OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-stable/] [gcc-4.5.1/] [gcc/] [emit-rtl.c] - Blame information for rev 378

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 280 jeremybenn
/* Emit RTL for the GCC expander.
2
   Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3
   1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
4
   Free Software Foundation, Inc.
5
 
6
This file is part of GCC.
7
 
8
GCC is free software; you can redistribute it and/or modify it under
9
the terms of the GNU General Public License as published by the Free
10
Software Foundation; either version 3, or (at your option) any later
11
version.
12
 
13
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14
WARRANTY; without even the implied warranty of MERCHANTABILITY or
15
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16
for more details.
17
 
18
You should have received a copy of the GNU General Public License
19
along with GCC; see the file COPYING3.  If not see
20
<http://www.gnu.org/licenses/>.  */
21
 
22
 
23
/* Middle-to-low level generation of rtx code and insns.
24
 
25
   This file contains support functions for creating rtl expressions
26
   and manipulating them in the doubly-linked chain of insns.
27
 
28
   The patterns of the insns are created by machine-dependent
29
   routines in insn-emit.c, which is generated automatically from
30
   the machine description.  These routines make the individual rtx's
31
   of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
32
   which are automatically generated from rtl.def; what is machine
33
   dependent is the kind of rtx's they make and what arguments they
34
   use.  */
35
 
36
#include "config.h"
37
#include "system.h"
38
#include "coretypes.h"
39
#include "tm.h"
40
#include "toplev.h"
41
#include "rtl.h"
42
#include "tree.h"
43
#include "tm_p.h"
44
#include "flags.h"
45
#include "function.h"
46
#include "expr.h"
47
#include "regs.h"
48
#include "hard-reg-set.h"
49
#include "hashtab.h"
50
#include "insn-config.h"
51
#include "recog.h"
52
#include "real.h"
53
#include "fixed-value.h"
54
#include "bitmap.h"
55
#include "basic-block.h"
56
#include "ggc.h"
57
#include "debug.h"
58
#include "langhooks.h"
59
#include "tree-pass.h"
60
#include "df.h"
61
#include "params.h"
62
#include "target.h"
63
 
64
/* Commonly used modes.  */
65
 
66
enum machine_mode byte_mode;    /* Mode whose width is BITS_PER_UNIT.  */
67
enum machine_mode word_mode;    /* Mode whose width is BITS_PER_WORD.  */
68
enum machine_mode double_mode;  /* Mode whose width is DOUBLE_TYPE_SIZE.  */
69
enum machine_mode ptr_mode;     /* Mode whose width is POINTER_SIZE.  */
70
 
71
/* Datastructures maintained for currently processed function in RTL form.  */
72
 
73
struct rtl_data x_rtl;
74
 
75
/* Indexed by pseudo register number, gives the rtx for that pseudo.
76
   Allocated in parallel with regno_pointer_align.
77
   FIXME: We could put it into emit_status struct, but gengtype is not able to deal
78
   with length attribute nested in top level structures.  */
79
 
80
rtx * regno_reg_rtx;
81
 
82
/* This is *not* reset after each function.  It gives each CODE_LABEL
83
   in the entire compilation a unique label number.  */
84
 
85
static GTY(()) int label_num = 1;
86
 
87
/* Commonly used rtx's, so that we only need space for one copy.
88
   These are initialized once for the entire compilation.
89
   All of these are unique; no other rtx-object will be equal to any
90
   of these.  */
91
 
92
rtx global_rtl[GR_MAX];
93
 
94
/* Commonly used RTL for hard registers.  These objects are not necessarily
95
   unique, so we allocate them separately from global_rtl.  They are
96
   initialized once per compilation unit, then copied into regno_reg_rtx
97
   at the beginning of each function.  */
98
static GTY(()) rtx static_regno_reg_rtx[FIRST_PSEUDO_REGISTER];
99
 
100
/* We record floating-point CONST_DOUBLEs in each floating-point mode for
101
   the values of 0, 1, and 2.  For the integer entries and VOIDmode, we
102
   record a copy of const[012]_rtx.  */
103
 
104
rtx const_tiny_rtx[3][(int) MAX_MACHINE_MODE];
105
 
106
rtx const_true_rtx;
107
 
108
REAL_VALUE_TYPE dconst0;
109
REAL_VALUE_TYPE dconst1;
110
REAL_VALUE_TYPE dconst2;
111
REAL_VALUE_TYPE dconstm1;
112
REAL_VALUE_TYPE dconsthalf;
113
 
114
/* Record fixed-point constant 0 and 1.  */
115
FIXED_VALUE_TYPE fconst0[MAX_FCONST0];
116
FIXED_VALUE_TYPE fconst1[MAX_FCONST1];
117
 
118
/* All references to the following fixed hard registers go through
119
   these unique rtl objects.  On machines where the frame-pointer and
120
   arg-pointer are the same register, they use the same unique object.
121
 
122
   After register allocation, other rtl objects which used to be pseudo-regs
123
   may be clobbered to refer to the frame-pointer register.
124
   But references that were originally to the frame-pointer can be
125
   distinguished from the others because they contain frame_pointer_rtx.
126
 
127
   When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
128
   tricky: until register elimination has taken place hard_frame_pointer_rtx
129
   should be used if it is being set, and frame_pointer_rtx otherwise.  After
130
   register elimination hard_frame_pointer_rtx should always be used.
131
   On machines where the two registers are same (most) then these are the
132
   same.
133
 
134
   In an inline procedure, the stack and frame pointer rtxs may not be
135
   used for anything else.  */
136
rtx pic_offset_table_rtx;       /* (REG:Pmode PIC_OFFSET_TABLE_REGNUM) */
137
 
138
/* This is used to implement __builtin_return_address for some machines.
139
   See for instance the MIPS port.  */
140
rtx return_address_pointer_rtx; /* (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM) */
141
 
142
/* We make one copy of (const_int C) where C is in
143
   [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
144
   to save space during the compilation and simplify comparisons of
145
   integers.  */
146
 
147
rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
148
 
149
/* A hash table storing CONST_INTs whose absolute value is greater
150
   than MAX_SAVED_CONST_INT.  */
151
 
152
static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
153
     htab_t const_int_htab;
154
 
155
/* A hash table storing memory attribute structures.  */
156
static GTY ((if_marked ("ggc_marked_p"), param_is (struct mem_attrs)))
157
     htab_t mem_attrs_htab;
158
 
159
/* A hash table storing register attribute structures.  */
160
static GTY ((if_marked ("ggc_marked_p"), param_is (struct reg_attrs)))
161
     htab_t reg_attrs_htab;
162
 
163
/* A hash table storing all CONST_DOUBLEs.  */
164
static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
165
     htab_t const_double_htab;
166
 
167
/* A hash table storing all CONST_FIXEDs.  */
168
static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
169
     htab_t const_fixed_htab;
170
 
171
#define first_insn (crtl->emit.x_first_insn)
172
#define last_insn (crtl->emit.x_last_insn)
173
#define cur_insn_uid (crtl->emit.x_cur_insn_uid)
174
#define cur_debug_insn_uid (crtl->emit.x_cur_debug_insn_uid)
175
#define last_location (crtl->emit.x_last_location)
176
#define first_label_num (crtl->emit.x_first_label_num)
177
 
178
static rtx make_call_insn_raw (rtx);
179
static rtx change_address_1 (rtx, enum machine_mode, rtx, int);
180
static void set_used_decls (tree);
181
static void mark_label_nuses (rtx);
182
static hashval_t const_int_htab_hash (const void *);
183
static int const_int_htab_eq (const void *, const void *);
184
static hashval_t const_double_htab_hash (const void *);
185
static int const_double_htab_eq (const void *, const void *);
186
static rtx lookup_const_double (rtx);
187
static hashval_t const_fixed_htab_hash (const void *);
188
static int const_fixed_htab_eq (const void *, const void *);
189
static rtx lookup_const_fixed (rtx);
190
static hashval_t mem_attrs_htab_hash (const void *);
191
static int mem_attrs_htab_eq (const void *, const void *);
192
static mem_attrs *get_mem_attrs (alias_set_type, tree, rtx, rtx, unsigned int,
193
                                 addr_space_t, enum machine_mode);
194
static hashval_t reg_attrs_htab_hash (const void *);
195
static int reg_attrs_htab_eq (const void *, const void *);
196
static reg_attrs *get_reg_attrs (tree, int);
197
static rtx gen_const_vector (enum machine_mode, int);
198
static void copy_rtx_if_shared_1 (rtx *orig);
199
 
200
/* Probability of the conditional branch currently proceeded by try_split.
201
   Set to -1 otherwise.  */
202
int split_branch_probability = -1;
203
 
204
/* Returns a hash code for X (which is a really a CONST_INT).  */
205
 
206
static hashval_t
207
const_int_htab_hash (const void *x)
208
{
209
  return (hashval_t) INTVAL ((const_rtx) x);
210
}
211
 
212
/* Returns nonzero if the value represented by X (which is really a
213
   CONST_INT) is the same as that given by Y (which is really a
214
   HOST_WIDE_INT *).  */
215
 
216
static int
217
const_int_htab_eq (const void *x, const void *y)
218
{
219
  return (INTVAL ((const_rtx) x) == *((const HOST_WIDE_INT *) y));
220
}
221
 
222
/* Returns a hash code for X (which is really a CONST_DOUBLE).  */
223
static hashval_t
224
const_double_htab_hash (const void *x)
225
{
226
  const_rtx const value = (const_rtx) x;
227
  hashval_t h;
228
 
229
  if (GET_MODE (value) == VOIDmode)
230
    h = CONST_DOUBLE_LOW (value) ^ CONST_DOUBLE_HIGH (value);
231
  else
232
    {
233
      h = real_hash (CONST_DOUBLE_REAL_VALUE (value));
234
      /* MODE is used in the comparison, so it should be in the hash.  */
235
      h ^= GET_MODE (value);
236
    }
237
  return h;
238
}
239
 
240
/* Returns nonzero if the value represented by X (really a ...)
241
   is the same as that represented by Y (really a ...) */
242
static int
243
const_double_htab_eq (const void *x, const void *y)
244
{
245
  const_rtx const a = (const_rtx)x, b = (const_rtx)y;
246
 
247
  if (GET_MODE (a) != GET_MODE (b))
248
    return 0;
249
  if (GET_MODE (a) == VOIDmode)
250
    return (CONST_DOUBLE_LOW (a) == CONST_DOUBLE_LOW (b)
251
            && CONST_DOUBLE_HIGH (a) == CONST_DOUBLE_HIGH (b));
252
  else
253
    return real_identical (CONST_DOUBLE_REAL_VALUE (a),
254
                           CONST_DOUBLE_REAL_VALUE (b));
255
}
256
 
257
/* Returns a hash code for X (which is really a CONST_FIXED).  */
258
 
259
static hashval_t
260
const_fixed_htab_hash (const void *x)
261
{
262
  const_rtx const value = (const_rtx) x;
263
  hashval_t h;
264
 
265
  h = fixed_hash (CONST_FIXED_VALUE (value));
266
  /* MODE is used in the comparison, so it should be in the hash.  */
267
  h ^= GET_MODE (value);
268
  return h;
269
}
270
 
271
/* Returns nonzero if the value represented by X (really a ...)
272
   is the same as that represented by Y (really a ...).  */
273
 
274
static int
275
const_fixed_htab_eq (const void *x, const void *y)
276
{
277
  const_rtx const a = (const_rtx) x, b = (const_rtx) y;
278
 
279
  if (GET_MODE (a) != GET_MODE (b))
280
    return 0;
281
  return fixed_identical (CONST_FIXED_VALUE (a), CONST_FIXED_VALUE (b));
282
}
283
 
284
/* Returns a hash code for X (which is a really a mem_attrs *).  */
285
 
286
static hashval_t
287
mem_attrs_htab_hash (const void *x)
288
{
289
  const mem_attrs *const p = (const mem_attrs *) x;
290
 
291
  return (p->alias ^ (p->align * 1000)
292
          ^ (p->addrspace * 4000)
293
          ^ ((p->offset ? INTVAL (p->offset) : 0) * 50000)
294
          ^ ((p->size ? INTVAL (p->size) : 0) * 2500000)
295
          ^ (size_t) iterative_hash_expr (p->expr, 0));
296
}
297
 
298
/* Returns nonzero if the value represented by X (which is really a
299
   mem_attrs *) is the same as that given by Y (which is also really a
300
   mem_attrs *).  */
301
 
302
static int
303
mem_attrs_htab_eq (const void *x, const void *y)
304
{
305
  const mem_attrs *const p = (const mem_attrs *) x;
306
  const mem_attrs *const q = (const mem_attrs *) y;
307
 
308
  return (p->alias == q->alias && p->offset == q->offset
309
          && p->size == q->size && p->align == q->align
310
          && p->addrspace == q->addrspace
311
          && (p->expr == q->expr
312
              || (p->expr != NULL_TREE && q->expr != NULL_TREE
313
                  && operand_equal_p (p->expr, q->expr, 0))));
314
}
315
 
316
/* Allocate a new mem_attrs structure and insert it into the hash table if
317
   one identical to it is not already in the table.  We are doing this for
318
   MEM of mode MODE.  */
319
 
320
static mem_attrs *
321
get_mem_attrs (alias_set_type alias, tree expr, rtx offset, rtx size,
322
               unsigned int align, addr_space_t addrspace, enum machine_mode mode)
323
{
324
  mem_attrs attrs;
325
  void **slot;
326
 
327
  /* If everything is the default, we can just return zero.
328
     This must match what the corresponding MEM_* macros return when the
329
     field is not present.  */
330
  if (alias == 0 && expr == 0 && offset == 0 && addrspace == 0
331
      && (size == 0
332
          || (mode != BLKmode && GET_MODE_SIZE (mode) == INTVAL (size)))
333
      && (STRICT_ALIGNMENT && mode != BLKmode
334
          ? align == GET_MODE_ALIGNMENT (mode) : align == BITS_PER_UNIT))
335
    return 0;
336
 
337
  attrs.alias = alias;
338
  attrs.expr = expr;
339
  attrs.offset = offset;
340
  attrs.size = size;
341
  attrs.align = align;
342
  attrs.addrspace = addrspace;
343
 
344
  slot = htab_find_slot (mem_attrs_htab, &attrs, INSERT);
345
  if (*slot == 0)
346
    {
347
      *slot = ggc_alloc (sizeof (mem_attrs));
348
      memcpy (*slot, &attrs, sizeof (mem_attrs));
349
    }
350
 
351
  return (mem_attrs *) *slot;
352
}
353
 
354
/* Returns a hash code for X (which is a really a reg_attrs *).  */
355
 
356
static hashval_t
357
reg_attrs_htab_hash (const void *x)
358
{
359
  const reg_attrs *const p = (const reg_attrs *) x;
360
 
361
  return ((p->offset * 1000) ^ (long) p->decl);
362
}
363
 
364
/* Returns nonzero if the value represented by X (which is really a
365
   reg_attrs *) is the same as that given by Y (which is also really a
366
   reg_attrs *).  */
367
 
368
static int
369
reg_attrs_htab_eq (const void *x, const void *y)
370
{
371
  const reg_attrs *const p = (const reg_attrs *) x;
372
  const reg_attrs *const q = (const reg_attrs *) y;
373
 
374
  return (p->decl == q->decl && p->offset == q->offset);
375
}
376
/* Allocate a new reg_attrs structure and insert it into the hash table if
377
   one identical to it is not already in the table.  We are doing this for
378
   MEM of mode MODE.  */
379
 
380
static reg_attrs *
381
get_reg_attrs (tree decl, int offset)
382
{
383
  reg_attrs attrs;
384
  void **slot;
385
 
386
  /* If everything is the default, we can just return zero.  */
387
  if (decl == 0 && offset == 0)
388
    return 0;
389
 
390
  attrs.decl = decl;
391
  attrs.offset = offset;
392
 
393
  slot = htab_find_slot (reg_attrs_htab, &attrs, INSERT);
394
  if (*slot == 0)
395
    {
396
      *slot = ggc_alloc (sizeof (reg_attrs));
397
      memcpy (*slot, &attrs, sizeof (reg_attrs));
398
    }
399
 
400
  return (reg_attrs *) *slot;
401
}
402
 
403
 
404
#if !HAVE_blockage
405
/* Generate an empty ASM_INPUT, which is used to block attempts to schedule
406
   across this insn. */
407
 
408
rtx
409
gen_blockage (void)
410
{
411
  rtx x = gen_rtx_ASM_INPUT (VOIDmode, "");
412
  MEM_VOLATILE_P (x) = true;
413
  return x;
414
}
415
#endif
416
 
417
 
418
/* Generate a new REG rtx.  Make sure ORIGINAL_REGNO is set properly, and
419
   don't attempt to share with the various global pieces of rtl (such as
420
   frame_pointer_rtx).  */
421
 
422
rtx
423
gen_raw_REG (enum machine_mode mode, int regno)
424
{
425
  rtx x = gen_rtx_raw_REG (mode, regno);
426
  ORIGINAL_REGNO (x) = regno;
427
  return x;
428
}
429
 
430
/* There are some RTL codes that require special attention; the generation
431
   functions do the raw handling.  If you add to this list, modify
432
   special_rtx in gengenrtl.c as well.  */
433
 
434
rtx
435
gen_rtx_CONST_INT (enum machine_mode mode ATTRIBUTE_UNUSED, HOST_WIDE_INT arg)
436
{
437
  void **slot;
438
 
439
  if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
440
    return const_int_rtx[arg + MAX_SAVED_CONST_INT];
441
 
442
#if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
443
  if (const_true_rtx && arg == STORE_FLAG_VALUE)
444
    return const_true_rtx;
445
#endif
446
 
447
  /* Look up the CONST_INT in the hash table.  */
448
  slot = htab_find_slot_with_hash (const_int_htab, &arg,
449
                                   (hashval_t) arg, INSERT);
450
  if (*slot == 0)
451
    *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
452
 
453
  return (rtx) *slot;
454
}
455
 
456
rtx
457
gen_int_mode (HOST_WIDE_INT c, enum machine_mode mode)
458
{
459
  return GEN_INT (trunc_int_for_mode (c, mode));
460
}
461
 
462
/* CONST_DOUBLEs might be created from pairs of integers, or from
463
   REAL_VALUE_TYPEs.  Also, their length is known only at run time,
464
   so we cannot use gen_rtx_raw_CONST_DOUBLE.  */
465
 
466
/* Determine whether REAL, a CONST_DOUBLE, already exists in the
467
   hash table.  If so, return its counterpart; otherwise add it
468
   to the hash table and return it.  */
469
static rtx
470
lookup_const_double (rtx real)
471
{
472
  void **slot = htab_find_slot (const_double_htab, real, INSERT);
473
  if (*slot == 0)
474
    *slot = real;
475
 
476
  return (rtx) *slot;
477
}
478
 
479
/* Return a CONST_DOUBLE rtx for a floating-point value specified by
480
   VALUE in mode MODE.  */
481
rtx
482
const_double_from_real_value (REAL_VALUE_TYPE value, enum machine_mode mode)
483
{
484
  rtx real = rtx_alloc (CONST_DOUBLE);
485
  PUT_MODE (real, mode);
486
 
487
  real->u.rv = value;
488
 
489
  return lookup_const_double (real);
490
}
491
 
492
/* Determine whether FIXED, a CONST_FIXED, already exists in the
493
   hash table.  If so, return its counterpart; otherwise add it
494
   to the hash table and return it.  */
495
 
496
static rtx
497
lookup_const_fixed (rtx fixed)
498
{
499
  void **slot = htab_find_slot (const_fixed_htab, fixed, INSERT);
500
  if (*slot == 0)
501
    *slot = fixed;
502
 
503
  return (rtx) *slot;
504
}
505
 
506
/* Return a CONST_FIXED rtx for a fixed-point value specified by
507
   VALUE in mode MODE.  */
508
 
509
rtx
510
const_fixed_from_fixed_value (FIXED_VALUE_TYPE value, enum machine_mode mode)
511
{
512
  rtx fixed = rtx_alloc (CONST_FIXED);
513
  PUT_MODE (fixed, mode);
514
 
515
  fixed->u.fv = value;
516
 
517
  return lookup_const_fixed (fixed);
518
}
519
 
520
/* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
521
   of ints: I0 is the low-order word and I1 is the high-order word.
522
   Do not use this routine for non-integer modes; convert to
523
   REAL_VALUE_TYPE and use CONST_DOUBLE_FROM_REAL_VALUE.  */
524
 
525
rtx
526
immed_double_const (HOST_WIDE_INT i0, HOST_WIDE_INT i1, enum machine_mode mode)
527
{
528
  rtx value;
529
  unsigned int i;
530
 
531
  /* There are the following cases (note that there are no modes with
532
     HOST_BITS_PER_WIDE_INT < GET_MODE_BITSIZE (mode) < 2 * HOST_BITS_PER_WIDE_INT):
533
 
534
     1) If GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT, then we use
535
        gen_int_mode.
536
     2) GET_MODE_BITSIZE (mode) == 2 * HOST_BITS_PER_WIDE_INT, but the value of
537
        the integer fits into HOST_WIDE_INT anyway (i.e., i1 consists only
538
        from copies of the sign bit, and sign of i0 and i1 are the same),  then
539
        we return a CONST_INT for i0.
540
     3) Otherwise, we create a CONST_DOUBLE for i0 and i1.  */
541
  if (mode != VOIDmode)
542
    {
543
      gcc_assert (GET_MODE_CLASS (mode) == MODE_INT
544
                  || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT
545
                  /* We can get a 0 for an error mark.  */
546
                  || GET_MODE_CLASS (mode) == MODE_VECTOR_INT
547
                  || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT);
548
 
549
      if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
550
        return gen_int_mode (i0, mode);
551
 
552
      gcc_assert (GET_MODE_BITSIZE (mode) == 2 * HOST_BITS_PER_WIDE_INT);
553
    }
554
 
555
  /* If this integer fits in one word, return a CONST_INT.  */
556
  if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0))
557
    return GEN_INT (i0);
558
 
559
  /* We use VOIDmode for integers.  */
560
  value = rtx_alloc (CONST_DOUBLE);
561
  PUT_MODE (value, VOIDmode);
562
 
563
  CONST_DOUBLE_LOW (value) = i0;
564
  CONST_DOUBLE_HIGH (value) = i1;
565
 
566
  for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++)
567
    XWINT (value, i) = 0;
568
 
569
  return lookup_const_double (value);
570
}
571
 
572
rtx
573
gen_rtx_REG (enum machine_mode mode, unsigned int regno)
574
{
575
  /* In case the MD file explicitly references the frame pointer, have
576
     all such references point to the same frame pointer.  This is
577
     used during frame pointer elimination to distinguish the explicit
578
     references to these registers from pseudos that happened to be
579
     assigned to them.
580
 
581
     If we have eliminated the frame pointer or arg pointer, we will
582
     be using it as a normal register, for example as a spill
583
     register.  In such cases, we might be accessing it in a mode that
584
     is not Pmode and therefore cannot use the pre-allocated rtx.
585
 
586
     Also don't do this when we are making new REGs in reload, since
587
     we don't want to get confused with the real pointers.  */
588
 
589
  if (mode == Pmode && !reload_in_progress)
590
    {
591
      if (regno == FRAME_POINTER_REGNUM
592
          && (!reload_completed || frame_pointer_needed))
593
        return frame_pointer_rtx;
594
#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
595
      if (regno == HARD_FRAME_POINTER_REGNUM
596
          && (!reload_completed || frame_pointer_needed))
597
        return hard_frame_pointer_rtx;
598
#endif
599
#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && HARD_FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
600
      if (regno == ARG_POINTER_REGNUM)
601
        return arg_pointer_rtx;
602
#endif
603
#ifdef RETURN_ADDRESS_POINTER_REGNUM
604
      if (regno == RETURN_ADDRESS_POINTER_REGNUM)
605
        return return_address_pointer_rtx;
606
#endif
607
      if (regno == (unsigned) PIC_OFFSET_TABLE_REGNUM
608
          && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
609
        return pic_offset_table_rtx;
610
      if (regno == STACK_POINTER_REGNUM)
611
        return stack_pointer_rtx;
612
    }
613
 
614
#if 0
615
  /* If the per-function register table has been set up, try to re-use
616
     an existing entry in that table to avoid useless generation of RTL.
617
 
618
     This code is disabled for now until we can fix the various backends
619
     which depend on having non-shared hard registers in some cases.   Long
620
     term we want to re-enable this code as it can significantly cut down
621
     on the amount of useless RTL that gets generated.
622
 
623
     We'll also need to fix some code that runs after reload that wants to
624
     set ORIGINAL_REGNO.  */
625
 
626
  if (cfun
627
      && cfun->emit
628
      && regno_reg_rtx
629
      && regno < FIRST_PSEUDO_REGISTER
630
      && reg_raw_mode[regno] == mode)
631
    return regno_reg_rtx[regno];
632
#endif
633
 
634
  return gen_raw_REG (mode, regno);
635
}
636
 
637
rtx
638
gen_rtx_MEM (enum machine_mode mode, rtx addr)
639
{
640
  rtx rt = gen_rtx_raw_MEM (mode, addr);
641
 
642
  /* This field is not cleared by the mere allocation of the rtx, so
643
     we clear it here.  */
644
  MEM_ATTRS (rt) = 0;
645
 
646
  return rt;
647
}
648
 
649
/* Generate a memory referring to non-trapping constant memory.  */
650
 
651
rtx
652
gen_const_mem (enum machine_mode mode, rtx addr)
653
{
654
  rtx mem = gen_rtx_MEM (mode, addr);
655
  MEM_READONLY_P (mem) = 1;
656
  MEM_NOTRAP_P (mem) = 1;
657
  return mem;
658
}
659
 
660
/* Generate a MEM referring to fixed portions of the frame, e.g., register
661
   save areas.  */
662
 
663
rtx
664
gen_frame_mem (enum machine_mode mode, rtx addr)
665
{
666
  rtx mem = gen_rtx_MEM (mode, addr);
667
  MEM_NOTRAP_P (mem) = 1;
668
  set_mem_alias_set (mem, get_frame_alias_set ());
669
  return mem;
670
}
671
 
672
/* Generate a MEM referring to a temporary use of the stack, not part
673
    of the fixed stack frame.  For example, something which is pushed
674
    by a target splitter.  */
675
rtx
676
gen_tmp_stack_mem (enum machine_mode mode, rtx addr)
677
{
678
  rtx mem = gen_rtx_MEM (mode, addr);
679
  MEM_NOTRAP_P (mem) = 1;
680
  if (!cfun->calls_alloca)
681
    set_mem_alias_set (mem, get_frame_alias_set ());
682
  return mem;
683
}
684
 
685
/* We want to create (subreg:OMODE (obj:IMODE) OFFSET).  Return true if
686
   this construct would be valid, and false otherwise.  */
687
 
688
bool
689
validate_subreg (enum machine_mode omode, enum machine_mode imode,
690
                 const_rtx reg, unsigned int offset)
691
{
692
  unsigned int isize = GET_MODE_SIZE (imode);
693
  unsigned int osize = GET_MODE_SIZE (omode);
694
 
