1 |
280 |
jeremybenn |
/* Medium-level subroutines: convert bit-field store and extract
|
2 |
|
|
and shifts, multiplies and divides to rtl instructions.
|
3 |
|
|
Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
|
4 |
|
|
1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
|
5 |
|
|
Free Software Foundation, Inc.
|
6 |
|
|
|
7 |
|
|
This file is part of GCC.
|
8 |
|
|
|
9 |
|
|
GCC is free software; you can redistribute it and/or modify it under
|
10 |
|
|
the terms of the GNU General Public License as published by the Free
|
11 |
|
|
Software Foundation; either version 3, or (at your option) any later
|
12 |
|
|
version.
|
13 |
|
|
|
14 |
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
15 |
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
16 |
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
17 |
|
|
for more details.
|
18 |
|
|
|
19 |
|
|
You should have received a copy of the GNU General Public License
|
20 |
|
|
along with GCC; see the file COPYING3. If not see
|
21 |
|
|
<http://www.gnu.org/licenses/>. */
|
22 |
|
|
|
23 |
|
|
|
24 |
|
|
#include "config.h"
|
25 |
|
|
#include "system.h"
|
26 |
|
|
#include "coretypes.h"
|
27 |
|
|
#include "tm.h"
|
28 |
|
|
#include "toplev.h"
|
29 |
|
|
#include "rtl.h"
|
30 |
|
|
#include "tree.h"
|
31 |
|
|
#include "tm_p.h"
|
32 |
|
|
#include "flags.h"
|
33 |
|
|
#include "insn-config.h"
|
34 |
|
|
#include "expr.h"
|
35 |
|
|
#include "optabs.h"
|
36 |
|
|
#include "real.h"
|
37 |
|
|
#include "recog.h"
|
38 |
|
|
#include "langhooks.h"
|
39 |
|
|
#include "df.h"
|
40 |
|
|
#include "target.h"
|
41 |
|
|
|
42 |
|
|
static void store_fixed_bit_field (rtx, unsigned HOST_WIDE_INT,
|
43 |
|
|
unsigned HOST_WIDE_INT,
|
44 |
|
|
unsigned HOST_WIDE_INT, rtx);
|
45 |
|
|
static void store_split_bit_field (rtx, unsigned HOST_WIDE_INT,
|
46 |
|
|
unsigned HOST_WIDE_INT, rtx);
|
47 |
|
|
static rtx extract_fixed_bit_field (enum machine_mode, rtx,
|
48 |
|
|
unsigned HOST_WIDE_INT,
|
49 |
|
|
unsigned HOST_WIDE_INT,
|
50 |
|
|
unsigned HOST_WIDE_INT, rtx, int);
|
51 |
|
|
static rtx mask_rtx (enum machine_mode, int, int, int);
|
52 |
|
|
static rtx lshift_value (enum machine_mode, rtx, int, int);
|
53 |
|
|
static rtx extract_split_bit_field (rtx, unsigned HOST_WIDE_INT,
|
54 |
|
|
unsigned HOST_WIDE_INT, int);
|
55 |
|
|
static void do_cmp_and_jump (rtx, rtx, enum rtx_code, enum machine_mode, rtx);
|
56 |
|
|
static rtx expand_smod_pow2 (enum machine_mode, rtx, HOST_WIDE_INT);
|
57 |
|
|
static rtx expand_sdiv_pow2 (enum machine_mode, rtx, HOST_WIDE_INT);
|
58 |
|
|
|
59 |
|
|
/* Test whether a value is zero of a power of two. */
|
60 |
|
|
#define EXACT_POWER_OF_2_OR_ZERO_P(x) (((x) & ((x) - 1)) == 0)
|
61 |
|
|
|
62 |
|
|
/* Nonzero means divides or modulus operations are relatively cheap for
|
63 |
|
|
powers of two, so don't use branches; emit the operation instead.
|
64 |
|
|
Usually, this will mean that the MD file will emit non-branch
|
65 |
|
|
sequences. */
|
66 |
|
|
|
67 |
|
|
static bool sdiv_pow2_cheap[2][NUM_MACHINE_MODES];
|
68 |
|
|
static bool smod_pow2_cheap[2][NUM_MACHINE_MODES];
|
69 |
|
|
|
70 |
|
|
#ifndef SLOW_UNALIGNED_ACCESS
|
71 |
|
|
#define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) STRICT_ALIGNMENT
|
72 |
|
|
#endif
|
73 |
|
|
|
74 |
|
|
/* For compilers that support multiple targets with different word sizes,
|
75 |
|
|
MAX_BITS_PER_WORD contains the biggest value of BITS_PER_WORD. An example
|
76 |
|
|
is the H8/300(H) compiler. */
|
77 |
|
|
|
78 |
|
|
#ifndef MAX_BITS_PER_WORD
|
79 |
|
|
#define MAX_BITS_PER_WORD BITS_PER_WORD
|
80 |
|
|
#endif
|
81 |
|
|
|
82 |
|
|
/* Reduce conditional compilation elsewhere. */
|
83 |
|
|
#ifndef HAVE_insv
|
84 |
|
|
#define HAVE_insv 0
|
85 |
|
|
#define CODE_FOR_insv CODE_FOR_nothing
|
86 |
|
|
#define gen_insv(a,b,c,d) NULL_RTX
|
87 |
|
|
#endif
|
88 |
|
|
#ifndef HAVE_extv
|
89 |
|
|
#define HAVE_extv 0
|
90 |
|
|
#define CODE_FOR_extv CODE_FOR_nothing
|
91 |
|
|
#define gen_extv(a,b,c,d) NULL_RTX
|
92 |
|
|
#endif
|
93 |
|
|
#ifndef HAVE_extzv
|
94 |
|
|
#define HAVE_extzv 0
|
95 |
|
|
#define CODE_FOR_extzv CODE_FOR_nothing
|
96 |
|
|
#define gen_extzv(a,b,c,d) NULL_RTX
|
97 |
|
|
#endif
|
98 |
|
|
|
99 |
|
|
/* Cost of various pieces of RTL. Note that some of these are indexed by
|
100 |
|
|
shift count and some by mode. */
|
101 |
|
|
static int zero_cost[2];
|
102 |
|
|
static int add_cost[2][NUM_MACHINE_MODES];
|
103 |
|
|
static int neg_cost[2][NUM_MACHINE_MODES];
|
104 |
|
|
static int shift_cost[2][NUM_MACHINE_MODES][MAX_BITS_PER_WORD];
|
105 |
|
|
static int shiftadd_cost[2][NUM_MACHINE_MODES][MAX_BITS_PER_WORD];
|
106 |
|
|
static int shiftsub0_cost[2][NUM_MACHINE_MODES][MAX_BITS_PER_WORD];
|
107 |
|
|
static int shiftsub1_cost[2][NUM_MACHINE_MODES][MAX_BITS_PER_WORD];
|
108 |
|
|
static int mul_cost[2][NUM_MACHINE_MODES];
|
109 |
|
|
static int sdiv_cost[2][NUM_MACHINE_MODES];
|
110 |
|
|
static int udiv_cost[2][NUM_MACHINE_MODES];
|
111 |
|
|
static int mul_widen_cost[2][NUM_MACHINE_MODES];
|
112 |
|
|
static int mul_highpart_cost[2][NUM_MACHINE_MODES];
|
113 |
|
|
|
114 |
|
|
void
|
115 |
|
|
init_expmed (void)
|
116 |
|
|
{
|
117 |
|
|
struct
|
118 |
|
|
{
|
119 |
|
|
struct rtx_def reg; rtunion reg_fld[2];
|
120 |
|
|
struct rtx_def plus; rtunion plus_fld1;
|
121 |
|
|
struct rtx_def neg;
|
122 |
|
|
struct rtx_def mult; rtunion mult_fld1;
|
123 |
|
|
struct rtx_def sdiv; rtunion sdiv_fld1;
|
124 |
|
|
struct rtx_def udiv; rtunion udiv_fld1;
|
125 |
|
|
struct rtx_def zext;
|
126 |
|
|
struct rtx_def sdiv_32; rtunion sdiv_32_fld1;
|
127 |
|
|
struct rtx_def smod_32; rtunion smod_32_fld1;
|
128 |
|
|
struct rtx_def wide_mult; rtunion wide_mult_fld1;
|
129 |
|
|
struct rtx_def wide_lshr; rtunion wide_lshr_fld1;
|
130 |
|
|
struct rtx_def wide_trunc;
|
131 |
|
|
struct rtx_def shift; rtunion shift_fld1;
|
132 |
|
|
struct rtx_def shift_mult; rtunion shift_mult_fld1;
|
133 |
|
|
struct rtx_def shift_add; rtunion shift_add_fld1;
|
134 |
|
|
struct rtx_def shift_sub0; rtunion shift_sub0_fld1;
|
135 |
|
|
struct rtx_def shift_sub1; rtunion shift_sub1_fld1;
|
136 |
|
|
} all;
|
137 |
|
|
|
138 |
|
|
rtx pow2[MAX_BITS_PER_WORD];
|
139 |
|
|
rtx cint[MAX_BITS_PER_WORD];
|
140 |
|
|
int m, n;
|
141 |
|
|
enum machine_mode mode, wider_mode;
|
142 |
|
|
int speed;
|
143 |
|
|
|
144 |
|
|
|
145 |
|
|
for (m = 1; m < MAX_BITS_PER_WORD; m++)
|
146 |
|
|
{
|
147 |
|
|
pow2[m] = GEN_INT ((HOST_WIDE_INT) 1 << m);
|
148 |
|
|
cint[m] = GEN_INT (m);
|
149 |
|
|
}
|
150 |
|
|
memset (&all, 0, sizeof all);
|
151 |
|
|
|
152 |
|
|
PUT_CODE (&all.reg, REG);
|
153 |
|
|
/* Avoid using hard regs in ways which may be unsupported. */
|
154 |
|
|
SET_REGNO (&all.reg, LAST_VIRTUAL_REGISTER + 1);
|
155 |
|
|
|
156 |
|
|
PUT_CODE (&all.plus, PLUS);
|
157 |
|
|
XEXP (&all.plus, 0) = &all.reg;
|
158 |
|
|
XEXP (&all.plus, 1) = &all.reg;
|
159 |
|
|
|
160 |
|
|
PUT_CODE (&all.neg, NEG);
|
161 |
|
|
XEXP (&all.neg, 0) = &all.reg;
|
162 |
|
|
|
163 |
|
|
PUT_CODE (&all.mult, MULT);
|
164 |
|
|
XEXP (&all.mult, 0) = &all.reg;
|
165 |
|
|
XEXP (&all.mult, 1) = &all.reg;
|
166 |
|
|
|
167 |
|
|
PUT_CODE (&all.sdiv, DIV);
|
168 |
|
|
XEXP (&all.sdiv, 0) = &all.reg;
|
169 |
|
|
XEXP (&all.sdiv, 1) = &all.reg;
|
170 |
|
|
|
171 |
|
|
PUT_CODE (&all.udiv, UDIV);
|
172 |
|
|
XEXP (&all.udiv, 0) = &all.reg;
|
173 |
|
|
XEXP (&all.udiv, 1) = &all.reg;
|
174 |
|
|
|
175 |
|
|
PUT_CODE (&all.sdiv_32, DIV);
|
176 |
|
|
XEXP (&all.sdiv_32, 0) = &all.reg;
|
177 |
|
|
XEXP (&all.sdiv_32, 1) = 32 < MAX_BITS_PER_WORD ? cint[32] : GEN_INT (32);
|
178 |
|
|
|
179 |
|
|
PUT_CODE (&all.smod_32, MOD);
|
180 |
|
|
XEXP (&all.smod_32, 0) = &all.reg;
|
181 |
|
|
XEXP (&all.smod_32, 1) = XEXP (&all.sdiv_32, 1);
|
182 |
|
|
|
183 |
|
|
PUT_CODE (&all.zext, ZERO_EXTEND);
|
184 |
|
|
XEXP (&all.zext, 0) = &all.reg;
|
185 |
|
|
|
186 |
|
|
PUT_CODE (&all.wide_mult, MULT);
|
187 |
|
|
XEXP (&all.wide_mult, 0) = &all.zext;
|
188 |
|
|
XEXP (&all.wide_mult, 1) = &all.zext;
|
189 |
|
|
|
190 |
|
|
PUT_CODE (&all.wide_lshr, LSHIFTRT);
|
191 |
|
|
XEXP (&all.wide_lshr, 0) = &all.wide_mult;
|
192 |
|
|
|
193 |
|
|
PUT_CODE (&all.wide_trunc, TRUNCATE);
|
194 |
|
|
XEXP (&all.wide_trunc, 0) = &all.wide_lshr;
|
195 |
|
|
|
196 |
|
|
PUT_CODE (&all.shift, ASHIFT);
|
197 |
|
|
XEXP (&all.shift, 0) = &all.reg;
|
198 |
|
|
|
199 |
|
|
PUT_CODE (&all.shift_mult, MULT);
|
200 |
|
|
XEXP (&all.shift_mult, 0) = &all.reg;
|
201 |
|
|
|
202 |
|
|
PUT_CODE (&all.shift_add, PLUS);
|
203 |
|
|
XEXP (&all.shift_add, 0) = &all.shift_mult;
|
204 |
|
|
XEXP (&all.shift_add, 1) = &all.reg;
|
205 |
|
|
|
206 |
|
|
PUT_CODE (&all.shift_sub0, MINUS);
|
207 |
|
|
XEXP (&all.shift_sub0, 0) = &all.shift_mult;
|
208 |
|
|
XEXP (&all.shift_sub0, 1) = &all.reg;
|
209 |
|
|
|
210 |
|
|
PUT_CODE (&all.shift_sub1, MINUS);
|
211 |
|
|
XEXP (&all.shift_sub1, 0) = &all.reg;
|
212 |
|
|
XEXP (&all.shift_sub1, 1) = &all.shift_mult;
|
213 |
|
|
|
214 |
|
|
for (speed = 0; speed < 2; speed++)
|
215 |
|
|
{
|
216 |
|
|
crtl->maybe_hot_insn_p = speed;
|
217 |
|
|
zero_cost[speed] = rtx_cost (const0_rtx, SET, speed);
|
218 |
|
|
|
219 |
|
|
for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
|
220 |
|
|
mode != VOIDmode;
|
221 |
|
|
mode = GET_MODE_WIDER_MODE (mode))
|
222 |
|
|
{
|
223 |
|
|
PUT_MODE (&all.reg, mode);
|
224 |
|
|
PUT_MODE (&all.plus, mode);
|
225 |
|
|
PUT_MODE (&all.neg, mode);
|
226 |
|
|
PUT_MODE (&all.mult, mode);
|
227 |
|
|
PUT_MODE (&all.sdiv, mode);
|
228 |
|
|
PUT_MODE (&all.udiv, mode);
|
229 |
|
|
PUT_MODE (&all.sdiv_32, mode);
|
230 |
|
|
PUT_MODE (&all.smod_32, mode);
|
231 |
|
|
PUT_MODE (&all.wide_trunc, mode);
|
232 |
|
|
PUT_MODE (&all.shift, mode);
|
233 |
|
|
PUT_MODE (&all.shift_mult, mode);
|
234 |
|
|
PUT_MODE (&all.shift_add, mode);
|
235 |
|
|
PUT_MODE (&all.shift_sub0, mode);
|
236 |
|
|
PUT_MODE (&all.shift_sub1, mode);
|
237 |
|
|
|
238 |
|
|
add_cost[speed][mode] = rtx_cost (&all.plus, SET, speed);
|
239 |
|
|
neg_cost[speed][mode] = rtx_cost (&all.neg, SET, speed);
|
240 |
|
|
mul_cost[speed][mode] = rtx_cost (&all.mult, SET, speed);
|
241 |
|
|
sdiv_cost[speed][mode] = rtx_cost (&all.sdiv, SET, speed);
|
242 |
|
|
udiv_cost[speed][mode] = rtx_cost (&all.udiv, SET, speed);
|
243 |
|
|
|
244 |
|
|
sdiv_pow2_cheap[speed][mode] = (rtx_cost (&all.sdiv_32, SET, speed)
|
245 |
|
|
<= 2 * add_cost[speed][mode]);
|
246 |
|
|
smod_pow2_cheap[speed][mode] = (rtx_cost (&all.smod_32, SET, speed)
|
247 |
|
|
<= 4 * add_cost[speed][mode]);
|
248 |
|
|
|
249 |
|
|
wider_mode = GET_MODE_WIDER_MODE (mode);
|
250 |
|
|
if (wider_mode != VOIDmode)
|
251 |
|
|
{
|
252 |
|
|
PUT_MODE (&all.zext, wider_mode);
|
253 |
|
|
PUT_MODE (&all.wide_mult, wider_mode);
|
254 |
|
|
PUT_MODE (&all.wide_lshr, wider_mode);
|
255 |
|
|
XEXP (&all.wide_lshr, 1) = GEN_INT (GET_MODE_BITSIZE (mode));
|
256 |
|
|
|
257 |
|
|
mul_widen_cost[speed][wider_mode]
|
258 |
|
|
= rtx_cost (&all.wide_mult, SET, speed);
|
259 |
|
|
mul_highpart_cost[speed][mode]
|
260 |
|
|
= rtx_cost (&all.wide_trunc, SET, speed);
|
261 |
|
|
}
|
262 |
|
|
|
263 |
|
|
shift_cost[speed][mode][0] = 0;
|
264 |
|
|
shiftadd_cost[speed][mode][0] = shiftsub0_cost[speed][mode][0]
|
265 |
|
|
= shiftsub1_cost[speed][mode][0] = add_cost[speed][mode];
|
266 |
|
|
|
267 |
|
|
n = MIN (MAX_BITS_PER_WORD, GET_MODE_BITSIZE (mode));
|
268 |
|
|
for (m = 1; m < n; m++)
|
269 |
|
|
{
|
270 |
|
|
XEXP (&all.shift, 1) = cint[m];
|
271 |
|
|
XEXP (&all.shift_mult, 1) = pow2[m];
|
272 |
|
|
|
273 |
|
|
shift_cost[speed][mode][m] = rtx_cost (&all.shift, SET, speed);
|
274 |
|
|
shiftadd_cost[speed][mode][m] = rtx_cost (&all.shift_add, SET, speed);
|
275 |
|
|
shiftsub0_cost[speed][mode][m] = rtx_cost (&all.shift_sub0, SET, speed);
|
276 |
|
|
shiftsub1_cost[speed][mode][m] = rtx_cost (&all.shift_sub1, SET, speed);
|
277 |
|
|
}
|
278 |
|
|
}
|
279 |
|
|
}
|
280 |
|
|
default_rtl_profile ();
|
281 |
|
|
}
|
282 |
|
|
|
283 |
|
|
/* Return an rtx representing minus the value of X.
|
284 |
|
|
MODE is the intended mode of the result,
|
285 |
|
|
useful if X is a CONST_INT. */
|
286 |
|
|
|
287 |
|
|
rtx
|
288 |
|
|
negate_rtx (enum machine_mode mode, rtx x)
|
289 |
|
|
{
|
290 |
|
|
rtx result = simplify_unary_operation (NEG, mode, x, mode);
|
291 |
|
|
|
292 |
|
|
if (result == 0)
|
293 |
|
|
result = expand_unop (mode, neg_optab, x, NULL_RTX, 0);
|
294 |
|
|
|
295 |
|
|
return result;
|
296 |
|
|
}
|
297 |
|
|
|
298 |
|
|
/* Report on the availability of insv/extv/extzv and the desired mode
|
299 |
|
|
of each of their operands. Returns MAX_MACHINE_MODE if HAVE_foo
|
300 |
|
|
is false; else the mode of the specified operand. If OPNO is -1,
|
301 |
|
|
all the caller cares about is whether the insn is available. */
|
302 |
|
|
enum machine_mode
|
303 |
|
|
mode_for_extraction (enum extraction_pattern pattern, int opno)
|
304 |
|
|
{
|
305 |
|
|
const struct insn_data *data;
|
306 |
|
|
|
307 |
|
|
switch (pattern)
|
308 |
|
|
{
|
309 |
|
|
case EP_insv:
|
310 |
|
|
if (HAVE_insv)
|
311 |
|
|
{
|
312 |
|
|
data = &insn_data[CODE_FOR_insv];
|
313 |
|
|
break;
|
314 |
|
|
}
|
315 |
|
|
return MAX_MACHINE_MODE;
|
316 |
|
|
|
317 |
|
|
case EP_extv:
|
318 |
|
|
if (HAVE_extv)
|
319 |
|
|
{
|
320 |
|
|
data = &insn_data[CODE_FOR_extv];
|
321 |
|
|
break;
|
322 |
|
|
}
|
323 |
|
|
return MAX_MACHINE_MODE;
|
324 |
|
|
|
325 |
|
|
case EP_extzv:
|
326 |
|
|
if (HAVE_extzv)
|
327 |
|
|
{
|
328 |
|
|
data = &insn_data[CODE_FOR_extzv];
|
329 |
|
|
break;
|
330 |
|
|
}
|
331 |
|
|
return MAX_MACHINE_MODE;
|
332 |
|
|
|
333 |
|
|
default:
|
334 |
|
|
gcc_unreachable ();
|
335 |
|
|
}
|
336 |
|
|
|
337 |
|
|
if (opno == -1)
|
338 |
|
|
return VOIDmode;
|
339 |
|
|
|
340 |
|
|
/* Everyone who uses this function used to follow it with
|
341 |
|
|
if (result == VOIDmode) result = word_mode; */
|
342 |
|
|
if (data->operand[opno].mode == VOIDmode)
|
343 |
|
|
return word_mode;
|
344 |
|
|
return data->operand[opno].mode;
|
345 |
|
|
}
|
346 |
|
|
|
347 |
|
|
/* Return true if X, of mode MODE, matches the predicate for operand
|
348 |
|
|
OPNO of instruction ICODE. Allow volatile memories, regardless of
|
349 |
|
|
the ambient volatile_ok setting. */
|
350 |
|
|
|
351 |
|
|
static bool
|
352 |
|
|
check_predicate_volatile_ok (enum insn_code icode, int opno,
|
353 |
|
|
rtx x, enum machine_mode mode)
|
354 |
|
|
{
|
355 |
|
|
bool save_volatile_ok, result;
|
356 |
|
|
|
357 |
|
|
save_volatile_ok = volatile_ok;
|
358 |
|
|
result = insn_data[(int) icode].operand[opno].predicate (x, mode);
|
359 |
|
|
volatile_ok = save_volatile_ok;
|
360 |
|
|
return result;
|
361 |
|
|
}
|
362 |
|
|
|
363 |
|
|
/* A subroutine of store_bit_field, with the same arguments. Return true
|
364 |
|
|
if the operation could be implemented.
|
365 |
|
|
|
366 |
|
|
If FALLBACK_P is true, fall back to store_fixed_bit_field if we have
|
367 |
|
|
no other way of implementing the operation. If FALLBACK_P is false,
|
368 |
|
|
return false instead. */
|
369 |
|
|
|
370 |
|
|
static bool
|
371 |
|
|
store_bit_field_1 (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
|
372 |
|
|
unsigned HOST_WIDE_INT bitnum, enum machine_mode fieldmode,
|
373 |
|
|
rtx value, bool fallback_p)
|
374 |
|
|
{
|
375 |
|
|
unsigned int unit
|
376 |
|
|
= (MEM_P (str_rtx)) ? BITS_PER_UNIT : BITS_PER_WORD;
|
377 |
|
|
unsigned HOST_WIDE_INT offset, bitpos;
|
378 |
|
|
rtx op0 = str_rtx;
|
379 |
|
|
int byte_offset;
|
380 |
|
|
rtx orig_value;
|
381 |
|
|
|
382 |
|
|
enum machine_mode op_mode = mode_for_extraction (EP_insv, 3);
|
383 |
|
|
|
384 |
|
|
while (GET_CODE (op0) == SUBREG)
|
385 |
|
|
{
|
386 |
|
|
/* The following line once was done only if WORDS_BIG_ENDIAN,
|
387 |
|
|
but I think that is a mistake. WORDS_BIG_ENDIAN is
|
388 |
|
|
meaningful at a much higher level; when structures are copied
|
389 |
|
|
between memory and regs, the higher-numbered regs
|
390 |
|
|
always get higher addresses. */
|
391 |
|
|
int inner_mode_size = GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)));
|
392 |
|
|
int outer_mode_size = GET_MODE_SIZE (GET_MODE (op0));
|
393 |
|
|
|
394 |
|
|
byte_offset = 0;
|
395 |
|
|
|
396 |
|
|
/* Paradoxical subregs need special handling on big endian machines. */
|
397 |
|
|
if (SUBREG_BYTE (op0) == 0 && inner_mode_size < outer_mode_size)
|
398 |
|
|
{
|
399 |
|
|
int difference = inner_mode_size - outer_mode_size;
|
400 |
|
|
|
401 |
|
|
if (WORDS_BIG_ENDIAN)
|
402 |
|
|
byte_offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
|
403 |
|
|
if (BYTES_BIG_ENDIAN)
|
404 |
|
|
byte_offset += difference % UNITS_PER_WORD;
|
405 |
|
|
}
|
406 |
|
|
else
|
407 |
|
|
byte_offset = SUBREG_BYTE (op0);
|
408 |
|
|
|
409 |
|
|
bitnum += byte_offset * BITS_PER_UNIT;
|
410 |
|
|
op0 = SUBREG_REG (op0);
|
411 |
|
|
}
|
412 |
|
|
|
413 |
|
|
/* No action is needed if the target is a register and if the field
|
414 |
|
|
lies completely outside that register. This can occur if the source
|
415 |
|
|
code contains an out-of-bounds access to a small array. */
|
416 |
|
|
if (REG_P (op0) && bitnum >= GET_MODE_BITSIZE (GET_MODE (op0)))
|
417 |
|
|
return true;
|
418 |
|
|
|
419 |
|
|
/* Use vec_set patterns for inserting parts of vectors whenever
|
420 |
|
|
available. */
|
421 |
|
|
if (VECTOR_MODE_P (GET_MODE (op0))
|
422 |
|
|
&& !MEM_P (op0)
|
423 |
|
|
&& (optab_handler (vec_set_optab, GET_MODE (op0))->insn_code
|
424 |
|
|
!= CODE_FOR_nothing)
|
425 |
|
|
&& fieldmode == GET_MODE_INNER (GET_MODE (op0))
|
426 |
|
|
&& bitsize == GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))
|
427 |
|
|
&& !(bitnum % GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))))
|
428 |
|
|
{
|
429 |
|
|
enum machine_mode outermode = GET_MODE (op0);
|
430 |
|
|
enum machine_mode innermode = GET_MODE_INNER (outermode);
|
431 |
|
|
int icode = (int) optab_handler (vec_set_optab, outermode)->insn_code;
|
432 |
|
|
int pos = bitnum / GET_MODE_BITSIZE (innermode);
|
433 |
|
|
rtx rtxpos = GEN_INT (pos);
|
434 |
|
|
rtx src = value;
|
435 |
|
|
rtx dest = op0;
|
436 |
|
|
rtx pat, seq;
|
437 |
|
|
enum machine_mode mode0 = insn_data[icode].operand[0].mode;
|
438 |
|
|
enum machine_mode mode1 = insn_data[icode].operand[1].mode;
|
439 |
|
|
enum machine_mode mode2 = insn_data[icode].operand[2].mode;
|
440 |
|
|
|
441 |
|
|
start_sequence ();
|
442 |
|
|
|
443 |
|
|
if (! (*insn_data[icode].operand[1].predicate) (src, mode1))
|
444 |
|
|
src = copy_to_mode_reg (mode1, src);
|
445 |
|
|
|
446 |
|
|
if (! (*insn_data[icode].operand[2].predicate) (rtxpos, mode2))
|
447 |
|
|
rtxpos = copy_to_mode_reg (mode1, rtxpos);
|
448 |
|
|
|
449 |
|
|
/* We could handle this, but we should always be called with a pseudo
|
450 |
|
|
for our targets and all insns should take them as outputs. */
|
451 |
|
|
gcc_assert ((*insn_data[icode].operand[0].predicate) (dest, mode0)
|
452 |
|
|
&& (*insn_data[icode].operand[1].predicate) (src, mode1)
|
453 |
|
|
&& (*insn_data[icode].operand[2].predicate) (rtxpos, mode2));
|
454 |
|
|
pat = GEN_FCN (icode) (dest, src, rtxpos);
|
455 |
|
|
seq = get_insns ();
|
456 |
|
|
end_sequence ();
|
457 |
|
|
if (pat)
|
458 |
|
|
{
|
459 |
|
|
emit_insn (seq);
|
460 |
|
|
emit_insn (pat);
|
461 |
|
|
return true;
|
462 |
|
|
}
|
463 |
|
|
}
|
464 |
|
|
|
465 |
|
|
/* If the target is a register, overwriting the entire object, or storing
|
466 |
|
|
a full-word or multi-word field can be done with just a SUBREG.
|
467 |
|
|
|
468 |
|
|
If the target is memory, storing any naturally aligned field can be
|
469 |
|
|
done with a simple store. For targets that support fast unaligned
|
470 |
|
|
memory, any naturally sized, unit aligned field can be done directly. */
|
471 |
|
|
|
472 |
|
|
offset = bitnum / unit;
|
473 |
|
|
bitpos = bitnum % unit;
|
474 |
|
|
byte_offset = (bitnum % BITS_PER_WORD) / BITS_PER_UNIT
|
475 |
|
|
+ (offset * UNITS_PER_WORD);
|
476 |
|
|
|
477 |
|
|
if (bitpos == 0
|
478 |
|
|
&& bitsize == GET_MODE_BITSIZE (fieldmode)
|
479 |
|
|
&& (!MEM_P (op0)
|
480 |
|
|
? ((GET_MODE_SIZE (fieldmode) >= UNITS_PER_WORD
|
481 |
|
|
|| GET_MODE_SIZE (GET_MODE (op0)) == GET_MODE_SIZE (fieldmode))
|
482 |
|
|
&& byte_offset % GET_MODE_SIZE (fieldmode) == 0)
|
483 |
|
|
: (! SLOW_UNALIGNED_ACCESS (fieldmode, MEM_ALIGN (op0))
|
484 |
|
|
|| (offset * BITS_PER_UNIT % bitsize == 0
|
485 |
|
|
&& MEM_ALIGN (op0) % GET_MODE_BITSIZE (fieldmode) == 0))))
|
486 |
|
|
{
|
487 |
|
|
if (MEM_P (op0))
|
488 |
|
|
op0 = adjust_address (op0, fieldmode, offset);
|
489 |
|
|
else if (GET_MODE (op0) != fieldmode)
|
490 |
|
|
op0 = simplify_gen_subreg (fieldmode, op0, GET_MODE (op0),
|
491 |
|
|
byte_offset);
|
492 |
|
|
emit_move_insn (op0, value);
|
493 |
|
|
return true;
|
494 |
|
|
}
|
495 |
|
|
|
496 |
|
|
/* Make sure we are playing with integral modes. Pun with subregs
|
497 |
|
|
if we aren't. This must come after the entire register case above,
|
498 |
|
|
since that case is valid for any mode. The following cases are only
|
499 |
|
|
valid for integral modes. */
|
500 |
|
|
{
|
501 |
|
|
enum machine_mode imode = int_mode_for_mode (GET_MODE (op0));
|
502 |
|
|
if (imode != GET_MODE (op0))
|
503 |
|
|
{
|
504 |
|
|
if (MEM_P (op0))
|
505 |
|
|
op0 = adjust_address (op0, imode, 0);
|
506 |
|
|
else
|
507 |
|
|
{
|
508 |
|
|
gcc_assert (imode != BLKmode);
|
509 |
|
|
op0 = gen_lowpart (imode, op0);
|
510 |
|
|
}
|
511 |
|
|
}
|
512 |
|
|
}
|
513 |
|
|
|
514 |
|
|
/* We may be accessing data outside the field, which means
|
515 |
|
|
we can alias adjacent data. */
|
516 |
|
|
if (MEM_P (op0))
|
517 |
|
|
{
|
518 |
|
|
op0 = shallow_copy_rtx (op0);
|
519 |
|
|
set_mem_alias_set (op0, 0);
|
520 |
|
|
set_mem_expr (op0, 0);
|
521 |
|
|
}
|
522 |
|
|
|
523 |
|
|
/* If OP0 is a register, BITPOS must count within a word.
|
524 |
|
|
But as we have it, it counts within whatever size OP0 now has.
|
525 |
|
|
On a bigendian machine, these are not the same, so convert. */
|
526 |
|
|
if (BYTES_BIG_ENDIAN
|
527 |
|
|
&& !MEM_P (op0)
|
528 |
|
|
&& unit > GET_MODE_BITSIZE (GET_MODE (op0)))
|
529 |
|
|
bitpos += unit - GET_MODE_BITSIZE (GET_MODE (op0));
|
530 |
|
|
|
531 |
|
|
/* Storing an lsb-aligned field in a register
|
532 |
|
|
can be done with a movestrict instruction. */
|
533 |
|
|
|
534 |
|
|
if (!MEM_P (op0)
|
535 |
|
|
&& (BYTES_BIG_ENDIAN ? bitpos + bitsize == unit : bitpos == 0)
|
536 |
|
|
&& bitsize == GET_MODE_BITSIZE (fieldmode)
|
537 |
|
|
&& (optab_handler (movstrict_optab, fieldmode)->insn_code
|
538 |
|
|
!= CODE_FOR_nothing))
|
539 |
|
|
{
|
540 |
|
|
int icode = optab_handler (movstrict_optab, fieldmode)->insn_code;
|
541 |
|
|
rtx insn;
|
542 |
|
|
rtx start = get_last_insn ();
|
543 |
|
|
rtx arg0 = op0;
|
544 |
|
|
|
545 |
|
|
/* Get appropriate low part of the value being stored. */
|
546 |
|
|
if (CONST_INT_P (value) || REG_P (value))
|
547 |
|
|
value = gen_lowpart (fieldmode, value);
|
548 |
|
|
else if (!(GET_CODE (value) == SYMBOL_REF
|
549 |
|
|
|| GET_CODE (value) == LABEL_REF
|
550 |
|
|
|| GET_CODE (value) == CONST))
|
551 |
|
|
value = convert_to_mode (fieldmode, value, 0);
|
552 |
|
|
|
553 |
|
|
if (! (*insn_data[icode].operand[1].predicate) (value, fieldmode))
|
554 |
|
|
value = copy_to_mode_reg (fieldmode, value);
|
555 |
|
|
|
556 |
|
|
if (GET_CODE (op0) == SUBREG)
|
557 |
|
|
{
|
558 |
|
|
/* Else we've got some float mode source being extracted into
|
559 |
|
|
a different float mode destination -- this combination of
|
560 |
|
|
subregs results in Severe Tire Damage. */
|
561 |
|
|
gcc_assert (GET_MODE (SUBREG_REG (op0)) == fieldmode
|
562 |
|
|
|| GET_MODE_CLASS (fieldmode) == MODE_INT
|
563 |
|
|
|| GET_MODE_CLASS (fieldmode) == MODE_PARTIAL_INT);
|
564 |
|
|
arg0 = SUBREG_REG (op0);
|
565 |
|
|
}
|
566 |
|
|
|
567 |
|
|
insn = (GEN_FCN (icode)
|
568 |
|
|
(gen_rtx_SUBREG (fieldmode, arg0,
|
569 |
|
|
(bitnum % BITS_PER_WORD) / BITS_PER_UNIT
|
570 |
|
|
+ (offset * UNITS_PER_WORD)),
|
571 |
|
|
value));
|
572 |
|
|
if (insn)
|
573 |
|
|
{
|
574 |
|
|
emit_insn (insn);
|
575 |
|
|
return true;
|
576 |
|
|
}
|
577 |
|
|
delete_insns_since (start);
|
578 |
|
|
}
|
579 |
|
|
|
580 |
|
|
/* Handle fields bigger than a word. */
|
581 |
|
|
|
582 |
|
|
if (bitsize > BITS_PER_WORD)
|
583 |
|
|
{
|
584 |
|
|
/* Here we transfer the words of the field
|
585 |
|
|
in the order least significant first.
|
586 |
|
|
This is because the most significant word is the one which may
|
587 |
|
|
be less than full.
|
588 |
|
|
However, only do that if the value is not BLKmode. */
|
589 |
|
|
|
590 |
|
|
unsigned int backwards = WORDS_BIG_ENDIAN && fieldmode != BLKmode;
|
591 |
|
|
unsigned int nwords = (bitsize + (BITS_PER_WORD - 1)) / BITS_PER_WORD;
|
592 |
|
|
unsigned int i;
|
593 |
|
|
rtx last;
|
594 |
|
|
|
595 |
|
|
/* This is the mode we must force value to, so that there will be enough
|
596 |
|
|
subwords to extract. Note that fieldmode will often (always?) be
|
597 |
|
|
VOIDmode, because that is what store_field uses to indicate that this
|
598 |
|
|
is a bit field, but passing VOIDmode to operand_subword_force
|
599 |
|
|
is not allowed. */
|
600 |
|
|
fieldmode = GET_MODE (value);
|
601 |
|
|
if (fieldmode == VOIDmode)
|
602 |
|
|
fieldmode = smallest_mode_for_size (nwords * BITS_PER_WORD, MODE_INT);
|
603 |
|
|
|
604 |
|
|
last = get_last_insn ();
|
605 |
|
|
for (i = 0; i < nwords; i++)
|
606 |
|
|
{
|
607 |
|
|
/* If I is 0, use the low-order word in both field and target;
|
608 |
|
|
if I is 1, use the next to lowest word; and so on. */
|
609 |
|
|
unsigned int wordnum = (backwards ? nwords - i - 1 : i);
|
610 |
|
|
unsigned int bit_offset = (backwards
|
611 |
|
|
? MAX ((int) bitsize - ((int) i + 1)
|
612 |
|
|
* BITS_PER_WORD,
|
613 |
|
|
0)
|
614 |
|
|
: (int) i * BITS_PER_WORD);
|
615 |
|
|
rtx value_word = operand_subword_force (value, wordnum, fieldmode);
|
616 |
|
|
|
617 |
|
|
if (!store_bit_field_1 (op0, MIN (BITS_PER_WORD,
|
618 |
|
|
bitsize - i * BITS_PER_WORD),
|
619 |
|
|
bitnum + bit_offset, word_mode,
|
620 |
|
|
value_word, fallback_p))
|
621 |
|
|
{
|
622 |
|
|
delete_insns_since (last);
|
623 |
|
|
return false;
|
624 |
|
|
}
|
625 |
|
|
}
|
626 |
|
|
return true;
|
627 |
|
|
}
|
628 |
|
|
|
629 |
|
|
/* From here on we can assume that the field to be stored in is
|
630 |
|
|
a full-word (whatever type that is), since it is shorter than a word. */
|
631 |
|
|
|
632 |
|
|
/* OFFSET is the number of words or bytes (UNIT says which)
|
633 |
|
|
from STR_RTX to the first word or byte containing part of the field. */
|
634 |
|
|
|
635 |
|
|
if (!MEM_P (op0))
|
636 |
|
|
{
|
637 |
|
|
if (offset != 0
|
638 |
|
|
|| GET_MODE_SIZE (GET_MODE (op0)) > UNITS_PER_WORD)
|
639 |
|
|
{
|
640 |
|
|
if (!REG_P (op0))
|
641 |
|
|
{
|
642 |
|
|
/* Since this is a destination (lvalue), we can't copy
|
643 |
|
|
it to a pseudo. We can remove a SUBREG that does not
|
644 |
|
|
change the size of the operand. Such a SUBREG may
|
645 |
|
|
have been added above. */
|
646 |
|
|
gcc_assert (GET_CODE (op0) == SUBREG
|
647 |
|
|
&& (GET_MODE_SIZE (GET_MODE (op0))
|
648 |
|
|
== GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)))));
|
649 |
|
|
op0 = SUBREG_REG (op0);
|
650 |
|
|
}
|
651 |
|
|
op0 = gen_rtx_SUBREG (mode_for_size (BITS_PER_WORD, MODE_INT, 0),
|
652 |
|
|
op0, (offset * UNITS_PER_WORD));
|
653 |
|
|
}
|
654 |
|
|
offset = 0;
|
655 |
|
|
}
|
656 |
|
|
|
657 |
|
|
/* If VALUE has a floating-point or complex mode, access it as an
|
658 |
|
|
integer of the corresponding size. This can occur on a machine
|
659 |
|
|
with 64 bit registers that uses SFmode for float. It can also
|
660 |
|
|
occur for unaligned float or complex fields. */
|
661 |
|
|
orig_value = value;
|
662 |
|
|
if (GET_MODE (value) != VOIDmode
|
663 |
|
|
&& GET_MODE_CLASS (GET_MODE (value)) != MODE_INT
|
664 |
|
|
&& GET_MODE_CLASS (GET_MODE (value)) != MODE_PARTIAL_INT)
|
665 |
|
|
{
|
666 |
|
|
value = gen_reg_rtx (int_mode_for_mode (GET_MODE (value)));
|
667 |
|
|
emit_move_insn (gen_lowpart (GET_MODE (orig_value), value), orig_value);
|
668 |
|
|
}
|
669 |
|
|
|
670 |
|
|
/* Now OFFSET is nonzero only if OP0 is memory
|
671 |
|
|
and is therefore always measured in bytes. */
|
672 |
|
|
|
673 |
|
|
if (HAVE_insv
|
674 |
|
|
&& GET_MODE (value) != BLKmode
|
675 |
|
|
&& bitsize > 0
|
676 |
|
|
&& GET_MODE_BITSIZE (op_mode) >= bitsize
|
677 |
|
|
&& ! ((REG_P (op0) || GET_CODE (op0) == SUBREG)
|
678 |
|
|
&& (bitsize + bitpos > GET_MODE_BITSIZE (op_mode)))
|
679 |
|
|
&& insn_data[CODE_FOR_insv].operand[1].predicate (GEN_INT (bitsize),
|
680 |
|
|
VOIDmode)
|
681 |
|
|
&& check_predicate_volatile_ok (CODE_FOR_insv, 0, op0, VOIDmode))
|
682 |
|
|
{
|
683 |
|
|
int xbitpos = bitpos;
|
684 |
|
|
rtx value1;
|
685 |
|
|
rtx xop0 = op0;
|
686 |
|
|
rtx last = get_last_insn ();
|
687 |
|
|
rtx pat;
|
688 |
|
|
bool copy_back = false;
|
689 |
|
|
|
690 |
|
|
/* Add OFFSET into OP0's address. */
|
691 |
|
|
if (MEM_P (xop0))
|
692 |
|
|
xop0 = adjust_address (xop0, byte_mode, offset);
|
693 |
|
|
|
694 |
|
|
/* If xop0 is a register, we need it in OP_MODE
|
695 |
|
|
to make it acceptable to the format of insv. */
|
696 |
|
|
if (GET_CODE (xop0) == SUBREG)
|
697 |
|
|
/* We can't just change the mode, because this might clobber op0,
|
698 |
|
|
and we will need the original value of op0 if insv fails. */
|
699 |
|
|
xop0 = gen_rtx_SUBREG (op_mode, SUBREG_REG (xop0), SUBREG_BYTE (xop0));
|
700 |
|
|
if (REG_P (xop0) && GET_MODE (xop0) != op_mode)
|
701 |
|
|
xop0 = gen_lowpart_SUBREG (op_mode, xop0);
|
702 |
|
|
|
703 |
|
|
/* If the destination is a paradoxical subreg such that we need a
|
704 |
|
|
truncate to the inner mode, perform the insertion on a temporary and
|
705 |
|
|
truncate the result to the original destination. Note that we can't
|
706 |
|
|
just truncate the paradoxical subreg as (truncate:N (subreg:W (reg:N
|
707 |
|
|
X) 0)) is (reg:N X). */
|
708 |
|
|
if (GET_CODE (xop0) == SUBREG
|
709 |
|
|
&& REG_P (SUBREG_REG (xop0))
|
710 |
|
|
&& (!TRULY_NOOP_TRUNCATION
|
711 |
|
|
(GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (xop0))),
|
712 |
|
|
GET_MODE_BITSIZE (op_mode))))
|
713 |
|
|
{
|
714 |
|
|
rtx tem = gen_reg_rtx (op_mode);
|
715 |
|
|
emit_move_insn (tem, xop0);
|
716 |
|
|
xop0 = tem;
|
717 |
|
|
copy_back = true;
|
718 |
|
|
}
|
719 |
|
|
|
720 |
|
|
/* On big-endian machines, we count bits from the most significant.
|
721 |
|
|
If the bit field insn does not, we must invert. */
|
722 |
|
|
|
723 |
|
|
if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
|
724 |
|
|
xbitpos = unit - bitsize - xbitpos;
|
725 |
|
|
|
726 |
|
|
/* We have been counting XBITPOS within UNIT.
