203
   On the NEC V850, loads do sign extension, so make this default.  */
204
#define DEFAULT_SIGNED_CHAR 1
205
 
206
/* Standard register usage.  */
207
 
208
/* Number of actual hardware registers.
209
   The hardware registers are assigned numbers for the compiler
210
   from 0 to just below FIRST_PSEUDO_REGISTER.
211
 
212
   All registers that the compiler knows about must be given numbers,
213
   even those that are not normally considered general registers.  */
214
 
215
#define FIRST_PSEUDO_REGISTER 34
216
 
217
/* 1 for registers that have pervasive standard uses
218
   and are not available for the register allocator.  */
219
 
220
#define FIXED_REGISTERS \
221
  { 1, 1, 0, 1, 1, 0, 0, 0, \
222
    0, 0, 0, 0, 0, 0, 0, 0, \
223
    0, 0, 0, 0, 0, 0, 0, 0, \
224
    0, 0, 0, 0, 0, 0, 1, 0, \
225
    1, 1}
226
 
227
/* 1 for registers not available across function calls.
228
   These must include the FIXED_REGISTERS and also any
229
   registers that can be used without being saved.
230
   The latter must include the registers where values are returned
231
   and the register where structure-value addresses are passed.
232
   Aside from that, you can include as many other registers as you
233
   like.  */
234
 
235
#define CALL_USED_REGISTERS \
236
  { 1, 1, 0, 1, 1, 1, 1, 1, \
237
    1, 1, 1, 1, 1, 1, 1, 1, \
238
    1, 1, 1, 1, 0, 0, 0, 0, \
239
    0, 0, 0, 0, 0, 0, 1, 1, \
240
    1, 1}
241
 
242
/* List the order in which to allocate registers.  Each register must be
243
   listed once, even those in FIXED_REGISTERS.
244
 
245
   On the 850, we make the return registers first, then all of the volatile
246
   registers, then the saved registers in reverse order to better save the
247
   registers with an out of line function, and finally the fixed
248
   registers.  */
249
 
250
#define REG_ALLOC_ORDER                                                 \
251
{                                                                       \
252
  10, 11,                               /* return registers */          \
253
  12, 13, 14, 15, 16, 17, 18, 19,       /* scratch registers */         \
254
   6,  7,  8,  9, 31,                   /* argument registers */        \
255
  29, 28, 27, 26, 25, 24, 23, 22,       /* saved registers */           \
256
  21, 20,  2,                                                           \
257
   0,  1,  3,  4,  5, 30, 32, 33 /* fixed registers */           \
258
}
259
 
260
/* If TARGET_APP_REGS is not defined then add r2 and r5 to
261
   the pool of fixed registers. See PR 14505.  */
262
#define CONDITIONAL_REGISTER_USAGE  \
263
{                                                       \
264
  if (!TARGET_APP_REGS)                                 \
265
    {                                                   \
266
      fixed_regs[2] = 1;  call_used_regs[2] = 1;        \
267
      fixed_regs[5] = 1;  call_used_regs[5] = 1;        \
268
    }                                                   \
269
}
270
 
271
/* Return number of consecutive hard regs needed starting at reg REGNO
272
   to hold something of mode MODE.
273
 
274
   This is ordinarily the length in words of a value of mode MODE
275
   but can be less for certain modes in special long registers.  */
276
 
277
#define HARD_REGNO_NREGS(REGNO, MODE)   \
278
  ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
279
 
280
/* Value is 1 if hard register REGNO can hold a value of machine-mode
281
   MODE.  */
282
 
283
#define HARD_REGNO_MODE_OK(REGNO, MODE) \
284
 ((((REGNO) & 1) == 0) || (GET_MODE_SIZE (MODE) <= 4))
285
 
286
/* Value is 1 if it is a good idea to tie two pseudo registers
287
   when one has mode MODE1 and one has mode MODE2.
288
   If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
289
   for any hard reg, then this must be 0 for correct output.  */
290
#define MODES_TIEABLE_P(MODE1, MODE2) \
291
  (MODE1 == MODE2 || (GET_MODE_SIZE (MODE1) <= 4 && GET_MODE_SIZE (MODE2) <= 4))
292
 
293
 
294
/* Define the classes of registers for register constraints in the
295
   machine description.  Also define ranges of constants.
296
 
297
   One of the classes must always be named ALL_REGS and include all hard regs.
298
   If there is more than one class, another class must be named NO_REGS
299
   and contain no registers.
300
 
301
   The name GENERAL_REGS must be the name of a class (or an alias for
302
   another name such as ALL_REGS).  This is the class of registers
303
   that is allowed by "g" or "r" in a register constraint.
304
   Also, registers outside this class are allocated only when
305
   instructions express preferences for them.
306
 
307
   The classes must be numbered in nondecreasing order; that is,
308
   a larger-numbered class must never be contained completely
309
   in a smaller-numbered class.
310
 
311
   For any two classes, it is very desirable that there be another
312
   class that represents their union.  */
313
 
314
enum reg_class
315
{
316
  NO_REGS, GENERAL_REGS, ALL_REGS, LIM_REG_CLASSES
317
};
318
 
319
#define N_REG_CLASSES (int) LIM_REG_CLASSES
320
 
321
#define IRA_COVER_CLASSES               \
322
{                                       \
323
  GENERAL_REGS, LIM_REG_CLASSES         \
324
}
325
 