695
  /* All subregs must be aligned.  */
696
  if (offset % osize != 0)
697
    return false;
698
 
699
  /* The subreg offset cannot be outside the inner object.  */
700
  if (offset >= isize)
701
    return false;
702
 
703
  /* ??? This should not be here.  Temporarily continue to allow word_mode
704
     subregs of anything.  The most common offender is (subreg:SI (reg:DF)).
705
     Generally, backends are doing something sketchy but it'll take time to
706
     fix them all.  */
707
  if (omode == word_mode)
708
    ;
709
  /* ??? Similarly, e.g. with (subreg:DF (reg:TI)).  Though store_bit_field
710
     is the culprit here, and not the backends.  */
711
  else if (osize >= UNITS_PER_WORD && isize >= osize)
712
    ;
713
  /* Allow component subregs of complex and vector.  Though given the below
714
     extraction rules, it's not always clear what that means.  */
715
  else if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
716
           && GET_MODE_INNER (imode) == omode)
717
    ;
718
  /* ??? x86 sse code makes heavy use of *paradoxical* vector subregs,
719
     i.e. (subreg:V4SF (reg:SF) 0).  This surely isn't the cleanest way to
720
     represent this.  It's questionable if this ought to be represented at
721
     all -- why can't this all be hidden in post-reload splitters that make
722
     arbitrarily mode changes to the registers themselves.  */
723
  else if (VECTOR_MODE_P (omode) && GET_MODE_INNER (omode) == imode)
724
    ;
725
  /* Subregs involving floating point modes are not allowed to
726
     change size.  Therefore (subreg:DI (reg:DF) 0) is fine, but
727
     (subreg:SI (reg:DF) 0) isn't.  */
728
  else if (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))
729
    {
730
      if (isize != osize)
731
        return false;
732
    }
733
 
734
  /* Paradoxical subregs must have offset zero.  */
735
  if (osize > isize)
736
    return offset == 0;
737
 
738
  /* This is a normal subreg.  Verify that the offset is representable.  */
739
 
740
  /* For hard registers, we already have most of these rules collected in
741
     subreg_offset_representable_p.  */
742
  if (reg && REG_P (reg) && HARD_REGISTER_P (reg))
743
    {
744
      unsigned int regno = REGNO (reg);
745
 
746
#ifdef CANNOT_CHANGE_MODE_CLASS
747
      if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
748
          && GET_MODE_INNER (imode) == omode)
749
        ;
750
      else if (REG_CANNOT_CHANGE_MODE_P (regno, imode, omode))
751
        return false;
752
#endif
753
 
754
      return subreg_offset_representable_p (regno, imode, offset, omode);
755
    }
756
 
757
  /* For pseudo registers, we want most of the same checks.  Namely:
758
     If the register no larger than a word, the subreg must be lowpart.
759
     If the register is larger than a word, the subreg must be the lowpart
760
     of a subword.  A subreg does *not* perform arbitrary bit extraction.
761
     Given that we've already checked mode/offset alignment, we only have
762
     to check subword subregs here.  */
763
  if (osize < UNITS_PER_WORD)
764
    {
765
      enum machine_mode wmode = isize > UNITS_PER_WORD ? word_mode : imode;
766
      unsigned int low_off = subreg_lowpart_offset (omode, wmode);
767
      if (offset % UNITS_PER_WORD != low_off)
768
        return false;
769
    }
770
  return true;
771
}
772
 
773
rtx
774
gen_rtx_SUBREG (enum machine_mode mode, rtx reg, int offset)
775
{
776
  gcc_assert (validate_subreg (mode, GET_MODE (reg), reg, offset));
777
  return gen_rtx_raw_SUBREG (mode, reg, offset);
778
}
779
 
780
/* Generate a SUBREG representing the least-significant part of REG if MODE
781
   is smaller than mode of REG, otherwise paradoxical SUBREG.  */
782
 
783
rtx
784
gen_lowpart_SUBREG (enum machine_mode mode, rtx reg)
785
{
786
  enum machine_mode inmode;
787
 
788
  inmode = GET_MODE (reg);
789
  if (inmode == VOIDmode)
790
    inmode = mode;
791
  return gen_rtx_SUBREG (mode, reg,
792
                         subreg_lowpart_offset (mode, inmode));
793
}
794
 
795
 
796
/* Create an rtvec and stores within it the RTXen passed in the arguments.  */
797
 
798
rtvec
799
gen_rtvec (int n, ...)
800
{
801
  int i;
802
  rtvec rt_val;
803
  va_list p;
804
 
805
  va_start (p, n);
806
 
807
  /* Don't allocate an empty rtvec...  */
808
  if (n == 0)
809
    return NULL_RTVEC;
810
 
811
  rt_val = rtvec_alloc (n);
812
 
813
  for (i = 0; i < n; i++)
814
    rt_val->elem[i] = va_arg (p, rtx);
815
 
816
  va_end (p);
817
  return rt_val;
818
}
819
 
820
rtvec
821
gen_rtvec_v (int n, rtx *argp)
822
{
823
  int i;
824
  rtvec rt_val;
825
 
826
  /* Don't allocate an empty rtvec...  */
827
  if (n == 0)
828
    return NULL_RTVEC;
829
 
830
  rt_val = rtvec_alloc (n);
831
 
832
  for (i = 0; i < n; i++)
833
    rt_val->elem[i] = *argp++;
834
 
835
  return rt_val;
836
}
837
 
838
/* Return the number of bytes between the start of an OUTER_MODE
839
   in-memory value and the start of an INNER_MODE in-memory value,
840
   given that the former is a lowpart of the latter.  It may be a
841
   paradoxical lowpart, in which case the offset will be negative
842
   on big-endian targets.  */
843
 
844
int
845
byte_lowpart_offset (enum machine_mode outer_mode,
846
                     enum machine_mode inner_mode)
847
{
848
  if (GET_MODE_SIZE (outer_mode) < GET_MODE_SIZE (inner_mode))
849
    return subreg_lowpart_offset (outer_mode, inner_mode);
850
  else
851
    return -subreg_lowpart_offset (inner_mode, outer_mode);
852
}
853
 
854
/* Generate a REG rtx for a new pseudo register of mode MODE.
855
   This pseudo is assigned the next sequential register number.  */
856
 
857
rtx
858
gen_reg_rtx (enum machine_mode mode)
859
{
860
  rtx val;
861
  unsigned int align = GET_MODE_ALIGNMENT (mode);
862
 
863
  gcc_assert (can_create_pseudo_p ());
864
 
865
  /* If a virtual register with bigger mode alignment is generated,
866
     increase stack alignment estimation because it might be spilled
867
     to stack later.  */
868
  if (SUPPORTS_STACK_ALIGNMENT
869
      && crtl->stack_alignment_estimated < align
870
      && !crtl->stack_realign_processed)
871
    {
872
      unsigned int min_align = MINIMUM_ALIGNMENT (NULL, mode, align);
873
      if (crtl->stack_alignment_estimated < min_align)
874
        crtl->stack_alignment_estimated = min_align;
875
    }
876
 
877
  if (generating_concat_p
878
      && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
879
          || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
880
    {
881
      /* For complex modes, don't make a single pseudo.
882
         Instead, make a CONCAT of two pseudos.
883
         This allows noncontiguous allocation of the real and imaginary parts,
884
         which makes much better code.  Besides, allocating DCmode
885
         pseudos overstrains reload on some machines like the 386.  */
886
      rtx realpart, imagpart;
887
      enum machine_mode partmode = GET_MODE_INNER (mode);
888
 
889
      realpart = gen_reg_rtx (partmode);
890
      imagpart = gen_reg_rtx (partmode);
891
      return gen_rtx_CONCAT (mode, realpart, imagpart);
892
    }
893
 
894
  /* Make sure regno_pointer_align, and regno_reg_rtx are large
895
     enough to have an element for this pseudo reg number.  */
896
 
897
  if (reg_rtx_no == crtl->emit.regno_pointer_align_length)
898
    {
899
      int old_size = crtl->emit.regno_pointer_align_length;
900
      char *tmp;
901
      rtx *new1;
902
 
903
      tmp = XRESIZEVEC (char, crtl->emit.regno_pointer_align, old_size * 2);
904
      memset (tmp + old_size, 0, old_size);
905
      crtl->emit.regno_pointer_align = (unsigned char *) tmp;
906
 
907
      new1 = GGC_RESIZEVEC (rtx, regno_reg_rtx, old_size * 2);
908
      memset (new1 + old_size, 0, old_size * sizeof (rtx));
909
      regno_reg_rtx = new1;
910
 
911
      crtl->emit.regno_pointer_align_length = old_size * 2;
912
    }
913
 
914
  val = gen_raw_REG (mode, reg_rtx_no);
915
  regno_reg_rtx[reg_rtx_no++] = val;
916
  return val;
917
}
918
 
919
/* Update NEW with the same attributes as REG, but with OFFSET added
920
   to the REG_OFFSET.  */
921
 
922
static void
923
update_reg_offset (rtx new_rtx, rtx reg, int offset)
924
{
925
  REG_ATTRS (new_rtx) = get_reg_attrs (REG_EXPR (reg),
926
                                   REG_OFFSET (reg) + offset);
927
}
928
 
929
/* Generate a register with same attributes as REG, but with OFFSET
930
   added to the REG_OFFSET.  */
931
 
932
rtx
933
gen_rtx_REG_offset (rtx reg, enum machine_mode mode, unsigned int regno,
934
                    int offset)
935
{
936
  rtx new_rtx = gen_rtx_REG (mode, regno);
937
 
938
  update_reg_offset (new_rtx, reg, offset);
939
  return new_rtx;
940
}
941
 
942
/* Generate a new pseudo-register with the same attributes as REG, but
943
   with OFFSET added to the REG_OFFSET.  */
944
 
945
rtx
946
gen_reg_rtx_offset (rtx reg, enum machine_mode mode, int offset)
947
{
948
  rtx new_rtx = gen_reg_rtx (mode);
949
 
950
  update_reg_offset (new_rtx, reg, offset);
951
  return new_rtx;
952
}
953
 
954
/* Adjust REG in-place so that it has mode MODE.  It is assumed that the
955
   new register is a (possibly paradoxical) lowpart of the old one.  */
956
 
957
void
958
adjust_reg_mode (rtx reg, enum machine_mode mode)
959
{
960
  update_reg_offset (reg, reg, byte_lowpart_offset (mode, GET_MODE (reg)));
961
  PUT_MODE (reg, mode);
962
}
963
 
964
/* Copy REG's attributes from X, if X has any attributes.  If REG and X
965
   have different modes, REG is a (possibly paradoxical) lowpart of X.  */
966
 
967
void
968
set_reg_attrs_from_value (rtx reg, rtx x)
969
{
970
  int offset;
971
 
972
  /* Hard registers can be reused for multiple purposes within the same
973
     function, so setting REG_ATTRS, REG_POINTER and REG_POINTER_ALIGN
974
     on them is wrong.  */
975
  if (HARD_REGISTER_P (reg))
976
    return;
977
 
978
  offset = byte_lowpart_offset (GET_MODE (reg), GET_MODE (x));
979
  if (MEM_P (x))
980
    {
981
      if (MEM_OFFSET (x) && CONST_INT_P (MEM_OFFSET (x)))
982
        REG_ATTRS (reg)
983
          = get_reg_attrs (MEM_EXPR (x), INTVAL (MEM_OFFSET (x)) + offset);
984
      if (MEM_POINTER (x))
985
        mark_reg_pointer (reg, 0);
986
    }
987
  else if (REG_P (x))
988
    {
989
      if (REG_ATTRS (x))
990
        update_reg_offset (reg, x, offset);
991
      if (REG_POINTER (x))
992
        mark_reg_pointer (reg, REGNO_POINTER_ALIGN (REGNO (x)));
993
    }
994
}
995
 
996
/* Generate a REG rtx for a new pseudo register, copying the mode
997
   and attributes from X.  */
998
 
999
rtx
1000
gen_reg_rtx_and_attrs (rtx x)
1001
{
1002
  rtx reg = gen_reg_rtx (GET_MODE (x));
1003
  set_reg_attrs_from_value (reg, x);
1004
  return reg;
1005
}
1006
 
1007
/* Set the register attributes for registers contained in PARM_RTX.
1008
   Use needed values from memory attributes of MEM.  */
1009
 
1010
void
1011
set_reg_attrs_for_parm (rtx parm_rtx, rtx mem)
1012
{
1013
  if (REG_P (parm_rtx))
1014
    set_reg_attrs_from_value (parm_rtx, mem);
1015
  else if (GET_CODE (parm_rtx) == PARALLEL)
1016
    {
1017
      /* Check for a NULL entry in the first slot, used to indicate that the
1018
         parameter goes both on the stack and in registers.  */
1019
      int i = XEXP (XVECEXP (parm_rtx, 0, 0), 0) ? 0 : 1;
1020
      for (; i < XVECLEN (parm_rtx, 0); i++)
1021
        {
1022
          rtx x = XVECEXP (parm_rtx, 0, i);
1023
          if (REG_P (XEXP (x, 0)))
1024
            REG_ATTRS (XEXP (x, 0))
1025
              = get_reg_attrs (MEM_EXPR (mem),
1026
                               INTVAL (XEXP (x, 1)));
1027
        }
1028
    }
1029
}
1030
 
1031
/* Set the REG_ATTRS for registers in value X, given that X represents
1032
   decl T.  */
1033
 
1034
void
1035
set_reg_attrs_for_decl_rtl (tree t, rtx x)
1036
{
1037
  if (GET_CODE (x) == SUBREG)
1038
    {
1039
      gcc_assert (subreg_lowpart_p (x));
1040
      x = SUBREG_REG (x);
1041
    }
1042
  if (REG_P (x))
1043
    REG_ATTRS (x)
1044
      = get_reg_attrs (t, byte_lowpart_offset (GET_MODE (x),
1045
                                               DECL_MODE (t)));
1046
  if (GET_CODE (x) == CONCAT)
1047
    {
1048
      if (REG_P (XEXP (x, 0)))
1049
        REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
1050
      if (REG_P (XEXP (x, 1)))
1051
        REG_ATTRS (XEXP (x, 1))
1052
          = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
1053
    }
1054
  if (GET_CODE (x) == PARALLEL)
1055
    {
1056
      int i, start;
1057
 
1058
      /* Check for a NULL entry, used to indicate that the parameter goes
1059
         both on the stack and in registers.  */
1060
      if (XEXP (XVECEXP (x, 0, 0), 0))
1061
        start = 0;
1062
      else
1063
        start = 1;
1064
 
1065
      for (i = start; i < XVECLEN (x, 0); i++)
1066
        {
1067
          rtx y = XVECEXP (x, 0, i);
1068
          if (REG_P (XEXP (y, 0)))
1069
            REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
1070
        }
1071
    }
1072
}
1073
 
1074
/* Assign the RTX X to declaration T.  */
1075
 
1076
void
1077
set_decl_rtl (tree t, rtx x)
1078
{
1079
  DECL_WRTL_CHECK (t)->decl_with_rtl.rtl = x;
1080
  if (x)
1081
    set_reg_attrs_for_decl_rtl (t, x);
1082
}
1083
 
1084
/* Assign the RTX X to parameter declaration T.  BY_REFERENCE_P is true
1085
   if the ABI requires the parameter to be passed by reference.  */
1086
 
1087
void
1088
set_decl_incoming_rtl (tree t, rtx x, bool by_reference_p)
1089
{
1090
  DECL_INCOMING_RTL (t) = x;
1091
  if (x && !by_reference_p)
1092
    set_reg_attrs_for_decl_rtl (t, x);
1093
}
1094
 
1095
/* Identify REG (which may be a CONCAT) as a user register.  */
1096
 
1097
void
1098
mark_user_reg (rtx reg)
1099
{
1100
  if (GET_CODE (reg) == CONCAT)
1101
    {
1102
      REG_USERVAR_P (XEXP (reg, 0)) = 1;
1103
      REG_USERVAR_P (XEXP (reg, 1)) = 1;
1104
    }
1105
  else
1106
    {
1107
      gcc_assert (REG_P (reg));
1108
      REG_USERVAR_P (reg) = 1;
1109
    }
1110
}
1111
 
1112
/* Identify REG as a probable pointer register and show its alignment
1113
   as ALIGN, if nonzero.  */
1114
 
1115
void
1116
mark_reg_pointer (rtx reg, int align)
1117
{
1118
  if (! REG_POINTER (reg))
1119
    {
1120
      REG_POINTER (reg) = 1;
1121
 
1122
      if (align)
1123
        REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1124
    }
1125
  else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
1126
    /* We can no-longer be sure just how aligned this pointer is.  */
1127
    REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1128
}
1129
 
1130
/* Return 1 plus largest pseudo reg number used in the current function.  */
1131
 
1132
int
1133
max_reg_num (void)
1134
{
1135
  return reg_rtx_no;
1136
}
1137
 
1138
/* Return 1 + the largest label number used so far in the current function.  */
1139
 
1140
int
1141
max_label_num (void)
1142
{
1143
  return label_num;
1144
}
1145
 
1146
/* Return first label number used in this function (if any were used).  */
1147
 
1148
int
1149
get_first_label_num (void)
1150
{
1151
  return first_label_num;
1152
}
1153
 
1154
/* If the rtx for label was created during the expansion of a nested
1155
   function, then first_label_num won't include this label number.
1156
   Fix this now so that array indices work later.  */
1157
 
1158
void
1159
maybe_set_first_label_num (rtx x)
1160
{
1161
  if (CODE_LABEL_NUMBER (x) < first_label_num)
1162
    first_label_num = CODE_LABEL_NUMBER (x);
1163
}
1164
 
1165
/* Return a value representing some low-order bits of X, where the number
1166
   of low-order bits is given by MODE.  Note that no conversion is done
1167
   between floating-point and fixed-point values, rather, the bit
1168
   representation is returned.
1169
 
1170
   This function handles the cases in common between gen_lowpart, below,
1171
   and two variants in cse.c and combine.c.  These are the cases that can
1172
   be safely handled at all points in the compilation.
1173
 
1174
   If this is not a case we can handle, return 0.  */
1175
 
1176
rtx
1177
gen_lowpart_common (enum machine_mode mode, rtx x)
1178
{
1179
  int msize = GET_MODE_SIZE (mode);
1180
  int xsize;
1181
  int offset = 0;
1182
  enum machine_mode innermode;
1183
 
1184
  /* Unfortunately, this routine doesn't take a parameter for the mode of X,
1185
     so we have to make one up.  Yuk.  */
1186
  innermode = GET_MODE (x);
1187
  if (CONST_INT_P (x)
1188
      && msize * BITS_PER_UNIT <= HOST_BITS_PER_WIDE_INT)
1189
    innermode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1190
  else if (innermode == VOIDmode)
1191
    innermode = mode_for_size (HOST_BITS_PER_WIDE_INT * 2, MODE_INT, 0);
1192
 
1193
  xsize = GET_MODE_SIZE (innermode);
1194
 
1195
  gcc_assert (innermode != VOIDmode && innermode != BLKmode);
1196
 
1197
  if (innermode == mode)
1198
    return x;
1199
 
1200
  /* MODE must occupy no more words than the mode of X.  */
1201
  if ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
1202
      > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
1203
    return 0;
1204
 
1205
  /* Don't allow generating paradoxical FLOAT_MODE subregs.  */
1206
  if (SCALAR_FLOAT_MODE_P (mode) && msize > xsize)
1207
    return 0;
1208
 
1209
  offset = subreg_lowpart_offset (mode, innermode);
1210
 
1211
  if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
1212
      && (GET_MODE_CLASS (mode) == MODE_INT
1213
          || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
1214
    {
1215
      /* If we are getting the low-order part of something that has been
1216
         sign- or zero-extended, we can either just use the object being
1217
         extended or make a narrower extension.  If we want an even smaller
1218
         piece than the size of the object being extended, call ourselves
1219
         recursively.
1220
 
1221
         This case is used mostly by combine and cse.  */
1222
 
1223
      if (GET_MODE (XEXP (x, 0)) == mode)
1224
        return XEXP (x, 0);
1225
      else if (msize < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
1226
        return gen_lowpart_common (mode, XEXP (x, 0));
1227
      else if (msize < xsize)
1228
        return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
1229
    }
1230
  else if (GET_CODE (x) == SUBREG || REG_P (x)
1231
           || GET_CODE (x) == CONCAT || GET_CODE (x) == CONST_VECTOR
1232
           || GET_CODE (x) == CONST_DOUBLE || CONST_INT_P (x))
1233
    return simplify_gen_subreg (mode, x, innermode, offset);
1234
 
1235
  /* Otherwise, we can't do this.  */
1236
  return 0;
1237
}
1238
 
1239
rtx
1240
gen_highpart (enum machine_mode mode, rtx x)
1241
{
1242
  unsigned int msize = GET_MODE_SIZE (mode);
1243
  rtx result;
1244
 
1245
  /* This case loses if X is a subreg.  To catch bugs early,
1246
     complain if an invalid MODE is used even in other cases.  */
1247
  gcc_assert (msize <= UNITS_PER_WORD
1248
              || msize == (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (x)));
1249
 
1250
  result = simplify_gen_subreg (mode, x, GET_MODE (x),
1251
                                subreg_highpart_offset (mode, GET_MODE (x)));
1252
  gcc_assert (result);
1253
 
1254
  /* simplify_gen_subreg is not guaranteed to return a valid operand for
1255
     the target if we have a MEM.  gen_highpart must return a valid operand,
1256
     emitting code if necessary to do so.  */
1257
  if (MEM_P (result))
1258
    {
1259
      result = validize_mem (result);
1260
      gcc_assert (result);
1261
    }
1262
 
1263
  return result;
1264
}
1265
 
1266
/* Like gen_highpart, but accept mode of EXP operand in case EXP can
1267
   be VOIDmode constant.  */
1268
rtx
1269
gen_highpart_mode (enum machine_mode outermode, enum machine_mode innermode, rtx exp)
1270
{
1271
  if (GET_MODE (exp) != VOIDmode)
1272
    {
1273
      gcc_assert (GET_MODE (exp) == innermode);
1274
      return gen_highpart (outermode, exp);
1275
    }
1276
  return simplify_gen_subreg (outermode, exp, innermode,
1277
                              subreg_highpart_offset (outermode, innermode));
1278
}
1279
 
1280
/* Return the SUBREG_BYTE for an OUTERMODE lowpart of an INNERMODE value.  */
1281
 
1282
unsigned int
1283
subreg_lowpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1284
{
1285
  unsigned int offset = 0;
1286
  int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1287
 
1288
  if (difference > 0)
1289
    {
1290
      if (WORDS_BIG_ENDIAN)
1291
        offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1292
      if (BYTES_BIG_ENDIAN)
1293
        offset += difference % UNITS_PER_WORD;
1294
    }
1295
 
1296
  return offset;
1297
}
1298
 
1299
/* Return offset in bytes to get OUTERMODE high part
1300
   of the value in mode INNERMODE stored in memory in target format.  */
1301
unsigned int
1302
subreg_highpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1303
{
1304
  unsigned int offset = 0;
1305
  int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1306
 
1307
  gcc_assert (GET_MODE_SIZE (innermode) >= GET_MODE_SIZE (outermode));
1308
 
1309
  if (difference > 0)
1310
    {
1311
      if (! WORDS_BIG_ENDIAN)
1312
        offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1313
      if (! BYTES_BIG_ENDIAN)
1314
        offset += difference % UNITS_PER_WORD;
1315
    }
1316
 
1317
  return offset;
1318
}
1319
 
1320
/* Return 1 iff X, assumed to be a SUBREG,
1321
   refers to the least significant part of its containing reg.
1322
   If X is not a SUBREG, always return 1 (it is its own low part!).  */
1323
 
1324
int
1325
subreg_lowpart_p (const_rtx x)
1326
{
1327
  if (GET_CODE (x) != SUBREG)
1328
    return 1;
1329
  else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1330
    return 0;
1331
 
1332
  return (subreg_lowpart_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)))
1333
          == SUBREG_BYTE (x));
1334
}
1335
 
1336
/* Return subword OFFSET of operand OP.
1337
   The word number, OFFSET, is interpreted as the word number starting
1338
   at the low-order address.  OFFSET 0 is the low-order word if not
1339
   WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1340
 
1341
   If we cannot extract the required word, we return zero.  Otherwise,
1342
   an rtx corresponding to the requested word will be returned.
1343
 
1344
   VALIDATE_ADDRESS is nonzero if the address should be validated.  Before
1345
   reload has completed, a valid address will always be returned.  After
1346
   reload, if a valid address cannot be returned, we return zero.
1347
 
1348
   If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1349
   it is the responsibility of the caller.
1350
 
1351
   MODE is the mode of OP in case it is a CONST_INT.
1352
 
1353
   ??? This is still rather broken for some cases.  The problem for the
1354
   moment is that all callers of this thing provide no 'goal mode' to
1355
   tell us to work with.  This exists because all callers were written
1356
   in a word based SUBREG world.
1357
   Now use of this function can be deprecated by simplify_subreg in most
1358
   cases.
1359
 */
1360
 
1361
rtx
1362
operand_subword (rtx op, unsigned int offset, int validate_address, enum machine_mode mode)
1363
{
1364
  if (mode == VOIDmode)
1365
    mode = GET_MODE (op);
1366
 
1367
  gcc_assert (mode != VOIDmode);
1368
 
1369
  /* If OP is narrower than a word, fail.  */
1370
  if (mode != BLKmode
1371
      && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1372
    return 0;
1373
 
1374
  /* If we want a word outside OP, return zero.  */
1375
  if (mode != BLKmode
1376
      && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1377
    return const0_rtx;
1378
 
1379
  /* Form a new MEM at the requested address.  */
1380
  if (MEM_P (op))
1381
    {
1382
      rtx new_rtx = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
1383
 
1384
      if (! validate_address)
1385
        return new_rtx;
1386
 
1387
      else if (reload_completed)
1388
        {
1389
          if (! strict_memory_address_addr_space_p (word_mode,
1390
                                                    XEXP (new_rtx, 0),
1391
                                                    MEM_ADDR_SPACE (op)))
1392
            return 0;
1393
        }
1394
      else
1395
        return replace_equiv_address (new_rtx, XEXP (new_rtx, 0));
1396
    }
1397
 
1398
  /* Rest can be handled by simplify_subreg.  */
1399
  return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
1400
}
1401
 
1402
/* Similar to `operand_subword', but never return 0.  If we can't
1403
   extract the required subword, put OP into a register and try again.
1404
   The second attempt must succeed.  We always validate the address in
1405
   this case.
1406
 
1407
   MODE is the mode of OP, in case it is CONST_INT.  */
1408
 
1409
rtx
1410
operand_subword_force (rtx op, unsigned int offset, enum machine_mode mode)
1411
{
1412
  rtx result = operand_subword (op, offset, 1, mode);
1413
 