|
727 |
|
|
Count instead within the size of the register. */
|
728 |
|
|
if (BITS_BIG_ENDIAN && !MEM_P (xop0))
|
729 |
|
|
xbitpos += GET_MODE_BITSIZE (op_mode) - unit;
|
730 |
|
|
|
731 |
|
|
unit = GET_MODE_BITSIZE (op_mode);
|
732 |
|
|
|
733 |
|
|
/* Convert VALUE to op_mode (which insv insn wants) in VALUE1. */
|
734 |
|
|
value1 = value;
|
735 |
|
|
if (GET_MODE (value) != op_mode)
|
736 |
|
|
{
|
737 |
|
|
if (GET_MODE_BITSIZE (GET_MODE (value)) >= bitsize)
|
738 |
|
|
{
|
739 |
|
|
/* Optimization: Don't bother really extending VALUE
|
740 |
|
|
if it has all the bits we will actually use. However,
|
741 |
|
|
if we must narrow it, be sure we do it correctly. */
|
742 |
|
|
|
743 |
|
|
if (GET_MODE_SIZE (GET_MODE (value)) < GET_MODE_SIZE (op_mode))
|
744 |
|
|
{
|
745 |
|
|
rtx tmp;
|
746 |
|
|
|
747 |
|
|
tmp = simplify_subreg (op_mode, value1, GET_MODE (value), 0);
|
748 |
|
|
if (! tmp)
|
749 |
|
|
tmp = simplify_gen_subreg (op_mode,
|
750 |
|
|
force_reg (GET_MODE (value),
|
751 |
|
|
value1),
|
752 |
|
|
GET_MODE (value), 0);
|
753 |
|
|
value1 = tmp;
|
754 |
|
|
}
|
755 |
|
|
else
|
756 |
|
|
value1 = gen_lowpart (op_mode, value1);
|
757 |
|
|
}
|
758 |
|
|
else if (CONST_INT_P (value))
|
759 |
|
|
value1 = gen_int_mode (INTVAL (value), op_mode);
|
760 |
|
|
else
|
761 |
|
|
/* Parse phase is supposed to make VALUE's data type
|
762 |
|
|
match that of the component reference, which is a type
|
763 |
|
|
at least as wide as the field; so VALUE should have
|
764 |
|
|
a mode that corresponds to that type. */
|
765 |
|
|
gcc_assert (CONSTANT_P (value));
|
766 |
|
|
}
|
767 |
|
|
|
768 |
|
|
/* If this machine's insv insists on a register,
|
769 |
|
|
get VALUE1 into a register. */
|
770 |
|
|
if (! ((*insn_data[(int) CODE_FOR_insv].operand[3].predicate)
|
771 |
|
|
(value1, op_mode)))
|
772 |
|
|
value1 = force_reg (op_mode, value1);
|
773 |
|
|
|
774 |
|
|
pat = gen_insv (xop0, GEN_INT (bitsize), GEN_INT (xbitpos), value1);
|
775 |
|
|
if (pat)
|
776 |
|
|
{
|
777 |
|
|
emit_insn (pat);
|
778 |
|
|
|
779 |
|
|
if (copy_back)
|
780 |
|
|
convert_move (op0, xop0, true);
|
781 |
|
|
return true;
|
782 |
|
|
}
|
783 |
|
|
delete_insns_since (last);
|
784 |
|
|
}
|
785 |
|
|
|
786 |
|
|
/* If OP0 is a memory, try copying it to a register and seeing if a
|
787 |
|
|
cheap register alternative is available. */
|
788 |
|
|
if (HAVE_insv && MEM_P (op0))
|
789 |
|
|
{
|
790 |
|
|
enum machine_mode bestmode;
|
791 |
|
|
|
792 |
|
|
/* Get the mode to use for inserting into this field. If OP0 is
|
793 |
|
|
BLKmode, get the smallest mode consistent with the alignment. If
|
794 |
|
|
OP0 is a non-BLKmode object that is no wider than OP_MODE, use its
|
795 |
|
|
mode. Otherwise, use the smallest mode containing the field. */
|
796 |
|
|
|
797 |
|
|
if (GET_MODE (op0) == BLKmode
|
798 |
|
|
|| (op_mode != MAX_MACHINE_MODE
|
799 |
|
|
&& GET_MODE_SIZE (GET_MODE (op0)) > GET_MODE_SIZE (op_mode)))
|
800 |
|
|
bestmode = get_best_mode (bitsize, bitnum, MEM_ALIGN (op0),
|
801 |
|
|
(op_mode == MAX_MACHINE_MODE
|
802 |
|
|
? VOIDmode : op_mode),
|
803 |
|
|
MEM_VOLATILE_P (op0));
|
804 |
|
|
else
|
805 |
|
|
bestmode = GET_MODE (op0);
|
806 |
|
|
|
807 |
|
|
if (bestmode != VOIDmode
|
808 |
|
|
&& GET_MODE_SIZE (bestmode) >= GET_MODE_SIZE (fieldmode)
|
809 |
|
|
&& !(SLOW_UNALIGNED_ACCESS (bestmode, MEM_ALIGN (op0))
|
810 |
|
|
&& GET_MODE_BITSIZE (bestmode) > MEM_ALIGN (op0)))
|
811 |
|
|
{
|
812 |
|
|
rtx last, tempreg, xop0;
|
813 |
|
|
unsigned HOST_WIDE_INT xoffset, xbitpos;
|
814 |
|
|
|
815 |
|
|
last = get_last_insn ();
|
816 |
|
|
|
817 |
|
|
/* Adjust address to point to the containing unit of
|
818 |
|
|
that mode. Compute the offset as a multiple of this unit,
|
819 |
|
|
counting in bytes. */
|
820 |
|
|
unit = GET_MODE_BITSIZE (bestmode);
|
821 |
|
|
xoffset = (bitnum / unit) * GET_MODE_SIZE (bestmode);
|
822 |
|
|
xbitpos = bitnum % unit;
|
823 |
|
|
xop0 = adjust_address (op0, bestmode, xoffset);
|
824 |
|
|
|
825 |
|
|
/* Fetch that unit, store the bitfield in it, then store
|
826 |
|
|
the unit. */
|
827 |
|
|
tempreg = copy_to_reg (xop0);
|
828 |
|
|
if (store_bit_field_1 (tempreg, bitsize, xbitpos,
|
829 |
|
|
fieldmode, orig_value, false))
|
830 |
|
|
{
|
831 |
|
|
emit_move_insn (xop0, tempreg);
|
832 |
|
|
return true;
|
833 |
|
|
}
|
834 |
|
|
delete_insns_since (last);
|
835 |
|
|
}
|
836 |
|
|
}
|
837 |
|
|
|
838 |
|
|
if (!fallback_p)
|
839 |
|
|
return false;
|
840 |
|
|
|
841 |
|
|
store_fixed_bit_field (op0, offset, bitsize, bitpos, value);
|
842 |
|
|
return true;
|
843 |
|
|
}
|
844 |
|
|
|
845 |
|
|
/* Generate code to store value from rtx VALUE
|
846 |
|
|
into a bit-field within structure STR_RTX
|
847 |
|
|
containing BITSIZE bits starting at bit BITNUM.
|
848 |
|
|
FIELDMODE is the machine-mode of the FIELD_DECL node for this field. */
|
849 |
|
|
|
850 |
|
|
void
|
851 |
|
|
store_bit_field (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
|
852 |
|
|
unsigned HOST_WIDE_INT bitnum, enum machine_mode fieldmode,
|
853 |
|
|
rtx value)
|
854 |
|
|
{
|
855 |
|
|
if (!store_bit_field_1 (str_rtx, bitsize, bitnum, fieldmode, value, true))
|
856 |
|
|
gcc_unreachable ();
|
857 |
|
|
}
|
858 |
|
|
|
859 |
|
|
/* Use shifts and boolean operations to store VALUE
|
860 |
|
|
into a bit field of width BITSIZE
|
861 |
|
|
in a memory location specified by OP0 except offset by OFFSET bytes.
|
862 |
|
|
(OFFSET must be 0 if OP0 is a register.)
|
863 |
|
|
The field starts at position BITPOS within the byte.
|
864 |
|
|
(If OP0 is a register, it may be a full word or a narrower mode,
|
865 |
|
|
but BITPOS still counts within a full word,
|
866 |
|
|
which is significant on bigendian machines.) */
|
867 |
|
|
|
868 |
|
|
static void
|
869 |
|
|
store_fixed_bit_field (rtx op0, unsigned HOST_WIDE_INT offset,
|
870 |
|
|
unsigned HOST_WIDE_INT bitsize,
|
871 |
|
|
unsigned HOST_WIDE_INT bitpos, rtx value)
|
872 |
|
|
{
|
873 |
|
|
enum machine_mode mode;
|
874 |
|
|
unsigned int total_bits = BITS_PER_WORD;
|
875 |
|
|
rtx temp;
|
876 |
|
|
int all_zero = 0;
|
877 |
|
|
int all_one = 0;
|
878 |
|
|
|
879 |
|
|
/* There is a case not handled here:
|
880 |
|
|
a structure with a known alignment of just a halfword
|
881 |
|
|
and a field split across two aligned halfwords within the structure.
|
882 |
|
|
Or likewise a structure with a known alignment of just a byte
|
883 |
|
|
and a field split across two bytes.
|
884 |
|
|
Such cases are not supposed to be able to occur. */
|
885 |
|
|
|
886 |
|
|
if (REG_P (op0) || GET_CODE (op0) == SUBREG)
|
887 |
|
|
{
|
888 |
|
|
gcc_assert (!offset);
|
889 |
|
|
/* Special treatment for a bit field split across two registers. */
|
890 |
|
|
if (bitsize + bitpos > BITS_PER_WORD)
|
891 |
|
|
{
|
892 |
|
|
store_split_bit_field (op0, bitsize, bitpos, value);
|
893 |
|
|
return;
|
894 |
|
|
}
|
895 |
|
|
}
|
896 |
|
|
else
|
897 |
|
|
{
|
898 |
|
|
/* Get the proper mode to use for this field. We want a mode that
|
899 |
|
|
includes the entire field. If such a mode would be larger than
|
900 |
|
|
a word, we won't be doing the extraction the normal way.
|
901 |
|
|
We don't want a mode bigger than the destination. */
|
902 |
|
|
|
903 |
|
|
mode = GET_MODE (op0);
|
904 |
|
|
if (GET_MODE_BITSIZE (mode) == 0
|
905 |
|
|
|| GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (word_mode))
|
906 |
|
|
mode = word_mode;
|
907 |
|
|
mode = get_best_mode (bitsize, bitpos + offset * BITS_PER_UNIT,
|
908 |
|
|
MEM_ALIGN (op0), mode, MEM_VOLATILE_P (op0));
|
909 |
|
|
|
910 |
|
|
if (mode == VOIDmode)
|
911 |
|
|
{
|
912 |
|
|
/* The only way this should occur is if the field spans word
|
913 |
|
|
boundaries. */
|
914 |
|
|
store_split_bit_field (op0, bitsize, bitpos + offset * BITS_PER_UNIT,
|
915 |
|
|
value);
|
916 |
|
|
return;
|
917 |
|
|
}
|
918 |
|
|
|
919 |
|
|
total_bits = GET_MODE_BITSIZE (mode);
|
920 |
|
|
|
921 |
|
|
/* Make sure bitpos is valid for the chosen mode. Adjust BITPOS to
|
922 |
|
|
be in the range 0 to total_bits-1, and put any excess bytes in
|
923 |
|
|
OFFSET. */
|
924 |
|
|
if (bitpos >= total_bits)
|
925 |
|
|
{
|
926 |
|
|
offset += (bitpos / total_bits) * (total_bits / BITS_PER_UNIT);
|
927 |
|
|
bitpos -= ((bitpos / total_bits) * (total_bits / BITS_PER_UNIT)
|
928 |
|
|
* BITS_PER_UNIT);
|
929 |
|
|
}
|
930 |
|
|
|
931 |
|
|
/* Get ref to an aligned byte, halfword, or word containing the field.
|
932 |
|
|
Adjust BITPOS to be position within a word,
|
933 |
|
|
and OFFSET to be the offset of that word.
|
934 |
|
|
Then alter OP0 to refer to that word. */
|
935 |
|
|
bitpos += (offset % (total_bits / BITS_PER_UNIT)) * BITS_PER_UNIT;
|
936 |
|
|
offset -= (offset % (total_bits / BITS_PER_UNIT));
|
937 |
|
|
op0 = adjust_address (op0, mode, offset);
|
938 |
|
|
}
|
939 |
|
|
|
940 |
|
|
mode = GET_MODE (op0);
|
941 |
|
|
|
942 |
|
|
/* Now MODE is either some integral mode for a MEM as OP0,
|
943 |
|
|
or is a full-word for a REG as OP0. TOTAL_BITS corresponds.
|
944 |
|
|
The bit field is contained entirely within OP0.
|
945 |
|
|
BITPOS is the starting bit number within OP0.
|
946 |
|
|
(OP0's mode may actually be narrower than MODE.) */
|
947 |
|
|
|
948 |
|
|
if (BYTES_BIG_ENDIAN)
|
949 |
|
|
/* BITPOS is the distance between our msb
|
950 |
|
|
and that of the containing datum.
|
951 |
|
|
Convert it to the distance from the lsb. */
|
952 |
|
|
bitpos = total_bits - bitsize - bitpos;
|
953 |
|
|
|
954 |
|
|
/* Now BITPOS is always the distance between our lsb
|
955 |
|
|
and that of OP0. */
|
956 |
|
|
|
957 |
|
|
/* Shift VALUE left by BITPOS bits. If VALUE is not constant,
|
958 |
|
|
we must first convert its mode to MODE. */
|
959 |
|
|
|
960 |
|
|
if (CONST_INT_P (value))
|
961 |
|
|
{
|
962 |
|
|
HOST_WIDE_INT v = INTVAL (value);
|
963 |
|
|
|
964 |
|
|
if (bitsize < HOST_BITS_PER_WIDE_INT)
|
965 |
|
|
v &= ((HOST_WIDE_INT) 1 << bitsize) - 1;
|
966 |
|
|
|
967 |
|
|
if (v == 0)
|
968 |
|
|
all_zero = 1;
|
969 |
|
|
else if ((bitsize < HOST_BITS_PER_WIDE_INT
|
970 |
|
|
&& v == ((HOST_WIDE_INT) 1 << bitsize) - 1)
|
971 |
|
|
|| (bitsize == HOST_BITS_PER_WIDE_INT && v == -1))
|
972 |
|
|
all_one = 1;
|
973 |
|
|
|
974 |
|
|
value = lshift_value (mode, value, bitpos, bitsize);
|
975 |
|
|
}
|
976 |
|
|
else
|
977 |
|
|
{
|
978 |
|
|
int must_and = (GET_MODE_BITSIZE (GET_MODE (value)) != bitsize
|
979 |
|
|
&& bitpos + bitsize != GET_MODE_BITSIZE (mode));
|
980 |
|
|
|
981 |
|
|
if (GET_MODE (value) != mode)
|
982 |
|
|
value = convert_to_mode (mode, value, 1);
|
983 |
|
|
|
984 |
|
|
if (must_and)
|
985 |
|
|
value = expand_binop (mode, and_optab, value,
|
986 |
|
|
mask_rtx (mode, 0, bitsize, 0),
|
987 |
|
|
NULL_RTX, 1, OPTAB_LIB_WIDEN);
|
988 |
|
|
if (bitpos > 0)
|
989 |
|
|
value = expand_shift (LSHIFT_EXPR, mode, value,
|
990 |
|
|
build_int_cst (NULL_TREE, bitpos), NULL_RTX, 1);
|
991 |
|
|
}
|
992 |
|
|
|
993 |
|
|
/* Now clear the chosen bits in OP0,
|
994 |
|
|
except that if VALUE is -1 we need not bother. */
|
995 |
|
|
/* We keep the intermediates in registers to allow CSE to combine
|
996 |
|
|
consecutive bitfield assignments. */
|
997 |
|
|
|
998 |
|
|
temp = force_reg (mode, op0);
|
999 |
|
|
|
1000 |
|
|
if (! all_one)
|
1001 |
|
|
{
|
1002 |
|
|
temp = expand_binop (mode, and_optab, temp,
|
1003 |
|
|
mask_rtx (mode, bitpos, bitsize, 1),
|
1004 |
|
|
NULL_RTX, 1, OPTAB_LIB_WIDEN);
|
1005 |
|
|
temp = force_reg (mode, temp);
|
1006 |
|
|
}
|
1007 |
|
|
|
1008 |
|
|
/* Now logical-or VALUE into OP0, unless it is zero. */
|
1009 |
|
|
|
1010 |
|
|
if (! all_zero)
|
1011 |
|
|
{
|
1012 |
|
|
temp = expand_binop (mode, ior_optab, temp, value,
|
1013 |
|
|
NULL_RTX, 1, OPTAB_LIB_WIDEN);
|
1014 |
|
|
temp = force_reg (mode, temp);
|
1015 |
|
|
}
|
1016 |
|
|
|
1017 |
|
|
if (op0 != temp)
|
1018 |
|
|
{
|
1019 |
|
|
op0 = copy_rtx (op0);
|
1020 |
|
|
emit_move_insn (op0, temp);
|
1021 |
|
|
}
|
1022 |
|
|
}
|
1023 |
|
|
|
1024 |
|
|
/* Store a bit field that is split across multiple accessible memory objects.
|
1025 |
|
|
|
1026 |
|
|
OP0 is the REG, SUBREG or MEM rtx for the first of the objects.
|
1027 |
|
|
BITSIZE is the field width; BITPOS the position of its first bit
|
1028 |
|
|
(within the word).
|
1029 |
|
|
VALUE is the value to store.
|
1030 |
|
|
|
1031 |
|
|
This does not yet handle fields wider than BITS_PER_WORD. */
|
1032 |
|
|
|
1033 |
|
|
static void
|
1034 |
|
|
store_split_bit_field (rtx op0, unsigned HOST_WIDE_INT bitsize,
|
1035 |
|
|
unsigned HOST_WIDE_INT bitpos, rtx value)
|
1036 |
|
|
{
|
1037 |
|
|
unsigned int unit;
|
1038 |
|
|
unsigned int bitsdone = 0;
|
1039 |
|
|
|
1040 |
|
|
/* Make sure UNIT isn't larger than BITS_PER_WORD, we can only handle that
|
1041 |
|
|
much at a time. */
|
1042 |
|
|
if (REG_P (op0) || GET_CODE (op0) == SUBREG)
|
1043 |
|
|
unit = BITS_PER_WORD;
|
1044 |
|
|
else
|
1045 |
|
|
unit = MIN (MEM_ALIGN (op0), BITS_PER_WORD);
|
1046 |
|
|
|
1047 |
|
|
/* If VALUE is a constant other than a CONST_INT, get it into a register in
|
1048 |
|
|
WORD_MODE. If we can do this using gen_lowpart_common, do so. Note
|
1049 |
|
|
that VALUE might be a floating-point constant. */
|
1050 |
|
|
if (CONSTANT_P (value) && !CONST_INT_P (value))
|
1051 |
|
|
{
|
1052 |
|
|
rtx word = gen_lowpart_common (word_mode, value);
|
1053 |
|
|
|
1054 |
|
|
if (word && (value != word))
|
1055 |
|
|
value = word;
|
1056 |
|
|
else
|
1057 |
|
|
value = gen_lowpart_common (word_mode,
|
1058 |
|
|
force_reg (GET_MODE (value) != VOIDmode
|
1059 |
|
|
? GET_MODE (value)
|
1060 |
|
|
: word_mode, value));
|
1061 |
|
|
}
|
1062 |
|
|
|
1063 |
|
|
while (bitsdone < bitsize)
|
1064 |
|
|
{
|
1065 |
|
|
unsigned HOST_WIDE_INT thissize;
|
1066 |
|
|
rtx part, word;
|
1067 |
|
|
unsigned HOST_WIDE_INT thispos;
|
1068 |
|
|
unsigned HOST_WIDE_INT offset;
|
1069 |
|
|
|
1070 |
|
|
offset = (bitpos + bitsdone) / unit;
|
1071 |
|
|
thispos = (bitpos + bitsdone) % unit;
|
1072 |
|
|
|
1073 |
|
|
/* THISSIZE must not overrun a word boundary. Otherwise,
|
1074 |
|
|
store_fixed_bit_field will call us again, and we will mutually
|
1075 |
|
|
recurse forever. */
|
1076 |
|
|
thissize = MIN (bitsize - bitsdone, BITS_PER_WORD);
|
1077 |
|
|
thissize = MIN (thissize, unit - thispos);
|
1078 |
|
|
|
1079 |
|
|
if (BYTES_BIG_ENDIAN)
|
1080 |
|
|
{
|
1081 |
|
|
int total_bits;
|
1082 |
|
|
|
1083 |
|
|
/* We must do an endian conversion exactly the same way as it is
|
1084 |
|
|
done in extract_bit_field, so that the two calls to
|
1085 |
|
|
extract_fixed_bit_field will have comparable arguments. */
|
1086 |
|
|
if (!MEM_P (value) || GET_MODE (value) == BLKmode)
|
1087 |
|
|
total_bits = BITS_PER_WORD;
|
1088 |
|
|
else
|
1089 |
|
|
total_bits = GET_MODE_BITSIZE (GET_MODE (value));
|
1090 |
|
|
|
1091 |
|
|
/* Fetch successively less significant portions. */
|
1092 |
|
|
if (CONST_INT_P (value))
|
1093 |
|
|
part = GEN_INT (((unsigned HOST_WIDE_INT) (INTVAL (value))
|
1094 |
|
|
>> (bitsize - bitsdone - thissize))
|
1095 |
|
|
& (((HOST_WIDE_INT) 1 << thissize) - 1));
|
1096 |
|
|
else
|
1097 |
|
|
/* The args are chosen so that the last part includes the
|
1098 |
|
|
lsb. Give extract_bit_field the value it needs (with
|
1099 |
|
|
endianness compensation) to fetch the piece we want. */
|
1100 |
|
|
part = extract_fixed_bit_field (word_mode, value, 0, thissize,
|
1101 |
|
|
total_bits - bitsize + bitsdone,
|
1102 |
|
|
NULL_RTX, 1);
|
1103 |
|
|
}
|
1104 |
|
|
else
|
1105 |
|
|
{
|
1106 |
|
|
/* Fetch successively more significant portions. */
|
1107 |
|
|
if (CONST_INT_P (value))
|
1108 |
|
|
part = GEN_INT (((unsigned HOST_WIDE_INT) (INTVAL (value))
|
1109 |
|
|
>> bitsdone)
|
1110 |
|
|
& (((HOST_WIDE_INT) 1 << thissize) - 1));
|
1111 |
|
|
else
|
1112 |
|
|
part = extract_fixed_bit_field (word_mode, value, 0, thissize,
|
1113 |
|
|
bitsdone, NULL_RTX, 1);
|
1114 |
|
|
}
|
1115 |
|
|
|
1116 |
|
|
/* If OP0 is a register, then handle OFFSET here.
|
1117 |
|
|
|
1118 |
|
|
When handling multiword bitfields, extract_bit_field may pass
|
1119 |
|
|
down a word_mode SUBREG of a larger REG for a bitfield that actually
|
1120 |
|
|
crosses a word boundary. Thus, for a SUBREG, we must find
|
1121 |
|
|
the current word starting from the base register. */
|
1122 |
|
|
if (GET_CODE (op0) == SUBREG)
|
1123 |
|
|
{
|
1124 |
|
|
int word_offset = (SUBREG_BYTE (op0) / UNITS_PER_WORD) + offset;
|
1125 |
|
|
word = operand_subword_force (SUBREG_REG (op0), word_offset,
|
1126 |
|
|
GET_MODE (SUBREG_REG (op0)));
|
1127 |
|
|
offset = 0;
|
1128 |
|
|
}
|
1129 |
|
|
else if (REG_P (op0))
|
1130 |
|
|
{
|
1131 |
|
|
word = operand_subword_force (op0, offset, GET_MODE (op0));
|
1132 |
|
|
offset = 0;
|
1133 |
|
|
}
|
1134 |
|
|
else
|
1135 |
|
|
word = op0;
|
1136 |
|
|
|
1137 |
|
|
/* OFFSET is in UNITs, and UNIT is in bits.
|
1138 |
|
|
store_fixed_bit_field wants offset in bytes. */
|
1139 |
|
|
store_fixed_bit_field (word, offset * unit / BITS_PER_UNIT, thissize,
|
1140 |
|
|
thispos, part);
|
1141 |
|
|
bitsdone += thissize;
|
1142 |
|
|
}
|
1143 |
|
|
}
|
1144 |
|
|
|
1145 |
|
|
/* A subroutine of extract_bit_field_1 that converts return value X
|
1146 |
|
|
to either MODE or TMODE. MODE, TMODE and UNSIGNEDP are arguments
|
1147 |
|
|
to extract_bit_field. */
|
1148 |
|
|
|
1149 |
|
|
static rtx
|
1150 |
|
|
convert_extracted_bit_field (rtx x, enum machine_mode mode,
|
1151 |
|
|
enum machine_mode tmode, bool unsignedp)
|
1152 |
|
|
{
|
1153 |
|
|
if (GET_MODE (x) == tmode || GET_MODE (x) == mode)
|
1154 |
|
|
return x;
|
1155 |
|
|
|
1156 |
|
|
/* If the x mode is not a scalar integral, first convert to the
|
1157 |
|
|
integer mode of that size and then access it as a floating-point
|
1158 |
|
|
value via a SUBREG. */
|
1159 |
|
|
if (!SCALAR_INT_MODE_P (tmode))
|
1160 |
|
|
{
|
1161 |
|
|
enum machine_mode smode;
|
1162 |
|
|
|
1163 |
|
|
smode = mode_for_size (GET_MODE_BITSIZE (tmode), MODE_INT, 0);
|
1164 |
|
|
x = convert_to_mode (smode, x, unsignedp);
|
1165 |
|
|
x = force_reg (smode, x);
|
1166 |
|
|
return gen_lowpart (tmode, x);
|
1167 |
|
|
}
|
1168 |
|
|
|
1169 |
|
|
return convert_to_mode (tmode, x, unsignedp);
|
1170 |
|
|
}
|
1171 |
|
|
|
1172 |
|
|
/* A subroutine of extract_bit_field, with the same arguments.
|
1173 |
|
|
If FALLBACK_P is true, fall back to extract_fixed_bit_field
|
1174 |
|
|
if we can find no other means of implementing the operation.
|
1175 |
|
|
if FALLBACK_P is false, return NULL instead. */
|
1176 |
|
|
|
1177 |
|
|
static rtx
|
1178 |
|
|
extract_bit_field_1 (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
|
1179 |
|
|
unsigned HOST_WIDE_INT bitnum, int unsignedp, rtx target,
|
1180 |
|
|
enum machine_mode mode, enum machine_mode tmode,
|
1181 |
|
|
bool fallback_p)
|
1182 |
|
|
{
|
1183 |
|
|
unsigned int unit
|
1184 |
|
|
= (MEM_P (str_rtx)) ? BITS_PER_UNIT : BITS_PER_WORD;
|
1185 |
|
|
unsigned HOST_WIDE_INT offset, bitpos;
|
1186 |
|
|
rtx op0 = str_rtx;
|
1187 |
|
|
enum machine_mode int_mode;
|
1188 |
|
|
enum machine_mode ext_mode;
|
1189 |
|
|
enum machine_mode mode1;
|
1190 |
|
|
enum insn_code icode;
|
1191 |
|
|
int byte_offset;
|
1192 |
|
|
|
1193 |
|
|
if (tmode == VOIDmode)
|
1194 |
|
|
tmode = mode;
|
1195 |
|
|
|
1196 |
|
|
while (GET_CODE (op0) == SUBREG)
|
1197 |
|
|
{
|
1198 |
|
|
bitnum += SUBREG_BYTE (op0) * BITS_PER_UNIT;
|
1199 |
|
|
op0 = SUBREG_REG (op0);
|
1200 |
|
|
}
|
1201 |
|
|
|
1202 |
|
|
/* If we have an out-of-bounds access to a register, just return an
|
1203 |
|
|
uninitialized register of the required mode. This can occur if the
|
1204 |
|
|
source code contains an out-of-bounds access to a small array. */
|
1205 |
|
|
if (REG_P (op0) && bitnum >= GET_MODE_BITSIZE (GET_MODE (op0)))
|
1206 |
|
|
return gen_reg_rtx (tmode);
|
1207 |
|
|
|
1208 |
|
|
if (REG_P (op0)
|
1209 |
|
|
&& mode == GET_MODE (op0)
|
1210 |
|
|
&& bitnum == 0
|
1211 |
|
|
&& bitsize == GET_MODE_BITSIZE (GET_MODE (op0)))
|
1212 |
|
|
{
|
1213 |
|
|
/* We're trying to extract a full register from itself. */
|
1214 |
|
|
return op0;
|
1215 |
|
|
}
|
1216 |
|
|
|
1217 |
|
|
/* See if we can get a better vector mode before extracting. */
|
1218 |
|
|
if (VECTOR_MODE_P (GET_MODE (op0))
|
1219 |
|
|
&& !MEM_P (op0)
|
1220 |
|
|
&& GET_MODE_INNER (GET_MODE (op0)) != tmode)
|
1221 |
|
|
{
|
1222 |
|
|
enum machine_mode new_mode;
|
1223 |
|
|
int nunits = GET_MODE_NUNITS (GET_MODE (op0));
|
1224 |
|
|
|
1225 |
|
|
if (GET_MODE_CLASS (tmode) == MODE_FLOAT)
|
1226 |
|
|
new_mode = MIN_MODE_VECTOR_FLOAT;
|
1227 |
|
|
else if (GET_MODE_CLASS (tmode) == MODE_FRACT)
|
1228 |
|
|
new_mode = MIN_MODE_VECTOR_FRACT;
|
1229 |
|
|
else if (GET_MODE_CLASS (tmode) == MODE_UFRACT)
|
1230 |
|
|
new_mode = MIN_MODE_VECTOR_UFRACT;
|
1231 |
|
|
else if (GET_MODE_CLASS (tmode) == MODE_ACCUM)
|
1232 |
|
|
new_mode = MIN_MODE_VECTOR_ACCUM;
|
1233 |
|
|
else if (GET_MODE_CLASS (tmode) == MODE_UACCUM)
|
1234 |
|
|
new_mode = MIN_MODE_VECTOR_UACCUM;
|
1235 |
|
|
else
|
1236 |
|
|
new_mode = MIN_MODE_VECTOR_INT;
|
1237 |
|
|
|
1238 |
|
|
for (; new_mode != VOIDmode ; new_mode = GET_MODE_WIDER_MODE (new_mode))
|
1239 |
|
|
if (GET_MODE_NUNITS (new_mode) == nunits
|
1240 |
|
|
&& GET_MODE_SIZE (new_mode) == GET_MODE_SIZE (GET_MODE (op0))
|
1241 |
|
|
&& targetm.vector_mode_supported_p (new_mode))
|
1242 |
|
|
break;
|
1243 |
|
|
if (new_mode != VOIDmode)
|
1244 |
|
|
op0 = gen_lowpart (new_mode, op0);
|
1245 |
|
|
}
|
1246 |
|
|
|
1247 |
|
|
/* Use vec_extract patterns for extracting parts of vectors whenever
|
1248 |
|
|
available. */
|
1249 |
|
|
if (VECTOR_MODE_P (GET_MODE (op0))
|
1250 |
|
|
&& !MEM_P (op0)
|
1251 |
|
|
&& (optab_handler (vec_extract_optab, GET_MODE (op0))->insn_code
|
1252 |
|
|
!= CODE_FOR_nothing)
|
1253 |
|
|
&& ((bitnum + bitsize - 1) / GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))
|
1254 |
|
|
== bitnum / GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))))
|
1255 |
|
|
{
|
1256 |
|
|
enum machine_mode outermode = GET_MODE (op0);
|
1257 |
|
|
enum machine_mode innermode = GET_MODE_INNER (outermode);
|
1258 |
|
|
int icode = (int) optab_handler (vec_extract_optab, outermode)->insn_code;
|
1259 |
|
|
unsigned HOST_WIDE_INT pos = bitnum / GET_MODE_BITSIZE (innermode);
|
1260 |
|
|
rtx rtxpos = GEN_INT (pos);
|
1261 |
|
|
rtx src = op0;
|
1262 |
|
|
rtx dest = NULL, pat, seq;
|
1263 |
|
|
enum machine_mode mode0 = insn_data[icode].operand[0].mode;
|
1264 |
|
|
enum machine_mode mode1 = insn_data[icode].operand[1].mode;
|
1265 |
|
|
enum machine_mode mode2 = insn_data[icode].operand[2].mode;
|
1266 |
|
|
|
1267 |
|
|
if (innermode == tmode || innermode == mode)
|
1268 |
|
|
dest = target;
|
1269 |
|
|
|
1270 |
|
|
if (!dest)
|
1271 |
|
|
dest = gen_reg_rtx (innermode);
|
1272 |
|
|
|
1273 |
|
|
start_sequence ();
|
1274 |
|
|
|
1275 |
|
|
if (! (*insn_data[icode].operand[0].predicate) (dest, mode0))
|
1276 |
|
|
dest = copy_to_mode_reg (mode0, dest);
|
1277 |
|
|
|
1278 |
|
|
if (! (*insn_data[icode].operand[1].predicate) (src, mode1))
|
1279 |
|
|
src = copy_to_mode_reg (mode1, src);
|
1280 |
|
|
|
1281 |
|
|
if (! (*insn_data[icode].operand[2].predicate) (rtxpos, mode2))
|
1282 |
|
|
rtxpos = copy_to_mode_reg (mode1, rtxpos);
|
1283 |
|
|
|
1284 |
|
|
/* We could handle this, but we should always be called with a pseudo
|
1285 |
|
|
for our targets and all insns should take them as outputs. */
|
1286 |
|
|
gcc_assert ((*insn_data[icode].operand[0].predicate) (dest, mode0)
|
1287 |
|
|
&& (*insn_data[icode].operand[1].predicate) (src, mode1)
|
1288 |
|
|
&& (*insn_data[icode].operand[2].predicate) (rtxpos, mode2));
|
1289 |
|
|
|
1290 |
|
|
pat = GEN_FCN (icode) (dest, src, rtxpos);
|
1291 |
|
|
seq = get_insns ();
|
1292 |
|
|
end_sequence ();
|
1293 |
|
|
if (pat)
|
1294 |
|
|
{
|
1295 |
|
|
emit_insn (seq);
|
1296 |
|
|
emit_insn (pat);
|
1297 |
|
|
if (mode0 != mode)
|
1298 |
|
|
return gen_lowpart (tmode, dest);
|
1299 |
|
|
return dest;
|
1300 |
|
|
}
|
1301 |
|
|
}
|
1302 |
|
|
|
1303 |
|
|
/* Make sure we are playing with integral modes. Pun with subregs
|
1304 |
|
|
if we aren't. */
|
1305 |
|
|
{
|
1306 |
|
|
enum machine_mode imode = int_mode_for_mode (GET_MODE (op0));
|
1307 |
|
|
if (imode != GET_MODE (op0))
|
1308 |
|
|
{
|
1309 |
|
|
if (MEM_P (op0))
|
1310 |
|
|
op0 = adjust_address (op0, imode, 0);
|
1311 |
|
|
else if (imode != BLKmode)
|
1312 |
|
|
{
|
1313 |
|
|
op0 = gen_lowpart (imode, op0);
|
1314 |
|
|
|
1315 |
|
|
/* If we got a SUBREG, force it into a register since we
|
1316 |
|
|
aren't going to be able to do another SUBREG on it. */
|
1317 |
|
|
if (GET_CODE (op0) == SUBREG)
|
1318 |
|
|
op0 = force_reg (imode, op0);
|
1319 |
|
|
}
|
1320 |
|
|
else if (REG_P (op0))
|
1321 |
|
|
{
|
1322 |
|
|
rtx reg, subreg;
|
1323 |
|
|
imode = smallest_mode_for_size (GET_MODE_BITSIZE (GET_MODE (op0)),
|
1324 |
|
|
MODE_INT);
|
1325 |
|
|
reg = gen_reg_rtx (imode);
|
1326 |
|
|
subreg = gen_lowpart_SUBREG (GET_MODE (op0), reg);
|
1327 |
|
|
emit_move_insn (subreg, op0);
|
1328 |
|
|
op0 = reg;
|
1329 |
|
|
bitnum += SUBREG_BYTE (subreg) * BITS_PER_UNIT;
|
1330 |
|
|
}
|
1331 |
|
|
else
|
1332 |
|
|
{
|
1333 |
|
|
rtx mem = assign_stack_temp (GET_MODE (op0),
|
1334 |
|
|
GET_MODE_SIZE (GET_MODE (op0)), 0);
|
1335 |
|
|
emit_move_insn (mem, op0);
|
1336 |
|
|
op0 = adjust_address (mem, BLKmode, 0);
|
1337 |
|
|
}
|
1338 |
|
|
}
|
1339 |
|
|
}
|
1340 |
|
|
|
1341 |
|
|
/* We may be accessing data outside the field, which means
|
1342 |
|
|
we can alias adjacent data. */
|
1343 |
|
|
if (MEM_P (op0))
|
1344 |
|
|
{
|
1345 |
|
|
op0 = shallow_copy_rtx (op0);
|
1346 |
|
|
set_mem_alias_set (op0, 0);
|
1347 |
|
|
set_mem_expr (op0, 0);
|
1348 |
|
|
}
|
1349 |
|
|
|
1350 |
|
|
/* Extraction of a full-word or multi-word value from a structure
|
1351 |
|
|
in a register or aligned memory can be done with just a SUBREG.
|
1352 |
|
|
A subword value in the least significant part of a register
|
1353 |
|
|
can also be extracted with a SUBREG. For this, we need the
|
1354 |
|
|
byte offset of the value in op0. */
|
1355 |
|
|
|
1356 |
|
|
bitpos = bitnum % unit;
|
1357 |
|
|
offset = bitnum / unit;
|
1358 |
|
|
byte_offset = bitpos / BITS_PER_UNIT + offset * UNITS_PER_WORD;
|
1359 |
|
|
|
1360 |
|
|
/* If OP0 is a register, BITPOS must count within a word.
|
1361 |
|
|
But as we have it, it counts within whatever size OP0 now has.
|
1362 |
|
|
On a bigendian machine, these are not the same, so convert. */
|
1363 |
|
|
if (BYTES_BIG_ENDIAN
|
1364 |
|
|
&& !MEM_P (op0)
|
1365 |
|
|
&& unit > GET_MODE_BITSIZE (GET_MODE (op0)))
|
1366 |
|
|
bitpos += unit - GET_MODE_BITSIZE (GET_MODE (op0));
|
1367 |
|
|
|
1368 |
|
|
/* ??? We currently assume TARGET is at least as big as BITSIZE.
|
1369 |
|
|
If that's wrong, the solution is to test for it and set TARGET to 0
|
1370 |
|
|
if needed. */
|
1371 |
|
|
|
1372 |
|
|
/* Only scalar integer modes can be converted via subregs. There is an
|
1373 |
|
|
additional problem for FP modes here in that they can have a precision
|
1374 |
|
|
which is different from the size. mode_for_size uses precision, but
|
1375 |
|
|
we want a mode based on the size, so we must avoid calling it for FP
|
1376 |
|
|
modes. */
|
1377 |
|
|
mode1 = (SCALAR_INT_MODE_P (tmode)
|
1378 |
|
|
? mode_for_size (bitsize, GET_MODE_CLASS (tmode), 0)
|
1379 |
|
|
: mode);
|
1380 |
|
|
|
1381 |
|
|
if (((bitsize >= BITS_PER_WORD && bitsize == GET_MODE_BITSIZE (mode)
|
1382 |
|
|
&& bitpos % BITS_PER_WORD == 0)
|
1383 |
|
|
|| (mode1 != BLKmode
|
1384 |
|
|
/* ??? The big endian test here is wrong. This is correct
|
1385 |
|
|
if the value is in a register, and if mode_for_size is not
|
1386 |
|
|
the same mode as op0. This causes us to get unnecessarily
|
1387 |
|
|
inefficient code from the Thumb port when -mbig-endian. */
|
1388 |
|
|
&& (BYTES_BIG_ENDIAN
|
1389 |
|
|
? bitpos + bitsize == BITS_PER_WORD
|
1390 |
|
|
: bitpos == 0)))
|
1391 |
|
|
&& ((!MEM_P (op0)
|
1392 |
|
|
&& TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode1),
|
1393 |
|
|
GET_MODE_BITSIZE (GET_MODE (op0)))
|
1394 |
|
|
&& GET_MODE_SIZE (mode1) != 0
|
1395 |
|
|
&& byte_offset % GET_MODE_SIZE (mode1) == 0)
|
1396 |
|
|
|| (MEM_P (op0)
|
1397 |
|
|
&& (! SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (op0))
|
1398 |
|
|
|| (offset * BITS_PER_UNIT % bitsize == 0
|
1399 |
|
|
&& MEM_ALIGN (op0) % bitsize == 0)))))
|
1400 |
|
|
{
|
1401 |
|
|
if (MEM_P (op0))
|
1402 |
|
|
op0 = adjust_address (op0, mode1, offset);
|
1403 |
|
|
else if (mode1 != GET_MODE (op0))
|
1404 |
|
|
{
|
1405 |
|
|
rtx sub = simplify_gen_subreg (mode1, op0, GET_MODE (op0),
|
1406 |
|
|
byte_offset);
|
1407 |
|
|
if (sub == NULL)
|
1408 |
|
|
goto no_subreg_mode_swap;
|
1409 |
|
|
op0 = sub;
|
1410 |
|
|
}
|
1411 |
|
|
if (mode1 != mode)
|
1412 |
|
|
return convert_to_mode (tmode, op0, unsignedp);
|
1413 |
|
|
return op0;
|
1414 |
|
|
}
|
1415 |
|
|
no_subreg_mode_swap:
|
1416 |
|
|
|
1417 |
|
|
/* Handle fields bigger than a word. */
|
1418 |
|
|
|
1419 |
|
|
if (bitsize > BITS_PER_WORD)
|
1420 |
|
|
{
|
1421 |
|
|
/* Here we transfer the words of the field
|
1422 |
|
|
in the order least significant first.