326
/* Give names of register classes as strings for dump file.  */
327
 
328
#define REG_CLASS_NAMES \
329
{ "NO_REGS", "GENERAL_REGS", "ALL_REGS", "LIM_REGS" }
330
 
331
/* Define which registers fit in which classes.
332
   This is an initializer for a vector of HARD_REG_SET
333
   of length N_REG_CLASSES.  */
334
 
335
#define REG_CLASS_CONTENTS              \
336
{                                       \
337
  { 0x00000000 }, /* NO_REGS      */    \
338
  { 0xffffffff }, /* GENERAL_REGS */    \
339
  { 0xffffffff }, /* ALL_REGS   */      \
340
}
341
 
342
/* The same information, inverted:
343
   Return the class number of the smallest class containing
344
   reg number REGNO.  This could be a conditional expression
345
   or could index an array.  */
346
 
347
#define REGNO_REG_CLASS(REGNO)  GENERAL_REGS
348
 
349
/* The class value for index registers, and the one for base regs.  */
350
 
351
#define INDEX_REG_CLASS NO_REGS
352
#define BASE_REG_CLASS  GENERAL_REGS
353
 
354
/* Get reg_class from a letter such as appears in the machine description.  */
355
 
356
#define REG_CLASS_FROM_LETTER(C) (NO_REGS)
357
 
358
/* Macros to check register numbers against specific register classes.  */
359
 
360
/* These assume that REGNO is a hard or pseudo reg number.
361
   They give nonzero only if REGNO is a hard reg of the suitable class
362
   or a pseudo reg currently allocated to a suitable hard reg.
363
   Since they use reg_renumber, they are safe only once reg_renumber
364
   has been allocated, which happens in local-alloc.c.  */
365
 
366
#define REGNO_OK_FOR_BASE_P(regno) \
367
  ((regno) < FIRST_PSEUDO_REGISTER || reg_renumber[regno] >= 0)
368
 
369
#define REGNO_OK_FOR_INDEX_P(regno) 0
370
 
371
/* Given an rtx X being reloaded into a reg required to be
372
   in class CLASS, return the class of reg to actually use.
373
   In general this is just CLASS; but on some machines
374
   in some cases it is preferable to use a more restrictive class.  */
375
 
376
#define PREFERRED_RELOAD_CLASS(X,CLASS)  (CLASS)
377
 
378
/* Return the maximum number of consecutive registers
379
   needed to represent mode MODE in a register of class CLASS.  */
380
 
381
#define CLASS_MAX_NREGS(CLASS, MODE)    \
382
  ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
383
 
384
/* The letters I, J, K, L, M, N, O, P in a register constraint string
385
   can be used to stand for particular ranges of immediate operands.
386
   This macro defines what the ranges are.
387
   C is the letter, and VALUE is a constant value.
388
   Return 1 if VALUE is in the range specified by C.  */
389
 
390
#define INT_7_BITS(VALUE) ((unsigned) (VALUE) + 0x40 < 0x80)
391
#define INT_8_BITS(VALUE) ((unsigned) (VALUE) + 0x80 < 0x100)
392
/* zero */
393
#define CONST_OK_FOR_I(VALUE) ((VALUE) == 0)
394
/* 5-bit signed immediate */
395
#define CONST_OK_FOR_J(VALUE) ((unsigned) (VALUE) + 0x10 < 0x20)
396
/* 16-bit signed immediate */
397
#define CONST_OK_FOR_K(VALUE) ((unsigned) (VALUE) + 0x8000 < 0x10000)
398
/* valid constant for movhi instruction.  */
399
#define CONST_OK_FOR_L(VALUE) \
400
  (((unsigned) ((int) (VALUE) >> 16) + 0x8000 < 0x10000) \
401
   && CONST_OK_FOR_I ((VALUE & 0xffff)))
402
/* 16-bit unsigned immediate */
403
#define CONST_OK_FOR_M(VALUE) ((unsigned)(VALUE) < 0x10000)
404
/* 5-bit unsigned immediate in shift instructions */
405
#define CONST_OK_FOR_N(VALUE) ((unsigned) (VALUE) <= 31)
406
/* 9-bit signed immediate for word multiply instruction.  */
407
#define CONST_OK_FOR_O(VALUE) ((unsigned) (VALUE) + 0x100 < 0x200)
408
 
409
#define CONST_OK_FOR_P(VALUE) 0
410
 
411
#define CONST_OK_FOR_LETTER_P(VALUE, C)  \
412
  ((C) == 'I' ? CONST_OK_FOR_I (VALUE) : \
413
   (C) == 'J' ? CONST_OK_FOR_J (VALUE) : \
414
   (C) == 'K' ? CONST_OK_FOR_K (VALUE) : \
415
   (C) == 'L' ? CONST_OK_FOR_L (VALUE) : \
416
   (C) == 'M' ? CONST_OK_FOR_M (VALUE) : \
417
   (C) == 'N' ? CONST_OK_FOR_N (VALUE) : \
418
   (C) == 'O' ? CONST_OK_FOR_O (VALUE) : \
419
   (C) == 'P' ? CONST_OK_FOR_P (VALUE) : \
420
   0)
421
 
422
/* Similar, but for floating constants, and defining letters G and H.
423
   Here VALUE is the CONST_DOUBLE rtx itself.
424
 