1414
  if (result)
1415
    return result;
1416
 
1417
  if (mode != BLKmode && mode != VOIDmode)
1418
    {
1419
      /* If this is a register which can not be accessed by words, copy it
1420
         to a pseudo register.  */
1421
      if (REG_P (op))
1422
        op = copy_to_reg (op);
1423
      else
1424
        op = force_reg (mode, op);
1425
    }
1426
 
1427
  result = operand_subword (op, offset, 1, mode);
1428
  gcc_assert (result);
1429
 
1430
  return result;
1431
}
1432
 
1433
/* Returns 1 if both MEM_EXPR can be considered equal
1434
   and 0 otherwise.  */
1435
 
1436
int
1437
mem_expr_equal_p (const_tree expr1, const_tree expr2)
1438
{
1439
  if (expr1 == expr2)
1440
    return 1;
1441
 
1442
  if (! expr1 || ! expr2)
1443
    return 0;
1444
 
1445
  if (TREE_CODE (expr1) != TREE_CODE (expr2))
1446
    return 0;
1447
 
1448
  return operand_equal_p (expr1, expr2, 0);
1449
}
1450
 
1451
/* Return OFFSET if XEXP (MEM, 0) - OFFSET is known to be ALIGN
1452
   bits aligned for 0 <= OFFSET < ALIGN / BITS_PER_UNIT, or
1453
   -1 if not known.  */
1454
 
1455
int
1456
get_mem_align_offset (rtx mem, unsigned int align)
1457
{
1458
  tree expr;
1459
  unsigned HOST_WIDE_INT offset;
1460
 
1461
  /* This function can't use
1462
     if (!MEM_EXPR (mem) || !MEM_OFFSET (mem)
1463
         || !CONST_INT_P (MEM_OFFSET (mem))
1464
         || (get_object_alignment (MEM_EXPR (mem), MEM_ALIGN (mem), align)
1465
             < align))
1466
       return -1;
1467
     else
1468
       return (- INTVAL (MEM_OFFSET (mem))) & (align / BITS_PER_UNIT - 1);
1469
     for two reasons:
1470
     - COMPONENT_REFs in MEM_EXPR can have NULL first operand,
1471
       for <variable>.  get_inner_reference doesn't handle it and
1472
       even if it did, the alignment in that case needs to be determined
1473
       from DECL_FIELD_CONTEXT's TYPE_ALIGN.
1474
     - it would do suboptimal job for COMPONENT_REFs, even if MEM_EXPR
1475
       isn't sufficiently aligned, the object it is in might be.  */
1476
  gcc_assert (MEM_P (mem));
1477
  expr = MEM_EXPR (mem);
1478
  if (expr == NULL_TREE
1479
      || MEM_OFFSET (mem) == NULL_RTX
1480
      || !CONST_INT_P (MEM_OFFSET (mem)))
1481
    return -1;
1482
 
1483
  offset = INTVAL (MEM_OFFSET (mem));
1484
  if (DECL_P (expr))
1485
    {
1486
      if (DECL_ALIGN (expr) < align)
1487
        return -1;
1488
    }
1489
  else if (INDIRECT_REF_P (expr))
1490
    {
1491
      if (TYPE_ALIGN (TREE_TYPE (expr)) < (unsigned int) align)
1492
        return -1;
1493
    }
1494
  else if (TREE_CODE (expr) == COMPONENT_REF)
1495
    {
1496
      while (1)
1497
        {
1498
          tree inner = TREE_OPERAND (expr, 0);
1499
          tree field = TREE_OPERAND (expr, 1);
1500
          tree byte_offset = component_ref_field_offset (expr);
1501
          tree bit_offset = DECL_FIELD_BIT_OFFSET (field);
1502
 
1503
          if (!byte_offset
1504
              || !host_integerp (byte_offset, 1)
1505
              || !host_integerp (bit_offset, 1))
1506
            return -1;
1507
 
1508
          offset += tree_low_cst (byte_offset, 1);
1509
          offset += tree_low_cst (bit_offset, 1) / BITS_PER_UNIT;
1510
 
1511
          if (inner == NULL_TREE)
1512
            {
1513
              if (TYPE_ALIGN (DECL_FIELD_CONTEXT (field))
1514
                  < (unsigned int) align)
1515
                return -1;
1516
              break;
1517
            }
1518
          else if (DECL_P (inner))
1519
            {
1520
              if (DECL_ALIGN (inner) < align)
1521
                return -1;
1522
              break;
1523
            }
1524
          else if (TREE_CODE (inner) != COMPONENT_REF)
1525
            return -1;
1526
          expr = inner;
1527
        }
1528
    }
1529
  else
1530
    return -1;
1531
 
1532
  return offset & ((align / BITS_PER_UNIT) - 1);
1533
}
1534
 
1535
/* Given REF (a MEM) and T, either the type of X or the expression
1536
   corresponding to REF, set the memory attributes.  OBJECTP is nonzero
1537
   if we are making a new object of this type.  BITPOS is nonzero if
1538
   there is an offset outstanding on T that will be applied later.  */
1539
 
1540
void
1541
set_mem_attributes_minus_bitpos (rtx ref, tree t, int objectp,
1542
                                 HOST_WIDE_INT bitpos)
1543
{
1544
  alias_set_type alias = MEM_ALIAS_SET (ref);
1545
  tree expr = MEM_EXPR (ref);
1546
  rtx offset = MEM_OFFSET (ref);
1547
  rtx size = MEM_SIZE (ref);
1548
  unsigned int align = MEM_ALIGN (ref);
1549
  HOST_WIDE_INT apply_bitpos = 0;
1550
  tree type;
1551
 
1552
  /* It can happen that type_for_mode was given a mode for which there
1553
     is no language-level type.  In which case it returns NULL, which
1554
     we can see here.  */
1555
  if (t == NULL_TREE)
1556
    return;
1557
 
1558
  type = TYPE_P (t) ? t : TREE_TYPE (t);
1559
  if (type == error_mark_node)
1560
    return;
1561
 
1562
  /* If we have already set DECL_RTL = ref, get_alias_set will get the
1563
     wrong answer, as it assumes that DECL_RTL already has the right alias
1564
     info.  Callers should not set DECL_RTL until after the call to
1565
     set_mem_attributes.  */
1566
  gcc_assert (!DECL_P (t) || ref != DECL_RTL_IF_SET (t));
1567
 
1568
  /* Get the alias set from the expression or type (perhaps using a
1569
     front-end routine) and use it.  */
1570
  alias = get_alias_set (t);
1571
 
1572
  MEM_VOLATILE_P (ref) |= TYPE_VOLATILE (type);
1573
  MEM_IN_STRUCT_P (ref)
1574
    = AGGREGATE_TYPE_P (type) || TREE_CODE (type) == COMPLEX_TYPE;
1575
  MEM_POINTER (ref) = POINTER_TYPE_P (type);
1576
 
1577
  /* If we are making an object of this type, or if this is a DECL, we know
1578
     that it is a scalar if the type is not an aggregate.  */
1579
  if ((objectp || DECL_P (t))
1580
      && ! AGGREGATE_TYPE_P (type)
1581
      && TREE_CODE (type) != COMPLEX_TYPE)
1582
    MEM_SCALAR_P (ref) = 1;
1583
 
1584
  /* We can set the alignment from the type if we are making an object,
1585
     this is an INDIRECT_REF, or if TYPE_ALIGN_OK.  */
1586
  if (objectp || TREE_CODE (t) == INDIRECT_REF
1587
      || TREE_CODE (t) == ALIGN_INDIRECT_REF
1588
      || TYPE_ALIGN_OK (type))
1589
    align = MAX (align, TYPE_ALIGN (type));
1590
  else
1591
    if (TREE_CODE (t) == MISALIGNED_INDIRECT_REF)
1592
      {
1593
        if (integer_zerop (TREE_OPERAND (t, 1)))
1594
          /* We don't know anything about the alignment.  */
1595
          align = BITS_PER_UNIT;
1596
        else
1597
          align = tree_low_cst (TREE_OPERAND (t, 1), 1);
1598
      }
1599
 
1600
  /* If the size is known, we can set that.  */
1601
  if (TYPE_SIZE_UNIT (type) && host_integerp (TYPE_SIZE_UNIT (type), 1))
1602
    size = GEN_INT (tree_low_cst (TYPE_SIZE_UNIT (type), 1));
1603
 
1604
  /* If T is not a type, we may be able to deduce some more information about
1605
     the expression.  */
1606
  if (! TYPE_P (t))
1607
    {
1608
      tree base;
1609
      bool align_computed = false;
1610
 
1611
      if (TREE_THIS_VOLATILE (t))
1612
        MEM_VOLATILE_P (ref) = 1;
1613
 
1614
      /* Now remove any conversions: they don't change what the underlying
1615
         object is.  Likewise for SAVE_EXPR.  */
1616
      while (CONVERT_EXPR_P (t)
1617
             || TREE_CODE (t) == VIEW_CONVERT_EXPR
1618
             || TREE_CODE (t) == SAVE_EXPR)
1619
        t = TREE_OPERAND (t, 0);
1620
 
1621
      /* We may look through structure-like accesses for the purposes of
1622
         examining TREE_THIS_NOTRAP, but not array-like accesses.  */
1623
      base = t;
1624
      while (TREE_CODE (base) == COMPONENT_REF
1625
             || TREE_CODE (base) == REALPART_EXPR
1626
             || TREE_CODE (base) == IMAGPART_EXPR
1627
             || TREE_CODE (base) == BIT_FIELD_REF)
1628
        base = TREE_OPERAND (base, 0);
1629
 
1630
      if (DECL_P (base))
1631
        {
1632
          if (CODE_CONTAINS_STRUCT (TREE_CODE (base), TS_DECL_WITH_VIS))
1633
            MEM_NOTRAP_P (ref) = !DECL_WEAK (base);
1634
          else
1635
            MEM_NOTRAP_P (ref) = 1;
1636
        }
1637
      else
1638
        MEM_NOTRAP_P (ref) = TREE_THIS_NOTRAP (base);
1639
 
1640
      base = get_base_address (base);
1641
      if (base && DECL_P (base)
1642
          && TREE_READONLY (base)
1643
          && (TREE_STATIC (base) || DECL_EXTERNAL (base)))
1644
        {
1645
          tree base_type = TREE_TYPE (base);
1646
          gcc_assert (!(base_type && TYPE_NEEDS_CONSTRUCTING (base_type))
1647
                      || DECL_ARTIFICIAL (base));
1648
          MEM_READONLY_P (ref) = 1;
1649
        }
1650
 
1651
      /* If this expression uses it's parent's alias set, mark it such
1652
         that we won't change it.  */
1653
      if (component_uses_parent_alias_set (t))
1654
        MEM_KEEP_ALIAS_SET_P (ref) = 1;
1655
 
1656
      /* If this is a decl, set the attributes of the MEM from it.  */
1657
      if (DECL_P (t))
1658
        {
1659
          expr = t;
1660
          offset = const0_rtx;
1661
          apply_bitpos = bitpos;
1662
          size = (DECL_SIZE_UNIT (t)
1663
                  && host_integerp (DECL_SIZE_UNIT (t), 1)
1664
                  ? GEN_INT (tree_low_cst (DECL_SIZE_UNIT (t), 1)) : 0);
1665
          align = DECL_ALIGN (t);
1666
          align_computed = true;
1667
        }
1668
 
1669
      /* If this is a constant, we know the alignment.  */
1670
      else if (CONSTANT_CLASS_P (t))
1671
        {
1672
          align = TYPE_ALIGN (type);
1673
#ifdef CONSTANT_ALIGNMENT
1674
          align = CONSTANT_ALIGNMENT (t, align);
1675
#endif
1676
          align_computed = true;
1677
        }
1678
 
1679
      /* If this is a field reference and not a bit-field, record it.  */
1680
      /* ??? There is some information that can be gleaned from bit-fields,
1681
         such as the word offset in the structure that might be modified.
1682
         But skip it for now.  */
1683
      else if (TREE_CODE (t) == COMPONENT_REF
1684
               && ! DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
1685
        {
1686
          expr = t;
1687
          offset = const0_rtx;
1688
          apply_bitpos = bitpos;
1689
          /* ??? Any reason the field size would be different than
1690
             the size we got from the type?  */
1691
        }
1692
 
1693
      /* If this is an array reference, look for an outer field reference.  */
1694
      else if (TREE_CODE (t) == ARRAY_REF)
1695
        {
1696
          tree off_tree = size_zero_node;
1697
          /* We can't modify t, because we use it at the end of the
1698
             function.  */
1699
          tree t2 = t;
1700
 
1701
          do
1702
            {
1703
              tree index = TREE_OPERAND (t2, 1);
1704
              tree low_bound = array_ref_low_bound (t2);
1705
              tree unit_size = array_ref_element_size (t2);
1706
 
1707
              /* We assume all arrays have sizes that are a multiple of a byte.
1708
                 First subtract the lower bound, if any, in the type of the
1709
                 index, then convert to sizetype and multiply by the size of
1710
                 the array element.  */
1711
              if (! integer_zerop (low_bound))
1712
                index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
1713
                                     index, low_bound);
1714
 
1715
              off_tree = size_binop (PLUS_EXPR,
1716
                                     size_binop (MULT_EXPR,
1717
                                                 fold_convert (sizetype,
1718
                                                               index),
1719
                                                 unit_size),
1720
                                     off_tree);
1721
              t2 = TREE_OPERAND (t2, 0);
1722
            }
1723
          while (TREE_CODE (t2) == ARRAY_REF);
1724
 
1725
          if (DECL_P (t2))
1726
            {
1727
              expr = t2;
1728
              offset = NULL;
1729
              if (host_integerp (off_tree, 1))
1730
                {
1731
                  HOST_WIDE_INT ioff = tree_low_cst (off_tree, 1);
1732
                  HOST_WIDE_INT aoff = (ioff & -ioff) * BITS_PER_UNIT;
1733
                  align = DECL_ALIGN (t2);
1734
                  if (aoff && (unsigned HOST_WIDE_INT) aoff < align)
1735
                    align = aoff;
1736
                  align_computed = true;
1737
                  offset = GEN_INT (ioff);
1738
                  apply_bitpos = bitpos;
1739
                }
1740
            }
1741
          else if (TREE_CODE (t2) == COMPONENT_REF)
1742
            {
1743
              expr = t2;
1744
              offset = NULL;
1745
              if (host_integerp (off_tree, 1))
1746
                {
1747
                  offset = GEN_INT (tree_low_cst (off_tree, 1));
1748
                  apply_bitpos = bitpos;
1749
                }
1750
              /* ??? Any reason the field size would be different than
1751
                 the size we got from the type?  */
1752
            }
1753
          else if (flag_argument_noalias > 1
1754
                   && (INDIRECT_REF_P (t2))
1755
                   && TREE_CODE (TREE_OPERAND (t2, 0)) == PARM_DECL)
1756
            {
1757
              expr = t2;
1758
              offset = NULL;
1759
            }
1760
        }
1761
 
1762
      /* If this is a Fortran indirect argument reference, record the
1763
         parameter decl.  */
1764
      else if (flag_argument_noalias > 1
1765
               && (INDIRECT_REF_P (t))
1766
               && TREE_CODE (TREE_OPERAND (t, 0)) == PARM_DECL)
1767
        {
1768
          expr = t;
1769
          offset = NULL;
1770
        }
1771
 
1772
      if (!align_computed && !INDIRECT_REF_P (t))
1773
        {
1774
          unsigned int obj_align
1775
            = get_object_alignment (t, align, BIGGEST_ALIGNMENT);
1776
          align = MAX (align, obj_align);
1777
        }
1778
    }
1779
 
1780
  /* If we modified OFFSET based on T, then subtract the outstanding
1781
     bit position offset.  Similarly, increase the size of the accessed
1782
     object to contain the negative offset.  */
1783
  if (apply_bitpos)
1784
    {
1785
      offset = plus_constant (offset, -(apply_bitpos / BITS_PER_UNIT));
1786
      if (size)
1787
        size = plus_constant (size, apply_bitpos / BITS_PER_UNIT);
1788
    }
1789
 
1790
  if (TREE_CODE (t) == ALIGN_INDIRECT_REF)
1791
    {
1792
      /* Force EXPR and OFFSET to NULL, since we don't know exactly what
1793
         we're overlapping.  */
1794
      offset = NULL;
1795
      expr = NULL;
1796
    }
1797
 
1798
  /* Now set the attributes we computed above.  */
1799
  MEM_ATTRS (ref)
1800
    = get_mem_attrs (alias, expr, offset, size, align,
1801
                     TYPE_ADDR_SPACE (type), GET_MODE (ref));
1802
 
1803
  /* If this is already known to be a scalar or aggregate, we are done.  */
1804
  if (MEM_IN_STRUCT_P (ref) || MEM_SCALAR_P (ref))
1805
    return;
1806
 
1807
  /* If it is a reference into an aggregate, this is part of an aggregate.
1808
     Otherwise we don't know.  */
1809
  else if (TREE_CODE (t) == COMPONENT_REF || TREE_CODE (t) == ARRAY_REF
1810
           || TREE_CODE (t) == ARRAY_RANGE_REF
1811
           || TREE_CODE (t) == BIT_FIELD_REF)
1812
    MEM_IN_STRUCT_P (ref) = 1;
1813
}
1814
 
1815
void
1816
set_mem_attributes (rtx ref, tree t, int objectp)
1817
{
1818
  set_mem_attributes_minus_bitpos (ref, t, objectp, 0);
1819
}
1820
 
1821
/* Set the alias set of MEM to SET.  */
1822
 
1823
void
1824
set_mem_alias_set (rtx mem, alias_set_type set)
1825
{
1826
#ifdef ENABLE_CHECKING
1827
  /* If the new and old alias sets don't conflict, something is wrong.  */
1828
  gcc_assert (alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)));
1829
#endif
1830
 
1831
  MEM_ATTRS (mem) = get_mem_attrs (set, MEM_EXPR (mem), MEM_OFFSET (mem),
1832
                                   MEM_SIZE (mem), MEM_ALIGN (mem),
1833
                                   MEM_ADDR_SPACE (mem), GET_MODE (mem));
1834
}
1835
 
1836
/* Set the address space of MEM to ADDRSPACE (target-defined).  */
1837
 
1838
void
1839
set_mem_addr_space (rtx mem, addr_space_t addrspace)
1840
{
1841
  MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1842
                                   MEM_OFFSET (mem), MEM_SIZE (mem),
1843
                                   MEM_ALIGN (mem), addrspace, GET_MODE (mem));
1844
}
1845
 
1846
/* Set the alignment of MEM to ALIGN bits.  */
1847
 
1848
void
1849
set_mem_align (rtx mem, unsigned int align)
1850
{
1851
  MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1852
                                   MEM_OFFSET (mem), MEM_SIZE (mem), align,
1853
                                   MEM_ADDR_SPACE (mem), GET_MODE (mem));
1854
}
1855
 
1856
/* Set the expr for MEM to EXPR.  */
1857
 
1858
void
1859
set_mem_expr (rtx mem, tree expr)
1860
{
1861
  MEM_ATTRS (mem)
1862
    = get_mem_attrs (MEM_ALIAS_SET (mem), expr, MEM_OFFSET (mem),
1863
                     MEM_SIZE (mem), MEM_ALIGN (mem),
1864
                     MEM_ADDR_SPACE (mem), GET_MODE (mem));
1865
}
1866
 
1867
/* Set the offset of MEM to OFFSET.  */
1868
 
1869
void
1870
set_mem_offset (rtx mem, rtx offset)
1871
{
1872
  MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1873
                                   offset, MEM_SIZE (mem), MEM_ALIGN (mem),
1874
                                   MEM_ADDR_SPACE (mem), GET_MODE (mem));
1875
}
1876
 
1877
/* Set the size of MEM to SIZE.  */
1878
 
1879
void
1880
set_mem_size (rtx mem, rtx size)
1881
{
1882
  MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1883
                                   MEM_OFFSET (mem), size, MEM_ALIGN (mem),
1884
                                   MEM_ADDR_SPACE (mem), GET_MODE (mem));
1885
}
1886
 
1887
/* Return a memory reference like MEMREF, but with its mode changed to MODE
1888
   and its address changed to ADDR.  (VOIDmode means don't change the mode.
1889
   NULL for ADDR means don't change the address.)  VALIDATE is nonzero if the
1890
   returned memory location is required to be valid.  The memory
1891
   attributes are not changed.  */
1892
 
1893
static rtx
1894
change_address_1 (rtx memref, enum machine_mode mode, rtx addr, int validate)
1895
{
1896
  addr_space_t as;
1897
  rtx new_rtx;
1898
 
1899
  gcc_assert (MEM_P (memref));
1900
  as = MEM_ADDR_SPACE (memref);
1901
  if (mode == VOIDmode)
1902
    mode = GET_MODE (memref);
1903
  if (addr == 0)
1904
    addr = XEXP (memref, 0);
1905
  if (mode == GET_MODE (memref) && addr == XEXP (memref, 0)
1906
      && (!validate || memory_address_addr_space_p (mode, addr, as)))
1907
    return memref;
1908
 
1909
  if (validate)
1910
    {
1911
      if (reload_in_progress || reload_completed)
1912
        gcc_assert (memory_address_addr_space_p (mode, addr, as));
1913
      else
1914
        addr = memory_address_addr_space (mode, addr, as);
1915
    }
1916
 
1917
  if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
1918
    return memref;
1919
 
1920
  new_rtx = gen_rtx_MEM (mode, addr);
1921
  MEM_COPY_ATTRIBUTES (new_rtx, memref);
1922
  return new_rtx;
1923
}
1924
 
1925
/* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
1926
   way we are changing MEMREF, so we only preserve the alias set.  */
1927
 
1928
rtx
1929
change_address (rtx memref, enum machine_mode mode, rtx addr)
1930
{
1931
  rtx new_rtx = change_address_1 (memref, mode, addr, 1), size;
1932
  enum machine_mode mmode = GET_MODE (new_rtx);
1933
  unsigned int align;
1934
 
1935
  size = mmode == BLKmode ? 0 : GEN_INT (GET_MODE_SIZE (mmode));
1936
  align = mmode == BLKmode ? BITS_PER_UNIT : GET_MODE_ALIGNMENT (mmode);
1937
 
1938
  /* If there are no changes, just return the original memory reference.  */
1939
  if (new_rtx == memref)
1940
    {
1941
      if (MEM_ATTRS (memref) == 0
1942
          || (MEM_EXPR (memref) == NULL
1943
              && MEM_OFFSET (memref) == NULL
1944
              && MEM_SIZE (memref) == size
1945
              && MEM_ALIGN (memref) == align))
1946
        return new_rtx;
1947
 
1948
      new_rtx = gen_rtx_MEM (mmode, XEXP (memref, 0));
1949
      MEM_COPY_ATTRIBUTES (new_rtx, memref);
1950
    }
1951
 
1952
  MEM_ATTRS (new_rtx)
1953
    = get_mem_attrs (MEM_ALIAS_SET (memref), 0, 0, size, align,
1954
                     MEM_ADDR_SPACE (memref), mmode);
1955
 
1956
  return new_rtx;
1957
}
1958
 
1959
/* Return a memory reference like MEMREF, but with its mode changed
1960
   to MODE and its address offset by OFFSET bytes.  If VALIDATE is
1961
   nonzero, the memory address is forced to be valid.
1962
   If ADJUST is zero, OFFSET is only used to update MEM_ATTRS
1963
   and caller is responsible for adjusting MEMREF base register.  */
1964
 
1965
rtx
1966
adjust_address_1 (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset,
1967
                  int validate, int adjust)
1968
{
1969
  rtx addr = XEXP (memref, 0);
1970
  rtx new_rtx;
1971
  rtx memoffset = MEM_OFFSET (memref);
1972
  rtx size = 0;
1973
  unsigned int memalign = MEM_ALIGN (memref);
1974
  addr_space_t as = MEM_ADDR_SPACE (memref);
1975
  enum machine_mode address_mode = targetm.addr_space.address_mode (as);
1976
  int pbits;
1977
 
1978
  /* If there are no changes, just return the original memory reference.  */
1979
  if (mode == GET_MODE (memref) && !offset
1980
      && (!validate || memory_address_addr_space_p (mode, addr, as)))
1981
    return memref;
1982
 
1983
  /* ??? Prefer to create garbage instead of creating shared rtl.
1984
     This may happen even if offset is nonzero -- consider
1985
     (plus (plus reg reg) const_int) -- so do this always.  */
1986
  addr = copy_rtx (addr);
1987
 
1988
  /* Convert a possibly large offset to a signed value within the
1989
     range of the target address space.  */
1990
  pbits = GET_MODE_BITSIZE (address_mode);
1991
  if (HOST_BITS_PER_WIDE_INT > pbits)
1992
    {
1993
      int shift = HOST_BITS_PER_WIDE_INT - pbits;
1994
      offset = (((HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) offset << shift))
1995
                >> shift);
1996
    }
1997
 
1998
  if (adjust)
1999
    {
2000
      /* If MEMREF is a LO_SUM and the offset is within the alignment of the
2001
         object, we can merge it into the LO_SUM.  */
2002
      if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM
2003
          && offset >= 0
2004
          && (unsigned HOST_WIDE_INT) offset
2005
              < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT)
2006
        addr = gen_rtx_LO_SUM (address_mode, XEXP (addr, 0),
2007
                               plus_constant (XEXP (addr, 1), offset));
2008
      else
2009
        addr = plus_constant (addr, offset);
2010
    }
2011
 
2012
  new_rtx = change_address_1 (memref, mode, addr, validate);
2013
 
2014
  /* If the address is a REG, change_address_1 rightfully returns memref,
2015
     but this would destroy memref's MEM_ATTRS.  */
2016
  if (new_rtx == memref && offset != 0)
2017
    new_rtx = copy_rtx (new_rtx);
2018
 
2019
  /* Compute the new values of the memory attributes due to this adjustment.
2020
     We add the offsets and update the alignment.  */
2021
  if (memoffset)
2022
    memoffset = GEN_INT (offset + INTVAL (memoffset));
2023
 
2024
  /* Compute the new alignment by taking the MIN of the alignment and the
2025
     lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
2026
     if zero.  */
2027
  if (offset != 0)
2028
    memalign
2029
      = MIN (memalign,
2030
             (unsigned HOST_WIDE_INT) (offset & -offset) * BITS_PER_UNIT);
2031
 
2032
  /* We can compute the size in a number of ways.  */
2033
  if (GET_MODE (new_rtx) != BLKmode)
2034
    size = GEN_INT (GET_MODE_SIZE (GET_MODE (new_rtx)));
2035
  else if (MEM_SIZE (memref))
2036
    size = plus_constant (MEM_SIZE (memref), -offset);
2037
 
2038
  MEM_ATTRS (new_rtx) = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref),
2039
                                       memoffset, size, memalign, as,
2040
                                       GET_MODE (new_rtx));
2041
 
2042
  /* At some point, we should validate that this offset is within the object,
2043
     if all the appropriate values are known.  */
2044
  return new_rtx;
2045
}
2046
 
2047
/* Return a memory reference like MEMREF, but with its mode changed
2048
   to MODE and its address changed to ADDR, which is assumed to be
2049
   MEMREF offset by OFFSET bytes.  If VALIDATE is
2050
   nonzero, the memory address is forced to be valid.  */
2051
 