|
1423 |
|
|
This is because the most significant word is the one which may
|
1424 |
|
|
be less than full. */
|
1425 |
|
|
|
1426 |
|
|
unsigned int nwords = (bitsize + (BITS_PER_WORD - 1)) / BITS_PER_WORD;
|
1427 |
|
|
unsigned int i;
|
1428 |
|
|
|
1429 |
|
|
if (target == 0 || !REG_P (target))
|
1430 |
|
|
target = gen_reg_rtx (mode);
|
1431 |
|
|
|
1432 |
|
|
/* Indicate for flow that the entire target reg is being set. */
|
1433 |
|
|
emit_clobber (target);
|
1434 |
|
|
|
1435 |
|
|
for (i = 0; i < nwords; i++)
|
1436 |
|
|
{
|
1437 |
|
|
/* If I is 0, use the low-order word in both field and target;
|
1438 |
|
|
if I is 1, use the next to lowest word; and so on. */
|
1439 |
|
|
/* Word number in TARGET to use. */
|
1440 |
|
|
unsigned int wordnum
|
1441 |
|
|
= (WORDS_BIG_ENDIAN
|
1442 |
|
|
? GET_MODE_SIZE (GET_MODE (target)) / UNITS_PER_WORD - i - 1
|
1443 |
|
|
: i);
|
1444 |
|
|
/* Offset from start of field in OP0. */
|
1445 |
|
|
unsigned int bit_offset = (WORDS_BIG_ENDIAN
|
1446 |
|
|
? MAX (0, ((int) bitsize - ((int) i + 1)
|
1447 |
|
|
* (int) BITS_PER_WORD))
|
1448 |
|
|
: (int) i * BITS_PER_WORD);
|
1449 |
|
|
rtx target_part = operand_subword (target, wordnum, 1, VOIDmode);
|
1450 |
|
|
rtx result_part
|
1451 |
|
|
= extract_bit_field (op0, MIN (BITS_PER_WORD,
|
1452 |
|
|
bitsize - i * BITS_PER_WORD),
|
1453 |
|
|
bitnum + bit_offset, 1, target_part, mode,
|
1454 |
|
|
word_mode);
|
1455 |
|
|
|
1456 |
|
|
gcc_assert (target_part);
|
1457 |
|
|
|
1458 |
|
|
if (result_part != target_part)
|
1459 |
|
|
emit_move_insn (target_part, result_part);
|
1460 |
|
|
}
|
1461 |
|
|
|
1462 |
|
|
if (unsignedp)
|
1463 |
|
|
{
|
1464 |
|
|
/* Unless we've filled TARGET, the upper regs in a multi-reg value
|
1465 |
|
|
need to be zero'd out. */
|
1466 |
|
|
if (GET_MODE_SIZE (GET_MODE (target)) > nwords * UNITS_PER_WORD)
|
1467 |
|
|
{
|
1468 |
|
|
unsigned int i, total_words;
|
1469 |
|
|
|
1470 |
|
|
total_words = GET_MODE_SIZE (GET_MODE (target)) / UNITS_PER_WORD;
|
1471 |
|
|
for (i = nwords; i < total_words; i++)
|
1472 |
|
|
emit_move_insn
|
1473 |
|
|
(operand_subword (target,
|
1474 |
|
|
WORDS_BIG_ENDIAN ? total_words - i - 1 : i,
|
1475 |
|
|
1, VOIDmode),
|
1476 |
|
|
const0_rtx);
|
1477 |
|
|
}
|
1478 |
|
|
return target;
|
1479 |
|
|
}
|
1480 |
|
|
|
1481 |
|
|
/* Signed bit field: sign-extend with two arithmetic shifts. */
|
1482 |
|
|
target = expand_shift (LSHIFT_EXPR, mode, target,
|
1483 |
|
|
build_int_cst (NULL_TREE,
|
1484 |
|
|
GET_MODE_BITSIZE (mode) - bitsize),
|
1485 |
|
|
NULL_RTX, 0);
|
1486 |
|
|
return expand_shift (RSHIFT_EXPR, mode, target,
|
1487 |
|
|
build_int_cst (NULL_TREE,
|
1488 |
|
|
GET_MODE_BITSIZE (mode) - bitsize),
|
1489 |
|
|
NULL_RTX, 0);
|
1490 |
|
|
}
|
1491 |
|
|
|
1492 |
|
|
/* From here on we know the desired field is smaller than a word. */
|
1493 |
|
|
|
1494 |
|
|
/* Check if there is a correspondingly-sized integer field, so we can
|
1495 |
|
|
safely extract it as one size of integer, if necessary; then
|
1496 |
|
|
truncate or extend to the size that is wanted; then use SUBREGs or
|
1497 |
|
|
convert_to_mode to get one of the modes we really wanted. */
|
1498 |
|
|
|
1499 |
|
|
int_mode = int_mode_for_mode (tmode);
|
1500 |
|
|
if (int_mode == BLKmode)
|
1501 |
|
|
int_mode = int_mode_for_mode (mode);
|
1502 |
|
|
/* Should probably push op0 out to memory and then do a load. */
|
1503 |
|
|
gcc_assert (int_mode != BLKmode);
|
1504 |
|
|
|
1505 |
|
|
/* OFFSET is the number of words or bytes (UNIT says which)
|
1506 |
|
|
from STR_RTX to the first word or byte containing part of the field. */
|
1507 |
|
|
if (!MEM_P (op0))
|
1508 |
|
|
{
|
1509 |
|
|
if (offset != 0
|
1510 |
|
|
|| GET_MODE_SIZE (GET_MODE (op0)) > UNITS_PER_WORD)
|
1511 |
|
|
{
|
1512 |
|
|
if (!REG_P (op0))
|
1513 |
|
|
op0 = copy_to_reg (op0);
|
1514 |
|
|
op0 = gen_rtx_SUBREG (mode_for_size (BITS_PER_WORD, MODE_INT, 0),
|
1515 |
|
|
op0, (offset * UNITS_PER_WORD));
|
1516 |
|
|
}
|
1517 |
|
|
offset = 0;
|
1518 |
|
|
}
|
1519 |
|
|
|
1520 |
|
|
/* Now OFFSET is nonzero only for memory operands. */
|
1521 |
|
|
ext_mode = mode_for_extraction (unsignedp ? EP_extzv : EP_extv, 0);
|
1522 |
|
|
icode = unsignedp ? CODE_FOR_extzv : CODE_FOR_extv;
|
1523 |
|
|
if (ext_mode != MAX_MACHINE_MODE
|
1524 |
|
|
&& bitsize > 0
|
1525 |
|
|
&& GET_MODE_BITSIZE (ext_mode) >= bitsize
|
1526 |
|
|
/* If op0 is a register, we need it in EXT_MODE to make it
|
1527 |
|
|
acceptable to the format of ext(z)v. */
|
1528 |
|
|
&& !(GET_CODE (op0) == SUBREG && GET_MODE (op0) != ext_mode)
|
1529 |
|
|
&& !((REG_P (op0) || GET_CODE (op0) == SUBREG)
|
1530 |
|
|
&& (bitsize + bitpos > GET_MODE_BITSIZE (ext_mode)))
|
1531 |
|
|
&& check_predicate_volatile_ok (icode, 1, op0, GET_MODE (op0)))
|
1532 |
|
|
{
|
1533 |
|
|
unsigned HOST_WIDE_INT xbitpos = bitpos, xoffset = offset;
|
1534 |
|
|
rtx bitsize_rtx, bitpos_rtx;
|
1535 |
|
|
rtx last = get_last_insn ();
|
1536 |
|
|
rtx xop0 = op0;
|
1537 |
|
|
rtx xtarget = target;
|
1538 |
|
|
rtx xspec_target = target;
|
1539 |
|
|
rtx xspec_target_subreg = 0;
|
1540 |
|
|
rtx pat;
|
1541 |
|
|
|
1542 |
|
|
/* If op0 is a register, we need it in EXT_MODE to make it
|
1543 |
|
|
acceptable to the format of ext(z)v. */
|
1544 |
|
|
if (REG_P (xop0) && GET_MODE (xop0) != ext_mode)
|
1545 |
|
|
xop0 = gen_lowpart_SUBREG (ext_mode, xop0);
|
1546 |
|
|
if (MEM_P (xop0))
|
1547 |
|
|
/* Get ref to first byte containing part of the field. */
|
1548 |
|
|
xop0 = adjust_address (xop0, byte_mode, xoffset);
|
1549 |
|
|
|
1550 |
|
|
/* On big-endian machines, we count bits from the most significant.
|
1551 |
|
|
If the bit field insn does not, we must invert. */
|
1552 |
|
|
if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
|
1553 |
|
|
xbitpos = unit - bitsize - xbitpos;
|
1554 |
|
|
|
1555 |
|
|
/* Now convert from counting within UNIT to counting in EXT_MODE. */
|
1556 |
|
|
if (BITS_BIG_ENDIAN && !MEM_P (xop0))
|
1557 |
|
|
xbitpos += GET_MODE_BITSIZE (ext_mode) - unit;
|
1558 |
|
|
|
1559 |
|
|
unit = GET_MODE_BITSIZE (ext_mode);
|
1560 |
|
|
|
1561 |
|
|
if (xtarget == 0)
|
1562 |
|
|
xtarget = xspec_target = gen_reg_rtx (tmode);
|
1563 |
|
|
|
1564 |
|
|
if (GET_MODE (xtarget) != ext_mode)
|
1565 |
|
|
{
|
1566 |
|
|
/* Don't use LHS paradoxical subreg if explicit truncation is needed
|
1567 |
|
|
between the mode of the extraction (word_mode) and the target
|
1568 |
|
|
mode. Instead, create a temporary and use convert_move to set
|
1569 |
|
|
the target. */
|
1570 |
|
|
if (REG_P (xtarget)
|
1571 |
|
|
&& TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (GET_MODE (xtarget)),
|
1572 |
|
|
GET_MODE_BITSIZE (ext_mode)))
|
1573 |
|
|
{
|
1574 |
|
|
xtarget = gen_lowpart (ext_mode, xtarget);
|
1575 |
|
|
if (GET_MODE_SIZE (ext_mode)
|
1576 |
|
|
> GET_MODE_SIZE (GET_MODE (xspec_target)))
|
1577 |
|
|
xspec_target_subreg = xtarget;
|
1578 |
|
|
}
|
1579 |
|
|
else
|
1580 |
|
|
xtarget = gen_reg_rtx (ext_mode);
|
1581 |
|
|
}
|
1582 |
|
|
|
1583 |
|
|
/* If this machine's ext(z)v insists on a register target,
|
1584 |
|
|
make sure we have one. */
|
1585 |
|
|
if (!insn_data[(int) icode].operand[0].predicate (xtarget, ext_mode))
|
1586 |
|
|
xtarget = gen_reg_rtx (ext_mode);
|
1587 |
|
|
|
1588 |
|
|
bitsize_rtx = GEN_INT (bitsize);
|
1589 |
|
|
bitpos_rtx = GEN_INT (xbitpos);
|
1590 |
|
|
|
1591 |
|
|
pat = (unsignedp
|
1592 |
|
|
? gen_extzv (xtarget, xop0, bitsize_rtx, bitpos_rtx)
|
1593 |
|
|
: gen_extv (xtarget, xop0, bitsize_rtx, bitpos_rtx));
|
1594 |
|
|
if (pat)
|
1595 |
|
|
{
|
1596 |
|
|
emit_insn (pat);
|
1597 |
|
|
if (xtarget == xspec_target)
|
1598 |
|
|
return xtarget;
|
1599 |
|
|
if (xtarget == xspec_target_subreg)
|
1600 |
|
|
return xspec_target;
|
1601 |
|
|
return convert_extracted_bit_field (xtarget, mode, tmode, unsignedp);
|
1602 |
|
|
}
|
1603 |
|
|
delete_insns_since (last);
|
1604 |
|
|
}
|
1605 |
|
|
|
1606 |
|
|
/* If OP0 is a memory, try copying it to a register and seeing if a
|
1607 |
|
|
cheap register alternative is available. */
|
1608 |
|
|
if (ext_mode != MAX_MACHINE_MODE && MEM_P (op0))
|
1609 |
|
|
{
|
1610 |
|
|
enum machine_mode bestmode;
|
1611 |
|
|
|
1612 |
|
|
/* Get the mode to use for inserting into this field. If
|
1613 |
|
|
OP0 is BLKmode, get the smallest mode consistent with the
|
1614 |
|
|
alignment. If OP0 is a non-BLKmode object that is no
|
1615 |
|
|
wider than EXT_MODE, use its mode. Otherwise, use the
|
1616 |
|
|
smallest mode containing the field. */
|
1617 |
|
|
|
1618 |
|
|
if (GET_MODE (op0) == BLKmode
|
1619 |
|
|
|| (ext_mode != MAX_MACHINE_MODE
|
1620 |
|
|
&& GET_MODE_SIZE (GET_MODE (op0)) > GET_MODE_SIZE (ext_mode)))
|
1621 |
|
|
bestmode = get_best_mode (bitsize, bitnum, MEM_ALIGN (op0),
|
1622 |
|
|
(ext_mode == MAX_MACHINE_MODE
|
1623 |
|
|
? VOIDmode : ext_mode),
|
1624 |
|
|
MEM_VOLATILE_P (op0));
|
1625 |
|
|
else
|
1626 |
|
|
bestmode = GET_MODE (op0);
|
1627 |
|
|
|
1628 |
|
|
if (bestmode != VOIDmode
|
1629 |
|
|
&& !(SLOW_UNALIGNED_ACCESS (bestmode, MEM_ALIGN (op0))
|
1630 |
|
|
&& GET_MODE_BITSIZE (bestmode) > MEM_ALIGN (op0)))
|
1631 |
|
|
{
|
1632 |
|
|
unsigned HOST_WIDE_INT xoffset, xbitpos;
|
1633 |
|
|
|
1634 |
|
|
/* Compute the offset as a multiple of this unit,
|
1635 |
|
|
counting in bytes. */
|
1636 |
|
|
unit = GET_MODE_BITSIZE (bestmode);
|
1637 |
|
|
xoffset = (bitnum / unit) * GET_MODE_SIZE (bestmode);
|
1638 |
|
|
xbitpos = bitnum % unit;
|
1639 |
|
|
|
1640 |
|
|
/* Make sure the register is big enough for the whole field. */
|
1641 |
|
|
if (xoffset * BITS_PER_UNIT + unit
|
1642 |
|
|
>= offset * BITS_PER_UNIT + bitsize)
|
1643 |
|
|
{
|
1644 |
|
|
rtx last, result, xop0;
|
1645 |
|
|
|
1646 |
|
|
last = get_last_insn ();
|
1647 |
|
|
|
1648 |
|
|
/* Fetch it to a register in that size. */
|
1649 |
|
|
xop0 = adjust_address (op0, bestmode, xoffset);
|
1650 |
|
|
xop0 = force_reg (bestmode, xop0);
|
1651 |
|
|
result = extract_bit_field_1 (xop0, bitsize, xbitpos,
|
1652 |
|
|
unsignedp, target,
|
1653 |
|
|
mode, tmode, false);
|
1654 |
|
|
if (result)
|
1655 |
|
|
return result;
|
1656 |
|
|
|
1657 |
|
|
delete_insns_since (last);
|
1658 |
|
|
}
|
1659 |
|
|
}
|
1660 |
|
|
}
|
1661 |
|
|
|
1662 |
|
|
if (!fallback_p)
|
1663 |
|
|
return NULL;
|
1664 |
|
|
|
1665 |
|
|
target = extract_fixed_bit_field (int_mode, op0, offset, bitsize,
|
1666 |
|
|
bitpos, target, unsignedp);
|
1667 |
|
|
return convert_extracted_bit_field (target, mode, tmode, unsignedp);
|
1668 |
|
|
}
|
1669 |
|
|
|
1670 |
|
|
/* Generate code to extract a byte-field from STR_RTX
|
1671 |
|
|
containing BITSIZE bits, starting at BITNUM,
|
1672 |
|
|
and put it in TARGET if possible (if TARGET is nonzero).
|
1673 |
|
|
Regardless of TARGET, we return the rtx for where the value is placed.
|
1674 |
|
|
|
1675 |
|
|
STR_RTX is the structure containing the byte (a REG or MEM).
|
1676 |
|
|
UNSIGNEDP is nonzero if this is an unsigned bit field.
|
1677 |
|
|
MODE is the natural mode of the field value once extracted.
|
1678 |
|
|
TMODE is the mode the caller would like the value to have;
|
1679 |
|
|
but the value may be returned with type MODE instead.
|
1680 |
|
|
|
1681 |
|
|
If a TARGET is specified and we can store in it at no extra cost,
|
1682 |
|
|
we do so, and return TARGET.
|
1683 |
|
|
Otherwise, we return a REG of mode TMODE or MODE, with TMODE preferred
|
1684 |
|
|
if they are equally easy. */
|
1685 |
|
|
|
1686 |
|
|
rtx
|
1687 |
|
|
extract_bit_field (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
|
1688 |
|
|
unsigned HOST_WIDE_INT bitnum, int unsignedp, rtx target,
|
1689 |
|
|
enum machine_mode mode, enum machine_mode tmode)
|
1690 |
|
|
{
|
1691 |
|
|
return extract_bit_field_1 (str_rtx, bitsize, bitnum, unsignedp,
|
1692 |
|
|
target, mode, tmode, true);
|
1693 |
|
|
}
|
1694 |
|
|
|
1695 |
|
|
/* Extract a bit field using shifts and boolean operations
|
1696 |
|
|
Returns an rtx to represent the value.
|
1697 |
|
|
OP0 addresses a register (word) or memory (byte).
|
1698 |
|
|
BITPOS says which bit within the word or byte the bit field starts in.
|
1699 |
|
|
OFFSET says how many bytes farther the bit field starts;
|
1700 |
|
|
it is 0 if OP0 is a register.
|
1701 |
|
|
BITSIZE says how many bits long the bit field is.
|
1702 |
|
|
(If OP0 is a register, it may be narrower than a full word,
|
1703 |
|
|
but BITPOS still counts within a full word,
|
1704 |
|
|
which is significant on bigendian machines.)
|
1705 |
|
|
|
1706 |
|
|
UNSIGNEDP is nonzero for an unsigned bit field (don't sign-extend value).
|
1707 |
|
|
If TARGET is nonzero, attempts to store the value there
|
1708 |
|
|
and return TARGET, but this is not guaranteed.
|
1709 |
|
|
If TARGET is not used, create a pseudo-reg of mode TMODE for the value. */
|
1710 |
|
|
|
1711 |
|
|
static rtx
|
1712 |
|
|
extract_fixed_bit_field (enum machine_mode tmode, rtx op0,
|
1713 |
|
|
unsigned HOST_WIDE_INT offset,
|
1714 |
|
|
unsigned HOST_WIDE_INT bitsize,
|
1715 |
|
|
unsigned HOST_WIDE_INT bitpos, rtx target,
|
1716 |
|
|
int unsignedp)
|
1717 |
|
|
{
|
1718 |
|
|
unsigned int total_bits = BITS_PER_WORD;
|
1719 |
|
|
enum machine_mode mode;
|
1720 |
|
|
|
1721 |
|
|
if (GET_CODE (op0) == SUBREG || REG_P (op0))
|
1722 |
|
|
{
|
1723 |
|
|
/* Special treatment for a bit field split across two registers. */
|
1724 |
|
|
if (bitsize + bitpos > BITS_PER_WORD)
|
1725 |
|
|
return extract_split_bit_field (op0, bitsize, bitpos, unsignedp);
|
1726 |
|
|
}
|
1727 |
|
|
else
|
1728 |
|
|
{
|
1729 |
|
|
/* Get the proper mode to use for this field. We want a mode that
|
1730 |
|
|
includes the entire field. If such a mode would be larger than
|
1731 |
|
|
a word, we won't be doing the extraction the normal way. */
|
1732 |
|
|
|
1733 |
|
|
mode = get_best_mode (bitsize, bitpos + offset * BITS_PER_UNIT,
|
1734 |
|
|
MEM_ALIGN (op0), word_mode, MEM_VOLATILE_P (op0));
|
1735 |
|
|
|
1736 |
|
|
if (mode == VOIDmode)
|
1737 |
|
|
/* The only way this should occur is if the field spans word
|
1738 |
|
|
boundaries. */
|
1739 |
|
|
return extract_split_bit_field (op0, bitsize,
|
1740 |
|
|
bitpos + offset * BITS_PER_UNIT,
|
1741 |
|
|
unsignedp);
|
1742 |
|
|
|
1743 |
|
|
total_bits = GET_MODE_BITSIZE (mode);
|
1744 |
|
|
|
1745 |
|
|
/* Make sure bitpos is valid for the chosen mode. Adjust BITPOS to
|
1746 |
|
|
be in the range 0 to total_bits-1, and put any excess bytes in
|
1747 |
|
|
OFFSET. */
|
1748 |
|
|
if (bitpos >= total_bits)
|
1749 |
|
|
{
|
1750 |
|
|
offset += (bitpos / total_bits) * (total_bits / BITS_PER_UNIT);
|
1751 |
|
|
bitpos -= ((bitpos / total_bits) * (total_bits / BITS_PER_UNIT)
|
1752 |
|
|
* BITS_PER_UNIT);
|
1753 |
|
|
}
|
1754 |
|
|
|
1755 |
|
|
/* Get ref to an aligned byte, halfword, or word containing the field.
|
1756 |
|
|
Adjust BITPOS to be position within a word,
|
1757 |
|
|
and OFFSET to be the offset of that word.
|
1758 |
|
|
Then alter OP0 to refer to that word. */
|
1759 |
|
|
bitpos += (offset % (total_bits / BITS_PER_UNIT)) * BITS_PER_UNIT;
|
1760 |
|
|
offset -= (offset % (total_bits / BITS_PER_UNIT));
|
1761 |
|
|
op0 = adjust_address (op0, mode, offset);
|
1762 |
|
|
}
|
1763 |
|
|
|
1764 |
|
|
mode = GET_MODE (op0);
|
1765 |
|
|
|
1766 |
|
|
if (BYTES_BIG_ENDIAN)
|
1767 |
|
|
/* BITPOS is the distance between our msb and that of OP0.
|
1768 |
|
|
Convert it to the distance from the lsb. */
|
1769 |
|
|
bitpos = total_bits - bitsize - bitpos;
|
1770 |
|
|
|
1771 |
|
|
/* Now BITPOS is always the distance between the field's lsb and that of OP0.
|
1772 |
|
|
We have reduced the big-endian case to the little-endian case. */
|
1773 |
|
|
|
1774 |
|
|
if (unsignedp)
|
1775 |
|
|
{
|
1776 |
|
|
if (bitpos)
|
1777 |
|
|
{
|
1778 |
|
|
/* If the field does not already start at the lsb,
|
1779 |
|
|
shift it so it does. */
|
1780 |
|
|
tree amount = build_int_cst (NULL_TREE, bitpos);
|
1781 |
|
|
/* Maybe propagate the target for the shift. */
|
1782 |
|
|
/* But not if we will return it--could confuse integrate.c. */
|
1783 |
|
|
rtx subtarget = (target != 0 && REG_P (target) ? target : 0);
|
1784 |
|
|
if (tmode != mode) subtarget = 0;
|
1785 |
|
|
op0 = expand_shift (RSHIFT_EXPR, mode, op0, amount, subtarget, 1);
|
1786 |
|
|
}
|
1787 |
|
|
/* Convert the value to the desired mode. */
|
1788 |
|
|
if (mode != tmode)
|
1789 |
|
|
op0 = convert_to_mode (tmode, op0, 1);
|
1790 |
|
|
|
1791 |
|
|
/* Unless the msb of the field used to be the msb when we shifted,
|
1792 |
|
|
mask out the upper bits. */
|
1793 |
|
|
|
1794 |
|
|
if (GET_MODE_BITSIZE (mode) != bitpos + bitsize)
|
1795 |
|
|
return expand_binop (GET_MODE (op0), and_optab, op0,
|
1796 |
|
|
mask_rtx (GET_MODE (op0), 0, bitsize, 0),
|
1797 |
|
|
target, 1, OPTAB_LIB_WIDEN);
|
1798 |
|
|
return op0;
|
1799 |
|
|
}
|
1800 |
|
|
|
1801 |
|
|
/* To extract a signed bit-field, first shift its msb to the msb of the word,
|
1802 |
|
|
then arithmetic-shift its lsb to the lsb of the word. */
|
1803 |
|
|
op0 = force_reg (mode, op0);
|
1804 |
|
|
if (mode != tmode)
|
1805 |
|
|
target = 0;
|
1806 |
|
|
|
1807 |
|
|
/* Find the narrowest integer mode that contains the field. */
|
1808 |
|
|
|
1809 |
|
|
for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
|
1810 |
|
|
mode = GET_MODE_WIDER_MODE (mode))
|
1811 |
|
|
if (GET_MODE_BITSIZE (mode) >= bitsize + bitpos)
|
1812 |
|
|
{
|
1813 |
|
|
op0 = convert_to_mode (mode, op0, 0);
|
1814 |
|
|
break;
|
1815 |
|
|
}
|
1816 |
|
|
|
1817 |
|
|
if (GET_MODE_BITSIZE (mode) != (bitsize + bitpos))
|
1818 |
|
|
{
|
1819 |
|
|
tree amount
|
1820 |
|
|
= build_int_cst (NULL_TREE,
|
1821 |
|
|
GET_MODE_BITSIZE (mode) - (bitsize + bitpos));
|
1822 |
|
|
/* Maybe propagate the target for the shift. */
|
1823 |
|
|
rtx subtarget = (target != 0 && REG_P (target) ? target : 0);
|
1824 |
|
|
op0 = expand_shift (LSHIFT_EXPR, mode, op0, amount, subtarget, 1);
|
1825 |
|
|
}
|
1826 |
|
|
|
1827 |
|
|
return expand_shift (RSHIFT_EXPR, mode, op0,
|
1828 |
|
|
build_int_cst (NULL_TREE,
|
1829 |
|
|
GET_MODE_BITSIZE (mode) - bitsize),
|
1830 |
|
|
target, 0);
|
1831 |
|
|
}
|
1832 |
|
|
|
1833 |
|
|
/* Return a constant integer (CONST_INT or CONST_DOUBLE) mask value
|
1834 |
|
|
of mode MODE with BITSIZE ones followed by BITPOS zeros, or the
|
1835 |
|
|
complement of that if COMPLEMENT. The mask is truncated if
|
1836 |
|
|
necessary to the width of mode MODE. The mask is zero-extended if
|
1837 |
|
|
BITSIZE+BITPOS is too small for MODE. */
|
1838 |
|
|
|
1839 |
|
|
static rtx
|
1840 |
|
|
mask_rtx (enum machine_mode mode, int bitpos, int bitsize, int complement)
|
1841 |
|
|
{
|
1842 |
|
|
HOST_WIDE_INT masklow, maskhigh;
|
1843 |
|
|
|
1844 |
|
|
if (bitsize == 0)
|
1845 |
|
|
masklow = 0;
|
1846 |
|
|
else if (bitpos < HOST_BITS_PER_WIDE_INT)
|
1847 |
|
|
masklow = (HOST_WIDE_INT) -1 << bitpos;
|
1848 |
|
|
else
|
1849 |
|
|
masklow = 0;
|
1850 |
|
|
|
1851 |
|
|
if (bitpos + bitsize < HOST_BITS_PER_WIDE_INT)
|
1852 |
|
|
masklow &= ((unsigned HOST_WIDE_INT) -1
|
1853 |
|
|
>> (HOST_BITS_PER_WIDE_INT - bitpos - bitsize));
|
1854 |
|
|
|
1855 |
|
|
if (bitpos <= HOST_BITS_PER_WIDE_INT)
|
1856 |
|
|
maskhigh = -1;
|
1857 |
|
|
else
|
1858 |
|
|
maskhigh = (HOST_WIDE_INT) -1 << (bitpos - HOST_BITS_PER_WIDE_INT);
|
1859 |
|
|
|
1860 |
|
|
if (bitsize == 0)
|
1861 |
|
|
maskhigh = 0;
|
1862 |
|
|
else if (bitpos + bitsize > HOST_BITS_PER_WIDE_INT)
|
1863 |
|
|
maskhigh &= ((unsigned HOST_WIDE_INT) -1
|
1864 |
|
|
>> (2 * HOST_BITS_PER_WIDE_INT - bitpos - bitsize));
|
1865 |
|
|
else
|
1866 |
|
|
maskhigh = 0;
|
1867 |
|
|
|
1868 |
|
|
if (complement)
|
1869 |
|
|
{
|
1870 |
|
|
maskhigh = ~maskhigh;
|
1871 |
|
|
masklow = ~masklow;
|
1872 |
|
|
}
|
1873 |
|
|
|
1874 |
|
|
return immed_double_const (masklow, maskhigh, mode);
|
1875 |
|
|
}
|
1876 |
|
|
|
1877 |
|
|
/* Return a constant integer (CONST_INT or CONST_DOUBLE) rtx with the value
|
1878 |
|
|
VALUE truncated to BITSIZE bits and then shifted left BITPOS bits. */
|
1879 |
|
|
|
1880 |
|
|
static rtx
|
1881 |
|
|
lshift_value (enum machine_mode mode, rtx value, int bitpos, int bitsize)
|
1882 |
|
|
{
|
1883 |
|
|
unsigned HOST_WIDE_INT v = INTVAL (value);
|
1884 |
|
|
HOST_WIDE_INT low, high;
|
1885 |
|
|
|
1886 |
|
|
if (bitsize < HOST_BITS_PER_WIDE_INT)
|
1887 |
|
|
v &= ~((HOST_WIDE_INT) -1 << bitsize);
|
1888 |
|
|
|
1889 |
|
|
if (bitpos < HOST_BITS_PER_WIDE_INT)
|
1890 |
|
|
{
|
1891 |
|
|
low = v << bitpos;
|
1892 |
|
|
high = (bitpos > 0 ? (v >> (HOST_BITS_PER_WIDE_INT - bitpos)) : 0);
|
1893 |
|
|
}
|
1894 |
|
|
else
|
1895 |
|
|
{
|
1896 |
|
|
low = 0;
|
1897 |
|
|
high = v << (bitpos - HOST_BITS_PER_WIDE_INT);
|
1898 |
|
|
}
|
1899 |
|
|
|
1900 |
|
|
return immed_double_const (low, high, mode);
|
1901 |
|
|
}
|
1902 |
|
|
|
1903 |
|
|
/* Extract a bit field that is split across two words
|
1904 |
|
|
and return an RTX for the result.
|
1905 |
|
|
|
1906 |
|
|
OP0 is the REG, SUBREG or MEM rtx for the first of the two words.
|
1907 |
|
|
BITSIZE is the field width; BITPOS, position of its first bit, in the word.
|
1908 |
|
|
UNSIGNEDP is 1 if should zero-extend the contents; else sign-extend. */
|
1909 |
|
|
|
1910 |
|
|
static rtx
|
1911 |
|
|
extract_split_bit_field (rtx op0, unsigned HOST_WIDE_INT bitsize,
|
1912 |
|
|
unsigned HOST_WIDE_INT bitpos, int unsignedp)
|
1913 |
|
|
{
|
1914 |
|
|
unsigned int unit;
|
1915 |
|
|
unsigned int bitsdone = 0;
|
1916 |
|
|
rtx result = NULL_RTX;
|
1917 |
|
|
int first = 1;
|
1918 |
|
|
|
1919 |
|
|
/* Make sure UNIT isn't larger than BITS_PER_WORD, we can only handle that
|
1920 |
|
|
much at a time. */
|
1921 |
|
|
if (REG_P (op0) || GET_CODE (op0) == SUBREG)
|
1922 |
|
|
unit = BITS_PER_WORD;
|
1923 |
|
|
else
|
1924 |
|
|
unit = MIN (MEM_ALIGN (op0), BITS_PER_WORD);
|
1925 |
|
|
|
1926 |
|
|
while (bitsdone < bitsize)
|
1927 |
|
|
{
|
1928 |
|
|
unsigned HOST_WIDE_INT thissize;
|
1929 |
|
|
rtx part, word;
|
1930 |
|
|
unsigned HOST_WIDE_INT thispos;
|
1931 |
|
|
unsigned HOST_WIDE_INT offset;
|
1932 |
|
|
|
1933 |
|
|
offset = (bitpos + bitsdone) / unit;
|
1934 |
|
|
thispos = (bitpos + bitsdone) % unit;
|
1935 |
|
|
|
1936 |
|
|
/* THISSIZE must not overrun a word boundary. Otherwise,
|
1937 |
|
|
extract_fixed_bit_field will call us again, and we will mutually
|
1938 |
|
|
recurse forever. */
|
1939 |
|
|
thissize = MIN (bitsize - bitsdone, BITS_PER_WORD);
|
1940 |
|
|
thissize = MIN (thissize, unit - thispos);
|
1941 |
|
|
|
1942 |
|
|
/* If OP0 is a register, then handle OFFSET here.
|
1943 |
|
|
|
1944 |
|
|
When handling multiword bitfields, extract_bit_field may pass
|
1945 |
|
|
down a word_mode SUBREG of a larger REG for a bitfield that actually
|
1946 |
|
|
crosses a word boundary. Thus, for a SUBREG, we must find
|
1947 |
|
|
the current word starting from the base register. */
|
1948 |
|
|
if (GET_CODE (op0) == SUBREG)
|
1949 |
|
|
{
|
1950 |
|
|
int word_offset = (SUBREG_BYTE (op0) / UNITS_PER_WORD) + offset;
|
1951 |
|
|
word = operand_subword_force (SUBREG_REG (op0), word_offset,
|
1952 |
|
|
GET_MODE (SUBREG_REG (op0)));
|
1953 |
|
|
offset = 0;
|
1954 |
|
|
}
|
1955 |
|
|
else if (REG_P (op0))
|
1956 |
|
|
{
|
1957 |
|
|
word = operand_subword_force (op0, offset, GET_MODE (op0));
|
1958 |
|
|
offset = 0;
|
1959 |
|
|
}
|
1960 |
|
|
else
|
1961 |
|
|
word = op0;
|
1962 |
|
|
|
1963 |
|
|
/* Extract the parts in bit-counting order,
|
1964 |
|
|
whose meaning is determined by BYTES_PER_UNIT.
|
1965 |
|
|
OFFSET is in UNITs, and UNIT is in bits.
|
1966 |
|
|
extract_fixed_bit_field wants offset in bytes. */
|
1967 |
|
|
part = extract_fixed_bit_field (word_mode, word,
|
1968 |
|
|
offset * unit / BITS_PER_UNIT,
|
1969 |
|
|
thissize, thispos, 0, 1);
|
1970 |
|
|
bitsdone += thissize;
|
1971 |
|
|
|
1972 |
|
|
/* Shift this part into place for the result. */
|
1973 |
|
|
if (BYTES_BIG_ENDIAN)
|
1974 |
|
|
{
|
1975 |
|
|
if (bitsize != bitsdone)
|
1976 |
|
|
part = expand_shift (LSHIFT_EXPR, word_mode, part,
|
1977 |
|
|
build_int_cst (NULL_TREE, bitsize - bitsdone),
|
1978 |
|
|
0, 1);
|
1979 |
|
|
}
|
1980 |
|
|
else
|
1981 |
|
|
{
|
1982 |
|
|
if (bitsdone != thissize)
|
1983 |
|
|
part = expand_shift (LSHIFT_EXPR, word_mode, part,
|
1984 |
|
|
build_int_cst (NULL_TREE,
|
1985 |
|
|
bitsdone - thissize), 0, 1);
|
1986 |
|
|
}
|
1987 |
|
|
|
1988 |
|
|
if (first)
|
1989 |
|
|
result = part;
|
1990 |
|
|
else
|
1991 |
|
|
/* Combine the parts with bitwise or. This works
|
1992 |
|
|
because we extracted each part as an unsigned bit field. */
|
1993 |
|
|
result = expand_binop (word_mode, ior_optab, part, result, NULL_RTX, 1,
|
1994 |
|
|
OPTAB_LIB_WIDEN);
|
1995 |
|
|
|
1996 |
|
|
first = 0;
|
1997 |
|
|
}
|
1998 |
|
|
|
1999 |
|
|
/* Unsigned bit field: we are done. */
|
2000 |
|
|
if (unsignedp)
|
2001 |
|
|
return result;
|
2002 |
|
|
/* Signed bit field: sign-extend with two arithmetic shifts. */
|
2003 |
|
|
result = expand_shift (LSHIFT_EXPR, word_mode, result,
|
2004 |
|
|
build_int_cst (NULL_TREE, BITS_PER_WORD - bitsize),
|
2005 |
|
|
NULL_RTX, 0);
|
2006 |
|
|
return expand_shift (RSHIFT_EXPR, word_mode, result,
|
2007 |
|
|
build_int_cst (NULL_TREE, BITS_PER_WORD - bitsize),
|
2008 |
|
|
NULL_RTX, 0);
|
2009 |
|
|
}
|
2010 |
|
|
|
2011 |
|
|
/* Try to read the low bits of SRC as an rvalue of mode MODE, preserving
|
2012 |
|
|
the bit pattern. SRC_MODE is the mode of SRC; if this is smaller than
|
2013 |
|
|
MODE, fill the upper bits with zeros. Fail if the layout of either
|
2014 |
|
|
mode is unknown (as for CC modes) or if the extraction would involve
|
2015 |
|
|
unprofitable mode punning. Return the value on success, otherwise
|
2016 |
|
|
return null.
|
2017 |
|
|
|
2018 |
|
|
This is different from gen_lowpart* in these respects:
|
2019 |
|
|
|
2020 |
|
|
- the returned value must always be considered an rvalue
|
2021 |
|
|
|
2022 |
|
|
- when MODE is wider than SRC_MODE, the extraction involves
|
2023 |
|
|
a zero extension
|
2024 |
|
|
|
2025 |
|
|
- when MODE is smaller than SRC_MODE, the extraction involves
|
2026 |
|
|
a truncation (and is thus subject to TRULY_NOOP_TRUNCATION).
|
2027 |
|
|
|
2028 |
|
|
In other words, this routine performs a computation, whereas the
|
2029 |
|
|
gen_lowpart* routines are conceptually lvalue or rvalue subreg
|
2030 |
|
|
operations. */
|
2031 |
|
|
|
2032 |
|
|
rtx
|
2033 |
|
|
extract_low_bits (enum machine_mode mode, enum machine_mode src_mode, rtx src)
|
2034 |
|
|
{
|
2035 |
|
|
enum machine_mode int_mode, src_int_mode;
|
2036 |
|
|
|
2037 |
|
|
if (mode == src_mode)
|
2038 |
|
|
return src;
|
2039 |
|
|
|
2040 |
|
|
if (CONSTANT_P (src))
|
2041 |
|
|
{
|
2042 |
|
|
/* simplify_gen_subreg can't be used here, as if simplify_subreg
|
2043 |
|
|
fails, it will happily create (subreg (symbol_ref)) or similar
|
2044 |
|
|
invalid SUBREGs. */
|
2045 |
|
|
unsigned int byte = subreg_lowpart_offset (mode, src_mode);
|
2046 |
|
|
rtx ret = simplify_subreg (mode, src, src_mode, byte);
|
2047 |
|
|
if (ret)
|
2048 |
|
|
return ret;
|
2049 |
|
|
|
2050 |
|
|
if (GET_MODE (src) == VOIDmode
|
2051 |
|
|
|| !validate_subreg (mode, src_mode, src, byte))
|
2052 |
|
|
return NULL_RTX;
|
2053 |
|
|
|
2054 |
|
|
src = force_reg (GET_MODE (src), src);
|
2055 |
|
|
return gen_rtx_SUBREG (mode, src, byte);
|
2056 |
|
|
}
|
2057 |
|
|
|
2058 |
|
|
if (GET_MODE_CLASS (mode) == MODE_CC || GET_MODE_CLASS (src_mode) == MODE_CC)
|
2059 |
|
|
return NULL_RTX;
|
2060 |
|
|
|
2061 |
|
|
if (GET_MODE_BITSIZE (mode) == GET_MODE_BITSIZE (src_mode)
|
2062 |
|
|
&& MODES_TIEABLE_P (mode, src_mode))
|
2063 |
|
|
{
|
2064 |
|
|
rtx x = gen_lowpart_common (mode, src);
|
2065 |
|
|
if (x)
|
2066 |
|
|
return x;
|
2067 |
|
|
}
|
2068 |
|
|
|
2069 |
|
|
src_int_mode = int_mode_for_mode (src_mode);
|
2070 |
|
|
int_mode = int_mode_for_mode (mode);
|
2071 |
|
|
if (src_int_mode == BLKmode || int_mode == BLKmode)
|
2072 |
|
|
return NULL_RTX;
|
2073 |
|
|
|
2074 |
|
|
if (!MODES_TIEABLE_P (src_int_mode, src_mode))
|
2075 |
|
|
return NULL_RTX;
|
2076 |
|
|
if (!MODES_TIEABLE_P (int_mode, mode))
|
2077 |
|
|
return NULL_RTX;
|
2078 |
|
|
|
2079 |
|
|
src = gen_lowpart (src_int_mode, src);
|
2080 |
|
|
src = convert_modes (int_mode, src_int_mode, src, true);
|
2081 |
|
|
src = gen_lowpart (mode, src);
|
2082 |
|
|
return src;
|
2083 |
|
|
}
|
2084 |
|
|
|
2085 |
|
|
/* Add INC into TARGET. */
|
2086 |
|
|
|
2087 |
|
|
void
|
2088 |
|
|
expand_inc (rtx target, rtx inc)
|
2089 |
|
|
{
|
2090 |
|
|
rtx value = expand_binop (GET_MODE (target), add_optab,
|
2091 |
|
|
target, inc,
|
2092 |
|
|
target, 0, OPTAB_LIB_WIDEN);
|
2093 |
|
|
if (value != target)
|
2094 |
|
|
emit_move_insn (target, value);
|
2095 |
|
|
}
|
2096 |
|
|
|
2097 |
|
|
/* Subtract DEC from TARGET. */
|
2098 |
|
|
|
2099 |
|
|
void
|
2100 |
|
|
expand_dec (rtx target, rtx dec)
|
2101 |
|
|
{
|
2102 |
|
|
rtx value = expand_binop (GET_MODE (target), sub_optab,
|
2103 |
|
|
target, dec,
|
2104 |
|
|
target, 0, OPTAB_LIB_WIDEN);
|
2105 |
|
|
if (value != target)
|
2106 |
|
|
emit_move_insn (target, value);
|
2107 |
|
|
}
|
2108 |
|
|
|
2109 |
|
|
/* Output a shift instruction for expression code CODE,
|
2110 |
|
|
with SHIFTED being the rtx for the value to shift,
|
2111 |
|
|
and AMOUNT the tree for the amount to shift by.
|
2112 |
|
|
Store the result in the rtx TARGET, if that is convenient.
|
2113 |
|
|
If UNSIGNEDP is nonzero, do a logical shift; otherwise, arithmetic.
|
2114 |
|
|
Return the rtx for where the value is. */
|
2115 |
|
|
|
2116 |
|
|
rtx
|
2117 |
|
|
expand_shift (enum tree_code code, enum machine_mode mode, rtx shifted,
|
2118 |
|
|
tree amount, rtx target, int unsignedp)
|
2119 |
|
|
{
|
2120 |
|
|
rtx op1, temp = 0;
|
2121 |
|
|
int left = (code == LSHIFT_EXPR || code == LROTATE_EXPR);
|
2122 |
|
|
int rotate = (code == LROTATE_EXPR || code == RROTATE_EXPR);
|
2123 |
|
|
optab lshift_optab = ashl_optab;
|
2124 |
|
|
optab rshift_arith_optab = ashr_optab;
|
2125 |
|
|
optab rshift_uns_optab = lshr_optab;
|
2126 |
|
|
optab lrotate_optab = rotl_optab;
|
2127 |
|
|
optab rrotate_optab = rotr_optab;
|
2128 |
|
|
enum machine_mode op1_mode;
|
2129 |
|
|
int attempt;
|
2130 |
|
|
bool speed = optimize_insn_for_speed_p ();
|
2131 |
|
|
|
2132 |
|
|
op1 = expand_normal (amount);
|
2133 |
|
|
op1_mode = GET_MODE (op1);
|
2134 |
|
|
|
2135 |
|
|
/* Determine whether the shift/rotate amount is a vector, or scalar. If the
|
2136 |
|
|
shift amount is a vector, use the vector/vector shift patterns. */
|
2137 |
|
|
if (VECTOR_MODE_P (mode) && VECTOR_MODE_P (op1_mode))
|
2138 |
|
|
{
|
2139 |
|
|
lshift_optab = vashl_optab;
|
2140 |
|
|
rshift_arith_optab = vashr_optab;
|
2141 |
|
|
rshift_uns_optab = vlshr_optab;
|
2142 |
|
|
lrotate_optab = vrotl_optab;
|
2143 |
|
|
rrotate_optab = vrotr_optab;
|
2144 |
|
|
}
|
2145 |
|
|
|
2146 |
|
|
/* Previously detected shift-counts computed by NEGATE_EXPR
|
2147 |
|
|
and shifted in the other direction; but that does not work
|
2148 |
|
|
on all machines. */
|
2149 |
|
|
|
2150 |
|
|
if (SHIFT_COUNT_TRUNCATED)
|
2151 |
|
|
{
|
2152 |
|
|
if (CONST_INT_P (op1)
|
2153 |
|
|
&& ((unsigned HOST_WIDE_INT) INTVAL (op1) >=
|
2154 |
|
|
(unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (mode)))
|
2155 |
|
|
op1 = GEN_INT ((unsigned HOST_WIDE_INT) INTVAL (op1)
|
2156 |
|
|
% GET_MODE_BITSIZE (mode));
|
2157 |
|
|
else if (GET_CODE (op1) == SUBREG
|
2158 |
|
|
&& subreg_lowpart_p (op1)
|
2159 |
|
|
&& INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (op1))))
|
2160 |
|
|
op1 = SUBREG_REG (op1);
|
2161 |
|
|
}
|
2162 |
|
|
|
2163 |
|
|
if (op1 == const0_rtx)
|
2164 |
|
|
return shifted;
|
2165 |
|
|
|
2166 |
|
|
/* Check whether its cheaper to implement a left shift by a constant
|
2167 |
|
|
bit count by a sequence of additions. */
|
2168 |
|
|
if (code == LSHIFT_EXPR
|
2169 |
|
|
&& CONST_INT_P (op1)
|
2170 |
|
|
&& INTVAL (op1) > 0
|
2171 |
|
|
&& INTVAL (op1) < GET_MODE_BITSIZE (mode)
|
2172 |
|
|
&& INTVAL (op1) < MAX_BITS_PER_WORD
|
2173 |
|
|
&& shift_cost[speed][mode][INTVAL (op1)] > INTVAL (op1) * add_cost[speed][mode]
|
2174 |
|
|
&& shift_cost[speed][mode][INTVAL (op1)] != MAX_COST)
|
2175 |
|
|
{
|
2176 |
|
|
int i;
|
2177 |
|
|
for (i = 0; i < INTVAL (op1); i++)
|
2178 |
|
|
{
|
2179 |
|
|
temp = force_reg (mode, shifted);
|
2180 |
|
|
shifted = expand_binop (mode, add_optab, temp, temp, NULL_RTX,
|
2181 |
|
|
unsignedp, OPTAB_LIB_WIDEN);
|
2182 |
|
|
}
|
2183 |
|
|
return shifted;
|
2184 |
|
|
}
|
2185 |
|
|
|
2186 |
|
|
for (attempt = 0; temp == 0 && attempt < 3; attempt++)
|
2187 |
|
|
{
|
2188 |
|
|
enum optab_methods methods;
|
2189 |
|
|
|
2190 |
|
|
if (attempt == 0)
|
2191 |
|
|
methods = OPTAB_DIRECT;
|
2192 |
|
|
else if (attempt == 1)
|
2193 |
|
|
methods = OPTAB_WIDEN;
|
2194 |
|
|
else
|
2195 |
|
|
methods = OPTAB_LIB_WIDEN;
|
2196 |
|
|
|
2197 |
|
|
if (rotate)
|
2198 |
|
|
{
|
2199 |
|
|
/* Widening does not work for rotation. */
|
2200 |
|
|
if (methods == OPTAB_WIDEN)
|
2201 |
|
|
continue;
|
2202 |
|
|
else if (methods == OPTAB_LIB_WIDEN)
|
2203 |
|
|
{
|
2204 |
|
|
/* If we have been unable to open-code this by a rotation,
|
2205 |
|
|
do it as the IOR of two shifts. I.e., to rotate A
|
2206 |
|
|
by N bits, compute (A << N) | ((unsigned) A >> (C - N))
|
2207 |
|
|
where C is the bitsize of A.
