OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-stable/] [gcc-4.5.1/] [gcc/] [fortran/] [gfortran.texi] - Blame information for rev 826

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 285 jeremybenn
\input texinfo  @c -*-texinfo-*-
2
@c %**start of header
3
@setfilename gfortran.info
4
@set copyrights-gfortran 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
5
 
6
@include gcc-common.texi
7
 
8
@settitle The GNU Fortran Compiler
9
 
10
@c Create a separate index for command line options
11
@defcodeindex op
12
@c Merge the standard indexes into a single one.
13
@syncodeindex fn cp
14
@syncodeindex vr cp
15
@syncodeindex ky cp
16
@syncodeindex pg cp
17
@syncodeindex tp cp
18
 
19
@c TODO: The following "Part" definitions are included here temporarily
20
@c until they are incorporated into the official Texinfo distribution.
21
@c They borrow heavily from Texinfo's \unnchapentry definitions.
22
 
23
@tex
24
\gdef\part#1#2{%
25
  \pchapsepmacro
26
  \gdef\thischapter{}
27
  \begingroup
28
    \vglue\titlepagetopglue
29
    \titlefonts \rm
30
    \leftline{Part #1:@* #2}
31
    \vskip4pt \hrule height 4pt width \hsize \vskip4pt
32
  \endgroup
33
  \writetocentry{part}{#2}{#1}
34
}
35
\gdef\blankpart{%
36
  \writetocentry{blankpart}{}{}
37
}
38
% Part TOC-entry definition for summary contents.
39
\gdef\dosmallpartentry#1#2#3#4{%
40
  \vskip .5\baselineskip plus.2\baselineskip
41
  \begingroup
42
    \let\rm=\bf \rm
43
    \tocentry{Part #2: #1}{\doshortpageno\bgroup#4\egroup}
44
  \endgroup
45
}
46
\gdef\dosmallblankpartentry#1#2#3#4{%
47
  \vskip .5\baselineskip plus.2\baselineskip
48
}
49
% Part TOC-entry definition for regular contents.  This has to be
50
% equated to an existing entry to not cause problems when the PDF
51
% outline is created.
52
\gdef\dopartentry#1#2#3#4{%
53
  \unnchapentry{Part #2: #1}{}{#3}{#4}
54
}
55
\gdef\doblankpartentry#1#2#3#4{}
56
@end tex
57
 
58
@c %**end of header
59
 
60
@c Use with @@smallbook.
61
 
62
@c %** start of document
63
 
64
@c Cause even numbered pages to be printed on the left hand side of
65
@c the page and odd numbered pages to be printed on the right hand
66
@c side of the page.  Using this, you can print on both sides of a
67
@c sheet of paper and have the text on the same part of the sheet.
68
 
69
@c The text on right hand pages is pushed towards the right hand
70
@c margin and the text on left hand pages is pushed toward the left
71
@c hand margin.
72
@c (To provide the reverse effect, set bindingoffset to -0.75in.)
73
 
74
@c @tex
75
@c \global\bindingoffset=0.75in
76
@c \global\normaloffset =0.75in
77
@c @end tex
78
 
79
@copying
80
Copyright @copyright{} @value{copyrights-gfortran} Free Software Foundation, Inc.
81
 
82
Permission is granted to copy, distribute and/or modify this document
83
under the terms of the GNU Free Documentation License, Version 1.2 or
84
any later version published by the Free Software Foundation; with the
85
Invariant Sections being ``Funding Free Software'', the Front-Cover
86
Texts being (a) (see below), and with the Back-Cover Texts being (b)
87
(see below).  A copy of the license is included in the section entitled
88
``GNU Free Documentation License''.
89
 
90
(a) The FSF's Front-Cover Text is:
91
 
92
     A GNU Manual
93
 
94
(b) The FSF's Back-Cover Text is:
95
 
96
     You have freedom to copy and modify this GNU Manual, like GNU
97
     software.  Copies published by the Free Software Foundation raise
98
     funds for GNU development.
99
@end copying
100
 
101
@ifinfo
102
@dircategory Software development
103
@direntry
104
* gfortran: (gfortran).                  The GNU Fortran Compiler.
105
@end direntry
106
This file documents the use and the internals of
107
the GNU Fortran compiler, (@command{gfortran}).
108
 
109
Published by the Free Software Foundation
110
51 Franklin Street, Fifth Floor
111
Boston, MA 02110-1301 USA
112
 
113
@insertcopying
114
@end ifinfo
115
 
116
 
117
@setchapternewpage odd
118
@titlepage
119
@title Using GNU Fortran
120
@versionsubtitle
121
@author The @t{gfortran} team
122
@page
123
@vskip 0pt plus 1filll
124
Published by the Free Software Foundation@*
125
51 Franklin Street, Fifth Floor@*
126
Boston, MA 02110-1301, USA@*
127
@c Last printed ??ber, 19??.@*
128
@c Printed copies are available for $? each.@*
129
@c ISBN ???
130
@sp 1
131
@insertcopying
132
@end titlepage
133
 
134
@c TODO: The following "Part" definitions are included here temporarily
135
@c until they are incorporated into the official Texinfo distribution.
136
 
137
@tex
138
\global\let\partentry=\dosmallpartentry
139
\global\let\blankpartentry=\dosmallblankpartentry
140
@end tex
141
@summarycontents
142
 
143
@tex
144
\global\let\partentry=\dopartentry
145
\global\let\blankpartentry=\doblankpartentry
146
@end tex
147
@contents
148
 
149
@page
150
 
151
@c ---------------------------------------------------------------------
152
@c TexInfo table of contents.
153
@c ---------------------------------------------------------------------
154
 
155
@ifnottex
156
@node Top
157
@top Introduction
158
@cindex Introduction
159
 
160
This manual documents the use of @command{gfortran},
161
the GNU Fortran compiler. You can find in this manual how to invoke
162
@command{gfortran}, as well as its features and incompatibilities.
163
 
164
@ifset DEVELOPMENT
165
@emph{Warning:} This document, and the compiler it describes, are still
166
under development.  While efforts are made to keep it up-to-date, it might
167
not accurately reflect the status of the most recent GNU Fortran compiler.
168
@end ifset
169
 
170
@comment
171
@comment  When you add a new menu item, please keep the right hand
172
@comment  aligned to the same column.  Do not use tabs.  This provides
173
@comment  better formatting.
174
@comment
175
@menu
176
* Introduction::
177
 
178
Part I: Invoking GNU Fortran
179
* Invoking GNU Fortran:: Command options supported by @command{gfortran}.
180
* Runtime::              Influencing runtime behavior with environment variables.
181
 
182
Part II: Language Reference
183
* Fortran 2003 and 2008 status::  Fortran 2003 and 2008 features supported by GNU Fortran.
184
* Compiler Characteristics::      User-visible implementation details.
185
* Mixed-Language Programming::    Interoperability with C
186
* Extensions::           Language extensions implemented by GNU Fortran.
187
* Intrinsic Procedures:: Intrinsic procedures supported by GNU Fortran.
188
* Intrinsic Modules::    Intrinsic modules supported by GNU Fortran.
189
 
190
* Contributing::         How you can help.
191
* Copying::              GNU General Public License says
192
                         how you can copy and share GNU Fortran.
193
* GNU Free Documentation License::
194
                         How you can copy and share this manual.
195
* Funding::              How to help assure continued work for free software.
196
* Option Index::         Index of command line options
197
* Keyword Index::        Index of concepts
198
@end menu
199
@end ifnottex
200
 
201
@c ---------------------------------------------------------------------
202
@c Introduction
203
@c ---------------------------------------------------------------------
204
 
205
@node Introduction
206
@chapter Introduction
207
 
208
@c The following duplicates the text on the TexInfo table of contents.
209
@iftex
210
This manual documents the use of @command{gfortran}, the GNU Fortran
211
compiler. You can find in this manual how to invoke @command{gfortran},
212
as well as its features and incompatibilities.
213
 
214
@ifset DEVELOPMENT
215
@emph{Warning:} This document, and the compiler it describes, are still
216
under development.  While efforts are made to keep it up-to-date, it
217
might not accurately reflect the status of the most recent GNU Fortran
218
compiler.
219
@end ifset
220
@end iftex
221
 
222
The GNU Fortran compiler front end was
223
designed initially as a free replacement for,
224
or alternative to, the unix @command{f95} command;
225
@command{gfortran} is the command you'll use to invoke the compiler.
226
 
227
@menu
228
* About GNU Fortran::    What you should know about the GNU Fortran compiler.
229
* GNU Fortran and GCC::  You can compile Fortran, C, or other programs.
230
* Preprocessing and conditional compilation:: The Fortran preprocessor
231
* GNU Fortran and G77::  Why we chose to start from scratch.
232
* Project Status::       Status of GNU Fortran, roadmap, proposed extensions.
233
* Standards::            Standards supported by GNU Fortran.
234
@end menu
235
 
236
 
237
@c ---------------------------------------------------------------------
238
@c About GNU Fortran
239
@c ---------------------------------------------------------------------
240
 
241
@node About GNU Fortran
242
@section About GNU Fortran
243
 
244
The GNU Fortran compiler supports the Fortran 77, 90 and 95 standards
245
completely, parts of the Fortran 2003 and Fortran 2008 standards, and
246
several vendor extensions. The development goal is to provide the
247
following features:
248
 
249
@itemize @bullet
250
@item
251
Read a user's program,
252
stored in a file and containing instructions written
253
in Fortran 77, Fortran 90, Fortran 95, Fortran 2003 or Fortran 2008.
254
This file contains @dfn{source code}.
255
 
256
@item
257
Translate the user's program into instructions a computer
258
can carry out more quickly than it takes to translate the
259
instructions in the first
260
place.  The result after compilation of a program is
261
@dfn{machine code},
262
code designed to be efficiently translated and processed
263
by a machine such as your computer.
264
Humans usually aren't as good writing machine code
265
as they are at writing Fortran (or C++, Ada, or Java),
266
because it is easy to make tiny mistakes writing machine code.
267
 
268
@item
269
Provide the user with information about the reasons why
270
the compiler is unable to create a binary from the source code.
271
Usually this will be the case if the source code is flawed.
272
The Fortran 90 standard requires that the compiler can point out
273
mistakes to the user.
274
An incorrect usage of the language causes an @dfn{error message}.
275
 
276
The compiler will also attempt to diagnose cases where the
277
user's program contains a correct usage of the language,
278
but instructs the computer to do something questionable.
279
This kind of diagnostics message is called a @dfn{warning message}.
280
 
281
@item
282
Provide optional information about the translation passes
283
from the source code to machine code.
284
This can help a user of the compiler to find the cause of
285
certain bugs which may not be obvious in the source code,
286
but may be more easily found at a lower level compiler output.
287
It also helps developers to find bugs in the compiler itself.
288
 
289
@item
290
Provide information in the generated machine code that can
291
make it easier to find bugs in the program (using a debugging tool,
292
called a @dfn{debugger}, such as the GNU Debugger @command{gdb}).
293
 
294
@item
295
Locate and gather machine code already generated to
296
perform actions requested by statements in the user's program.
297
This machine code is organized into @dfn{modules} and is located
298
and @dfn{linked} to the user program.
299
@end itemize
300
 
301
The GNU Fortran compiler consists of several components:
302
 
303
@itemize @bullet
304
@item
305
A version of the @command{gcc} command
306
(which also might be installed as the system's @command{cc} command)
307
that also understands and accepts Fortran source code.
308
The @command{gcc} command is the @dfn{driver} program for
309
all the languages in the GNU Compiler Collection (GCC);
310
With @command{gcc},
311
you can compile the source code of any language for
312
which a front end is available in GCC.
313
 
314
@item
315
The @command{gfortran} command itself,
316
which also might be installed as the
317
system's @command{f95} command.
318
@command{gfortran} is just another driver program,
319
but specifically for the Fortran compiler only.
320
The difference with @command{gcc} is that @command{gfortran}
321
will automatically link the correct libraries to your program.
322
 
323
@item
324
A collection of run-time libraries.
325
These libraries contain the machine code needed to support
326
capabilities of the Fortran language that are not directly
327
provided by the machine code generated by the
328
@command{gfortran} compilation phase,
329
such as intrinsic functions and subroutines,
330
and routines for interaction with files and the operating system.
331
@c and mechanisms to spawn,
332
@c unleash and pause threads in parallelized code.
333
 
334
@item
335
The Fortran compiler itself, (@command{f951}).
336
This is the GNU Fortran parser and code generator,
337
linked to and interfaced with the GCC backend library.
338
@command{f951} ``translates'' the source code to
339
assembler code.  You would typically not use this
340
program directly;
341
instead, the @command{gcc} or @command{gfortran} driver
342
programs will call it for you.
343
@end itemize
344
 
345
 
346
@c ---------------------------------------------------------------------
347
@c GNU Fortran and GCC
348
@c ---------------------------------------------------------------------
349
 
350
@node GNU Fortran and GCC
351
@section GNU Fortran and GCC
352
@cindex GNU Compiler Collection
353
@cindex GCC
354
 
355
GNU Fortran is a part of GCC, the @dfn{GNU Compiler Collection}.  GCC
356
consists of a collection of front ends for various languages, which
357
translate the source code into a language-independent form called
358
@dfn{GENERIC}.  This is then processed by a common middle end which
359
provides optimization, and then passed to one of a collection of back
360
ends which generate code for different computer architectures and
361
operating systems.
362
 
363
Functionally, this is implemented with a driver program (@command{gcc})
364
which provides the command-line interface for the compiler.  It calls
365
the relevant compiler front-end program (e.g., @command{f951} for
366
Fortran) for each file in the source code, and then calls the assembler
367
and linker as appropriate to produce the compiled output. In a copy of
368
GCC which has been compiled with Fortran language support enabled,
369
@command{gcc} will recognize files with @file{.f}, @file{.for}, @file{.ftn},
370
@file{.f90}, @file{.f95}, @file{.f03} and @file{.f08} extensions as
371
Fortran source code, and compile it accordingly. A @command{gfortran}
372
driver program is also provided, which is identical to @command{gcc}
373
except that it automatically links the Fortran runtime libraries into the
374
compiled program.
375
 