425
  `G' is a zero of some form.  */
426
 
427
#define CONST_DOUBLE_OK_FOR_G(VALUE)                                    \
428
  ((GET_MODE_CLASS (GET_MODE (VALUE)) == MODE_FLOAT                     \
429
    && (VALUE) == CONST0_RTX (GET_MODE (VALUE)))                        \
430
   || (GET_MODE_CLASS (GET_MODE (VALUE)) == MODE_INT                    \
431
       && CONST_DOUBLE_LOW (VALUE) == 0                                  \
432
       && CONST_DOUBLE_HIGH (VALUE) == 0))
433
 
434
#define CONST_DOUBLE_OK_FOR_H(VALUE) 0
435
 
436
#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C)                          \
437
  ((C) == 'G'   ? CONST_DOUBLE_OK_FOR_G (VALUE)                         \
438
   : (C) == 'H' ? CONST_DOUBLE_OK_FOR_H (VALUE)                         \
439
   : 0)
440
 
441
 
442
/* Stack layout; function entry, exit and calling.  */
443
 
444
/* Define this if pushing a word on the stack
445
   makes the stack pointer a smaller address.  */
446
 
447
#define STACK_GROWS_DOWNWARD
448
 
449
/* Define this to nonzero if the nominal address of the stack frame
450
   is at the high-address end of the local variables;
451
   that is, each additional local variable allocated
452
   goes at a more negative offset in the frame.  */
453
 
454
#define FRAME_GROWS_DOWNWARD 1
455
 
456
/* Offset within stack frame to start allocating local variables at.
457
   If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
458
   first local allocated.  Otherwise, it is the offset to the BEGINNING
459
   of the first local allocated.  */
460
 
461
#define STARTING_FRAME_OFFSET 0
462
 
463
/* Offset of first parameter from the argument pointer register value.  */
464
/* Is equal to the size of the saved fp + pc, even if an fp isn't
465
   saved since the value is used before we know.  */
466
 
467
#define FIRST_PARM_OFFSET(FNDECL) 0
468
 
469
/* Specify the registers used for certain standard purposes.
470
   The values of these macros are register numbers.  */
471
 
472
/* Register to use for pushing function arguments.  */
473
#define STACK_POINTER_REGNUM 3
474
 
475
/* Base register for access to local variables of the function.  */
476
#define FRAME_POINTER_REGNUM 32
477
 
478
/* Register containing return address from latest function call.  */
479
#define LINK_POINTER_REGNUM 31
480
 
481
/* On some machines the offset between the frame pointer and starting
482
   offset of the automatic variables is not known until after register
483
   allocation has been done (for example, because the saved registers
484
   are between these two locations).  On those machines, define
485
   `FRAME_POINTER_REGNUM' the number of a special, fixed register to
486
   be used internally until the offset is known, and define
487
   `HARD_FRAME_POINTER_REGNUM' to be actual the hard register number
488
   used for the frame pointer.
489
 
490
   You should define this macro only in the very rare circumstances
491
   when it is not possible to calculate the offset between the frame
492
   pointer and the automatic variables until after register
493
   allocation has been completed.  When this macro is defined, you
494
   must also indicate in your definition of `ELIMINABLE_REGS' how to
495
   eliminate `FRAME_POINTER_REGNUM' into either
496
   `HARD_FRAME_POINTER_REGNUM' or `STACK_POINTER_REGNUM'.
497
 
498
   Do not define this macro if it would be the same as
499
   `FRAME_POINTER_REGNUM'.  */
500
#undef  HARD_FRAME_POINTER_REGNUM 
501
#define HARD_FRAME_POINTER_REGNUM 29
502
 
503
/* Base register for access to arguments of the function.  */
504
#define ARG_POINTER_REGNUM 33
505
 
506
/* Register in which static-chain is passed to a function.  */
507
#define STATIC_CHAIN_REGNUM 20
508
 
509
/* If defined, this macro specifies a table of register pairs used to
510
   eliminate unneeded registers that point into the stack frame.  If
511
   it is not defined, the only elimination attempted by the compiler
512
   is to replace references to the frame pointer with references to
513
   the stack pointer.
514
 
515
   The definition of this macro is a list of structure
516
   initializations, each of which specifies an original and
517
   replacement register.
518
 
519
   On some machines, the position of the argument pointer is not
520
   known until the compilation is completed.  In such a case, a
521
   separate hard register must be used for the argument pointer.
522
   This register can be eliminated by replacing it with either the
523
   frame pointer or the argument pointer, depending on whether or not
524
   the frame pointer has been eliminated.
525
 
526
   In this case, you might specify:
527
        #define ELIMINABLE_REGS  \
528
        {{ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
529
         {ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
530
         {FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}
531
 
532
   Note that the elimination of the argument pointer with the stack
533
   pointer is specified first since that is the preferred elimination.  */
534
 
535
#define ELIMINABLE_REGS                                                 \
536
{{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM },                        \
537
 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM },                   \
538
 { ARG_POINTER_REGNUM,   STACK_POINTER_REGNUM },                        \
539
 { ARG_POINTER_REGNUM,   HARD_FRAME_POINTER_REGNUM }}                   \
540
 
541
/* This macro is similar to `INITIAL_FRAME_POINTER_OFFSET'.  It
542
   specifies the initial difference between the specified pair of
543
   registers.  This macro must be defined if `ELIMINABLE_REGS' is
544
   defined.  */
545
 
