1 |
280 |
jeremybenn |
/* Interprocedural constant propagation
|
2 |
|
|
Copyright (C) 2005, 2006, 2007, 2008, 2009, 2010
|
3 |
|
|
Free Software Foundation, Inc.
|
4 |
|
|
Contributed by Razya Ladelsky <RAZYA@il.ibm.com>
|
5 |
|
|
|
6 |
|
|
This file is part of GCC.
|
7 |
|
|
|
8 |
|
|
GCC is free software; you can redistribute it and/or modify it under
|
9 |
|
|
the terms of the GNU General Public License as published by the Free
|
10 |
|
|
Software Foundation; either version 3, or (at your option) any later
|
11 |
|
|
version.
|
12 |
|
|
|
13 |
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
14 |
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
15 |
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
16 |
|
|
for more details.
|
17 |
|
|
|
18 |
|
|
You should have received a copy of the GNU General Public License
|
19 |
|
|
along with GCC; see the file COPYING3. If not see
|
20 |
|
|
<http://www.gnu.org/licenses/>. */
|
21 |
|
|
|
22 |
|
|
/* Interprocedural constant propagation. The aim of interprocedural constant
|
23 |
|
|
propagation (IPCP) is to find which function's argument has the same
|
24 |
|
|
constant value in each invocation throughout the whole program. For example,
|
25 |
|
|
consider the following program:
|
26 |
|
|
|
27 |
|
|
int g (int y)
|
28 |
|
|
{
|
29 |
|
|
printf ("value is %d",y);
|
30 |
|
|
}
|
31 |
|
|
|
32 |
|
|
int f (int x)
|
33 |
|
|
{
|
34 |
|
|
g (x);
|
35 |
|
|
}
|
36 |
|
|
|
37 |
|
|
int h (int y)
|
38 |
|
|
{
|
39 |
|
|
g (y);
|
40 |
|
|
}
|
41 |
|
|
|
42 |
|
|
void main (void)
|
43 |
|
|
{
|
44 |
|
|
f (3);
|
45 |
|
|
h (3);
|
46 |
|
|
}
|
47 |
|
|
|
48 |
|
|
|
49 |
|
|
The IPCP algorithm will find that g's formal argument y is always called
|
50 |
|
|
with the value 3.
|
51 |
|
|
|
52 |
|
|
The algorithm used is based on "Interprocedural Constant Propagation", by
|
53 |
|
|
Challahan David, Keith D Cooper, Ken Kennedy, Linda Torczon, Comp86, pg
|
54 |
|
|
152-161
|
55 |
|
|
|
56 |
|
|
The optimization is divided into three stages:
|
57 |
|
|
|
58 |
|
|
First stage - intraprocedural analysis
|
59 |
|
|
=======================================
|
60 |
|
|
This phase computes jump_function and modification flags.
|
61 |
|
|
|
62 |
|
|
A jump function for a callsite represents the values passed as an actual
|
63 |
|
|
arguments of a given callsite. There are three types of values:
|
64 |
|
|
Pass through - the caller's formal parameter is passed as an actual argument.
|
65 |
|
|
Constant - a constant is passed as an actual argument.
|
66 |
|
|
Unknown - neither of the above.
|
67 |
|
|
|
68 |
|
|
The jump function info, ipa_jump_func, is stored in ipa_edge_args
|
69 |
|
|
structure (defined in ipa_prop.h and pointed to by cgraph_node->aux)
|
70 |
|
|
modified_flags are defined in ipa_node_params structure
|
71 |
|
|
(defined in ipa_prop.h and pointed to by cgraph_edge->aux).
|
72 |
|
|
|
73 |
|
|
-ipcp_init_stage() is the first stage driver.
|
74 |
|
|
|
75 |
|
|
Second stage - interprocedural analysis
|
76 |
|
|
========================================
|
77 |
|
|
This phase does the interprocedural constant propagation.
|
78 |
|
|
It computes lattices for all formal parameters in the program
|
79 |
|
|
and their value that may be:
|
80 |
|
|
TOP - unknown.
|
81 |
|
|
BOTTOM - non constant.
|
82 |
|
|
CONSTANT - constant value.
|
83 |
|
|
|
84 |
|
|
Lattice describing a formal parameter p will have a constant value if all
|
85 |
|
|
callsites invoking this function have the same constant value passed to p.