376
Source files with @file{.f}, @file{.for}, @file{.fpp}, @file{.ftn}, @file{.F},
377
@file{.FOR}, @file{.FPP}, and @file{.FTN} extensions are treated as fixed form.
378
Source files with @file{.f90}, @file{.f95}, @file{.f03}, @file{.f08},
379
@file{.F90}, @file{.F95}, @file{.F03} and @file{.F08} extensions are
380
treated as free form.  The capitalized versions of either form are run
381
through preprocessing. Source files with the lower case @file{.fpp}
382
extension are also run through preprocessing.
383
 
384
This manual specifically documents the Fortran front end, which handles
385
the programming language's syntax and semantics.  The aspects of GCC
386
which relate to the optimization passes and the back-end code generation
387
are documented in the GCC manual; see
388
@ref{Top,,Introduction,gcc,Using the GNU Compiler Collection (GCC)}.
389
The two manuals together provide a complete reference for the GNU
390
Fortran compiler.
391
 
392
 
393
@c ---------------------------------------------------------------------
394
@c Preprocessing and conditional compilation
395
@c ---------------------------------------------------------------------
396
 
397
@node Preprocessing and conditional compilation
398
@section Preprocessing and conditional compilation
399
@cindex CPP
400
@cindex FPP
401
@cindex Conditional compilation
402
@cindex Preprocessing
403
@cindex preprocessor, include file handling
404
 
405
Many Fortran compilers including GNU Fortran allow passing the source code
406
through a C preprocessor (CPP; sometimes also called the Fortran preprocessor,
407
FPP) to allow for conditional compilation. In the case of GNU Fortran,
408
this is the GNU C Preprocessor in the traditional mode. On systems with
409
case-preserving file names, the preprocessor is automatically invoked if the
410
filename extension is @code{.F}, @code{.FOR}, @code{.FTN}, @code{.fpp},
411
@code{.FPP}, @code{.F90}, @code{.F95}, @code{.F03} or @code{.F08}. To manually
412
invoke the preprocessor on any file, use @option{-cpp}, to disable
413
preprocessing on files where the preprocessor is run automatically, use
414
@option{-nocpp}.
415
 
416
If a preprocessed file includes another file with the Fortran @code{INCLUDE}
417
statement, the included file is not preprocessed. To preprocess included
418
files, use the equivalent preprocessor statement @code{#include}.
419
 
420
If GNU Fortran invokes the preprocessor, @code{__GFORTRAN__}
421
is defined and @code{__GNUC__}, @code{__GNUC_MINOR__} and
422
@code{__GNUC_PATCHLEVEL__} can be used to determine the version of the
423
compiler. See @ref{Top,,Overview,cpp,The C Preprocessor} for details.
424
 
425
While CPP is the de-facto standard for preprocessing Fortran code,
426
Part 3 of the Fortran 95 standard (ISO/IEC 1539-3:1998) defines
427
Conditional Compilation, which is not widely used and not directly
428
supported by the GNU Fortran compiler. You can use the program coco
429
to preprocess such files (@uref{http://users.erols.com/dnagle/coco.html}).
430
 
431
 
432
@c ---------------------------------------------------------------------
433
@c GNU Fortran and G77
434
@c ---------------------------------------------------------------------
435
 
436
@node GNU Fortran and G77
437
@section GNU Fortran and G77
438
@cindex Fortran 77
439
@cindex @command{g77}
440
 
441
The GNU Fortran compiler is the successor to @command{g77}, the Fortran
442
77 front end included in GCC prior to version 4.  It is an entirely new
443
program that has been designed to provide Fortran 95 support and
444
extensibility for future Fortran language standards, as well as providing
445
backwards compatibility for Fortran 77 and nearly all of the GNU language
446
extensions supported by @command{g77}.
447
 
448
 
449
@c ---------------------------------------------------------------------
450
@c Project Status
451
@c ---------------------------------------------------------------------
452
 
453
@node Project Status
454
@section Project Status
455
 
456
@quotation
457
As soon as @command{gfortran} can parse all of the statements correctly,
458
it will be in the ``larva'' state.
459
When we generate code, the ``puppa'' state.
460
When @command{gfortran} is done,
461
we'll see if it will be a beautiful butterfly,
462
or just a big bug....
463
 
464
--Andy Vaught, April 2000
465
@end quotation
466
 
467
The start of the GNU Fortran 95 project was announced on
468
the GCC homepage in March 18, 2000
469
(even though Andy had already been working on it for a while,
470
of course).
471
 
472
The GNU Fortran compiler is able to compile nearly all
473
standard-compliant Fortran 95, Fortran 90, and Fortran 77 programs,
474
including a number of standard and non-standard extensions, and can be
475
used on real-world programs.  In particular, the supported extensions
476
include OpenMP, Cray-style pointers, and several Fortran 2003 and Fortran
477
2008 features such as enumeration, stream I/O, and some of the
478
enhancements to allocatable array support from TR 15581.  However, it is
479
still under development and has a few remaining rough edges.
480
 
481
At present, the GNU Fortran compiler passes the
482
@uref{http://www.fortran-2000.com/ArnaudRecipes/fcvs21_f95.html,
483
NIST Fortran 77 Test Suite}, and produces acceptable results on the
484
@uref{http://www.netlib.org/lapack/faq.html#1.21, LAPACK Test Suite}.
485
It also provides respectable performance on
486
the @uref{http://www.polyhedron.com/pb05.html, Polyhedron Fortran
487
compiler benchmarks} and the
488
@uref{http://www.llnl.gov/asci_benchmarks/asci/limited/lfk/README.html,
489
Livermore Fortran Kernels test}.  It has been used to compile a number of
490
large real-world programs, including
491
@uref{http://mysite.verizon.net/serveall/moene.pdf, the HIRLAM
492
weather-forecasting code} and
493
@uref{http://www.theochem.uwa.edu.au/tonto/, the Tonto quantum
494
chemistry package}; see @url{http://gcc.gnu.org/wiki/GfortranApps} for an
495
extended list.
496
 
497
Among other things, the GNU Fortran compiler is intended as a replacement
498
for G77.  At this point, nearly all programs that could be compiled with
499
G77 can be compiled with GNU Fortran, although there are a few minor known
500
regressions.
501
 
502
The primary work remaining to be done on GNU Fortran falls into three
503
categories: bug fixing (primarily regarding the treatment of invalid code
504
and providing useful error messages), improving the compiler optimizations
505
and the performance of compiled code, and extending the compiler to support
506
future standards---in particular, Fortran 2003 and Fortran 2008.
507
 
508
 
509
@c ---------------------------------------------------------------------
510
@c Standards
511
@c ---------------------------------------------------------------------
512
 
513
@node Standards
514
@section Standards
515
@cindex Standards
516
 
517
@menu
518
* Varying Length Character Strings::
519
@end menu
520
 
521
The GNU Fortran compiler implements
522
ISO/IEC 1539:1997 (Fortran 95).  As such, it can also compile essentially all
523
standard-compliant Fortran 90 and Fortran 77 programs.   It also supports
524
the ISO/IEC TR-15581 enhancements to allocatable arrays, and
525
the @uref{http://www.openmp.org/drupal/mp-documents/spec25.pdf,
526
OpenMP Application Program Interface v2.5} specification.
527
 
528
In the future, the GNU Fortran compiler will also support ISO/IEC
529
1539-1:2004 (Fortran 2003) and future Fortran standards. Partial support
530
of that standard is already provided; the current status of Fortran 2003
531
support is reported in the @ref{Fortran 2003 status} section of the
532
documentation.
533
 
534
The next version of the Fortran standard (Fortran 2008) is currently
535
being developed and the GNU Fortran compiler supports some of its new
536
features. This support is based on the latest draft of the standard
537
(available from @url{http://www.nag.co.uk/sc22wg5/}) and no guarantee of
538
future compatibility is made, as the final standard might differ from the
539
draft. For more information, see the @ref{Fortran 2008 status} section.
540
 
541
Additionally, the GNU Fortran compilers supports the OpenMP specification
542
(version 3.0, @url{http://openmp.org/wp/openmp-specifications/}).
543
 
544
@node Varying Length Character Strings
545
@subsection Varying Length Character Strings
546
@cindex Varying length character strings
547
@cindex Varying length strings
548
@cindex strings, varying length
549
 
550
The Fortran 95 standard specifies in Part 2 (ISO/IEC 1539-2:2000)
551
varying length character strings. While GNU Fortran currently does not
552
support such strings directly, there exist two Fortran implementations
553
for them, which work with GNU Fortran. They can be found at
554
@uref{http://www.fortran.com/@/iso_varying_string.f95} and at
555
@uref{ftp://ftp.nag.co.uk/@/sc22wg5/@/ISO_VARYING_STRING/}.
556
 
557
 
558
 
559
@c =====================================================================
560
@c PART I: INVOCATION REFERENCE
561
@c =====================================================================
562
 
563
@tex
564
\part{I}{Invoking GNU Fortran}
565
@end tex
566
 
567
@c ---------------------------------------------------------------------
568
@c Compiler Options
569
@c ---------------------------------------------------------------------
570
 
571
@include invoke.texi
572
 
573
 
574
@c ---------------------------------------------------------------------
575
@c Runtime
576
@c ---------------------------------------------------------------------
577
 
578
@node Runtime
579
@chapter Runtime:  Influencing runtime behavior with environment variables
580
@cindex environment variable
581
 
582
The behavior of the @command{gfortran} can be influenced by
583
environment variables.
584
 
585
Malformed environment variables are silently ignored.
586
 
587
@menu
588
* GFORTRAN_STDIN_UNIT:: Unit number for standard input
589
* GFORTRAN_STDOUT_UNIT:: Unit number for standard output
590
* GFORTRAN_STDERR_UNIT:: Unit number for standard error
591
* GFORTRAN_USE_STDERR:: Send library output to standard error
592
* GFORTRAN_TMPDIR:: Directory for scratch files
593
* GFORTRAN_UNBUFFERED_ALL:: Don't buffer I/O for all units.
594
* GFORTRAN_UNBUFFERED_PRECONNECTED:: Don't buffer I/O for preconnected units.
595
* GFORTRAN_SHOW_LOCUS::  Show location for runtime errors
596
* GFORTRAN_OPTIONAL_PLUS:: Print leading + where permitted
597
* GFORTRAN_DEFAULT_RECL:: Default record length for new files
598
* GFORTRAN_LIST_SEPARATOR::  Separator for list output
599
* GFORTRAN_CONVERT_UNIT::  Set endianness for unformatted I/O
600
* GFORTRAN_ERROR_DUMPCORE:: Dump core on run-time errors
601
* GFORTRAN_ERROR_BACKTRACE:: Show backtrace on run-time errors
602
@end menu
603
 
604
@node GFORTRAN_STDIN_UNIT
605
@section @env{GFORTRAN_STDIN_UNIT}---Unit number for standard input
606
 
607
This environment variable can be used to select the unit number
608
preconnected to standard input.  This must be a positive integer.
609
The default value is 5.
610
 
611
@node GFORTRAN_STDOUT_UNIT
612
@section @env{GFORTRAN_STDOUT_UNIT}---Unit number for standard output
613
 
614
This environment variable can be used to select the unit number
615
preconnected to standard output.  This must be a positive integer.
616
The default value is 6.
617
 
618
@node GFORTRAN_STDERR_UNIT
619
@section @env{GFORTRAN_STDERR_UNIT}---Unit number for standard error
620
 
621
This environment variable can be used to select the unit number
622
preconnected to standard error.  This must be a positive integer.
623
The default value is 0.
624
 
625
@node GFORTRAN_USE_STDERR
626
@section @env{GFORTRAN_USE_STDERR}---Send library output to standard error
627
 
628
This environment variable controls where library output is sent.
629
If the first letter is @samp{y}, @samp{Y} or @samp{1}, standard
630
error is used. If the first letter is @samp{n}, @samp{N} or
631
@samp{0}, standard output is used.
632
 
633
@node GFORTRAN_TMPDIR
634
@section @env{GFORTRAN_TMPDIR}---Directory for scratch files
635
 
636
This environment variable controls where scratch files are
637
created.  If this environment variable is missing,
638
GNU Fortran searches for the environment variable @env{TMP}.  If
639
this is also missing, the default is @file{/tmp}.
640
 
641
@node GFORTRAN_UNBUFFERED_ALL
642
@section @env{GFORTRAN_UNBUFFERED_ALL}---Don't buffer I/O on all units
643
 
644
This environment variable controls whether all I/O is unbuffered.  If
645
the first letter is @samp{y}, @samp{Y} or @samp{1}, all I/O is
646
unbuffered. This will slow down small sequential reads and writes.  If
647
the first letter is @samp{n}, @samp{N} or @samp{0}, I/O is buffered.
648
This is the default.
649
 
650
@node GFORTRAN_UNBUFFERED_PRECONNECTED
651
@section @env{GFORTRAN_UNBUFFERED_PRECONNECTED}---Don't buffer I/O on preconnected units
652
 
653
The environment variable named @env{GFORTRAN_UNBUFFERED_PRECONNECTED} controls
654
whether I/O on a preconnected unit (i.e.@: STDOUT or STDERR) is unbuffered.  If
655
the first letter is @samp{y}, @samp{Y} or @samp{1}, I/O is unbuffered. This
656
will slow down small sequential reads and writes.  If the first letter
657
is @samp{n}, @samp{N} or @samp{0}, I/O is buffered.  This is the default.
658
 
659
@node GFORTRAN_SHOW_LOCUS
660
@section @env{GFORTRAN_SHOW_LOCUS}---Show location for runtime errors
661
 
662
If the first letter is @samp{y}, @samp{Y} or @samp{1}, filename and
663
line numbers for runtime errors are printed.  If the first letter is
664
@samp{n}, @samp{N} or @samp{0}, don't print filename and line numbers
665
for runtime errors. The default is to print the location.
666
 
667
@node GFORTRAN_OPTIONAL_PLUS
668
@section @env{GFORTRAN_OPTIONAL_PLUS}---Print leading + where permitted
669
 
670
If the first letter is @samp{y}, @samp{Y} or @samp{1},
671
a plus sign is printed
672
where permitted by the Fortran standard.  If the first letter
673
is @samp{n}, @samp{N} or @samp{0}, a plus sign is not printed
674
in most cases. Default is not to print plus signs.
675
 
676
@node GFORTRAN_DEFAULT_RECL
677
@section @env{GFORTRAN_DEFAULT_RECL}---Default record length for new files
678
 