546
#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET)                    \
547
{                                                                       \
548
  if ((FROM) == FRAME_POINTER_REGNUM)                                   \
549
    (OFFSET) = get_frame_size () + crtl->outgoing_args_size;    \
550
  else if ((FROM) == ARG_POINTER_REGNUM)                                \
551
   (OFFSET) = compute_frame_size (get_frame_size (), (long *)0); \
552
  else                                                                  \
553
    gcc_unreachable ();                                                 \
554
}
555
 
556
/* Keep the stack pointer constant throughout the function.  */
557
#define ACCUMULATE_OUTGOING_ARGS 1
558
 
559
/* Value is the number of bytes of arguments automatically
560
   popped when returning from a subroutine call.
561
   FUNDECL is the declaration node of the function (as a tree),
562
   FUNTYPE is the data type of the function (as a tree),
563
   or for a library call it is an identifier node for the subroutine name.
564
   SIZE is the number of bytes of arguments passed on the stack.  */
565
 
566
#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
567
 
568
#define RETURN_ADDR_RTX(COUNT, FP) v850_return_addr (COUNT)
569
 
570
/* Define a data type for recording info about an argument list
571
   during the scan of that argument list.  This data type should
572
   hold all necessary information about the function itself
573
   and about the args processed so far, enough to enable macros
574
   such as FUNCTION_ARG to determine where the next arg should go.  */
575
 
576
#define CUMULATIVE_ARGS struct cum_arg
577
struct cum_arg { int nbytes; int anonymous_args; };
578
 
579
/* Define where to put the arguments to a function.
580
   Value is zero to push the argument on the stack,
581
   or a hard register in which to store the argument.
582
 
583
   MODE is the argument's machine mode.
584
   TYPE is the data type of the argument (as a tree).
585
    This is null for libcalls where that information may
586
    not be available.
587
   CUM is a variable of type CUMULATIVE_ARGS which gives info about
588
    the preceding args and about the function being called.
589
   NAMED is nonzero if this argument is a named parameter
590
    (otherwise it is an extra parameter matching an ellipsis).  */
591
 
592
#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
593
  function_arg (&CUM, MODE, TYPE, NAMED)
594
 
595
/* Initialize a variable CUM of type CUMULATIVE_ARGS
596
   for a call to a function whose data type is FNTYPE.
597
   For a library call, FNTYPE is 0.  */
598
 
599
#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
600
 ((CUM).nbytes = 0, (CUM).anonymous_args = 0)
601
 
602
/* Update the data in CUM to advance over an argument
603
   of mode MODE and data type TYPE.
604
   (TYPE is null for libcalls where that information may not be available.)  */
605
 
606
#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED)    \
607
 ((CUM).nbytes += ((MODE) != BLKmode                    \
608
  ? (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) & -UNITS_PER_WORD       \
609
  : (int_size_in_bytes (TYPE) + UNITS_PER_WORD - 1) & -UNITS_PER_WORD))
610
 
611
/* When a parameter is passed in a register, stack space is still
612
   allocated for it.  */
613
#define REG_PARM_STACK_SPACE(DECL) (!TARGET_GHS ? 16 : 0)
614
 
615
/* Define this if the above stack space is to be considered part of the
616
   space allocated by the caller.  */
617
#define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) 1
618
 
619
/* 1 if N is a possible register number for function argument passing.  */
620
 
621
#define FUNCTION_ARG_REGNO_P(N) (N >= 6 && N <= 9)
622
 
623
/* Define how to find the value returned by a library function
624
   assuming the value has mode MODE.  */
625
 
626
#define LIBCALL_VALUE(MODE) \
627
  gen_rtx_REG (MODE, 10)
628
 
629
/* 1 if N is a possible register number for a function value.  */
630
 
631
#define FUNCTION_VALUE_REGNO_P(N) ((N) == 10)
632
 
633
#define DEFAULT_PCC_STRUCT_RETURN 0
634
 
635
/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
636
   the stack pointer does not matter.  The value is tested only in
637
   functions that have frame pointers.
638
   No definition is equivalent to always zero.  */
639
 
640
#define EXIT_IGNORE_STACK 1
641
 
642
/* Define this macro as a C expression that is nonzero for registers
643
   used by the epilogue or the `return' pattern.  */
644
 
645
#define EPILOGUE_USES(REGNO) \
646
  (reload_completed && (REGNO) == LINK_POINTER_REGNUM)
647
 
648
/* Output assembler code to FILE to increment profiler label # LABELNO
649
   for profiling a function entry.  */
650
 
651
#define FUNCTION_PROFILER(FILE, LABELNO) ;
652
 
653
/* Length in units of the trampoline for entering a nested function.  */
654
 
655
#define TRAMPOLINE_SIZE 24
656
 
657
/* Addressing modes, and classification of registers for them.  */
658
 
659
 
660
/* 1 if X is an rtx for a constant that is a valid address.  */
661
 
662
/* ??? This seems too exclusive.  May get better code by accepting more
663
   possibilities here, in particular, should accept ZDA_NAME SYMBOL_REFs.  */
664
 
665
#define CONSTANT_ADDRESS_P(X)   \
666
  (GET_CODE (X) == CONST_INT                            \
667
   && CONST_OK_FOR_K (INTVAL (X)))
668
 
669
/* Maximum number of registers that can appear in a valid memory address.  */
670
 