|
86 |
|
|
|
87 |
|
|
The lattices are stored in ipcp_lattice which is itself in ipa_node_params
|
88 |
|
|
structure (defined in ipa_prop.h and pointed to by cgraph_edge->aux).
|
89 |
|
|
|
90 |
|
|
-ipcp_iterate_stage() is the second stage driver.
|
91 |
|
|
|
92 |
|
|
Third phase - transformation of function code
|
93 |
|
|
============================================
|
94 |
|
|
Propagates the constant-valued formals into the function.
|
95 |
|
|
For each function whose parameters are constants, we create its clone.
|
96 |
|
|
|
97 |
|
|
Then we process the clone in two ways:
|
98 |
|
|
1. We insert an assignment statement 'parameter = const' at the beginning
|
99 |
|
|
of the cloned function.
|
100 |
|
|
2. For read-only parameters that do not live in memory, we replace all their
|
101 |
|
|
uses with the constant.
|
102 |
|
|
|
103 |
|
|
We also need to modify some callsites to call the cloned functions instead
|
104 |
|
|
of the original ones. For a callsite passing an argument found to be a
|
105 |
|
|
constant by IPCP, there are two different cases to handle:
|
106 |
|
|
1. A constant is passed as an argument. In this case the callsite in the
|
107 |
|
|
should be redirected to call the cloned callee.
|
108 |
|
|
2. A parameter (of the caller) passed as an argument (pass through
|
109 |
|
|
argument). In such cases both the caller and the callee have clones and
|
110 |
|
|
only the callsite in the cloned caller is redirected to call to the
|
111 |
|
|
cloned callee.
|
112 |
|
|
|
113 |
|
|
This update is done in two steps: First all cloned functions are created
|
114 |
|
|
during a traversal of the call graph, during which all callsites are
|
115 |
|
|
redirected to call the cloned function. Then the callsites are traversed
|
116 |
|
|
and many calls redirected back to fit the description above.
|
117 |
|
|
|
118 |
|
|
-ipcp_insert_stage() is the third phase driver.
|
119 |
|
|
|
120 |
|
|
*/
|
121 |
|
|
|
122 |
|
|
#include "config.h"
|
123 |
|
|
#include "system.h"
|
124 |
|
|
#include "coretypes.h"
|
125 |
|
|
#include "tree.h"
|
126 |
|
|
#include "target.h"
|
127 |
|
|
#include "cgraph.h"
|
128 |
|
|
#include "ipa-prop.h"
|
129 |
|
|
#include "tree-flow.h"
|
130 |
|
|
#include "tree-pass.h"
|
131 |
|
|
#include "flags.h"
|
132 |
|
|
#include "timevar.h"
|
133 |
|
|
#include "diagnostic.h"
|
134 |
|
|
#include "tree-dump.h"
|
135 |
|
|
#include "tree-inline.h"
|
136 |
|
|
#include "fibheap.h"
|
137 |
|
|
#include "params.h"
|
138 |
|
|
|
139 |
|
|
/* Number of functions identified as candidates for cloning. When not cloning
|
140 |
|
|
we can simplify iterate stage not forcing it to go through the decision
|
141 |
|
|
on what is profitable and what not. */
|
142 |
|
|
static int n_cloning_candidates;
|
143 |
|
|
|
144 |
|
|
/* Maximal count found in program. */
|
145 |
|
|
static gcov_type max_count;
|
146 |
|
|
|
147 |
|
|
/* Cgraph nodes that has been completely replaced by cloning during iterate
|
148 |
|
|
* stage and will be removed after ipcp is finished. */
|
149 |
|
|
static bitmap dead_nodes;
|
150 |
|
|
|
151 |
|
|
static void ipcp_print_profile_data (FILE *);
|
152 |
|
|
static void ipcp_function_scale_print (FILE *);
|
153 |
|
|
|
154 |
|
|