679
This environment variable specifies the default record length, in
680
bytes, for files which are opened without a @code{RECL} tag in the
681
@code{OPEN} statement.  This must be a positive integer.  The
682
default value is 1073741824 bytes (1 GB).
683
 
684
@node GFORTRAN_LIST_SEPARATOR
685
@section @env{GFORTRAN_LIST_SEPARATOR}---Separator for list output
686
 
687
This environment variable specifies the separator when writing
688
list-directed output.  It may contain any number of spaces and
689
at most one comma.  If you specify this on the command line,
690
be sure to quote spaces, as in
691
@smallexample
692
$ GFORTRAN_LIST_SEPARATOR='  ,  ' ./a.out
693
@end smallexample
694
when @command{a.out} is the compiled Fortran program that you want to run.
695
Default is a single space.
696
 
697
@node GFORTRAN_CONVERT_UNIT
698
@section @env{GFORTRAN_CONVERT_UNIT}---Set endianness for unformatted I/O
699
 
700
By setting the @env{GFORTRAN_CONVERT_UNIT} variable, it is possible
701
to change the representation of data for unformatted files.
702
The syntax for the @env{GFORTRAN_CONVERT_UNIT} variable is:
703
@smallexample
704
GFORTRAN_CONVERT_UNIT: mode | mode ';' exception | exception ;
705
mode: 'native' | 'swap' | 'big_endian' | 'little_endian' ;
706
exception: mode ':' unit_list | unit_list ;
707
unit_list: unit_spec | unit_list unit_spec ;
708
unit_spec: INTEGER | INTEGER '-' INTEGER ;
709
@end smallexample
710
The variable consists of an optional default mode, followed by
711
a list of optional exceptions, which are separated by semicolons
712
from the preceding default and each other.  Each exception consists
713
of a format and a comma-separated list of units.  Valid values for
714
the modes are the same as for the @code{CONVERT} specifier:
715
 
716
@itemize @w{}
717
@item @code{NATIVE} Use the native format.  This is the default.
718
@item @code{SWAP} Swap between little- and big-endian.
719
@item @code{LITTLE_ENDIAN} Use the little-endian format
720
for unformatted files.
721
@item @code{BIG_ENDIAN} Use the big-endian format for unformatted files.
722
@end itemize
723
A missing mode for an exception is taken to mean @code{BIG_ENDIAN}.
724
Examples of values for @env{GFORTRAN_CONVERT_UNIT} are:
725
@itemize @w{}
726
@item @code{'big_endian'}  Do all unformatted I/O in big_endian mode.
727
@item @code{'little_endian;native:10-20,25'}  Do all unformatted I/O
728
in little_endian mode, except for units 10 to 20 and 25, which are in
729
native format.
730
@item @code{'10-20'}  Units 10 to 20 are big-endian, the rest is native.
731
@end itemize
732
 
733
Setting the environment variables should be done on the command
734
line or via the @command{export}
735
command for @command{sh}-compatible shells and via @command{setenv}
736
for @command{csh}-compatible shells.
737
 
738
Example for @command{sh}:
739
@smallexample
740
$ gfortran foo.f90
741
$ GFORTRAN_CONVERT_UNIT='big_endian;native:10-20' ./a.out
742
@end smallexample
743
 
744
Example code for @command{csh}:
745
@smallexample
746
% gfortran foo.f90
747
% setenv GFORTRAN_CONVERT_UNIT 'big_endian;native:10-20'
748
% ./a.out
749
@end smallexample
750
 
751
Using anything but the native representation for unformatted data
752
carries a significant speed overhead.  If speed in this area matters
753
to you, it is best if you use this only for data that needs to be
754
portable.
755
 
756
@xref{CONVERT specifier}, for an alternative way to specify the
757
data representation for unformatted files.  @xref{Runtime Options}, for
758
setting a default data representation for the whole program.  The
759
@code{CONVERT} specifier overrides the @option{-fconvert} compile options.
760
 
761
@emph{Note that the values specified via the GFORTRAN_CONVERT_UNIT
762
environment variable will override the CONVERT specifier in the
763
open statement}.  This is to give control over data formats to
764
users who do not have the source code of their program available.
765
 
766
@node GFORTRAN_ERROR_DUMPCORE
767
@section @env{GFORTRAN_ERROR_DUMPCORE}---Dump core on run-time errors
768
 
769
If the @env{GFORTRAN_ERROR_DUMPCORE} variable is set to
770
@samp{y}, @samp{Y} or @samp{1} (only the first letter is relevant)
771
then library run-time errors cause core dumps. To disable the core
772
dumps, set the variable to @samp{n}, @samp{N}, @samp{0}. Default
773
is not to core dump unless the @option{-fdump-core} compile option
774
was used.
775
 
776
@node GFORTRAN_ERROR_BACKTRACE
777
@section @env{GFORTRAN_ERROR_BACKTRACE}---Show backtrace on run-time errors
778
 
779
If the @env{GFORTRAN_ERROR_BACKTRACE} variable is set to
780
@samp{y}, @samp{Y} or @samp{1} (only the first letter is relevant)
781
then a backtrace is printed when a run-time error occurs.
782
To disable the backtracing, set the variable to
783
@samp{n}, @samp{N}, @samp{0}. Default is not to print a backtrace
784
unless the @option{-fbacktrace} compile option
785
was used.
786
 
787
@c =====================================================================
788
@c PART II: LANGUAGE REFERENCE
789
@c =====================================================================
790
 
791
@tex
792
\part{II}{Language Reference}
793
@end tex
794
 
795
@c ---------------------------------------------------------------------
796
@c Fortran 2003 and 2008 Status
797
@c ---------------------------------------------------------------------
798
 
799
@node Fortran 2003 and 2008 status
800
@chapter Fortran 2003 and 2008 Status
801
 
802
@menu
803
* Fortran 2003 status::
804
* Fortran 2008 status::
805
@end menu
806
 
807
@node Fortran 2003 status
808
@section Fortran 2003 status
809
 
810
GNU Fortran supports several Fortran 2003 features; an incomplete
811
list can be found below.  See also the
812
@uref{http://gcc.gnu.org/wiki/Fortran2003, wiki page} about Fortran 2003.
813
 
814
@itemize
815
@item
816
Intrinsics @code{command_argument_count}, @code{get_command},
817
@code{get_command_argument}, @code{get_environment_variable}, and
818
@code{move_alloc}.
819
 
820
@item
821
@cindex array, constructors
822
@cindex @code{[...]}
823
Array constructors using square brackets. That is, @code{[...]} rather
824
than @code{(/.../)}.  Type-specification for array constructors like
825
@code{(/ some-type :: ... /)}.
826
 
827
@item
828
@cindex @code{FLUSH} statement
829
@cindex statement, @code{FLUSH}
830
@code{FLUSH} statement.
831
 
832
@item
833
@cindex @code{IOMSG=} specifier
834
@code{IOMSG=} specifier for I/O statements.
835
 
836
@item
837
@cindex @code{ENUM} statement
838
@cindex @code{ENUMERATOR} statement
839
@cindex statement, @code{ENUM}
840
@cindex statement, @code{ENUMERATOR}
841
@opindex @code{fshort-enums}
842
Support for the declaration of enumeration constants via the
843
@code{ENUM} and @code{ENUMERATOR} statements.  Interoperability with
844
@command{gcc} is guaranteed also for the case where the
845
@command{-fshort-enums} command line option is given.
846
 
847
@item
848
@cindex TR 15581
849
TR 15581:
850
@itemize
851
@item
852
@cindex @code{ALLOCATABLE} dummy arguments
853
@code{ALLOCATABLE} dummy arguments.
854
@item
855
@cindex @code{ALLOCATABLE} function results
856
@code{ALLOCATABLE} function results
857
@item
858
@cindex @code{ALLOCATABLE} components of derived types
859
@code{ALLOCATABLE} components of derived types
860
@end itemize
861
 
862
@item
863
@cindex @code{ALLOCATE}
864
The @code{ERRMSG=} tag is now supported in @code{ALLOCATE} and
865
@code{DEALLOCATE} statements.  The @code{SOURCE=} tag is supported
866
in an @code{ALLOCATE} statement.  An @emph{intrinsic-type-spec}
867
can be used as the @emph{type-spec} in an @code{ALLOCATE} statement;
868
while the use of a @emph{derived-type-name} is currently unsupported.
869
 
870
@item
871
@cindex @code{STREAM} I/O
872
@cindex @code{ACCESS='STREAM'} I/O
873
The @code{OPEN} statement supports the @code{ACCESS='STREAM'} specifier,
874
allowing I/O without any record structure.
875
 
876
@item
877
Namelist input/output for internal files.
878
 
879
@item
880
@cindex @code{PROTECTED} statement
881
@cindex statement, @code{PROTECTED}
882
The @code{PROTECTED} statement and attribute.
883
 
884
@item
885
@cindex @code{VALUE} statement
886
@cindex statement, @code{VALUE}
887
The @code{VALUE} statement and attribute.
888
 
889
@item
890
@cindex @code{VOLATILE} statement
891
@cindex statement, @code{VOLATILE}
892
The @code{VOLATILE} statement and attribute.
893
 
894
@item
895
@cindex @code{IMPORT} statement
896
@cindex statement, @code{IMPORT}
897
The @code{IMPORT} statement, allowing to import
898
host-associated derived types.
899
 
900
@item
901
@cindex @code{USE, INTRINSIC} statement
902
@cindex statement, @code{USE, INTRINSIC}
903
@cindex @code{ISO_FORTRAN_ENV} statement
904
@cindex statement, @code{ISO_FORTRAN_ENV}
905
@code{USE} statement with @code{INTRINSIC} and @code{NON_INTRINSIC}
906
attribute; supported intrinsic modules: @code{ISO_FORTRAN_ENV},
907
@code{OMP_LIB} and @code{OMP_LIB_KINDS}.
908
 
909
@item
910
Renaming of operators in the @code{USE} statement.
911
 
912
@item
913
@cindex ISO C Bindings
914
Interoperability with C (ISO C Bindings)
915
 
916
@item
917
BOZ as argument of @code{INT}, @code{REAL}, @code{DBLE} and @code{CMPLX}.
918
 
919
@item
920
@cindex type-bound procedure
921
@cindex type-bound operator
922
Type-bound procedures with @code{PROCEDURE} or @code{GENERIC}, and operators
923
bound to a derived-type.
924
 
925
@item
926
@cindex @code{EXTENDS}
927
@cindex derived-type extension
928
Extension of derived-types (the @code{EXTENDS(...)} syntax).
929
 
930
@item
931
@cindex @code{ABSTRACT} type
932
@cindex @code{DEFERRED} procedure binding
933
@code{ABSTRACT} derived-types and declaring procedure bindings @code{DEFERRED}.
934
 
935
@end itemize
936
 
937
 
938
@node Fortran 2008 status
939
@section Fortran 2008 status
940
 
941
The next version of the Fortran standard after Fortran 2003 is currently
942
being worked on by the Working Group 5 of Sub-Committee 22 of the Joint
943
Technical Committee 1 of the International Organization for
944
Standardization (ISO) and the International Electrotechnical Commission
945
(IEC). This group is known as @uref{http://www.nag.co.uk/sc22wg5/, WG5}.
946
The next revision of the Fortran standard is informally referred to as
947
Fortran 2008, reflecting its planned release year. The GNU Fortran
948
compiler has support for some of the new features in Fortran 2008. This
949
support is based on the latest draft, available from
950
@url{http://www.nag.co.uk/sc22wg5/}. However, as the final standard may
951
differ from the drafts, no guarantee of backward compatibility can be
952
made and you should only use it for experimental purposes.
953
 
954
The @uref{http://gcc.gnu.org/wiki/Fortran2008Status, wiki} has some information
955
about the current Fortran 2008 implementation status.
956
 
957
 
958
@c ---------------------------------------------------------------------
959
@c Compiler Characteristics
960
@c ---------------------------------------------------------------------
961
 
962
@node Compiler Characteristics
963
@chapter Compiler Characteristics
964
 
965
This chapter describes certain characteristics of the GNU Fortran
966
compiler, that are not specified by the Fortran standard, but which
967
might in some way or another become visible to the programmer.
968
 
969
@menu
970
* KIND Type Parameters::
971
* Internal representation of LOGICAL variables::
972
@end menu
973
 
974
 
975
@node KIND Type Parameters
976
@section KIND Type Parameters
977
@cindex kind
978
 
979
The @code{KIND} type parameters supported by GNU Fortran for the primitive
980
data types are:
981
 
982
@table @code
983
 
984
@item INTEGER
985
1, 2, 4, 8*, 16*, default: 4 (1)
986
 
987
@item LOGICAL
988
1, 2, 4, 8*, 16*, default: 4 (1)
989
 
990
@item REAL
991
4, 8, 10**, 16**, default: 4 (2)
992
 
993
@item COMPLEX
994
4, 8, 10**, 16**, default: 4 (2)
995
 
996
@item CHARACTER
997
1, 4, default: 1
998
 
999
@end table
1000
 
1001
@noindent
1002
* = not available on all systems @*
1003
** = not available on all systems; additionally 10 and 16 are never
1004
available at the same time @*
1005
(1) Unless -fdefault-integer-8 is used @*
1006
(2) Unless -fdefault-real-8 is used
1007
 
1008
@noindent
1009
The @code{KIND} value matches the storage size in bytes, except for
1010
@code{COMPLEX} where the storage size is twice as much (or both real and
1011
imaginary part are a real value of the given size).  It is recommended to use
1012
the @code{SELECT_*_KIND} intrinsics instead of the concrete values.
1013
 
1014
 
1015
@node Internal representation of LOGICAL variables
1016
@section Internal representation of LOGICAL variables
1017
@cindex logical, variable representation
1018
 
1019
The Fortran standard does not specify how variables of @code{LOGICAL}
1020
type are represented, beyond requiring that @code{LOGICAL} variables
1021
of default kind have the same storage size as default @code{INTEGER}
1022
and @code{REAL} variables.  The GNU Fortran internal representation is
1023
as follows.
1024
 
1025
A @code{LOGICAL(KIND=N)} variable is represented as an
1026
@code{INTEGER(KIND=N)} variable, however, with only two permissible
1027
values: @code{1} for @code{.TRUE.} and @code{0} for
1028
@code{.FALSE.}. Any other integer value results in undefined behavior.
1029
 