671
#define MAX_REGS_PER_ADDRESS 1
672
 
673
/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
674
   and check its validity for a certain class.
675
   We have two alternate definitions for each of them.
676
   The usual definition accepts all pseudo regs; the other rejects
677
   them unless they have been allocated suitable hard regs.
678
   The symbol REG_OK_STRICT causes the latter definition to be used.
679
 
680
   Most source files want to accept pseudo regs in the hope that
681
   they will get allocated to the class that the insn wants them to be in.
682
   Source files for reload pass need to be strict.
683
   After reload, it makes no difference, since pseudo regs have
684
   been eliminated by then.  */
685
 
686
#ifndef REG_OK_STRICT
687
 
688
/* Nonzero if X is a hard reg that can be used as an index
689
   or if it is a pseudo reg.  */
690
#define REG_OK_FOR_INDEX_P(X) 0
691
/* Nonzero if X is a hard reg that can be used as a base reg
692
   or if it is a pseudo reg.  */
693
#define REG_OK_FOR_BASE_P(X) 1
694
#define REG_OK_FOR_INDEX_P_STRICT(X) 0
695
#define REG_OK_FOR_BASE_P_STRICT(X) REGNO_OK_FOR_BASE_P (REGNO (X))
696
#define STRICT 0
697
 
698
#else
699
 
700
/* Nonzero if X is a hard reg that can be used as an index.  */
701
#define REG_OK_FOR_INDEX_P(X) 0
702
/* Nonzero if X is a hard reg that can be used as a base reg.  */
703
#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
704
#define STRICT 1
705
 
706
#endif
707
 
708
/* A C expression that defines the optional machine-dependent
709
   constraint letters that can be used to segregate specific types of
710
   operands, usually memory references, for the target machine.
711
   Normally this macro will not be defined.  If it is required for a
712
   particular target machine, it should return 1 if VALUE corresponds
713
   to the operand type represented by the constraint letter C.  If C
714
   is not defined as an extra constraint, the value returned should
715
   be 0 regardless of VALUE.
716
 
717
   For example, on the ROMP, load instructions cannot have their
718
   output in r0 if the memory reference contains a symbolic address.
719
   Constraint letter `Q' is defined as representing a memory address
720
   that does *not* contain a symbolic address.  An alternative is
721
   specified with a `Q' constraint on the input and `r' on the
722
   output.  The next alternative specifies `m' on the input and a
723
   register class that does not include r0 on the output.  */
724
 
725
#define EXTRA_CONSTRAINT(OP, C)                                         \
726
 ((C) == 'Q'   ? ep_memory_operand (OP, GET_MODE (OP), FALSE)           \
727
  : (C) == 'R' ? special_symbolref_operand (OP, VOIDmode)               \
728
  : (C) == 'S' ? (GET_CODE (OP) == SYMBOL_REF                           \
729
                  && !SYMBOL_REF_ZDA_P (OP))                            \
730
  : (C) == 'T' ? ep_memory_operand (OP, GET_MODE (OP), TRUE)            \
731
  : (C) == 'U' ? ((GET_CODE (OP) == SYMBOL_REF                          \
732
                   && SYMBOL_REF_ZDA_P (OP))                            \
733
                  || (GET_CODE (OP) == CONST                            \
734
                      && GET_CODE (XEXP (OP, 0)) == PLUS         \
735
                      && GET_CODE (XEXP (XEXP (OP, 0), 0)) == SYMBOL_REF \
736
                      && SYMBOL_REF_ZDA_P (XEXP (XEXP (OP, 0), 0))))      \
737
  : 0)
738
 
739
/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
740
   that is a valid memory address for an instruction.
741
   The MODE argument is the machine mode for the MEM expression
742
   that wants to use this address.
743
 
744
   The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
745
   except for CONSTANT_ADDRESS_P which is actually
746
   machine-independent.  */
747
 
748
/* Accept either REG or SUBREG where a register is valid.  */
749
 
750
#define RTX_OK_FOR_BASE_P(X)                                            \
751
  ((REG_P (X) && REG_OK_FOR_BASE_P (X))                                 \
752
   || (GET_CODE (X) == SUBREG && REG_P (SUBREG_REG (X))                 \
753
       && REG_OK_FOR_BASE_P (SUBREG_REG (X))))
754
 
755
#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR)                         \
756
do {                                                                    \
757
  if (RTX_OK_FOR_BASE_P (X))                                            \
758
    goto ADDR;                                                          \
759
  if (CONSTANT_ADDRESS_P (X)                                            \
760
      && (MODE == QImode || INTVAL (X) % 2 == 0)                 \
761
      && (GET_MODE_SIZE (MODE) <= 4 || INTVAL (X) % 4 == 0))             \
762
    goto ADDR;                                                          \
763
  if (GET_CODE (X) == LO_SUM                                            \
764
      && REG_P (XEXP (X, 0))                                             \
765
      && REG_OK_FOR_BASE_P (XEXP (X, 0))                         \
766
      && CONSTANT_P (XEXP (X, 1))                                       \
767
      && (GET_CODE (XEXP (X, 1)) != CONST_INT                           \
768
          || ((MODE == QImode || INTVAL (XEXP (X, 1)) % 2 == 0)          \
769
              && CONST_OK_FOR_K (INTVAL (XEXP (X, 1)))))                \
770
      && GET_MODE_SIZE (MODE) <= GET_MODE_SIZE (word_mode))             \
771
    goto ADDR;                                                          \
772
  if (special_symbolref_operand (X, MODE)                               \
773
      && (GET_MODE_SIZE (MODE) <= GET_MODE_SIZE (word_mode)))           \
774
     goto ADDR;                                                         \
775
  if (GET_CODE (X) == PLUS                                              \
776
      && RTX_OK_FOR_BASE_P (XEXP (X, 0))                                 \
777
      && CONSTANT_ADDRESS_P (XEXP (X, 1))                               \
778
      && ((MODE == QImode || INTVAL (XEXP (X, 1)) % 2 == 0)              \
779
           && CONST_OK_FOR_K (INTVAL (XEXP (X, 1))                      \
780
                              + (GET_MODE_NUNITS (MODE) * UNITS_PER_WORD)))) \
781
    goto ADDR;                  \
782
} while (0)
783
 