/* Get the original node field of ipa_node_params associated with node NODE. */
|
155 |
|
|
static inline struct cgraph_node *
|
156 |
|
|
ipcp_get_orig_node (struct cgraph_node *node)
|
157 |
|
|
{
|
158 |
|
|
return IPA_NODE_REF (node)->ipcp_orig_node;
|
159 |
|
|
}
|
160 |
|
|
|
161 |
|
|
/* Return true if NODE describes a cloned/versioned function. */
|
162 |
|
|
static inline bool
|
163 |
|
|
ipcp_node_is_clone (struct cgraph_node *node)
|
164 |
|
|
{
|
165 |
|
|
return (ipcp_get_orig_node (node) != NULL);
|
166 |
|
|
}
|
167 |
|
|
|
168 |
|
|
/* Create ipa_node_params and its data structures for NEW_NODE. Set ORIG_NODE
|
169 |
|
|
as the ipcp_orig_node field in ipa_node_params. */
|
170 |
|
|
static void
|
171 |
|
|
ipcp_init_cloned_node (struct cgraph_node *orig_node,
|
172 |
|
|
struct cgraph_node *new_node)
|
173 |
|
|
{
|
174 |
|
|
ipa_check_create_node_params ();
|
175 |
|
|
ipa_initialize_node_params (new_node);
|
176 |
|
|
IPA_NODE_REF (new_node)->ipcp_orig_node = orig_node;
|
177 |
|
|
}
|
178 |
|
|
|
179 |
|
|
/* Perform intraprocedrual analysis needed for ipcp. */
|
180 |
|
|
static void
|
181 |
|
|
ipcp_analyze_node (struct cgraph_node *node)
|
182 |
|
|
{
|
183 |
|
|
/* Unreachable nodes should have been eliminated before ipcp. */
|
184 |
|
|
gcc_assert (node->needed || node->reachable);
|
185 |
|
|
|
186 |
|
|
ipa_initialize_node_params (node);
|
187 |
|
|
ipa_detect_param_modifications (node);
|
188 |
|
|
}
|
189 |
|
|
|
190 |
|
|
/* Return scale for NODE. */
|
191 |
|
|
static inline gcov_type
|
192 |
|
|
ipcp_get_node_scale (struct cgraph_node *node)
|
193 |
|
|
{
|
194 |
|
|
return IPA_NODE_REF (node)->count_scale;
|
195 |
|
|
}
|
196 |
|
|
|
197 |
|
|
/* Set COUNT as scale for NODE. */
|
198 |
|
|
static inline void
|
199 |
|
|
ipcp_set_node_scale (struct cgraph_node *node, gcov_type count)
|
200 |
|
|
{
|
201 |
|
|
IPA_NODE_REF (node)->count_scale = count;
|
202 |
|
|
}
|
203 |
|
|
|
204 |
|
|
/* Return whether LAT is a constant lattice. */
|
205 |
|
|
static inline bool
|
206 |
|
|
ipcp_lat_is_const (struct ipcp_lattice *lat)
|
207 |
|
|
{
|
208 |
|
|
if (lat->type == IPA_CONST_VALUE)
|
209 |
|
|
return true;
|
210 |
|
|
else
|
211 |
|
|
return false;
|
212 |
|
|
}
|
213 |
|
|
|
214 |
|
|
/* Return whether LAT is a constant lattice that ipa-cp can actually insert
|
215 |
|
|
into the code (i.e. constants excluding member pointers and pointers). */
|
216 |
|
|
static inline bool
|
217 |
|
|
ipcp_lat_is_insertable (struct ipcp_lattice *lat)
|
218 |
|
|
{
|
219 |
|
|
return lat->type == IPA_CONST_VALUE;
|
220 |
|
|
}
|
221 |
|
|
|
222 |
|
|
/* Return true if LAT1 and LAT2 are equal. */
|
223 |
|
|
static inline bool
|
224 |
|
|
ipcp_lats_are_equal (struct ipcp_lattice *lat1, struct ipcp_lattice *lat2)
|
225 |
|
|
{
|
226 |
|
|
gcc_assert (ipcp_lat_is_const (lat1) && ipcp_lat_is_const (lat2));
|
227 |
|
|
if (lat1->type != lat2->type)
|
228 |
|
|
return false;
|
229 |
|
|
|
230 |
|
|
if (operand_equal_p (lat1->constant, lat2->constant, 0))
|
231 |
|
|
return true;
|
232 |
|
|
|
233 |
|
|
return false;
|
234 |
|
|
}
|
235 |
|
|
|
236 |
|
|
/* Compute Meet arithmetics:
|
237 |
|
|
Meet (IPA_BOTTOM, x) = IPA_BOTTOM
|
238 |
|
|
Meet (IPA_TOP,x) = x
|
239 |
|
|
Meet (const_a,const_b) = IPA_BOTTOM, if const_a != const_b.