|
2208 |
|
|
|
2209 |
|
|
It is theoretically possible that the target machine might
|
2210 |
|
|
not be able to perform either shift and hence we would
|
2211 |
|
|
be making two libcalls rather than just the one for the
|
2212 |
|
|
shift (similarly if IOR could not be done). We will allow
|
2213 |
|
|
this extremely unlikely lossage to avoid complicating the
|
2214 |
|
|
code below. */
|
2215 |
|
|
|
2216 |
|
|
rtx subtarget = target == shifted ? 0 : target;
|
2217 |
|
|
tree new_amount, other_amount;
|
2218 |
|
|
rtx temp1;
|
2219 |
|
|
tree type = TREE_TYPE (amount);
|
2220 |
|
|
if (GET_MODE (op1) != TYPE_MODE (type)
|
2221 |
|
|
&& GET_MODE (op1) != VOIDmode)
|
2222 |
|
|
op1 = convert_to_mode (TYPE_MODE (type), op1, 1);
|
2223 |
|
|
new_amount = make_tree (type, op1);
|
2224 |
|
|
other_amount
|
2225 |
|
|
= fold_build2 (MINUS_EXPR, type,
|
2226 |
|
|
build_int_cst (type, GET_MODE_BITSIZE (mode)),
|
2227 |
|
|
new_amount);
|
2228 |
|
|
|
2229 |
|
|
shifted = force_reg (mode, shifted);
|
2230 |
|
|
|
2231 |
|
|
temp = expand_shift (left ? LSHIFT_EXPR : RSHIFT_EXPR,
|
2232 |
|
|
mode, shifted, new_amount, 0, 1);
|
2233 |
|
|
temp1 = expand_shift (left ? RSHIFT_EXPR : LSHIFT_EXPR,
|
2234 |
|
|
mode, shifted, other_amount, subtarget, 1);
|
2235 |
|
|
return expand_binop (mode, ior_optab, temp, temp1, target,
|
2236 |
|
|
unsignedp, methods);
|
2237 |
|
|
}
|
2238 |
|
|
|
2239 |
|
|
temp = expand_binop (mode,
|
2240 |
|
|
left ? lrotate_optab : rrotate_optab,
|
2241 |
|
|
shifted, op1, target, unsignedp, methods);
|
2242 |
|
|
}
|
2243 |
|
|
else if (unsignedp)
|
2244 |
|
|
temp = expand_binop (mode,
|
2245 |
|
|
left ? lshift_optab : rshift_uns_optab,
|
2246 |
|
|
shifted, op1, target, unsignedp, methods);
|
2247 |
|
|
|
2248 |
|
|
/* Do arithmetic shifts.
|
2249 |
|
|
Also, if we are going to widen the operand, we can just as well
|
2250 |
|
|
use an arithmetic right-shift instead of a logical one. */
|
2251 |
|
|
if (temp == 0 && ! rotate
|
2252 |
|
|
&& (! unsignedp || (! left && methods == OPTAB_WIDEN)))
|
2253 |
|
|
{
|
2254 |
|
|
enum optab_methods methods1 = methods;
|
2255 |
|
|
|
2256 |
|
|
/* If trying to widen a log shift to an arithmetic shift,
|
2257 |
|
|
don't accept an arithmetic shift of the same size. */
|
2258 |
|
|
if (unsignedp)
|
2259 |
|
|
methods1 = OPTAB_MUST_WIDEN;
|
2260 |
|
|
|
2261 |
|
|
/* Arithmetic shift */
|
2262 |
|
|
|
2263 |
|
|
temp = expand_binop (mode,
|
2264 |
|
|
left ? lshift_optab : rshift_arith_optab,
|
2265 |
|
|
shifted, op1, target, unsignedp, methods1);
|
2266 |
|
|
}
|
2267 |
|
|
|
2268 |
|
|
/* We used to try extzv here for logical right shifts, but that was
|
2269 |
|
|
only useful for one machine, the VAX, and caused poor code
|
2270 |
|
|
generation there for lshrdi3, so the code was deleted and a
|
2271 |
|
|
define_expand for lshrsi3 was added to vax.md. */
|
2272 |
|
|
}
|
2273 |
|
|
|
2274 |
|
|
gcc_assert (temp);
|
2275 |
|
|
return temp;
|
2276 |
|
|
}
|
2277 |
|
|
|
2278 |
|
|
enum alg_code {
|
2279 |
|
|
alg_unknown,
|
2280 |
|
|
alg_zero,
|
2281 |
|
|
alg_m, alg_shift,
|
2282 |
|
|
alg_add_t_m2,
|
2283 |
|
|
alg_sub_t_m2,
|
2284 |
|
|
alg_add_factor,
|
2285 |
|
|
alg_sub_factor,
|
2286 |
|
|
alg_add_t2_m,
|
2287 |
|
|
alg_sub_t2_m,
|
2288 |
|
|
alg_impossible
|
2289 |
|
|
};
|
2290 |
|
|
|
2291 |
|
|
/* This structure holds the "cost" of a multiply sequence. The
|
2292 |
|
|
"cost" field holds the total rtx_cost of every operator in the
|
2293 |
|
|
synthetic multiplication sequence, hence cost(a op b) is defined
|
2294 |
|
|
as rtx_cost(op) + cost(a) + cost(b), where cost(leaf) is zero.
|
2295 |
|
|
The "latency" field holds the minimum possible latency of the
|
2296 |
|
|
synthetic multiply, on a hypothetical infinitely parallel CPU.
|
2297 |
|
|
This is the critical path, or the maximum height, of the expression
|
2298 |
|
|
tree which is the sum of rtx_costs on the most expensive path from
|
2299 |
|
|
any leaf to the root. Hence latency(a op b) is defined as zero for
|
2300 |
|
|
leaves and rtx_cost(op) + max(latency(a), latency(b)) otherwise. */
|
2301 |
|
|
|
2302 |
|
|
struct mult_cost {
|
2303 |
|
|
short cost; /* Total rtx_cost of the multiplication sequence. */
|
2304 |
|
|
short latency; /* The latency of the multiplication sequence. */
|
2305 |
|
|
};
|
2306 |
|
|
|
2307 |
|
|
/* This macro is used to compare a pointer to a mult_cost against an
|
2308 |
|
|
single integer "rtx_cost" value. This is equivalent to the macro
|
2309 |
|
|
CHEAPER_MULT_COST(X,Z) where Z = {Y,Y}. */
|
2310 |
|
|
#define MULT_COST_LESS(X,Y) ((X)->cost < (Y) \
|
2311 |
|
|
|| ((X)->cost == (Y) && (X)->latency < (Y)))
|
2312 |
|
|
|
2313 |
|
|
/* This macro is used to compare two pointers to mult_costs against
|
2314 |
|
|
each other. The macro returns true if X is cheaper than Y.
|
2315 |
|
|
Currently, the cheaper of two mult_costs is the one with the
|
2316 |
|
|
lower "cost". If "cost"s are tied, the lower latency is cheaper. */
|
2317 |
|
|
#define CHEAPER_MULT_COST(X,Y) ((X)->cost < (Y)->cost \
|
2318 |
|
|
|| ((X)->cost == (Y)->cost \
|
2319 |
|
|
&& (X)->latency < (Y)->latency))
|
2320 |
|
|
|
2321 |
|
|
/* This structure records a sequence of operations.
|
2322 |
|
|
`ops' is the number of operations recorded.
|
2323 |
|
|
`cost' is their total cost.
|
2324 |
|
|
The operations are stored in `op' and the corresponding
|
2325 |
|
|
logarithms of the integer coefficients in `log'.
|
2326 |
|
|
|
2327 |
|
|
These are the operations:
|
2328 |
|
|
alg_zero total := 0;
|
2329 |
|
|
alg_m total := multiplicand;
|
2330 |
|
|
alg_shift total := total * coeff
|
2331 |
|
|
alg_add_t_m2 total := total + multiplicand * coeff;
|
2332 |
|
|
alg_sub_t_m2 total := total - multiplicand * coeff;
|
2333 |
|
|
alg_add_factor total := total * coeff + total;
|
2334 |
|
|
alg_sub_factor total := total * coeff - total;
|
2335 |
|
|
alg_add_t2_m total := total * coeff + multiplicand;
|
2336 |
|
|
alg_sub_t2_m total := total * coeff - multiplicand;
|
2337 |
|
|
|
2338 |
|
|
The first operand must be either alg_zero or alg_m. */
|
2339 |
|
|
|
2340 |
|
|
struct algorithm
|
2341 |
|
|
{
|
2342 |
|
|
struct mult_cost cost;
|
2343 |
|
|
short ops;
|
2344 |
|
|
/* The size of the OP and LOG fields are not directly related to the
|
2345 |
|
|
word size, but the worst-case algorithms will be if we have few
|
2346 |
|
|
consecutive ones or zeros, i.e., a multiplicand like 10101010101...
|
2347 |
|
|
In that case we will generate shift-by-2, add, shift-by-2, add,...,
|
2348 |
|
|
in total wordsize operations. */
|
2349 |
|
|
enum alg_code op[MAX_BITS_PER_WORD];
|
2350 |
|
|
char log[MAX_BITS_PER_WORD];
|
2351 |
|
|
};
|
2352 |
|
|
|
2353 |
|
|
/* The entry for our multiplication cache/hash table. */
|
2354 |
|
|
struct alg_hash_entry {
|
2355 |
|
|
/* The number we are multiplying by. */
|
2356 |
|
|
unsigned HOST_WIDE_INT t;
|
2357 |
|
|
|
2358 |
|
|
/* The mode in which we are multiplying something by T. */
|
2359 |
|
|
enum machine_mode mode;
|
2360 |
|
|
|
2361 |
|
|
/* The best multiplication algorithm for t. */
|
2362 |
|
|
enum alg_code alg;
|
2363 |
|
|
|
2364 |
|
|
/* The cost of multiplication if ALG_CODE is not alg_impossible.
|
2365 |
|
|
Otherwise, the cost within which multiplication by T is
|
2366 |
|
|
impossible. */
|
2367 |
|
|
struct mult_cost cost;
|
2368 |
|
|
|
2369 |
|
|
/* OPtimized for speed? */
|
2370 |
|
|
bool speed;
|
2371 |
|
|
};
|
2372 |
|
|
|
2373 |
|
|
/* The number of cache/hash entries. */
|
2374 |
|
|
#if HOST_BITS_PER_WIDE_INT == 64
|
2375 |
|
|
#define NUM_ALG_HASH_ENTRIES 1031
|
2376 |
|
|
#else
|
2377 |
|
|
#define NUM_ALG_HASH_ENTRIES 307
|
2378 |
|
|
#endif
|
2379 |
|
|
|
2380 |
|
|
/* Each entry of ALG_HASH caches alg_code for some integer. This is
|
2381 |
|
|
actually a hash table. If we have a collision, that the older
|
2382 |
|
|
entry is kicked out. */
|
2383 |
|
|
static struct alg_hash_entry alg_hash[NUM_ALG_HASH_ENTRIES];
|
2384 |
|
|
|
2385 |
|
|
/* Indicates the type of fixup needed after a constant multiplication.
|
2386 |
|
|
BASIC_VARIANT means no fixup is needed, NEGATE_VARIANT means that
|
2387 |
|
|
the result should be negated, and ADD_VARIANT means that the
|
2388 |
|
|
multiplicand should be added to the result. */
|
2389 |
|
|
enum mult_variant {basic_variant, negate_variant, add_variant};
|
2390 |
|
|
|
2391 |
|
|
static void synth_mult (struct algorithm *, unsigned HOST_WIDE_INT,
|
2392 |
|
|
const struct mult_cost *, enum machine_mode mode);
|
2393 |
|
|
static bool choose_mult_variant (enum machine_mode, HOST_WIDE_INT,
|
2394 |
|
|
struct algorithm *, enum mult_variant *, int);
|
2395 |
|
|
static rtx expand_mult_const (enum machine_mode, rtx, HOST_WIDE_INT, rtx,
|
2396 |
|
|
const struct algorithm *, enum mult_variant);
|
2397 |
|
|
static unsigned HOST_WIDE_INT choose_multiplier (unsigned HOST_WIDE_INT, int,
|
2398 |
|
|
int, rtx *, int *, int *);
|
2399 |
|
|
static unsigned HOST_WIDE_INT invert_mod2n (unsigned HOST_WIDE_INT, int);
|
2400 |
|
|
static rtx extract_high_half (enum machine_mode, rtx);
|
2401 |
|
|
static rtx expand_mult_highpart (enum machine_mode, rtx, rtx, rtx, int, int);
|
2402 |
|
|
static rtx expand_mult_highpart_optab (enum machine_mode, rtx, rtx, rtx,
|
2403 |
|
|
int, int);
|
2404 |
|
|
/* Compute and return the best algorithm for multiplying by T.
|
2405 |
|
|
The algorithm must cost less than cost_limit
|
2406 |
|
|
If retval.cost >= COST_LIMIT, no algorithm was found and all
|
2407 |
|
|
other field of the returned struct are undefined.
|
2408 |
|
|
MODE is the machine mode of the multiplication. */
|
2409 |
|
|
|
2410 |
|
|
static void
|
2411 |
|
|
synth_mult (struct algorithm *alg_out, unsigned HOST_WIDE_INT t,
|
2412 |
|
|
const struct mult_cost *cost_limit, enum machine_mode mode)
|
2413 |
|
|
{
|
2414 |
|
|
int m;
|
2415 |
|
|
struct algorithm *alg_in, *best_alg;
|
2416 |
|
|
struct mult_cost best_cost;
|
2417 |
|
|
struct mult_cost new_limit;
|
2418 |
|
|
int op_cost, op_latency;
|
2419 |
|
|
unsigned HOST_WIDE_INT orig_t = t;
|
2420 |
|
|
unsigned HOST_WIDE_INT q;
|
2421 |
|
|
int maxm = MIN (BITS_PER_WORD, GET_MODE_BITSIZE (mode));
|
2422 |
|
|
int hash_index;
|
2423 |
|
|
bool cache_hit = false;
|
2424 |
|
|
enum alg_code cache_alg = alg_zero;
|
2425 |
|
|
bool speed = optimize_insn_for_speed_p ();
|
2426 |
|
|
|
2427 |
|
|
/* Indicate that no algorithm is yet found. If no algorithm
|
2428 |
|
|
is found, this value will be returned and indicate failure. */
|
2429 |
|
|
alg_out->cost.cost = cost_limit->cost + 1;
|
2430 |
|
|
alg_out->cost.latency = cost_limit->latency + 1;
|
2431 |
|
|
|
2432 |
|
|
if (cost_limit->cost < 0
|
2433 |
|
|
|| (cost_limit->cost == 0 && cost_limit->latency <= 0))
|
2434 |
|
|
return;
|
2435 |
|
|
|
2436 |
|
|
/* Restrict the bits of "t" to the multiplication's mode. */
|
2437 |
|
|
t &= GET_MODE_MASK (mode);
|
2438 |
|
|
|
2439 |
|
|
/* t == 1 can be done in zero cost. */
|
2440 |
|
|
if (t == 1)
|
2441 |
|
|
{
|
2442 |
|
|
alg_out->ops = 1;
|
2443 |
|
|
alg_out->cost.cost = 0;
|
2444 |
|
|
alg_out->cost.latency = 0;
|
2445 |
|
|
alg_out->op[0] = alg_m;
|
2446 |
|
|
return;
|
2447 |
|
|
}
|
2448 |
|
|
|
2449 |
|
|
/* t == 0 sometimes has a cost. If it does and it exceeds our limit,
|
2450 |
|
|
fail now. */
|
2451 |
|
|
if (t == 0)
|
2452 |
|
|
{
|
2453 |
|
|
if (MULT_COST_LESS (cost_limit, zero_cost[speed]))
|
2454 |
|
|
return;
|
2455 |
|
|
else
|
2456 |
|
|
{
|
2457 |
|
|
alg_out->ops = 1;
|
2458 |
|
|
alg_out->cost.cost = zero_cost[speed];
|
2459 |
|
|
alg_out->cost.latency = zero_cost[speed];
|
2460 |
|
|
alg_out->op[0] = alg_zero;
|
2461 |
|
|
return;
|
2462 |
|
|
}
|
2463 |
|
|
}
|
2464 |
|
|
|
2465 |
|
|
/* We'll be needing a couple extra algorithm structures now. */
|
2466 |
|
|
|
2467 |
|
|
alg_in = XALLOCA (struct algorithm);
|
2468 |
|
|
best_alg = XALLOCA (struct algorithm);
|
2469 |
|
|
best_cost = *cost_limit;
|
2470 |
|
|
|
2471 |
|
|
/* Compute the hash index. */
|
2472 |
|
|
hash_index = (t ^ (unsigned int) mode ^ (speed * 256)) % NUM_ALG_HASH_ENTRIES;
|
2473 |
|
|
|
2474 |
|
|
/* See if we already know what to do for T. */
|
2475 |
|
|
if (alg_hash[hash_index].t == t
|
2476 |
|
|
&& alg_hash[hash_index].mode == mode
|
2477 |
|
|
&& alg_hash[hash_index].mode == mode
|
2478 |
|
|
&& alg_hash[hash_index].speed == speed
|
2479 |
|
|
&& alg_hash[hash_index].alg != alg_unknown)
|
2480 |
|
|
{
|
2481 |
|
|
cache_alg = alg_hash[hash_index].alg;
|
2482 |
|
|
|
2483 |
|
|
if (cache_alg == alg_impossible)
|
2484 |
|
|
{
|
2485 |
|
|
/* The cache tells us that it's impossible to synthesize
|
2486 |
|
|
multiplication by T within alg_hash[hash_index].cost. */
|
2487 |
|
|
if (!CHEAPER_MULT_COST (&alg_hash[hash_index].cost, cost_limit))
|
2488 |
|
|
/* COST_LIMIT is at least as restrictive as the one
|
2489 |
|
|
recorded in the hash table, in which case we have no
|
2490 |
|
|
hope of synthesizing a multiplication. Just
|
2491 |
|
|
return. */
|
2492 |
|
|
return;
|
2493 |
|
|
|
2494 |
|
|
/* If we get here, COST_LIMIT is less restrictive than the
|
2495 |
|
|
one recorded in the hash table, so we may be able to
|
2496 |
|
|
synthesize a multiplication. Proceed as if we didn't
|
2497 |
|
|
have the cache entry. */
|
2498 |
|
|
}
|
2499 |
|
|
else
|
2500 |
|
|
{
|
2501 |
|
|
if (CHEAPER_MULT_COST (cost_limit, &alg_hash[hash_index].cost))
|
2502 |
|
|
/* The cached algorithm shows that this multiplication
|
2503 |
|
|
requires more cost than COST_LIMIT. Just return. This
|
2504 |
|
|
way, we don't clobber this cache entry with
|
2505 |
|
|
alg_impossible but retain useful information. */
|
2506 |
|
|
return;
|
2507 |
|
|
|
2508 |
|
|
cache_hit = true;
|
2509 |
|
|
|
2510 |
|
|
switch (cache_alg)
|
2511 |
|
|
{
|
2512 |
|
|
case alg_shift:
|
2513 |
|
|
goto do_alg_shift;
|
2514 |
|
|
|
2515 |
|
|
case alg_add_t_m2:
|
2516 |
|
|
case alg_sub_t_m2:
|
2517 |
|
|
goto do_alg_addsub_t_m2;
|
2518 |
|
|
|
2519 |
|
|
case alg_add_factor:
|
2520 |
|
|
case alg_sub_factor:
|
2521 |
|
|
goto do_alg_addsub_factor;
|
2522 |
|
|
|
2523 |
|
|
case alg_add_t2_m:
|
2524 |
|
|
goto do_alg_add_t2_m;
|
2525 |
|
|
|
2526 |
|
|
case alg_sub_t2_m:
|
2527 |
|
|
goto do_alg_sub_t2_m;
|
2528 |
|
|
|
2529 |
|
|
default:
|
2530 |
|
|
gcc_unreachable ();
|
2531 |
|
|
}
|
2532 |
|
|
}
|
2533 |
|
|
}
|
2534 |
|
|
|
2535 |
|
|
/* If we have a group of zero bits at the low-order part of T, try
|
2536 |
|
|
multiplying by the remaining bits and then doing a shift. */
|
2537 |
|
|
|
2538 |
|
|
if ((t & 1) == 0)
|
2539 |
|
|
{
|
2540 |
|
|
do_alg_shift:
|
2541 |
|
|
m = floor_log2 (t & -t); /* m = number of low zero bits */
|
2542 |
|
|
if (m < maxm)
|
2543 |
|
|
{
|
2544 |
|
|
q = t >> m;
|
2545 |
|
|
/* The function expand_shift will choose between a shift and
|
2546 |
|
|
a sequence of additions, so the observed cost is given as
|
2547 |
|
|
MIN (m * add_cost[speed][mode], shift_cost[speed][mode][m]). */
|
2548 |
|
|
op_cost = m * add_cost[speed][mode];
|
2549 |
|
|
if (shift_cost[speed][mode][m] < op_cost)
|
2550 |
|
|
op_cost = shift_cost[speed][mode][m];
|
2551 |
|
|
new_limit.cost = best_cost.cost - op_cost;
|
2552 |
|
|
new_limit.latency = best_cost.latency - op_cost;
|
2553 |
|
|
synth_mult (alg_in, q, &new_limit, mode);
|
2554 |
|
|
|
2555 |
|
|
alg_in->cost.cost += op_cost;
|
2556 |
|
|
alg_in->cost.latency += op_cost;
|
2557 |
|
|
if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
|
2558 |
|
|
{
|
2559 |
|
|
struct algorithm *x;
|
2560 |
|
|
best_cost = alg_in->cost;
|
2561 |
|
|
x = alg_in, alg_in = best_alg, best_alg = x;
|
2562 |
|
|
best_alg->log[best_alg->ops] = m;
|
2563 |
|
|
best_alg->op[best_alg->ops] = alg_shift;
|
2564 |
|
|
}
|
2565 |
|
|
|
2566 |
|
|
/* See if treating ORIG_T as a signed number yields a better
|
2567 |
|
|
sequence. Try this sequence only for a negative ORIG_T
|
2568 |
|
|
as it would be useless for a non-negative ORIG_T. */
|
2569 |
|
|
if ((HOST_WIDE_INT) orig_t < 0)
|
2570 |
|
|
{
|
2571 |
|
|
/* Shift ORIG_T as follows because a right shift of a
|
2572 |
|
|
negative-valued signed type is implementation
|
2573 |
|
|
defined. */
|
2574 |
|
|
q = ~(~orig_t >> m);
|
2575 |
|
|
/* The function expand_shift will choose between a shift
|
2576 |
|
|
and a sequence of additions, so the observed cost is
|
2577 |
|
|
given as MIN (m * add_cost[speed][mode],
|
2578 |
|
|
shift_cost[speed][mode][m]). */
|
2579 |
|
|
op_cost = m * add_cost[speed][mode];
|
2580 |
|
|
if (shift_cost[speed][mode][m] < op_cost)
|
2581 |
|
|
op_cost = shift_cost[speed][mode][m];
|
2582 |
|
|
new_limit.cost = best_cost.cost - op_cost;
|
2583 |
|
|
new_limit.latency = best_cost.latency - op_cost;
|
2584 |
|
|
synth_mult (alg_in, q, &new_limit, mode);
|
2585 |
|
|
|
2586 |
|
|
alg_in->cost.cost += op_cost;
|
2587 |
|
|
alg_in->cost.latency += op_cost;
|
2588 |
|
|
if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
|
2589 |
|
|
{
|
2590 |
|
|
struct algorithm *x;
|
2591 |
|
|
best_cost = alg_in->cost;
|
2592 |
|
|
x = alg_in, alg_in = best_alg, best_alg = x;
|
2593 |
|
|
best_alg->log[best_alg->ops] = m;
|
2594 |
|
|
best_alg->op[best_alg->ops] = alg_shift;
|
2595 |
|
|
}
|
2596 |
|
|
}
|
2597 |
|
|
}
|
2598 |
|
|
if (cache_hit)
|
2599 |
|
|
goto done;
|
2600 |
|
|
}
|
2601 |
|
|
|
2602 |
|
|
/* If we have an odd number, add or subtract one. */
|
2603 |
|
|
if ((t & 1) != 0)
|
2604 |
|
|
{
|
2605 |
|
|
unsigned HOST_WIDE_INT w;
|
2606 |
|
|
|
2607 |
|
|
do_alg_addsub_t_m2:
|
2608 |
|
|
for (w = 1; (w & t) != 0; w <<= 1)
|
2609 |
|
|
;
|
2610 |
|
|
/* If T was -1, then W will be zero after the loop. This is another
|
2611 |
|
|
case where T ends with ...111. Handling this with (T + 1) and
|
2612 |
|
|
subtract 1 produces slightly better code and results in algorithm
|
2613 |
|
|
selection much faster than treating it like the ...0111 case
|
2614 |
|
|
below. */
|
2615 |
|
|
if (w == 0
|
2616 |
|
|
|| (w > 2
|
2617 |
|
|
/* Reject the case where t is 3.
|
2618 |
|
|
Thus we prefer addition in that case. */
|
2619 |
|
|
&& t != 3))
|
2620 |
|
|
{
|
2621 |
|
|
/* T ends with ...111. Multiply by (T + 1) and subtract 1. */
|
2622 |
|
|
|
2623 |
|
|
op_cost = add_cost[speed][mode];
|
2624 |
|
|
new_limit.cost = best_cost.cost - op_cost;
|
2625 |
|
|
new_limit.latency = best_cost.latency - op_cost;
|
2626 |
|
|
synth_mult (alg_in, t + 1, &new_limit, mode);
|
2627 |
|
|
|
2628 |
|
|
alg_in->cost.cost += op_cost;
|
2629 |
|
|
alg_in->cost.latency += op_cost;
|
2630 |
|
|
if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
|
2631 |
|
|
{
|
2632 |
|
|
struct algorithm *x;
|
2633 |
|
|
best_cost = alg_in->cost;
|
2634 |
|
|
x = alg_in, alg_in = best_alg, best_alg = x;
|
2635 |
|
|
best_alg->log[best_alg->ops] = 0;
|
2636 |
|
|
best_alg->op[best_alg->ops] = alg_sub_t_m2;
|
2637 |
|
|
}
|
2638 |
|
|
}
|
2639 |
|
|
else
|
2640 |
|
|
{
|
2641 |
|
|
/* T ends with ...01 or ...011. Multiply by (T - 1) and add 1. */
|
2642 |
|
|
|
2643 |
|
|
op_cost = add_cost[speed][mode];
|
2644 |
|
|
new_limit.cost = best_cost.cost - op_cost;
|
2645 |
|
|
new_limit.latency = best_cost.latency - op_cost;
|
2646 |
|
|
synth_mult (alg_in, t - 1, &new_limit, mode);
|
2647 |
|
|
|
2648 |
|
|
alg_in->cost.cost += op_cost;
|
2649 |
|
|
alg_in->cost.latency += op_cost;
|
2650 |
|
|
if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
|
2651 |
|
|
{
|
2652 |
|
|
struct algorithm *x;
|
2653 |
|
|
best_cost = alg_in->cost;
|
2654 |
|
|
x = alg_in, alg_in = best_alg, best_alg = x;
|
2655 |
|
|
best_alg->log[best_alg->ops] = 0;
|
2656 |
|
|
best_alg->op[best_alg->ops] = alg_add_t_m2;
|
2657 |
|
|
}
|
2658 |
|
|
}
|
2659 |
|
|
|
2660 |
|
|
/* We may be able to calculate a * -7, a * -15, a * -31, etc
|
2661 |
|
|
quickly with a - a * n for some appropriate constant n. */
|
2662 |
|
|
m = exact_log2 (-orig_t + 1);
|
2663 |
|
|
if (m >= 0 && m < maxm)
|
2664 |
|
|
{
|
2665 |
|
|
op_cost = shiftsub1_cost[speed][mode][m];
|
2666 |
|
|
new_limit.cost = best_cost.cost - op_cost;
|
2667 |
|
|
new_limit.latency = best_cost.latency - op_cost;
|
2668 |
|
|
synth_mult (alg_in, (unsigned HOST_WIDE_INT) (-orig_t + 1) >> m, &new_limit, mode);
|
2669 |
|
|
|
2670 |
|
|
alg_in->cost.cost += op_cost;
|
2671 |
|
|
alg_in->cost.latency += op_cost;
|
2672 |
|
|
if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
|
2673 |
|
|
{
|
2674 |
|
|
struct algorithm *x;
|
2675 |
|
|
best_cost = alg_in->cost;
|
2676 |
|
|
x = alg_in, alg_in = best_alg, best_alg = x;
|
2677 |
|
|
best_alg->log[best_alg->ops] = m;
|
2678 |
|
|
best_alg->op[best_alg->ops] = alg_sub_t_m2;
|
2679 |
|
|
}
|
2680 |
|
|
}
|
2681 |
|
|
|
2682 |
|
|
if (cache_hit)
|
2683 |
|
|
goto done;
|
2684 |
|
|
}
|
2685 |
|
|
|
2686 |
|
|
/* Look for factors of t of the form
|
2687 |
|
|
t = q(2**m +- 1), 2 <= m <= floor(log2(t - 1)).
|
2688 |
|
|
If we find such a factor, we can multiply by t using an algorithm that
|
2689 |
|
|
multiplies by q, shift the result by m and add/subtract it to itself.
|
2690 |
|
|
|
2691 |
|
|
We search for large factors first and loop down, even if large factors
|
2692 |
|
|
are less probable than small; if we find a large factor we will find a
|
2693 |
|
|
good sequence quickly, and therefore be able to prune (by decreasing
|
2694 |
|
|
COST_LIMIT) the search. */
|
2695 |
|
|
|
2696 |
|
|
do_alg_addsub_factor:
|
2697 |
|
|
for (m = floor_log2 (t - 1); m >= 2; m--)
|
2698 |
|
|
{
|
2699 |
|
|
unsigned HOST_WIDE_INT d;
|
2700 |
|
|
|
2701 |
|
|
d = ((unsigned HOST_WIDE_INT) 1 << m) + 1;
|
2702 |
|
|
if (t % d == 0 && t > d && m < maxm
|
2703 |
|
|
&& (!cache_hit || cache_alg == alg_add_factor))
|
2704 |
|
|
{
|
2705 |
|
|
/* If the target has a cheap shift-and-add instruction use
|
2706 |
|
|
that in preference to a shift insn followed by an add insn.
|
2707 |
|
|
Assume that the shift-and-add is "atomic" with a latency
|
2708 |
|
|
equal to its cost, otherwise assume that on superscalar
|
2709 |
|
|
hardware the shift may be executed concurrently with the
|
2710 |
|
|
earlier steps in the algorithm. */
|
2711 |
|
|
op_cost = add_cost[speed][mode] + shift_cost[speed][mode][m];
|
2712 |
|
|
if (shiftadd_cost[speed][mode][m] < op_cost)
|
2713 |
|
|
{
|
2714 |
|
|
op_cost = shiftadd_cost[speed][mode][m];
|
2715 |
|
|
op_latency = op_cost;
|
2716 |
|
|
}
|
2717 |
|
|
else
|
2718 |
|
|
op_latency = add_cost[speed][mode];
|
2719 |
|
|
|
2720 |
|
|
new_limit.cost = best_cost.cost - op_cost;
|
2721 |
|
|
new_limit.latency = best_cost.latency - op_latency;
|
2722 |
|
|
synth_mult (alg_in, t / d, &new_limit, mode);
|
2723 |
|
|
|
2724 |
|
|
alg_in->cost.cost += op_cost;
|
2725 |
|
|
alg_in->cost.latency += op_latency;
|
2726 |
|
|
if (alg_in->cost.latency < op_cost)
|
2727 |
|
|
alg_in->cost.latency = op_cost;
|
2728 |
|
|
if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
|
2729 |
|
|
{
|
2730 |
|
|
struct algorithm *x;
|
2731 |
|
|
best_cost = alg_in->cost;
|
2732 |
|
|
x = alg_in, alg_in = best_alg, best_alg = x;
|
2733 |
|
|
best_alg->log[best_alg->ops] = m;
|
2734 |
|
|
best_alg->op[best_alg->ops] = alg_add_factor;
|
2735 |
|
|
}
|
2736 |
|
|
/* Other factors will have been taken care of in the recursion. */
|
2737 |
|
|
break;
|
2738 |
|
|
}
|
2739 |
|
|
|
2740 |
|
|
d = ((unsigned HOST_WIDE_INT) 1 << m) - 1;
|
2741 |
|
|
if (t % d == 0 && t > d && m < maxm
|
2742 |
|
|
&& (!cache_hit || cache_alg == alg_sub_factor))
|
2743 |
|
|
{
|
2744 |
|
|
/* If the target has a cheap shift-and-subtract insn use
|
2745 |
|
|
that in preference to a shift insn followed by a sub insn.
|
2746 |
|
|
Assume that the shift-and-sub is "atomic" with a latency
|
2747 |
|
|
equal to it's cost, otherwise assume that on superscalar
|
2748 |
|
|
hardware the shift may be executed concurrently with the
|
2749 |
|
|
earlier steps in the algorithm. */
|
2750 |
|
|
op_cost = add_cost[speed][mode] + shift_cost[speed][mode][m];
|
2751 |
|
|
if (shiftsub0_cost[speed][mode][m] < op_cost)
|
2752 |
|
|
{
|
2753 |
|
|
op_cost = shiftsub0_cost[speed][mode][m];
|
2754 |
|
|
op_latency = op_cost;
|
2755 |
|
|
}
|
2756 |
|
|
else
|
2757 |
|
|
op_latency = add_cost[speed][mode];
|
2758 |
|
|
|
2759 |
|
|
new_limit.cost = best_cost.cost - op_cost;
|
2760 |
|
|
new_limit.latency = best_cost.latency - op_latency;
|
2761 |
|
|
synth_mult (alg_in, t / d, &new_limit, mode);
|
2762 |
|
|
|
2763 |
|
|
alg_in->cost.cost += op_cost;
|
2764 |
|
|
alg_in->cost.latency += op_latency;
|
2765 |
|
|
if (alg_in->cost.latency < op_cost)
|
2766 |
|
|
alg_in->cost.latency = op_cost;
|
2767 |
|
|
if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
|
2768 |
|
|
{
|
2769 |
|
|
struct algorithm *x;
|
2770 |
|
|
best_cost = alg_in->cost;
|
2771 |
|
|
x = alg_in, alg_in = best_alg, best_alg = x;
|
2772 |
|
|
best_alg->log[best_alg->ops] = m;
|
2773 |
|
|
best_alg->op[best_alg->ops] = alg_sub_factor;
|
2774 |
|
|
}
|
2775 |
|
|
break;
|
2776 |
|
|
}
|
2777 |
|
|
}
|
2778 |
|
|
if (cache_hit)
|
2779 |
|
|
goto done;
|
2780 |
|
|
|
2781 |
|
|
/* Try shift-and-add (load effective address) instructions,
|
2782 |
|
|
i.e. do a*3, a*5, a*9. */
|
2783 |
|
|
if ((t & 1) != 0)
|
2784 |
|
|
{
|
2785 |
|
|
do_alg_add_t2_m:
|
2786 |
|
|
q = t - 1;
|
2787 |
|
|
q = q & -q;
|
2788 |
|
|
m = exact_log2 (q);
|
2789 |
|
|
if (m >= 0 && m < maxm)
|
2790 |
|
|
{
|
2791 |
|
|
op_cost = shiftadd_cost[speed][mode][m];
|
2792 |
|
|
new_limit.cost = best_cost.cost - op_cost;
|
2793 |
|
|
new_limit.latency = best_cost.latency - op_cost;
|
2794 |
|
|
synth_mult (alg_in, (t - 1) >> m, &new_limit, mode);
|
2795 |
|
|
|
2796 |
|
|
alg_in->cost.cost += op_cost;
|
2797 |
|
|
alg_in->cost.latency += op_cost;
|
2798 |
|
|
if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
|
2799 |
|
|
{
|
2800 |
|
|
struct algorithm *x;
|
2801 |
|
|
best_cost = alg_in->cost;
|
2802 |
|
|
x = alg_in, alg_in = best_alg, best_alg = x;
|
2803 |
|
|
best_alg->log[best_alg->ops] = m;
|
2804 |
|
|
best_alg->op[best_alg->ops] = alg_add_t2_m;
|
2805 |
|
|
}
|
2806 |
|
|
}
|
2807 |
|
|
if (cache_hit)
|
2808 |
|
|
goto done;
|
2809 |
|
|
|
2810 |
|
|
do_alg_sub_t2_m:
|
2811 |
|
|
q = t + 1;
|
2812 |
|
|
q = q & -q;
|
2813 |
|
|
m = exact_log2 (q);
|
2814 |
|
|
if (m >= 0 && m < maxm)
|
2815 |
|
|
{
|
2816 |
|
|
op_cost = shiftsub0_cost[speed][mode][m];
|
2817 |
|
|
new_limit.cost = best_cost.cost - op_cost;
|
2818 |
|
|
new_limit.latency = best_cost.latency - op_cost;
|
2819 |
|
|
synth_mult (alg_in, (t + 1) >> m, &new_limit, mode);
|
2820 |
|
|
|
2821 |
|
|
alg_in->cost.cost += op_cost;
|
2822 |
|
|
alg_in->cost.latency += op_cost;
|
2823 |
|
|
if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
|
2824 |
|
|
{
|
2825 |
|
|
struct algorithm *x;
|
2826 |
|
|
best_cost = alg_in->cost;
|
2827 |
|
|
x = alg_in, alg_in = best_alg, best_alg = x;
|
2828 |
|
|
best_alg->log[best_alg->ops] = m;
|
2829 |
|
|
best_alg->op[best_alg->ops] = alg_sub_t2_m;
|
2830 |
|
|
}
|
2831 |
|
|
}
|
2832 |
|
|
if (cache_hit)
|
2833 |
|
|
goto done;
|
2834 |
|
|
}
|
2835 |
|
|
|
2836 |
|
|
done:
|
2837 |
|
|
/* If best_cost has not decreased, we have not found any algorithm. */
|
2838 |
|
|
if (!CHEAPER_MULT_COST (&best_cost, cost_limit))
|
2839 |
|
|
{
|
2840 |
|
|
/* We failed to find an algorithm. Record alg_impossible for
|
2841 |
|
|
this case (that is, <T, MODE, COST_LIMIT>) so that next time
|
2842 |
|
|
we are asked to find an algorithm for T within the same or
|
2843 |
|
|
lower COST_LIMIT, we can immediately return to the
|
2844 |
|
|
caller. */
|
2845 |
|
|
alg_hash[hash_index].t = t;
|
2846 |
|
|
alg_hash[hash_index].mode = mode;
|
2847 |
|
|
alg_hash[hash_index].speed = speed;
|
2848 |
|
|
alg_hash[hash_index].alg = alg_impossible;
|
2849 |
|
|
alg_hash[hash_index].cost = *cost_limit;
|
2850 |
|
|
return;
|
2851 |
|
|
}
|
2852 |
|
|
|
2853 |
|
|
/* Cache the result. */
|
2854 |
|
|
if (!cache_hit)
|
2855 |
|
|
{
|
2856 |
|
|
alg_hash[hash_index].t = t;
|
2857 |
|
|
alg_hash[hash_index].mode = mode;
|
2858 |
|
|
alg_hash[hash_index].speed = speed;
|
2859 |
|
|
alg_hash[hash_index].alg = best_alg->op[best_alg->ops];
|
2860 |
|
|
alg_hash[hash_index].cost.cost = best_cost.cost;
|
2861 |
|
|
alg_hash[hash_index].cost.latency = best_cost.latency;
|
2862 |
|
|
}
|
2863 |
|
|
|
2864 |
|
|
/* If we are getting a too long sequence for `struct algorithm'
|
2865 |
|
|
to record, make this search fail. */
|
2866 |
|
|
if (best_alg->ops == MAX_BITS_PER_WORD)
|
2867 |
|
|
return;
|
2868 |
|
|
|
2869 |
|
|
/* Copy the algorithm from temporary space to the space at alg_out.
|
2870 |
|
|
We avoid using structure assignment because the majority of
|
2871 |
|
|
best_alg is normally undefined, and this is a critical function. */
|
2872 |
|
|
alg_out->ops = best_alg->ops + 1;
|
2873 |
|
|
alg_out->cost = best_cost;
|
2874 |
|
|
memcpy (alg_out->op, best_alg->op,
|
2875 |
|
|
alg_out->ops * sizeof *alg_out->op);
|
2876 |
|
|
memcpy (alg_out->log, best_alg->log,
|
2877 |
|
|
alg_out->ops * sizeof *alg_out->log);
|
2878 |
|
|
}
|
2879 |
|
|
|
2880 |
|
|
/* Find the cheapest way of multiplying a value of mode MODE by VAL.
|
2881 |
|
|
Try three variations:
|
2882 |
|
|
|
2883 |
|
|
- a shift/add sequence based on VAL itself
|
2884 |
|
|
- a shift/add sequence based on -VAL, followed by a negation
|
2885 |
|
|
- a shift/add sequence based on VAL - 1, followed by an addition.
|
2886 |
|
|
|
2887 |
|
|
Return true if the cheapest of these cost less than MULT_COST,
|
2888 |
|
|
describing the algorithm in *ALG and final fixup in *VARIANT. */
|
2889 |
|
|
|
2890 |
|
|
static bool
|
2891 |
|
|
choose_mult_variant (enum machine_mode mode, HOST_WIDE_INT val,
|
2892 |
|
|
struct algorithm *alg, enum mult_variant *variant,
|
2893 |
|
|
int mult_cost)
|
2894 |
|
|
{
|
2895 |
|
|
struct algorithm alg2;
|
2896 |
|
|
struct mult_cost limit;
|
2897 |
|
|
int op_cost;
|
2898 |
|
|
bool speed = optimize_insn_for_speed_p ();
|
2899 |
|
|
|
2900 |
|
|
/* Fail quickly for impossible bounds. */
|
2901 |
|
|
if (mult_cost < 0)
|
2902 |
|
|
return false;
|
2903 |
|
|
|
2904 |
|
|
/* Ensure that mult_cost provides a reasonable upper bound.