784
 
785
/* Nonzero if the constant value X is a legitimate general operand.
786
   It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.  */
787
 
788
#define LEGITIMATE_CONSTANT_P(X)                                        \
789
  (GET_CODE (X) == CONST_DOUBLE                                         \
790
   || !(GET_CODE (X) == CONST                                           \
791
        && GET_CODE (XEXP (X, 0)) == PLUS                                \
792
        && GET_CODE (XEXP (XEXP (X, 0), 0)) == SYMBOL_REF         \
793
        && GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT         \
794
        && ! CONST_OK_FOR_K (INTVAL (XEXP (XEXP (X, 0), 1)))))
795
 
796
/* Tell final.c how to eliminate redundant test instructions.  */
797
 
798
/* Here we define machine-dependent flags and fields in cc_status
799
   (see `conditions.h').  No extra ones are needed for the VAX.  */
800
 
801
/* Store in cc_status the expressions
802
   that the condition codes will describe
803
   after execution of an instruction whose pattern is EXP.
804
   Do not alter them if the instruction would not alter the cc's.  */
805
 
806
#define CC_OVERFLOW_UNUSABLE 0x200
807
#define CC_NO_CARRY CC_NO_OVERFLOW
808
#define NOTICE_UPDATE_CC(EXP, INSN) notice_update_cc(EXP, INSN)
809
 
810
/* Nonzero if access to memory by bytes or half words is no faster
811
   than accessing full words.  */
812
#define SLOW_BYTE_ACCESS 1
813
 
814
/* According expr.c, a value of around 6 should minimize code size, and
815
   for the V850 series, that's our primary concern.  */
816
#define MOVE_RATIO(speed) 6
817
 
818
/* Indirect calls are expensive, never turn a direct call
819
   into an indirect call.  */
820
#define NO_FUNCTION_CSE
821
 
822
/* The four different data regions on the v850.  */
823
typedef enum
824
{
825
  DATA_AREA_NORMAL,
826
  DATA_AREA_SDA,
827
  DATA_AREA_TDA,
828
  DATA_AREA_ZDA
829
} v850_data_area;
830
 
831
#define TEXT_SECTION_ASM_OP  "\t.section .text"
832
#define DATA_SECTION_ASM_OP  "\t.section .data"
833
#define BSS_SECTION_ASM_OP   "\t.section .bss"
834
#define SDATA_SECTION_ASM_OP "\t.section .sdata,\"aw\""
835
#define SBSS_SECTION_ASM_OP  "\t.section .sbss,\"aw\""
836
 
837
#define SCOMMON_ASM_OP         "\t.scomm\t"
838
#define ZCOMMON_ASM_OP         "\t.zcomm\t"
839
#define TCOMMON_ASM_OP         "\t.tcomm\t"
840
 
841
#define ASM_COMMENT_START "#"
842
 
843
/* Output to assembler file text saying following lines
844
   may contain character constants, extra white space, comments, etc.  */
845
 
846
#define ASM_APP_ON "#APP\n"
847
 
848
/* Output to assembler file text saying following lines
849
   no longer contain unusual constructs.  */
850
 
851
#define ASM_APP_OFF "#NO_APP\n"
852
 
853
#undef  USER_LABEL_PREFIX
854
#define USER_LABEL_PREFIX "_"
855
 
856
#define OUTPUT_ADDR_CONST_EXTRA(FILE, X, FAIL)  \
857
  if (! v850_output_addr_const_extra (FILE, X)) \
858
     goto FAIL
859
 
860
/* This says how to output the assembler to define a global
861
   uninitialized but not common symbol.  */
862
 
863
#define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
864
  asm_output_aligned_bss ((FILE), (DECL), (NAME), (SIZE), (ALIGN))
865
 
866
#undef  ASM_OUTPUT_ALIGNED_BSS 
867
#define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
868
  v850_output_aligned_bss (FILE, DECL, NAME, SIZE, ALIGN)
869
 
870
/* This says how to output the assembler to define a global
871
   uninitialized, common symbol.  */
872
#undef  ASM_OUTPUT_ALIGNED_COMMON
873
#undef  ASM_OUTPUT_COMMON
874
#define ASM_OUTPUT_ALIGNED_DECL_COMMON(FILE, DECL, NAME, SIZE, ALIGN) \
875
     v850_output_common (FILE, DECL, NAME, SIZE, ALIGN)
876
 
877
/* This says how to output the assembler to define a local
878
   uninitialized symbol.  */
879
#undef  ASM_OUTPUT_ALIGNED_LOCAL
880
#undef  ASM_OUTPUT_LOCAL
881
#define ASM_OUTPUT_ALIGNED_DECL_LOCAL(FILE, DECL, NAME, SIZE, ALIGN) \
882
     v850_output_local (FILE, DECL, NAME, SIZE, ALIGN)
883
 