|
240 |
|
|
MEET (const_a,const_b) = const_a, if const_a == const_b.*/
|
241 |
|
|
static void
|
242 |
|
|
ipa_lattice_meet (struct ipcp_lattice *res, struct ipcp_lattice *lat1,
|
243 |
|
|
struct ipcp_lattice *lat2)
|
244 |
|
|
{
|
245 |
|
|
if (lat1->type == IPA_BOTTOM || lat2->type == IPA_BOTTOM)
|
246 |
|
|
{
|
247 |
|
|
res->type = IPA_BOTTOM;
|
248 |
|
|
return;
|
249 |
|
|
}
|
250 |
|
|
if (lat1->type == IPA_TOP)
|
251 |
|
|
{
|
252 |
|
|
res->type = lat2->type;
|
253 |
|
|
res->constant = lat2->constant;
|
254 |
|
|
return;
|
255 |
|
|
}
|
256 |
|
|
if (lat2->type == IPA_TOP)
|
257 |
|
|
{
|
258 |
|
|
res->type = lat1->type;
|
259 |
|
|
res->constant = lat1->constant;
|
260 |
|
|
return;
|
261 |
|
|
}
|
262 |
|
|
if (!ipcp_lats_are_equal (lat1, lat2))
|
263 |
|
|
{
|
264 |
|
|
res->type = IPA_BOTTOM;
|
265 |
|
|
return;
|
266 |
|
|
}
|
267 |
|
|
res->type = lat1->type;
|
268 |
|
|
res->constant = lat1->constant;
|
269 |
|
|
}
|
270 |
|
|
|
271 |
|
|
/* Return the lattice corresponding to the Ith formal parameter of the function
|
272 |
|
|
described by INFO. */
|
273 |
|
|
static inline struct ipcp_lattice *
|
274 |
|
|
ipcp_get_lattice (struct ipa_node_params *info, int i)
|
275 |
|
|
{
|
276 |
|
|
return &(info->params[i].ipcp_lattice);
|
277 |
|
|
}
|
278 |
|
|
|
279 |
|
|
/* Given the jump function JFUNC, compute the lattice LAT that describes the
|
280 |
|
|
value coming down the callsite. INFO describes the caller node so that
|
281 |
|
|
pass-through jump functions can be evaluated. */
|
282 |
|
|
static void
|
283 |
|
|
ipcp_lattice_from_jfunc (struct ipa_node_params *info, struct ipcp_lattice *lat,
|
284 |
|
|
struct ipa_jump_func *jfunc)
|
285 |
|
|
{
|
286 |
|
|
if (jfunc->type == IPA_JF_CONST)
|
287 |
|
|
{
|
288 |
|
|
lat->type = IPA_CONST_VALUE;
|
289 |
|
|
lat->constant = jfunc->value.constant;
|
290 |
|
|
}
|
291 |
|
|
else if (jfunc->type == IPA_JF_PASS_THROUGH)
|
292 |
|
|
{
|
293 |
|
|
struct ipcp_lattice *caller_lat;
|
294 |
|
|
tree cst;
|
295 |
|
|
|
296 |
|
|
caller_lat = ipcp_get_lattice (info, jfunc->value.pass_through.formal_id);
|
297 |
|
|
lat->type = caller_lat->type;
|
298 |
|
|
if (caller_lat->type != IPA_CONST_VALUE)
|
299 |
|
|
return;
|
300 |
|
|
cst = caller_lat->constant;
|
301 |
|
|
|
302 |
|
|
if (jfunc->value.pass_through.operation != NOP_EXPR)
|
303 |
|
|
{
|
304 |
|
|
tree restype;
|
305 |
|
|
if (TREE_CODE_CLASS (jfunc->value.pass_through.operation)
|
306 |
|
|
== tcc_comparison)
|
307 |
|
|
restype = boolean_type_node;
|
308 |
|
|
else
|
309 |
|
|
restype = TREE_TYPE (cst);
|
310 |
|
|
cst = fold_binary (jfunc->value.pass_through.operation,
|
311 |
|
|
restype, cst, jfunc->value.pass_through.operand);
|
312 |
|
|
}
|
313 |
|
|
if (!cst || !is_gimple_ip_invariant (cst))
|
314 |
|
|
lat->type = IPA_BOTTOM;
|
315 |
|
|
lat->constant = cst;
|
316 |
|
|
}
|
317 |
|
|
else if (jfunc->type == IPA_JF_ANCESTOR)
|
318 |
|
|
{
|
319 |