1030
Note that for mixed-language programming using the
1031
@code{ISO_C_BINDING} feature, there is a @code{C_BOOL} kind that can
1032
be used to create @code{LOGICAL(KIND=C_BOOL)} variables which are
1033
interoperable with the C99 _Bool type.  The C99 _Bool type has an
1034
internal representation described in the C99 standard, which is
1035
identical to the above description, i.e. with 1 for true and 0 for
1036
false being the only permissible values.  Thus the internal
1037
representation of @code{LOGICAL} variables in GNU Fortran is identical
1038
to C99 _Bool, except for a possible difference in storage size
1039
depending on the kind.
1040
 
1041
@c ---------------------------------------------------------------------
1042
@c Extensions
1043
@c ---------------------------------------------------------------------
1044
 
1045
@c Maybe this chapter should be merged with the 'Standards' section,
1046
@c whenever that is written :-)
1047
 
1048
@node Extensions
1049
@chapter Extensions
1050
@cindex extensions
1051
 
1052
The two sections below detail the extensions to standard Fortran that are
1053
implemented in GNU Fortran, as well as some of the popular or
1054
historically important extensions that are not (or not yet) implemented.
1055
For the latter case, we explain the alternatives available to GNU Fortran
1056
users, including replacement by standard-conforming code or GNU
1057
extensions.
1058
 
1059
@menu
1060
* Extensions implemented in GNU Fortran::
1061
* Extensions not implemented in GNU Fortran::
1062
@end menu
1063
 
1064
 
1065
@node Extensions implemented in GNU Fortran
1066
@section Extensions implemented in GNU Fortran
1067
@cindex extensions, implemented
1068
 
1069
GNU Fortran implements a number of extensions over standard
1070
Fortran. This chapter contains information on their syntax and
1071
meaning.  There are currently two categories of GNU Fortran
1072
extensions, those that provide functionality beyond that provided
1073
by any standard, and those that are supported by GNU Fortran
1074
purely for backward compatibility with legacy compilers.  By default,
1075
@option{-std=gnu} allows the compiler to accept both types of
1076
extensions, but to warn about the use of the latter.  Specifying
1077
either @option{-std=f95}, @option{-std=f2003} or @option{-std=f2008}
1078
disables both types of extensions, and @option{-std=legacy} allows both
1079
without warning.
1080
 
1081
@menu
1082
* Old-style kind specifications::
1083
* Old-style variable initialization::
1084
* Extensions to namelist::
1085
* X format descriptor without count field::
1086
* Commas in FORMAT specifications::
1087
* Missing period in FORMAT specifications::
1088
* I/O item lists::
1089
* BOZ literal constants::
1090
* Real array indices::
1091
* Unary operators::
1092
* Implicitly convert LOGICAL and INTEGER values::
1093
* Hollerith constants support::
1094
* Cray pointers::
1095
* CONVERT specifier::
1096
* OpenMP::
1097
* Argument list functions::
1098
@end menu
1099
 
1100
@node Old-style kind specifications
1101
@subsection Old-style kind specifications
1102
@cindex kind, old-style
1103
 
1104
GNU Fortran allows old-style kind specifications in declarations. These
1105
look like:
1106
@smallexample
1107
      TYPESPEC*size x,y,z
1108
@end smallexample
1109
@noindent
1110
where @code{TYPESPEC} is a basic type (@code{INTEGER}, @code{REAL},
1111
etc.), and where @code{size} is a byte count corresponding to the
1112
storage size of a valid kind for that type.  (For @code{COMPLEX}
1113
variables, @code{size} is the total size of the real and imaginary
1114
parts.)  The statement then declares @code{x}, @code{y} and @code{z} to
1115
be of type @code{TYPESPEC} with the appropriate kind.  This is
1116
equivalent to the standard-conforming declaration
1117
@smallexample
1118
      TYPESPEC(k) x,y,z
1119
@end smallexample
1120
@noindent
1121
where @code{k} is the kind parameter suitable for the intended precision.  As
1122
kind parameters are implementation-dependent, use the @code{KIND},
1123
@code{SELECTED_INT_KIND} and @code{SELECTED_REAL_KIND} intrinsics to retrieve
1124
the correct value, for instance @code{REAL*8 x} can be replaced by:
1125
@smallexample
1126
INTEGER, PARAMETER :: dbl = KIND(1.0d0)
1127
REAL(KIND=dbl) :: x
1128
@end smallexample
1129
 
1130
@node Old-style variable initialization
1131
@subsection Old-style variable initialization
1132
 
1133
GNU Fortran allows old-style initialization of variables of the
1134
form:
1135
@smallexample
1136
      INTEGER i/1/,j/2/
1137
      REAL x(2,2) /3*0.,1./
1138
@end smallexample
1139
The syntax for the initializers is as for the @code{DATA} statement, but
1140
unlike in a @code{DATA} statement, an initializer only applies to the
1141
variable immediately preceding the initialization.  In other words,
1142
something like @code{INTEGER I,J/2,3/} is not valid.  This style of
1143
initialization is only allowed in declarations without double colons
1144
(@code{::}); the double colons were introduced in Fortran 90, which also
1145
introduced a standard syntax for initializing variables in type
1146
declarations.
1147
 
1148
Examples of standard-conforming code equivalent to the above example
1149
are:
1150
@smallexample
1151
! Fortran 90
1152
      INTEGER :: i = 1, j = 2
1153
      REAL :: x(2,2) = RESHAPE((/0.,0.,0.,1./),SHAPE(x))
1154
! Fortran 77
1155
      INTEGER i, j
1156
      REAL x(2,2)
1157
      DATA i/1/, j/2/, x/3*0.,1./
1158
@end smallexample
1159
 
1160
Note that variables which are explicitly initialized in declarations
1161
or in @code{DATA} statements automatically acquire the @code{SAVE}
1162
attribute.
1163
 
1164
@node Extensions to namelist
1165
@subsection Extensions to namelist
1166
@cindex Namelist
1167
 
1168
GNU Fortran fully supports the Fortran 95 standard for namelist I/O
1169
including array qualifiers, substrings and fully qualified derived types.
1170
The output from a namelist write is compatible with namelist read.  The
1171
output has all names in upper case and indentation to column 1 after the
1172
namelist name.  Two extensions are permitted:
1173
 
1174
Old-style use of @samp{$} instead of @samp{&}
1175
@smallexample
1176
$MYNML
1177
 X(:)%Y(2) = 1.0 2.0 3.0
1178
 CH(1:4) = "abcd"
1179
$END
1180
@end smallexample
1181
 
1182
It should be noted that the default terminator is @samp{/} rather than
1183
@samp{&END}.
1184
 
1185
Querying of the namelist when inputting from stdin. After at least
1186
one space, entering @samp{?} sends to stdout the namelist name and the names of
1187
the variables in the namelist:
1188
@smallexample
1189
 ?
1190
 
1191
&mynml
1192
 x
1193
 x%y
1194
 ch
1195
&end
1196
@end smallexample
1197
 
1198
Entering @samp{=?} outputs the namelist to stdout, as if
1199
@code{WRITE(*,NML = mynml)} had been called:
1200
@smallexample
1201
=?
1202
 
1203
&MYNML
1204
 X(1)%Y=  0.000000    ,  1.000000    ,  0.000000    ,
1205
 X(2)%Y=  0.000000    ,  2.000000    ,  0.000000    ,
1206
 X(3)%Y=  0.000000    ,  3.000000    ,  0.000000    ,
1207
 CH=abcd,  /
1208
@end smallexample
1209
 
1210
To aid this dialog, when input is from stdin, errors send their
1211
messages to stderr and execution continues, even if @code{IOSTAT} is set.
1212
 
1213
@code{PRINT} namelist is permitted.  This causes an error if
1214
@option{-std=f95} is used.
1215
@smallexample
1216
PROGRAM test_print
1217
  REAL, dimension (4)  ::  x = (/1.0, 2.0, 3.0, 4.0/)
1218
  NAMELIST /mynml/ x
1219
  PRINT mynml
1220
END PROGRAM test_print
1221
@end smallexample
1222
 
1223
Expanded namelist reads are permitted.  This causes an error if
1224
@option{-std=f95} is used.  In the following example, the first element
1225
of the array will be given the value 0.00 and the two succeeding
1226
elements will be given the values 1.00 and 2.00.
1227
@smallexample
1228
&MYNML
1229
  X(1,1) = 0.00 , 1.00 , 2.00
1230
/
1231
@end smallexample
1232
 
1233
@node X format descriptor without count field
1234
@subsection @code{X} format descriptor without count field
1235
 
1236
To support legacy codes, GNU Fortran permits the count field of the
1237
@code{X} edit descriptor in @code{FORMAT} statements to be omitted.
1238
When omitted, the count is implicitly assumed to be one.
1239
 
1240
@smallexample
1241
       PRINT 10, 2, 3
1242
10     FORMAT (I1, X, I1)
1243
@end smallexample
1244
 
1245
@node Commas in FORMAT specifications
1246
@subsection Commas in @code{FORMAT} specifications
1247
 
1248
To support legacy codes, GNU Fortran allows the comma separator
1249
to be omitted immediately before and after character string edit
1250
descriptors in @code{FORMAT} statements.
1251
 
1252
@smallexample
1253
       PRINT 10, 2, 3
1254
10     FORMAT ('FOO='I1' BAR='I2)
1255
@end smallexample
1256
 
1257
 
1258
@node Missing period in FORMAT specifications
1259
@subsection Missing period in @code{FORMAT} specifications
1260
 
1261
To support legacy codes, GNU Fortran allows missing periods in format
1262
specifications if and only if @option{-std=legacy} is given on the
1263
command line.  This is considered non-conforming code and is
1264
discouraged.
1265
 
1266
@smallexample
1267
       REAL :: value
1268
       READ(*,10) value
1269
10     FORMAT ('F4')
1270
@end smallexample
1271
 
1272
@node I/O item lists
1273
@subsection I/O item lists
1274
@cindex I/O item lists
1275
 
1276
To support legacy codes, GNU Fortran allows the input item list
1277
of the @code{READ} statement, and the output item lists of the
1278
@code{WRITE} and @code{PRINT} statements, to start with a comma.
1279
 
1280
@node BOZ literal constants
1281
@subsection BOZ literal constants
1282
@cindex BOZ literal constants
1283
 
1284
Besides decimal constants, Fortran also supports binary (@code{b}),
1285
octal (@code{o}) and hexadecimal (@code{z}) integer constants. The
1286
syntax is: @samp{prefix quote digits quote}, were the prefix is
1287
either @code{b}, @code{o} or @code{z}, quote is either @code{'} or
1288
@code{"} and the digits are for binary @code{0} or @code{1}, for
1289
octal between @code{0} and @code{7}, and for hexadecimal between
1290
@code{0} and @code{F}. (Example: @code{b'01011101'}.)
1291
 
1292
Up to Fortran 95, BOZ literals were only allowed to initialize
1293
integer variables in DATA statements. Since Fortran 2003 BOZ literals
1294
are also allowed as argument of @code{REAL}, @code{DBLE}, @code{INT}
1295
and @code{CMPLX}; the result is the same as if the integer BOZ
1296
literal had been converted by @code{TRANSFER} to, respectively,
1297
@code{real}, @code{double precision}, @code{integer} or @code{complex}.
1298
As GNU Fortran extension the intrinsic procedures @code{FLOAT},
1299
@code{DFLOAT}, @code{COMPLEX} and @code{DCMPLX} are treated alike.
1300
 
1301
As an extension, GNU Fortran allows hexadecimal BOZ literal constants to
1302
be specified using the @code{X} prefix, in addition to the standard
1303
@code{Z} prefix. The BOZ literal can also be specified by adding a
1304
suffix to the string, for example, @code{Z'ABC'} and @code{'ABC'Z} are
1305
equivalent.
1306
 
1307
Furthermore, GNU Fortran allows using BOZ literal constants outside
1308
DATA statements and the four intrinsic functions allowed by Fortran 2003.
1309
In DATA statements, in direct assignments, where the right-hand side
1310
only contains a BOZ literal constant, and for old-style initializers of
1311
the form @code{integer i /o'0173'/}, the constant is transferred
1312
as if @code{TRANSFER} had been used; for @code{COMPLEX} numbers, only
1313
the real part is initialized unless @code{CMPLX} is used. In all other
1314
cases, the BOZ literal constant is converted to an @code{INTEGER} value with
1315
the largest decimal representation.  This value is then converted
1316
numerically to the type and kind of the variable in question.
1317
(For instance, @code{real :: r = b'0000001' + 1} initializes @code{r}
1318
with @code{2.0}.) As different compilers implement the extension
1319
differently, one should be careful when doing bitwise initialization
1320
of non-integer variables.
1321
 
1322
Note that initializing an @code{INTEGER} variable with a statement such
1323
as @code{DATA i/Z'FFFFFFFF'/} will give an integer overflow error rather
1324
than the desired result of @math{-1} when @code{i} is a 32-bit integer
1325
on a system that supports 64-bit integers.  The @samp{-fno-range-check}
1326
option can be used as a workaround for legacy code that initializes
1327
integers in this manner.
1328
 
1329
@node Real array indices
1330
@subsection Real array indices
1331
@cindex array, indices of type real
1332
 
1333
As an extension, GNU Fortran allows the use of @code{REAL} expressions
1334
or variables as array indices.
1335
 
1336
@node Unary operators
1337
@subsection Unary operators
1338
@cindex operators, unary
1339
 
1340
As an extension, GNU Fortran allows unary plus and unary minus operators
1341
to appear as the second operand of binary arithmetic operators without
1342
the need for parenthesis.
1343
 
1344
@smallexample
1345
       X = Y * -Z
1346
@end smallexample
1347
 
1348
@node Implicitly convert LOGICAL and INTEGER values
1349
@subsection Implicitly convert @code{LOGICAL} and @code{INTEGER} values
1350
@cindex conversion, to integer
1351
@cindex conversion, to logical
1352
 
1353
As an extension for backwards compatibility with other compilers, GNU
1354
Fortran allows the implicit conversion of @code{LOGICAL} values to
1355
@code{INTEGER} values and vice versa.  When converting from a
1356
@code{LOGICAL} to an @code{INTEGER}, @code{.FALSE.} is interpreted as
1357
zero, and @code{.TRUE.} is interpreted as one.  When converting from
1358
@code{INTEGER} to @code{LOGICAL}, the value zero is interpreted as
1359
@code{.FALSE.} and any nonzero value is interpreted as @code{.TRUE.}.
1360
 