2052
rtx
2053
adjust_automodify_address_1 (rtx memref, enum machine_mode mode, rtx addr,
2054
                             HOST_WIDE_INT offset, int validate)
2055
{
2056
  memref = change_address_1 (memref, VOIDmode, addr, validate);
2057
  return adjust_address_1 (memref, mode, offset, validate, 0);
2058
}
2059
 
2060
/* Return a memory reference like MEMREF, but whose address is changed by
2061
   adding OFFSET, an RTX, to it.  POW2 is the highest power of two factor
2062
   known to be in OFFSET (possibly 1).  */
2063
 
2064
rtx
2065
offset_address (rtx memref, rtx offset, unsigned HOST_WIDE_INT pow2)
2066
{
2067
  rtx new_rtx, addr = XEXP (memref, 0);
2068
  addr_space_t as = MEM_ADDR_SPACE (memref);
2069
  enum machine_mode address_mode = targetm.addr_space.address_mode (as);
2070
 
2071
  new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset);
2072
 
2073
  /* At this point we don't know _why_ the address is invalid.  It
2074
     could have secondary memory references, multiplies or anything.
2075
 
2076
     However, if we did go and rearrange things, we can wind up not
2077
     being able to recognize the magic around pic_offset_table_rtx.
2078
     This stuff is fragile, and is yet another example of why it is
2079
     bad to expose PIC machinery too early.  */
2080
  if (! memory_address_addr_space_p (GET_MODE (memref), new_rtx, as)
2081
      && GET_CODE (addr) == PLUS
2082
      && XEXP (addr, 0) == pic_offset_table_rtx)
2083
    {
2084
      addr = force_reg (GET_MODE (addr), addr);
2085
      new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset);
2086
    }
2087
 
2088
  update_temp_slot_address (XEXP (memref, 0), new_rtx);
2089
  new_rtx = change_address_1 (memref, VOIDmode, new_rtx, 1);
2090
 
2091
  /* If there are no changes, just return the original memory reference.  */
2092
  if (new_rtx == memref)
2093
    return new_rtx;
2094
 
2095
  /* Update the alignment to reflect the offset.  Reset the offset, which
2096
     we don't know.  */
2097
  MEM_ATTRS (new_rtx)
2098
    = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref), 0, 0,
2099
                     MIN (MEM_ALIGN (memref), pow2 * BITS_PER_UNIT),
2100
                     as, GET_MODE (new_rtx));
2101
  return new_rtx;
2102
}
2103
 
2104
/* Return a memory reference like MEMREF, but with its address changed to
2105
   ADDR.  The caller is asserting that the actual piece of memory pointed
2106
   to is the same, just the form of the address is being changed, such as
2107
   by putting something into a register.  */
2108
 
2109
rtx
2110
replace_equiv_address (rtx memref, rtx addr)
2111
{
2112
  /* change_address_1 copies the memory attribute structure without change
2113
     and that's exactly what we want here.  */
2114
  update_temp_slot_address (XEXP (memref, 0), addr);
2115
  return change_address_1 (memref, VOIDmode, addr, 1);
2116
}
2117
 
2118
/* Likewise, but the reference is not required to be valid.  */
2119
 
2120
rtx
2121
replace_equiv_address_nv (rtx memref, rtx addr)
2122
{
2123
  return change_address_1 (memref, VOIDmode, addr, 0);
2124
}
2125
 
2126
/* Return a memory reference like MEMREF, but with its mode widened to
2127
   MODE and offset by OFFSET.  This would be used by targets that e.g.
2128
   cannot issue QImode memory operations and have to use SImode memory
2129
   operations plus masking logic.  */
2130
 
2131
rtx
2132
widen_memory_access (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset)
2133
{
2134
  rtx new_rtx = adjust_address_1 (memref, mode, offset, 1, 1);
2135
  tree expr = MEM_EXPR (new_rtx);
2136
  rtx memoffset = MEM_OFFSET (new_rtx);
2137
  unsigned int size = GET_MODE_SIZE (mode);
2138
 
2139
  /* If there are no changes, just return the original memory reference.  */
2140
  if (new_rtx == memref)
2141
    return new_rtx;
2142
 
2143
  /* If we don't know what offset we were at within the expression, then
2144
     we can't know if we've overstepped the bounds.  */
2145
  if (! memoffset)
2146
    expr = NULL_TREE;
2147
 
2148
  while (expr)
2149
    {
2150
      if (TREE_CODE (expr) == COMPONENT_REF)
2151
        {
2152
          tree field = TREE_OPERAND (expr, 1);
2153
          tree offset = component_ref_field_offset (expr);
2154
 
2155
          if (! DECL_SIZE_UNIT (field))
2156
            {
2157
              expr = NULL_TREE;
2158
              break;
2159
            }
2160
 
2161
          /* Is the field at least as large as the access?  If so, ok,
2162
             otherwise strip back to the containing structure.  */
2163
          if (TREE_CODE (DECL_SIZE_UNIT (field)) == INTEGER_CST
2164
              && compare_tree_int (DECL_SIZE_UNIT (field), size) >= 0
2165
              && INTVAL (memoffset) >= 0)
2166
            break;
2167
 
2168
          if (! host_integerp (offset, 1))
2169
            {
2170
              expr = NULL_TREE;
2171
              break;
2172
            }
2173
 
2174
          expr = TREE_OPERAND (expr, 0);
2175
          memoffset
2176
            = (GEN_INT (INTVAL (memoffset)
2177
                        + tree_low_cst (offset, 1)
2178
                        + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
2179
                           / BITS_PER_UNIT)));
2180
        }
2181
      /* Similarly for the decl.  */
2182
      else if (DECL_P (expr)
2183
               && DECL_SIZE_UNIT (expr)
2184
               && TREE_CODE (DECL_SIZE_UNIT (expr)) == INTEGER_CST
2185
               && compare_tree_int (DECL_SIZE_UNIT (expr), size) >= 0
2186
               && (! memoffset || INTVAL (memoffset) >= 0))
2187
        break;
2188
      else
2189
        {
2190
          /* The widened memory access overflows the expression, which means
2191
             that it could alias another expression.  Zap it.  */
2192
          expr = NULL_TREE;
2193
          break;
2194
        }
2195
    }
2196
 
2197
  if (! expr)
2198
    memoffset = NULL_RTX;
2199
 
2200
  /* The widened memory may alias other stuff, so zap the alias set.  */
2201
  /* ??? Maybe use get_alias_set on any remaining expression.  */
2202
 
2203
  MEM_ATTRS (new_rtx) = get_mem_attrs (0, expr, memoffset, GEN_INT (size),
2204
                                       MEM_ALIGN (new_rtx),
2205
                                       MEM_ADDR_SPACE (new_rtx), mode);
2206
 
2207
  return new_rtx;
2208
}
2209
 
2210
/* A fake decl that is used as the MEM_EXPR of spill slots.  */
2211
static GTY(()) tree spill_slot_decl;
2212
 
2213
tree
2214
get_spill_slot_decl (bool force_build_p)
2215
{
2216
  tree d = spill_slot_decl;
2217
  rtx rd;
2218
 
2219
  if (d || !force_build_p)
2220
    return d;
2221
 
2222
  d = build_decl (DECL_SOURCE_LOCATION (current_function_decl),
2223
                  VAR_DECL, get_identifier ("%sfp"), void_type_node);
2224
  DECL_ARTIFICIAL (d) = 1;
2225
  DECL_IGNORED_P (d) = 1;
2226
  TREE_USED (d) = 1;
2227
  TREE_THIS_NOTRAP (d) = 1;
2228
  spill_slot_decl = d;
2229
 
2230
  rd = gen_rtx_MEM (BLKmode, frame_pointer_rtx);
2231
  MEM_NOTRAP_P (rd) = 1;
2232
  MEM_ATTRS (rd) = get_mem_attrs (new_alias_set (), d, const0_rtx,
2233
                                  NULL_RTX, 0, ADDR_SPACE_GENERIC, BLKmode);
2234
  SET_DECL_RTL (d, rd);
2235
 
2236
  return d;
2237
}
2238
 
2239
/* Given MEM, a result from assign_stack_local, fill in the memory
2240
   attributes as appropriate for a register allocator spill slot.
2241
   These slots are not aliasable by other memory.  We arrange for
2242
   them all to use a single MEM_EXPR, so that the aliasing code can
2243
   work properly in the case of shared spill slots.  */
2244
 
2245
void
2246
set_mem_attrs_for_spill (rtx mem)
2247
{
2248
  alias_set_type alias;
2249
  rtx addr, offset;
2250
  tree expr;
2251
 
2252
  expr = get_spill_slot_decl (true);
2253
  alias = MEM_ALIAS_SET (DECL_RTL (expr));
2254
 
2255
  /* We expect the incoming memory to be of the form:
2256
        (mem:MODE (plus (reg sfp) (const_int offset)))
2257
     with perhaps the plus missing for offset = 0.  */
2258
  addr = XEXP (mem, 0);
2259
  offset = const0_rtx;
2260
  if (GET_CODE (addr) == PLUS
2261
      && CONST_INT_P (XEXP (addr, 1)))
2262
    offset = XEXP (addr, 1);
2263
 
2264
  MEM_ATTRS (mem) = get_mem_attrs (alias, expr, offset,
2265
                                   MEM_SIZE (mem), MEM_ALIGN (mem),
2266
                                   ADDR_SPACE_GENERIC, GET_MODE (mem));
2267
  MEM_NOTRAP_P (mem) = 1;
2268
}
2269
 
2270
/* Return a newly created CODE_LABEL rtx with a unique label number.  */
2271
 
2272
rtx
2273
gen_label_rtx (void)
2274
{
2275
  return gen_rtx_CODE_LABEL (VOIDmode, 0, NULL_RTX, NULL_RTX,
2276
                             NULL, label_num++, NULL);
2277
}
2278
 
2279
/* For procedure integration.  */
2280
 
2281
/* Install new pointers to the first and last insns in the chain.
2282
   Also, set cur_insn_uid to one higher than the last in use.
2283
   Used for an inline-procedure after copying the insn chain.  */
2284
 
2285
void
2286
set_new_first_and_last_insn (rtx first, rtx last)
2287
{
2288
  rtx insn;
2289
 
2290
  first_insn = first;
2291
  last_insn = last;
2292
  cur_insn_uid = 0;
2293
 
2294
  if (MIN_NONDEBUG_INSN_UID || MAY_HAVE_DEBUG_INSNS)
2295
    {
2296
      int debug_count = 0;
2297
 
2298
      cur_insn_uid = MIN_NONDEBUG_INSN_UID - 1;
2299
      cur_debug_insn_uid = 0;
2300
 
2301
      for (insn = first; insn; insn = NEXT_INSN (insn))
2302
        if (INSN_UID (insn) < MIN_NONDEBUG_INSN_UID)
2303
          cur_debug_insn_uid = MAX (cur_debug_insn_uid, INSN_UID (insn));
2304
        else
2305
          {
2306
            cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2307
            if (DEBUG_INSN_P (insn))
2308
              debug_count++;
2309
          }
2310
 
2311
      if (debug_count)
2312
        cur_debug_insn_uid = MIN_NONDEBUG_INSN_UID + debug_count;
2313
      else
2314
        cur_debug_insn_uid++;
2315
    }
2316
  else
2317
    for (insn = first; insn; insn = NEXT_INSN (insn))
2318
      cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2319
 
2320
  cur_insn_uid++;
2321
}
2322
 
2323
/* Go through all the RTL insn bodies and copy any invalid shared
2324
   structure.  This routine should only be called once.  */
2325
 
2326
static void
2327
unshare_all_rtl_1 (rtx insn)
2328
{
2329
  /* Unshare just about everything else.  */
2330
  unshare_all_rtl_in_chain (insn);
2331
 
2332
  /* Make sure the addresses of stack slots found outside the insn chain
2333
     (such as, in DECL_RTL of a variable) are not shared
2334
     with the insn chain.
2335
 
2336
     This special care is necessary when the stack slot MEM does not
2337
     actually appear in the insn chain.  If it does appear, its address
2338
     is unshared from all else at that point.  */
2339
  stack_slot_list = copy_rtx_if_shared (stack_slot_list);
2340
}
2341
 
2342
/* Go through all the RTL insn bodies and copy any invalid shared
2343
   structure, again.  This is a fairly expensive thing to do so it
2344
   should be done sparingly.  */
2345
 
2346
void
2347
unshare_all_rtl_again (rtx insn)
2348
{
2349
  rtx p;
2350
  tree decl;
2351
 
2352
  for (p = insn; p; p = NEXT_INSN (p))
2353
    if (INSN_P (p))
2354
      {
2355
        reset_used_flags (PATTERN (p));
2356
        reset_used_flags (REG_NOTES (p));
2357
      }
2358
 
2359
  /* Make sure that virtual stack slots are not shared.  */
2360
  set_used_decls (DECL_INITIAL (cfun->decl));
2361
 
2362
  /* Make sure that virtual parameters are not shared.  */
2363
  for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = TREE_CHAIN (decl))
2364
    set_used_flags (DECL_RTL (decl));
2365
 
2366
  reset_used_flags (stack_slot_list);
2367
 
2368
  unshare_all_rtl_1 (insn);
2369
}
2370
 
2371
unsigned int
2372
unshare_all_rtl (void)
2373
{
2374
  unshare_all_rtl_1 (get_insns ());
2375
  return 0;
2376
}
2377
 
2378
struct rtl_opt_pass pass_unshare_all_rtl =
2379
{
2380
 {
2381
  RTL_PASS,
2382
  "unshare",                            /* name */
2383
  NULL,                                 /* gate */
2384
  unshare_all_rtl,                      /* execute */
2385
  NULL,                                 /* sub */
2386
  NULL,                                 /* next */
2387
  0,                                    /* static_pass_number */
2388
  TV_NONE,                              /* tv_id */
2389
  0,                                    /* properties_required */
2390
  0,                                    /* properties_provided */
2391
  0,                                    /* properties_destroyed */
2392
  0,                                    /* todo_flags_start */
2393
  TODO_dump_func | TODO_verify_rtl_sharing /* todo_flags_finish */
2394
 }
2395
};
2396
 
2397
 
2398
/* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2399
   Recursively does the same for subexpressions.  */
2400
 
2401
static void
2402
verify_rtx_sharing (rtx orig, rtx insn)
2403
{
2404
  rtx x = orig;
2405
  int i;
2406
  enum rtx_code code;
2407
  const char *format_ptr;
2408
 
2409
  if (x == 0)
2410
    return;
2411
 
2412
  code = GET_CODE (x);
2413
 
2414
  /* These types may be freely shared.  */
2415
 
2416
  switch (code)
2417
    {
2418
    case REG:
2419
    case DEBUG_EXPR:
2420
    case VALUE:
2421
    case CONST_INT:
2422
    case CONST_DOUBLE:
2423
    case CONST_FIXED:
2424
    case CONST_VECTOR:
2425
    case SYMBOL_REF:
2426
    case LABEL_REF:
2427
    case CODE_LABEL:
2428
    case PC:
2429
    case CC0:
2430
    case SCRATCH:
2431
      return;
2432
      /* SCRATCH must be shared because they represent distinct values.  */
2433
    case CLOBBER:
2434
      if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2435
        return;
2436
      break;
2437
 
2438
    case CONST:
2439
      if (shared_const_p (orig))
2440
        return;
2441
      break;
2442
 
2443
    case MEM:
2444
      /* A MEM is allowed to be shared if its address is constant.  */
2445
      if (CONSTANT_ADDRESS_P (XEXP (x, 0))
2446
          || reload_completed || reload_in_progress)
2447
        return;
2448
 
2449
      break;
2450
 
2451
    default:
2452
      break;
2453
    }
2454
 
2455
  /* This rtx may not be shared.  If it has already been seen,
2456
     replace it with a copy of itself.  */
2457
#ifdef ENABLE_CHECKING
2458
  if (RTX_FLAG (x, used))
2459
    {
2460
      error ("invalid rtl sharing found in the insn");
2461
      debug_rtx (insn);
2462
      error ("shared rtx");
2463
      debug_rtx (x);
2464
      internal_error ("internal consistency failure");
2465
    }
2466
#endif
2467
  gcc_assert (!RTX_FLAG (x, used));
2468
 
2469
  RTX_FLAG (x, used) = 1;
2470
 
2471
  /* Now scan the subexpressions recursively.  */
2472
 
2473
  format_ptr = GET_RTX_FORMAT (code);
2474
 
2475
  for (i = 0; i < GET_RTX_LENGTH (code); i++)
2476
    {
2477
      switch (*format_ptr++)
2478
        {
2479
        case 'e':
2480
          verify_rtx_sharing (XEXP (x, i), insn);
2481
          break;
2482
 
2483
        case 'E':
2484
          if (XVEC (x, i) != NULL)
2485
            {
2486
              int j;
2487
              int len = XVECLEN (x, i);
2488
 
2489
              for (j = 0; j < len; j++)
2490
                {
2491
                  /* We allow sharing of ASM_OPERANDS inside single
2492
                     instruction.  */
2493
                  if (j && GET_CODE (XVECEXP (x, i, j)) == SET
2494
                      && (GET_CODE (SET_SRC (XVECEXP (x, i, j)))
2495
                          == ASM_OPERANDS))
2496
                    verify_rtx_sharing (SET_DEST (XVECEXP (x, i, j)), insn);
2497
                  else
2498
                    verify_rtx_sharing (XVECEXP (x, i, j), insn);
2499
                }
2500
            }
2501
          break;
2502
        }
2503
    }
2504
  return;
2505
}
2506
 
2507
/* Go through all the RTL insn bodies and check that there is no unexpected
2508
   sharing in between the subexpressions.  */
2509
 
2510
void
2511
verify_rtl_sharing (void)
2512
{
2513
  rtx p;
2514
 
2515
  for (p = get_insns (); p; p = NEXT_INSN (p))
2516
    if (INSN_P (p))
2517
      {
2518
        reset_used_flags (PATTERN (p));
2519
        reset_used_flags (REG_NOTES (p));
2520
        if (GET_CODE (PATTERN (p)) == SEQUENCE)
2521
          {
2522
            int i;
2523
            rtx q, sequence = PATTERN (p);
2524
 
2525
            for (i = 0; i < XVECLEN (sequence, 0); i++)
2526
              {
2527
                q = XVECEXP (sequence, 0, i);
2528
                gcc_assert (INSN_P (q));
2529
                reset_used_flags (PATTERN (q));
2530
                reset_used_flags (REG_NOTES (q));
2531
              }
2532
          }
2533
      }
2534
 
2535
  for (p = get_insns (); p; p = NEXT_INSN (p))
2536
    if (INSN_P (p))
2537
      {
2538
        verify_rtx_sharing (PATTERN (p), p);
2539
        verify_rtx_sharing (REG_NOTES (p), p);
2540
      }
2541
}
2542
 
2543
/* Go through all the RTL insn bodies and copy any invalid shared structure.
2544
   Assumes the mark bits are cleared at entry.  */
2545
 
2546
void
2547
unshare_all_rtl_in_chain (rtx insn)
2548
{
2549
  for (; insn; insn = NEXT_INSN (insn))
2550
    if (INSN_P (insn))
2551
      {
2552
        PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
2553
        REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
2554
      }
2555
}
2556
 
2557
/* Go through all virtual stack slots of a function and mark them as
2558
   shared.  We never replace the DECL_RTLs themselves with a copy,
2559
   but expressions mentioned into a DECL_RTL cannot be shared with
2560
   expressions in the instruction stream.
2561
 
2562
   Note that reload may convert pseudo registers into memories in-place.
2563
   Pseudo registers are always shared, but MEMs never are.  Thus if we
2564
   reset the used flags on MEMs in the instruction stream, we must set
2565
   them again on MEMs that appear in DECL_RTLs.  */
2566
 
2567
static void
2568
set_used_decls (tree blk)
2569
{
2570
  tree t;
2571
 
2572
  /* Mark decls.  */
2573
  for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
2574
    if (DECL_RTL_SET_P (t))
2575
      set_used_flags (DECL_RTL (t));
2576
 
2577
  /* Now process sub-blocks.  */
2578
  for (t = BLOCK_SUBBLOCKS (blk); t; t = BLOCK_CHAIN (t))
2579
    set_used_decls (t);
2580
}
2581
 
2582
/* Mark ORIG as in use, and return a copy of it if it was already in use.
2583
   Recursively does the same for subexpressions.  Uses
2584
   copy_rtx_if_shared_1 to reduce stack space.  */
2585
 
2586
rtx
2587
copy_rtx_if_shared (rtx orig)
2588
{
2589
  copy_rtx_if_shared_1 (&orig);
2590
  return orig;
2591
}
2592
 
2593
/* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
2594
   use.  Recursively does the same for subexpressions.  */
2595
 
2596
static void
2597
copy_rtx_if_shared_1 (rtx *orig1)
2598
{
2599
  rtx x;
2600
  int i;
2601
  enum rtx_code code;
2602
  rtx *last_ptr;
2603
  const char *format_ptr;
2604
  int copied = 0;
2605
  int length;
2606
 
2607
  /* Repeat is used to turn tail-recursion into iteration.  */
2608
repeat:
2609
  x = *orig1;
2610
 
2611
  if (x == 0)
2612
    return;
2613
 
2614
  code = GET_CODE (x);
2615
 
2616
  /* These types may be freely shared.  */
2617
 
2618
  switch (code)
2619
    {
2620
    case REG:
2621
    case DEBUG_EXPR:
2622
    case VALUE:
2623
    case CONST_INT:
2624
    case CONST_DOUBLE:
2625
    case CONST_FIXED:
2626
    case CONST_VECTOR:
2627
    case SYMBOL_REF:
2628
    case LABEL_REF:
2629
    case CODE_LABEL:
2630
    case PC:
2631
    case CC0:
2632
    case SCRATCH:
2633
      /* SCRATCH must be shared because they represent distinct values.  */
2634
      return;
2635
    case CLOBBER:
2636
      if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2637
        return;
2638
      break;
2639
 
2640
    case CONST:
2641
      if (shared_const_p (x))
2642
        return;
2643
      break;
2644
 
2645
    case DEBUG_INSN:
2646
    case INSN:
2647
    case JUMP_INSN:
2648
    case CALL_INSN:
2649
    case NOTE:
2650
    case BARRIER:
2651
      /* The chain of insns is not being copied.  */
2652
      return;
2653
 
2654
    default:
2655
      break;
2656
    }
2657
 
2658
  /* This rtx may not be shared.  If it has already been seen,
2659
     replace it with a copy of itself.  */
2660
 
2661
  if (RTX_FLAG (x, used))
2662
    {
2663
      x = shallow_copy_rtx (x);
2664
      copied = 1;
2665
    }
2666
  RTX_FLAG (x, used) = 1;
2667
 
2668
  /* Now scan the subexpressions recursively.
2669
     We can store any replaced subexpressions directly into X
2670
     since we know X is not shared!  Any vectors in X
2671
     must be copied if X was copied.  */
2672
 
2673
  format_ptr = GET_RTX_FORMAT (code);
2674
  length = GET_RTX_LENGTH (code);
2675
  last_ptr = NULL;
2676
 
2677
  for (i = 0; i < length; i++)
2678
    {
2679
      switch (*format_ptr++)
2680
        {
2681
        case 'e':
2682
          if (last_ptr)
2683
            copy_rtx_if_shared_1 (last_ptr);
2684
          last_ptr = &XEXP (x, i);
2685
          break;
2686
 
2687
        case 'E':
2688
          if (XVEC (x, i) != NULL)
2689
            {
2690
              int j;
2691
              int len = XVECLEN (x, i);
2692
 
2693
              /* Copy the vector iff I copied the rtx and the length
2694
                 is nonzero.  */
2695
              if (copied && len > 0)
2696
                XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
2697
 
2698
              /* Call recursively on all inside the vector.  */
2699
              for (j = 0; j < len; j++)
2700
                {
2701
                  if (last_ptr)
2702
                    copy_rtx_if_shared_1 (last_ptr);
2703
                  last_ptr = &XVECEXP (x, i, j);
2704
                }
2705
            }
2706
          break;
2707
        }
2708
    }
2709
  *orig1 = x;
2710
  if (last_ptr)
2711
    {
2712
      orig1 = last_ptr;
2713
      goto repeat;
2714
    }
2715
  return;
2716
}
2717
 
2718
/* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
2719
   to look for shared sub-parts.  */
2720
 
2721
void
2722
reset_used_flags (rtx x)
2723
{
2724
  int i, j;
2725
  enum rtx_code code;
2726
  const char *format_ptr;
2727
  int length;
2728
 
2729
  /* Repeat is used to turn tail-recursion into iteration.  */
2730
repeat:
2731
  if (x == 0)
2732
    return;
2733
 
2734
  code = GET_CODE (x);
2735
 
2736
  /* These types may be freely shared so we needn't do any resetting
2737
     for them.  */
2738
 
2739
  switch (code)
2740
    {
2741
    case REG:
2742
    case DEBUG_EXPR:
2743
    case VALUE:
2744
    case CONST_INT:
2745
    case CONST_DOUBLE:
2746
    case CONST_FIXED:
2747
    case CONST_VECTOR:
2748
    case SYMBOL_REF:
2749
    case CODE_LABEL:
2750
    case PC:
2751
    case CC0:
2752
      return;
2753
 
2754
    case DEBUG_INSN:
2755
    case INSN:
2756
    case JUMP_INSN:
2757
    case CALL_INSN:
2758
    case NOTE:
2759
    case LABEL_REF:
2760
    case BARRIER:
2761
      /* The chain of insns is not being copied.  */
2762
      return;
2763
 
2764
    default:
2765
      break;
2766
    }
2767
 
2768
  RTX_FLAG (x, used) = 0;
2769
 
2770
  format_ptr = GET_RTX_FORMAT (code);
2771
  length = GET_RTX_LENGTH (code);
2772
 
2773
  for (i = 0; i < length; i++)
2774
    {
2775
      switch (*format_ptr++)
2776
        {
2777
        case 'e':
2778
          if (i == length-1)
2779
            {
2780
              x = XEXP (x, i);
2781
              goto repeat;
2782
            }
2783
          reset_used_flags (XEXP (x, i));
2784
          break;
2785
 
2786
        case 'E':
2787
          for (j = 0; j < XVECLEN (x, i); j++)
2788
            reset_used_flags (XVECEXP (x, i, j));
2789
          break;
2790
        }
2791
    }
2792
}
2793
 
2794
/* Set all the USED bits in X to allow copy_rtx_if_shared to be used
2795
   to look for shared sub-parts.  */
2796
 
2797
void
2798
set_used_flags (rtx x)
2799
{
2800
  int i, j;
2801
  enum rtx_code code;
2802
  const char *format_ptr;
2803
 
2804
  if (x == 0)
2805
    return;
2806
 
2807
  code = GET_CODE (x);
2808
 
2809
  /* These types may be freely shared so we needn't do any resetting
2810
     for them.  */
2811
 