|
|
struct ipcp_lattice *caller_lat;
|
320 |
|
|
tree t;
|
321 |
|
|
bool ok;
|
322 |
|
|
|
323 |
|
|
caller_lat = ipcp_get_lattice (info, jfunc->value.ancestor.formal_id);
|
324 |
|
|
lat->type = caller_lat->type;
|
325 |
|
|
if (caller_lat->type != IPA_CONST_VALUE)
|
326 |
|
|
return;
|
327 |
|
|
if (TREE_CODE (caller_lat->constant) != ADDR_EXPR)
|
328 |
|
|
{
|
329 |
|
|
/* This can happen when the constant is a NULL pointer. */
|
330 |
|
|
lat->type = IPA_BOTTOM;
|
331 |
|
|
return;
|
332 |
|
|
}
|
333 |
|
|
t = TREE_OPERAND (caller_lat->constant, 0);
|
334 |
|
|
ok = build_ref_for_offset (&t, TREE_TYPE (t),
|
335 |
|
|
jfunc->value.ancestor.offset,
|
336 |
|
|
jfunc->value.ancestor.type, false);
|
337 |
|
|
if (!ok)
|
338 |
|
|
{
|
339 |
|
|
lat->type = IPA_BOTTOM;
|
340 |
|
|
lat->constant = NULL_TREE;
|
341 |
|
|
}
|
342 |
|
|
else
|
343 |
|
|
lat->constant = build_fold_addr_expr (t);
|
344 |
|
|
}
|
345 |
|
|
else
|
346 |
|
|
lat->type = IPA_BOTTOM;
|
347 |
|
|
}
|
348 |
|
|
|
349 |
|
|
/* True when OLD_LAT and NEW_LAT values are not the same. */
|
350 |
|
|
|
351 |
|
|
static bool
|
352 |
|
|
ipcp_lattice_changed (struct ipcp_lattice *old_lat,
|
353 |
|
|
struct ipcp_lattice *new_lat)
|
354 |
|
|
{
|
355 |
|
|
if (old_lat->type == new_lat->type)
|
356 |
|
|
{
|
357 |
|
|
if (!ipcp_lat_is_const (old_lat))
|
358 |
|
|
return false;
|
359 |
|
|
if (ipcp_lats_are_equal (old_lat, new_lat))
|
360 |
|
|
return false;
|
361 |
|
|
}
|
362 |
|
|
return true;
|
363 |
|
|
}
|
364 |
|
|
|
365 |
|
|
/* Print all ipcp_lattices of all functions to F. */
|
366 |
|
|
static void
|
367 |
|
|
ipcp_print_all_lattices (FILE * f)
|
368 |
|
|
{
|
369 |
|
|
struct cgraph_node *node;
|
370 |
|
|
int i, count;
|
371 |
|
|
|
372 |
|
|
fprintf (f, "\nLattice:\n");
|
373 |
|
|
for (node = cgraph_nodes; node; node = node->next)
|
374 |
|
|
{
|
375 |
|
|
struct ipa_node_params *info;
|
376 |
|
|
|
377 |
|
|
if (!node->analyzed)
|
378 |
|
|
continue;
|
379 |
|
|
info = IPA_NODE_REF (node);
|
380 |
|
|
fprintf (f, " Node: %s:\n", cgraph_node_name (node));
|
381 |
|
|
count = ipa_get_param_count (info);
|
382 |
|
|
for (i = 0; i < count; i++)
|
383 |
|
|
{
|
384 |
|
|
struct ipcp_lattice *lat = ipcp_get_lattice (info, i);
|
385 |
|
|
|
386 |
|
|
fprintf (f, " param [%d]: ", i);
|
387 |
|
|
if (lat->type == IPA_CONST_VALUE)
|
388 |
|
|
{
|
389 |
|
|
fprintf (f, "type is CONST ");
|
390 |
|
|
print_generic_expr (f, lat->constant, 0);
|
391 |
|
|
fprintf (f, "\n");
|
392 |
|
|
}
|
393 |
|
|
else if (lat->type == IPA_TOP)
|
394 |
|
|
fprintf (f, "type is TOP\n");
|
395 |
|
|
else
|
396 |
|
|
fprintf (f, "type is BOTTOM\n");
|
397 |
|
|
}
|
398 |
|
|
}
|
399 |
|
|
}
|
400 |
|
|
|
401 |
|
|
/* Return true if ipcp algorithms would allow cloning NODE. */
|
402 |
|
|
|
403 |
|
|
static bool
|
404 |
|
|
ipcp_versionable_function_p (struct cgraph_node *node)
|
405 |
|
|
{
|
406 |
|
|
tree decl = node->decl;