1361
@smallexample
1362
        LOGICAL :: l
1363
        l = 1
1364
@end smallexample
1365
@smallexample
1366
        INTEGER :: i
1367
        i = .TRUE.
1368
@end smallexample
1369
 
1370
However, there is no implicit conversion of @code{INTEGER} values in
1371
@code{if}-statements, nor of @code{LOGICAL} or @code{INTEGER} values
1372
in I/O operations.
1373
 
1374
@node Hollerith constants support
1375
@subsection Hollerith constants support
1376
@cindex Hollerith constants
1377
 
1378
GNU Fortran supports Hollerith constants in assignments, function
1379
arguments, and @code{DATA} and @code{ASSIGN} statements.  A Hollerith
1380
constant is written as a string of characters preceded by an integer
1381
constant indicating the character count, and the letter @code{H} or
1382
@code{h}, and stored in bytewise fashion in a numeric (@code{INTEGER},
1383
@code{REAL}, or @code{complex}) or @code{LOGICAL} variable.  The
1384
constant will be padded or truncated to fit the size of the variable in
1385
which it is stored.
1386
 
1387
Examples of valid uses of Hollerith constants:
1388
@smallexample
1389
      complex*16 x(2)
1390
      data x /16Habcdefghijklmnop, 16Hqrstuvwxyz012345/
1391
      x(1) = 16HABCDEFGHIJKLMNOP
1392
      call foo (4h abc)
1393
@end smallexample
1394
 
1395
Invalid Hollerith constants examples:
1396
@smallexample
1397
      integer*4 a
1398
      a = 8H12345678 ! Valid, but the Hollerith constant will be truncated.
1399
      a = 0H         ! At least one character is needed.
1400
@end smallexample
1401
 
1402
In general, Hollerith constants were used to provide a rudimentary
1403
facility for handling character strings in early Fortran compilers,
1404
prior to the introduction of @code{CHARACTER} variables in Fortran 77;
1405
in those cases, the standard-compliant equivalent is to convert the
1406
program to use proper character strings.  On occasion, there may be a
1407
case where the intent is specifically to initialize a numeric variable
1408
with a given byte sequence.  In these cases, the same result can be
1409
obtained by using the @code{TRANSFER} statement, as in this example.
1410
@smallexample
1411
      INTEGER(KIND=4) :: a
1412
      a = TRANSFER ("abcd", a)     ! equivalent to: a = 4Habcd
1413
@end smallexample
1414
 
1415
 
1416
@node Cray pointers
1417
@subsection Cray pointers
1418
@cindex pointer, Cray
1419
 
1420
Cray pointers are part of a non-standard extension that provides a
1421
C-like pointer in Fortran.  This is accomplished through a pair of
1422
variables: an integer "pointer" that holds a memory address, and a
1423
"pointee" that is used to dereference the pointer.
1424
 
1425
Pointer/pointee pairs are declared in statements of the form:
1426
@smallexample
1427
        pointer ( <pointer> , <pointee> )
1428
@end smallexample
1429
or,
1430
@smallexample
1431
        pointer ( <pointer1> , <pointee1> ), ( <pointer2> , <pointee2> ), ...
1432
@end smallexample
1433
The pointer is an integer that is intended to hold a memory address.
1434
The pointee may be an array or scalar.  A pointee can be an assumed
1435
size array---that is, the last dimension may be left unspecified by
1436
using a @code{*} in place of a value---but a pointee cannot be an
1437
assumed shape array.  No space is allocated for the pointee.
1438
 
1439
The pointee may have its type declared before or after the pointer
1440
statement, and its array specification (if any) may be declared
1441
before, during, or after the pointer statement.  The pointer may be
1442
declared as an integer prior to the pointer statement.  However, some
1443
machines have default integer sizes that are different than the size
1444
of a pointer, and so the following code is not portable:
1445
@smallexample
1446
        integer ipt
1447
        pointer (ipt, iarr)
1448
@end smallexample
1449
If a pointer is declared with a kind that is too small, the compiler
1450
will issue a warning; the resulting binary will probably not work
1451
correctly, because the memory addresses stored in the pointers may be
1452
truncated.  It is safer to omit the first line of the above example;
1453
if explicit declaration of ipt's type is omitted, then the compiler
1454
will ensure that ipt is an integer variable large enough to hold a
1455
pointer.
1456
 
1457
Pointer arithmetic is valid with Cray pointers, but it is not the same
1458
as C pointer arithmetic.  Cray pointers are just ordinary integers, so
1459
the user is responsible for determining how many bytes to add to a
1460
pointer in order to increment it.  Consider the following example:
1461
@smallexample
1462
        real target(10)
1463
        real pointee(10)
1464
        pointer (ipt, pointee)
1465
        ipt = loc (target)
1466
        ipt = ipt + 1
1467
@end smallexample
1468
The last statement does not set @code{ipt} to the address of
1469
@code{target(1)}, as it would in C pointer arithmetic.  Adding @code{1}
1470
to @code{ipt} just adds one byte to the address stored in @code{ipt}.
1471
 
1472
Any expression involving the pointee will be translated to use the
1473
value stored in the pointer as the base address.
1474
 
1475
To get the address of elements, this extension provides an intrinsic
1476
function @code{LOC()}.  The @code{LOC()} function is equivalent to the
1477
@code{&} operator in C, except the address is cast to an integer type:
1478
@smallexample
1479
        real ar(10)
1480
        pointer(ipt, arpte(10))
1481
        real arpte
1482
        ipt = loc(ar)  ! Makes arpte is an alias for ar
1483
        arpte(1) = 1.0 ! Sets ar(1) to 1.0
1484
@end smallexample
1485
The pointer can also be set by a call to the @code{MALLOC} intrinsic
1486
(see @ref{MALLOC}).
1487
 
1488
Cray pointees often are used to alias an existing variable.  For
1489
example:
1490
@smallexample
1491
        integer target(10)
1492
        integer iarr(10)
1493
        pointer (ipt, iarr)
1494
        ipt = loc(target)
1495
@end smallexample
1496
As long as @code{ipt} remains unchanged, @code{iarr} is now an alias for
1497
@code{target}. The optimizer, however, will not detect this aliasing, so
1498
it is unsafe to use @code{iarr} and @code{target} simultaneously.  Using
1499
a pointee in any way that violates the Fortran aliasing rules or
1500
assumptions is illegal. It is the user's responsibility to avoid doing
1501
this; the compiler works under the assumption that no such aliasing
1502
occurs.
1503
 
1504
Cray pointers will work correctly when there is no aliasing (i.e., when
1505
they are used to access a dynamically allocated block of memory), and
1506
also in any routine where a pointee is used, but any variable with which
1507
it shares storage is not used.  Code that violates these rules may not
1508
run as the user intends.  This is not a bug in the optimizer; any code
1509
that violates the aliasing rules is illegal.  (Note that this is not
1510
unique to GNU Fortran; any Fortran compiler that supports Cray pointers
1511
will ``incorrectly'' optimize code with illegal aliasing.)
1512
 
1513
There are a number of restrictions on the attributes that can be applied
1514
to Cray pointers and pointees.  Pointees may not have the
1515
@code{ALLOCATABLE}, @code{INTENT}, @code{OPTIONAL}, @code{DUMMY},
1516
@code{TARGET}, @code{INTRINSIC}, or @code{POINTER} attributes. Pointers
1517
may not have the @code{DIMENSION}, @code{POINTER}, @code{TARGET},
1518
@code{ALLOCATABLE}, @code{EXTERNAL}, or @code{INTRINSIC} attributes.
1519
Pointees may not occur in more than one pointer statement.  A pointee
1520
cannot be a pointer.  Pointees cannot occur in equivalence, common, or
1521
data statements.
1522
 
1523
A Cray pointer may also point to a function or a subroutine.  For
1524
example, the following excerpt is valid:
1525
@smallexample
1526
  implicit none
1527
  external sub
1528
  pointer (subptr,subpte)
1529
  external subpte
1530
  subptr = loc(sub)
1531
  call subpte()
1532
  [...]
1533
  subroutine sub
1534
  [...]
1535
  end subroutine sub
1536
@end smallexample
1537
 
1538
A pointer may be modified during the course of a program, and this
1539
will change the location to which the pointee refers.  However, when
1540
pointees are passed as arguments, they are treated as ordinary
1541
variables in the invoked function.  Subsequent changes to the pointer
1542
will not change the base address of the array that was passed.
1543
 
1544
@node CONVERT specifier
1545
@subsection @code{CONVERT} specifier
1546
@cindex @code{CONVERT} specifier
1547
 
1548
GNU Fortran allows the conversion of unformatted data between little-
1549
and big-endian representation to facilitate moving of data
1550
between different systems.  The conversion can be indicated with
1551
the @code{CONVERT} specifier on the @code{OPEN} statement.
1552
@xref{GFORTRAN_CONVERT_UNIT}, for an alternative way of specifying
1553
the data format via an environment variable.
1554
 
1555
Valid values for @code{CONVERT} are:
1556
@itemize @w{}
1557
@item @code{CONVERT='NATIVE'} Use the native format.  This is the default.
1558
@item @code{CONVERT='SWAP'} Swap between little- and big-endian.
1559
@item @code{CONVERT='LITTLE_ENDIAN'} Use the little-endian representation
1560
for unformatted files.
1561
@item @code{CONVERT='BIG_ENDIAN'} Use the big-endian representation for
1562
unformatted files.
1563
@end itemize
1564
 
1565
Using the option could look like this:
1566
@smallexample
1567
  open(file='big.dat',form='unformatted',access='sequential', &
1568
       convert='big_endian')
1569
@end smallexample
1570
 
1571
The value of the conversion can be queried by using
1572
@code{INQUIRE(CONVERT=ch)}.  The values returned are
1573
@code{'BIG_ENDIAN'} and @code{'LITTLE_ENDIAN'}.
1574
 
1575
@code{CONVERT} works between big- and little-endian for
1576
@code{INTEGER} values of all supported kinds and for @code{REAL}
1577
on IEEE systems of kinds 4 and 8.  Conversion between different
1578
``extended double'' types on different architectures such as
1579
m68k and x86_64, which GNU Fortran
1580
supports as @code{REAL(KIND=10)} and @code{REAL(KIND=16)}, will
1581
probably not work.
1582
 
1583
@emph{Note that the values specified via the GFORTRAN_CONVERT_UNIT
1584
environment variable will override the CONVERT specifier in the
1585
open statement}.  This is to give control over data formats to
1586
users who do not have the source code of their program available.
1587
 
1588
Using anything but the native representation for unformatted data
1589
carries a significant speed overhead.  If speed in this area matters
1590
to you, it is best if you use this only for data that needs to be
1591
portable.
1592
 
1593
@node OpenMP
1594
@subsection OpenMP
1595
@cindex OpenMP
1596
 
1597
OpenMP (Open Multi-Processing) is an application programming
1598
interface (API) that supports multi-platform shared memory
1599
multiprocessing programming in C/C++ and Fortran on many
1600
architectures, including Unix and Microsoft Windows platforms.
1601
It consists of a set of compiler directives, library routines,
1602
and environment variables that influence run-time behavior.
1603
 
1604
GNU Fortran strives to be compatible to the
1605
@uref{http://www.openmp.org/mp-documents/spec30.pdf,
1606
OpenMP Application Program Interface v3.0}.
1607
 
1608
To enable the processing of the OpenMP directive @code{!$omp} in
1609
free-form source code; the @code{c$omp}, @code{*$omp} and @code{!$omp}
1610
directives in fixed form; the @code{!$} conditional compilation sentinels
1611
in free form; and the @code{c$}, @code{*$} and @code{!$} sentinels
1612
in fixed form, @command{gfortran} needs to be invoked with the
1613
@option{-fopenmp}. This also arranges for automatic linking of the
1614
GNU OpenMP runtime library @ref{Top,,libgomp,libgomp,GNU OpenMP
1615
runtime library}.
1616
 
1617
The OpenMP Fortran runtime library routines are provided both in a
1618
form of a Fortran 90 module named @code{omp_lib} and in a form of
1619
a Fortran @code{include} file named @file{omp_lib.h}.
1620
 
1621
An example of a parallelized loop taken from Appendix A.1 of
1622
the OpenMP Application Program Interface v2.5:
1623
@smallexample
1624
SUBROUTINE A1(N, A, B)
1625
  INTEGER I, N
1626
  REAL B(N), A(N)
1627
!$OMP PARALLEL DO !I is private by default
1628
  DO I=2,N
1629
    B(I) = (A(I) + A(I-1)) / 2.0
1630
  ENDDO
1631
!$OMP END PARALLEL DO
1632
END SUBROUTINE A1
1633
@end smallexample
1634
 
1635
Please note:
1636
@itemize
1637
@item
1638
@option{-fopenmp} implies @option{-frecursive}, i.e., all local arrays
1639
will be allocated on the stack. When porting existing code to OpenMP,
1640
this may lead to surprising results, especially to segmentation faults
1641
if the stacksize is limited.
1642
 
1643
@item
1644
On glibc-based systems, OpenMP enabled applications cannot be statically
1645
linked due to limitations of the underlying pthreads-implementation. It
1646
might be possible to get a working solution if
1647
@command{-Wl,--whole-archive -lpthread -Wl,--no-whole-archive} is added
1648
to the command line. However, this is not supported by @command{gcc} and
1649
thus not recommended.
1650
@end itemize
1651
 
1652
@node Argument list functions
1653
@subsection Argument list functions @code{%VAL}, @code{%REF} and @code{%LOC}
1654
@cindex argument list functions
1655
@cindex @code{%VAL}
1656
@cindex @code{%REF}
1657
@cindex @code{%LOC}
1658
 
1659
GNU Fortran supports argument list functions @code{%VAL}, @code{%REF}
1660
and @code{%LOC} statements, for backward compatibility with g77.
1661
It is recommended that these should be used only for code that is
1662
accessing facilities outside of GNU Fortran, such as operating system
1663
or windowing facilities. It is best to constrain such uses to isolated
1664
portions of a program--portions that deal specifically and exclusively
1665
with low-level, system-dependent facilities. Such portions might well
1666
provide a portable interface for use by the program as a whole, but are
1667
themselves not portable, and should be thoroughly tested each time they
1668
are rebuilt using a new compiler or version of a compiler.
1669
 