|
2905 |
|
|
Any constant multiplication can be performed with less
|
2906 |
|
|
than 2 * bits additions. */
|
2907 |
|
|
op_cost = 2 * GET_MODE_BITSIZE (mode) * add_cost[speed][mode];
|
2908 |
|
|
if (mult_cost > op_cost)
|
2909 |
|
|
mult_cost = op_cost;
|
2910 |
|
|
|
2911 |
|
|
*variant = basic_variant;
|
2912 |
|
|
limit.cost = mult_cost;
|
2913 |
|
|
limit.latency = mult_cost;
|
2914 |
|
|
synth_mult (alg, val, &limit, mode);
|
2915 |
|
|
|
2916 |
|
|
/* This works only if the inverted value actually fits in an
|
2917 |
|
|
`unsigned int' */
|
2918 |
|
|
if (HOST_BITS_PER_INT >= GET_MODE_BITSIZE (mode))
|
2919 |
|
|
{
|
2920 |
|
|
op_cost = neg_cost[speed][mode];
|
2921 |
|
|
if (MULT_COST_LESS (&alg->cost, mult_cost))
|
2922 |
|
|
{
|
2923 |
|
|
limit.cost = alg->cost.cost - op_cost;
|
2924 |
|
|
limit.latency = alg->cost.latency - op_cost;
|
2925 |
|
|
}
|
2926 |
|
|
else
|
2927 |
|
|
{
|
2928 |
|
|
limit.cost = mult_cost - op_cost;
|
2929 |
|
|
limit.latency = mult_cost - op_cost;
|
2930 |
|
|
}
|
2931 |
|
|
|
2932 |
|
|
synth_mult (&alg2, -val, &limit, mode);
|
2933 |
|
|
alg2.cost.cost += op_cost;
|
2934 |
|
|
alg2.cost.latency += op_cost;
|
2935 |
|
|
if (CHEAPER_MULT_COST (&alg2.cost, &alg->cost))
|
2936 |
|
|
*alg = alg2, *variant = negate_variant;
|
2937 |
|
|
}
|
2938 |
|
|
|
2939 |
|
|
/* This proves very useful for division-by-constant. */
|
2940 |
|
|
op_cost = add_cost[speed][mode];
|
2941 |
|
|
if (MULT_COST_LESS (&alg->cost, mult_cost))
|
2942 |
|
|
{
|
2943 |
|
|
limit.cost = alg->cost.cost - op_cost;
|
2944 |
|
|
limit.latency = alg->cost.latency - op_cost;
|
2945 |
|
|
}
|
2946 |
|
|
else
|
2947 |
|
|
{
|
2948 |
|
|
limit.cost = mult_cost - op_cost;
|
2949 |
|
|
limit.latency = mult_cost - op_cost;
|
2950 |
|
|
}
|
2951 |
|
|
|
2952 |
|
|
synth_mult (&alg2, val - 1, &limit, mode);
|
2953 |
|
|
alg2.cost.cost += op_cost;
|
2954 |
|
|
alg2.cost.latency += op_cost;
|
2955 |
|
|
if (CHEAPER_MULT_COST (&alg2.cost, &alg->cost))
|
2956 |
|
|
*alg = alg2, *variant = add_variant;
|
2957 |
|
|
|
2958 |
|
|
return MULT_COST_LESS (&alg->cost, mult_cost);
|
2959 |
|
|
}
|
2960 |
|
|
|
2961 |
|
|
/* A subroutine of expand_mult, used for constant multiplications.
|
2962 |
|
|
Multiply OP0 by VAL in mode MODE, storing the result in TARGET if
|
2963 |
|
|
convenient. Use the shift/add sequence described by ALG and apply
|
2964 |
|
|
the final fixup specified by VARIANT. */
|
2965 |
|
|
|
2966 |
|
|
static rtx
|
2967 |
|
|
expand_mult_const (enum machine_mode mode, rtx op0, HOST_WIDE_INT val,
|
2968 |
|
|
rtx target, const struct algorithm *alg,
|
2969 |
|
|
enum mult_variant variant)
|
2970 |
|
|
{
|
2971 |
|
|
HOST_WIDE_INT val_so_far;
|
2972 |
|
|
rtx insn, accum, tem;
|
2973 |
|
|
int opno;
|
2974 |
|
|
enum machine_mode nmode;
|
2975 |
|
|
|
2976 |
|
|
/* Avoid referencing memory over and over and invalid sharing
|
2977 |
|
|
on SUBREGs. */
|
2978 |
|
|
op0 = force_reg (mode, op0);
|
2979 |
|
|
|
2980 |
|
|
/* ACCUM starts out either as OP0 or as a zero, depending on
|
2981 |
|
|
the first operation. */
|
2982 |
|
|
|
2983 |
|
|
if (alg->op[0] == alg_zero)
|
2984 |
|
|
{
|
2985 |
|
|
accum = copy_to_mode_reg (mode, const0_rtx);
|
2986 |
|
|
val_so_far = 0;
|
2987 |
|
|
}
|
2988 |
|
|
else if (alg->op[0] == alg_m)
|
2989 |
|
|
{
|
2990 |
|
|
accum = copy_to_mode_reg (mode, op0);
|
2991 |
|
|
val_so_far = 1;
|
2992 |
|
|
}
|
2993 |
|
|
else
|
2994 |
|
|
gcc_unreachable ();
|
2995 |
|
|
|
2996 |
|
|
for (opno = 1; opno < alg->ops; opno++)
|
2997 |
|
|
{
|
2998 |
|
|
int log = alg->log[opno];
|
2999 |
|
|
rtx shift_subtarget = optimize ? 0 : accum;
|
3000 |
|
|
rtx add_target
|
3001 |
|
|
= (opno == alg->ops - 1 && target != 0 && variant != add_variant
|
3002 |
|
|
&& !optimize)
|
3003 |
|
|
? target : 0;
|
3004 |
|
|
rtx accum_target = optimize ? 0 : accum;
|
3005 |
|
|
|
3006 |
|
|
switch (alg->op[opno])
|
3007 |
|
|
{
|
3008 |
|
|
case alg_shift:
|
3009 |
378 |
julius |
tem = expand_shift (LSHIFT_EXPR, mode, accum,
|
3010 |
|
|
build_int_cst (NULL_TREE, log),
|
3011 |
|
|
NULL_RTX, 0);
|
3012 |
|
|
/* REG_EQUAL note will be attached to the following insn. */
|
3013 |
|
|
emit_move_insn (accum, tem);
|
3014 |
280 |
jeremybenn |
val_so_far <<= log;
|
3015 |
|
|
break;
|
3016 |
|
|
|
3017 |
|
|
case alg_add_t_m2:
|
3018 |
|
|
tem = expand_shift (LSHIFT_EXPR, mode, op0,
|
3019 |
|
|
build_int_cst (NULL_TREE, log),
|
3020 |
|
|
NULL_RTX, 0);
|
3021 |
|
|
accum = force_operand (gen_rtx_PLUS (mode, accum, tem),
|
3022 |
|
|
add_target ? add_target : accum_target);
|
3023 |
|
|
val_so_far += (HOST_WIDE_INT) 1 << log;
|
3024 |
|
|
break;
|
3025 |
|
|
|
3026 |
|
|
case alg_sub_t_m2:
|
3027 |
|
|
tem = expand_shift (LSHIFT_EXPR, mode, op0,
|
3028 |
|
|
build_int_cst (NULL_TREE, log),
|
3029 |
|
|
NULL_RTX, 0);
|
3030 |
|
|
accum = force_operand (gen_rtx_MINUS (mode, accum, tem),
|
3031 |
|
|
add_target ? add_target : accum_target);
|
3032 |
|
|
val_so_far -= (HOST_WIDE_INT) 1 << log;
|
3033 |
|
|
break;
|
3034 |
|
|
|
3035 |
|
|
case alg_add_t2_m:
|
3036 |
|
|
accum = expand_shift (LSHIFT_EXPR, mode, accum,
|
3037 |
|
|
build_int_cst (NULL_TREE, log),
|
3038 |
|
|
shift_subtarget,
|
3039 |
|
|
0);
|
3040 |
|
|
accum = force_operand (gen_rtx_PLUS (mode, accum, op0),
|
3041 |
|
|
add_target ? add_target : accum_target);
|
3042 |
|
|
val_so_far = (val_so_far << log) + 1;
|
3043 |
|
|
break;
|
3044 |
|
|
|
3045 |
|
|
case alg_sub_t2_m:
|
3046 |
|
|
accum = expand_shift (LSHIFT_EXPR, mode, accum,
|
3047 |
|
|
build_int_cst (NULL_TREE, log),
|
3048 |
|
|
shift_subtarget, 0);
|
3049 |
|
|
accum = force_operand (gen_rtx_MINUS (mode, accum, op0),
|
3050 |
|
|
add_target ? add_target : accum_target);
|
3051 |
|
|
val_so_far = (val_so_far << log) - 1;
|
3052 |
|
|
break;
|
3053 |
|
|
|
3054 |
|
|
case alg_add_factor:
|
3055 |
|
|
tem = expand_shift (LSHIFT_EXPR, mode, accum,
|
3056 |
|
|
build_int_cst (NULL_TREE, log),
|
3057 |
|
|
NULL_RTX, 0);
|
3058 |
|
|
accum = force_operand (gen_rtx_PLUS (mode, accum, tem),
|
3059 |
|
|
add_target ? add_target : accum_target);
|
3060 |
|
|
val_so_far += val_so_far << log;
|
3061 |
|
|
break;
|
3062 |
|
|
|
3063 |
|
|
case alg_sub_factor:
|
3064 |
|
|
tem = expand_shift (LSHIFT_EXPR, mode, accum,
|
3065 |
|
|
build_int_cst (NULL_TREE, log),
|
3066 |
|
|
NULL_RTX, 0);
|
3067 |
|
|
accum = force_operand (gen_rtx_MINUS (mode, tem, accum),
|
3068 |
|
|
(add_target
|
3069 |
|
|
? add_target : (optimize ? 0 : tem)));
|
3070 |
|
|
val_so_far = (val_so_far << log) - val_so_far;
|
3071 |
|
|
break;
|
3072 |
|
|
|
3073 |
|
|
default:
|
3074 |
|
|
gcc_unreachable ();
|
3075 |
|
|
}
|
3076 |
|
|
|
3077 |
|
|
/* Write a REG_EQUAL note on the last insn so that we can cse
|
3078 |
|
|
multiplication sequences. Note that if ACCUM is a SUBREG,
|
3079 |
|
|
we've set the inner register and must properly indicate
|
3080 |
|
|
that. */
|
3081 |
|
|
|
3082 |
|
|
tem = op0, nmode = mode;
|
3083 |
|
|
if (GET_CODE (accum) == SUBREG)
|
3084 |
|
|
{
|
3085 |
|
|
nmode = GET_MODE (SUBREG_REG (accum));
|
3086 |
|
|
tem = gen_lowpart (nmode, op0);
|
3087 |
|
|
}
|
3088 |
|
|
|
3089 |
|
|
insn = get_last_insn ();
|
3090 |
|
|
set_unique_reg_note (insn, REG_EQUAL,
|
3091 |
|
|
gen_rtx_MULT (nmode, tem,
|
3092 |
|
|
GEN_INT (val_so_far)));
|
3093 |
|
|
}
|
3094 |
|
|
|
3095 |
|
|
if (variant == negate_variant)
|
3096 |
|
|
{
|
3097 |
|
|
val_so_far = -val_so_far;
|
3098 |
|
|
accum = expand_unop (mode, neg_optab, accum, target, 0);
|
3099 |
|
|
}
|
3100 |
|
|
else if (variant == add_variant)
|
3101 |
|
|
{
|
3102 |
|
|
val_so_far = val_so_far + 1;
|
3103 |
|
|
accum = force_operand (gen_rtx_PLUS (mode, accum, op0), target);
|
3104 |
|
|
}
|
3105 |
|
|
|
3106 |
|
|
/* Compare only the bits of val and val_so_far that are significant
|
3107 |
|
|
in the result mode, to avoid sign-/zero-extension confusion. */
|
3108 |
|
|
val &= GET_MODE_MASK (mode);
|
3109 |
|
|
val_so_far &= GET_MODE_MASK (mode);
|
3110 |
|
|
gcc_assert (val == val_so_far);
|
3111 |
|
|
|
3112 |
|
|
return accum;
|
3113 |
|
|
}
|
3114 |
|
|
|
3115 |
|
|
/* Perform a multiplication and return an rtx for the result.
|
3116 |
|
|
MODE is mode of value; OP0 and OP1 are what to multiply (rtx's);
|
3117 |
|
|
TARGET is a suggestion for where to store the result (an rtx).
|
3118 |
|
|
|
3119 |
|
|
We check specially for a constant integer as OP1.
|
3120 |
|
|
If you want this check for OP0 as well, then before calling
|
3121 |
|
|
you should swap the two operands if OP0 would be constant. */
|
3122 |
|
|
|
3123 |
|
|
rtx
|
3124 |
|
|
expand_mult (enum machine_mode mode, rtx op0, rtx op1, rtx target,
|
3125 |
|
|
int unsignedp)
|
3126 |
|
|
{
|
3127 |
|
|
enum mult_variant variant;
|
3128 |
|
|
struct algorithm algorithm;
|
3129 |
|
|
int max_cost;
|
3130 |
|
|
bool speed = optimize_insn_for_speed_p ();
|
3131 |
|
|
|
3132 |
|
|
/* Handling const0_rtx here allows us to use zero as a rogue value for
|
3133 |
|
|
coeff below. */
|
3134 |
|
|
if (op1 == const0_rtx)
|
3135 |
|
|
return const0_rtx;
|
3136 |
|
|
if (op1 == const1_rtx)
|
3137 |
|
|
return op0;
|
3138 |
|
|
if (op1 == constm1_rtx)
|
3139 |
|
|
return expand_unop (mode,
|
3140 |
|
|
GET_MODE_CLASS (mode) == MODE_INT
|
3141 |
|
|
&& !unsignedp && flag_trapv
|
3142 |
|
|
? negv_optab : neg_optab,
|
3143 |
|
|
op0, target, 0);
|
3144 |
|
|
|
3145 |
|
|
/* These are the operations that are potentially turned into a sequence
|
3146 |
|
|
of shifts and additions. */
|
3147 |
|
|
if (SCALAR_INT_MODE_P (mode)
|
3148 |
|
|
&& (unsignedp || !flag_trapv))
|
3149 |
|
|
{
|
3150 |
|
|
HOST_WIDE_INT coeff = 0;
|
3151 |
|
|
rtx fake_reg = gen_raw_REG (mode, LAST_VIRTUAL_REGISTER + 1);
|
3152 |
|
|
|
3153 |
|
|
/* synth_mult does an `unsigned int' multiply. As long as the mode is
|
3154 |
|
|
less than or equal in size to `unsigned int' this doesn't matter.
|
3155 |
|
|
If the mode is larger than `unsigned int', then synth_mult works
|
3156 |
|
|
only if the constant value exactly fits in an `unsigned int' without
|
3157 |
|
|
any truncation. This means that multiplying by negative values does
|
3158 |
|
|
not work; results are off by 2^32 on a 32 bit machine. */
|
3159 |
|
|
|
3160 |
|
|
if (CONST_INT_P (op1))
|
3161 |
|
|
{
|
3162 |
|
|
/* Attempt to handle multiplication of DImode values by negative
|
3163 |
|
|
coefficients, by performing the multiplication by a positive
|
3164 |
|
|
multiplier and then inverting the result. */
|
3165 |
|
|
if (INTVAL (op1) < 0
|
3166 |
|
|
&& GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
|
3167 |
|
|
{
|
3168 |
|
|
/* Its safe to use -INTVAL (op1) even for INT_MIN, as the
|
3169 |
|
|
result is interpreted as an unsigned coefficient.
|
3170 |
|
|
Exclude cost of op0 from max_cost to match the cost
|
3171 |
|
|
calculation of the synth_mult. */
|
3172 |
|
|
max_cost = rtx_cost (gen_rtx_MULT (mode, fake_reg, op1), SET, speed)
|
3173 |
|
|
- neg_cost[speed][mode];
|
3174 |
|
|
if (max_cost > 0
|
3175 |
|
|
&& choose_mult_variant (mode, -INTVAL (op1), &algorithm,
|
3176 |
|
|
&variant, max_cost))
|
3177 |
|
|
{
|
3178 |
|
|
rtx temp = expand_mult_const (mode, op0, -INTVAL (op1),
|
3179 |
|
|
NULL_RTX, &algorithm,
|
3180 |
|
|
variant);
|
3181 |
|
|
return expand_unop (mode, neg_optab, temp, target, 0);
|
3182 |
|
|
}
|
3183 |
|
|
}
|
3184 |
|
|
else coeff = INTVAL (op1);
|
3185 |
|
|
}
|
3186 |
|
|
else if (GET_CODE (op1) == CONST_DOUBLE)
|
3187 |
|
|
{
|
3188 |
|
|
/* If we are multiplying in DImode, it may still be a win
|
3189 |
|
|
to try to work with shifts and adds. */
|
3190 |
|
|
if (CONST_DOUBLE_HIGH (op1) == 0
|
3191 |
|
|
&& CONST_DOUBLE_LOW (op1) > 0)
|
3192 |
|
|
coeff = CONST_DOUBLE_LOW (op1);
|
3193 |
|
|
else if (CONST_DOUBLE_LOW (op1) == 0
|
3194 |
|
|
&& EXACT_POWER_OF_2_OR_ZERO_P (CONST_DOUBLE_HIGH (op1)))
|
3195 |
|
|
{
|
3196 |
|
|
int shift = floor_log2 (CONST_DOUBLE_HIGH (op1))
|
3197 |
|
|
+ HOST_BITS_PER_WIDE_INT;
|
3198 |
|
|
return expand_shift (LSHIFT_EXPR, mode, op0,
|
3199 |
|
|
build_int_cst (NULL_TREE, shift),
|
3200 |
|
|
target, unsignedp);
|
3201 |
|
|
}
|
3202 |
|
|
}
|
3203 |
|
|
|
3204 |
|
|
/* We used to test optimize here, on the grounds that it's better to
|
3205 |
|
|
produce a smaller program when -O is not used. But this causes
|
3206 |
|
|
such a terrible slowdown sometimes that it seems better to always
|
3207 |
|
|
use synth_mult. */
|
3208 |
|
|
if (coeff != 0)
|
3209 |
|
|
{
|
3210 |
|
|
/* Special case powers of two. */
|
3211 |
|
|
if (EXACT_POWER_OF_2_OR_ZERO_P (coeff))
|
3212 |
|
|
return expand_shift (LSHIFT_EXPR, mode, op0,
|
3213 |
|
|
build_int_cst (NULL_TREE, floor_log2 (coeff)),
|
3214 |
|
|
target, unsignedp);
|
3215 |
|
|
|
3216 |
|
|
/* Exclude cost of op0 from max_cost to match the cost
|
3217 |
|
|
calculation of the synth_mult. */
|
3218 |
|
|
max_cost = rtx_cost (gen_rtx_MULT (mode, fake_reg, op1), SET, speed);
|
3219 |
|
|
if (choose_mult_variant (mode, coeff, &algorithm, &variant,
|
3220 |
|
|
max_cost))
|
3221 |
|
|
return expand_mult_const (mode, op0, coeff, target,
|
3222 |
|
|
&algorithm, variant);
|
3223 |
|
|
}
|
3224 |
|
|
}
|
3225 |
|
|
|
3226 |
|
|
if (GET_CODE (op0) == CONST_DOUBLE)
|
3227 |
|
|
{
|
3228 |
|
|
rtx temp = op0;
|
3229 |
|
|
op0 = op1;
|
3230 |
|
|
op1 = temp;
|
3231 |
|
|
}
|
3232 |
|
|
|
3233 |
|
|
/* Expand x*2.0 as x+x. */
|
3234 |
|
|
if (GET_CODE (op1) == CONST_DOUBLE
|
3235 |
|
|
&& SCALAR_FLOAT_MODE_P (mode))
|
3236 |
|
|
{
|
3237 |
|
|
REAL_VALUE_TYPE d;
|
3238 |
|
|
REAL_VALUE_FROM_CONST_DOUBLE (d, op1);
|
3239 |
|
|
|
3240 |
|
|
if (REAL_VALUES_EQUAL (d, dconst2))
|
3241 |
|
|
{
|
3242 |
|
|
op0 = force_reg (GET_MODE (op0), op0);
|
3243 |
|
|
return expand_binop (mode, add_optab, op0, op0,
|
3244 |
|
|
target, unsignedp, OPTAB_LIB_WIDEN);
|
3245 |
|
|
}
|
3246 |
|
|
}
|
3247 |
|
|
|
3248 |
|
|
/* This used to use umul_optab if unsigned, but for non-widening multiply
|
3249 |
|
|
there is no difference between signed and unsigned. */
|
3250 |
|
|
op0 = expand_binop (mode,
|
3251 |
|
|
! unsignedp
|
3252 |
|
|
&& flag_trapv && (GET_MODE_CLASS(mode) == MODE_INT)
|
3253 |
|
|
? smulv_optab : smul_optab,
|
3254 |
|
|
op0, op1, target, unsignedp, OPTAB_LIB_WIDEN);
|
3255 |
|
|
gcc_assert (op0);
|
3256 |
|
|
return op0;
|
3257 |
|
|
}
|
3258 |
|
|
|
3259 |
|
|
/* Return the smallest n such that 2**n >= X. */
|
3260 |
|
|
|
3261 |
|
|
int
|
3262 |
|
|
ceil_log2 (unsigned HOST_WIDE_INT x)
|
3263 |
|
|
{
|
3264 |
|
|
return floor_log2 (x - 1) + 1;
|
3265 |
|
|
}
|
3266 |
|
|
|
3267 |
|
|
/* Choose a minimal N + 1 bit approximation to 1/D that can be used to
|
3268 |
|
|
replace division by D, and put the least significant N bits of the result
|
3269 |
|
|
in *MULTIPLIER_PTR and return the most significant bit.
|
3270 |
|
|
|
3271 |
|
|
The width of operations is N (should be <= HOST_BITS_PER_WIDE_INT), the
|
3272 |
|
|
needed precision is in PRECISION (should be <= N).
|
3273 |
|
|
|
3274 |
|
|
PRECISION should be as small as possible so this function can choose
|
3275 |
|
|
multiplier more freely.
|
3276 |
|
|
|
3277 |
|
|
The rounded-up logarithm of D is placed in *lgup_ptr. A shift count that
|
3278 |
|
|
is to be used for a final right shift is placed in *POST_SHIFT_PTR.
|
3279 |
|
|
|
3280 |
|
|
Using this function, x/D will be equal to (x * m) >> (*POST_SHIFT_PTR),
|
3281 |
|
|
where m is the full HOST_BITS_PER_WIDE_INT + 1 bit multiplier. */
|
3282 |
|
|
|
3283 |
|
|
static
|
3284 |
|
|
unsigned HOST_WIDE_INT
|
3285 |
|
|
choose_multiplier (unsigned HOST_WIDE_INT d, int n, int precision,
|
3286 |
|
|
rtx *multiplier_ptr, int *post_shift_ptr, int *lgup_ptr)
|
3287 |
|
|
{
|
3288 |
|
|
HOST_WIDE_INT mhigh_hi, mlow_hi;
|
3289 |
|
|
unsigned HOST_WIDE_INT mhigh_lo, mlow_lo;
|
3290 |
|
|
int lgup, post_shift;
|
3291 |
|
|
int pow, pow2;
|
3292 |
|
|
unsigned HOST_WIDE_INT nl, dummy1;
|
3293 |
|
|
HOST_WIDE_INT nh, dummy2;
|
3294 |
|
|
|
3295 |
|
|
/* lgup = ceil(log2(divisor)); */
|
3296 |
|
|
lgup = ceil_log2 (d);
|
3297 |
|
|
|
3298 |
|
|
gcc_assert (lgup <= n);
|
3299 |
|
|
|
3300 |
|
|
pow = n + lgup;
|
3301 |
|
|
pow2 = n + lgup - precision;
|
3302 |
|
|
|
3303 |
|
|
/* We could handle this with some effort, but this case is much
|
3304 |
|
|
better handled directly with a scc insn, so rely on caller using
|
3305 |
|
|
that. */
|
3306 |
|
|
gcc_assert (pow != 2 * HOST_BITS_PER_WIDE_INT);
|
3307 |
|
|
|
3308 |
|
|
/* mlow = 2^(N + lgup)/d */
|
3309 |
|
|
if (pow >= HOST_BITS_PER_WIDE_INT)
|
3310 |
|
|
{
|
3311 |
|
|
nh = (HOST_WIDE_INT) 1 << (pow - HOST_BITS_PER_WIDE_INT);
|
3312 |
|
|
nl = 0;
|
3313 |
|
|
}
|
3314 |
|
|
else
|
3315 |
|
|
{
|
3316 |
|
|
nh = 0;
|
3317 |
|
|
nl = (unsigned HOST_WIDE_INT) 1 << pow;
|
3318 |
|
|
}
|
3319 |
|
|
div_and_round_double (TRUNC_DIV_EXPR, 1, nl, nh, d, (HOST_WIDE_INT) 0,
|
3320 |
|
|
&mlow_lo, &mlow_hi, &dummy1, &dummy2);
|
3321 |
|
|
|
3322 |
|
|
/* mhigh = (2^(N + lgup) + 2^N + lgup - precision)/d */
|
3323 |
|
|
if (pow2 >= HOST_BITS_PER_WIDE_INT)
|
3324 |
|
|
nh |= (HOST_WIDE_INT) 1 << (pow2 - HOST_BITS_PER_WIDE_INT);
|
3325 |
|
|
else
|
3326 |
|
|
nl |= (unsigned HOST_WIDE_INT) 1 << pow2;
|
3327 |
|
|
div_and_round_double (TRUNC_DIV_EXPR, 1, nl, nh, d, (HOST_WIDE_INT) 0,
|
3328 |
|
|
&mhigh_lo, &mhigh_hi, &dummy1, &dummy2);
|
3329 |
|
|
|
3330 |
|
|
gcc_assert (!mhigh_hi || nh - d < d);
|
3331 |
|
|
gcc_assert (mhigh_hi <= 1 && mlow_hi <= 1);
|
3332 |
|
|
/* Assert that mlow < mhigh. */
|
3333 |
|
|
gcc_assert (mlow_hi < mhigh_hi
|
3334 |
|
|
|| (mlow_hi == mhigh_hi && mlow_lo < mhigh_lo));
|
3335 |
|
|
|
3336 |
|
|
/* If precision == N, then mlow, mhigh exceed 2^N
|
3337 |
|
|
(but they do not exceed 2^(N+1)). */
|
3338 |
|
|
|
3339 |
|
|
/* Reduce to lowest terms. */
|
3340 |
|
|
for (post_shift = lgup; post_shift > 0; post_shift--)
|
3341 |
|
|
{
|
3342 |
|
|
unsigned HOST_WIDE_INT ml_lo = (mlow_hi << (HOST_BITS_PER_WIDE_INT - 1)) | (mlow_lo >> 1);
|
3343 |
|
|
unsigned HOST_WIDE_INT mh_lo = (mhigh_hi << (HOST_BITS_PER_WIDE_INT - 1)) | (mhigh_lo >> 1);
|
3344 |
|
|
if (ml_lo >= mh_lo)
|
3345 |
|
|
break;
|
3346 |
|
|
|
3347 |
|
|
mlow_hi = 0;
|
3348 |
|
|
mlow_lo = ml_lo;
|
3349 |
|
|
mhigh_hi = 0;
|
3350 |
|
|
mhigh_lo = mh_lo;
|
3351 |
|
|
}
|
3352 |
|
|
|
3353 |
|
|
*post_shift_ptr = post_shift;
|
3354 |
|
|
*lgup_ptr = lgup;
|
3355 |
|
|
if (n < HOST_BITS_PER_WIDE_INT)
|
3356 |
|
|
{
|
3357 |
|
|
unsigned HOST_WIDE_INT mask = ((unsigned HOST_WIDE_INT) 1 << n) - 1;
|
3358 |
|
|
*multiplier_ptr = GEN_INT (mhigh_lo & mask);
|
3359 |
|
|
return mhigh_lo >= mask;
|
3360 |
|
|
}
|
3361 |
|
|
else
|
3362 |
|
|
{
|
3363 |
|
|
*multiplier_ptr = GEN_INT (mhigh_lo);
|
3364 |
|
|
return mhigh_hi;
|
3365 |
|
|
}
|
3366 |
|
|
}
|
3367 |
|
|
|
3368 |
|
|
/* Compute the inverse of X mod 2**n, i.e., find Y such that X * Y is
|
3369 |
|
|
congruent to 1 (mod 2**N). */
|
3370 |
|
|
|
3371 |
|
|
static unsigned HOST_WIDE_INT
|
3372 |
|
|
invert_mod2n (unsigned HOST_WIDE_INT x, int n)
|
3373 |
|
|
{
|
3374 |
|
|
/* Solve x*y == 1 (mod 2^n), where x is odd. Return y. */
|
3375 |
|
|
|
3376 |
|
|
/* The algorithm notes that the choice y = x satisfies
|
3377 |
|
|
x*y == 1 mod 2^3, since x is assumed odd.
|
3378 |
|
|
Each iteration doubles the number of bits of significance in y. */
|
3379 |
|
|
|
3380 |
|
|
unsigned HOST_WIDE_INT mask;
|
3381 |
|
|
unsigned HOST_WIDE_INT y = x;
|
3382 |
|
|
int nbit = 3;
|
3383 |
|
|
|
3384 |
|
|
mask = (n == HOST_BITS_PER_WIDE_INT
|
3385 |
|
|
? ~(unsigned HOST_WIDE_INT) 0
|
3386 |
|
|
: ((unsigned HOST_WIDE_INT) 1 << n) - 1);
|
3387 |
|
|
|
3388 |
|
|
while (nbit < n)
|
3389 |
|
|
{
|
3390 |
|
|
y = y * (2 - x*y) & mask; /* Modulo 2^N */
|
3391 |
|
|
nbit *= 2;
|
3392 |
|
|
}
|
3393 |
|
|
return y;
|
3394 |
|
|
}
|
3395 |
|
|
|
3396 |
|
|
/* Emit code to adjust ADJ_OPERAND after multiplication of wrong signedness
|
3397 |
|
|
flavor of OP0 and OP1. ADJ_OPERAND is already the high half of the
|
3398 |
|
|
product OP0 x OP1. If UNSIGNEDP is nonzero, adjust the signed product
|
3399 |
|
|
to become unsigned, if UNSIGNEDP is zero, adjust the unsigned product to
|
3400 |
|
|
become signed.
|
3401 |
|
|
|
3402 |
|
|
The result is put in TARGET if that is convenient.
|
3403 |
|
|
|
3404 |
|
|
MODE is the mode of operation. */
|
3405 |
|
|
|
3406 |
|
|
rtx
|
3407 |
|
|
expand_mult_highpart_adjust (enum machine_mode mode, rtx adj_operand, rtx op0,
|
3408 |
|
|
rtx op1, rtx target, int unsignedp)
|
3409 |
|
|
{
|
3410 |
|
|
rtx tem;
|
3411 |
|
|
enum rtx_code adj_code = unsignedp ? PLUS : MINUS;
|
3412 |
|
|
|
3413 |
|
|
tem = expand_shift (RSHIFT_EXPR, mode, op0,
|
3414 |
|
|
build_int_cst (NULL_TREE, GET_MODE_BITSIZE (mode) - 1),
|
3415 |
|
|
NULL_RTX, 0);
|
3416 |
|
|
tem = expand_and (mode, tem, op1, NULL_RTX);
|
3417 |
|
|
adj_operand
|
3418 |
|
|
= force_operand (gen_rtx_fmt_ee (adj_code, mode, adj_operand, tem),
|
3419 |
|
|
adj_operand);
|
3420 |
|
|
|
3421 |
|
|
tem = expand_shift (RSHIFT_EXPR, mode, op1,
|
3422 |
|
|
build_int_cst (NULL_TREE, GET_MODE_BITSIZE (mode) - 1),
|
3423 |
|
|
NULL_RTX, 0);
|
3424 |
|
|
tem = expand_and (mode, tem, op0, NULL_RTX);
|
3425 |
|
|
target = force_operand (gen_rtx_fmt_ee (adj_code, mode, adj_operand, tem),
|
3426 |
|
|
target);
|
3427 |
|
|
|
3428 |
|
|
return target;
|
3429 |
|
|
}
|
3430 |
|
|
|
3431 |
|
|
/* Subroutine of expand_mult_highpart. Return the MODE high part of OP. */
|
3432 |
|
|
|
3433 |
|
|
static rtx
|
3434 |
|
|
extract_high_half (enum machine_mode mode, rtx op)
|
3435 |
|
|
{
|
3436 |
|
|
enum machine_mode wider_mode;
|
3437 |
|
|
|
3438 |
|
|
if (mode == word_mode)
|
3439 |
|
|
return gen_highpart (mode, op);
|
3440 |
|
|
|
3441 |
|
|
gcc_assert (!SCALAR_FLOAT_MODE_P (mode));
|
3442 |
|
|
|
3443 |
|
|
wider_mode = GET_MODE_WIDER_MODE (mode);
|
3444 |
|
|
op = expand_shift (RSHIFT_EXPR, wider_mode, op,
|
3445 |
|
|
build_int_cst (NULL_TREE, GET_MODE_BITSIZE (mode)), 0, 1);
|
3446 |
|
|
return convert_modes (mode, wider_mode, op, 0);
|
3447 |
|
|
}
|
3448 |
|
|
|
3449 |
|
|
/* Like expand_mult_highpart, but only consider using a multiplication
|
3450 |
|
|
optab. OP1 is an rtx for the constant operand. */
|
3451 |
|
|
|
3452 |
|
|
static rtx
|
3453 |
|
|
expand_mult_highpart_optab (enum machine_mode mode, rtx op0, rtx op1,
|
3454 |
|
|
rtx target, int unsignedp, int max_cost)
|
3455 |
|
|
{
|
3456 |
|
|
rtx narrow_op1 = gen_int_mode (INTVAL (op1), mode);
|
3457 |
|
|
enum machine_mode wider_mode;
|
3458 |
|
|
optab moptab;
|
3459 |
|
|
rtx tem;
|
3460 |
|
|
int size;
|
3461 |
|
|
bool speed = optimize_insn_for_speed_p ();
|
3462 |
|
|
|
3463 |
|
|
gcc_assert (!SCALAR_FLOAT_MODE_P (mode));
|
3464 |
|
|
|
3465 |
|
|
wider_mode = GET_MODE_WIDER_MODE (mode);
|
3466 |
|
|
size = GET_MODE_BITSIZE (mode);
|
3467 |
|
|
|
3468 |
|
|
/* Firstly, try using a multiplication insn that only generates the needed
|
3469 |
|
|
high part of the product, and in the sign flavor of unsignedp. */
|
3470 |
|
|
if (mul_highpart_cost[speed][mode] < max_cost)
|
3471 |
|
|
{
|
3472 |
|
|
moptab = unsignedp ? umul_highpart_optab : smul_highpart_optab;
|
3473 |
|
|
tem = expand_binop (mode, moptab, op0, narrow_op1, target,
|
3474 |
|
|
unsignedp, OPTAB_DIRECT);
|
3475 |
|
|
if (tem)
|
3476 |
|
|
return tem;
|
3477 |
|
|
}
|
3478 |
|
|
|
3479 |
|
|
/* Secondly, same as above, but use sign flavor opposite of unsignedp.
|
3480 |
|
|
Need to adjust the result after the multiplication. */
|
3481 |
|
|
if (size - 1 < BITS_PER_WORD
|
3482 |
|
|
&& (mul_highpart_cost[speed][mode] + 2 * shift_cost[speed][mode][size-1]
|
3483 |
|
|
+ 4 * add_cost[speed][mode] < max_cost))
|
3484 |
|
|
{
|
3485 |
|
|
moptab = unsignedp ? smul_highpart_optab : umul_highpart_optab;
|
3486 |
|
|
tem = expand_binop (mode, moptab, op0, narrow_op1, target,
|
3487 |
|
|
unsignedp, OPTAB_DIRECT);
|
3488 |
|
|
if (tem)
|
3489 |
|
|
/* We used the wrong signedness. Adjust the result. */
|
3490 |
|
|
return expand_mult_highpart_adjust (mode, tem, op0, narrow_op1,
|
3491 |
|
|
tem, unsignedp);
|
3492 |
|
|
}
|
3493 |
|
|
|
3494 |
|
|
/* Try widening multiplication. */
|
3495 |
|
|
moptab = unsignedp ? umul_widen_optab : smul_widen_optab;
|
3496 |
|
|
if (optab_handler (moptab, wider_mode)->insn_code != CODE_FOR_nothing
|
3497 |
|
|
&& mul_widen_cost[speed][wider_mode] < max_cost)
|
3498 |
|
|
{
|
3499 |
|
|
tem = expand_binop (wider_mode, moptab, op0, narrow_op1, 0,
|
3500 |
|
|
unsignedp, OPTAB_WIDEN);
|
3501 |
|
|
if (tem)
|
3502 |
|
|
return extract_high_half (mode, tem);
|
3503 |
|
|
}
|
3504 |
|
|
|
3505 |
|
|
/* Try widening the mode and perform a non-widening multiplication. */
|
3506 |
|
|
if (optab_handler (smul_optab, wider_mode)->insn_code != CODE_FOR_nothing
|
3507 |
|
|
&& size - 1 < BITS_PER_WORD
|
3508 |
|
|
&& mul_cost[speed][wider_mode] + shift_cost[speed][mode][size-1] < max_cost)
|
3509 |
|
|
{
|
3510 |
|
|
rtx insns, wop0, wop1;
|
3511 |
|
|
|
3512 |
|
|
/* We need to widen the operands, for example to ensure the
|
3513 |
|
|
constant multiplier is correctly sign or zero extended.
|
3514 |
|
|
Use a sequence to clean-up any instructions emitted by
|
3515 |
|
|
the conversions if things don't work out. */
|
3516 |
|
|
start_sequence ();
|
3517 |
|
|
wop0 = convert_modes (wider_mode, mode, op0, unsignedp);
|
3518 |
|
|
wop1 = convert_modes (wider_mode, mode, op1, unsignedp);
|
3519 |
|
|
tem = expand_binop (wider_mode, smul_optab, wop0, wop1, 0,
|
3520 |
|
|
unsignedp, OPTAB_WIDEN);
|
3521 |
|
|
insns = get_insns ();
|
3522 |
|
|
end_sequence ();
|
3523 |
|
|
|
3524 |
|
|
if (tem)
|
3525 |
|
|
{
|
3526 |
|
|
emit_insn (insns);
|
3527 |
|
|
return extract_high_half (mode, tem);
|
3528 |
|
|
}
|
3529 |
|
|
}
|
3530 |
|
|
|
3531 |
|
|
/* Try widening multiplication of opposite signedness, and adjust. */
|
3532 |
|
|
moptab = unsignedp ? smul_widen_optab : umul_widen_optab;
|
3533 |
|
|
if (optab_handler (moptab, wider_mode)->insn_code != CODE_FOR_nothing
|
3534 |
|
|
&& size - 1 < BITS_PER_WORD
|
3535 |
|
|
&& (mul_widen_cost[speed][wider_mode] + 2 * shift_cost[speed][mode][size-1]
|
3536 |
|
|
+ 4 * add_cost[speed][mode] < max_cost))
|
3537 |
|
|
{
|
3538 |
|
|
tem = expand_binop (wider_mode, moptab, op0, narrow_op1,
|
3539 |
|
|
NULL_RTX, ! unsignedp, OPTAB_WIDEN);
|
3540 |
|
|
if (tem != 0)
|
3541 |
|
|
{
|
3542 |
|
|
tem = extract_high_half (mode, tem);
|
3543 |
|
|
/* We used the wrong signedness. Adjust the result. */
|
3544 |
|
|
return expand_mult_highpart_adjust (mode, tem, op0, narrow_op1,
|
3545 |
|
|
target, unsignedp);
|
3546 |
|
|
}
|
3547 |
|
|
}
|
3548 |
|
|
|
3549 |
|
|
return 0;
|
3550 |
|
|
}
|
3551 |
|
|
|
3552 |
|
|
/* Emit code to multiply OP0 and OP1 (where OP1 is an integer constant),
|
3553 |
|
|
putting the high half of the result in TARGET if that is convenient,
|
3554 |
|
|
and return where the result is. If the operation can not be performed,
|
3555 |
|
|
|
3556 |
|
|
|
3557 |
|
|
MODE is the mode of operation and result.
|
3558 |
|
|
|
3559 |
|
|
UNSIGNEDP nonzero means unsigned multiply.
|
3560 |
|
|
|
3561 |
|
|
MAX_COST is the total allowed cost for the expanded RTL. */
|
3562 |
|
|
|
3563 |
|
|
static rtx
|
3564 |
|
|
expand_mult_highpart (enum machine_mode mode, rtx op0, rtx op1,
|
3565 |
|
|
rtx target, int unsignedp, int max_cost)
|
3566 |
|
|
{
|
3567 |
|
|
enum machine_mode wider_mode = GET_MODE_WIDER_MODE (mode);
|
3568 |
|
|
unsigned HOST_WIDE_INT cnst1;
|
3569 |
|
|
int extra_cost;
|
3570 |
|
|
bool sign_adjust = false;
|
3571 |
|
|
enum mult_variant variant;
|
3572 |
|
|
struct algorithm alg;
|
3573 |
|
|
rtx tem;
|
3574 |
|
|
bool speed = optimize_insn_for_speed_p ();
|
3575 |
|
|
|
3576 |
|
|
gcc_assert (!SCALAR_FLOAT_MODE_P (mode));
|
3577 |
|
|
/* We can't support modes wider than HOST_BITS_PER_INT. */
|
3578 |
|
|
gcc_assert (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT);
|
3579 |
|
|
|
3580 |
|
|
cnst1 = INTVAL (op1) & GET_MODE_MASK (mode);
|
3581 |
|
|
|
3582 |
|
|
/* We can't optimize modes wider than BITS_PER_WORD.