2812
  switch (code)
2813
    {
2814
    case REG:
2815
    case DEBUG_EXPR:
2816
    case VALUE:
2817
    case CONST_INT:
2818
    case CONST_DOUBLE:
2819
    case CONST_FIXED:
2820
    case CONST_VECTOR:
2821
    case SYMBOL_REF:
2822
    case CODE_LABEL:
2823
    case PC:
2824
    case CC0:
2825
      return;
2826
 
2827
    case DEBUG_INSN:
2828
    case INSN:
2829
    case JUMP_INSN:
2830
    case CALL_INSN:
2831
    case NOTE:
2832
    case LABEL_REF:
2833
    case BARRIER:
2834
      /* The chain of insns is not being copied.  */
2835
      return;
2836
 
2837
    default:
2838
      break;
2839
    }
2840
 
2841
  RTX_FLAG (x, used) = 1;
2842
 
2843
  format_ptr = GET_RTX_FORMAT (code);
2844
  for (i = 0; i < GET_RTX_LENGTH (code); i++)
2845
    {
2846
      switch (*format_ptr++)
2847
        {
2848
        case 'e':
2849
          set_used_flags (XEXP (x, i));
2850
          break;
2851
 
2852
        case 'E':
2853
          for (j = 0; j < XVECLEN (x, i); j++)
2854
            set_used_flags (XVECEXP (x, i, j));
2855
          break;
2856
        }
2857
    }
2858
}
2859
 
2860
/* Copy X if necessary so that it won't be altered by changes in OTHER.
2861
   Return X or the rtx for the pseudo reg the value of X was copied into.
2862
   OTHER must be valid as a SET_DEST.  */
2863
 
2864
rtx
2865
make_safe_from (rtx x, rtx other)
2866
{
2867
  while (1)
2868
    switch (GET_CODE (other))
2869
      {
2870
      case SUBREG:
2871
        other = SUBREG_REG (other);
2872
        break;
2873
      case STRICT_LOW_PART:
2874
      case SIGN_EXTEND:
2875
      case ZERO_EXTEND:
2876
        other = XEXP (other, 0);
2877
        break;
2878
      default:
2879
        goto done;
2880
      }
2881
 done:
2882
  if ((MEM_P (other)
2883
       && ! CONSTANT_P (x)
2884
       && !REG_P (x)
2885
       && GET_CODE (x) != SUBREG)
2886
      || (REG_P (other)
2887
          && (REGNO (other) < FIRST_PSEUDO_REGISTER
2888
              || reg_mentioned_p (other, x))))
2889
    {
2890
      rtx temp = gen_reg_rtx (GET_MODE (x));
2891
      emit_move_insn (temp, x);
2892
      return temp;
2893
    }
2894
  return x;
2895
}
2896
 
2897
/* Emission of insns (adding them to the doubly-linked list).  */
2898
 
2899
/* Return the first insn of the current sequence or current function.  */
2900
 
2901
rtx
2902
get_insns (void)
2903
{
2904
  return first_insn;
2905
}
2906
 
2907
/* Specify a new insn as the first in the chain.  */
2908
 
2909
void
2910
set_first_insn (rtx insn)
2911
{
2912
  gcc_assert (!PREV_INSN (insn));
2913
  first_insn = insn;
2914
}
2915
 
2916
/* Return the last insn emitted in current sequence or current function.  */
2917
 
2918
rtx
2919
get_last_insn (void)
2920
{
2921
  return last_insn;
2922
}
2923
 
2924
/* Specify a new insn as the last in the chain.  */
2925
 
2926
void
2927
set_last_insn (rtx insn)
2928
{
2929
  gcc_assert (!NEXT_INSN (insn));
2930
  last_insn = insn;
2931
}
2932
 
2933
/* Return the last insn emitted, even if it is in a sequence now pushed.  */
2934
 
2935
rtx
2936
get_last_insn_anywhere (void)
2937
{
2938
  struct sequence_stack *stack;
2939
  if (last_insn)
2940
    return last_insn;
2941
  for (stack = seq_stack; stack; stack = stack->next)
2942
    if (stack->last != 0)
2943
      return stack->last;
2944
  return 0;
2945
}
2946
 
2947
/* Return the first nonnote insn emitted in current sequence or current
2948
   function.  This routine looks inside SEQUENCEs.  */
2949
 
2950
rtx
2951
get_first_nonnote_insn (void)
2952
{
2953
  rtx insn = first_insn;
2954
 
2955
  if (insn)
2956
    {
2957
      if (NOTE_P (insn))
2958
        for (insn = next_insn (insn);
2959
             insn && NOTE_P (insn);
2960
             insn = next_insn (insn))
2961
          continue;
2962
      else
2963
        {
2964
          if (NONJUMP_INSN_P (insn)
2965
              && GET_CODE (PATTERN (insn)) == SEQUENCE)
2966
            insn = XVECEXP (PATTERN (insn), 0, 0);
2967
        }
2968
    }
2969
 
2970
  return insn;
2971
}
2972
 
2973
/* Return the last nonnote insn emitted in current sequence or current
2974
   function.  This routine looks inside SEQUENCEs.  */
2975
 
2976
rtx
2977
get_last_nonnote_insn (void)
2978
{
2979
  rtx insn = last_insn;
2980
 
2981
  if (insn)
2982
    {
2983
      if (NOTE_P (insn))
2984
        for (insn = previous_insn (insn);
2985
             insn && NOTE_P (insn);
2986
             insn = previous_insn (insn))
2987
          continue;
2988
      else
2989
        {
2990
          if (NONJUMP_INSN_P (insn)
2991
              && GET_CODE (PATTERN (insn)) == SEQUENCE)
2992
            insn = XVECEXP (PATTERN (insn), 0,
2993
                            XVECLEN (PATTERN (insn), 0) - 1);
2994
        }
2995
    }
2996
 
2997
  return insn;
2998
}
2999
 
3000
/* Return a number larger than any instruction's uid in this function.  */
3001
 
3002
int
3003
get_max_uid (void)
3004
{
3005
  return cur_insn_uid;
3006
}
3007
 
3008
/* Return the number of actual (non-debug) insns emitted in this
3009
   function.  */
3010
 
3011
int
3012
get_max_insn_count (void)
3013
{
3014
  int n = cur_insn_uid;
3015
 
3016
  /* The table size must be stable across -g, to avoid codegen
3017
     differences due to debug insns, and not be affected by
3018
     -fmin-insn-uid, to avoid excessive table size and to simplify
3019
     debugging of -fcompare-debug failures.  */
3020
  if (cur_debug_insn_uid > MIN_NONDEBUG_INSN_UID)
3021
    n -= cur_debug_insn_uid;
3022
  else
3023
    n -= MIN_NONDEBUG_INSN_UID;
3024
 
3025
  return n;
3026
}
3027
 
3028
 
3029
/* Return the next insn.  If it is a SEQUENCE, return the first insn
3030
   of the sequence.  */
3031
 
3032
rtx
3033
next_insn (rtx insn)
3034
{
3035
  if (insn)
3036
    {
3037
      insn = NEXT_INSN (insn);
3038
      if (insn && NONJUMP_INSN_P (insn)
3039
          && GET_CODE (PATTERN (insn)) == SEQUENCE)
3040
        insn = XVECEXP (PATTERN (insn), 0, 0);
3041
    }
3042
 
3043
  return insn;
3044
}
3045
 
3046
/* Return the previous insn.  If it is a SEQUENCE, return the last insn
3047
   of the sequence.  */
3048
 
3049
rtx
3050
previous_insn (rtx insn)
3051
{
3052
  if (insn)
3053
    {
3054
      insn = PREV_INSN (insn);
3055
      if (insn && NONJUMP_INSN_P (insn)
3056
          && GET_CODE (PATTERN (insn)) == SEQUENCE)
3057
        insn = XVECEXP (PATTERN (insn), 0, XVECLEN (PATTERN (insn), 0) - 1);
3058
    }
3059
 
3060
  return insn;
3061
}
3062
 
3063
/* Return the next insn after INSN that is not a NOTE.  This routine does not
3064
   look inside SEQUENCEs.  */
3065
 
3066
rtx
3067
next_nonnote_insn (rtx insn)
3068
{
3069
  while (insn)
3070
    {
3071
      insn = NEXT_INSN (insn);
3072
      if (insn == 0 || !NOTE_P (insn))
3073
        break;
3074
    }
3075
 
3076
  return insn;
3077
}
3078
 
3079
/* Return the next insn after INSN that is not a NOTE, but stop the
3080
   search before we enter another basic block.  This routine does not
3081
   look inside SEQUENCEs.  */
3082
 
3083
rtx
3084
next_nonnote_insn_bb (rtx insn)
3085
{
3086
  while (insn)
3087
    {
3088
      insn = NEXT_INSN (insn);
3089
      if (insn == 0 || !NOTE_P (insn))
3090
        break;
3091
      if (NOTE_INSN_BASIC_BLOCK_P (insn))
3092
        return NULL_RTX;
3093
    }
3094
 
3095
  return insn;
3096
}
3097
 
3098
/* Return the previous insn before INSN that is not a NOTE.  This routine does
3099
   not look inside SEQUENCEs.  */
3100
 
3101
rtx
3102
prev_nonnote_insn (rtx insn)
3103
{
3104
  while (insn)
3105
    {
3106
      insn = PREV_INSN (insn);
3107
      if (insn == 0 || !NOTE_P (insn))
3108
        break;
3109
    }
3110
 
3111
  return insn;
3112
}
3113
 
3114
/* Return the previous insn before INSN that is not a NOTE, but stop
3115
   the search before we enter another basic block.  This routine does
3116
   not look inside SEQUENCEs.  */
3117
 
3118
rtx
3119
prev_nonnote_insn_bb (rtx insn)
3120
{
3121
  while (insn)
3122
    {
3123
      insn = PREV_INSN (insn);
3124
      if (insn == 0 || !NOTE_P (insn))
3125
        break;
3126
      if (NOTE_INSN_BASIC_BLOCK_P (insn))
3127
        return NULL_RTX;
3128
    }
3129
 
3130
  return insn;
3131
}
3132
 
3133
/* Return the next insn after INSN that is not a DEBUG_INSN.  This
3134
   routine does not look inside SEQUENCEs.  */
3135
 
3136
rtx
3137
next_nondebug_insn (rtx insn)
3138
{
3139
  while (insn)
3140
    {
3141
      insn = NEXT_INSN (insn);
3142
      if (insn == 0 || !DEBUG_INSN_P (insn))
3143
        break;
3144
    }
3145
 
3146
  return insn;
3147
}
3148
 
3149
/* Return the previous insn before INSN that is not a DEBUG_INSN.
3150
   This routine does not look inside SEQUENCEs.  */
3151
 
3152
rtx
3153
prev_nondebug_insn (rtx insn)
3154
{
3155
  while (insn)
3156
    {
3157
      insn = PREV_INSN (insn);
3158
      if (insn == 0 || !DEBUG_INSN_P (insn))
3159
        break;
3160
    }
3161
 
3162
  return insn;
3163
}
3164
 
3165 378 julius
/* Return the next insn after INSN that is not a NOTE nor DEBUG_INSN.
3166
   This routine does not look inside SEQUENCEs.  */
3167
 
3168
rtx
3169
next_nonnote_nondebug_insn (rtx insn)
3170
{
3171
  while (insn)
3172
    {
3173
      insn = NEXT_INSN (insn);
3174
      if (insn == 0 || (!NOTE_P (insn) && !DEBUG_INSN_P (insn)))
3175
        break;
3176
    }
3177
 
3178
  return insn;
3179
}
3180
 
3181
/* Return the previous insn before INSN that is not a NOTE nor DEBUG_INSN.
3182
   This routine does not look inside SEQUENCEs.  */
3183
 
3184
rtx
3185
prev_nonnote_nondebug_insn (rtx insn)
3186
{
3187
  while (insn)
3188
    {
3189
      insn = PREV_INSN (insn);
3190
      if (insn == 0 || (!NOTE_P (insn) && !DEBUG_INSN_P (insn)))
3191
        break;
3192
    }
3193
 
3194
  return insn;
3195
}
3196
 
3197 280 jeremybenn
/* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
3198
   or 0, if there is none.  This routine does not look inside
3199
   SEQUENCEs.  */
3200
 
3201
rtx
3202
next_real_insn (rtx insn)
3203
{
3204
  while (insn)
3205
    {
3206
      insn = NEXT_INSN (insn);
3207
      if (insn == 0 || INSN_P (insn))
3208
        break;
3209
    }
3210
 
3211
  return insn;
3212
}
3213
 
3214
/* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
3215
   or 0, if there is none.  This routine does not look inside
3216
   SEQUENCEs.  */
3217
 
3218
rtx
3219
prev_real_insn (rtx insn)
3220
{
3221
  while (insn)
3222
    {
3223
      insn = PREV_INSN (insn);
3224
      if (insn == 0 || INSN_P (insn))
3225
        break;
3226
    }
3227
 
3228
  return insn;
3229
}
3230
 
3231
/* Return the last CALL_INSN in the current list, or 0 if there is none.
3232
   This routine does not look inside SEQUENCEs.  */
3233
 
3234
rtx
3235
last_call_insn (void)
3236
{
3237
  rtx insn;
3238
 
3239
  for (insn = get_last_insn ();
3240
       insn && !CALL_P (insn);
3241
       insn = PREV_INSN (insn))
3242
    ;
3243
 
3244
  return insn;
3245
}
3246
 
3247
/* Find the next insn after INSN that really does something.  This routine
3248
   does not look inside SEQUENCEs.  After reload this also skips over
3249
   standalone USE and CLOBBER insn.  */
3250
 
3251
int
3252
active_insn_p (const_rtx insn)
3253
{
3254
  return (CALL_P (insn) || JUMP_P (insn)
3255
          || (NONJUMP_INSN_P (insn)
3256
              && (! reload_completed
3257
                  || (GET_CODE (PATTERN (insn)) != USE
3258
                      && GET_CODE (PATTERN (insn)) != CLOBBER))));
3259
}
3260
 
3261
rtx
3262
next_active_insn (rtx insn)
3263
{
3264
  while (insn)
3265
    {
3266
      insn = NEXT_INSN (insn);
3267
      if (insn == 0 || active_insn_p (insn))
3268
        break;
3269
    }
3270
 
3271
  return insn;
3272
}
3273
 
3274
/* Find the last insn before INSN that really does something.  This routine
3275
   does not look inside SEQUENCEs.  After reload this also skips over
3276
   standalone USE and CLOBBER insn.  */
3277
 
3278
rtx
3279
prev_active_insn (rtx insn)
3280
{
3281
  while (insn)
3282
    {
3283
      insn = PREV_INSN (insn);
3284
      if (insn == 0 || active_insn_p (insn))
3285
        break;
3286
    }
3287
 
3288
  return insn;
3289
}
3290
 
3291
/* Return the next CODE_LABEL after the insn INSN, or 0 if there is none.  */
3292
 
3293
rtx
3294
next_label (rtx insn)
3295
{
3296
  while (insn)
3297
    {
3298
      insn = NEXT_INSN (insn);
3299
      if (insn == 0 || LABEL_P (insn))
3300
        break;
3301
    }
3302
 
3303
  return insn;
3304
}
3305
 
3306
/* Return the last CODE_LABEL before the insn INSN, or 0 if there is none.  */
3307
 
3308
rtx
3309
prev_label (rtx insn)
3310
{
3311
  while (insn)
3312
    {
3313
      insn = PREV_INSN (insn);
3314
      if (insn == 0 || LABEL_P (insn))
3315
        break;
3316
    }
3317
 
3318
  return insn;
3319
}
3320
 
3321
/* Return the last label to mark the same position as LABEL.  Return null
3322
   if LABEL itself is null.  */
3323
 
3324
rtx
3325
skip_consecutive_labels (rtx label)
3326
{
3327
  rtx insn;
3328
 
3329
  for (insn = label; insn != 0 && !INSN_P (insn); insn = NEXT_INSN (insn))
3330
    if (LABEL_P (insn))
3331
      label = insn;
3332
 
3333
  return label;
3334
}
3335
 
3336
#ifdef HAVE_cc0
3337
/* INSN uses CC0 and is being moved into a delay slot.  Set up REG_CC_SETTER
3338
   and REG_CC_USER notes so we can find it.  */
3339
 
3340
void
3341
link_cc0_insns (rtx insn)
3342
{
3343
  rtx user = next_nonnote_insn (insn);
3344
 
3345
  if (NONJUMP_INSN_P (user) && GET_CODE (PATTERN (user)) == SEQUENCE)
3346
    user = XVECEXP (PATTERN (user), 0, 0);
3347
 
3348
  add_reg_note (user, REG_CC_SETTER, insn);
3349
  add_reg_note (insn, REG_CC_USER, user);
3350
}
3351
 
3352
/* Return the next insn that uses CC0 after INSN, which is assumed to
3353
   set it.  This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3354
   applied to the result of this function should yield INSN).
3355
 
3356
   Normally, this is simply the next insn.  However, if a REG_CC_USER note
3357
   is present, it contains the insn that uses CC0.
3358
 
3359
   Return 0 if we can't find the insn.  */
3360
 
3361
rtx
3362
next_cc0_user (rtx insn)
3363
{
3364
  rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
3365
 
3366
  if (note)
3367
    return XEXP (note, 0);
3368
 
3369
  insn = next_nonnote_insn (insn);
3370
  if (insn && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
3371
    insn = XVECEXP (PATTERN (insn), 0, 0);
3372
 
3373
  if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
3374
    return insn;
3375
 
3376
  return 0;
3377
}
3378
 
3379
/* Find the insn that set CC0 for INSN.  Unless INSN has a REG_CC_SETTER
3380
   note, it is the previous insn.  */
3381
 
3382
rtx
3383
prev_cc0_setter (rtx insn)
3384
{
3385
  rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
3386
 
3387
  if (note)
3388
    return XEXP (note, 0);
3389
 
3390
  insn = prev_nonnote_insn (insn);
3391
  gcc_assert (sets_cc0_p (PATTERN (insn)));
3392
 
3393
  return insn;
3394
}
3395
#endif
3396
 
3397
#ifdef AUTO_INC_DEC
3398
/* Find a RTX_AUTOINC class rtx which matches DATA.  */
3399
 
3400
static int
3401
find_auto_inc (rtx *xp, void *data)
3402
{
3403
  rtx x = *xp;
3404
  rtx reg = (rtx) data;
3405
 
3406
  if (GET_RTX_CLASS (GET_CODE (x)) != RTX_AUTOINC)
3407
    return 0;
3408
 
3409
  switch (GET_CODE (x))
3410
    {
3411
      case PRE_DEC:
3412
      case PRE_INC:
3413
      case POST_DEC:
3414
      case POST_INC:
3415
      case PRE_MODIFY:
3416
      case POST_MODIFY:
3417
        if (rtx_equal_p (reg, XEXP (x, 0)))
3418
          return 1;
3419
        break;
3420
 
3421
      default:
3422
        gcc_unreachable ();
3423
    }
3424
  return -1;
3425
}
3426
#endif
3427
 
3428
/* Increment the label uses for all labels present in rtx.  */
3429
 
3430
static void
3431
mark_label_nuses (rtx x)
3432
{
3433
  enum rtx_code code;
3434
  int i, j;
3435
  const char *fmt;
3436
 
3437
  code = GET_CODE (x);
3438
  if (code == LABEL_REF && LABEL_P (XEXP (x, 0)))
3439
    LABEL_NUSES (XEXP (x, 0))++;
3440
 
3441
  fmt = GET_RTX_FORMAT (code);
3442
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3443
    {
3444
      if (fmt[i] == 'e')
3445
        mark_label_nuses (XEXP (x, i));
3446
      else if (fmt[i] == 'E')
3447
        for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3448
          mark_label_nuses (XVECEXP (x, i, j));
3449
    }
3450
}
3451
 
3452
 
3453
/* Try splitting insns that can be split for better scheduling.
3454
   PAT is the pattern which might split.
3455
   TRIAL is the insn providing PAT.
3456
   LAST is nonzero if we should return the last insn of the sequence produced.
3457
 
3458
   If this routine succeeds in splitting, it returns the first or last
3459
   replacement insn depending on the value of LAST.  Otherwise, it
3460
   returns TRIAL.  If the insn to be returned can be split, it will be.  */
3461
 
3462
rtx
3463
try_split (rtx pat, rtx trial, int last)
3464
{
3465
  rtx before = PREV_INSN (trial);
3466
  rtx after = NEXT_INSN (trial);
3467
  int has_barrier = 0;
3468
  rtx note, seq, tem;
3469
  int probability;
3470
  rtx insn_last, insn;
3471
  int njumps = 0;
3472
 
3473
  /* We're not good at redistributing frame information.  */
3474
  if (RTX_FRAME_RELATED_P (trial))
3475
    return trial;
3476
 
3477
  if (any_condjump_p (trial)
3478
      && (note = find_reg_note (trial, REG_BR_PROB, 0)))
3479
    split_branch_probability = INTVAL (XEXP (note, 0));
3480
  probability = split_branch_probability;
3481
 
3482
  seq = split_insns (pat, trial);
3483
 
3484
  split_branch_probability = -1;
3485
 
3486
  /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
3487
     We may need to handle this specially.  */
3488
  if (after && BARRIER_P (after))
3489
    {
3490
      has_barrier = 1;
3491
      after = NEXT_INSN (after);
3492
    }
3493
 
3494
  if (!seq)
3495
    return trial;
3496
 
3497
  /* Avoid infinite loop if any insn of the result matches
3498
     the original pattern.  */
3499
  insn_last = seq;
3500
  while (1)
3501
    {
3502
      if (INSN_P (insn_last)
3503
          && rtx_equal_p (PATTERN (insn_last), pat))
3504
        return trial;
3505
      if (!NEXT_INSN (insn_last))
3506
        break;
3507
      insn_last = NEXT_INSN (insn_last);
3508
    }
3509
 
3510
  /* We will be adding the new sequence to the function.  The splitters
3511
     may have introduced invalid RTL sharing, so unshare the sequence now.  */
3512
  unshare_all_rtl_in_chain (seq);
3513
 
3514
  /* Mark labels.  */
3515
  for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3516
    {
3517
      if (JUMP_P (insn))
3518
        {
3519
          mark_jump_label (PATTERN (insn), insn, 0);
3520
          njumps++;
3521
          if (probability != -1
3522
              && any_condjump_p (insn)
3523
              && !find_reg_note (insn, REG_BR_PROB, 0))
3524
            {
3525
              /* We can preserve the REG_BR_PROB notes only if exactly
3526
                 one jump is created, otherwise the machine description
3527
                 is responsible for this step using
3528
                 split_branch_probability variable.  */
3529
              gcc_assert (njumps == 1);
3530
              add_reg_note (insn, REG_BR_PROB, GEN_INT (probability));
3531
            }
3532
        }
3533
    }
3534
 
3535
  /* If we are splitting a CALL_INSN, look for the CALL_INSN
3536
     in SEQ and copy our CALL_INSN_FUNCTION_USAGE to it.  */
3537
  if (CALL_P (trial))
3538
    {
3539
      for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3540
        if (CALL_P (insn))
3541
          {
3542
            rtx *p = &CALL_INSN_FUNCTION_USAGE (insn);
3543
            while (*p)
3544
              p = &XEXP (*p, 1);
3545
            *p = CALL_INSN_FUNCTION_USAGE (trial);
3546
            SIBLING_CALL_P (insn) = SIBLING_CALL_P (trial);
3547
 
3548
            /* Update the debug information for the CALL_INSN.  */
3549
            if (flag_enable_icf_debug)
3550
              (*debug_hooks->copy_call_info) (trial, insn);
3551
          }
3552
    }
3553
 
3554
  /* Copy notes, particularly those related to the CFG.  */
3555
  for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
3556
    {
3557
      switch (REG_NOTE_KIND (note))
3558
        {
3559
        case REG_EH_REGION:
3560
          copy_reg_eh_region_note_backward (note, insn_last, NULL);
3561
          break;
3562
 
3563
        case REG_NORETURN:
3564
        case REG_SETJMP:
3565
          for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3566
            {
3567
              if (CALL_P (insn))
3568
                add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
3569
            }
3570
          break;
3571
 
3572
        case REG_NON_LOCAL_GOTO:
3573
          for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3574
            {
3575
              if (JUMP_P (insn))
3576
                add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
3577
            }
3578
          break;
3579
 
3580
#ifdef AUTO_INC_DEC
3581
        case REG_INC:
3582
          for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3583
            {
3584
              rtx reg = XEXP (note, 0);
3585
              if (!FIND_REG_INC_NOTE (insn, reg)
3586
                  && for_each_rtx (&PATTERN (insn), find_auto_inc, reg) > 0)
3587
                add_reg_note (insn, REG_INC, reg);
3588
            }
3589
          break;
3590
#endif
3591
 
3592
        default:
3593
          break;
3594
        }
3595
    }
3596
 
3597
  /* If there are LABELS inside the split insns increment the
3598
     usage count so we don't delete the label.  */
3599
  if (INSN_P (trial))
3600
    {
3601
      insn = insn_last;
3602
      while (insn != NULL_RTX)
3603
        {
3604
          /* JUMP_P insns have already been "marked" above.  */
3605
          if (NONJUMP_INSN_P (insn))
3606
            mark_label_nuses (PATTERN (insn));
3607
 
3608
          insn = PREV_INSN (insn);
3609
        }
3610
    }
3611
 
3612
  tem = emit_insn_after_setloc (seq, trial, INSN_LOCATOR (trial));
3613
 
3614
  delete_insn (trial);
3615
  if (has_barrier)
3616
    emit_barrier_after (tem);
3617
 
3618
  /* Recursively call try_split for each new insn created; by the
3619
     time control returns here that insn will be fully split, so
3620
     set LAST and continue from the insn after the one returned.
3621
     We can't use next_active_insn here since AFTER may be a note.
3622
     Ignore deleted insns, which can be occur if not optimizing.  */
3623
  for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
3624
    if (! INSN_DELETED_P (tem) && INSN_P (tem))
3625
      tem = try_split (PATTERN (tem), tem, 1);
3626
 
3627
  /* Return either the first or the last insn, depending on which was
3628
     requested.  */
3629
  return last
3630
    ? (after ? PREV_INSN (after) : last_insn)
3631
    : NEXT_INSN (before);
3632
}
3633
 
3634
/* Make and return an INSN rtx, initializing all its slots.
3635
   Store PATTERN in the pattern slots.  */
3636
 
3637
rtx
3638
make_insn_raw (rtx pattern)
3639
{
3640
  rtx insn;
3641
 
3642
  insn = rtx_alloc (INSN);
3643
 
3644
  INSN_UID (insn) = cur_insn_uid++;
3645
  PATTERN (insn) = pattern;
3646
  INSN_CODE (insn) = -1;
3647
  REG_NOTES (insn) = NULL;
3648
  INSN_LOCATOR (insn) = curr_insn_locator ();
3649
  BLOCK_FOR_INSN (insn) = NULL;
3650
 