1670
@code{%VAL} passes a scalar argument by value, @code{%REF} passes it by
1671
reference and @code{%LOC} passes its memory location.  Since gfortran
1672
already passes scalar arguments by reference, @code{%REF} is in effect
1673
a do-nothing.  @code{%LOC} has the same effect as a Fortran pointer.
1674
 
1675
An example of passing an argument by value to a C subroutine foo.:
1676
@smallexample
1677
C
1678
C prototype      void foo_ (float x);
1679
C
1680
      external foo
1681
      real*4 x
1682
      x = 3.14159
1683
      call foo (%VAL (x))
1684
      end
1685
@end smallexample
1686
 
1687
For details refer to the g77 manual
1688
@uref{http://gcc.gnu.org/onlinedocs/gcc-3.4.6/g77/index.html#Top}.
1689
 
1690
Also, @code{c_by_val.f} and its partner @code{c_by_val.c} of the
1691
GNU Fortran testsuite are worth a look.
1692
 
1693
 
1694
@node Extensions not implemented in GNU Fortran
1695
@section Extensions not implemented in GNU Fortran
1696
@cindex extensions, not implemented
1697
 
1698
The long history of the Fortran language, its wide use and broad
1699
userbase, the large number of different compiler vendors and the lack of
1700
some features crucial to users in the first standards have lead to the
1701
existence of a number of important extensions to the language.  While
1702
some of the most useful or popular extensions are supported by the GNU
1703
Fortran compiler, not all existing extensions are supported.  This section
1704
aims at listing these extensions and offering advice on how best make
1705
code that uses them running with the GNU Fortran compiler.
1706
 
1707
@c More can be found here:
1708
@c   -- http://gcc.gnu.org/onlinedocs/gcc-3.4.6/g77/Missing-Features.html
1709
@c   -- the list of Fortran and libgfortran bugs closed as WONTFIX:
1710
@c      http://tinyurl.com/2u4h5y
1711
 
1712
@menu
1713
* STRUCTURE and RECORD::
1714
@c * UNION and MAP::
1715
* ENCODE and DECODE statements::
1716
* Variable FORMAT expressions::
1717
@c * Q edit descriptor::
1718
@c * AUTOMATIC statement::
1719
@c * TYPE and ACCEPT I/O Statements::
1720
@c * .XOR. operator::
1721
@c * CARRIAGECONTROL, DEFAULTFILE, DISPOSE and RECORDTYPE I/O specifiers::
1722
@c * Omitted arguments in procedure call:
1723
@end menu
1724
 
1725
 
1726
@node STRUCTURE and RECORD
1727
@subsection @code{STRUCTURE} and @code{RECORD}
1728
@cindex @code{STRUCTURE}
1729
@cindex @code{RECORD}
1730
 
1731
Structures are user-defined aggregate data types; this functionality was
1732
standardized in Fortran 90 with an different syntax, under the name of
1733
``derived types''. Here is an example of code using the non portable
1734
structure syntax:
1735
 
1736
@example
1737
! Declaring a structure named ``item'' and containing three fields:
1738
! an integer ID, an description string and a floating-point price.
1739
STRUCTURE /item/
1740
  INTEGER id
1741
  CHARACTER(LEN=200) description
1742
  REAL price
1743
END STRUCTURE
1744
 
1745
! Define two variables, an single record of type ``item''
1746
! named ``pear'', and an array of items named ``store_catalog''
1747
RECORD /item/ pear, store_catalog(100)
1748
 
1749
! We can directly access the fields of both variables
1750
pear.id = 92316
1751
pear.description = "juicy D'Anjou pear"
1752
pear.price = 0.15
1753
store_catalog(7).id = 7831
1754
store_catalog(7).description = "milk bottle"
1755
store_catalog(7).price = 1.2
1756
 
1757
! We can also manipulate the whole structure
1758
store_catalog(12) = pear
1759
print *, store_catalog(12)
1760
@end example
1761
 
1762
@noindent
1763
This code can easily be rewritten in the Fortran 90 syntax as following:
1764
 
1765
@example
1766
! ``STRUCTURE /name/ ... END STRUCTURE'' becomes
1767
! ``TYPE name ... END TYPE''
1768
TYPE item
1769
  INTEGER id
1770
  CHARACTER(LEN=200) description
1771
  REAL price
1772
END TYPE
1773
 
1774
! ``RECORD /name/ variable'' becomes ``TYPE(name) variable''
1775
TYPE(item) pear, store_catalog(100)
1776
 
1777
! Instead of using a dot (.) to access fields of a record, the
1778
! standard syntax uses a percent sign (%)
1779
pear%id = 92316
1780
pear%description = "juicy D'Anjou pear"
1781
pear%price = 0.15
1782
store_catalog(7)%id = 7831
1783
store_catalog(7)%description = "milk bottle"
1784
store_catalog(7)%price = 1.2
1785
 
1786
! Assignments of a whole variable don't change
1787
store_catalog(12) = pear
1788
print *, store_catalog(12)
1789
@end example
1790
 
1791
 
1792
@c @node UNION and MAP
1793
@c @subsection @code{UNION} and @code{MAP}
1794
@c @cindex @code{UNION}
1795
@c @cindex @code{MAP}
1796
@c
1797
@c For help writing this one, see
1798
@c http://www.eng.umd.edu/~nsw/ench250/fortran1.htm#UNION and
1799
@c http://www.tacc.utexas.edu/services/userguides/pgi/pgiws_ug/pgi32u06.htm
1800
 
1801
 
1802
@node ENCODE and DECODE statements
1803
@subsection @code{ENCODE} and @code{DECODE} statements
1804
@cindex @code{ENCODE}
1805
@cindex @code{DECODE}
1806
 
1807
GNU Fortran doesn't support the @code{ENCODE} and @code{DECODE}
1808
statements.  These statements are best replaced by @code{READ} and
1809
@code{WRITE} statements involving internal files (@code{CHARACTER}
1810
variables and arrays), which have been part of the Fortran standard since
1811
Fortran 77. For example, replace a code fragment like
1812
 
1813
@smallexample
1814
      INTEGER*1 LINE(80)
1815
      REAL A, B, C
1816
c     ... Code that sets LINE
1817
      DECODE (80, 9000, LINE) A, B, C
1818
 9000 FORMAT (1X, 3(F10.5))
1819
@end smallexample
1820
 
1821
@noindent
1822
with the following:
1823
 
1824
@smallexample
1825
      CHARACTER(LEN=80) LINE
1826
      REAL A, B, C
1827
c     ... Code that sets LINE
1828
      READ (UNIT=LINE, FMT=9000) A, B, C
1829
 9000 FORMAT (1X, 3(F10.5))
1830
@end smallexample
1831
 
1832
Similarly, replace a code fragment like
1833
 
1834
@smallexample
1835
      INTEGER*1 LINE(80)
1836
      REAL A, B, C
1837
c     ... Code that sets A, B and C
1838
      ENCODE (80, 9000, LINE) A, B, C
1839
 9000 FORMAT (1X, 'OUTPUT IS ', 3(F10.5))
1840
@end smallexample
1841
 
1842
@noindent
1843
with the following:
1844
 
1845
@smallexample
1846
      CHARACTER(LEN=80) LINE
1847
      REAL A, B, C
1848
c     ... Code that sets A, B and C
1849
      WRITE (UNIT=LINE, FMT=9000) A, B, C
1850
 9000 FORMAT (1X, 'OUTPUT IS ', 3(F10.5))
1851
@end smallexample
1852
 
1853
 
1854
@node Variable FORMAT expressions
1855
@subsection Variable @code{FORMAT} expressions
1856
@cindex @code{FORMAT}
1857
 
1858
A variable @code{FORMAT} expression is format statement which includes
1859
angle brackets enclosing a Fortran expression: @code{FORMAT(I<N>)}. GNU
1860
Fortran does not support this legacy extension. The effect of variable
1861
format expressions can be reproduced by using the more powerful (and
1862
standard) combination of internal output and string formats. For example,
1863
replace a code fragment like this:
1864
 
1865
@smallexample
1866
      WRITE(6,20) INT1
1867
 20   FORMAT(I<N+1>)
1868
@end smallexample
1869
 
1870
@noindent
1871
with the following:
1872
 
1873
@smallexample
1874
c     Variable declaration
1875
      CHARACTER(LEN=20) F
1876
c
1877
c     Other code here...
1878
c
1879
      WRITE(FMT,'("(I", I0, ")")') N+1
1880
      WRITE(6,FM) INT1
1881
@end smallexample
1882
 
1883
@noindent
1884
or with:
1885
 
1886
@smallexample
1887
c     Variable declaration
1888
      CHARACTER(LEN=20) FMT
1889
c
1890
c     Other code here...
1891
c
1892
      WRITE(FMT,*) N+1
1893
      WRITE(6,"(I" // ADJUSTL(FMT) // ")") INT1
1894
@end smallexample
1895
 
1896
 
1897
@c ---------------------------------------------------------------------
1898
@c Mixed-Language Programming
1899
@c ---------------------------------------------------------------------
1900
 
1901
@node Mixed-Language Programming
1902
@chapter Mixed-Language Programming
1903
@cindex Interoperability
1904
@cindex Mixed-language programming
1905
 
1906
@menu
1907
* Interoperability with C::
1908
* GNU Fortran Compiler Directives::
1909
* Non-Fortran Main Program::
1910
@end menu
1911
 
1912
This chapter is about mixed-language interoperability, but also applies
1913
if one links Fortran code compiled by different compilers. In most cases,
1914
use of the C Binding features of the Fortran 2003 standard is sufficient,
1915
and their use is highly recommended.
1916
 
1917
 
1918
@node Interoperability with C
1919
@section Interoperability with C
1920
 
1921
@menu
1922
* Intrinsic Types::
1923
* Further Interoperability of Fortran with C::
1924
* Derived Types and struct::
1925
* Interoperable Global Variables::
1926
* Interoperable Subroutines and Functions::
1927
@end menu
1928
 
1929
Since Fortran 2003 (ISO/IEC 1539-1:2004(E)) there is a
1930
standardized way to generate procedure and derived-type
1931
declarations and global variables which are interoperable with C
1932
(ISO/IEC 9899:1999). The @code{bind(C)} attribute has been added
1933
to inform the compiler that a symbol shall be interoperable with C;
1934
also, some constraints are added. Note, however, that not
1935
all C features have a Fortran equivalent or vice versa. For instance,
1936
neither C's unsigned integers nor C's functions with variable number
1937
of arguments have an equivalent in Fortran.
1938
 
1939
Note that array dimensions are reversely ordered in C and that arrays in
1940
C always start with index 0 while in Fortran they start by default with
1941
1. Thus, an array declaration @code{A(n,m)} in Fortran matches
1942
@code{A[m][n]} in C and accessing the element @code{A(i,j)} matches
1943
@code{A[j-1][i-1]}. The element following @code{A(i,j)} (C: @code{A[j-1][i-1]};
1944
assuming @math{i < n}) in memory is @code{A(i+1,j)} (C: @code{A[j-1][i]}).
1945
 
1946
@node Intrinsic Types
1947
@subsection Intrinsic Types
1948
 
1949
In order to ensure that exactly the same variable type and kind is used
1950
in C and Fortran, the named constants shall be used which are defined in the
1951
@code{ISO_C_BINDING} intrinsic module. That module contains named constants
1952
for kind parameters and character named constants for the escape sequences
1953
in C. For a list of the constants, see @ref{ISO_C_BINDING}.
1954
 
1955
@node Derived Types and struct
1956
@subsection Derived Types and struct
1957
 
1958
For compatibility of derived types with @code{struct}, one needs to use
1959
the @code{BIND(C)} attribute in the type declaration. For instance, the
1960
following type declaration
1961
 
1962
@smallexample
1963
 USE ISO_C_BINDING
1964
 TYPE, BIND(C) :: myType
1965
   INTEGER(C_INT) :: i1, i2
1966
   INTEGER(C_SIGNED_CHAR) :: i3
1967
   REAL(C_DOUBLE) :: d1
1968
   COMPLEX(C_FLOAT_COMPLEX) :: c1
1969
   CHARACTER(KIND=C_CHAR) :: str(5)
1970
 END TYPE
1971
@end smallexample
1972
 
1973
matches the following @code{struct} declaration in C
1974
 
1975
@smallexample
1976
 struct @{
1977
   int i1, i2;
1978
   /* Note: "char" might be signed or unsigned.  */
1979
   signed char i3;
1980
   double d1;
1981
   float _Complex c1;
1982
   char str[5];
1983
 @} myType;
1984
@end smallexample
1985
 
1986
Derived types with the C binding attribute shall not have the @code{sequence}
1987
attribute, type parameters, the @code{extends} attribute, nor type-bound
1988
procedures. Every component must be of interoperable type and kind and may not
1989
have the @code{pointer} or @code{allocatable} attribute. The names of the
1990
variables are irrelevant for interoperability.
1991
 
1992
As there exist no direct Fortran equivalents, neither unions nor structs
1993
with bit field or variable-length array members are interoperable.
1994
 
1995
@node Interoperable Global Variables
1996
@subsection Interoperable Global Variables
1997
 
1998
Variables can be made accessible from C using the C binding attribute,
1999
optionally together with specifying a binding name. Those variables
2000
have to be declared in the declaration part of a @code{MODULE},
2001
be of interoperable type, and have neither the @code{pointer} nor
2002
the @code{allocatable} attribute.
2003
 
2004
@smallexample
2005
  MODULE m
2006
    USE myType_module
2007
    USE ISO_C_BINDING
2008
    integer(C_INT), bind(C, name="_MyProject_flags") :: global_flag
2009
    type(myType), bind(C) :: tp
2010
  END MODULE
2011
@end smallexample
2012
 
2013
Here, @code{_MyProject_flags} is the case-sensitive name of the variable
2014
as seen from C programs while @code{global_flag} is the case-insensitive
2015
name as seen from Fortran. If no binding name is specified, as for
2016
@var{tp}, the C binding name is the (lowercase) Fortran binding name.
2017
If a binding name is specified, only a single variable may be after the
2018
double colon. Note of warning: You cannot use a global variable to
2019
access @var{errno} of the C library as the C standard allows it to be
2020
a macro. Use the @code{IERRNO} intrinsic (GNU extension) instead.
2021
 
2022
@node Interoperable Subroutines and Functions
2023
@subsection Interoperable Subroutines and Functions
2024
 