|
3583 |
|
|
??? We might be able to perform double-word arithmetic if
|
3584 |
|
|
mode == word_mode, however all the cost calculations in
|
3585 |
|
|
synth_mult etc. assume single-word operations. */
|
3586 |
|
|
if (GET_MODE_BITSIZE (wider_mode) > BITS_PER_WORD)
|
3587 |
|
|
return expand_mult_highpart_optab (mode, op0, op1, target,
|
3588 |
|
|
unsignedp, max_cost);
|
3589 |
|
|
|
3590 |
|
|
extra_cost = shift_cost[speed][mode][GET_MODE_BITSIZE (mode) - 1];
|
3591 |
|
|
|
3592 |
|
|
/* Check whether we try to multiply by a negative constant. */
|
3593 |
|
|
if (!unsignedp && ((cnst1 >> (GET_MODE_BITSIZE (mode) - 1)) & 1))
|
3594 |
|
|
{
|
3595 |
|
|
sign_adjust = true;
|
3596 |
|
|
extra_cost += add_cost[speed][mode];
|
3597 |
|
|
}
|
3598 |
|
|
|
3599 |
|
|
/* See whether shift/add multiplication is cheap enough. */
|
3600 |
|
|
if (choose_mult_variant (wider_mode, cnst1, &alg, &variant,
|
3601 |
|
|
max_cost - extra_cost))
|
3602 |
|
|
{
|
3603 |
|
|
/* See whether the specialized multiplication optabs are
|
3604 |
|
|
cheaper than the shift/add version. */
|
3605 |
|
|
tem = expand_mult_highpart_optab (mode, op0, op1, target, unsignedp,
|
3606 |
|
|
alg.cost.cost + extra_cost);
|
3607 |
|
|
if (tem)
|
3608 |
|
|
return tem;
|
3609 |
|
|
|
3610 |
|
|
tem = convert_to_mode (wider_mode, op0, unsignedp);
|
3611 |
|
|
tem = expand_mult_const (wider_mode, tem, cnst1, 0, &alg, variant);
|
3612 |
|
|
tem = extract_high_half (mode, tem);
|
3613 |
|
|
|
3614 |
|
|
/* Adjust result for signedness. */
|
3615 |
|
|
if (sign_adjust)
|
3616 |
|
|
tem = force_operand (gen_rtx_MINUS (mode, tem, op0), tem);
|
3617 |
|
|
|
3618 |
|
|
return tem;
|
3619 |
|
|
}
|
3620 |
|
|
return expand_mult_highpart_optab (mode, op0, op1, target,
|
3621 |
|
|
unsignedp, max_cost);
|
3622 |
|
|
}
|
3623 |
|
|
|
3624 |
|
|
|
3625 |
|
|
/* Expand signed modulus of OP0 by a power of two D in mode MODE. */
|
3626 |
|
|
|
3627 |
|
|
static rtx
|
3628 |
|
|
expand_smod_pow2 (enum machine_mode mode, rtx op0, HOST_WIDE_INT d)
|
3629 |
|
|
{
|
3630 |
|
|
unsigned HOST_WIDE_INT masklow, maskhigh;
|
3631 |
|
|
rtx result, temp, shift, label;
|
3632 |
|
|
int logd;
|
3633 |
|
|
|
3634 |
|
|
logd = floor_log2 (d);
|
3635 |
|
|
result = gen_reg_rtx (mode);
|
3636 |
|
|
|
3637 |
|
|
/* Avoid conditional branches when they're expensive. */
|
3638 |
|
|
if (BRANCH_COST (optimize_insn_for_speed_p (), false) >= 2
|
3639 |
|
|
&& optimize_insn_for_speed_p ())
|
3640 |
|
|
{
|
3641 |
|
|
rtx signmask = emit_store_flag (result, LT, op0, const0_rtx,
|
3642 |
|
|
mode, 0, -1);
|
3643 |
|
|
if (signmask)
|
3644 |
|
|
{
|
3645 |
|
|
signmask = force_reg (mode, signmask);
|
3646 |
|
|
masklow = ((HOST_WIDE_INT) 1 << logd) - 1;
|
3647 |
|
|
shift = GEN_INT (GET_MODE_BITSIZE (mode) - logd);
|
3648 |
|
|
|
3649 |
|
|
/* Use the rtx_cost of a LSHIFTRT instruction to determine
|
3650 |
|
|
which instruction sequence to use. If logical right shifts
|
3651 |
|
|
are expensive the use 2 XORs, 2 SUBs and an AND, otherwise
|
3652 |
|
|
use a LSHIFTRT, 1 ADD, 1 SUB and an AND. */
|
3653 |
|
|
|
3654 |
|
|
temp = gen_rtx_LSHIFTRT (mode, result, shift);
|
3655 |
|
|
if (optab_handler (lshr_optab, mode)->insn_code == CODE_FOR_nothing
|
3656 |
|
|
|| rtx_cost (temp, SET, optimize_insn_for_speed_p ()) > COSTS_N_INSNS (2))
|
3657 |
|
|
{
|
3658 |
|
|
temp = expand_binop (mode, xor_optab, op0, signmask,
|
3659 |
|
|
NULL_RTX, 1, OPTAB_LIB_WIDEN);
|
3660 |
|
|
temp = expand_binop (mode, sub_optab, temp, signmask,
|
3661 |
|
|
NULL_RTX, 1, OPTAB_LIB_WIDEN);
|
3662 |
|
|
temp = expand_binop (mode, and_optab, temp, GEN_INT (masklow),
|
3663 |
|
|
NULL_RTX, 1, OPTAB_LIB_WIDEN);
|
3664 |
|
|
temp = expand_binop (mode, xor_optab, temp, signmask,
|
3665 |
|
|
NULL_RTX, 1, OPTAB_LIB_WIDEN);
|
3666 |
|
|
temp = expand_binop (mode, sub_optab, temp, signmask,
|
3667 |
|
|
NULL_RTX, 1, OPTAB_LIB_WIDEN);
|
3668 |
|
|
}
|
3669 |
|
|
else
|
3670 |
|
|
{
|
3671 |
|
|
signmask = expand_binop (mode, lshr_optab, signmask, shift,
|
3672 |
|
|
NULL_RTX, 1, OPTAB_LIB_WIDEN);
|
3673 |
|
|
signmask = force_reg (mode, signmask);
|
3674 |
|
|
|
3675 |
|
|
temp = expand_binop (mode, add_optab, op0, signmask,
|
3676 |
|
|
NULL_RTX, 1, OPTAB_LIB_WIDEN);
|
3677 |
|
|
temp = expand_binop (mode, and_optab, temp, GEN_INT (masklow),
|
3678 |
|
|
NULL_RTX, 1, OPTAB_LIB_WIDEN);
|
3679 |
|
|
temp = expand_binop (mode, sub_optab, temp, signmask,
|
3680 |
|
|
NULL_RTX, 1, OPTAB_LIB_WIDEN);
|
3681 |
|
|
}
|
3682 |
|
|
return temp;
|
3683 |
|
|
}
|
3684 |
|
|
}
|
3685 |
|
|
|
3686 |
|
|
/* Mask contains the mode's signbit and the significant bits of the
|
3687 |
|
|
modulus. By including the signbit in the operation, many targets
|
3688 |
|
|
can avoid an explicit compare operation in the following comparison
|
3689 |
|
|
against zero. */
|
3690 |
|
|
|
3691 |
|
|
masklow = ((HOST_WIDE_INT) 1 << logd) - 1;
|
3692 |
|
|
if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
|
3693 |
|
|
{
|
3694 |
|
|
masklow |= (HOST_WIDE_INT) -1 << (GET_MODE_BITSIZE (mode) - 1);
|
3695 |
|
|
maskhigh = -1;
|
3696 |
|
|
}
|
3697 |
|
|
else
|
3698 |
|
|
maskhigh = (HOST_WIDE_INT) -1
|
3699 |
|
|
<< (GET_MODE_BITSIZE (mode) - HOST_BITS_PER_WIDE_INT - 1);
|
3700 |
|
|
|
3701 |
|
|
temp = expand_binop (mode, and_optab, op0,
|
3702 |
|
|
immed_double_const (masklow, maskhigh, mode),
|
3703 |
|
|
result, 1, OPTAB_LIB_WIDEN);
|
3704 |
|
|
if (temp != result)
|
3705 |
|
|
emit_move_insn (result, temp);
|
3706 |
|
|
|
3707 |
|
|
label = gen_label_rtx ();
|
3708 |
|
|
do_cmp_and_jump (result, const0_rtx, GE, mode, label);
|
3709 |
|
|
|
3710 |
|
|
temp = expand_binop (mode, sub_optab, result, const1_rtx, result,
|
3711 |
|
|
0, OPTAB_LIB_WIDEN);
|
3712 |
|
|
masklow = (HOST_WIDE_INT) -1 << logd;
|
3713 |
|
|
maskhigh = -1;
|
3714 |
|
|
temp = expand_binop (mode, ior_optab, temp,
|
3715 |
|
|
immed_double_const (masklow, maskhigh, mode),
|
3716 |
|
|
result, 1, OPTAB_LIB_WIDEN);
|
3717 |
|
|
temp = expand_binop (mode, add_optab, temp, const1_rtx, result,
|
3718 |
|
|
0, OPTAB_LIB_WIDEN);
|
3719 |
|
|
if (temp != result)
|
3720 |
|
|
emit_move_insn (result, temp);
|
3721 |
|
|
emit_label (label);
|
3722 |
|
|
return result;
|
3723 |
|
|
}
|
3724 |
|
|
|
3725 |
|
|
/* Expand signed division of OP0 by a power of two D in mode MODE.
|
3726 |
|
|
This routine is only called for positive values of D. */
|
3727 |
|
|
|
3728 |
|
|
static rtx
|
3729 |
|
|
expand_sdiv_pow2 (enum machine_mode mode, rtx op0, HOST_WIDE_INT d)
|
3730 |
|
|
{
|
3731 |
|
|
rtx temp, label;
|
3732 |
|
|
tree shift;
|
3733 |
|
|
int logd;
|
3734 |
|
|
|
3735 |
|
|
logd = floor_log2 (d);
|
3736 |
|
|
shift = build_int_cst (NULL_TREE, logd);
|
3737 |
|
|
|
3738 |
|
|
if (d == 2
|
3739 |
|
|
&& BRANCH_COST (optimize_insn_for_speed_p (),
|
3740 |
|
|
false) >= 1)
|
3741 |
|
|
{
|
3742 |
|
|
temp = gen_reg_rtx (mode);
|
3743 |
|
|
temp = emit_store_flag (temp, LT, op0, const0_rtx, mode, 0, 1);
|
3744 |
|
|
temp = expand_binop (mode, add_optab, temp, op0, NULL_RTX,
|
3745 |
|
|
0, OPTAB_LIB_WIDEN);
|
3746 |
|
|
return expand_shift (RSHIFT_EXPR, mode, temp, shift, NULL_RTX, 0);
|
3747 |
|
|
}
|
3748 |
|
|
|
3749 |
|
|
#ifdef HAVE_conditional_move
|
3750 |
|
|
if (BRANCH_COST (optimize_insn_for_speed_p (), false)
|
3751 |
|
|
>= 2)
|
3752 |
|
|
{
|
3753 |
|
|
rtx temp2;
|
3754 |
|
|
|
3755 |
|
|
/* ??? emit_conditional_move forces a stack adjustment via
|
3756 |
|
|
compare_from_rtx so, if the sequence is discarded, it will
|
3757 |
|
|
be lost. Do it now instead. */
|
3758 |
|
|
do_pending_stack_adjust ();
|
3759 |
|
|
|
3760 |
|
|
start_sequence ();
|
3761 |
|
|
temp2 = copy_to_mode_reg (mode, op0);
|
3762 |
|
|
temp = expand_binop (mode, add_optab, temp2, GEN_INT (d-1),
|
3763 |
|
|
NULL_RTX, 0, OPTAB_LIB_WIDEN);
|
3764 |
|
|
temp = force_reg (mode, temp);
|
3765 |
|
|
|
3766 |
|
|
/* Construct "temp2 = (temp2 < 0) ? temp : temp2". */
|
3767 |
|
|
temp2 = emit_conditional_move (temp2, LT, temp2, const0_rtx,
|
3768 |
|
|
mode, temp, temp2, mode, 0);
|
3769 |
|
|
if (temp2)
|
3770 |
|
|
{
|
3771 |
|
|
rtx seq = get_insns ();
|
3772 |
|
|
end_sequence ();
|
3773 |
|
|
emit_insn (seq);
|
3774 |
|
|
return expand_shift (RSHIFT_EXPR, mode, temp2, shift, NULL_RTX, 0);
|
3775 |
|
|
}
|
3776 |
|
|
end_sequence ();
|
3777 |
|
|
}
|
3778 |
|
|
#endif
|
3779 |
|
|
|
3780 |
|
|
if (BRANCH_COST (optimize_insn_for_speed_p (),
|
3781 |
|
|
false) >= 2)
|
3782 |
|
|
{
|
3783 |
|
|
int ushift = GET_MODE_BITSIZE (mode) - logd;
|
3784 |
|
|
|
3785 |
|
|
temp = gen_reg_rtx (mode);
|
3786 |
|
|
temp = emit_store_flag (temp, LT, op0, const0_rtx, mode, 0, -1);
|
3787 |
|
|
if (shift_cost[optimize_insn_for_speed_p ()][mode][ushift] > COSTS_N_INSNS (1))
|
3788 |
|
|
temp = expand_binop (mode, and_optab, temp, GEN_INT (d - 1),
|
3789 |
|
|
NULL_RTX, 0, OPTAB_LIB_WIDEN);
|
3790 |
|
|
else
|
3791 |
|
|
temp = expand_shift (RSHIFT_EXPR, mode, temp,
|
3792 |
|
|
build_int_cst (NULL_TREE, ushift),
|
3793 |
|
|
NULL_RTX, 1);
|
3794 |
|
|
temp = expand_binop (mode, add_optab, temp, op0, NULL_RTX,
|
3795 |
|
|
0, OPTAB_LIB_WIDEN);
|
3796 |
|
|
return expand_shift (RSHIFT_EXPR, mode, temp, shift, NULL_RTX, 0);
|
3797 |
|
|
}
|
3798 |
|
|
|
3799 |
|
|
label = gen_label_rtx ();
|
3800 |
|
|
temp = copy_to_mode_reg (mode, op0);
|
3801 |
|
|
do_cmp_and_jump (temp, const0_rtx, GE, mode, label);
|
3802 |
|
|
expand_inc (temp, GEN_INT (d - 1));
|
3803 |
|
|
emit_label (label);
|
3804 |
|
|
return expand_shift (RSHIFT_EXPR, mode, temp, shift, NULL_RTX, 0);
|
3805 |
|
|
}
|
3806 |
|
|
|
3807 |
|
|
/* Emit the code to divide OP0 by OP1, putting the result in TARGET
|
3808 |
|
|
if that is convenient, and returning where the result is.
|
3809 |
|
|
You may request either the quotient or the remainder as the result;
|
3810 |
|
|
specify REM_FLAG nonzero to get the remainder.
|
3811 |
|
|
|
3812 |
|
|
CODE is the expression code for which kind of division this is;
|
3813 |
|
|
it controls how rounding is done. MODE is the machine mode to use.
|
3814 |
|
|
UNSIGNEDP nonzero means do unsigned division. */
|
3815 |
|
|
|
3816 |
|
|
/* ??? For CEIL_MOD_EXPR, can compute incorrect remainder with ANDI
|
3817 |
|
|
and then correct it by or'ing in missing high bits
|
3818 |
|
|
if result of ANDI is nonzero.
|
3819 |
|
|
For ROUND_MOD_EXPR, can use ANDI and then sign-extend the result.
|
3820 |
|
|
This could optimize to a bfexts instruction.
|
3821 |
|
|
But C doesn't use these operations, so their optimizations are
|
3822 |
|
|
left for later. */
|
3823 |
|
|
/* ??? For modulo, we don't actually need the highpart of the first product,
|
3824 |
|
|
the low part will do nicely. And for small divisors, the second multiply
|
3825 |
|
|
can also be a low-part only multiply or even be completely left out.
|
3826 |
|
|
E.g. to calculate the remainder of a division by 3 with a 32 bit
|
3827 |
|
|
multiply, multiply with 0x55555556 and extract the upper two bits;
|
3828 |
|
|
the result is exact for inputs up to 0x1fffffff.
|
3829 |
|
|
The input range can be reduced by using cross-sum rules.
|
3830 |
|
|
For odd divisors >= 3, the following table gives right shift counts
|
3831 |
|
|
so that if a number is shifted by an integer multiple of the given
|
3832 |
|
|
amount, the remainder stays the same:
|
3833 |
|
|
2, 4, 3, 6, 10, 12, 4, 8, 18, 6, 11, 20, 18, 0, 5, 10, 12, 0, 12, 20,
|
3834 |
|
|
14, 12, 23, 21, 8, 0, 20, 18, 0, 0, 6, 12, 0, 22, 0, 18, 20, 30, 0, 0,
|
3835 |
|
|
0, 8, 0, 11, 12, 10, 36, 0, 30, 0, 0, 12, 0, 0, 0, 0, 44, 12, 24, 0,
|
3836 |
|
|
20, 0, 7, 14, 0, 18, 36, 0, 0, 46, 60, 0, 42, 0, 15, 24, 20, 0, 0, 33,
|
3837 |
|
|
0, 20, 0, 0, 18, 0, 60, 0, 0, 0, 0, 0, 40, 18, 0, 0, 12
|
3838 |
|
|
|
3839 |
|
|
Cross-sum rules for even numbers can be derived by leaving as many bits
|
3840 |
|
|
to the right alone as the divisor has zeros to the right.
|
3841 |
|
|
E.g. if x is an unsigned 32 bit number:
|
3842 |
|
|
(x mod 12) == (((x & 1023) + ((x >> 8) & ~3)) * 0x15555558 >> 2 * 3) >> 28
|
3843 |
|
|
*/
|
3844 |
|
|
|
3845 |
|
|
rtx
|
3846 |
|
|
expand_divmod (int rem_flag, enum tree_code code, enum machine_mode mode,
|
3847 |
|
|
rtx op0, rtx op1, rtx target, int unsignedp)
|
3848 |
|
|
{
|
3849 |
|
|
enum machine_mode compute_mode;
|
3850 |
|
|
rtx tquotient;
|
3851 |
|
|
rtx quotient = 0, remainder = 0;
|
3852 |
|
|
rtx last;
|
3853 |
|
|
int size;
|
3854 |
|
|
rtx insn, set;
|
3855 |
|
|
optab optab1, optab2;
|
3856 |
|
|
int op1_is_constant, op1_is_pow2 = 0;
|
3857 |
|
|
int max_cost, extra_cost;
|
3858 |
|
|
static HOST_WIDE_INT last_div_const = 0;
|
3859 |
|
|
static HOST_WIDE_INT ext_op1;
|
3860 |
|
|
bool speed = optimize_insn_for_speed_p ();
|
3861 |
|
|
|
3862 |
|
|
op1_is_constant = CONST_INT_P (op1);
|
3863 |
|
|
if (op1_is_constant)
|
3864 |
|
|
{
|
3865 |
|
|
ext_op1 = INTVAL (op1);
|
3866 |
|
|
if (unsignedp)
|
3867 |
|
|
ext_op1 &= GET_MODE_MASK (mode);
|
3868 |
|
|
op1_is_pow2 = ((EXACT_POWER_OF_2_OR_ZERO_P (ext_op1)
|
3869 |
|
|
|| (! unsignedp && EXACT_POWER_OF_2_OR_ZERO_P (-ext_op1))));
|
3870 |
|
|
}
|
3871 |
|
|
|
3872 |
|
|
/*
|
3873 |
|
|
This is the structure of expand_divmod:
|
3874 |
|
|
|
3875 |
|
|
First comes code to fix up the operands so we can perform the operations
|
3876 |
|
|
correctly and efficiently.
|
3877 |
|
|
|
3878 |
|
|
Second comes a switch statement with code specific for each rounding mode.
|
3879 |
|
|
For some special operands this code emits all RTL for the desired
|
3880 |
|
|
operation, for other cases, it generates only a quotient and stores it in
|
3881 |
|
|
QUOTIENT. The case for trunc division/remainder might leave quotient = 0,
|
3882 |
|
|
to indicate that it has not done anything.
|
3883 |
|
|
|
3884 |
|
|
Last comes code that finishes the operation. If QUOTIENT is set and
|
3885 |
|
|
REM_FLAG is set, the remainder is computed as OP0 - QUOTIENT * OP1. If
|
3886 |
|
|
QUOTIENT is not set, it is computed using trunc rounding.
|
3887 |
|
|
|
3888 |
|
|
We try to generate special code for division and remainder when OP1 is a
|
3889 |
|
|
constant. If |OP1| = 2**n we can use shifts and some other fast
|
3890 |
|
|
operations. For other values of OP1, we compute a carefully selected
|
3891 |
|
|
fixed-point approximation m = 1/OP1, and generate code that multiplies OP0
|
3892 |
|
|
by m.
|
3893 |
|
|
|
3894 |
|
|
In all cases but EXACT_DIV_EXPR, this multiplication requires the upper
|
3895 |
|
|
half of the product. Different strategies for generating the product are
|
3896 |
|
|
implemented in expand_mult_highpart.
|
3897 |
|
|
|
3898 |
|
|
If what we actually want is the remainder, we generate that by another
|
3899 |
|
|
by-constant multiplication and a subtraction. */
|
3900 |
|
|
|
3901 |
|
|
/* We shouldn't be called with OP1 == const1_rtx, but some of the
|
3902 |
|
|
code below will malfunction if we are, so check here and handle
|
3903 |
|
|
the special case if so. */
|
3904 |
|
|
if (op1 == const1_rtx)
|
3905 |
|
|
return rem_flag ? const0_rtx : op0;
|
3906 |
|
|
|
3907 |
|
|
/* When dividing by -1, we could get an overflow.
|
3908 |
|
|
negv_optab can handle overflows. */
|
3909 |
|
|
if (! unsignedp && op1 == constm1_rtx)
|
3910 |
|
|
{
|
3911 |
|
|
if (rem_flag)
|
3912 |
|
|
return const0_rtx;
|
3913 |
|
|
return expand_unop (mode, flag_trapv && GET_MODE_CLASS(mode) == MODE_INT
|
3914 |
|
|
? negv_optab : neg_optab, op0, target, 0);
|
3915 |
|
|
}
|
3916 |
|
|
|
3917 |
|
|
if (target
|
3918 |
|
|
/* Don't use the function value register as a target
|
3919 |
|
|
since we have to read it as well as write it,
|
3920 |
|
|
and function-inlining gets confused by this. */
|
3921 |
|
|
&& ((REG_P (target) && REG_FUNCTION_VALUE_P (target))
|
3922 |
|
|
/* Don't clobber an operand while doing a multi-step calculation. */
|
3923 |
|
|
|| ((rem_flag || op1_is_constant)
|
3924 |
|
|
&& (reg_mentioned_p (target, op0)
|
3925 |
|
|
|| (MEM_P (op0) && MEM_P (target))))
|
3926 |
|
|
|| reg_mentioned_p (target, op1)
|
3927 |
|
|
|| (MEM_P (op1) && MEM_P (target))))
|
3928 |
|
|
target = 0;
|
3929 |
|
|
|
3930 |
|
|
/* Get the mode in which to perform this computation. Normally it will
|
3931 |
|
|
be MODE, but sometimes we can't do the desired operation in MODE.
|
3932 |
|
|
If so, pick a wider mode in which we can do the operation. Convert
|
3933 |
|
|
to that mode at the start to avoid repeated conversions.
|
3934 |
|
|
|
3935 |
|
|
First see what operations we need. These depend on the expression
|
3936 |
|
|
we are evaluating. (We assume that divxx3 insns exist under the
|
3937 |
|
|
same conditions that modxx3 insns and that these insns don't normally
|
3938 |
|
|
fail. If these assumptions are not correct, we may generate less
|
3939 |
|
|
efficient code in some cases.)
|
3940 |
|
|
|
3941 |
|
|
Then see if we find a mode in which we can open-code that operation
|
3942 |
|
|
(either a division, modulus, or shift). Finally, check for the smallest
|
3943 |
|
|
mode for which we can do the operation with a library call. */
|
3944 |
|
|
|
3945 |
|
|
/* We might want to refine this now that we have division-by-constant
|
3946 |
|
|
optimization. Since expand_mult_highpart tries so many variants, it is
|
3947 |
|
|
not straightforward to generalize this. Maybe we should make an array
|
3948 |
|
|
of possible modes in init_expmed? Save this for GCC 2.7. */
|
3949 |
|
|
|
3950 |
|
|
optab1 = ((op1_is_pow2 && op1 != const0_rtx)
|
3951 |
|
|
? (unsignedp ? lshr_optab : ashr_optab)
|
3952 |
|
|
: (unsignedp ? udiv_optab : sdiv_optab));
|
3953 |
|
|
optab2 = ((op1_is_pow2 && op1 != const0_rtx)
|
3954 |
|
|
? optab1
|
3955 |
|
|
: (unsignedp ? udivmod_optab : sdivmod_optab));
|
3956 |
|
|
|
3957 |
|
|
for (compute_mode = mode; compute_mode != VOIDmode;
|
3958 |
|
|
compute_mode = GET_MODE_WIDER_MODE (compute_mode))
|
3959 |
|
|
if (optab_handler (optab1, compute_mode)->insn_code != CODE_FOR_nothing
|
3960 |
|
|
|| optab_handler (optab2, compute_mode)->insn_code != CODE_FOR_nothing)
|
3961 |
|
|
break;
|
3962 |
|
|
|
3963 |
|
|
if (compute_mode == VOIDmode)
|
3964 |
|
|
for (compute_mode = mode; compute_mode != VOIDmode;
|
3965 |
|
|
compute_mode = GET_MODE_WIDER_MODE (compute_mode))
|
3966 |
|
|
if (optab_libfunc (optab1, compute_mode)
|
3967 |
|
|
|| optab_libfunc (optab2, compute_mode))
|
3968 |
|
|
break;
|
3969 |
|
|
|
3970 |
|
|
/* If we still couldn't find a mode, use MODE, but expand_binop will
|
3971 |
|
|
probably die. */
|
3972 |
|
|
if (compute_mode == VOIDmode)
|
3973 |
|
|
compute_mode = mode;
|
3974 |
|
|
|
3975 |
|
|
if (target && GET_MODE (target) == compute_mode)
|
3976 |
|
|
tquotient = target;
|
3977 |
|
|
else
|
3978 |
|
|
tquotient = gen_reg_rtx (compute_mode);
|
3979 |
|
|
|
3980 |
|
|
size = GET_MODE_BITSIZE (compute_mode);
|
3981 |
|
|
#if 0
|
3982 |
|
|
/* It should be possible to restrict the precision to GET_MODE_BITSIZE
|
3983 |
|
|
(mode), and thereby get better code when OP1 is a constant. Do that
|
3984 |
|
|
later. It will require going over all usages of SIZE below. */
|
3985 |
|
|
size = GET_MODE_BITSIZE (mode);
|
3986 |
|
|
#endif
|
3987 |
|
|
|
3988 |
|
|
/* Only deduct something for a REM if the last divide done was
|
3989 |
|
|
for a different constant. Then set the constant of the last
|
3990 |
|
|
divide. */
|
3991 |
|
|
max_cost = unsignedp ? udiv_cost[speed][compute_mode] : sdiv_cost[speed][compute_mode];
|
3992 |
|
|
if (rem_flag && ! (last_div_const != 0 && op1_is_constant
|
3993 |
|
|
&& INTVAL (op1) == last_div_const))
|
3994 |
|
|
max_cost -= mul_cost[speed][compute_mode] + add_cost[speed][compute_mode];
|
3995 |
|
|
|
3996 |
|
|
last_div_const = ! rem_flag && op1_is_constant ? INTVAL (op1) : 0;
|
3997 |
|
|
|
3998 |
|
|
/* Now convert to the best mode to use. */
|
3999 |
|
|
if (compute_mode != mode)
|
4000 |
|
|
{
|
4001 |
|
|
op0 = convert_modes (compute_mode, mode, op0, unsignedp);
|
4002 |
|
|
op1 = convert_modes (compute_mode, mode, op1, unsignedp);
|
4003 |
|
|
|
4004 |
|
|
/* convert_modes may have placed op1 into a register, so we
|
4005 |
|
|
must recompute the following. */
|
4006 |
|
|
op1_is_constant = CONST_INT_P (op1);
|
4007 |
|
|
op1_is_pow2 = (op1_is_constant
|
4008 |
|
|
&& ((EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1))
|
4009 |
|
|
|| (! unsignedp
|
4010 |
|
|
&& EXACT_POWER_OF_2_OR_ZERO_P (-INTVAL (op1)))))) ;
|
4011 |
|
|
}
|
4012 |
|
|
|
4013 |
|
|
/* If one of the operands is a volatile MEM, copy it into a register. */
|
4014 |
|
|
|
4015 |
|
|
if (MEM_P (op0) && MEM_VOLATILE_P (op0))
|
4016 |
|
|
op0 = force_reg (compute_mode, op0);
|
4017 |
|
|
if (MEM_P (op1) && MEM_VOLATILE_P (op1))
|
4018 |
|
|
op1 = force_reg (compute_mode, op1);
|
4019 |
|
|
|
4020 |
|
|
/* If we need the remainder or if OP1 is constant, we need to
|
4021 |
|
|
put OP0 in a register in case it has any queued subexpressions. */
|
4022 |
|
|
if (rem_flag || op1_is_constant)
|
4023 |
|
|
op0 = force_reg (compute_mode, op0);
|
4024 |
|
|
|
4025 |
|
|
last = get_last_insn ();
|
4026 |
|
|
|
4027 |
|
|
/* Promote floor rounding to trunc rounding for unsigned operations. */
|
4028 |
|
|
if (unsignedp)
|
4029 |
|
|
{
|
4030 |
|
|
if (code == FLOOR_DIV_EXPR)
|
4031 |
|
|
code = TRUNC_DIV_EXPR;
|
4032 |
|
|
if (code == FLOOR_MOD_EXPR)
|
4033 |
|
|
code = TRUNC_MOD_EXPR;
|
4034 |
|
|
if (code == EXACT_DIV_EXPR && op1_is_pow2)
|
4035 |
|
|
code = TRUNC_DIV_EXPR;
|
4036 |
|
|
}
|
4037 |
|
|
|
4038 |
|
|
if (op1 != const0_rtx)
|
4039 |
|
|
switch (code)
|
4040 |
|
|
{
|
4041 |
|
|
case TRUNC_MOD_EXPR:
|
4042 |
|
|
case TRUNC_DIV_EXPR:
|
4043 |
|
|
if (op1_is_constant)
|
4044 |
|
|
{
|
4045 |
|
|
if (unsignedp)
|
4046 |
|
|
{
|
4047 |
|
|
unsigned HOST_WIDE_INT mh;
|
4048 |
|
|
int pre_shift, post_shift;
|
4049 |
|
|
int dummy;
|
4050 |
|
|
rtx ml;
|
4051 |
|
|
unsigned HOST_WIDE_INT d = (INTVAL (op1)
|
4052 |
|
|
& GET_MODE_MASK (compute_mode));
|
4053 |
|
|
|
4054 |
|
|
if (EXACT_POWER_OF_2_OR_ZERO_P (d))
|
4055 |
|
|
{
|
4056 |
|
|
pre_shift = floor_log2 (d);
|
4057 |
|
|
if (rem_flag)
|
4058 |
|
|
{
|
4059 |
|
|
remainder
|
4060 |
|
|
= expand_binop (compute_mode, and_optab, op0,
|
4061 |
|
|
GEN_INT (((HOST_WIDE_INT) 1 << pre_shift) - 1),
|
4062 |
|
|
remainder, 1,
|
4063 |
|
|
OPTAB_LIB_WIDEN);
|
4064 |
|
|
if (remainder)
|
4065 |
|
|
return gen_lowpart (mode, remainder);
|
4066 |
|
|
}
|
4067 |
|
|
quotient = expand_shift (RSHIFT_EXPR, compute_mode, op0,
|
4068 |
|
|
build_int_cst (NULL_TREE,
|
4069 |
|
|
pre_shift),
|
4070 |
|
|
tquotient, 1);
|
4071 |
|
|
}
|
4072 |
|
|
else if (size <= HOST_BITS_PER_WIDE_INT)
|
4073 |
|
|
{
|
4074 |
|
|
if (d >= ((unsigned HOST_WIDE_INT) 1 << (size - 1)))
|
4075 |
|
|
{
|
4076 |
|
|
/* Most significant bit of divisor is set; emit an scc
|
4077 |
|
|
insn. */
|
4078 |
|
|
quotient = emit_store_flag_force (tquotient, GEU, op0, op1,
|
4079 |
|
|
compute_mode, 1, 1);
|
4080 |
|
|
}
|
4081 |
|
|
else
|
4082 |
|
|
{
|
4083 |
|
|
/* Find a suitable multiplier and right shift count
|
4084 |
|
|
instead of multiplying with D. */
|
4085 |
|
|
|
4086 |
|
|
mh = choose_multiplier (d, size, size,
|
4087 |
|
|
&ml, &post_shift, &dummy);
|
4088 |
|
|
|
4089 |
|
|
/* If the suggested multiplier is more than SIZE bits,
|
4090 |
|
|
we can do better for even divisors, using an
|
4091 |
|
|
initial right shift. */
|
4092 |
|
|
if (mh != 0 && (d & 1) == 0)
|
4093 |
|
|
{
|
4094 |
|
|
pre_shift = floor_log2 (d & -d);
|
4095 |
|
|
mh = choose_multiplier (d >> pre_shift, size,
|
4096 |
|
|
size - pre_shift,
|
4097 |
|
|
&ml, &post_shift, &dummy);
|
4098 |
|
|
gcc_assert (!mh);
|
4099 |
|
|
}
|
4100 |
|
|
else
|
4101 |
|
|
pre_shift = 0;
|
4102 |
|
|
|
4103 |
|
|
if (mh != 0)
|
4104 |
|
|
{
|
4105 |
|
|
rtx t1, t2, t3, t4;
|
4106 |
|
|
|
4107 |
|
|
if (post_shift - 1 >= BITS_PER_WORD)
|
4108 |
|
|
goto fail1;
|
4109 |
|
|
|
4110 |
|
|
extra_cost
|
4111 |
|
|
= (shift_cost[speed][compute_mode][post_shift - 1]
|
4112 |
|
|
+ shift_cost[speed][compute_mode][1]
|
4113 |
|
|
+ 2 * add_cost[speed][compute_mode]);
|
4114 |
|
|
t1 = expand_mult_highpart (compute_mode, op0, ml,
|
4115 |
|
|
NULL_RTX, 1,
|
4116 |
|
|
max_cost - extra_cost);
|
4117 |
|
|
if (t1 == 0)
|
4118 |
|
|
goto fail1;
|
4119 |
|
|
t2 = force_operand (gen_rtx_MINUS (compute_mode,
|
4120 |
|
|
op0, t1),
|
4121 |
|
|
NULL_RTX);
|
4122 |
|
|
t3 = expand_shift
|
4123 |
|
|
(RSHIFT_EXPR, compute_mode, t2,
|
4124 |
|
|
build_int_cst (NULL_TREE, 1),
|
4125 |
|
|
NULL_RTX,1);
|
4126 |
|
|
t4 = force_operand (gen_rtx_PLUS (compute_mode,
|
4127 |
|
|
t1, t3),
|
4128 |
|
|
NULL_RTX);
|
4129 |
|
|
quotient = expand_shift
|
4130 |
|
|
(RSHIFT_EXPR, compute_mode, t4,
|
4131 |
|
|
build_int_cst (NULL_TREE, post_shift - 1),
|
4132 |
|
|
tquotient, 1);
|
4133 |
|
|
}
|
4134 |
|
|
else
|
4135 |
|
|
{
|
4136 |
|
|
rtx t1, t2;
|
4137 |
|
|
|
4138 |
|
|
if (pre_shift >= BITS_PER_WORD
|
4139 |
|
|
|| post_shift >= BITS_PER_WORD)
|
4140 |
|
|
goto fail1;
|
4141 |
|
|
|
4142 |
|
|
t1 = expand_shift
|
4143 |
|
|
(RSHIFT_EXPR, compute_mode, op0,
|
4144 |
|
|
build_int_cst (NULL_TREE, pre_shift),
|
4145 |
|
|
NULL_RTX, 1);
|
4146 |
|
|
extra_cost
|
4147 |
|
|
= (shift_cost[speed][compute_mode][pre_shift]
|
4148 |
|
|
+ shift_cost[speed][compute_mode][post_shift]);
|
4149 |
|
|
t2 = expand_mult_highpart (compute_mode, t1, ml,
|
4150 |
|
|
NULL_RTX, 1,
|
4151 |
|
|
max_cost - extra_cost);
|
4152 |
|
|
if (t2 == 0)
|
4153 |
|
|
goto fail1;
|
4154 |
|
|
quotient = expand_shift
|
4155 |
|
|
(RSHIFT_EXPR, compute_mode, t2,
|
4156 |
|
|
build_int_cst (NULL_TREE, post_shift),
|
4157 |
|
|
tquotient, 1);
|
4158 |
|
|
}
|
4159 |
|
|
}
|
4160 |
|
|
}
|
4161 |
|
|
else /* Too wide mode to use tricky code */
|
4162 |
|
|
break;
|
4163 |
|
|
|
4164 |
|
|
insn = get_last_insn ();
|
4165 |
|
|
if (insn != last
|
4166 |
|
|
&& (set = single_set (insn)) != 0
|
4167 |
|
|
&& SET_DEST (set) == quotient)
|
4168 |
|
|
set_unique_reg_note (insn,
|
4169 |
|
|
REG_EQUAL,
|
4170 |
|
|
gen_rtx_UDIV (compute_mode, op0, op1));
|
4171 |
|
|
}
|
4172 |
|
|
else /* TRUNC_DIV, signed */
|
4173 |
|
|
{
|
4174 |
|
|
unsigned HOST_WIDE_INT ml;
|
4175 |
|
|
int lgup, post_shift;
|
4176 |
|
|
rtx mlr;
|
4177 |
|
|
HOST_WIDE_INT d = INTVAL (op1);
|
4178 |
|
|
unsigned HOST_WIDE_INT abs_d;
|
4179 |
|
|
|
4180 |
|
|
/* Since d might be INT_MIN, we have to cast to
|
4181 |
|
|
unsigned HOST_WIDE_INT before negating to avoid
|
4182 |
|
|
undefined signed overflow. */
|
4183 |
|
|
abs_d = (d >= 0
|
4184 |
|
|
? (unsigned HOST_WIDE_INT) d
|
4185 |
|
|
: - (unsigned HOST_WIDE_INT) d);
|
4186 |
|
|
|
4187 |
|
|
/* n rem d = n rem -d */
|
4188 |
|
|
if (rem_flag && d < 0)
|
4189 |
|
|
{
|
4190 |
|
|
d = abs_d;
|
4191 |
|
|
op1 = gen_int_mode (abs_d, compute_mode);
|
4192 |
|
|
}
|
4193 |
|
|
|
4194 |
|
|
if (d == 1)
|
4195 |
|
|
quotient = op0;
|
4196 |
|
|
else if (d == -1)
|
4197 |
|
|
quotient = expand_unop (compute_mode, neg_optab, op0,
|
4198 |
|
|
tquotient, 0);
|
4199 |
|
|
else if (HOST_BITS_PER_WIDE_INT >= size
|
4200 |
|
|
&& abs_d == (unsigned HOST_WIDE_INT) 1 << (size - 1))
|
4201 |
|
|
{
|
4202 |
|
|
/* This case is not handled correctly below. */
|
4203 |
|
|
quotient = emit_store_flag (tquotient, EQ, op0, op1,
|
4204 |
|
|
compute_mode, 1, 1);
|
4205 |
|
|
if (quotient == 0)
|
4206 |
|
|
goto fail1;
|
4207 |
|
|
}
|
4208 |
|
|
else if (EXACT_POWER_OF_2_OR_ZERO_P (d)
|
4209 |
|
|
&& (rem_flag ? smod_pow2_cheap[speed][compute_mode]
|
4210 |
|
|
: sdiv_pow2_cheap[speed][compute_mode])
|
4211 |
|
|
/* We assume that cheap metric is true if the
|
4212 |
|
|
optab has an expander for this mode. */
|
4213 |
|
|
&& ((optab_handler ((rem_flag ? smod_optab
|
4214 |
|
|
: sdiv_optab),
|
4215 |
|
|
compute_mode)->insn_code
|
4216 |
|
|
!= CODE_FOR_nothing)
|
4217 |
|
|
|| (optab_handler(sdivmod_optab,
|
4218 |
|
|
compute_mode)
|
4219 |
|
|
->insn_code != CODE_FOR_nothing)))
|
4220 |
|
|
;
|
4221 |
|
|
else if (EXACT_POWER_OF_2_OR_ZERO_P (abs_d))
|
4222 |
|
|
{
|
4223 |
|
|
if (rem_flag)
|
4224 |
|
|
{
|
4225 |
|
|
remainder = expand_smod_pow2 (compute_mode, op0, d);
|
4226 |
|
|
if (remainder)
|
4227 |
|
|
return gen_lowpart (mode, remainder);
|
4228 |
|
|
}
|
4229 |
|
|
|
4230 |
|
|
if (sdiv_pow2_cheap[speed][compute_mode]
|
4231 |
|
|
&& ((optab_handler (sdiv_optab, compute_mode)->insn_code
|
4232 |
|
|
!= CODE_FOR_nothing)
|
4233 |
|
|
|| (optab_handler (sdivmod_optab, compute_mode)->insn_code
|
4234 |
|
|
!= CODE_FOR_nothing)))
|
4235 |
|
|
quotient = expand_divmod (0, TRUNC_DIV_EXPR,
|
4236 |
|
|
compute_mode, op0,
|
4237 |
|
|
gen_int_mode (abs_d,
|
4238 |
|
|
compute_mode),
|
4239 |
|
|
NULL_RTX, 0);
|
4240 |
|
|
else
|
4241 |
|
|
quotient = expand_sdiv_pow2 (compute_mode, op0, abs_d);
|
4242 |
|
|
|
4243 |
|
|
/* We have computed OP0 / abs(OP1). If OP1 is negative,
|
4244 |
|
|
negate the quotient. */
|
4245 |
|
|
if (d < 0)
|
4246 |
|
|
{
|
4247 |
|
|
insn = get_last_insn ();
|
4248 |
|
|
if (insn != last
|
4249 |
|
|
&& (set = single_set (insn)) != 0
|
4250 |
|
|
&& SET_DEST (set) == quotient
|
4251 |
|
|
&& abs_d < ((unsigned HOST_WIDE_INT) 1
|
4252 |
|
|
<< (HOST_BITS_PER_WIDE_INT - 1)))
|
4253 |
|
|
set_unique_reg_note (insn,
|
4254 |
|
|
REG_EQUAL,
|
4255 |
|
|
gen_rtx_DIV (compute_mode,
|
4256 |
|
|
op0,
|
4257 |
|
|
GEN_INT
|
4258 |
|
|
(trunc_int_for_mode
|
4259 |
|
|
(abs_d,
|
4260 |
|
|
compute_mode))));
|
4261 |
|
|
|
4262 |
|
|
quotient = expand_unop (compute_mode, neg_optab,
|
4263 |
|
|
quotient, quotient, 0);
|
4264 |
|
|
}
|
4265 |
|
|
}
|
4266 |
|
|
else if (size <= HOST_BITS_PER_WIDE_INT)
|
4267 |
|
|
{
|
4268 |
|
|
choose_multiplier (abs_d, size, size - 1,
|
4269 |
|
|
&mlr, &post_shift, &lgup);
|
4270 |
|
|
ml = (unsigned HOST_WIDE_INT) INTVAL (mlr);
|
4271 |
|
|
if (ml < (unsigned HOST_WIDE_INT) 1 << (size - 1))
|
4272 |
|
|
{
|
4273 |
|
|
rtx t1, t2, t3;
|
4274 |
|
|
|
4275 |
|
|
if (post_shift >= BITS_PER_WORD
|
4276 |
|
|
|| size - 1 >= BITS_PER_WORD)
|
4277 |
|
|
goto fail1;
|
4278 |
|
|
|
4279 |
|
|
extra_cost = (shift_cost[speed][compute_mode][post_shift]
|
4280 |
|
|
+ shift_cost[speed][compute_mode][size - 1]
|
4281 |
|
|
+ add_cost[speed][compute_mode]);
|
4282 |
|
|
t1 = expand_mult_highpart (compute_mode, op0, mlr,
|
4283 |
|
|
NULL_RTX, 0,
|
4284 |
|
|
max_cost - extra_cost);
|
4285 |
|
|
if (t1 == 0)
|
4286 |
|
|
goto fail1;
|
4287 |
|
|
t2 = expand_shift
|
4288 |
|
|
(RSHIFT_EXPR, compute_mode, t1,
|
4289 |
|
|
build_int_cst (NULL_TREE, post_shift),
|
4290 |
|
|
NULL_RTX, 0);
|
4291 |
|
|
t3 = expand_shift
|
4292 |
|
|
(RSHIFT_EXPR, compute_mode, op0,
|
4293 |
|
|
build_int_cst (NULL_TREE, size - 1),
|
4294 |
|
|
NULL_RTX, 0);
|
4295 |
|
|
if (d < 0)
|
4296 |
|
|
quotient
|
4297 |
|
|
= force_operand (gen_rtx_MINUS (compute_mode,
|
4298 |
|
|
t3, t2),
|
4299 |
|
|
tquotient);
|
4300 |
|
|
else
|
4301 |
|
|
quotient
|
4302 |
|
|
= force_operand (gen_rtx_MINUS (compute_mode,
|
4303 |
|
|
t2, t3),
|
4304 |
|
|
tquotient);
|
4305 |
|
|
}
|
4306 |
|
|
else
|
4307 |
|
|
{
|
4308 |
|
|
rtx t1, t2, t3, t4;
|
4309 |
|
|
|
4310 |
|
|
if (post_shift >= BITS_PER_WORD
|
4311 |
|
|
|| size - 1 >= BITS_PER_WORD)
|
4312 |
|
|
goto fail1;
|
4313 |
|
|
|
4314 |
|
|
ml |= (~(unsigned HOST_WIDE_INT) 0) << (size - 1);
|
4315 |
|
|
mlr = gen_int_mode (ml, compute_mode);
|
4316 |
|
|
extra_cost = (shift_cost[speed][compute_mode][post_shift]
|
4317 |
|
|
+ shift_cost[speed][compute_mode][size - 1]
|
4318 |
|
|
+ 2 * add_cost[speed][compute_mode]);
|
4319 |
|
|
t1 = expand_mult_highpart (compute_mode, op0, mlr,
|
4320 |
|
|
NULL_RTX, 0,
|
4321 |
|
|
max_cost - extra_cost);
|
4322 |
|
|
if (t1 == 0)
|
4323 |
|
|
goto fail1;
|
4324 |
|
|
t2 = force_operand (gen_rtx_PLUS (compute_mode,
|
4325 |
|
|
t1, op0),
|
4326 |
|
|
NULL_RTX);
|
4327 |
|
|
t3 = expand_shift
|
4328 |
|
|
(RSHIFT_EXPR, compute_mode, t2,
|
4329 |
|
|
build_int_cst (NULL_TREE, post_shift),
|
4330 |
|
|
NULL_RTX, 0);
|
4331 |
|
|
t4 = expand_shift
|
4332 |
|
|
(RSHIFT_EXPR, compute_mode, op0,
|
4333 |
|
|
build_int_cst (NULL_TREE, size - 1),
|
4334 |
|
|
NULL_RTX, 0);
|
4335 |
|
|
if (d < 0)
|
4336 |
|
|
quotient
|
4337 |
|
|
= force_operand (gen_rtx_MINUS (compute_mode,
|
4338 |
|
|
t4, t3),
|
4339 |
|
|
tquotient);
|
4340 |
|
|
else
|
4341 |
|
|
quotient
|
4342 |
|
|
= force_operand (gen_rtx_MINUS (compute_mode,
|
4343 |
|
|
t3, t4),
|
4344 |
|
|
tquotient);
|
4345 |
|
|
}
|
4346 |
|
|
}
|
4347 |
|
|
else /* Too wide mode to use tricky code */
|
4348 |
|
|
break;
|
4349 |
|
|
|
4350 |
|
|
insn = get_last_insn ();
|
4351 |
|
|
if (insn != last
|
4352 |
|
|
&& (set = single_set (insn)) != 0
|
4353 |
|
|
&& SET_DEST (set) == quotient)
|
4354 |
|
|
set_unique_reg_note (insn,
|
4355 |
|
|
REG_EQUAL,
|
4356 |
|
|
gen_rtx_DIV (compute_mode, op0, op1));
|
4357 |
|
|
}
|
4358 |
|
|
break;
|
4359 |
|
|
}
|
4360 |
|
|
fail1:
|
4361 |
|
|
delete_insns_since (last);
|
4362 |
|
|
break;
|
4363 |
|
|
|
4364 |
|
|
case FLOOR_DIV_EXPR:
|
4365 |
|
|
case FLOOR_MOD_EXPR:
|
4366 |
|
|
/* We will come here only for signed operations. */
|
4367 |
|
|
if (op1_is_constant && HOST_BITS_PER_WIDE_INT >= size)
|
4368 |
|
|
{
|
4369 |
|
|
unsigned HOST_WIDE_INT mh;
|
4370 |
|
|
int pre_shift, lgup, post_shift;
|
4371 |
|
|
HOST_WIDE_INT d = INTVAL (op1);
|
4372 |
|
|
rtx ml;
|
4373 |
|
|
|
4374 |
|
|
if (d > 0)
|
4375 |
|
|
{
|
4376 |
|
|
/* We could just as easily deal with negative constants here,
|
4377 |
|
|
but it does not seem worth the trouble for GCC 2.6. */
|
4378 |
|
|
if (EXACT_POWER_OF_2_OR_ZERO_P (d))
|
4379 |
|
|
{
|
4380 |
|
|
pre_shift = floor_log2 (d);
|
4381 |
|
|
if (rem_flag)
|
4382 |
|
|
{
|
4383 |
|
|
remainder = expand_binop (compute_mode, and_optab, op0,
|
4384 |
|
|
GEN_INT (((HOST_WIDE_INT) 1 << pre_shift) - 1),
|
4385 |
|
|
remainder, 0, OPTAB_LIB_WIDEN);
|
4386 |
|
|
if (remainder)
|
4387 |
|
|
return gen_lowpart (mode, remainder);
|
4388 |
|
|
}
|
4389 |
|
|
quotient = expand_shift
|
4390 |
|
|
(RSHIFT_EXPR, compute_mode, op0,
|
4391 |
|
|
build_int_cst (NULL_TREE, pre_shift),
|
4392 |
|
|
tquotient, 0);
|
4393 |
|
|
}
|
4394 |
|
|
else
|
4395 |
|
|
{
|
4396 |
|
|
rtx t1, t2, t3, t4;
|
4397 |
|
|
|
4398 |
|
|
mh = choose_multiplier (d, size, size - 1,
|
4399 |
|
|
&ml, &post_shift, &lgup);
|
4400 |
|
|
gcc_assert (!mh);
|
4401 |
|
|
|
4402 |
|
|
if (post_shift < BITS_PER_WORD
|
4403 |
|
|
&& size - 1 < BITS_PER_WORD)
|
4404 |
|
|
{
|
4405 |
|
|
t1 = expand_shift
|
4406 |
|
|
(RSHIFT_EXPR, compute_mode, op0,
|
4407 |
|
|
build_int_cst (NULL_TREE, size - 1),
|
4408 |
|
|
NULL_RTX, 0);
|
4409 |
|
|
t2 = expand_binop (compute_mode, xor_optab, op0, t1,
|
4410 |
|
|
NULL_RTX, 0, OPTAB_WIDEN);
|
4411 |
|
|
extra_cost = (shift_cost[speed][compute_mode][post_shift]
|
4412 |
|
|
+ shift_cost[speed][compute_mode][size - 1]
|
4413 |
|
|
+ 2 * add_cost[speed][compute_mode]);
|
4414 |
|
|
t3 = expand_mult_highpart (compute_mode, t2, ml,
|
4415 |
|
|
NULL_RTX, 1,
|
4416 |
|
|
max_cost - extra_cost);
|
4417 |
|
|
if (t3 != 0)
|
4418 |
|
|
{
|
4419 |
|
|
t4 = expand_shift
|
4420 |
|
|
(RSHIFT_EXPR, compute_mode, t3,
|
4421 |
|
|
build_int_cst (NULL_TREE, post_shift),
|
4422 |
|
|
NULL_RTX, 1);
|
4423 |
|
|
quotient = expand_binop (compute_mode, xor_optab,
|
4424 |
|
|
t4, t1, tquotient, 0,
|
4425 |
|
|
OPTAB_WIDEN);
|
4426 |
|
|
}
|
4427 |
|
|
}
|
4428 |
|
|
}
|
4429 |
|
|
}
|
4430 |
|
|
else
|
4431 |
|
|
{
|
4432 |
|
|
rtx nsign, t1, t2, t3, t4;
|
4433 |
|
|
t1 = force_operand (gen_rtx_PLUS (compute_mode,
|
4434 |
|
|
op0, constm1_rtx), NULL_RTX);
|
4435 |
|
|
t2 = expand_binop (compute_mode, ior_optab, op0, t1, NULL_RTX,
|
4436 |
|
|
0, OPTAB_WIDEN);
|
4437 |
|
|
nsign = expand_shift
|
4438 |
|
|
(RSHIFT_EXPR, compute_mode, t2,
|
4439 |
|
|
build_int_cst (NULL_TREE, size - 1),
|
4440 |
|
|
NULL_RTX, 0);
|
4441 |
|
|
t3 = force_operand (gen_rtx_MINUS (compute_mode, t1, nsign),
|
4442 |
|
|
NULL_RTX);
|
4443 |
|
|
t4 = expand_divmod (0, TRUNC_DIV_EXPR, compute_mode, t3, op1,
|
4444 |
|
|
NULL_RTX, 0);
|
4445 |
|
|
if (t4)
|
4446 |
|
|
{
|
4447 |
|
|
rtx t5;
|
4448 |
|
|
t5 = expand_unop (compute_mode, one_cmpl_optab, nsign,
|
4449 |
|
|
NULL_RTX, 0);
|
4450 |
|
|
quotient = force_operand (gen_rtx_PLUS (compute_mode,
|
4451 |
|
|
t4, t5),
|
4452 |
|
|
tquotient);
|
4453 |
|
|
}
|
4454 |
|
|
}
|
4455 |
|
|
}
|
4456 |
|
|
|
4457 |
|
|
if (quotient != 0)
|
4458 |
|
|
break;
|
4459 |
|
|
delete_insns_since (last);
|
4460 |
|
|
|
4461 |
|
|
/* Try using an instruction that produces both the quotient and
|
4462 |
|
|
remainder, using truncation. We can easily compensate the quotient
|
4463 |
|
|
or remainder to get floor rounding, once we have the remainder.