3651
#ifdef ENABLE_RTL_CHECKING
3652
  if (insn
3653
      && INSN_P (insn)
3654
      && (returnjump_p (insn)
3655
          || (GET_CODE (insn) == SET
3656
              && SET_DEST (insn) == pc_rtx)))
3657
    {
3658
      warning (0, "ICE: emit_insn used where emit_jump_insn needed:\n");
3659
      debug_rtx (insn);
3660
    }
3661
#endif
3662
 
3663
  return insn;
3664
}
3665
 
3666
/* Like `make_insn_raw' but make a DEBUG_INSN instead of an insn.  */
3667
 
3668
rtx
3669
make_debug_insn_raw (rtx pattern)
3670
{
3671
  rtx insn;
3672
 
3673
  insn = rtx_alloc (DEBUG_INSN);
3674
  INSN_UID (insn) = cur_debug_insn_uid++;
3675
  if (cur_debug_insn_uid > MIN_NONDEBUG_INSN_UID)
3676
    INSN_UID (insn) = cur_insn_uid++;
3677
 
3678
  PATTERN (insn) = pattern;
3679
  INSN_CODE (insn) = -1;
3680
  REG_NOTES (insn) = NULL;
3681
  INSN_LOCATOR (insn) = curr_insn_locator ();
3682
  BLOCK_FOR_INSN (insn) = NULL;
3683
 
3684
  return insn;
3685
}
3686
 
3687
/* Like `make_insn_raw' but make a JUMP_INSN instead of an insn.  */
3688
 
3689
rtx
3690
make_jump_insn_raw (rtx pattern)
3691
{
3692
  rtx insn;
3693
 
3694
  insn = rtx_alloc (JUMP_INSN);
3695
  INSN_UID (insn) = cur_insn_uid++;
3696
 
3697
  PATTERN (insn) = pattern;
3698
  INSN_CODE (insn) = -1;
3699
  REG_NOTES (insn) = NULL;
3700
  JUMP_LABEL (insn) = NULL;
3701
  INSN_LOCATOR (insn) = curr_insn_locator ();
3702
  BLOCK_FOR_INSN (insn) = NULL;
3703
 
3704
  return insn;
3705
}
3706
 
3707
/* Like `make_insn_raw' but make a CALL_INSN instead of an insn.  */
3708
 
3709
static rtx
3710
make_call_insn_raw (rtx pattern)
3711
{
3712
  rtx insn;
3713
 
3714
  insn = rtx_alloc (CALL_INSN);
3715
  INSN_UID (insn) = cur_insn_uid++;
3716
 
3717
  PATTERN (insn) = pattern;
3718
  INSN_CODE (insn) = -1;
3719
  REG_NOTES (insn) = NULL;
3720
  CALL_INSN_FUNCTION_USAGE (insn) = NULL;
3721
  INSN_LOCATOR (insn) = curr_insn_locator ();
3722
  BLOCK_FOR_INSN (insn) = NULL;
3723
 
3724
  return insn;
3725
}
3726
 
3727
/* Add INSN to the end of the doubly-linked list.
3728
   INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE.  */
3729
 
3730
void
3731
add_insn (rtx insn)
3732
{
3733
  PREV_INSN (insn) = last_insn;
3734
  NEXT_INSN (insn) = 0;
3735
 
3736
  if (NULL != last_insn)
3737
    NEXT_INSN (last_insn) = insn;
3738
 
3739
  if (NULL == first_insn)
3740
    first_insn = insn;
3741
 
3742
  last_insn = insn;
3743
}
3744
 
3745
/* Add INSN into the doubly-linked list after insn AFTER.  This and
3746
   the next should be the only functions called to insert an insn once
3747
   delay slots have been filled since only they know how to update a
3748
   SEQUENCE.  */
3749
 
3750
void
3751
add_insn_after (rtx insn, rtx after, basic_block bb)
3752
{
3753
  rtx next = NEXT_INSN (after);
3754
 
3755
  gcc_assert (!optimize || !INSN_DELETED_P (after));
3756
 
3757
  NEXT_INSN (insn) = next;
3758
  PREV_INSN (insn) = after;
3759
 
3760
  if (next)
3761
    {
3762
      PREV_INSN (next) = insn;
3763
      if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3764
        PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = insn;
3765
    }
3766
  else if (last_insn == after)
3767
    last_insn = insn;
3768
  else
3769
    {
3770
      struct sequence_stack *stack = seq_stack;
3771
      /* Scan all pending sequences too.  */
3772
      for (; stack; stack = stack->next)
3773
        if (after == stack->last)
3774
          {
3775
            stack->last = insn;
3776
            break;
3777
          }
3778
 
3779
      gcc_assert (stack);
3780
    }
3781
 
3782
  if (!BARRIER_P (after)
3783
      && !BARRIER_P (insn)
3784
      && (bb = BLOCK_FOR_INSN (after)))
3785
    {
3786
      set_block_for_insn (insn, bb);
3787
      if (INSN_P (insn))
3788
        df_insn_rescan (insn);
3789
      /* Should not happen as first in the BB is always
3790
         either NOTE or LABEL.  */
3791
      if (BB_END (bb) == after
3792
          /* Avoid clobbering of structure when creating new BB.  */
3793
          && !BARRIER_P (insn)
3794
          && !NOTE_INSN_BASIC_BLOCK_P (insn))
3795
        BB_END (bb) = insn;
3796
    }
3797
 
3798
  NEXT_INSN (after) = insn;
3799
  if (NONJUMP_INSN_P (after) && GET_CODE (PATTERN (after)) == SEQUENCE)
3800
    {
3801
      rtx sequence = PATTERN (after);
3802
      NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3803
    }
3804
}
3805
 
3806
/* Add INSN into the doubly-linked list before insn BEFORE.  This and
3807
   the previous should be the only functions called to insert an insn
3808
   once delay slots have been filled since only they know how to
3809
   update a SEQUENCE.  If BB is NULL, an attempt is made to infer the
3810
   bb from before.  */
3811
 
3812
void
3813
add_insn_before (rtx insn, rtx before, basic_block bb)
3814
{
3815
  rtx prev = PREV_INSN (before);
3816
 
3817
  gcc_assert (!optimize || !INSN_DELETED_P (before));
3818
 
3819
  PREV_INSN (insn) = prev;
3820
  NEXT_INSN (insn) = before;
3821
 
3822
  if (prev)
3823
    {
3824
      NEXT_INSN (prev) = insn;
3825
      if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3826
        {
3827
          rtx sequence = PATTERN (prev);
3828
          NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3829
        }
3830
    }
3831
  else if (first_insn == before)
3832
    first_insn = insn;
3833
  else
3834
    {
3835
      struct sequence_stack *stack = seq_stack;
3836
      /* Scan all pending sequences too.  */
3837
      for (; stack; stack = stack->next)
3838
        if (before == stack->first)
3839
          {
3840
            stack->first = insn;
3841
            break;
3842
          }
3843
 
3844
      gcc_assert (stack);
3845
    }
3846
 
3847
  if (!bb
3848
      && !BARRIER_P (before)
3849
      && !BARRIER_P (insn))
3850
    bb = BLOCK_FOR_INSN (before);
3851
 
3852
  if (bb)
3853
    {
3854
      set_block_for_insn (insn, bb);
3855
      if (INSN_P (insn))
3856
        df_insn_rescan (insn);
3857
      /* Should not happen as first in the BB is always either NOTE or
3858
         LABEL.  */
3859
      gcc_assert (BB_HEAD (bb) != insn
3860
                  /* Avoid clobbering of structure when creating new BB.  */
3861
                  || BARRIER_P (insn)
3862
                  || NOTE_INSN_BASIC_BLOCK_P (insn));
3863
    }
3864
 
3865
  PREV_INSN (before) = insn;
3866
  if (NONJUMP_INSN_P (before) && GET_CODE (PATTERN (before)) == SEQUENCE)
3867
    PREV_INSN (XVECEXP (PATTERN (before), 0, 0)) = insn;
3868
}
3869
 
3870
 
3871
/* Replace insn with an deleted instruction note.  */
3872
 
3873
void
3874
set_insn_deleted (rtx insn)
3875
{
3876
  df_insn_delete (BLOCK_FOR_INSN (insn), INSN_UID (insn));
3877
  PUT_CODE (insn, NOTE);
3878
  NOTE_KIND (insn) = NOTE_INSN_DELETED;
3879
}
3880
 
3881
 
3882
/* Remove an insn from its doubly-linked list.  This function knows how
3883
   to handle sequences.  */
3884
void
3885
remove_insn (rtx insn)
3886
{
3887
  rtx next = NEXT_INSN (insn);
3888
  rtx prev = PREV_INSN (insn);
3889
  basic_block bb;
3890
 
3891
  /* Later in the code, the block will be marked dirty.  */
3892
  df_insn_delete (NULL, INSN_UID (insn));
3893
 
3894
  if (prev)
3895
    {
3896
      NEXT_INSN (prev) = next;
3897
      if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3898
        {
3899
          rtx sequence = PATTERN (prev);
3900
          NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = next;
3901
        }
3902
    }
3903
  else if (first_insn == insn)
3904
    first_insn = next;
3905
  else
3906
    {
3907
      struct sequence_stack *stack = seq_stack;
3908
      /* Scan all pending sequences too.  */
3909
      for (; stack; stack = stack->next)
3910
        if (insn == stack->first)
3911
          {
3912
            stack->first = next;
3913
            break;
3914
          }
3915
 
3916
      gcc_assert (stack);
3917
    }
3918
 
3919
  if (next)
3920
    {
3921
      PREV_INSN (next) = prev;
3922
      if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3923
        PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = prev;
3924
    }
3925
  else if (last_insn == insn)
3926
    last_insn = prev;
3927
  else
3928
    {
3929
      struct sequence_stack *stack = seq_stack;
3930
      /* Scan all pending sequences too.  */
3931
      for (; stack; stack = stack->next)
3932
        if (insn == stack->last)
3933
          {
3934
            stack->last = prev;
3935
            break;
3936
          }
3937
 
3938
      gcc_assert (stack);
3939
    }
3940
  if (!BARRIER_P (insn)
3941
      && (bb = BLOCK_FOR_INSN (insn)))
3942
    {
3943
      if (INSN_P (insn))
3944
        df_set_bb_dirty (bb);
3945
      if (BB_HEAD (bb) == insn)
3946
        {
3947
          /* Never ever delete the basic block note without deleting whole
3948
             basic block.  */
3949
          gcc_assert (!NOTE_P (insn));
3950
          BB_HEAD (bb) = next;
3951
        }
3952
      if (BB_END (bb) == insn)
3953
        BB_END (bb) = prev;
3954
    }
3955
}
3956
 
3957
/* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN.  */
3958
 
3959
void
3960
add_function_usage_to (rtx call_insn, rtx call_fusage)
3961
{
3962
  gcc_assert (call_insn && CALL_P (call_insn));
3963
 
3964
  /* Put the register usage information on the CALL.  If there is already
3965
     some usage information, put ours at the end.  */
3966
  if (CALL_INSN_FUNCTION_USAGE (call_insn))
3967
    {
3968
      rtx link;
3969
 
3970
      for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0;
3971
           link = XEXP (link, 1))
3972
        ;
3973
 
3974
      XEXP (link, 1) = call_fusage;
3975
    }
3976
  else
3977
    CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage;
3978
}
3979
 
3980
/* Delete all insns made since FROM.
3981
   FROM becomes the new last instruction.  */
3982
 
3983
void
3984
delete_insns_since (rtx from)
3985
{
3986
  if (from == 0)
3987
    first_insn = 0;
3988
  else
3989
    NEXT_INSN (from) = 0;
3990
  last_insn = from;
3991
}
3992
 
3993
/* This function is deprecated, please use sequences instead.
3994
 
3995
   Move a consecutive bunch of insns to a different place in the chain.
3996
   The insns to be moved are those between FROM and TO.
3997
   They are moved to a new position after the insn AFTER.
3998
   AFTER must not be FROM or TO or any insn in between.
3999
 
4000
   This function does not know about SEQUENCEs and hence should not be
4001
   called after delay-slot filling has been done.  */
4002
 
4003
void
4004
reorder_insns_nobb (rtx from, rtx to, rtx after)
4005
{
4006
  /* Splice this bunch out of where it is now.  */
4007
  if (PREV_INSN (from))
4008
    NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
4009
  if (NEXT_INSN (to))
4010
    PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
4011
  if (last_insn == to)
4012
    last_insn = PREV_INSN (from);
4013
  if (first_insn == from)
4014
    first_insn = NEXT_INSN (to);
4015
 
4016
  /* Make the new neighbors point to it and it to them.  */
4017
  if (NEXT_INSN (after))
4018
    PREV_INSN (NEXT_INSN (after)) = to;
4019
 
4020
  NEXT_INSN (to) = NEXT_INSN (after);
4021
  PREV_INSN (from) = after;
4022
  NEXT_INSN (after) = from;
4023
  if (after == last_insn)
4024
    last_insn = to;
4025
}
4026
 
4027
/* Same as function above, but take care to update BB boundaries.  */
4028
void
4029
reorder_insns (rtx from, rtx to, rtx after)
4030
{
4031
  rtx prev = PREV_INSN (from);
4032
  basic_block bb, bb2;
4033
 
4034
  reorder_insns_nobb (from, to, after);
4035
 
4036
  if (!BARRIER_P (after)
4037
      && (bb = BLOCK_FOR_INSN (after)))
4038
    {
4039
      rtx x;
4040
      df_set_bb_dirty (bb);
4041
 
4042
      if (!BARRIER_P (from)
4043
          && (bb2 = BLOCK_FOR_INSN (from)))
4044
        {
4045
          if (BB_END (bb2) == to)
4046
            BB_END (bb2) = prev;
4047
          df_set_bb_dirty (bb2);
4048
        }
4049
 
4050
      if (BB_END (bb) == after)
4051
        BB_END (bb) = to;
4052
 
4053
      for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
4054
        if (!BARRIER_P (x))
4055
          df_insn_change_bb (x, bb);
4056
    }
4057
}
4058
 
4059
 
4060
/* Emit insn(s) of given code and pattern
4061
   at a specified place within the doubly-linked list.
4062
 
4063
   All of the emit_foo global entry points accept an object
4064
   X which is either an insn list or a PATTERN of a single
4065
   instruction.
4066
 
4067
   There are thus a few canonical ways to generate code and
4068
   emit it at a specific place in the instruction stream.  For
4069
   example, consider the instruction named SPOT and the fact that
4070
   we would like to emit some instructions before SPOT.  We might
4071
   do it like this:
4072
 
4073
        start_sequence ();
4074
        ... emit the new instructions ...
4075
        insns_head = get_insns ();
4076
        end_sequence ();
4077
 
4078
        emit_insn_before (insns_head, SPOT);
4079
 
4080
   It used to be common to generate SEQUENCE rtl instead, but that
4081
   is a relic of the past which no longer occurs.  The reason is that
4082
   SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
4083
   generated would almost certainly die right after it was created.  */
4084
 
4085
/* Make X be output before the instruction BEFORE.  */
4086
 
4087
rtx
4088
emit_insn_before_noloc (rtx x, rtx before, basic_block bb)
4089
{
4090
  rtx last = before;
4091
  rtx insn;
4092
 
4093
  gcc_assert (before);
4094
 
4095
  if (x == NULL_RTX)
4096
    return last;
4097
 
4098
  switch (GET_CODE (x))
4099
    {
4100
    case DEBUG_INSN:
4101
    case INSN:
4102
    case JUMP_INSN:
4103
    case CALL_INSN:
4104
    case CODE_LABEL:
4105
    case BARRIER:
4106
    case NOTE:
4107
      insn = x;
4108
      while (insn)
4109
        {
4110
          rtx next = NEXT_INSN (insn);
4111
          add_insn_before (insn, before, bb);
4112
          last = insn;
4113
          insn = next;
4114
        }
4115
      break;
4116
 
4117
#ifdef ENABLE_RTL_CHECKING
4118
    case SEQUENCE:
4119
      gcc_unreachable ();
4120
      break;
4121
#endif
4122
 
4123
    default:
4124
      last = make_insn_raw (x);
4125
      add_insn_before (last, before, bb);
4126
      break;
4127
    }
4128
 
4129
  return last;
4130
}
4131
 
4132
/* Make an instruction with body X and code JUMP_INSN
4133
   and output it before the instruction BEFORE.  */
4134
 
4135
rtx
4136
emit_jump_insn_before_noloc (rtx x, rtx before)
4137
{
4138
  rtx insn, last = NULL_RTX;
4139
 
4140
  gcc_assert (before);
4141
 
4142
  switch (GET_CODE (x))
4143
    {
4144
    case DEBUG_INSN:
4145
    case INSN:
4146
    case JUMP_INSN:
4147
    case CALL_INSN:
4148
    case CODE_LABEL:
4149
    case BARRIER:
4150
    case NOTE:
4151
      insn = x;
4152
      while (insn)
4153
        {
4154
          rtx next = NEXT_INSN (insn);
4155
          add_insn_before (insn, before, NULL);
4156
          last = insn;
4157
          insn = next;
4158
        }
4159
      break;
4160
 
4161
#ifdef ENABLE_RTL_CHECKING
4162
    case SEQUENCE:
4163
      gcc_unreachable ();
4164
      break;
4165
#endif
4166
 
4167
    default:
4168
      last = make_jump_insn_raw (x);
4169
      add_insn_before (last, before, NULL);
4170
      break;
4171
    }
4172
 
4173
  return last;
4174
}
4175
 
4176
/* Make an instruction with body X and code CALL_INSN
4177
   and output it before the instruction BEFORE.  */
4178
 
4179
rtx
4180
emit_call_insn_before_noloc (rtx x, rtx before)
4181
{
4182
  rtx last = NULL_RTX, insn;
4183
 
4184
  gcc_assert (before);
4185
 
4186
  switch (GET_CODE (x))
4187
    {
4188
    case DEBUG_INSN:
4189
    case INSN:
4190
    case JUMP_INSN:
4191
    case CALL_INSN:
4192
    case CODE_LABEL:
4193
    case BARRIER:
4194
    case NOTE:
4195
      insn = x;
4196
      while (insn)
4197
        {
4198
          rtx next = NEXT_INSN (insn);
4199
          add_insn_before (insn, before, NULL);
4200
          last = insn;
4201
          insn = next;
4202
        }
4203
      break;
4204
 
4205
#ifdef ENABLE_RTL_CHECKING
4206
    case SEQUENCE:
4207
      gcc_unreachable ();
4208
      break;
4209
#endif
4210
 
4211
    default:
4212
      last = make_call_insn_raw (x);
4213
      add_insn_before (last, before, NULL);
4214
      break;
4215
    }
4216
 
4217
  return last;
4218
}
4219
 
4220
/* Make an instruction with body X and code DEBUG_INSN
4221
   and output it before the instruction BEFORE.  */
4222
 
4223
rtx
4224
emit_debug_insn_before_noloc (rtx x, rtx before)
4225
{
4226
  rtx last = NULL_RTX, insn;
4227
 
4228
  gcc_assert (before);
4229
 
4230
  switch (GET_CODE (x))
4231
    {
4232
    case DEBUG_INSN:
4233
    case INSN:
4234
    case JUMP_INSN:
4235
    case CALL_INSN:
4236
    case CODE_LABEL:
4237
    case BARRIER:
4238
    case NOTE:
4239
      insn = x;
4240
      while (insn)
4241
        {
4242
          rtx next = NEXT_INSN (insn);
4243
          add_insn_before (insn, before, NULL);
4244
          last = insn;
4245
          insn = next;
4246
        }
4247
      break;
4248
 
4249
#ifdef ENABLE_RTL_CHECKING
4250
    case SEQUENCE:
4251
      gcc_unreachable ();
4252
      break;
4253
#endif
4254
 
4255
    default:
4256
      last = make_debug_insn_raw (x);
4257
      add_insn_before (last, before, NULL);
4258
      break;
4259
    }
4260
 
4261
  return last;
4262
}
4263
 
4264
/* Make an insn of code BARRIER
4265
   and output it before the insn BEFORE.  */
4266
 
4267
rtx
4268
emit_barrier_before (rtx before)
4269
{
4270
  rtx insn = rtx_alloc (BARRIER);
4271
 
4272
  INSN_UID (insn) = cur_insn_uid++;
4273
 
4274
  add_insn_before (insn, before, NULL);
4275
  return insn;
4276
}
4277
 
4278
/* Emit the label LABEL before the insn BEFORE.  */
4279
 
4280
rtx
4281
emit_label_before (rtx label, rtx before)
4282
{
4283
  /* This can be called twice for the same label as a result of the
4284
     confusion that follows a syntax error!  So make it harmless.  */
4285
  if (INSN_UID (label) == 0)
4286
    {
4287
      INSN_UID (label) = cur_insn_uid++;
4288
      add_insn_before (label, before, NULL);
4289
    }
4290
 
4291
  return label;
4292
}
4293
 
4294
/* Emit a note of subtype SUBTYPE before the insn BEFORE.  */
4295
 
4296
rtx
4297
emit_note_before (enum insn_note subtype, rtx before)
4298
{
4299
  rtx note = rtx_alloc (NOTE);
4300
  INSN_UID (note) = cur_insn_uid++;
4301
  NOTE_KIND (note) = subtype;
4302
  BLOCK_FOR_INSN (note) = NULL;
4303
  memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4304
 
4305
  add_insn_before (note, before, NULL);
4306
  return note;
4307
}
4308
 
4309
/* Helper for emit_insn_after, handles lists of instructions
4310
   efficiently.  */
4311
 
4312
static rtx
4313
emit_insn_after_1 (rtx first, rtx after, basic_block bb)
4314
{
4315
  rtx last;
4316
  rtx after_after;
4317
  if (!bb && !BARRIER_P (after))
4318
    bb = BLOCK_FOR_INSN (after);
4319
 
4320
  if (bb)
4321
    {
4322
      df_set_bb_dirty (bb);
4323
      for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4324
        if (!BARRIER_P (last))
4325
          {
4326
            set_block_for_insn (last, bb);
4327
            df_insn_rescan (last);
4328
          }
4329
      if (!BARRIER_P (last))
4330
        {
4331
          set_block_for_insn (last, bb);
4332
          df_insn_rescan (last);
4333
        }
4334
      if (BB_END (bb) == after)
4335
        BB_END (bb) = last;
4336
    }
4337
  else
4338
    for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4339
      continue;
4340
 
4341
  after_after = NEXT_INSN (after);
4342
 
4343
  NEXT_INSN (after) = first;
4344
  PREV_INSN (first) = after;
4345
  NEXT_INSN (last) = after_after;
4346
  if (after_after)
4347
    PREV_INSN (after_after) = last;
4348
 
4349
  if (after == last_insn)
4350
    last_insn = last;
4351
 
4352
  return last;
4353
}
4354
 
4355
/* Make X be output after the insn AFTER and set the BB of insn.  If
4356
   BB is NULL, an attempt is made to infer the BB from AFTER.  */
4357
 
4358
rtx
4359
emit_insn_after_noloc (rtx x, rtx after, basic_block bb)
4360
{
4361
  rtx last = after;
4362
 
4363
  gcc_assert (after);
4364
 
4365
  if (x == NULL_RTX)
4366
    return last;
4367
 
4368
  switch (GET_CODE (x))
4369
    {
4370
    case DEBUG_INSN:
4371
    case INSN:
4372
    case JUMP_INSN:
4373
    case CALL_INSN:
4374
    case CODE_LABEL:
4375
    case BARRIER:
4376
    case NOTE:
4377
      last = emit_insn_after_1 (x, after, bb);
4378
      break;
4379
 
4380
#ifdef ENABLE_RTL_CHECKING
4381
    case SEQUENCE:
4382
      gcc_unreachable ();
4383
      break;
4384
#endif
4385
 
4386
    default:
4387
      last = make_insn_raw (x);
4388
      add_insn_after (last, after, bb);
4389
      break;
4390
    }
4391
 
4392
  return last;
4393
}
4394
 
4395
 
4396
/* Make an insn of code JUMP_INSN with body X
4397
   and output it after the insn AFTER.  */
4398
 
4399
rtx
4400
emit_jump_insn_after_noloc (rtx x, rtx after)
4401
{
4402
  rtx last;
4403
 
4404
  gcc_assert (after);
4405
 
4406
  switch (GET_CODE (x))
4407
    {
4408
    case DEBUG_INSN:
4409
    case INSN:
4410
    case JUMP_INSN:
4411
    case CALL_INSN:
4412
    case CODE_LABEL:
4413
    case BARRIER:
4414
    case NOTE:
4415
      last = emit_insn_after_1 (x, after, NULL);
4416
      break;
4417
 
4418
#ifdef ENABLE_RTL_CHECKING
4419
    case SEQUENCE:
4420
      gcc_unreachable ();
4421
      break;
4422
#endif
4423
 
4424
    default:
4425
      last = make_jump_insn_raw (x);
4426
      add_insn_after (last, after, NULL);
4427
      break;
4428
    }
4429
 
4430
  return last;
4431
}
4432
 
4433
/* Make an instruction with body X and code CALL_INSN
4434
   and output it after the instruction AFTER.  */
4435
 
4436
rtx
4437
emit_call_insn_after_noloc (rtx x, rtx after)
4438
{
4439
  rtx last;
4440
 
4441
  gcc_assert (after);
4442
 
4443
  switch (GET_CODE (x))
4444
    {
4445
    case DEBUG_INSN:
4446
    case INSN:
4447
    case JUMP_INSN:
4448
    case CALL_INSN:
4449
    case CODE_LABEL:
4450
    case BARRIER:
4451
    case NOTE:
4452
      last = emit_insn_after_1 (x, after, NULL);
4453
      break;
4454
 
4455
#ifdef ENABLE_RTL_CHECKING
4456
    case SEQUENCE:
4457
      gcc_unreachable ();
4458
      break;
4459
#endif
4460
 
4461
    default:
4462
      last = make_call_insn_raw (x);
4463
      add_insn_after (last, after, NULL);
4464
      break;
4465
    }
4466
 
4467
  return last;
4468
}
4469
 
4470
/* Make an instruction with body X and code CALL_INSN
4471
   and output it after the instruction AFTER.  */
4472
 
4473
rtx
4474
emit_debug_insn_after_noloc (rtx x, rtx after)
4475
{
4476
  rtx last;
4477
 
4478
  gcc_assert (after);
4479
 
4480
  switch (GET_CODE (x))
4481
    {
4482
    case DEBUG_INSN:
4483
    case INSN:
4484
    case JUMP_INSN:
4485
    case CALL_INSN:
4486
    case CODE_LABEL:
4487
    case BARRIER:
4488
    case NOTE:
4489
      last = emit_insn_after_1 (x, after, NULL);
4490
      break;
4491
 
4492
#ifdef ENABLE_RTL_CHECKING
4493
    case SEQUENCE:
4494
      gcc_unreachable ();
4495
      break;
4496
#endif
4497
 
4498
    default:
4499
      last = make_debug_insn_raw (x);
4500
      add_insn_after (last, after, NULL);
4501
      break;
4502
    }
4503
 
4504
  return last;
4505
}
4506
 
4507
/* Make an insn of code BARRIER
4508
   and output it after the insn AFTER.  */
4509
 