884
/* Globalizing directive for a label.  */
885
#define GLOBAL_ASM_OP "\t.global "
886
 
887
#define ASM_PN_FORMAT "%s___%lu"
888
 
889
/* This is how we tell the assembler that two symbols have the same value.  */
890
 
891
#define ASM_OUTPUT_DEF(FILE,NAME1,NAME2) \
892
  do { assemble_name(FILE, NAME1);       \
893
       fputs(" = ", FILE);               \
894
       assemble_name(FILE, NAME2);       \
895
       fputc('\n', FILE); } while (0)
896
 
897
 
898
/* How to refer to registers in assembler output.
899
   This sequence is indexed by compiler's hard-register-number (see above).  */
900
 
901
#define REGISTER_NAMES                                                  \
902
{  "r0",  "r1",  "r2",  "sp",  "gp",  "r5",  "r6" , "r7",               \
903
   "r8",  "r9", "r10", "r11", "r12", "r13", "r14", "r15",               \
904
  "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",               \
905
  "r24", "r25", "r26", "r27", "r28", "r29",  "ep", "r31",               \
906
  ".fp", ".ap"}
907
 
908
#define ADDITIONAL_REGISTER_NAMES                                       \
909
{ { "zero",     0 },                                                     \
910
  { "hp",       2 },                                                    \
911
  { "r3",       3 },                                                    \
912
  { "r4",       4 },                                                    \
913
  { "tp",       5 },                                                    \
914
  { "fp",       29 },                                                   \
915
  { "r30",      30 },                                                   \
916
  { "lp",       31} }
917
 
918
/* Print an instruction operand X on file FILE.
919
   look in v850.c for details */
920
 
921
#define PRINT_OPERAND(FILE, X, CODE)  print_operand (FILE, X, CODE)
922
 
923
#define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
924
  ((CODE) == '.')
925
 
926
/* Print a memory operand whose address is X, on file FILE.
927
   This uses a function in output-vax.c.  */
928
 
929
#define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
930
 
931
#define ASM_OUTPUT_REG_PUSH(FILE,REGNO)
932
#define ASM_OUTPUT_REG_POP(FILE,REGNO)
933
 
934
/* This is how to output an element of a case-vector that is absolute.  */
935
 
936
#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
937
  fprintf (FILE, "\t%s .L%d\n",                                 \
938
           (TARGET_BIG_SWITCH ? ".long" : ".short"), VALUE)
939
 
940
/* This is how to output an element of a case-vector that is relative.  */
941
 
942
/* Disable the shift, which is for the currently disabled "switch"
943
   opcode.  Se casesi in v850.md.  */
944
#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL)                \
945
  fprintf (FILE, "\t%s %s.L%d-.L%d%s\n",                                \
946
           (TARGET_BIG_SWITCH ? ".long" : ".short"),                    \
947
           (0 && ! TARGET_BIG_SWITCH && TARGET_V850E ? "(" : ""),                \
948
           VALUE, REL,                                                  \
949
           (0 && ! TARGET_BIG_SWITCH && TARGET_V850E ? ")>>1" : ""))
950
 
951
#define ASM_OUTPUT_ALIGN(FILE, LOG)     \
952
  if ((LOG) != 0)                        \
953
    fprintf (FILE, "\t.align %d\n", (LOG))
954
 
955
/* We don't have to worry about dbx compatibility for the v850.  */
956
#define DEFAULT_GDB_EXTENSIONS 1
957
 
958
/* Use stabs debugging info by default.  */
959
#undef PREFERRED_DEBUGGING_TYPE
960
#define PREFERRED_DEBUGGING_TYPE DBX_DEBUG
961
 
962
/* Specify the machine mode that this machine uses
963
   for the index in the tablejump instruction.  */
964
#define CASE_VECTOR_MODE (TARGET_BIG_SWITCH ? SImode : HImode)
965
 
966
/* Define as C expression which evaluates to nonzero if the tablejump
967
   instruction expects the table to contain offsets from the address of the
968
   table.
969
   Do not define this if the table should contain absolute addresses.  */
970
#define CASE_VECTOR_PC_RELATIVE 1
971
 
972
/* The switch instruction requires that the jump table immediately follow
973
   it.  */
974
#define JUMP_TABLES_IN_TEXT_SECTION 1
975
 
976
/* svr4.h defines this assuming that 4 byte alignment is required.  */
977
#undef ASM_OUTPUT_BEFORE_CASE_LABEL
978
#define ASM_OUTPUT_BEFORE_CASE_LABEL(FILE,PREFIX,NUM,TABLE) \
979
  ASM_OUTPUT_ALIGN ((FILE), (TARGET_BIG_SWITCH ? 2 : 1));
980
 
981
#define WORD_REGISTER_OPERATIONS
982
 
983
/* Byte and short loads sign extend the value to a word.  */
984
#define LOAD_EXTEND_OP(MODE) SIGN_EXTEND
985
 
986
/* This flag, if defined, says the same insns that convert to a signed fixnum
987
   also convert validly to an unsigned one.  */
988
#define FIXUNS_TRUNC_LIKE_FIX_TRUNC
989
 
990
/* Max number of bytes we can move from memory to memory
991
   in one reasonably fast instruction.  */
992
#define MOVE_MAX        4
993
 