2025
Subroutines and functions have to have the @code{BIND(C)} attribute to
2026
be compatible with C. The dummy argument declaration is relatively
2027
straightforward. However, one needs to be careful because C uses
2028
call-by-value by default while Fortran behaves usually similar to
2029
call-by-reference. Furthermore, strings and pointers are handled
2030
differently. Note that only explicit size and assumed-size arrays are
2031
supported but not assumed-shape or allocatable arrays.
2032
 
2033
To pass a variable by value, use the @code{VALUE} attribute.
2034
Thus the following C prototype
2035
 
2036
@smallexample
2037
@code{int func(int i, int *j)}
2038
@end smallexample
2039
 
2040
matches the Fortran declaration
2041
 
2042
@smallexample
2043
  integer(c_int) function func(i,j)
2044
    use iso_c_binding, only: c_int
2045
    integer(c_int), VALUE :: i
2046
    integer(c_int) :: j
2047
@end smallexample
2048
 
2049
Note that pointer arguments also frequently need the @code{VALUE} attribute.
2050
 
2051
Strings are handled quite differently in C and Fortran. In C a string
2052
is a @code{NUL}-terminated array of characters while in Fortran each string
2053
has a length associated with it and is thus not terminated (by e.g.
2054
@code{NUL}). For example, if one wants to use the following C function,
2055
 
2056
@smallexample
2057
  #include <stdio.h>
2058
  void print_C(char *string) /* equivalent: char string[]  */
2059
  @{
2060
     printf("%s\n", string);
2061
  @}
2062
@end smallexample
2063
 
2064
to print ``Hello World'' from Fortran, one can call it using
2065
 
2066
@smallexample
2067
  use iso_c_binding, only: C_CHAR, C_NULL_CHAR
2068
  interface
2069
    subroutine print_c(string) bind(C, name="print_C")
2070
      use iso_c_binding, only: c_char
2071
      character(kind=c_char) :: string(*)
2072
    end subroutine print_c
2073
  end interface
2074
  call print_c(C_CHAR_"Hello World"//C_NULL_CHAR)
2075
@end smallexample
2076
 
2077
As the example shows, one needs to ensure that the
2078
string is @code{NUL} terminated. Additionally, the dummy argument
2079
@var{string} of @code{print_C} is a length-one assumed-size
2080
array; using @code{character(len=*)} is not allowed. The example
2081
above uses @code{c_char_"Hello World"} to ensure the string
2082
literal has the right type; typically the default character
2083
kind and @code{c_char} are the same and thus @code{"Hello World"}
2084
is equivalent. However, the standard does not guarantee this.
2085
 
2086
The use of pointers is now illustrated using the C library
2087
function @code{strncpy}, whose prototype is
2088
 
2089
@smallexample
2090
  char *strncpy(char *restrict s1, const char *restrict s2, size_t n);
2091
@end smallexample
2092
 
2093
The function @code{strncpy} copies at most @var{n} characters from
2094
string @var{s2} to @var{s1} and returns @var{s1}. In the following
2095
example, we ignore the return value:
2096
 
2097
@smallexample
2098
  use iso_c_binding
2099
  implicit none
2100
  character(len=30) :: str,str2
2101
  interface
2102
    ! Ignore the return value of strncpy -> subroutine
2103
    ! "restrict" is always assumed if we do not pass a pointer
2104
    subroutine strncpy(dest, src, n) bind(C)
2105
      import
2106
      character(kind=c_char),  intent(out) :: dest(*)
2107
      character(kind=c_char),  intent(in)  :: src(*)
2108
      integer(c_size_t), value, intent(in) :: n
2109
    end subroutine strncpy
2110
  end interface
2111
  str = repeat('X',30) ! Initialize whole string with 'X'
2112
  call strncpy(str, c_char_"Hello World"//C_NULL_CHAR, &
2113
               len(c_char_"Hello World",kind=c_size_t))
2114
  print '(a)', str ! prints: "Hello WorldXXXXXXXXXXXXXXXXXXX"
2115
  end
2116
@end smallexample
2117
 
2118
C pointers are represented in Fortran via the special derived type
2119
@code{type(c_ptr)}, with private components. Thus one needs to
2120
use intrinsic conversion procedures to convert from or to C pointers.
2121
For example,
2122
 
2123
@smallexample
2124
  use iso_c_binding
2125
  type(c_ptr) :: cptr1, cptr2
2126
  integer, target :: array(7), scalar
2127
  integer, pointer :: pa(:), ps
2128
  cptr1 = c_loc(array(1)) ! The programmer needs to ensure that the
2129
                          ! array is contiguous if required by the C
2130
                          ! procedure
2131
  cptr2 = c_loc(scalar)
2132
  call c_f_pointer(cptr2, ps)
2133
  call c_f_pointer(cptr2, pa, shape=[7])
2134
@end smallexample
2135
 
2136
When converting C to Fortran arrays, the one-dimensional @code{SHAPE} argument
2137
has to be passed. Note: A pointer argument @code{void *} matches
2138
@code{TYPE(C_PTR), VALUE} while @code{TYPE(C_PTR)} matches @code{void **}.
2139
 
2140
Procedure pointers are handled analogously to pointers; the C type is
2141
@code{TYPE(C_FUNPTR)} and the intrinsic conversion procedures are
2142
@code{C_F_PROC_POINTER} and @code{C_FUNLOC}.
2143
 
2144
The intrinsic procedures are described in @ref{Intrinsic Procedures}.
2145
 
2146
@node Further Interoperability of Fortran with C
2147
@subsection Further Interoperability of Fortran with C
2148
 
2149
Assumed-shape and allocatable arrays are passed using an array descriptor
2150
(dope vector). The internal structure of the array descriptor used
2151
by GNU Fortran is not yet documented and will change. There will also be
2152
a Technical Report (TR 29113) which standardizes an interoperable
2153
array descriptor. Until then, you can use the Chasm Language
2154
Interoperability Tools, @url{http://chasm-interop.sourceforge.net/},
2155
which provide an interface to GNU Fortran's array descriptor.
2156
 
2157
The technical report 29113 will presumably also include support for
2158
C-interoperable @code{OPTIONAL} and for assumed-rank and assumed-type
2159
dummy arguments. However, the TR has neither been approved nor implemented
2160
in GNU Fortran; therefore, these features are not yet available.
2161
 
2162
 
2163
 
2164
@node GNU Fortran Compiler Directives
2165
@section GNU Fortran Compiler Directives
2166
 
2167
The Fortran standard standard describes how a conforming program shall
2168
behave; however, the exact implementation is not standardized. In order
2169
to allow the user to choose specific implementation details, compiler
2170
directives can be used to set attributes of variables and procedures
2171
which are not part of the standard. Whether a given attribute is
2172
supported and its exact effects depend on both the operating system and
2173
on the processor; see
2174
@ref{Top,,C Extensions,gcc,Using the GNU Compiler Collection (GCC)}
2175
for details.
2176
 
2177
For procedures and procedure pointers, the following attributes can
2178
be used to change the calling convention:
2179
 
2180
@itemize
2181
@item @code{CDECL} -- standard C calling convention
2182
@item @code{STDCALL} -- convention where the called procedure pops the stack
2183
@item @code{FASTCALL} -- part of the arguments are passed via registers
2184
instead using the stack
2185
@end itemize
2186
 
2187
Besides changing the calling convention, the attributes also influence
2188
the decoration of the symbol name, e.g., by a leading underscore or by
2189
a trailing at-sign followed by the number of bytes on the stack. When
2190
assigning a procedure to a procedure pointer, both should use the same
2191
calling convention.
2192
 
2193
On some systems, procedures and global variables (module variables and
2194
@code{COMMON} blocks) need special handling to be accessible when they
2195
are in a shared library. The following attributes are available:
2196
 
2197
@itemize
2198
@item @code{DLLEXPORT} -- provide a global pointer to a pointer in the DLL
2199
@item @code{DLLIMPORT} -- reference the function or variable using a global pointer
2200
@end itemize
2201
 
2202
The attributes are specified using the syntax
2203
 
2204
@code{!GCC$ ATTRIBUTES} @var{attribute-list} @code{::} @var{variable-list}
2205
 
2206
where in free-form source code only whitespace is allowed before @code{!GCC$}
2207
and in fixed-form source code @code{!GCC$}, @code{cGCC$} or @code{*GCC$} shall
2208
start in the first column.
2209
 
2210
For procedures, the compiler directives shall be placed into the body
2211
of the procedure; for variables and procedure pointers, they shall be in
2212
the same declaration part as the variable or procedure pointer.
2213
 
2214
 
2215
 
2216
@node Non-Fortran Main Program
2217
@section Non-Fortran Main Program
2218
 
2219
@menu
2220
* _gfortran_set_args:: Save command-line arguments
2221
* _gfortran_set_options:: Set library option flags
2222
* _gfortran_set_convert:: Set endian conversion
2223
* _gfortran_set_record_marker:: Set length of record markers
2224
* _gfortran_set_max_subrecord_length:: Set subrecord length
2225
* _gfortran_set_fpe:: Set when a Floating Point Exception should be raised
2226
@end menu
2227
 
2228
Even if you are doing mixed-language programming, it is very
2229
likely that you do not need to know or use the information in this
2230
section. Since it is about the internal structure of GNU Fortran,
2231
it may also change in GCC minor releases.
2232
 
2233
When you compile a @code{PROGRAM} with GNU Fortran, a function
2234
with the name @code{main} (in the symbol table of the object file)
2235
is generated, which initializes the libgfortran library and then
2236
calls the actual program which uses the name @code{MAIN__}, for
2237
historic reasons. If you link GNU Fortran compiled procedures
2238
to, e.g., a C or C++ program or to a Fortran program compiled by
2239
a different compiler, the libgfortran library is not initialized
2240
and thus a few intrinsic procedures do not work properly, e.g.
2241
those for obtaining the command-line arguments.
2242
 
2243
Therefore, if your @code{PROGRAM} is not compiled with
2244
GNU Fortran and the GNU Fortran compiled procedures require
2245
intrinsics relying on the library initialization, you need to
2246
initialize the library yourself. Using the default options,
2247
gfortran calls @code{_gfortran_set_args} and
2248
@code{_gfortran_set_options}. The initialization of the former
2249
is needed if the called procedures access the command line
2250
(and for backtracing); the latter sets some flags based on the
2251
standard chosen or to enable backtracing. In typical programs,
2252
it is not necessary to call any initialization function.
2253
 
2254
If your @code{PROGRAM} is compiled with GNU Fortran, you shall
2255
not call any of the following functions. The libgfortran
2256
initialization functions are shown in C syntax but using C
2257
bindings they are also accessible from Fortran.
2258
 
2259
 
2260
@node _gfortran_set_args
2261
@subsection @code{_gfortran_set_args} --- Save command-line arguments
2262
@fnindex _gfortran_set_args
2263
@cindex libgfortran initialization, set_args
2264
 
2265
@table @asis
2266
@item @emph{Description}:
2267
@code{_gfortran_set_args} saves the command-line arguments; this
2268
initialization is required if any of the command-line intrinsics
2269
is called. Additionally, it shall be called if backtracing is
2270
enabled (see @code{_gfortran_set_options}).
2271
 
2272
@item @emph{Syntax}:
2273
@code{void _gfortran_set_args (int argc, char *argv[])}
2274
 
2275
@item @emph{Arguments}:
2276
@multitable @columnfractions .15 .70
2277
@item @var{argc} @tab number of command line argument strings
2278
@item @var{argv} @tab the command-line argument strings; argv[0]
2279
is the pathname of the executable itself.
2280
@end multitable
2281
 
2282
@item @emph{Example}:
2283
@smallexample
2284
int main (int argc, char *argv[])
2285
@{
2286
  /* Initialize libgfortran.  */
2287
  _gfortran_set_args (argc, argv);
2288
  return 0;
2289
@}
2290
@end smallexample
2291
@end table
2292
 
2293
 
2294
@node _gfortran_set_options
2295
@subsection @code{_gfortran_set_options} --- Set library option flags
2296
@fnindex _gfortran_set_options
2297
@cindex libgfortran initialization, set_options
2298
 
2299
@table @asis
2300
@item @emph{Description}:
2301
@code{_gfortran_set_options} sets several flags related to the Fortran
2302
standard to be used, whether backtracing or core dumps should be enabled
2303
and whether range checks should be performed. The syntax allows for
2304
upward compatibility since the number of passed flags is specified; for
2305
non-passed flags, the default value is used. See also
2306
@pxref{Code Gen Options}. Please note that not all flags are actually
2307
used.
2308
 
2309
@item @emph{Syntax}:
2310
@code{void _gfortran_set_options (int num, int options[])}
2311
 
2312
@item @emph{Arguments}:
2313
@multitable @columnfractions .15 .70
2314
@item @var{num} @tab number of options passed
2315
@item @var{argv} @tab The list of flag values
2316
@end multitable
2317
 
2318
@item @emph{option flag list}:
2319
@multitable @columnfractions .15 .70
2320
@item @var{option}[0] @tab Allowed standard; can give run-time errors
2321
if e.g. an input-output edit descriptor is invalid in a given standard.
2322
Possible values are (bitwise or-ed) @code{GFC_STD_F77} (1),
2323
@code{GFC_STD_F95_OBS} (2), @code{GFC_STD_F95_DEL} (4), @code{GFC_STD_F95}
2324
(8), @code{GFC_STD_F2003} (16), @code{GFC_STD_GNU} (32),
2325
@code{GFC_STD_LEGACY} (64), and @code{GFC_STD_F2008} (128).
2326
Default: @code{GFC_STD_F95_OBS | GFC_STD_F95_DEL | GFC_STD_F2003
2327
| GFC_STD_F2008 | GFC_STD_F95 | GFC_STD_F77 | GFC_STD_GNU | GFC_STD_LEGACY}.
2328
@item @var{option}[1] @tab Standard-warning flag; prints a warning to
2329
standard error. Default: @code{GFC_STD_F95_DEL | GFC_STD_LEGACY}.
2330
@item @var{option}[2] @tab If non zero, enable pedantic checking.
2331
Default: off.
2332
@item @var{option}[3] @tab If non zero, enable core dumps on run-time
2333
errors. Default: off.
2334
@item @var{option}[4] @tab If non zero, enable backtracing on run-time
2335
errors. Default: off.
2336
Note: Installs a signal handler and requires command-line
2337
initialization using @code{_gfortran_set_args}.
2338
@item @var{option}[5] @tab If non zero, supports signed zeros.
2339
Default: enabled.
2340
@item @var{option}[6] @tab Enables run-time checking. Possible values
2341
are (bitwise or-ed): GFC_RTCHECK_BOUNDS (1), GFC_RTCHECK_ARRAY_TEMPS (2),
2342
GFC_RTCHECK_RECURSION (4), GFC_RTCHECK_DO (16), GFC_RTCHECK_POINTER (32).
2343
Default: disabled.
2344
@item @var{option}[7] @tab If non zero, range checking is enabled.
2345
Default: enabled. See -frange-check (@pxref{Code Gen Options}).
2346
@end multitable
2347
 