4510
rtx
4511
emit_barrier_after (rtx after)
4512
{
4513
  rtx insn = rtx_alloc (BARRIER);
4514
 
4515
  INSN_UID (insn) = cur_insn_uid++;
4516
 
4517
  add_insn_after (insn, after, NULL);
4518
  return insn;
4519
}
4520
 
4521
/* Emit the label LABEL after the insn AFTER.  */
4522
 
4523
rtx
4524
emit_label_after (rtx label, rtx after)
4525
{
4526
  /* This can be called twice for the same label
4527
     as a result of the confusion that follows a syntax error!
4528
     So make it harmless.  */
4529
  if (INSN_UID (label) == 0)
4530
    {
4531
      INSN_UID (label) = cur_insn_uid++;
4532
      add_insn_after (label, after, NULL);
4533
    }
4534
 
4535
  return label;
4536
}
4537
 
4538
/* Emit a note of subtype SUBTYPE after the insn AFTER.  */
4539
 
4540
rtx
4541
emit_note_after (enum insn_note subtype, rtx after)
4542
{
4543
  rtx note = rtx_alloc (NOTE);
4544
  INSN_UID (note) = cur_insn_uid++;
4545
  NOTE_KIND (note) = subtype;
4546
  BLOCK_FOR_INSN (note) = NULL;
4547
  memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4548
  add_insn_after (note, after, NULL);
4549
  return note;
4550
}
4551
 
4552
/* Like emit_insn_after_noloc, but set INSN_LOCATOR according to SCOPE.  */
4553
rtx
4554
emit_insn_after_setloc (rtx pattern, rtx after, int loc)
4555
{
4556
  rtx last = emit_insn_after_noloc (pattern, after, NULL);
4557
 
4558
  if (pattern == NULL_RTX || !loc)
4559
    return last;
4560
 
4561
  after = NEXT_INSN (after);
4562
  while (1)
4563
    {
4564
      if (active_insn_p (after) && !INSN_LOCATOR (after))
4565
        INSN_LOCATOR (after) = loc;
4566
      if (after == last)
4567
        break;
4568
      after = NEXT_INSN (after);
4569
    }
4570
  return last;
4571
}
4572
 
4573
/* Like emit_insn_after_noloc, but set INSN_LOCATOR according to AFTER.  */
4574
rtx
4575
emit_insn_after (rtx pattern, rtx after)
4576
{
4577
  rtx prev = after;
4578
 
4579
  while (DEBUG_INSN_P (prev))
4580
    prev = PREV_INSN (prev);
4581
 
4582
  if (INSN_P (prev))
4583
    return emit_insn_after_setloc (pattern, after, INSN_LOCATOR (prev));
4584
  else
4585
    return emit_insn_after_noloc (pattern, after, NULL);
4586
}
4587
 
4588
/* Like emit_jump_insn_after_noloc, but set INSN_LOCATOR according to SCOPE.  */
4589
rtx
4590
emit_jump_insn_after_setloc (rtx pattern, rtx after, int loc)
4591
{
4592
  rtx last = emit_jump_insn_after_noloc (pattern, after);
4593
 
4594
  if (pattern == NULL_RTX || !loc)
4595
    return last;
4596
 
4597
  after = NEXT_INSN (after);
4598
  while (1)
4599
    {
4600
      if (active_insn_p (after) && !INSN_LOCATOR (after))
4601
        INSN_LOCATOR (after) = loc;
4602
      if (after == last)
4603
        break;
4604
      after = NEXT_INSN (after);
4605
    }
4606
  return last;
4607
}
4608
 
4609
/* Like emit_jump_insn_after_noloc, but set INSN_LOCATOR according to AFTER.  */
4610
rtx
4611
emit_jump_insn_after (rtx pattern, rtx after)
4612
{
4613
  rtx prev = after;
4614
 
4615
  while (DEBUG_INSN_P (prev))
4616
    prev = PREV_INSN (prev);
4617
 
4618
  if (INSN_P (prev))
4619
    return emit_jump_insn_after_setloc (pattern, after, INSN_LOCATOR (prev));
4620
  else
4621
    return emit_jump_insn_after_noloc (pattern, after);
4622
}
4623
 
4624
/* Like emit_call_insn_after_noloc, but set INSN_LOCATOR according to SCOPE.  */
4625
rtx
4626
emit_call_insn_after_setloc (rtx pattern, rtx after, int loc)
4627
{
4628
  rtx last = emit_call_insn_after_noloc (pattern, after);
4629
 
4630
  if (pattern == NULL_RTX || !loc)
4631
    return last;
4632
 
4633
  after = NEXT_INSN (after);
4634
  while (1)
4635
    {
4636
      if (active_insn_p (after) && !INSN_LOCATOR (after))
4637
        INSN_LOCATOR (after) = loc;
4638
      if (after == last)
4639
        break;
4640
      after = NEXT_INSN (after);
4641
    }
4642
  return last;
4643
}
4644
 
4645
/* Like emit_call_insn_after_noloc, but set INSN_LOCATOR according to AFTER.  */
4646
rtx
4647
emit_call_insn_after (rtx pattern, rtx after)
4648
{
4649
  rtx prev = after;
4650
 
4651
  while (DEBUG_INSN_P (prev))
4652
    prev = PREV_INSN (prev);
4653
 
4654
  if (INSN_P (prev))
4655
    return emit_call_insn_after_setloc (pattern, after, INSN_LOCATOR (prev));
4656
  else
4657
    return emit_call_insn_after_noloc (pattern, after);
4658
}
4659
 
4660
/* Like emit_debug_insn_after_noloc, but set INSN_LOCATOR according to SCOPE.  */
4661
rtx
4662
emit_debug_insn_after_setloc (rtx pattern, rtx after, int loc)
4663
{
4664
  rtx last = emit_debug_insn_after_noloc (pattern, after);
4665
 
4666
  if (pattern == NULL_RTX || !loc)
4667
    return last;
4668
 
4669
  after = NEXT_INSN (after);
4670
  while (1)
4671
    {
4672
      if (active_insn_p (after) && !INSN_LOCATOR (after))
4673
        INSN_LOCATOR (after) = loc;
4674
      if (after == last)
4675
        break;
4676
      after = NEXT_INSN (after);
4677
    }
4678
  return last;
4679
}
4680
 
4681
/* Like emit_debug_insn_after_noloc, but set INSN_LOCATOR according to AFTER.  */
4682
rtx
4683
emit_debug_insn_after (rtx pattern, rtx after)
4684
{
4685
  if (INSN_P (after))
4686
    return emit_debug_insn_after_setloc (pattern, after, INSN_LOCATOR (after));
4687
  else
4688
    return emit_debug_insn_after_noloc (pattern, after);
4689
}
4690
 
4691
/* Like emit_insn_before_noloc, but set INSN_LOCATOR according to SCOPE.  */
4692
rtx
4693
emit_insn_before_setloc (rtx pattern, rtx before, int loc)
4694
{
4695
  rtx first = PREV_INSN (before);
4696
  rtx last = emit_insn_before_noloc (pattern, before, NULL);
4697
 
4698
  if (pattern == NULL_RTX || !loc)
4699
    return last;
4700
 
4701
  if (!first)
4702
    first = get_insns ();
4703
  else
4704
    first = NEXT_INSN (first);
4705
  while (1)
4706
    {
4707
      if (active_insn_p (first) && !INSN_LOCATOR (first))
4708
        INSN_LOCATOR (first) = loc;
4709
      if (first == last)
4710
        break;
4711
      first = NEXT_INSN (first);
4712
    }
4713
  return last;
4714
}
4715
 
4716
/* Like emit_insn_before_noloc, but set INSN_LOCATOR according to BEFORE.  */
4717
rtx
4718
emit_insn_before (rtx pattern, rtx before)
4719
{
4720
  rtx next = before;
4721
 
4722
  while (DEBUG_INSN_P (next))
4723
    next = PREV_INSN (next);
4724
 
4725
  if (INSN_P (next))
4726
    return emit_insn_before_setloc (pattern, before, INSN_LOCATOR (next));
4727
  else
4728
    return emit_insn_before_noloc (pattern, before, NULL);
4729
}
4730
 
4731
/* like emit_insn_before_noloc, but set insn_locator according to scope.  */
4732
rtx
4733
emit_jump_insn_before_setloc (rtx pattern, rtx before, int loc)
4734
{
4735
  rtx first = PREV_INSN (before);
4736
  rtx last = emit_jump_insn_before_noloc (pattern, before);
4737
 
4738
  if (pattern == NULL_RTX)
4739
    return last;
4740
 
4741
  first = NEXT_INSN (first);
4742
  while (1)
4743
    {
4744
      if (active_insn_p (first) && !INSN_LOCATOR (first))
4745
        INSN_LOCATOR (first) = loc;
4746
      if (first == last)
4747
        break;
4748
      first = NEXT_INSN (first);
4749
    }
4750
  return last;
4751
}
4752
 
4753
/* Like emit_jump_insn_before_noloc, but set INSN_LOCATOR according to BEFORE.  */
4754
rtx
4755
emit_jump_insn_before (rtx pattern, rtx before)
4756
{
4757
  rtx next = before;
4758
 
4759
  while (DEBUG_INSN_P (next))
4760
    next = PREV_INSN (next);
4761
 
4762
  if (INSN_P (next))
4763
    return emit_jump_insn_before_setloc (pattern, before, INSN_LOCATOR (next));
4764
  else
4765
    return emit_jump_insn_before_noloc (pattern, before);
4766
}
4767
 
4768
/* like emit_insn_before_noloc, but set insn_locator according to scope.  */
4769
rtx
4770
emit_call_insn_before_setloc (rtx pattern, rtx before, int loc)
4771
{
4772
  rtx first = PREV_INSN (before);
4773
  rtx last = emit_call_insn_before_noloc (pattern, before);
4774
 
4775
  if (pattern == NULL_RTX)
4776
    return last;
4777
 
4778
  first = NEXT_INSN (first);
4779
  while (1)
4780
    {
4781
      if (active_insn_p (first) && !INSN_LOCATOR (first))
4782
        INSN_LOCATOR (first) = loc;
4783
      if (first == last)
4784
        break;
4785
      first = NEXT_INSN (first);
4786
    }
4787
  return last;
4788
}
4789
 
4790
/* like emit_call_insn_before_noloc,
4791
   but set insn_locator according to before.  */
4792
rtx
4793
emit_call_insn_before (rtx pattern, rtx before)
4794
{
4795
  rtx next = before;
4796
 
4797
  while (DEBUG_INSN_P (next))
4798
    next = PREV_INSN (next);
4799
 
4800
  if (INSN_P (next))
4801
    return emit_call_insn_before_setloc (pattern, before, INSN_LOCATOR (next));
4802
  else
4803
    return emit_call_insn_before_noloc (pattern, before);
4804
}
4805
 
4806
/* like emit_insn_before_noloc, but set insn_locator according to scope.  */
4807
rtx
4808
emit_debug_insn_before_setloc (rtx pattern, rtx before, int loc)
4809
{
4810
  rtx first = PREV_INSN (before);
4811
  rtx last = emit_debug_insn_before_noloc (pattern, before);
4812
 
4813
  if (pattern == NULL_RTX)
4814
    return last;
4815
 
4816
  first = NEXT_INSN (first);
4817
  while (1)
4818
    {
4819
      if (active_insn_p (first) && !INSN_LOCATOR (first))
4820
        INSN_LOCATOR (first) = loc;
4821
      if (first == last)
4822
        break;
4823
      first = NEXT_INSN (first);
4824
    }
4825
  return last;
4826
}
4827
 
4828
/* like emit_debug_insn_before_noloc,
4829
   but set insn_locator according to before.  */
4830
rtx
4831
emit_debug_insn_before (rtx pattern, rtx before)
4832
{
4833
  if (INSN_P (before))
4834
    return emit_debug_insn_before_setloc (pattern, before, INSN_LOCATOR (before));
4835
  else
4836
    return emit_debug_insn_before_noloc (pattern, before);
4837
}
4838
 
4839
/* Take X and emit it at the end of the doubly-linked
4840
   INSN list.
4841
 
4842
   Returns the last insn emitted.  */
4843
 
4844
rtx
4845
emit_insn (rtx x)
4846
{
4847
  rtx last = last_insn;
4848
  rtx insn;
4849
 
4850
  if (x == NULL_RTX)
4851
    return last;
4852
 
4853
  switch (GET_CODE (x))
4854
    {
4855
    case DEBUG_INSN:
4856
    case INSN:
4857
    case JUMP_INSN:
4858
    case CALL_INSN:
4859
    case CODE_LABEL:
4860
    case BARRIER:
4861
    case NOTE:
4862
      insn = x;
4863
      while (insn)
4864
        {
4865
          rtx next = NEXT_INSN (insn);
4866
          add_insn (insn);
4867
          last = insn;
4868
          insn = next;
4869
        }
4870
      break;
4871
 
4872
#ifdef ENABLE_RTL_CHECKING
4873
    case SEQUENCE:
4874
      gcc_unreachable ();
4875
      break;
4876
#endif
4877
 
4878
    default:
4879
      last = make_insn_raw (x);
4880
      add_insn (last);
4881
      break;
4882
    }
4883
 
4884
  return last;
4885
}
4886
 
4887
/* Make an insn of code DEBUG_INSN with pattern X
4888
   and add it to the end of the doubly-linked list.  */
4889
 
4890
rtx
4891
emit_debug_insn (rtx x)
4892
{
4893
  rtx last = last_insn;
4894
  rtx insn;
4895
 
4896
  if (x == NULL_RTX)
4897
    return last;
4898
 
4899
  switch (GET_CODE (x))
4900
    {
4901
    case DEBUG_INSN:
4902
    case INSN:
4903
    case JUMP_INSN:
4904
    case CALL_INSN:
4905
    case CODE_LABEL:
4906
    case BARRIER:
4907
    case NOTE:
4908
      insn = x;
4909
      while (insn)
4910
        {
4911
          rtx next = NEXT_INSN (insn);
4912
          add_insn (insn);
4913
          last = insn;
4914
          insn = next;
4915
        }
4916
      break;
4917
 
4918
#ifdef ENABLE_RTL_CHECKING
4919
    case SEQUENCE:
4920
      gcc_unreachable ();
4921
      break;
4922
#endif
4923
 
4924
    default:
4925
      last = make_debug_insn_raw (x);
4926
      add_insn (last);
4927
      break;
4928
    }
4929
 
4930
  return last;
4931
}
4932
 
4933
/* Make an insn of code JUMP_INSN with pattern X
4934
   and add it to the end of the doubly-linked list.  */
4935
 
4936
rtx
4937
emit_jump_insn (rtx x)
4938
{
4939
  rtx last = NULL_RTX, insn;
4940
 
4941
  switch (GET_CODE (x))
4942
    {
4943
    case DEBUG_INSN:
4944
    case INSN:
4945
    case JUMP_INSN:
4946
    case CALL_INSN:
4947
    case CODE_LABEL:
4948
    case BARRIER:
4949
    case NOTE:
4950
      insn = x;
4951
      while (insn)
4952
        {
4953
          rtx next = NEXT_INSN (insn);
4954
          add_insn (insn);
4955
          last = insn;
4956
          insn = next;
4957
        }
4958
      break;
4959
 
4960
#ifdef ENABLE_RTL_CHECKING
4961
    case SEQUENCE:
4962
      gcc_unreachable ();
4963
      break;
4964
#endif
4965
 
4966
    default:
4967
      last = make_jump_insn_raw (x);
4968
      add_insn (last);
4969
      break;
4970
    }
4971
 
4972
  return last;
4973
}
4974
 
4975
/* Make an insn of code CALL_INSN with pattern X
4976
   and add it to the end of the doubly-linked list.  */
4977
 
4978
rtx
4979
emit_call_insn (rtx x)
4980
{
4981
  rtx insn;
4982
 
4983
  switch (GET_CODE (x))
4984
    {
4985
    case DEBUG_INSN:
4986
    case INSN:
4987
    case JUMP_INSN:
4988
    case CALL_INSN:
4989
    case CODE_LABEL:
4990
    case BARRIER:
4991
    case NOTE:
4992
      insn = emit_insn (x);
4993
      break;
4994
 
4995
#ifdef ENABLE_RTL_CHECKING
4996
    case SEQUENCE:
4997
      gcc_unreachable ();
4998
      break;
4999
#endif
5000
 
5001
    default:
5002
      insn = make_call_insn_raw (x);
5003
      add_insn (insn);
5004
      break;
5005
    }
5006
 
5007
  return insn;
5008
}
5009
 
5010
/* Add the label LABEL to the end of the doubly-linked list.  */
5011
 
5012
rtx
5013
emit_label (rtx label)
5014
{
5015
  /* This can be called twice for the same label
5016
     as a result of the confusion that follows a syntax error!
5017
     So make it harmless.  */
5018
  if (INSN_UID (label) == 0)
5019
    {
5020
      INSN_UID (label) = cur_insn_uid++;
5021
      add_insn (label);
5022
    }
5023
  return label;
5024
}
5025
 
5026
/* Make an insn of code BARRIER
5027
   and add it to the end of the doubly-linked list.  */
5028
 
5029
rtx
5030
emit_barrier (void)
5031
{
5032
  rtx barrier = rtx_alloc (BARRIER);
5033
  INSN_UID (barrier) = cur_insn_uid++;
5034
  add_insn (barrier);
5035
  return barrier;
5036
}
5037
 
5038
/* Emit a copy of note ORIG.  */
5039
 
5040
rtx
5041
emit_note_copy (rtx orig)
5042
{
5043
  rtx note;
5044
 
5045
  note = rtx_alloc (NOTE);
5046
 
5047
  INSN_UID (note) = cur_insn_uid++;
5048
  NOTE_DATA (note) = NOTE_DATA (orig);
5049
  NOTE_KIND (note) = NOTE_KIND (orig);
5050
  BLOCK_FOR_INSN (note) = NULL;
5051
  add_insn (note);
5052
 
5053
  return note;
5054
}
5055
 
5056
/* Make an insn of code NOTE or type NOTE_NO
5057
   and add it to the end of the doubly-linked list.  */
5058
 
5059
rtx
5060
emit_note (enum insn_note kind)
5061
{
5062
  rtx note;
5063
 
5064
  note = rtx_alloc (NOTE);
5065
  INSN_UID (note) = cur_insn_uid++;
5066
  NOTE_KIND (note) = kind;
5067
  memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
5068
  BLOCK_FOR_INSN (note) = NULL;
5069
  add_insn (note);
5070
  return note;
5071
}
5072
 
5073
/* Emit a clobber of lvalue X.  */
5074
 
5075
rtx
5076
emit_clobber (rtx x)
5077
{
5078
  /* CONCATs should not appear in the insn stream.  */
5079
  if (GET_CODE (x) == CONCAT)
5080
    {
5081
      emit_clobber (XEXP (x, 0));
5082
      return emit_clobber (XEXP (x, 1));
5083
    }
5084
  return emit_insn (gen_rtx_CLOBBER (VOIDmode, x));
5085
}
5086
 
5087
/* Return a sequence of insns to clobber lvalue X.  */
5088
 
5089
rtx
5090
gen_clobber (rtx x)
5091
{
5092
  rtx seq;
5093
 
5094
  start_sequence ();
5095
  emit_clobber (x);
5096
  seq = get_insns ();
5097
  end_sequence ();
5098
  return seq;
5099
}
5100
 
5101
/* Emit a use of rvalue X.  */
5102
 
5103
rtx
5104
emit_use (rtx x)
5105
{
5106
  /* CONCATs should not appear in the insn stream.  */
5107
  if (GET_CODE (x) == CONCAT)
5108
    {
5109
      emit_use (XEXP (x, 0));
5110
      return emit_use (XEXP (x, 1));
5111
    }
5112
  return emit_insn (gen_rtx_USE (VOIDmode, x));
5113
}
5114
 
5115
/* Return a sequence of insns to use rvalue X.  */
5116
 
5117
rtx
5118
gen_use (rtx x)
5119
{
5120
  rtx seq;
5121
 
5122
  start_sequence ();
5123
  emit_use (x);
5124
  seq = get_insns ();
5125
  end_sequence ();
5126
  return seq;
5127
}
5128
 
5129
/* Cause next statement to emit a line note even if the line number
5130
   has not changed.  */
5131
 
5132
void
5133
force_next_line_note (void)
5134
{
5135
  last_location = -1;
5136
}
5137
 
5138
/* Place a note of KIND on insn INSN with DATUM as the datum. If a
5139
   note of this type already exists, remove it first.  */
5140
 
5141
rtx
5142
set_unique_reg_note (rtx insn, enum reg_note kind, rtx datum)
5143
{
5144
  rtx note = find_reg_note (insn, kind, NULL_RTX);
5145
 
5146
  switch (kind)
5147
    {
5148
    case REG_EQUAL:
5149
    case REG_EQUIV:
5150
      /* Don't add REG_EQUAL/REG_EQUIV notes if the insn
5151
         has multiple sets (some callers assume single_set
5152
         means the insn only has one set, when in fact it
5153
         means the insn only has one * useful * set).  */
5154
      if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
5155
        {
5156
          gcc_assert (!note);
5157
          return NULL_RTX;
5158
        }
5159
 
5160
      /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
5161
         It serves no useful purpose and breaks eliminate_regs.  */
5162
      if (GET_CODE (datum) == ASM_OPERANDS)
5163
        return NULL_RTX;
5164
 
5165
      if (note)
5166
        {
5167
          XEXP (note, 0) = datum;
5168
          df_notes_rescan (insn);
5169
          return note;
5170
        }
5171
      break;
5172
 
5173
    default:
5174
      if (note)
5175
        {
5176
          XEXP (note, 0) = datum;
5177
          return note;
5178
        }
5179
      break;
5180
    }
5181
 
5182
  add_reg_note (insn, kind, datum);
5183
 
5184
  switch (kind)
5185
    {
5186
    case REG_EQUAL:
5187
    case REG_EQUIV:
5188
      df_notes_rescan (insn);
5189
      break;
5190
    default:
5191
      break;
5192
    }
5193
 
5194
  return REG_NOTES (insn);
5195
}
5196
 
5197
/* Return an indication of which type of insn should have X as a body.
5198
   The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN.  */
5199
 
5200
static enum rtx_code
5201
classify_insn (rtx x)
5202
{
5203
  if (LABEL_P (x))
5204
    return CODE_LABEL;
5205
  if (GET_CODE (x) == CALL)
5206
    return CALL_INSN;
5207
  if (GET_CODE (x) == RETURN)
5208
    return JUMP_INSN;
5209
  if (GET_CODE (x) == SET)
5210
    {
5211
      if (SET_DEST (x) == pc_rtx)
5212
        return JUMP_INSN;
5213
      else if (GET_CODE (SET_SRC (x)) == CALL)
5214
        return CALL_INSN;
5215
      else
5216
        return INSN;
5217
    }
5218
  if (GET_CODE (x) == PARALLEL)
5219
    {
5220
      int j;
5221
      for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
5222
        if (GET_CODE (XVECEXP (x, 0, j)) == CALL)
5223
          return CALL_INSN;
5224
        else if (GET_CODE (XVECEXP (x, 0, j)) == SET
5225
                 && SET_DEST (XVECEXP (x, 0, j)) == pc_rtx)
5226
          return JUMP_INSN;
5227
        else if (GET_CODE (XVECEXP (x, 0, j)) == SET
5228
                 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == CALL)
5229
          return CALL_INSN;
5230
    }
5231
  return INSN;
5232
}
5233
 
5234
/* Emit the rtl pattern X as an appropriate kind of insn.
5235
   If X is a label, it is simply added into the insn chain.  */
5236
 
5237
rtx
5238
emit (rtx x)
5239
{
5240
  enum rtx_code code = classify_insn (x);
5241
 
5242
  switch (code)
5243
    {
5244
    case CODE_LABEL:
5245
      return emit_label (x);
5246
    case INSN:
5247
      return emit_insn (x);
5248
    case  JUMP_INSN:
5249
      {
5250
        rtx insn = emit_jump_insn (x);
5251
        if (any_uncondjump_p (insn) || GET_CODE (x) == RETURN)
5252
          return emit_barrier ();
5253
        return insn;
5254
      }
5255
    case CALL_INSN:
5256
      return emit_call_insn (x);
5257
    case DEBUG_INSN:
5258
      return emit_debug_insn (x);
5259
    default:
5260
      gcc_unreachable ();
5261
    }
5262
}
5263
 
5264
/* Space for free sequence stack entries.  */
5265
static GTY ((deletable)) struct sequence_stack *free_sequence_stack;
5266
 
5267
/* Begin emitting insns to a sequence.  If this sequence will contain
5268
   something that might cause the compiler to pop arguments to function
5269
   calls (because those pops have previously been deferred; see
5270
   INHIBIT_DEFER_POP for more details), use do_pending_stack_adjust
5271
   before calling this function.  That will ensure that the deferred
5272
   pops are not accidentally emitted in the middle of this sequence.  */
5273
 
5274
void
5275
start_sequence (void)
5276
{
5277
  struct sequence_stack *tem;
5278
 
5279
  if (free_sequence_stack != NULL)
5280
    {
5281
      tem = free_sequence_stack;
5282
      free_sequence_stack = tem->next;
5283
    }
5284
  else
5285
    tem = GGC_NEW (struct sequence_stack);
5286
 
5287
  tem->next = seq_stack;
5288
  tem->first = first_insn;
5289
  tem->last = last_insn;
5290
 
5291
  seq_stack = tem;
5292
 
5293
  first_insn = 0;
5294
  last_insn = 0;
5295
}
5296
 
5297
/* Set up the insn chain starting with FIRST as the current sequence,
5298
   saving the previously current one.  See the documentation for
5299
   start_sequence for more information about how to use this function.  */
5300
 
5301
void
5302
push_to_sequence (rtx first)
5303
{
5304
  rtx last;
5305
 
5306
  start_sequence ();
5307
 
5308
  for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last));
5309
 
5310
  first_insn = first;
5311
  last_insn = last;
5312
}
5313
 
5314
/* Like push_to_sequence, but take the last insn as an argument to avoid
5315
   looping through the list.  */
5316
 
5317
void
5318
push_to_sequence2 (rtx first, rtx last)
5319
{
5320
  start_sequence ();
5321
 
5322
  first_insn = first;
5323
  last_insn = last;
5324
}
5325
 
5326
/* Set up the outer-level insn chain
5327
   as the current sequence, saving the previously current one.  */
5328
 
5329
void
5330
push_topmost_sequence (void)
5331
{
5332
  struct sequence_stack *stack, *top = NULL;
5333
 
5334
  start_sequence ();
5335
 
5336
  for (stack = seq_stack; stack; stack = stack->next)
5337
    top = stack;
5338
 
5339
  first_insn = top->first;
5340
  last_insn = top->last;
5341
}
5342
 
5343
/* After emitting to the outer-level insn chain, update the outer-level
5344
   insn chain, and restore the previous saved state.  */
5345
 
5346
void
5347
pop_topmost_sequence (void)
5348
{
5349
  struct sequence_stack *stack, *top = NULL;
5350
 