|
4464 |
|
|
Notice that we compute also the final remainder value here,
|
4465 |
|
|
and return the result right away. */
|
4466 |
|
|
if (target == 0 || GET_MODE (target) != compute_mode)
|
4467 |
|
|
target = gen_reg_rtx (compute_mode);
|
4468 |
|
|
|
4469 |
|
|
if (rem_flag)
|
4470 |
|
|
{
|
4471 |
|
|
remainder
|
4472 |
|
|
= REG_P (target) ? target : gen_reg_rtx (compute_mode);
|
4473 |
|
|
quotient = gen_reg_rtx (compute_mode);
|
4474 |
|
|
}
|
4475 |
|
|
else
|
4476 |
|
|
{
|
4477 |
|
|
quotient
|
4478 |
|
|
= REG_P (target) ? target : gen_reg_rtx (compute_mode);
|
4479 |
|
|
remainder = gen_reg_rtx (compute_mode);
|
4480 |
|
|
}
|
4481 |
|
|
|
4482 |
|
|
if (expand_twoval_binop (sdivmod_optab, op0, op1,
|
4483 |
|
|
quotient, remainder, 0))
|
4484 |
|
|
{
|
4485 |
|
|
/* This could be computed with a branch-less sequence.
|
4486 |
|
|
Save that for later. */
|
4487 |
|
|
rtx tem;
|
4488 |
|
|
rtx label = gen_label_rtx ();
|
4489 |
|
|
do_cmp_and_jump (remainder, const0_rtx, EQ, compute_mode, label);
|
4490 |
|
|
tem = expand_binop (compute_mode, xor_optab, op0, op1,
|
4491 |
|
|
NULL_RTX, 0, OPTAB_WIDEN);
|
4492 |
|
|
do_cmp_and_jump (tem, const0_rtx, GE, compute_mode, label);
|
4493 |
|
|
expand_dec (quotient, const1_rtx);
|
4494 |
|
|
expand_inc (remainder, op1);
|
4495 |
|
|
emit_label (label);
|
4496 |
|
|
return gen_lowpart (mode, rem_flag ? remainder : quotient);
|
4497 |
|
|
}
|
4498 |
|
|
|
4499 |
|
|
/* No luck with division elimination or divmod. Have to do it
|
4500 |
|
|
by conditionally adjusting op0 *and* the result. */
|
4501 |
|
|
{
|
4502 |
|
|
rtx label1, label2, label3, label4, label5;
|
4503 |
|
|
rtx adjusted_op0;
|
4504 |
|
|
rtx tem;
|
4505 |
|
|
|
4506 |
|
|
quotient = gen_reg_rtx (compute_mode);
|
4507 |
|
|
adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
|
4508 |
|
|
label1 = gen_label_rtx ();
|
4509 |
|
|
label2 = gen_label_rtx ();
|
4510 |
|
|
label3 = gen_label_rtx ();
|
4511 |
|
|
label4 = gen_label_rtx ();
|
4512 |
|
|
label5 = gen_label_rtx ();
|
4513 |
|
|
do_cmp_and_jump (op1, const0_rtx, LT, compute_mode, label2);
|
4514 |
|
|
do_cmp_and_jump (adjusted_op0, const0_rtx, LT, compute_mode, label1);
|
4515 |
|
|
tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
|
4516 |
|
|
quotient, 0, OPTAB_LIB_WIDEN);
|
4517 |
|
|
if (tem != quotient)
|
4518 |
|
|
emit_move_insn (quotient, tem);
|
4519 |
|
|
emit_jump_insn (gen_jump (label5));
|
4520 |
|
|
emit_barrier ();
|
4521 |
|
|
emit_label (label1);
|
4522 |
|
|
expand_inc (adjusted_op0, const1_rtx);
|
4523 |
|
|
emit_jump_insn (gen_jump (label4));
|
4524 |
|
|
emit_barrier ();
|
4525 |
|
|
emit_label (label2);
|
4526 |
|
|
do_cmp_and_jump (adjusted_op0, const0_rtx, GT, compute_mode, label3);
|
4527 |
|
|
tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
|
4528 |
|
|
quotient, 0, OPTAB_LIB_WIDEN);
|
4529 |
|
|
if (tem != quotient)
|
4530 |
|
|
emit_move_insn (quotient, tem);
|
4531 |
|
|
emit_jump_insn (gen_jump (label5));
|
4532 |
|
|
emit_barrier ();
|
4533 |
|
|
emit_label (label3);
|
4534 |
|
|
expand_dec (adjusted_op0, const1_rtx);
|
4535 |
|
|
emit_label (label4);
|
4536 |
|
|
tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
|
4537 |
|
|
quotient, 0, OPTAB_LIB_WIDEN);
|
4538 |
|
|
if (tem != quotient)
|
4539 |
|
|
emit_move_insn (quotient, tem);
|
4540 |
|
|
expand_dec (quotient, const1_rtx);
|
4541 |
|
|
emit_label (label5);
|
4542 |
|
|
}
|
4543 |
|
|
break;
|
4544 |
|
|
|
4545 |
|
|
case CEIL_DIV_EXPR:
|
4546 |
|
|
case CEIL_MOD_EXPR:
|
4547 |
|
|
if (unsignedp)
|
4548 |
|
|
{
|
4549 |
|
|
if (op1_is_constant && EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1)))
|
4550 |
|
|
{
|
4551 |
|
|
rtx t1, t2, t3;
|
4552 |
|
|
unsigned HOST_WIDE_INT d = INTVAL (op1);
|
4553 |
|
|
t1 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
|
4554 |
|
|
build_int_cst (NULL_TREE, floor_log2 (d)),
|
4555 |
|
|
tquotient, 1);
|
4556 |
|
|
t2 = expand_binop (compute_mode, and_optab, op0,
|
4557 |
|
|
GEN_INT (d - 1),
|
4558 |
|
|
NULL_RTX, 1, OPTAB_LIB_WIDEN);
|
4559 |
|
|
t3 = gen_reg_rtx (compute_mode);
|
4560 |
|
|
t3 = emit_store_flag (t3, NE, t2, const0_rtx,
|
4561 |
|
|
compute_mode, 1, 1);
|
4562 |
|
|
if (t3 == 0)
|
4563 |
|
|
{
|
4564 |
|
|
rtx lab;
|
4565 |
|
|
lab = gen_label_rtx ();
|
4566 |
|
|
do_cmp_and_jump (t2, const0_rtx, EQ, compute_mode, lab);
|
4567 |
|
|
expand_inc (t1, const1_rtx);
|
4568 |
|
|
emit_label (lab);
|
4569 |
|
|
quotient = t1;
|
4570 |
|
|
}
|
4571 |
|
|
else
|
4572 |
|
|
quotient = force_operand (gen_rtx_PLUS (compute_mode,
|
4573 |
|
|
t1, t3),
|
4574 |
|
|
tquotient);
|
4575 |
|
|
break;
|
4576 |
|
|
}
|
4577 |
|
|
|
4578 |
|
|
/* Try using an instruction that produces both the quotient and
|
4579 |
|
|
remainder, using truncation. We can easily compensate the
|
4580 |
|
|
quotient or remainder to get ceiling rounding, once we have the
|
4581 |
|
|
remainder. Notice that we compute also the final remainder
|
4582 |
|
|
value here, and return the result right away. */
|
4583 |
|
|
if (target == 0 || GET_MODE (target) != compute_mode)
|
4584 |
|
|
target = gen_reg_rtx (compute_mode);
|
4585 |
|
|
|
4586 |
|
|
if (rem_flag)
|
4587 |
|
|
{
|
4588 |
|
|
remainder = (REG_P (target)
|
4589 |
|
|
? target : gen_reg_rtx (compute_mode));
|
4590 |
|
|
quotient = gen_reg_rtx (compute_mode);
|
4591 |
|
|
}
|
4592 |
|
|
else
|
4593 |
|
|
{
|
4594 |
|
|
quotient = (REG_P (target)
|
4595 |
|
|
? target : gen_reg_rtx (compute_mode));
|
4596 |
|
|
remainder = gen_reg_rtx (compute_mode);
|
4597 |
|
|
}
|
4598 |
|
|
|
4599 |
|
|
if (expand_twoval_binop (udivmod_optab, op0, op1, quotient,
|
4600 |
|
|
remainder, 1))
|
4601 |
|
|
{
|
4602 |
|
|
/* This could be computed with a branch-less sequence.
|
4603 |
|
|
Save that for later. */
|
4604 |
|
|
rtx label = gen_label_rtx ();
|
4605 |
|
|
do_cmp_and_jump (remainder, const0_rtx, EQ,
|
4606 |
|
|
compute_mode, label);
|
4607 |
|
|
expand_inc (quotient, const1_rtx);
|
4608 |
|
|
expand_dec (remainder, op1);
|
4609 |
|
|
emit_label (label);
|
4610 |
|
|
return gen_lowpart (mode, rem_flag ? remainder : quotient);
|
4611 |
|
|
}
|
4612 |
|
|
|
4613 |
|
|
/* No luck with division elimination or divmod. Have to do it
|
4614 |
|
|
by conditionally adjusting op0 *and* the result. */
|
4615 |
|
|
{
|
4616 |
|
|
rtx label1, label2;
|
4617 |
|
|
rtx adjusted_op0, tem;
|
4618 |
|
|
|
4619 |
|
|
quotient = gen_reg_rtx (compute_mode);
|
4620 |
|
|
adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
|
4621 |
|
|
label1 = gen_label_rtx ();
|
4622 |
|
|
label2 = gen_label_rtx ();
|
4623 |
|
|
do_cmp_and_jump (adjusted_op0, const0_rtx, NE,
|
4624 |
|
|
compute_mode, label1);
|
4625 |
|
|
emit_move_insn (quotient, const0_rtx);
|
4626 |
|
|
emit_jump_insn (gen_jump (label2));
|
4627 |
|
|
emit_barrier ();
|
4628 |
|
|
emit_label (label1);
|
4629 |
|
|
expand_dec (adjusted_op0, const1_rtx);
|
4630 |
|
|
tem = expand_binop (compute_mode, udiv_optab, adjusted_op0, op1,
|
4631 |
|
|
quotient, 1, OPTAB_LIB_WIDEN);
|
4632 |
|
|
if (tem != quotient)
|
4633 |
|
|
emit_move_insn (quotient, tem);
|
4634 |
|
|
expand_inc (quotient, const1_rtx);
|
4635 |
|
|
emit_label (label2);
|
4636 |
|
|
}
|
4637 |
|
|
}
|
4638 |
|
|
else /* signed */
|
4639 |
|
|
{
|
4640 |
|
|
if (op1_is_constant && EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1))
|
4641 |
|
|
&& INTVAL (op1) >= 0)
|
4642 |
|
|
{
|
4643 |
|
|
/* This is extremely similar to the code for the unsigned case
|
4644 |
|
|
above. For 2.7 we should merge these variants, but for
|
4645 |
|
|
2.6.1 I don't want to touch the code for unsigned since that
|
4646 |
|
|
get used in C. The signed case will only be used by other
|
4647 |
|
|
languages (Ada). */
|
4648 |
|
|
|
4649 |
|
|
rtx t1, t2, t3;
|
4650 |
|
|
unsigned HOST_WIDE_INT d = INTVAL (op1);
|
4651 |
|
|
t1 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
|
4652 |
|
|
build_int_cst (NULL_TREE, floor_log2 (d)),
|
4653 |
|
|
tquotient, 0);
|
4654 |
|
|
t2 = expand_binop (compute_mode, and_optab, op0,
|
4655 |
|
|
GEN_INT (d - 1),
|
4656 |
|
|
NULL_RTX, 1, OPTAB_LIB_WIDEN);
|
4657 |
|
|
t3 = gen_reg_rtx (compute_mode);
|
4658 |
|
|
t3 = emit_store_flag (t3, NE, t2, const0_rtx,
|
4659 |
|
|
compute_mode, 1, 1);
|
4660 |
|
|
if (t3 == 0)
|
4661 |
|
|
{
|
4662 |
|
|
rtx lab;
|
4663 |
|
|
lab = gen_label_rtx ();
|
4664 |
|
|
do_cmp_and_jump (t2, const0_rtx, EQ, compute_mode, lab);
|
4665 |
|
|
expand_inc (t1, const1_rtx);
|
4666 |
|
|
emit_label (lab);
|
4667 |
|
|
quotient = t1;
|
4668 |
|
|
}
|
4669 |
|
|
else
|
4670 |
|
|
quotient = force_operand (gen_rtx_PLUS (compute_mode,
|
4671 |
|
|
t1, t3),
|
4672 |
|
|
tquotient);
|
4673 |
|
|
break;
|
4674 |
|
|
}
|
4675 |
|
|
|
4676 |
|
|
/* Try using an instruction that produces both the quotient and
|
4677 |
|
|
remainder, using truncation. We can easily compensate the
|
4678 |
|
|
quotient or remainder to get ceiling rounding, once we have the
|
4679 |
|
|
remainder. Notice that we compute also the final remainder
|
4680 |
|
|
value here, and return the result right away. */
|
4681 |
|
|
if (target == 0 || GET_MODE (target) != compute_mode)
|
4682 |
|
|
target = gen_reg_rtx (compute_mode);
|
4683 |
|
|
if (rem_flag)
|
4684 |
|
|
{
|
4685 |
|
|
remainder= (REG_P (target)
|
4686 |
|
|
? target : gen_reg_rtx (compute_mode));
|
4687 |
|
|
quotient = gen_reg_rtx (compute_mode);
|
4688 |
|
|
}
|
4689 |
|
|
else
|
4690 |
|
|
{
|
4691 |
|
|
quotient = (REG_P (target)
|
4692 |
|
|
? target : gen_reg_rtx (compute_mode));
|
4693 |
|
|
remainder = gen_reg_rtx (compute_mode);
|
4694 |
|
|
}
|
4695 |
|
|
|
4696 |
|
|
if (expand_twoval_binop (sdivmod_optab, op0, op1, quotient,
|
4697 |
|
|
remainder, 0))
|
4698 |
|
|
{
|
4699 |
|
|
/* This could be computed with a branch-less sequence.
|
4700 |
|
|
Save that for later. */
|
4701 |
|
|
rtx tem;
|
4702 |
|
|
rtx label = gen_label_rtx ();
|
4703 |
|
|
do_cmp_and_jump (remainder, const0_rtx, EQ,
|
4704 |
|
|
compute_mode, label);
|
4705 |
|
|
tem = expand_binop (compute_mode, xor_optab, op0, op1,
|
4706 |
|
|
NULL_RTX, 0, OPTAB_WIDEN);
|
4707 |
|
|
do_cmp_and_jump (tem, const0_rtx, LT, compute_mode, label);
|
4708 |
|
|
expand_inc (quotient, const1_rtx);
|
4709 |
|
|
expand_dec (remainder, op1);
|
4710 |
|
|
emit_label (label);
|
4711 |
|
|
return gen_lowpart (mode, rem_flag ? remainder : quotient);
|
4712 |
|
|
}
|
4713 |
|
|
|
4714 |
|
|
/* No luck with division elimination or divmod. Have to do it
|
4715 |
|
|
by conditionally adjusting op0 *and* the result. */
|
4716 |
|
|
{
|
4717 |
|
|
rtx label1, label2, label3, label4, label5;
|
4718 |
|
|
rtx adjusted_op0;
|
4719 |
|
|
rtx tem;
|
4720 |
|
|
|
4721 |
|
|
quotient = gen_reg_rtx (compute_mode);
|
4722 |
|
|
adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
|
4723 |
|
|
label1 = gen_label_rtx ();
|
4724 |
|
|
label2 = gen_label_rtx ();
|
4725 |
|
|
label3 = gen_label_rtx ();
|
4726 |
|
|
label4 = gen_label_rtx ();
|
4727 |
|
|
label5 = gen_label_rtx ();
|
4728 |
|
|
do_cmp_and_jump (op1, const0_rtx, LT, compute_mode, label2);
|
4729 |
|
|
do_cmp_and_jump (adjusted_op0, const0_rtx, GT,
|
4730 |
|
|
compute_mode, label1);
|
4731 |
|
|
tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
|
4732 |
|
|
quotient, 0, OPTAB_LIB_WIDEN);
|
4733 |
|
|
if (tem != quotient)
|
4734 |
|
|
emit_move_insn (quotient, tem);
|
4735 |
|
|
emit_jump_insn (gen_jump (label5));
|
4736 |
|
|
emit_barrier ();
|
4737 |
|
|
emit_label (label1);
|
4738 |
|
|
expand_dec (adjusted_op0, const1_rtx);
|
4739 |
|
|
emit_jump_insn (gen_jump (label4));
|
4740 |
|
|
emit_barrier ();
|
4741 |
|
|
emit_label (label2);
|
4742 |
|
|
do_cmp_and_jump (adjusted_op0, const0_rtx, LT,
|
4743 |
|
|
compute_mode, label3);
|
4744 |
|
|
tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
|
4745 |
|
|
quotient, 0, OPTAB_LIB_WIDEN);
|
4746 |
|
|
if (tem != quotient)
|
4747 |
|
|
emit_move_insn (quotient, tem);
|
4748 |
|
|
emit_jump_insn (gen_jump (label5));
|
4749 |
|
|
emit_barrier ();
|
4750 |
|
|
emit_label (label3);
|
4751 |
|
|
expand_inc (adjusted_op0, const1_rtx);
|
4752 |
|
|
emit_label (label4);
|
4753 |
|
|
tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
|
4754 |
|
|
quotient, 0, OPTAB_LIB_WIDEN);
|
4755 |
|
|
if (tem != quotient)
|
4756 |
|
|
emit_move_insn (quotient, tem);
|
4757 |
|
|
expand_inc (quotient, const1_rtx);
|
4758 |
|
|
emit_label (label5);
|
4759 |
|
|
}
|
4760 |
|
|
}
|
4761 |
|
|
break;
|
4762 |
|
|
|
4763 |
|
|
case EXACT_DIV_EXPR:
|
4764 |
|
|
if (op1_is_constant && HOST_BITS_PER_WIDE_INT >= size)
|
4765 |
|
|
{
|
4766 |
|
|
HOST_WIDE_INT d = INTVAL (op1);
|
4767 |
|
|
unsigned HOST_WIDE_INT ml;
|
4768 |
|
|
int pre_shift;
|
4769 |
|
|
rtx t1;
|
4770 |
|
|
|
4771 |
|
|
pre_shift = floor_log2 (d & -d);
|
4772 |
|
|
ml = invert_mod2n (d >> pre_shift, size);
|
4773 |
|
|
t1 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
|
4774 |
|
|
build_int_cst (NULL_TREE, pre_shift),
|
4775 |
|
|
NULL_RTX, unsignedp);
|
4776 |
|
|
quotient = expand_mult (compute_mode, t1,
|
4777 |
|
|
gen_int_mode (ml, compute_mode),
|
4778 |
|
|
NULL_RTX, 1);
|
4779 |
|
|
|
4780 |
|
|
insn = get_last_insn ();
|
4781 |
|
|
set_unique_reg_note (insn,
|
4782 |
|
|
REG_EQUAL,
|
4783 |
|
|
gen_rtx_fmt_ee (unsignedp ? UDIV : DIV,
|
4784 |
|
|
compute_mode,
|
4785 |
|
|
op0, op1));
|
4786 |
|
|
}
|
4787 |
|
|
break;
|
4788 |
|
|
|
4789 |
|
|
case ROUND_DIV_EXPR:
|
4790 |
|
|
case ROUND_MOD_EXPR:
|
4791 |
|
|
if (unsignedp)
|
4792 |
|
|
{
|
4793 |
|
|
rtx tem;
|
4794 |
|
|
rtx label;
|
4795 |
|
|
label = gen_label_rtx ();
|
4796 |
|
|
quotient = gen_reg_rtx (compute_mode);
|
4797 |
|
|
remainder = gen_reg_rtx (compute_mode);
|
4798 |
|
|
if (expand_twoval_binop (udivmod_optab, op0, op1, quotient, remainder, 1) == 0)
|
4799 |
|
|
{
|
4800 |
|
|
rtx tem;
|
4801 |
|
|
quotient = expand_binop (compute_mode, udiv_optab, op0, op1,
|
4802 |
|
|
quotient, 1, OPTAB_LIB_WIDEN);
|
4803 |
|
|
tem = expand_mult (compute_mode, quotient, op1, NULL_RTX, 1);
|
4804 |
|
|
remainder = expand_binop (compute_mode, sub_optab, op0, tem,
|
4805 |
|
|
remainder, 1, OPTAB_LIB_WIDEN);
|
4806 |
|
|
}
|
4807 |
|
|
tem = plus_constant (op1, -1);
|
4808 |
|
|
tem = expand_shift (RSHIFT_EXPR, compute_mode, tem,
|
4809 |
|
|
build_int_cst (NULL_TREE, 1),
|
4810 |
|
|
NULL_RTX, 1);
|
4811 |
|
|
do_cmp_and_jump (remainder, tem, LEU, compute_mode, label);
|
4812 |
|
|
expand_inc (quotient, const1_rtx);
|
4813 |
|
|
expand_dec (remainder, op1);
|
4814 |
|
|
emit_label (label);
|
4815 |
|
|
}
|
4816 |
|
|
else
|
4817 |
|
|
{
|
4818 |
|
|
rtx abs_rem, abs_op1, tem, mask;
|
4819 |
|
|
rtx label;
|
4820 |
|
|
label = gen_label_rtx ();
|
4821 |
|
|
quotient = gen_reg_rtx (compute_mode);
|
4822 |
|
|
remainder = gen_reg_rtx (compute_mode);
|
4823 |
|
|
if (expand_twoval_binop (sdivmod_optab, op0, op1, quotient, remainder, 0) == 0)
|
4824 |
|
|
{
|
4825 |
|
|
rtx tem;
|
4826 |
|
|
quotient = expand_binop (compute_mode, sdiv_optab, op0, op1,
|
4827 |
|
|
quotient, 0, OPTAB_LIB_WIDEN);
|
4828 |
|
|
tem = expand_mult (compute_mode, quotient, op1, NULL_RTX, 0);
|
4829 |
|
|
remainder = expand_binop (compute_mode, sub_optab, op0, tem,
|
4830 |
|
|
remainder, 0, OPTAB_LIB_WIDEN);
|
4831 |
|
|
}
|
4832 |
|
|
abs_rem = expand_abs (compute_mode, remainder, NULL_RTX, 1, 0);
|
4833 |
|
|
abs_op1 = expand_abs (compute_mode, op1, NULL_RTX, 1, 0);
|
4834 |
|
|
tem = expand_shift (LSHIFT_EXPR, compute_mode, abs_rem,
|
4835 |
|
|
build_int_cst (NULL_TREE, 1),
|
4836 |
|
|
NULL_RTX, 1);
|
4837 |
|
|
do_cmp_and_jump (tem, abs_op1, LTU, compute_mode, label);
|
4838 |
|
|
tem = expand_binop (compute_mode, xor_optab, op0, op1,
|
4839 |
|
|
NULL_RTX, 0, OPTAB_WIDEN);
|
4840 |
|
|
mask = expand_shift (RSHIFT_EXPR, compute_mode, tem,
|
4841 |
|
|
build_int_cst (NULL_TREE, size - 1),
|
4842 |
|
|
NULL_RTX, 0);
|
4843 |
|
|
tem = expand_binop (compute_mode, xor_optab, mask, const1_rtx,
|
4844 |
|
|
NULL_RTX, 0, OPTAB_WIDEN);
|
4845 |
|
|
tem = expand_binop (compute_mode, sub_optab, tem, mask,
|
4846 |
|
|
NULL_RTX, 0, OPTAB_WIDEN);
|
4847 |
|
|
expand_inc (quotient, tem);
|
4848 |
|
|
tem = expand_binop (compute_mode, xor_optab, mask, op1,
|
4849 |
|
|
NULL_RTX, 0, OPTAB_WIDEN);
|
4850 |
|
|
tem = expand_binop (compute_mode, sub_optab, tem, mask,
|
4851 |
|
|
NULL_RTX, 0, OPTAB_WIDEN);
|
4852 |
|
|
expand_dec (remainder, tem);
|
4853 |
|
|
emit_label (label);
|
4854 |
|
|
}
|
4855 |
|
|
return gen_lowpart (mode, rem_flag ? remainder : quotient);
|
4856 |
|
|
|
4857 |
|
|
default:
|
4858 |
|
|
gcc_unreachable ();
|
4859 |
|
|
}
|
4860 |
|
|
|
4861 |
|
|
if (quotient == 0)
|
4862 |
|
|
{
|
4863 |
|
|
if (target && GET_MODE (target) != compute_mode)
|
4864 |
|
|
target = 0;
|
4865 |
|
|
|
4866 |
|
|
if (rem_flag)
|
4867 |
|
|
{
|
4868 |
|
|
/* Try to produce the remainder without producing the quotient.
|
4869 |
|
|
If we seem to have a divmod pattern that does not require widening,
|
4870 |
|
|
don't try widening here. We should really have a WIDEN argument
|
4871 |
|
|
to expand_twoval_binop, since what we'd really like to do here is
|
4872 |
|
|
1) try a mod insn in compute_mode
|
4873 |
|
|
2) try a divmod insn in compute_mode
|
4874 |
|
|
3) try a div insn in compute_mode and multiply-subtract to get
|
4875 |
|
|
remainder
|
4876 |
|
|
4) try the same things with widening allowed. */
|
4877 |
|
|
remainder
|
4878 |
|
|
= sign_expand_binop (compute_mode, umod_optab, smod_optab,
|
4879 |
|
|
op0, op1, target,
|
4880 |
|
|
unsignedp,
|
4881 |
|
|
((optab_handler (optab2, compute_mode)->insn_code
|
4882 |
|
|
!= CODE_FOR_nothing)
|
4883 |
|
|
? OPTAB_DIRECT : OPTAB_WIDEN));
|
4884 |
|
|
if (remainder == 0)
|
4885 |
|
|
{
|
4886 |
|
|
/* No luck there. Can we do remainder and divide at once
|
4887 |
|
|
without a library call? */
|
4888 |
|
|
remainder = gen_reg_rtx (compute_mode);
|
4889 |
|
|
if (! expand_twoval_binop ((unsignedp
|
4890 |
|
|
? udivmod_optab
|
4891 |
|
|
: sdivmod_optab),
|
4892 |
|
|
op0, op1,
|
4893 |
|
|
NULL_RTX, remainder, unsignedp))
|
4894 |
|
|
remainder = 0;
|
4895 |
|
|
}
|
4896 |
|
|
|
4897 |
|
|
if (remainder)
|
4898 |
|
|
return gen_lowpart (mode, remainder);
|
4899 |
|
|
}
|
4900 |
|
|
|
4901 |
|
|
/* Produce the quotient. Try a quotient insn, but not a library call.
|
4902 |
|
|
If we have a divmod in this mode, use it in preference to widening
|
4903 |
|
|
the div (for this test we assume it will not fail). Note that optab2
|
4904 |
|
|
is set to the one of the two optabs that the call below will use. */
|
4905 |
|
|
quotient
|
4906 |
|
|
= sign_expand_binop (compute_mode, udiv_optab, sdiv_optab,
|
4907 |
|
|
op0, op1, rem_flag ? NULL_RTX : target,
|
4908 |
|
|
unsignedp,
|
4909 |
|
|
((optab_handler (optab2, compute_mode)->insn_code
|
4910 |
|
|
!= CODE_FOR_nothing)
|
4911 |
|
|
? OPTAB_DIRECT : OPTAB_WIDEN));
|
4912 |
|
|
|
4913 |
|
|
if (quotient == 0)
|
4914 |
|
|
{
|
4915 |
|
|
/* No luck there. Try a quotient-and-remainder insn,
|
4916 |
|
|
keeping the quotient alone. */
|
4917 |
|
|
quotient = gen_reg_rtx (compute_mode);
|
4918 |
|
|
if (! expand_twoval_binop (unsignedp ? udivmod_optab : sdivmod_optab,
|
4919 |
|
|
op0, op1,
|
4920 |
|
|
quotient, NULL_RTX, unsignedp))
|
4921 |
|
|
{
|
4922 |
|
|
quotient = 0;
|
4923 |
|
|
if (! rem_flag)
|
4924 |
|
|
/* Still no luck. If we are not computing the remainder,
|
4925 |
|
|
use a library call for the quotient. */
|
4926 |
|
|
quotient = sign_expand_binop (compute_mode,
|
4927 |
|
|
udiv_optab, sdiv_optab,
|
4928 |
|
|
op0, op1, target,
|
4929 |
|
|
unsignedp, OPTAB_LIB_WIDEN);
|
4930 |
|
|
}
|
4931 |
|
|
}
|
4932 |
|
|
}
|
4933 |
|
|
|
4934 |
|
|
if (rem_flag)
|
4935 |
|
|
{
|
4936 |
|
|
if (target && GET_MODE (target) != compute_mode)
|
4937 |
|
|
target = 0;
|
4938 |
|
|
|
4939 |
|
|
if (quotient == 0)
|
4940 |
|
|
{
|
4941 |
|
|
/* No divide instruction either. Use library for remainder. */
|
4942 |
|
|
remainder = sign_expand_binop (compute_mode, umod_optab, smod_optab,
|
4943 |
|
|
op0, op1, target,
|
4944 |
|
|
unsignedp, OPTAB_LIB_WIDEN);
|
4945 |
|
|
/* No remainder function. Try a quotient-and-remainder
|
4946 |
|
|
function, keeping the remainder. */
|
4947 |
|
|
if (!remainder)
|
4948 |
|
|
{
|
4949 |
|
|
remainder = gen_reg_rtx (compute_mode);
|
4950 |
|
|
if (!expand_twoval_binop_libfunc
|
4951 |
|
|
(unsignedp ? udivmod_optab : sdivmod_optab,
|
4952 |
|
|
op0, op1,
|
4953 |
|
|
NULL_RTX, remainder,
|
4954 |
|
|
unsignedp ? UMOD : MOD))
|
4955 |
|
|
remainder = NULL_RTX;
|
4956 |
|
|
}
|
4957 |
|
|
}
|
4958 |
|
|
else
|
4959 |
|
|
{
|
4960 |
|
|
/* We divided. Now finish doing X - Y * (X / Y). */
|
4961 |
|
|
remainder = expand_mult (compute_mode, quotient, op1,
|
4962 |
|
|
NULL_RTX, unsignedp);
|
4963 |
|
|
remainder = expand_binop (compute_mode, sub_optab, op0,
|
4964 |
|
|
remainder, target, unsignedp,
|
4965 |
|
|
OPTAB_LIB_WIDEN);
|
4966 |
|
|
}
|
4967 |
|
|
}
|
4968 |
|
|
|
4969 |
|
|
return gen_lowpart (mode, rem_flag ? remainder : quotient);
|
4970 |
|
|
}
|
4971 |
|
|
|
4972 |
|
|
/* Return a tree node with data type TYPE, describing the value of X.
|
4973 |
|
|
Usually this is an VAR_DECL, if there is no obvious better choice.
|
4974 |
|
|
X may be an expression, however we only support those expressions
|
4975 |
|
|
generated by loop.c. */
|
4976 |
|
|
|
4977 |
|
|
tree
|
4978 |
|
|
make_tree (tree type, rtx x)
|
4979 |
|
|
{
|
4980 |
|
|
tree t;
|
4981 |
|
|
|
4982 |
|
|
switch (GET_CODE (x))
|
4983 |
|
|
{
|
4984 |
|
|
case CONST_INT:
|
4985 |
|
|
{
|
4986 |
|
|
HOST_WIDE_INT hi = 0;
|
4987 |
|
|
|
4988 |
|
|
if (INTVAL (x) < 0
|
4989 |
|
|
&& !(TYPE_UNSIGNED (type)
|
4990 |
|
|
&& (GET_MODE_BITSIZE (TYPE_MODE (type))
|
4991 |
|
|
< HOST_BITS_PER_WIDE_INT)))
|
4992 |
|
|
hi = -1;
|
4993 |
|
|
|
4994 |
|
|
t = build_int_cst_wide (type, INTVAL (x), hi);
|
4995 |
|
|
|
4996 |
|
|
return t;
|
4997 |
|
|
}
|
4998 |
|
|
|
4999 |
|
|
case CONST_DOUBLE:
|
5000 |
|
|
if (GET_MODE (x) == VOIDmode)
|
5001 |
|
|
t = build_int_cst_wide (type,
|
5002 |
|
|
CONST_DOUBLE_LOW (x), CONST_DOUBLE_HIGH (x));
|
5003 |
|
|
else
|
5004 |
|
|
{
|
5005 |
|
|
REAL_VALUE_TYPE d;
|
5006 |
|
|
|
5007 |
|
|
REAL_VALUE_FROM_CONST_DOUBLE (d, x);
|
5008 |
|
|
t = build_real (type, d);
|
5009 |
|
|
}
|
5010 |
|
|
|
5011 |
|
|
return t;
|
5012 |
|
|
|
5013 |
|
|
case CONST_VECTOR:
|
5014 |
|
|
{
|
5015 |
|
|
int units = CONST_VECTOR_NUNITS (x);
|
5016 |
|
|
tree itype = TREE_TYPE (type);
|
5017 |
|
|
tree t = NULL_TREE;
|
5018 |
|
|
int i;
|
5019 |
|
|
|
5020 |
|
|
|
5021 |
|
|
/* Build a tree with vector elements. */
|
5022 |
|
|
for (i = units - 1; i >= 0; --i)
|
5023 |
|
|
{
|
5024 |
|
|
rtx elt = CONST_VECTOR_ELT (x, i);
|
5025 |
|
|
t = tree_cons (NULL_TREE, make_tree (itype, elt), t);
|
5026 |
|
|
}
|
5027 |
|
|
|
5028 |
|
|
return build_vector (type, t);
|
5029 |
|
|
}
|
5030 |
|
|
|
5031 |
|
|
case PLUS:
|
5032 |
|
|
return fold_build2 (PLUS_EXPR, type, make_tree (type, XEXP (x, 0)),
|
5033 |
|
|
make_tree (type, XEXP (x, 1)));
|
5034 |
|
|
|
5035 |
|
|
case MINUS:
|
5036 |
|
|
return fold_build2 (MINUS_EXPR, type, make_tree (type, XEXP (x, 0)),
|
5037 |
|
|
make_tree (type, XEXP (x, 1)));
|
5038 |
|
|
|
5039 |
|
|
case NEG:
|
5040 |
|
|
return fold_build1 (NEGATE_EXPR, type, make_tree (type, XEXP (x, 0)));
|
5041 |
|
|
|
5042 |
|
|
case MULT:
|
5043 |
|
|
return fold_build2 (MULT_EXPR, type, make_tree (type, XEXP (x, 0)),
|
5044 |
|
|
make_tree (type, XEXP (x, 1)));
|
5045 |
|
|
|
5046 |
|
|
case ASHIFT:
|
5047 |
|
|
return fold_build2 (LSHIFT_EXPR, type, make_tree (type, XEXP (x, 0)),
|
5048 |
|
|
make_tree (type, XEXP (x, 1)));
|
5049 |
|
|
|
5050 |
|
|
case LSHIFTRT:
|
5051 |
|
|
t = unsigned_type_for (type);
|
5052 |
|
|
return fold_convert (type, build2 (RSHIFT_EXPR, t,
|
5053 |
|
|
make_tree (t, XEXP (x, 0)),
|
5054 |
|
|
make_tree (type, XEXP (x, 1))));
|
5055 |
|
|
|
5056 |
|
|
case ASHIFTRT:
|
5057 |
|
|
t = signed_type_for (type);
|
5058 |
|
|
return fold_convert (type, build2 (RSHIFT_EXPR, t,
|
5059 |
|
|
make_tree (t, XEXP (x, 0)),
|
5060 |
|
|
make_tree (type, XEXP (x, 1))));
|
5061 |
|
|
|
5062 |
|
|
case DIV:
|
5063 |
|
|
if (TREE_CODE (type) != REAL_TYPE)
|
5064 |
|
|
t = signed_type_for (type);
|
5065 |
|
|
else
|
5066 |
|
|
t = type;
|
5067 |
|
|
|
5068 |
|
|
return fold_convert (type, build2 (TRUNC_DIV_EXPR, t,
|
5069 |
|
|
make_tree (t, XEXP (x, 0)),
|
5070 |
|
|
make_tree (t, XEXP (x, 1))));
|
5071 |
|
|
case UDIV:
|
5072 |
|
|
t = unsigned_type_for (type);
|
5073 |
|
|
return fold_convert (type, build2 (TRUNC_DIV_EXPR, t,
|
5074 |
|
|
make_tree (t, XEXP (x, 0)),
|
5075 |
|
|
make_tree (t, XEXP (x, 1))));
|
5076 |
|
|
|
5077 |
|
|
case SIGN_EXTEND:
|
5078 |
|
|
case ZERO_EXTEND:
|
5079 |
|
|
t = lang_hooks.types.type_for_mode (GET_MODE (XEXP (x, 0)),
|
5080 |
|
|
GET_CODE (x) == ZERO_EXTEND);
|
5081 |
|
|
return fold_convert (type, make_tree (t, XEXP (x, 0)));
|
5082 |
|
|
|
5083 |
|
|
case CONST:
|
5084 |
|
|
return make_tree (type, XEXP (x, 0));
|
5085 |
|
|
|
5086 |
|
|
case SYMBOL_REF:
|
5087 |
|
|
t = SYMBOL_REF_DECL (x);
|
5088 |
|
|
if (t)
|
5089 |
|
|
return fold_convert (type, build_fold_addr_expr (t));
|
5090 |
|
|
/* else fall through. */
|
5091 |
|
|
|
5092 |
|
|
default:
|
5093 |
|
|
t = build_decl (RTL_LOCATION (x), VAR_DECL, NULL_TREE, type);
|
5094 |
|
|
|
5095 |
|
|
/* If TYPE is a POINTER_TYPE, we might need to convert X from
|
5096 |
|
|
address mode to pointer mode. */
|
5097 |
|
|
if (POINTER_TYPE_P (type))
|
5098 |
|
|
x = convert_memory_address_addr_space
|
5099 |
|
|
(TYPE_MODE (type), x, TYPE_ADDR_SPACE (TREE_TYPE (type)));
|
5100 |
|
|
|
5101 |
|
|
/* Note that we do *not* use SET_DECL_RTL here, because we do not
|
5102 |
|
|
want set_decl_rtl to go adjusting REG_ATTRS for this temporary. */
|
5103 |
|
|
t->decl_with_rtl.rtl = x;
|
5104 |
|
|
|
5105 |
|
|
return t;
|
5106 |
|
|
}
|
5107 |
|
|
}
|
5108 |
|
|
|
5109 |
|
|
/* Compute the logical-and of OP0 and OP1, storing it in TARGET
|
5110 |
|
|
and returning TARGET.