994
/* Define if shifts truncate the shift count
995
   which implies one can omit a sign-extension or zero-extension
996
   of a shift count.  */
997
#define SHIFT_COUNT_TRUNCATED 1
998
 
999
/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1000
   is done just by pretending it is already truncated.  */
1001
#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1002
 
1003
/* Specify the machine mode that pointers have.
1004
   After generation of rtl, the compiler makes no further distinction
1005
   between pointers and any other objects of this machine mode.  */
1006
#define Pmode SImode
1007
 
1008
/* A function address in a call instruction
1009
   is a byte address (for indexing purposes)
1010
   so give the MEM rtx a byte's mode.  */
1011
#define FUNCTION_MODE QImode
1012
 
1013
/* Tell compiler we want to support GHS pragmas */
1014
#define REGISTER_TARGET_PRAGMAS() do {                          \
1015
  c_register_pragma ("ghs", "interrupt", ghs_pragma_interrupt); \
1016
  c_register_pragma ("ghs", "section",   ghs_pragma_section);   \
1017
  c_register_pragma ("ghs", "starttda",  ghs_pragma_starttda);  \
1018
  c_register_pragma ("ghs", "startsda",  ghs_pragma_startsda);  \
1019
  c_register_pragma ("ghs", "startzda",  ghs_pragma_startzda);  \
1020
  c_register_pragma ("ghs", "endtda",    ghs_pragma_endtda);    \
1021
  c_register_pragma ("ghs", "endsda",    ghs_pragma_endsda);    \
1022
  c_register_pragma ("ghs", "endzda",    ghs_pragma_endzda);    \
1023
} while (0)
1024
 
1025
/* enum GHS_SECTION_KIND is an enumeration of the kinds of sections that
1026
   can appear in the "ghs section" pragma.  These names are used to index
1027
   into the GHS_default_section_names[] and GHS_current_section_names[]
1028
   that are defined in v850.c, and so the ordering of each must remain
1029
   consistent.
1030
 
1031
   These arrays give the default and current names for each kind of
1032
   section defined by the GHS pragmas.  The current names can be changed
1033
   by the "ghs section" pragma.  If the current names are null, use
1034
   the default names.  Note that the two arrays have different types.
1035
 
1036
   For the *normal* section kinds (like .data, .text, etc.) we do not
1037
   want to explicitly force the name of these sections, but would rather
1038
   let the linker (or at least the back end) choose the name of the
1039
   section, UNLESS the user has force a specific name for these section
1040
   kinds.  To accomplish this set the name in ghs_default_section_names
1041
   to null.  */
1042
 
1043
enum GHS_section_kind
1044
{
1045
  GHS_SECTION_KIND_DEFAULT,
1046
 
1047
  GHS_SECTION_KIND_TEXT,
1048
  GHS_SECTION_KIND_DATA,
1049
  GHS_SECTION_KIND_RODATA,
1050
  GHS_SECTION_KIND_BSS,
1051
  GHS_SECTION_KIND_SDATA,
1052
  GHS_SECTION_KIND_ROSDATA,
1053
  GHS_SECTION_KIND_TDATA,
1054
  GHS_SECTION_KIND_ZDATA,
1055
  GHS_SECTION_KIND_ROZDATA,
1056
 
1057
  COUNT_OF_GHS_SECTION_KINDS  /* must be last */
1058
};
1059
 
1060
/* The following code is for handling pragmas supported by the
1061
   v850 compiler produced by Green Hills Software.  This is at
1062
   the specific request of a customer.  */
1063
 
1064
typedef struct data_area_stack_element
1065
{
1066
  struct data_area_stack_element * prev;
1067
  v850_data_area                   data_area; /* Current default data area.  */
1068
} data_area_stack_element;
1069
 
1070
/* Track the current data area set by the
1071
   data area pragma (which can be nested).  */
1072
extern data_area_stack_element * data_area_stack;
1073
 
1074
/* Names of the various data areas used on the v850.  */
1075
extern union tree_node * GHS_default_section_names [(int) COUNT_OF_GHS_SECTION_KINDS];
1076
extern union tree_node * GHS_current_section_names [(int) COUNT_OF_GHS_SECTION_KINDS];
1077
 
1078
/* The assembler op to start the file.  */
1079
 
1080
#define FILE_ASM_OP "\t.file\n"
1081
 
1082
/* Enable the register move pass to improve code.  */
1083
#define ENABLE_REGMOVE_PASS
1084
 
1085
 
1086
/* Implement ZDA, TDA, and SDA */
1087
 
1088
#define EP_REGNUM 30    /* ep register number */
1089
 
1090
#define SYMBOL_FLAG_ZDA         (SYMBOL_FLAG_MACH_DEP << 0)
1091
#define SYMBOL_FLAG_TDA         (SYMBOL_FLAG_MACH_DEP << 1)
1092
#define SYMBOL_FLAG_SDA         (SYMBOL_FLAG_MACH_DEP << 2)
1093
#define SYMBOL_REF_ZDA_P(X)     ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_ZDA) != 0)
1094
#define SYMBOL_REF_TDA_P(X)     ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_TDA) != 0)
1095
#define SYMBOL_REF_SDA_P(X)     ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_SDA) != 0)
1096
 
1097
#define TARGET_ASM_INIT_SECTIONS v850_asm_init_sections
1098
 
1099
#endif /* ! GCC_V850_H */

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.