5351
  for (stack = seq_stack; stack; stack = stack->next)
5352
    top = stack;
5353
 
5354
  top->first = first_insn;
5355
  top->last = last_insn;
5356
 
5357
  end_sequence ();
5358
}
5359
 
5360
/* After emitting to a sequence, restore previous saved state.
5361
 
5362
   To get the contents of the sequence just made, you must call
5363
   `get_insns' *before* calling here.
5364
 
5365
   If the compiler might have deferred popping arguments while
5366
   generating this sequence, and this sequence will not be immediately
5367
   inserted into the instruction stream, use do_pending_stack_adjust
5368
   before calling get_insns.  That will ensure that the deferred
5369
   pops are inserted into this sequence, and not into some random
5370
   location in the instruction stream.  See INHIBIT_DEFER_POP for more
5371
   information about deferred popping of arguments.  */
5372
 
5373
void
5374
end_sequence (void)
5375
{
5376
  struct sequence_stack *tem = seq_stack;
5377
 
5378
  first_insn = tem->first;
5379
  last_insn = tem->last;
5380
  seq_stack = tem->next;
5381
 
5382
  memset (tem, 0, sizeof (*tem));
5383
  tem->next = free_sequence_stack;
5384
  free_sequence_stack = tem;
5385
}
5386
 
5387
/* Return 1 if currently emitting into a sequence.  */
5388
 
5389
int
5390
in_sequence_p (void)
5391
{
5392
  return seq_stack != 0;
5393
}
5394
 
5395
/* Put the various virtual registers into REGNO_REG_RTX.  */
5396
 
5397
static void
5398
init_virtual_regs (void)
5399
{
5400
  regno_reg_rtx[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
5401
  regno_reg_rtx[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
5402
  regno_reg_rtx[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
5403
  regno_reg_rtx[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
5404
  regno_reg_rtx[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
5405
}
5406
 
5407
 
5408
/* Used by copy_insn_1 to avoid copying SCRATCHes more than once.  */
5409
static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
5410
static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
5411
static int copy_insn_n_scratches;
5412
 
5413
/* When an insn is being copied by copy_insn_1, this is nonzero if we have
5414
   copied an ASM_OPERANDS.
5415
   In that case, it is the original input-operand vector.  */
5416
static rtvec orig_asm_operands_vector;
5417
 
5418
/* When an insn is being copied by copy_insn_1, this is nonzero if we have
5419
   copied an ASM_OPERANDS.
5420
   In that case, it is the copied input-operand vector.  */
5421
static rtvec copy_asm_operands_vector;
5422
 
5423
/* Likewise for the constraints vector.  */
5424
static rtvec orig_asm_constraints_vector;
5425
static rtvec copy_asm_constraints_vector;
5426
 
5427
/* Recursively create a new copy of an rtx for copy_insn.
5428
   This function differs from copy_rtx in that it handles SCRATCHes and
5429
   ASM_OPERANDs properly.
5430
   Normally, this function is not used directly; use copy_insn as front end.
5431
   However, you could first copy an insn pattern with copy_insn and then use
5432
   this function afterwards to properly copy any REG_NOTEs containing
5433
   SCRATCHes.  */
5434
 
5435
rtx
5436
copy_insn_1 (rtx orig)
5437
{
5438
  rtx copy;
5439
  int i, j;
5440
  RTX_CODE code;
5441
  const char *format_ptr;
5442
 
5443
  if (orig == NULL)
5444
    return NULL;
5445
 
5446
  code = GET_CODE (orig);
5447
 
5448
  switch (code)
5449
    {
5450
    case REG:
5451
    case CONST_INT:
5452
    case CONST_DOUBLE:
5453
    case CONST_FIXED:
5454
    case CONST_VECTOR:
5455
    case SYMBOL_REF:
5456
    case CODE_LABEL:
5457
    case PC:
5458
    case CC0:
5459
      return orig;
5460
    case CLOBBER:
5461
      if (REG_P (XEXP (orig, 0)) && REGNO (XEXP (orig, 0)) < FIRST_PSEUDO_REGISTER)
5462
        return orig;
5463
      break;
5464
 
5465
    case SCRATCH:
5466
      for (i = 0; i < copy_insn_n_scratches; i++)
5467
        if (copy_insn_scratch_in[i] == orig)
5468
          return copy_insn_scratch_out[i];
5469
      break;
5470
 
5471
    case CONST:
5472
      if (shared_const_p (orig))
5473
        return orig;
5474
      break;
5475
 
5476
      /* A MEM with a constant address is not sharable.  The problem is that
5477
         the constant address may need to be reloaded.  If the mem is shared,
5478
         then reloading one copy of this mem will cause all copies to appear
5479
         to have been reloaded.  */
5480
 
5481
    default:
5482
      break;
5483
    }
5484
 
5485
  /* Copy the various flags, fields, and other information.  We assume
5486
     that all fields need copying, and then clear the fields that should
5487
     not be copied.  That is the sensible default behavior, and forces
5488
     us to explicitly document why we are *not* copying a flag.  */
5489
  copy = shallow_copy_rtx (orig);
5490
 
5491
  /* We do not copy the USED flag, which is used as a mark bit during
5492
     walks over the RTL.  */
5493
  RTX_FLAG (copy, used) = 0;
5494
 
5495
  /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs.  */
5496
  if (INSN_P (orig))
5497
    {
5498
      RTX_FLAG (copy, jump) = 0;
5499
      RTX_FLAG (copy, call) = 0;
5500
      RTX_FLAG (copy, frame_related) = 0;
5501
    }
5502
 
5503
  format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
5504
 
5505
  for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
5506
    switch (*format_ptr++)
5507
      {
5508
      case 'e':
5509
        if (XEXP (orig, i) != NULL)
5510
          XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
5511
        break;
5512
 
5513
      case 'E':
5514
      case 'V':
5515
        if (XVEC (orig, i) == orig_asm_constraints_vector)
5516
          XVEC (copy, i) = copy_asm_constraints_vector;
5517
        else if (XVEC (orig, i) == orig_asm_operands_vector)
5518
          XVEC (copy, i) = copy_asm_operands_vector;
5519
        else if (XVEC (orig, i) != NULL)
5520
          {
5521
            XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
5522
            for (j = 0; j < XVECLEN (copy, i); j++)
5523
              XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
5524
          }
5525
        break;
5526
 
5527
      case 't':
5528
      case 'w':
5529
      case 'i':
5530
      case 's':
5531
      case 'S':
5532
      case 'u':
5533
      case '0':
5534
        /* These are left unchanged.  */
5535
        break;
5536
 
5537
      default:
5538
        gcc_unreachable ();
5539
      }
5540
 
5541
  if (code == SCRATCH)
5542
    {
5543
      i = copy_insn_n_scratches++;
5544
      gcc_assert (i < MAX_RECOG_OPERANDS);
5545
      copy_insn_scratch_in[i] = orig;
5546
      copy_insn_scratch_out[i] = copy;
5547
    }
5548
  else if (code == ASM_OPERANDS)
5549
    {
5550
      orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
5551
      copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
5552
      orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
5553
      copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
5554
    }
5555
 
5556
  return copy;
5557
}
5558
 
5559
/* Create a new copy of an rtx.
5560
   This function differs from copy_rtx in that it handles SCRATCHes and
5561
   ASM_OPERANDs properly.
5562
   INSN doesn't really have to be a full INSN; it could be just the
5563
   pattern.  */
5564
rtx
5565
copy_insn (rtx insn)
5566
{
5567
  copy_insn_n_scratches = 0;
5568
  orig_asm_operands_vector = 0;
5569
  orig_asm_constraints_vector = 0;
5570
  copy_asm_operands_vector = 0;
5571
  copy_asm_constraints_vector = 0;
5572
  return copy_insn_1 (insn);
5573
}
5574
 
5575
/* Initialize data structures and variables in this file
5576
   before generating rtl for each function.  */
5577
 
5578
void
5579
init_emit (void)
5580
{
5581
  first_insn = NULL;
5582
  last_insn = NULL;
5583
  if (MIN_NONDEBUG_INSN_UID)
5584
    cur_insn_uid = MIN_NONDEBUG_INSN_UID;
5585
  else
5586
    cur_insn_uid = 1;
5587
  cur_debug_insn_uid = 1;
5588
  reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
5589
  last_location = UNKNOWN_LOCATION;
5590
  first_label_num = label_num;
5591
  seq_stack = NULL;
5592
 
5593
  /* Init the tables that describe all the pseudo regs.  */
5594
 
5595
  crtl->emit.regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
5596
 
5597
  crtl->emit.regno_pointer_align
5598
    = XCNEWVEC (unsigned char, crtl->emit.regno_pointer_align_length);
5599
 
5600
  regno_reg_rtx
5601
    = GGC_NEWVEC (rtx, crtl->emit.regno_pointer_align_length);
5602
 
5603
  /* Put copies of all the hard registers into regno_reg_rtx.  */
5604
  memcpy (regno_reg_rtx,
5605
          static_regno_reg_rtx,
5606
          FIRST_PSEUDO_REGISTER * sizeof (rtx));
5607
 
5608
  /* Put copies of all the virtual register rtx into regno_reg_rtx.  */
5609
  init_virtual_regs ();
5610
 
5611
  /* Indicate that the virtual registers and stack locations are
5612
     all pointers.  */
5613
  REG_POINTER (stack_pointer_rtx) = 1;
5614
  REG_POINTER (frame_pointer_rtx) = 1;
5615
  REG_POINTER (hard_frame_pointer_rtx) = 1;
5616
  REG_POINTER (arg_pointer_rtx) = 1;
5617
 
5618
  REG_POINTER (virtual_incoming_args_rtx) = 1;
5619
  REG_POINTER (virtual_stack_vars_rtx) = 1;
5620
  REG_POINTER (virtual_stack_dynamic_rtx) = 1;
5621
  REG_POINTER (virtual_outgoing_args_rtx) = 1;
5622
  REG_POINTER (virtual_cfa_rtx) = 1;
5623
 
5624
#ifdef STACK_BOUNDARY
5625
  REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
5626
  REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5627
  REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5628
  REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
5629
 
5630
  REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
5631
  REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
5632
  REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
5633
  REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
5634
  REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
5635
#endif
5636
 
5637
#ifdef INIT_EXPANDERS
5638
  INIT_EXPANDERS;
5639
#endif
5640
}
5641
 
5642
/* Generate a vector constant for mode MODE and constant value CONSTANT.  */
5643
 
5644
static rtx
5645
gen_const_vector (enum machine_mode mode, int constant)
5646
{
5647
  rtx tem;
5648
  rtvec v;
5649
  int units, i;
5650
  enum machine_mode inner;
5651
 
5652
  units = GET_MODE_NUNITS (mode);
5653
  inner = GET_MODE_INNER (mode);
5654
 
5655
  gcc_assert (!DECIMAL_FLOAT_MODE_P (inner));
5656
 
5657
  v = rtvec_alloc (units);
5658
 
5659
  /* We need to call this function after we set the scalar const_tiny_rtx
5660
     entries.  */
5661
  gcc_assert (const_tiny_rtx[constant][(int) inner]);
5662
 
5663
  for (i = 0; i < units; ++i)
5664
    RTVEC_ELT (v, i) = const_tiny_rtx[constant][(int) inner];
5665
 
5666
  tem = gen_rtx_raw_CONST_VECTOR (mode, v);
5667
  return tem;
5668
}
5669
 
5670
/* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
5671
   all elements are zero, and the one vector when all elements are one.  */
5672
rtx
5673
gen_rtx_CONST_VECTOR (enum machine_mode mode, rtvec v)
5674
{
5675
  enum machine_mode inner = GET_MODE_INNER (mode);
5676
  int nunits = GET_MODE_NUNITS (mode);
5677
  rtx x;
5678
  int i;
5679
 
5680
  /* Check to see if all of the elements have the same value.  */
5681
  x = RTVEC_ELT (v, nunits - 1);
5682
  for (i = nunits - 2; i >= 0; i--)
5683
    if (RTVEC_ELT (v, i) != x)
5684
      break;
5685
 
5686
  /* If the values are all the same, check to see if we can use one of the
5687
     standard constant vectors.  */
5688
  if (i == -1)
5689
    {
5690
      if (x == CONST0_RTX (inner))
5691
        return CONST0_RTX (mode);
5692
      else if (x == CONST1_RTX (inner))
5693
        return CONST1_RTX (mode);
5694
    }
5695
 
5696
  return gen_rtx_raw_CONST_VECTOR (mode, v);
5697
}
5698
 
5699
/* Initialise global register information required by all functions.  */
5700
 
5701
void
5702
init_emit_regs (void)
5703
{
5704
  int i;
5705
 
5706
  /* Reset register attributes */
5707
  htab_empty (reg_attrs_htab);
5708
 
5709
  /* We need reg_raw_mode, so initialize the modes now.  */
5710
  init_reg_modes_target ();
5711
 
5712
  /* Assign register numbers to the globally defined register rtx.  */
5713
  pc_rtx = gen_rtx_PC (VOIDmode);
5714
  cc0_rtx = gen_rtx_CC0 (VOIDmode);
5715
  stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
5716
  frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
5717
  hard_frame_pointer_rtx = gen_raw_REG (Pmode, HARD_FRAME_POINTER_REGNUM);
5718
  arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
5719
  virtual_incoming_args_rtx =
5720
    gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
5721
  virtual_stack_vars_rtx =
5722
    gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
5723
  virtual_stack_dynamic_rtx =
5724
    gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
5725
  virtual_outgoing_args_rtx =
5726
    gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
5727
  virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
5728
 
5729
  /* Initialize RTL for commonly used hard registers.  These are
5730
     copied into regno_reg_rtx as we begin to compile each function.  */
5731
  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5732
    static_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i);
5733
 
5734
#ifdef RETURN_ADDRESS_POINTER_REGNUM
5735
  return_address_pointer_rtx
5736
    = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
5737
#endif
5738
 
5739
  if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
5740
    pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
5741
  else
5742
    pic_offset_table_rtx = NULL_RTX;
5743
}
5744
 
5745
/* Create some permanent unique rtl objects shared between all functions.  */
5746
 
5747
void
5748
init_emit_once (void)
5749
{
5750
  int i;
5751
  enum machine_mode mode;
5752
  enum machine_mode double_mode;
5753
 
5754
  /* Initialize the CONST_INT, CONST_DOUBLE, CONST_FIXED, and memory attribute
5755
     hash tables.  */
5756
  const_int_htab = htab_create_ggc (37, const_int_htab_hash,
5757
                                    const_int_htab_eq, NULL);
5758
 
5759
  const_double_htab = htab_create_ggc (37, const_double_htab_hash,
5760
                                       const_double_htab_eq, NULL);
5761
 
5762
  const_fixed_htab = htab_create_ggc (37, const_fixed_htab_hash,
5763
                                      const_fixed_htab_eq, NULL);
5764
 
5765
  mem_attrs_htab = htab_create_ggc (37, mem_attrs_htab_hash,
5766
                                    mem_attrs_htab_eq, NULL);
5767
  reg_attrs_htab = htab_create_ggc (37, reg_attrs_htab_hash,
5768
                                    reg_attrs_htab_eq, NULL);
5769
 
5770
  /* Compute the word and byte modes.  */
5771
 
5772
  byte_mode = VOIDmode;
5773
  word_mode = VOIDmode;
5774
  double_mode = VOIDmode;
5775
 
5776
  for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5777
       mode != VOIDmode;
5778
       mode = GET_MODE_WIDER_MODE (mode))
5779
    {
5780
      if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
5781
          && byte_mode == VOIDmode)
5782
        byte_mode = mode;
5783
 
5784
      if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
5785
          && word_mode == VOIDmode)
5786
        word_mode = mode;
5787
    }
5788
 
5789
  for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
5790
       mode != VOIDmode;
5791
       mode = GET_MODE_WIDER_MODE (mode))
5792
    {
5793
      if (GET_MODE_BITSIZE (mode) == DOUBLE_TYPE_SIZE
5794
          && double_mode == VOIDmode)
5795
        double_mode = mode;
5796
    }
5797
 
5798
  ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
5799
 
5800
#ifdef INIT_EXPANDERS
5801
  /* This is to initialize {init|mark|free}_machine_status before the first
5802
     call to push_function_context_to.  This is needed by the Chill front
5803
     end which calls push_function_context_to before the first call to
5804
     init_function_start.  */
5805
  INIT_EXPANDERS;
5806
#endif
5807
 
5808
  /* Create the unique rtx's for certain rtx codes and operand values.  */
5809
 
5810
  /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
5811
     tries to use these variables.  */
5812
  for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
5813
    const_int_rtx[i + MAX_SAVED_CONST_INT] =
5814
      gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i);
5815
 
5816
  if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
5817
      && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
5818
    const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
5819
  else
5820
    const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
5821
 
5822
  REAL_VALUE_FROM_INT (dconst0,   0,  0, double_mode);
5823
  REAL_VALUE_FROM_INT (dconst1,   1,  0, double_mode);
5824
  REAL_VALUE_FROM_INT (dconst2,   2,  0, double_mode);
5825
 
5826
  dconstm1 = dconst1;
5827
  dconstm1.sign = 1;
5828
 
5829
  dconsthalf = dconst1;
5830
  SET_REAL_EXP (&dconsthalf, REAL_EXP (&dconsthalf) - 1);
5831
 
5832
  for (i = 0; i < (int) ARRAY_SIZE (const_tiny_rtx); i++)
5833
    {
5834
      const REAL_VALUE_TYPE *const r =
5835
        (i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2);
5836
 
5837
      for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
5838
           mode != VOIDmode;
5839
           mode = GET_MODE_WIDER_MODE (mode))
5840
        const_tiny_rtx[i][(int) mode] =
5841
          CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5842
 
5843
      for (mode = GET_CLASS_NARROWEST_MODE (MODE_DECIMAL_FLOAT);
5844
           mode != VOIDmode;
5845
           mode = GET_MODE_WIDER_MODE (mode))
5846
        const_tiny_rtx[i][(int) mode] =
5847
          CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5848
 
5849
      const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
5850
 
5851
      for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5852
           mode != VOIDmode;
5853
           mode = GET_MODE_WIDER_MODE (mode))
5854
        const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5855
 
5856
      for (mode = GET_CLASS_NARROWEST_MODE (MODE_PARTIAL_INT);
5857
           mode != VOIDmode;
5858
           mode = GET_MODE_WIDER_MODE (mode))
5859
        const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5860
    }
5861
 
5862
  for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_INT);
5863
       mode != VOIDmode;
5864
       mode = GET_MODE_WIDER_MODE (mode))
5865
    {
5866
      rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
5867
      const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
5868
    }
5869
 
5870
  for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT);
5871
       mode != VOIDmode;
5872
       mode = GET_MODE_WIDER_MODE (mode))
5873
    {
5874
      rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
5875
      const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
5876
    }
5877
 
5878
  for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
5879
       mode != VOIDmode;
5880
       mode = GET_MODE_WIDER_MODE (mode))
5881
    {
5882
      const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5883
      const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5884
    }
5885
 
5886
  for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
5887
       mode != VOIDmode;
5888
       mode = GET_MODE_WIDER_MODE (mode))
5889
    {
5890
      const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5891
      const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5892
    }
5893
 
5894
  for (mode = GET_CLASS_NARROWEST_MODE (MODE_FRACT);
5895
       mode != VOIDmode;
5896
       mode = GET_MODE_WIDER_MODE (mode))
5897
    {
5898
      FCONST0(mode).data.high = 0;
5899
      FCONST0(mode).data.low = 0;
5900
      FCONST0(mode).mode = mode;
5901
      const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5902
                                      FCONST0 (mode), mode);
5903
    }
5904
 
5905
  for (mode = GET_CLASS_NARROWEST_MODE (MODE_UFRACT);
5906
       mode != VOIDmode;
5907
       mode = GET_MODE_WIDER_MODE (mode))
5908
    {
5909
      FCONST0(mode).data.high = 0;
5910
      FCONST0(mode).data.low = 0;
5911
      FCONST0(mode).mode = mode;
5912
      const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5913
                                      FCONST0 (mode), mode);
5914
    }
5915
 
5916
  for (mode = GET_CLASS_NARROWEST_MODE (MODE_ACCUM);
5917
       mode != VOIDmode;
5918
       mode = GET_MODE_WIDER_MODE (mode))
5919
    {
5920
      FCONST0(mode).data.high = 0;
5921
      FCONST0(mode).data.low = 0;
5922
      FCONST0(mode).mode = mode;
5923
      const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5924
                                      FCONST0 (mode), mode);
5925
 
5926
      /* We store the value 1.  */
5927
      FCONST1(mode).data.high = 0;
5928
      FCONST1(mode).data.low = 0;
5929
      FCONST1(mode).mode = mode;
5930
      lshift_double (1, 0, GET_MODE_FBIT (mode),
5931
                     2 * HOST_BITS_PER_WIDE_INT,
5932
                     &FCONST1(mode).data.low,
5933
                     &FCONST1(mode).data.high,
5934
                     SIGNED_FIXED_POINT_MODE_P (mode));
5935
      const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5936
                                      FCONST1 (mode), mode);
5937
    }
5938
 
5939
  for (mode = GET_CLASS_NARROWEST_MODE (MODE_UACCUM);
5940
       mode != VOIDmode;
5941
       mode = GET_MODE_WIDER_MODE (mode))
5942
    {
5943
      FCONST0(mode).data.high = 0;
5944
      FCONST0(mode).data.low = 0;
5945
      FCONST0(mode).mode = mode;
5946
      const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5947
                                      FCONST0 (mode), mode);
5948
 
5949
      /* We store the value 1.  */
5950
      FCONST1(mode).data.high = 0;
5951
      FCONST1(mode).data.low = 0;
5952
      FCONST1(mode).mode = mode;
5953
      lshift_double (1, 0, GET_MODE_FBIT (mode),
5954
                     2 * HOST_BITS_PER_WIDE_INT,
5955
                     &FCONST1(mode).data.low,
5956
                     &FCONST1(mode).data.high,
5957
                     SIGNED_FIXED_POINT_MODE_P (mode));
5958
      const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5959
                                      FCONST1 (mode), mode);
5960
    }
5961
 
5962
  for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FRACT);
5963
       mode != VOIDmode;
5964
       mode = GET_MODE_WIDER_MODE (mode))
5965
    {
5966
      const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5967
    }
5968
 
5969
  for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UFRACT);
5970
       mode != VOIDmode;
5971
       mode = GET_MODE_WIDER_MODE (mode))
5972
    {
5973
      const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5974
    }
5975
 
5976
  for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_ACCUM);
5977
       mode != VOIDmode;
5978
       mode = GET_MODE_WIDER_MODE (mode))
5979
    {
5980
      const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5981
      const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5982
    }
5983
 
5984
  for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UACCUM);
5985
       mode != VOIDmode;
5986
       mode = GET_MODE_WIDER_MODE (mode))
5987
    {
5988
      const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5989
      const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5990
    }
5991
 
5992
  for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
5993
    if (GET_MODE_CLASS ((enum machine_mode) i) == MODE_CC)
5994
      const_tiny_rtx[0][i] = const0_rtx;
5995
 
5996
  const_tiny_rtx[0][(int) BImode] = const0_rtx;
5997
  if (STORE_FLAG_VALUE == 1)
5998
    const_tiny_rtx[1][(int) BImode] = const1_rtx;
5999
}
6000
 
6001
/* Produce exact duplicate of insn INSN after AFTER.
6002
   Care updating of libcall regions if present.  */
6003
 
6004
rtx
6005
emit_copy_of_insn_after (rtx insn, rtx after)
6006
{
6007
  rtx new_rtx, link;
6008
 
6009
  switch (GET_CODE (insn))
6010
    {
6011
    case INSN:
6012
      new_rtx = emit_insn_after (copy_insn (PATTERN (insn)), after);
6013
      break;
6014
 
6015
    case JUMP_INSN:
6016
      new_rtx = emit_jump_insn_after (copy_insn (PATTERN (insn)), after);
6017
      break;
6018
 
6019
    case DEBUG_INSN:
6020
      new_rtx = emit_debug_insn_after (copy_insn (PATTERN (insn)), after);
6021
      break;
6022
 
6023
    case CALL_INSN:
6024
      new_rtx = emit_call_insn_after (copy_insn (PATTERN (insn)), after);
6025
      if (CALL_INSN_FUNCTION_USAGE (insn))
6026
        CALL_INSN_FUNCTION_USAGE (new_rtx)
6027
          = copy_insn (CALL_INSN_FUNCTION_USAGE (insn));
6028
      SIBLING_CALL_P (new_rtx) = SIBLING_CALL_P (insn);
6029
      RTL_CONST_CALL_P (new_rtx) = RTL_CONST_CALL_P (insn);
6030
      RTL_PURE_CALL_P (new_rtx) = RTL_PURE_CALL_P (insn);
6031
      RTL_LOOPING_CONST_OR_PURE_CALL_P (new_rtx)
6032
        = RTL_LOOPING_CONST_OR_PURE_CALL_P (insn);
6033
      break;
6034
 
6035
    default:
6036
      gcc_unreachable ();
6037
    }
6038
 
6039
  /* Update LABEL_NUSES.  */
6040
  mark_jump_label (PATTERN (new_rtx), new_rtx, 0);
6041
 
6042
  INSN_LOCATOR (new_rtx) = INSN_LOCATOR (insn);
6043
 
6044
  /* If the old insn is frame related, then so is the new one.  This is
6045
     primarily needed for IA-64 unwind info which marks epilogue insns,
6046
     which may be duplicated by the basic block reordering code.  */
6047
  RTX_FRAME_RELATED_P (new_rtx) = RTX_FRAME_RELATED_P (insn);
6048
 
6049
  /* Copy all REG_NOTES except REG_LABEL_OPERAND since mark_jump_label
6050
     will make them.  REG_LABEL_TARGETs are created there too, but are
6051
     supposed to be sticky, so we copy them.  */
6052
  for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
6053
    if (REG_NOTE_KIND (link) != REG_LABEL_OPERAND)
6054
      {
6055
        if (GET_CODE (link) == EXPR_LIST)
6056
          add_reg_note (new_rtx, REG_NOTE_KIND (link),
6057
                        copy_insn_1 (XEXP (link, 0)));
6058
        else
6059
          add_reg_note (new_rtx, REG_NOTE_KIND (link), XEXP (link, 0));
6060
      }
6061
 
6062
  INSN_CODE (new_rtx) = INSN_CODE (insn);
6063
  return new_rtx;
6064
}
6065
 
6066
static GTY((deletable)) rtx hard_reg_clobbers [NUM_MACHINE_MODES][FIRST_PSEUDO_REGISTER];
6067
rtx
6068
gen_hard_reg_clobber (enum machine_mode mode, unsigned int regno)
6069
{
6070
  if (hard_reg_clobbers[mode][regno])
6071
    return hard_reg_clobbers[mode][regno];
6072
  else
6073
    return (hard_reg_clobbers[mode][regno] =
6074
            gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (mode, regno)));
6075
}
6076
 
6077
#include "gt-emit-rtl.h"

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.