|
5111 |
|
|
|
5112 |
|
|
If TARGET is 0, a pseudo-register or constant is returned. */
|
5113 |
|
|
|
5114 |
|
|
rtx
|
5115 |
|
|
expand_and (enum machine_mode mode, rtx op0, rtx op1, rtx target)
|
5116 |
|
|
{
|
5117 |
|
|
rtx tem = 0;
|
5118 |
|
|
|
5119 |
|
|
if (GET_MODE (op0) == VOIDmode && GET_MODE (op1) == VOIDmode)
|
5120 |
|
|
tem = simplify_binary_operation (AND, mode, op0, op1);
|
5121 |
|
|
if (tem == 0)
|
5122 |
|
|
tem = expand_binop (mode, and_optab, op0, op1, target, 0, OPTAB_LIB_WIDEN);
|
5123 |
|
|
|
5124 |
|
|
if (target == 0)
|
5125 |
|
|
target = tem;
|
5126 |
|
|
else if (tem != target)
|
5127 |
|
|
emit_move_insn (target, tem);
|
5128 |
|
|
return target;
|
5129 |
|
|
}
|
5130 |
|
|
|
5131 |
|
|
/* Helper function for emit_store_flag. */
|
5132 |
|
|
static rtx
|
5133 |
|
|
emit_cstore (rtx target, enum insn_code icode, enum rtx_code code,
|
5134 |
|
|
enum machine_mode mode, enum machine_mode compare_mode,
|
5135 |
|
|
int unsignedp, rtx x, rtx y, int normalizep,
|
5136 |
|
|
enum machine_mode target_mode)
|
5137 |
|
|
{
|
5138 |
|
|
rtx op0, last, comparison, subtarget, pattern;
|
5139 |
|
|
enum machine_mode result_mode = insn_data[(int) icode].operand[0].mode;
|
5140 |
|
|
|
5141 |
|
|
last = get_last_insn ();
|
5142 |
|
|
x = prepare_operand (icode, x, 2, mode, compare_mode, unsignedp);
|
5143 |
|
|
y = prepare_operand (icode, y, 3, mode, compare_mode, unsignedp);
|
5144 |
|
|
comparison = gen_rtx_fmt_ee (code, result_mode, x, y);
|
5145 |
|
|
if (!x || !y
|
5146 |
|
|
|| !insn_data[icode].operand[2].predicate
|
5147 |
|
|
(x, insn_data[icode].operand[2].mode)
|
5148 |
|
|
|| !insn_data[icode].operand[3].predicate
|
5149 |
|
|
(y, insn_data[icode].operand[3].mode)
|
5150 |
|
|
|| !insn_data[icode].operand[1].predicate (comparison, VOIDmode))
|
5151 |
|
|
{
|
5152 |
|
|
delete_insns_since (last);
|
5153 |
|
|
return NULL_RTX;
|
5154 |
|
|
}
|
5155 |
|
|
|
5156 |
|
|
if (target_mode == VOIDmode)
|
5157 |
|
|
target_mode = result_mode;
|
5158 |
|
|
if (!target)
|
5159 |
|
|
target = gen_reg_rtx (target_mode);
|
5160 |
|
|
|
5161 |
|
|
if (optimize
|
5162 |
|
|
|| !(insn_data[(int) icode].operand[0].predicate (target, result_mode)))
|
5163 |
|
|
subtarget = gen_reg_rtx (result_mode);
|
5164 |
|
|
else
|
5165 |
|
|
subtarget = target;
|
5166 |
|
|
|
5167 |
|
|
pattern = GEN_FCN (icode) (subtarget, comparison, x, y);
|
5168 |
|
|
if (!pattern)
|
5169 |
|
|
return NULL_RTX;
|
5170 |
|
|
emit_insn (pattern);
|
5171 |
|
|
|
5172 |
|
|
/* If we are converting to a wider mode, first convert to
|
5173 |
|
|
TARGET_MODE, then normalize. This produces better combining
|
5174 |
|
|
opportunities on machines that have a SIGN_EXTRACT when we are
|
5175 |
|
|
testing a single bit. This mostly benefits the 68k.
|
5176 |
|
|
|
5177 |
|
|
If STORE_FLAG_VALUE does not have the sign bit set when
|
5178 |
|
|
interpreted in MODE, we can do this conversion as unsigned, which
|
5179 |
|
|
is usually more efficient. */
|
5180 |
|
|
if (GET_MODE_SIZE (target_mode) > GET_MODE_SIZE (result_mode))
|
5181 |
|
|
{
|
5182 |
|
|
convert_move (target, subtarget,
|
5183 |
|
|
(GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT)
|
5184 |
|
|
&& 0 == (STORE_FLAG_VALUE
|
5185 |
|
|
& ((HOST_WIDE_INT) 1
|
5186 |
|
|
<< (GET_MODE_BITSIZE (result_mode) -1))));
|
5187 |
|
|
op0 = target;
|
5188 |
|
|
result_mode = target_mode;
|
5189 |
|
|
}
|
5190 |
|
|
else
|
5191 |
|
|
op0 = subtarget;
|
5192 |
|
|
|
5193 |
|
|
/* If we want to keep subexpressions around, don't reuse our last
|
5194 |
|
|
target. */
|
5195 |
|
|
if (optimize)
|
5196 |
|
|
subtarget = 0;
|
5197 |
|
|
|
5198 |
|
|
/* Now normalize to the proper value in MODE. Sometimes we don't
|
5199 |
|
|
have to do anything. */
|
5200 |
|
|
if (normalizep == 0 || normalizep == STORE_FLAG_VALUE)
|
5201 |
|
|
;
|
5202 |
|
|
/* STORE_FLAG_VALUE might be the most negative number, so write
|
5203 |
|
|
the comparison this way to avoid a compiler-time warning. */
|
5204 |
|
|
else if (- normalizep == STORE_FLAG_VALUE)
|
5205 |
|
|
op0 = expand_unop (result_mode, neg_optab, op0, subtarget, 0);
|
5206 |
|
|
|
5207 |
|
|
/* We don't want to use STORE_FLAG_VALUE < 0 below since this makes
|
5208 |
|
|
it hard to use a value of just the sign bit due to ANSI integer
|
5209 |
|
|
constant typing rules. */
|
5210 |
|
|
else if (GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
|
5211 |
|
|
&& (STORE_FLAG_VALUE
|
5212 |
|
|
& ((HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (result_mode) - 1))))
|
5213 |
|
|
op0 = expand_shift (RSHIFT_EXPR, result_mode, op0,
|
5214 |
|
|
size_int (GET_MODE_BITSIZE (result_mode) - 1), subtarget,
|
5215 |
|
|
normalizep == 1);
|
5216 |
|
|
else
|
5217 |
|
|
{
|
5218 |
|
|
gcc_assert (STORE_FLAG_VALUE & 1);
|
5219 |
|
|
|
5220 |
|
|
op0 = expand_and (result_mode, op0, const1_rtx, subtarget);
|
5221 |
|
|
if (normalizep == -1)
|
5222 |
|
|
op0 = expand_unop (result_mode, neg_optab, op0, op0, 0);
|
5223 |
|
|
}
|
5224 |
|
|
|
5225 |
|
|
/* If we were converting to a smaller mode, do the conversion now. */
|
5226 |
|
|
if (target_mode != result_mode)
|
5227 |
|
|
{
|
5228 |
|
|
convert_move (target, op0, 0);
|
5229 |
|
|
return target;
|
5230 |
|
|
}
|
5231 |
|
|
else
|
5232 |
|
|
return op0;
|
5233 |
|
|
}
|
5234 |
|
|
|
5235 |
|
|
|
5236 |
|
|
/* A subroutine of emit_store_flag only including "tricks" that do not
|
5237 |
|
|
need a recursive call. These are kept separate to avoid infinite
|
5238 |
|
|
loops. */
|
5239 |
|
|
|
5240 |
|
|
static rtx
|
5241 |
|
|
emit_store_flag_1 (rtx target, enum rtx_code code, rtx op0, rtx op1,
|
5242 |
|
|
enum machine_mode mode, int unsignedp, int normalizep,
|
5243 |
|
|
enum machine_mode target_mode)
|
5244 |
|
|
{
|
5245 |
|
|
rtx subtarget;
|
5246 |
|
|
enum insn_code icode;
|
5247 |
|
|
enum machine_mode compare_mode;
|
5248 |
|
|
enum mode_class mclass;
|
5249 |
|
|
enum rtx_code scode;
|
5250 |
|
|
rtx tem;
|
5251 |
|
|
|
5252 |
|
|
if (unsignedp)
|
5253 |
|
|
code = unsigned_condition (code);
|
5254 |
|
|
scode = swap_condition (code);
|
5255 |
|
|
|
5256 |
|
|
/* If one operand is constant, make it the second one. Only do this
|
5257 |
|
|
if the other operand is not constant as well. */
|
5258 |
|
|
|
5259 |
|
|
if (swap_commutative_operands_p (op0, op1))
|
5260 |
|
|
{
|
5261 |
|
|
tem = op0;
|
5262 |
|
|
op0 = op1;
|
5263 |
|
|
op1 = tem;
|
5264 |
|
|
code = swap_condition (code);
|
5265 |
|
|
}
|
5266 |
|
|
|
5267 |
|
|
if (mode == VOIDmode)
|
5268 |
|
|
mode = GET_MODE (op0);
|
5269 |
|
|
|
5270 |
|
|
/* For some comparisons with 1 and -1, we can convert this to
|
5271 |
|
|
comparisons with zero. This will often produce more opportunities for
|
5272 |
|
|
store-flag insns. */
|
5273 |
|
|
|
5274 |
|
|
switch (code)
|
5275 |
|
|
{
|
5276 |
|
|
case LT:
|
5277 |
|
|
if (op1 == const1_rtx)
|
5278 |
|
|
op1 = const0_rtx, code = LE;
|
5279 |
|
|
break;
|
5280 |
|
|
case LE:
|
5281 |
|
|
if (op1 == constm1_rtx)
|
5282 |
|
|
op1 = const0_rtx, code = LT;
|
5283 |
|
|
break;
|
5284 |
|
|
case GE:
|
5285 |
|
|
if (op1 == const1_rtx)
|
5286 |
|
|
op1 = const0_rtx, code = GT;
|
5287 |
|
|
break;
|
5288 |
|
|
case GT:
|
5289 |
|
|
if (op1 == constm1_rtx)
|
5290 |
|
|
op1 = const0_rtx, code = GE;
|
5291 |
|
|
break;
|
5292 |
|
|
case GEU:
|
5293 |
|
|
if (op1 == const1_rtx)
|
5294 |
|
|
op1 = const0_rtx, code = NE;
|
5295 |
|
|
break;
|
5296 |
|
|
case LTU:
|
5297 |
|
|
if (op1 == const1_rtx)
|
5298 |
|
|
op1 = const0_rtx, code = EQ;
|
5299 |
|
|
break;
|
5300 |
|
|
default:
|
5301 |
|
|
break;
|
5302 |
|
|
}
|
5303 |
|
|
|
5304 |
|
|
/* If we are comparing a double-word integer with zero or -1, we can
|
5305 |
|
|
convert the comparison into one involving a single word. */
|
5306 |
|
|
if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD * 2
|
5307 |
|
|
&& GET_MODE_CLASS (mode) == MODE_INT
|
5308 |
|
|
&& (!MEM_P (op0) || ! MEM_VOLATILE_P (op0)))
|
5309 |
|
|
{
|
5310 |
|
|
if ((code == EQ || code == NE)
|
5311 |
|
|
&& (op1 == const0_rtx || op1 == constm1_rtx))
|
5312 |
|
|
{
|
5313 |
|
|
rtx op00, op01;
|
5314 |
|
|
|
5315 |
|
|
/* Do a logical OR or AND of the two words and compare the
|
5316 |
|
|
result. */
|
5317 |
|
|
op00 = simplify_gen_subreg (word_mode, op0, mode, 0);
|
5318 |
|
|
op01 = simplify_gen_subreg (word_mode, op0, mode, UNITS_PER_WORD);
|
5319 |
|
|
tem = expand_binop (word_mode,
|
5320 |
|
|
op1 == const0_rtx ? ior_optab : and_optab,
|
5321 |
|
|
op00, op01, NULL_RTX, unsignedp,
|
5322 |
|
|
OPTAB_DIRECT);
|
5323 |
|
|
|
5324 |
|
|
if (tem != 0)
|
5325 |
|
|
tem = emit_store_flag (NULL_RTX, code, tem, op1, word_mode,
|
5326 |
|
|
unsignedp, normalizep);
|
5327 |
|
|
}
|
5328 |
|
|
else if ((code == LT || code == GE) && op1 == const0_rtx)
|
5329 |
|
|
{
|
5330 |
|
|
rtx op0h;
|
5331 |
|
|
|
5332 |
|
|
/* If testing the sign bit, can just test on high word. */
|
5333 |
|
|
op0h = simplify_gen_subreg (word_mode, op0, mode,
|
5334 |
|
|
subreg_highpart_offset (word_mode,
|
5335 |
|
|
mode));
|
5336 |
|
|
tem = emit_store_flag (NULL_RTX, code, op0h, op1, word_mode,
|
5337 |
|
|
unsignedp, normalizep);
|
5338 |
|
|
}
|
5339 |
|
|
else
|
5340 |
|
|
tem = NULL_RTX;
|
5341 |
|
|
|
5342 |
|
|
if (tem)
|
5343 |
|
|
{
|
5344 |
|
|
if (target_mode == VOIDmode || GET_MODE (tem) == target_mode)
|
5345 |
|
|
return tem;
|
5346 |
|
|
if (!target)
|
5347 |
|
|
target = gen_reg_rtx (target_mode);
|
5348 |
|
|
|
5349 |
|
|
convert_move (target, tem,
|
5350 |
|
|
|
5351 |
|
|
& ((HOST_WIDE_INT) 1
|
5352 |
|
|
<< (GET_MODE_BITSIZE (word_mode) -1))));
|
5353 |
|
|
return target;
|
5354 |
|
|
}
|
5355 |
|
|
}
|
5356 |
|
|
|
5357 |
|
|
/* If this is A < 0 or A >= 0, we can do this by taking the ones
|
5358 |
|
|
complement of A (for GE) and shifting the sign bit to the low bit. */
|
5359 |
|
|
if (op1 == const0_rtx && (code == LT || code == GE)
|
5360 |
|
|
&& GET_MODE_CLASS (mode) == MODE_INT
|
5361 |
|
|
&& (normalizep || STORE_FLAG_VALUE == 1
|
5362 |
|
|
|| (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
|
5363 |
|
|
&& ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
|
5364 |
|
|
== ((unsigned HOST_WIDE_INT) 1
|
5365 |
|
|
<< (GET_MODE_BITSIZE (mode) - 1))))))
|
5366 |
|
|
{
|
5367 |
|
|
subtarget = target;
|
5368 |
|
|
|
5369 |
|
|
if (!target)
|
5370 |
|
|
target_mode = mode;
|
5371 |
|
|
|
5372 |
|
|
/* If the result is to be wider than OP0, it is best to convert it
|
5373 |
|
|
first. If it is to be narrower, it is *incorrect* to convert it
|
5374 |
|
|
first. */
|
5375 |
|
|
else if (GET_MODE_SIZE (target_mode) > GET_MODE_SIZE (mode))
|
5376 |
|
|
{
|
5377 |
|
|
op0 = convert_modes (target_mode, mode, op0, 0);
|
5378 |
|
|
mode = target_mode;
|
5379 |
|
|
}
|
5380 |
|
|
|
5381 |
|
|
if (target_mode != mode)
|
5382 |
|
|
subtarget = 0;
|
5383 |
|
|
|
5384 |
|
|
if (code == GE)
|
5385 |
|
|
op0 = expand_unop (mode, one_cmpl_optab, op0,
|
5386 |
|
|
((STORE_FLAG_VALUE == 1 || normalizep)
|
5387 |
|
|
? 0 : subtarget), 0);
|
5388 |
|
|
|
5389 |
|
|
if (STORE_FLAG_VALUE == 1 || normalizep)
|
5390 |
|
|
/* If we are supposed to produce a 0/1 value, we want to do
|
5391 |
|
|
a logical shift from the sign bit to the low-order bit; for
|
5392 |
|
|
a -1/0 value, we do an arithmetic shift. */
|
5393 |
|
|
op0 = expand_shift (RSHIFT_EXPR, mode, op0,
|
5394 |
|
|
size_int (GET_MODE_BITSIZE (mode) - 1),
|
5395 |
|
|
subtarget, normalizep != -1);
|
5396 |
|
|
|
5397 |
|
|
if (mode != target_mode)
|
5398 |
|
|
op0 = convert_modes (target_mode, mode, op0, 0);
|
5399 |
|
|
|
5400 |
|
|
return op0;
|
5401 |
|
|
}
|
5402 |
|
|
|
5403 |
|
|
mclass = GET_MODE_CLASS (mode);
|
5404 |
|
|
for (compare_mode = mode; compare_mode != VOIDmode;
|
5405 |
|
|
compare_mode = GET_MODE_WIDER_MODE (compare_mode))
|
5406 |
|
|
{
|
5407 |
|
|
enum machine_mode optab_mode = mclass == MODE_CC ? CCmode : compare_mode;
|
5408 |
|
|
icode = optab_handler (cstore_optab, optab_mode)->insn_code;
|
5409 |
|
|
if (icode != CODE_FOR_nothing)
|
5410 |
|
|
{
|
5411 |
|
|
do_pending_stack_adjust ();
|
5412 |
|
|
tem = emit_cstore (target, icode, code, mode, compare_mode,
|
5413 |
|
|
unsignedp, op0, op1, normalizep, target_mode);
|
5414 |
|
|
if (tem)
|
5415 |
|
|
return tem;
|
5416 |
|
|
|
5417 |
|
|
if (GET_MODE_CLASS (mode) == MODE_FLOAT)
|
5418 |
|
|
{
|
5419 |
|
|
tem = emit_cstore (target, icode, scode, mode, compare_mode,
|
5420 |
|
|
unsignedp, op1, op0, normalizep, target_mode);
|
5421 |
|
|
if (tem)
|
5422 |
|
|
return tem;
|
5423 |
|
|
}
|
5424 |
|
|
break;
|
5425 |
|
|
}
|
5426 |
|
|
}
|
5427 |
|
|
|
5428 |
|
|
return 0;
|
5429 |
|
|
}
|
5430 |
|
|
|
5431 |
|
|
/* Emit a store-flags instruction for comparison CODE on OP0 and OP1
|
5432 |
|
|
and storing in TARGET. Normally return TARGET.
|
5433 |
|
|
Return 0 if that cannot be done.
|
5434 |
|
|
|
5435 |
|
|
MODE is the mode to use for OP0 and OP1 should they be CONST_INTs. If
|
5436 |
|
|
it is VOIDmode, they cannot both be CONST_INT.
|
5437 |
|
|
|
5438 |
|
|
UNSIGNEDP is for the case where we have to widen the operands
|
5439 |
|
|
to perform the operation. It says to use zero-extension.
|
5440 |
|
|
|
5441 |
|
|
NORMALIZEP is 1 if we should convert the result to be either zero
|
5442 |
|
|
or one. Normalize is -1 if we should convert the result to be
|
5443 |
|
|
either zero or -1. If NORMALIZEP is zero, the result will be left
|
5444 |
|
|
"raw" out of the scc insn. */
|
5445 |
|
|
|
5446 |
|
|
rtx
|
5447 |
|
|
emit_store_flag (rtx target, enum rtx_code code, rtx op0, rtx op1,
|
5448 |
|
|
enum machine_mode mode, int unsignedp, int normalizep)
|
5449 |
|
|
{
|
5450 |
|
|
enum machine_mode target_mode = target ? GET_MODE (target) : VOIDmode;
|
5451 |
|
|
enum rtx_code rcode;
|
5452 |
|
|
rtx subtarget;
|
5453 |
|
|
rtx tem, last, trueval;
|
5454 |
|
|
|
5455 |
|
|
tem = emit_store_flag_1 (target, code, op0, op1, mode, unsignedp, normalizep,
|
5456 |
|
|
target_mode);
|
5457 |
|
|
if (tem)
|
5458 |
|
|
return tem;
|
5459 |
|
|
|
5460 |
|
|
/* If we reached here, we can't do this with a scc insn, however there
|
5461 |
|
|
are some comparisons that can be done in other ways. Don't do any
|
5462 |
|
|
of these cases if branches are very cheap. */
|
5463 |
|
|
if (BRANCH_COST (optimize_insn_for_speed_p (), false) == 0)
|
5464 |
|
|
return 0;
|
5465 |
|
|
|
5466 |
|
|
/* See what we need to return. We can only return a 1, -1, or the
|
5467 |
|
|
sign bit. */
|
5468 |
|
|
|
5469 |
|
|
if (normalizep == 0)
|
5470 |
|
|
{
|
5471 |
|
|
if (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
|
5472 |
|
|
normalizep = STORE_FLAG_VALUE;
|
5473 |
|
|
|
5474 |
|
|
else if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
|
5475 |
|
|
&& ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
|
5476 |
|
|
== (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1)))
|
5477 |
|
|
;
|
5478 |
|
|
else
|
5479 |
|
|
return 0;
|
5480 |
|
|
}
|
5481 |
|
|
|
5482 |
|
|
last = get_last_insn ();
|
5483 |
|
|
|
5484 |
|
|
/* If optimizing, use different pseudo registers for each insn, instead
|
5485 |
|
|
of reusing the same pseudo. This leads to better CSE, but slows
|
5486 |
|
|
down the compiler, since there are more pseudos */
|
5487 |
|
|
subtarget = (!optimize
|
5488 |
|
|
&& (target_mode == mode)) ? target : NULL_RTX;
|
5489 |
|
|
trueval = GEN_INT (normalizep ? normalizep : STORE_FLAG_VALUE);
|
5490 |
|
|
|
5491 |
|
|
/* For floating-point comparisons, try the reverse comparison or try
|
5492 |
|
|
changing the "orderedness" of the comparison. */
|
5493 |
|
|
if (GET_MODE_CLASS (mode) == MODE_FLOAT)
|
5494 |
|
|
{
|
5495 |
|
|
enum rtx_code first_code;
|
5496 |
|
|
bool and_them;
|
5497 |
|
|
|
5498 |
|
|
rcode = reverse_condition_maybe_unordered (code);
|
5499 |
|
|
if (can_compare_p (rcode, mode, ccp_store_flag)
|
5500 |
|
|
&& (code == ORDERED || code == UNORDERED
|
5501 |
|
|
|| (! HONOR_NANS (mode) && (code == LTGT || code == UNEQ))
|
5502 |
|
|
|| (! HONOR_SNANS (mode) && (code == EQ || code == NE))))
|
5503 |
|
|
{
|
5504 |
|
|
int want_add = ((STORE_FLAG_VALUE == 1 && normalizep == -1)
|
5505 |
|
|
|| (STORE_FLAG_VALUE == -1 && normalizep == 1));
|
5506 |
|
|
|
5507 |
|
|
/* For the reverse comparison, use either an addition or a XOR. */
|
5508 |
|
|
if (want_add
|
5509 |
|
|
&& rtx_cost (GEN_INT (normalizep), PLUS,
|
5510 |
|
|
optimize_insn_for_speed_p ()) == 0)
|
5511 |
|
|
{
|
5512 |
|
|
tem = emit_store_flag_1 (subtarget, rcode, op0, op1, mode, 0,
|
5513 |
|
|
STORE_FLAG_VALUE, target_mode);
|
5514 |
|
|
if (tem)
|
5515 |
|
|
return expand_binop (target_mode, add_optab, tem,
|
5516 |
|
|
GEN_INT (normalizep),
|
5517 |
|
|
target, 0, OPTAB_WIDEN);
|
5518 |
|
|
}
|
5519 |
|
|
else if (!want_add
|
5520 |
|
|
&& rtx_cost (trueval, XOR,
|
5521 |
|
|
optimize_insn_for_speed_p ()) == 0)
|
5522 |
|
|
{
|
5523 |
|
|
tem = emit_store_flag_1 (subtarget, rcode, op0, op1, mode, 0,
|
5524 |
|
|
normalizep, target_mode);
|
5525 |
|
|
if (tem)
|
5526 |
|
|
return expand_binop (target_mode, xor_optab, tem, trueval,
|
5527 |
|
|
target, INTVAL (trueval) >= 0, OPTAB_WIDEN);
|
5528 |
|
|
}
|
5529 |
|
|
}
|
5530 |
|
|
|
5531 |
|
|
delete_insns_since (last);
|
5532 |
|
|
|
5533 |
|
|
/* Cannot split ORDERED and UNORDERED, only try the above trick. */
|
5534 |
|
|
if (code == ORDERED || code == UNORDERED)
|
5535 |
|
|
return 0;
|
5536 |
|
|
|
5537 |
|
|
and_them = split_comparison (code, mode, &first_code, &code);
|
5538 |
|
|
|
5539 |
|
|
/* If there are no NaNs, the first comparison should always fall through.
|
5540 |
|
|
Effectively change the comparison to the other one. */
|
5541 |
|
|
if (!HONOR_NANS (mode))
|
5542 |
|
|
{
|
5543 |
|
|
gcc_assert (first_code == (and_them ? ORDERED : UNORDERED));
|
5544 |
|
|
return emit_store_flag_1 (target, code, op0, op1, mode, 0, normalizep,
|
5545 |
|
|
target_mode);
|
5546 |
|
|
}
|
5547 |
|
|
|
5548 |
|
|
#ifdef HAVE_conditional_move
|
5549 |
|
|
/* Try using a setcc instruction for ORDERED/UNORDERED, followed by a
|
5550 |
|
|
conditional move. */
|
5551 |
|
|
tem = emit_store_flag_1 (subtarget, first_code, op0, op1, mode, 0,
|
5552 |
|
|
normalizep, target_mode);
|
5553 |
|
|
if (tem == 0)
|
5554 |
|
|
return 0;
|
5555 |
|
|
|
5556 |
|
|
if (and_them)
|
5557 |
|
|
tem = emit_conditional_move (target, code, op0, op1, mode,
|
5558 |
|
|
tem, const0_rtx, GET_MODE (tem), 0);
|
5559 |
|
|
else
|
5560 |
|
|
tem = emit_conditional_move (target, code, op0, op1, mode,
|
5561 |
|
|
trueval, tem, GET_MODE (tem), 0);
|
5562 |
|
|
|
5563 |
|
|
if (tem == 0)
|
5564 |
|
|
delete_insns_since (last);
|
5565 |
|
|
return tem;
|
5566 |
|
|
#else
|
5567 |
|
|
return 0;
|
5568 |
|
|
#endif
|
5569 |
|
|
}
|
5570 |
|
|
|
5571 |
|
|
/* The remaining tricks only apply to integer comparisons. */
|
5572 |
|
|
|
5573 |
|
|
if (GET_MODE_CLASS (mode) != MODE_INT)
|
5574 |
|
|
return 0;
|
5575 |
|
|
|
5576 |
|
|
/* If this is an equality comparison of integers, we can try to exclusive-or
|
5577 |
|
|
(or subtract) the two operands and use a recursive call to try the
|
5578 |
|
|
comparison with zero. Don't do any of these cases if branches are
|
5579 |
|
|
very cheap. */
|
5580 |
|
|
|
5581 |
|
|
if ((code == EQ || code == NE) && op1 != const0_rtx)
|
5582 |
|
|
{
|
5583 |
|
|
tem = expand_binop (mode, xor_optab, op0, op1, subtarget, 1,
|
5584 |
|
|
OPTAB_WIDEN);
|
5585 |
|
|
|
5586 |
|
|
if (tem == 0)
|
5587 |
|
|
tem = expand_binop (mode, sub_optab, op0, op1, subtarget, 1,
|
5588 |
|
|
OPTAB_WIDEN);
|
5589 |
|
|
if (tem != 0)
|
5590 |
|
|
tem = emit_store_flag (target, code, tem, const0_rtx,
|
5591 |
|
|
mode, unsignedp, normalizep);
|
5592 |
|
|
if (tem != 0)
|
5593 |
|
|
return tem;
|
5594 |
|
|
|
5595 |
|
|
delete_insns_since (last);
|
5596 |
|
|
}
|
5597 |
|
|
|
5598 |
|
|
/* For integer comparisons, try the reverse comparison. However, for
|
5599 |
|
|
small X and if we'd have anyway to extend, implementing "X != 0"
|
5600 |
|
|
as "-(int)X >> 31" is still cheaper than inverting "(int)X == 0". */
|
5601 |
|
|
rcode = reverse_condition (code);
|
5602 |
|
|
if (can_compare_p (rcode, mode, ccp_store_flag)
|
5603 |
|
|
&& ! (optab_handler (cstore_optab, mode)->insn_code == CODE_FOR_nothing
|
5604 |
|
|
&& code == NE
|
5605 |
|
|
&& GET_MODE_SIZE (mode) < UNITS_PER_WORD
|
5606 |
|
|
&& op1 == const0_rtx))
|
5607 |
|
|
{
|
5608 |
|
|
int want_add = ((STORE_FLAG_VALUE == 1 && normalizep == -1)
|
5609 |
|
|
|| (STORE_FLAG_VALUE == -1 && normalizep == 1));
|
5610 |
|
|
|
5611 |
|
|
/* Again, for the reverse comparison, use either an addition or a XOR. */
|
5612 |
|
|
if (want_add
|
5613 |
|
|
&& rtx_cost (GEN_INT (normalizep), PLUS,
|
5614 |
|
|
optimize_insn_for_speed_p ()) == 0)
|
5615 |
|
|
{
|
5616 |
|
|
tem = emit_store_flag_1 (subtarget, rcode, op0, op1, mode, 0,
|
5617 |
|
|
STORE_FLAG_VALUE, target_mode);
|
5618 |
|
|
if (tem != 0)
|
5619 |
|
|
tem = expand_binop (target_mode, add_optab, tem,
|
5620 |
|
|
GEN_INT (normalizep), target, 0, OPTAB_WIDEN);
|
5621 |
|
|
}
|
5622 |
|
|
else if (!want_add
|
5623 |
|
|
&& rtx_cost (trueval, XOR,
|
5624 |
|
|
optimize_insn_for_speed_p ()) == 0)
|
5625 |
|
|
{
|
5626 |
|
|
tem = emit_store_flag_1 (subtarget, rcode, op0, op1, mode, 0,
|
5627 |
|
|
normalizep, target_mode);
|
5628 |
|
|
if (tem != 0)
|
5629 |
|
|
tem = expand_binop (target_mode, xor_optab, tem, trueval, target,
|
5630 |
|
|
INTVAL (trueval) >= 0, OPTAB_WIDEN);
|
5631 |
|
|
}
|
5632 |
|
|
|
5633 |
|
|
if (tem != 0)
|
5634 |
|
|
return tem;
|
5635 |
|
|
delete_insns_since (last);
|
5636 |
|
|
}
|
5637 |
|
|
|
5638 |
|
|
/* Some other cases we can do are EQ, NE, LE, and GT comparisons with
|
5639 |
|
|
the constant zero. Reject all other comparisons at this point. Only
|
5640 |
|
|
do LE and GT if branches are expensive since they are expensive on
|
5641 |
|
|
2-operand machines. */
|
5642 |
|
|
|
5643 |
|
|
if (op1 != const0_rtx
|
5644 |
|
|
|| (code != EQ && code != NE
|
5645 |
|
|
&& (BRANCH_COST (optimize_insn_for_speed_p (),
|
5646 |
|
|
false) <= 1 || (code != LE && code != GT))))
|
5647 |
|
|
return 0;
|
5648 |
|
|
|
5649 |
|
|
/* Try to put the result of the comparison in the sign bit. Assume we can't
|
5650 |
|
|
do the necessary operation below. */
|
5651 |
|
|
|
5652 |
|
|
tem = 0;
|
5653 |
|
|
|
5654 |
|
|
/* To see if A <= 0, compute (A | (A - 1)). A <= 0 iff that result has
|
5655 |
|
|
the sign bit set. */
|
5656 |
|
|
|
5657 |
|
|
if (code == LE)
|
5658 |
|
|
{
|
5659 |
|
|
/* This is destructive, so SUBTARGET can't be OP0. */
|
5660 |
|
|
if (rtx_equal_p (subtarget, op0))
|
5661 |
|
|
subtarget = 0;
|
5662 |
|
|
|
5663 |
|
|
tem = expand_binop (mode, sub_optab, op0, const1_rtx, subtarget, 0,
|
5664 |
|
|
OPTAB_WIDEN);
|
5665 |
|
|
if (tem)
|
5666 |
|
|
tem = expand_binop (mode, ior_optab, op0, tem, subtarget, 0,
|
5667 |
|
|
OPTAB_WIDEN);
|
5668 |
|
|
}
|
5669 |
|
|
|
5670 |
|
|
/* To see if A > 0, compute (((signed) A) << BITS) - A, where BITS is the
|
5671 |
|
|
number of bits in the mode of OP0, minus one. */
|
5672 |
|
|
|
5673 |
|
|
if (code == GT)
|
5674 |
|
|
{
|
5675 |
|
|
if (rtx_equal_p (subtarget, op0))
|
5676 |
|
|
subtarget = 0;
|
5677 |
|
|
|
5678 |
|
|
tem = expand_shift (RSHIFT_EXPR, mode, op0,
|
5679 |
|
|
size_int (GET_MODE_BITSIZE (mode) - 1),
|
5680 |
|
|
subtarget, 0);
|
5681 |
|
|
tem = expand_binop (mode, sub_optab, tem, op0, subtarget, 0,
|
5682 |
|
|
OPTAB_WIDEN);
|
5683 |
|
|
}
|
5684 |
|
|
|
5685 |
|
|
if (code == EQ || code == NE)
|
5686 |
|
|
{
|
5687 |
|
|
/* For EQ or NE, one way to do the comparison is to apply an operation
|
5688 |
|
|
that converts the operand into a positive number if it is nonzero
|
5689 |
|
|
or zero if it was originally zero. Then, for EQ, we subtract 1 and
|
5690 |
|
|
for NE we negate. This puts the result in the sign bit. Then we
|
5691 |
|
|
normalize with a shift, if needed.
|
5692 |
|
|
|
5693 |
|
|
Two operations that can do the above actions are ABS and FFS, so try
|
5694 |
|
|
them. If that doesn't work, and MODE is smaller than a full word,
|
5695 |
|
|
we can use zero-extension to the wider mode (an unsigned conversion)
|
5696 |
|
|
as the operation. */
|
5697 |
|
|
|
5698 |
|
|
/* Note that ABS doesn't yield a positive number for INT_MIN, but
|
5699 |
|
|
that is compensated by the subsequent overflow when subtracting
|
5700 |
|
|
one / negating. */
|
5701 |
|
|
|
5702 |
|
|
if (optab_handler (abs_optab, mode)->insn_code != CODE_FOR_nothing)
|
5703 |
|
|
tem = expand_unop (mode, abs_optab, op0, subtarget, 1);
|
5704 |
|
|
else if (optab_handler (ffs_optab, mode)->insn_code != CODE_FOR_nothing)
|
5705 |
|
|
tem = expand_unop (mode, ffs_optab, op0, subtarget, 1);
|
5706 |
|
|
else if (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
|
5707 |
|
|
{
|
5708 |
|
|
tem = convert_modes (word_mode, mode, op0, 1);
|
5709 |
|
|
mode = word_mode;
|
5710 |
|
|
}
|
5711 |
|
|
|
5712 |
|
|
if (tem != 0)
|
5713 |
|
|
{
|
5714 |
|
|
if (code == EQ)
|
5715 |
|
|
tem = expand_binop (mode, sub_optab, tem, const1_rtx, subtarget,
|
5716 |
|
|
0, OPTAB_WIDEN);
|
5717 |
|
|
else
|
5718 |
|
|
tem = expand_unop (mode, neg_optab, tem, subtarget, 0);
|
5719 |
|
|
}
|
5720 |
|
|
|
5721 |
|
|
/* If we couldn't do it that way, for NE we can "or" the two's complement
|
5722 |
|
|
of the value with itself. For EQ, we take the one's complement of
|
5723 |
|
|
that "or", which is an extra insn, so we only handle EQ if branches
|
5724 |
|
|
are expensive. */
|
5725 |
|
|
|
5726 |
|
|
if (tem == 0
|
5727 |
|
|
&& (code == NE
|
5728 |
|
|
|| BRANCH_COST (optimize_insn_for_speed_p (),
|
5729 |
|
|
false) > 1))
|
5730 |
|
|
{
|
5731 |
|
|
if (rtx_equal_p (subtarget, op0))
|
5732 |
|
|
subtarget = 0;
|
5733 |
|
|
|
5734 |
|
|
tem = expand_unop (mode, neg_optab, op0, subtarget, 0);
|
5735 |
|
|
tem = expand_binop (mode, ior_optab, tem, op0, subtarget, 0,
|
5736 |
|
|
OPTAB_WIDEN);
|
5737 |
|
|
|
5738 |
|
|
if (tem && code == EQ)
|
5739 |
|
|
tem = expand_unop (mode, one_cmpl_optab, tem, subtarget, 0);
|
5740 |
|
|
}
|
5741 |
|
|
}
|
5742 |
|
|
|
5743 |
|
|
if (tem && normalizep)
|
5744 |
|
|
tem = expand_shift (RSHIFT_EXPR, mode, tem,
|
5745 |
|
|
size_int (GET_MODE_BITSIZE (mode) - 1),
|
5746 |
|
|
subtarget, normalizep == 1);
|
5747 |
|
|
|
5748 |
|
|
if (tem)
|
5749 |
|
|
{
|
5750 |
|
|
if (!target)
|
5751 |
|
|
;
|
5752 |
|
|
else if (GET_MODE (tem) != target_mode)
|
5753 |
|
|
{
|
5754 |
|
|
convert_move (target, tem, 0);
|
5755 |
|
|
tem = target;
|
5756 |
|
|
}
|
5757 |
|
|
else if (!subtarget)
|
5758 |
|
|
{
|
5759 |
|
|
emit_move_insn (target, tem);
|
5760 |
|
|
tem = target;
|
5761 |
|
|
}
|
5762 |
|
|
}
|
5763 |
|
|
else
|
5764 |
|
|
delete_insns_since (last);
|
5765 |
|
|
|
5766 |
|
|
return tem;
|
5767 |
|
|
}
|
5768 |
|
|
|
5769 |
|
|
/* Like emit_store_flag, but always succeeds. */
|
5770 |
|
|
|
5771 |
|
|
rtx
|
5772 |
|
|
emit_store_flag_force (rtx target, enum rtx_code code, rtx op0, rtx op1,
|
5773 |
|
|
enum machine_mode mode, int unsignedp, int normalizep)
|
5774 |
|
|
{
|
5775 |
|
|
rtx tem, label;
|
5776 |
|
|
rtx trueval, falseval;
|
5777 |
|
|
|
5778 |
|
|
/* First see if emit_store_flag can do the job. */
|
5779 |
|
|
tem = emit_store_flag (target, code, op0, op1, mode, unsignedp, normalizep);
|
5780 |
|
|
if (tem != 0)
|
5781 |
|
|
return tem;
|
5782 |
|
|
|
5783 |
|
|
if (!target)
|
5784 |
|
|
target = gen_reg_rtx (word_mode);
|
5785 |
|
|
|
5786 |
|
|
/* If this failed, we have to do this with set/compare/jump/set code.
|
5787 |
|
|
For foo != 0, if foo is in OP0, just replace it with 1 if nonzero. */
|
5788 |
|
|
trueval = normalizep ? GEN_INT (normalizep) : const1_rtx;
|
5789 |
|
|
if (code == NE
|
5790 |
|
|
&& GET_MODE_CLASS (mode) == MODE_INT
|
5791 |
|
|
&& REG_P (target)
|
5792 |
|
|
&& op0 == target
|
5793 |
|
|
&& op1 == const0_rtx)
|
5794 |
|
|
{
|
5795 |
|
|
label = gen_label_rtx ();
|
5796 |
|
|
do_compare_rtx_and_jump (target, const0_rtx, EQ, unsignedp,
|
5797 |
|
|
mode, NULL_RTX, NULL_RTX, label, -1);
|
5798 |
|
|
emit_move_insn (target, trueval);
|
5799 |
|
|
emit_label (label);
|
5800 |
|
|
return target;
|
5801 |
|
|
}
|
5802 |
|
|
|
5803 |
|
|
if (!REG_P (target)
|
5804 |
|
|
|| reg_mentioned_p (target, op0) || reg_mentioned_p (target, op1))
|
5805 |
|
|
target = gen_reg_rtx (GET_MODE (target));
|
5806 |
|
|
|
5807 |
|
|
/* Jump in the right direction if the target cannot implement CODE
|
5808 |
|
|
but can jump on its reverse condition. */
|
5809 |
|
|
falseval = const0_rtx;
|
5810 |
|
|
if (! can_compare_p (code, mode, ccp_jump)
|
5811 |
|
|
&& (! FLOAT_MODE_P (mode)
|
5812 |
|
|
|| code == ORDERED || code == UNORDERED
|
5813 |
|
|
|| (! HONOR_NANS (mode) && (code == LTGT || code == UNEQ))
|
5814 |
|
|
|| (! HONOR_SNANS (mode) && (code == EQ || code == NE))))
|
5815 |
|
|
{
|
5816 |
|
|
enum rtx_code rcode;
|
5817 |
|
|
if (FLOAT_MODE_P (mode))
|
5818 |
|
|
rcode = reverse_condition_maybe_unordered (code);
|
5819 |
|
|
else
|
5820 |
|
|
rcode = reverse_condition (code);
|
5821 |
|
|
|
5822 |
|
|
/* Canonicalize to UNORDERED for the libcall. */
|
5823 |
|
|
if (can_compare_p (rcode, mode, ccp_jump)
|
5824 |
|
|
|| (code == ORDERED && ! can_compare_p (ORDERED, mode, ccp_jump)))
|
5825 |
|
|
{
|
5826 |
|
|
falseval = trueval;
|
5827 |
|
|
trueval = const0_rtx;
|
5828 |
|
|
code = rcode;
|
5829 |
|
|
}
|
5830 |
|
|
}
|
5831 |
|
|
|
5832 |
|
|
emit_move_insn (target, trueval);
|
5833 |
|
|
label = gen_label_rtx ();
|
5834 |
|
|
do_compare_rtx_and_jump (op0, op1, code, unsignedp, mode, NULL_RTX,
|
5835 |
|
|
NULL_RTX, label, -1);
|
5836 |
|
|
|
5837 |
|
|
emit_move_insn (target, falseval);
|
5838 |
|
|
emit_label (label);
|
5839 |
|
|
|
5840 |
|
|
return target;
|
5841 |
|
|
}
|
5842 |
|
|
|
5843 |
|
|
/* Perform possibly multi-word comparison and conditional jump to LABEL
|
5844 |
|
|
if ARG1 OP ARG2 true where ARG1 and ARG2 are of mode MODE. This is
|
5845 |
|
|
now a thin wrapper around do_compare_rtx_and_jump. */
|
5846 |
|
|
|
5847 |
|
|
static void
|
5848 |
|
|
do_cmp_and_jump (rtx arg1, rtx arg2, enum rtx_code op, enum machine_mode mode,
|
5849 |
|
|
rtx label)
|
5850 |
|
|
{
|
5851 |
|
|
int unsignedp = (op == LTU || op == LEU || op == GTU || op == GEU);
|
5852 |
|
|
do_compare_rtx_and_jump (arg1, arg2, op, unsignedp, mode,
|
5853 |
|
|
NULL_RTX, NULL_RTX, label, -1);
|
5854 |
|
|
}
|