2348
@item @emph{Example}:
2349
@smallexample
2350
  /* Use gfortran 4.5 default options.  */
2351
  static int options[] = @{68, 255, 0, 0, 0, 1, 0, 1@};
2352
  _gfortran_set_options (8, &options);
2353
@end smallexample
2354
@end table
2355
 
2356
 
2357
@node _gfortran_set_convert
2358
@subsection @code{_gfortran_set_convert} --- Set endian conversion
2359
@fnindex _gfortran_set_convert
2360
@cindex libgfortran initialization, set_convert
2361
 
2362
@table @asis
2363
@item @emph{Description}:
2364
@code{_gfortran_set_convert} set the representation of data for
2365
unformatted files.
2366
 
2367
@item @emph{Syntax}:
2368
@code{void _gfortran_set_convert (int conv)}
2369
 
2370
@item @emph{Arguments}:
2371
@multitable @columnfractions .15 .70
2372
@item @var{conv} @tab Endian conversion, possible values:
2373
GFC_CONVERT_NATIVE (0, default), GFC_CONVERT_SWAP (1),
2374
GFC_CONVERT_BIG (2), GFC_CONVERT_LITTLE (3).
2375
@end multitable
2376
 
2377
@item @emph{Example}:
2378
@smallexample
2379
int main (int argc, char *argv[])
2380
@{
2381
  /* Initialize libgfortran.  */
2382
  _gfortran_set_args (argc, argv);
2383
  _gfortran_set_convert (1);
2384
  return 0;
2385
@}
2386
@end smallexample
2387
@end table
2388
 
2389
 
2390
@node _gfortran_set_record_marker
2391
@subsection @code{_gfortran_set_record_marker} --- Set length of record markers
2392
@fnindex _gfortran_set_record_marker
2393
@cindex libgfortran initialization, set_record_marker
2394
 
2395
@table @asis
2396
@item @emph{Description}:
2397
@code{_gfortran_set_record_marker} sets the length of record markers
2398
for unformatted files.
2399
 
2400
@item @emph{Syntax}:
2401
@code{void _gfortran_set_record_marker (int val)}
2402
 
2403
@item @emph{Arguments}:
2404
@multitable @columnfractions .15 .70
2405
@item @var{val} @tab Length of the record marker; valid values
2406
are 4 and 8. Default is 4.
2407
@end multitable
2408
 
2409
@item @emph{Example}:
2410
@smallexample
2411
int main (int argc, char *argv[])
2412
@{
2413
  /* Initialize libgfortran.  */
2414
  _gfortran_set_args (argc, argv);
2415
  _gfortran_set_record_marker (8);
2416
  return 0;
2417
@}
2418
@end smallexample
2419
@end table
2420
 
2421
 
2422
@node _gfortran_set_fpe
2423
@subsection @code{_gfortran_set_fpe} --- Set when a Floating Point Exception should be raised
2424
@fnindex _gfortran_set_fpe
2425
@cindex libgfortran initialization, set_fpe
2426
 
2427
@table @asis
2428
@item @emph{Description}:
2429
@code{_gfortran_set_fpe} sets the IEEE exceptions for which a
2430
Floating Point Exception (FPE) should be raised. On most systems,
2431
this will result in a SIGFPE signal being sent and the program
2432
being interrupted.
2433
 
2434
@item @emph{Syntax}:
2435
@code{void _gfortran_set_fpe (int val)}
2436
 
2437
@item @emph{Arguments}:
2438
@multitable @columnfractions .15 .70
2439
@item @var{option}[0] @tab IEEE exceptions. Possible values are
2440
(bitwise or-ed) zero (0, default) no trapping,
2441
@code{GFC_FPE_INVALID} (1), @code{GFC_FPE_DENORMAL} (2),
2442
@code{GFC_FPE_ZERO} (4), @code{GFC_FPE_OVERFLOW} (8),
2443
@code{GFC_FPE_UNDERFLOW} (16), and @code{GFC_FPE_PRECISION} (32).
2444
@end multitable
2445
 
2446
@item @emph{Example}:
2447
@smallexample
2448
int main (int argc, char *argv[])
2449
@{
2450
  /* Initialize libgfortran.  */
2451
  _gfortran_set_args (argc, argv);
2452
  /* FPE for invalid operations such as SQRT(-1.0).  */
2453
  _gfortran_set_fpe (1);
2454
  return 0;
2455
@}
2456
@end smallexample
2457
@end table
2458
 
2459
 
2460
@node _gfortran_set_max_subrecord_length
2461
@subsection @code{_gfortran_set_max_subrecord_length} --- Set subrecord length
2462
@fnindex _gfortran_set_max_subrecord_length
2463
@cindex libgfortran initialization, set_max_subrecord_length
2464
 
2465
@table @asis
2466
@item @emph{Description}:
2467
@code{_gfortran_set_max_subrecord_length} set the maximum length
2468
for a subrecord. This option only makes sense for testing and
2469
debugging of unformatted I/O.
2470
 
2471
@item @emph{Syntax}:
2472
@code{void _gfortran_set_max_subrecord_length (int val)}
2473
 
2474
@item @emph{Arguments}:
2475
@multitable @columnfractions .15 .70
2476
@item @var{val} @tab the maximum length for a subrecord;
2477
the maximum permitted value is 2147483639, which is also
2478
the default.
2479
@end multitable
2480
 
2481
@item @emph{Example}:
2482
@smallexample
2483
int main (int argc, char *argv[])
2484
@{
2485
  /* Initialize libgfortran.  */
2486
  _gfortran_set_args (argc, argv);
2487
  _gfortran_set_max_subrecord_length (8);
2488
  return 0;
2489
@}
2490
@end smallexample
2491
@end table
2492
 
2493
 
2494
 
2495
@c Intrinsic Procedures
2496
@c ---------------------------------------------------------------------
2497
 
2498
@include intrinsic.texi
2499
 
2500
 
2501
@tex
2502
\blankpart
2503
@end tex
2504
 
2505
@c ---------------------------------------------------------------------
2506
@c Contributing
2507
@c ---------------------------------------------------------------------
2508
 
2509
@node Contributing
2510
@unnumbered Contributing
2511
@cindex Contributing
2512
 
2513
Free software is only possible if people contribute to efforts
2514
to create it.
2515
We're always in need of more people helping out with ideas
2516
and comments, writing documentation and contributing code.
2517
 
2518
If you want to contribute to GNU Fortran,
2519
have a look at the long lists of projects you can take on.
2520
Some of these projects are small,
2521
some of them are large;
2522
some are completely orthogonal to the rest of what is
2523
happening on GNU Fortran,
2524
but others are ``mainstream'' projects in need of enthusiastic hackers.
2525
All of these projects are important!
2526
We'll eventually get around to the things here,
2527
but they are also things doable by someone who is willing and able.
2528
 
2529
@menu
2530
* Contributors::
2531
* Projects::
2532
* Proposed Extensions::
2533
@end menu
2534
 
2535
 
2536
@node Contributors
2537
@section Contributors to GNU Fortran
2538
@cindex Contributors
2539
@cindex Credits
2540
@cindex Authors
2541
 
2542
Most of the parser was hand-crafted by @emph{Andy Vaught}, who is
2543
also the initiator of the whole project.  Thanks Andy!
2544
Most of the interface with GCC was written by @emph{Paul Brook}.
2545
 
2546
The following individuals have contributed code and/or
2547
ideas and significant help to the GNU Fortran project
2548
(in alphabetical order):
2549
 
2550
@itemize @minus
2551
@item Janne Blomqvist
2552
@item Steven Bosscher
2553
@item Paul Brook
2554
@item Tobias Burnus
2555
@item Fran@,{c}ois-Xavier Coudert
2556
@item Bud Davis
2557
@item Jerry DeLisle
2558
@item Erik Edelmann
2559
@item Bernhard Fischer
2560
@item Daniel Franke
2561
@item Richard Guenther
2562
@item Richard Henderson
2563
@item Katherine Holcomb
2564
@item Jakub Jelinek
2565
@item Niels Kristian Bech Jensen
2566
@item Steven Johnson
2567
@item Steven G. Kargl
2568
@item Thomas Koenig
2569
@item Asher Langton
2570
@item H. J. Lu
2571
@item Toon Moene
2572
@item Brooks Moses
2573
@item Andrew Pinski
2574
@item Tim Prince
2575
@item Christopher D. Rickett
2576
@item Richard Sandiford
2577
@item Tobias Schl@"uter
2578
@item Roger Sayle
2579
@item Paul Thomas
2580
@item Andy Vaught
2581
@item Feng Wang
2582
@item Janus Weil
2583
@item Daniel Kraft
2584
@end itemize
2585
 
2586
The following people have contributed bug reports,
2587
smaller or larger patches,
2588
and much needed feedback and encouragement for the
2589
GNU Fortran project:
2590
 
2591
@itemize @minus
2592
@item Bill Clodius
2593
@item Dominique d'Humi@`eres
2594
@item Kate Hedstrom
2595
@item Erik Schnetter
2596
@item Joost VandeVondele
2597
@end itemize
2598
 
2599
Many other individuals have helped debug,
2600
test and improve the GNU Fortran compiler over the past few years,
2601
and we welcome you to do the same!
2602
If you already have done so,
2603
and you would like to see your name listed in the
2604
list above, please contact us.
2605
 
2606
 
2607
@node Projects
2608
@section Projects
2609
 
2610
@table @emph
2611
 
2612
@item Help build the test suite
2613
Solicit more code for donation to the test suite: the more extensive the
2614
testsuite, the smaller the risk of breaking things in the future! We can
2615
keep code private on request.
2616
 
2617
@item Bug hunting/squishing
2618
Find bugs and write more test cases! Test cases are especially very
2619
welcome, because it allows us to concentrate on fixing bugs instead of
2620
isolating them. Going through the bugzilla database at
2621
@url{http://gcc.gnu.org/bugzilla/} to reduce testcases posted there and
2622
add more information (for example, for which version does the testcase
2623
work, for which versions does it fail?) is also very helpful.
2624
 
2625
@end table
2626
 
2627
 
2628
@node Proposed Extensions
2629
@section Proposed Extensions
2630
 
2631
Here's a list of proposed extensions for the GNU Fortran compiler, in no particular
2632
order.  Most of these are necessary to be fully compatible with
2633
existing Fortran compilers, but they are not part of the official
2634
J3 Fortran 95 standard.
2635
 
2636
@subsection Compiler extensions:
2637
@itemize @bullet
2638
@item
2639
User-specified alignment rules for structures.
2640
 
2641
@item
2642
Automatically extend single precision constants to double.
2643
 
2644
@item
2645
Compile code that conserves memory by dynamically allocating common and
2646
module storage either on stack or heap.
2647
 
2648
@item
2649
Compile flag to generate code for array conformance checking (suggest -CC).
2650
 
2651
@item
2652
User control of symbol names (underscores, etc).
2653
 
2654
@item
2655
Compile setting for maximum size of stack frame size before spilling
2656
parts to static or heap.
2657
 
2658
@item
2659
Flag to force local variables into static space.
2660
 
2661
@item
2662
Flag to force local variables onto stack.
2663
@end itemize
2664
 
2665
 
2666
@subsection Environment Options
2667
@itemize @bullet
2668
@item
2669
Pluggable library modules for random numbers, linear algebra.
2670
LA should use BLAS calling conventions.
2671
 
2672
@item
2673
Environment variables controlling actions on arithmetic exceptions like
2674
overflow, underflow, precision loss---Generate NaN, abort, default.
2675
action.
2676
 
2677
@item
2678
Set precision for fp units that support it (i387).
2679
 
2680
@item
2681
Variable for setting fp rounding mode.
2682
 
2683
@item
2684
Variable to fill uninitialized variables with a user-defined bit
2685
pattern.
2686
 
2687
@item
2688
Environment variable controlling filename that is opened for that unit
2689
number.
2690
 
2691
@item
2692
Environment variable to clear/trash memory being freed.
2693
 
2694
@item
2695
Environment variable to control tracing of allocations and frees.
2696
 
2697
@item
2698
Environment variable to display allocated memory at normal program end.
2699
 
2700
@item
2701
Environment variable for filename for * IO-unit.
2702
 
2703
@item
2704
Environment variable for temporary file directory.
2705
 
2706
@item
2707
Environment variable forcing standard output to be line buffered (unix).
2708
 
2709
@end itemize
2710
 
2711
 
2712
@c ---------------------------------------------------------------------
2713
@c GNU General Public License
2714
@c ---------------------------------------------------------------------
2715
 
2716
@include gpl_v3.texi
2717
 
2718
 
2719
 
2720
@c ---------------------------------------------------------------------
2721
@c GNU Free Documentation License
2722
@c ---------------------------------------------------------------------
2723
 
2724
@include fdl.texi
2725
 
2726
 
2727
 
2728
@c ---------------------------------------------------------------------
2729
@c Funding Free Software
2730
@c ---------------------------------------------------------------------
2731
 
2732
@include funding.texi
2733
 
2734
@c ---------------------------------------------------------------------
2735
@c Indices
2736
@c ---------------------------------------------------------------------
2737
 
2738
@node Option Index
2739
@unnumbered Option Index
2740
@command{gfortran}'s command line options are indexed here without any
2741
initial @samp{-} or @samp{--}. Where an option has both positive and
2742
negative forms (such as -foption and -fno-option), relevant entries in
2743
the manual are indexed under the most appropriate form; it may sometimes
2744
be useful to look up both forms.
2745
@printindex op
2746
 
2747
@node Keyword Index
2748
@unnumbered Keyword Index
2749
@printindex cp
2750
 
2751
@bye

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.