|
407 |
|
|
basic_block bb;
|
408 |
|
|
|
409 |
|
|
/* There are a number of generic reasons functions cannot be versioned. */
|
410 |
|
|
if (!tree_versionable_function_p (decl))
|
411 |
|
|
return false;
|
412 |
|
|
|
413 |
|
|
/* Removing arguments doesn't work if the function takes varargs. */
|
414 |
|
|
if (DECL_STRUCT_FUNCTION (decl)->stdarg)
|
415 |
|
|
return false;
|
416 |
|
|
|
417 |
|
|
/* Removing arguments doesn't work if we use __builtin_apply_args. */
|
418 |
|
|
FOR_EACH_BB_FN (bb, DECL_STRUCT_FUNCTION (decl))
|
419 |
|
|
{
|
420 |
|
|
gimple_stmt_iterator gsi;
|
421 |
|
|
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
422 |
|
|
{
|
423 |
|
|
const_gimple stmt = gsi_stmt (gsi);
|
424 |
|
|
tree t;
|
425 |
|
|
|
426 |
|
|
if (!is_gimple_call (stmt))
|
427 |
|
|
continue;
|
428 |
|
|
t = gimple_call_fndecl (stmt);
|
429 |
|
|
if (t == NULL_TREE)
|
430 |
|
|
continue;
|
431 |
|
|
if (DECL_BUILT_IN_CLASS (t) == BUILT_IN_NORMAL
|
432 |
|
|
&& DECL_FUNCTION_CODE (t) == BUILT_IN_APPLY_ARGS)
|
433 |
|
|
return false;
|
434 |
|
|
}
|
435 |
|
|
}
|
436 |
|
|
|
437 |
|
|
return true;
|
438 |
|
|
}
|
439 |
|
|
|
440 |
|
|
/* Return true if this NODE is viable candidate for cloning. */
|
441 |
|
|
static bool
|
442 |
|
|
ipcp_cloning_candidate_p (struct cgraph_node *node)
|
443 |
|
|
{
|
444 |
|
|
int n_calls = 0;
|
445 |
|
|
int n_hot_calls = 0;
|
446 |
|
|
gcov_type direct_call_sum = 0;
|
447 |
|
|
struct cgraph_edge *e;
|
448 |
|
|
|
449 |
|
|
/* We never clone functions that are not visible from outside.
|
450 |
|
|
FIXME: in future we should clone such functions when they are called with
|
451 |
|
|
different constants, but current ipcp implementation is not good on this.
|
452 |
|
|
*/
|
453 |
|
|
if (cgraph_only_called_directly_p (node) || !node->analyzed)
|
454 |
|
|
return false;
|
455 |
|
|
|
456 |
|
|
if (cgraph_function_body_availability (node) <= AVAIL_OVERWRITABLE)
|
457 |
|
|
{
|
458 |
|
|
if (dump_file)
|
459 |
|
|
fprintf (dump_file, "Not considering %s for cloning; body is overwrittable.\n",
|
460 |
|
|
cgraph_node_name (node));
|
461 |
|
|
return false;
|
462 |
|
|
}
|
463 |
|
|
if (!ipcp_versionable_function_p (node))
|
464 |
|
|
{
|
465 |
|
|
if (dump_file)
|
466 |
|
|
fprintf (dump_file, "Not considering %s for cloning; body is not versionable.\n",
|
467 |
|
|
cgraph_node_name (node));
|
468 |
|
|
return false;
|
469 |
|
|
}
|
470 |
|
|
for (e = node->callers; e; e = e->next_caller)
|
471 |
|
|
{
|
472 |
|
|
direct_call_sum += e->count;
|
473 |
|
|
n_calls ++;
|
474 |
|
|
if (cgraph_maybe_hot_edge_p (e))
|
475 |
|
|
n_hot_calls ++;
|
476 |
|
|
}
|
477 |
|
|
|
478 |
|
|
if (!n_calls)
|
479 |
|
|
{
|
480 |
|
|
if (dump_file)
|
481 |
|
|
fprintf (dump_file, "Not considering %s for cloning; no direct calls.\n",
|
482 |
|
|
cgraph_node_name (node));
|
483 |
|
|
return false;
|
484 |
|
|
}
|
485 |
|
|
if (node->local.inline_summary.self_size < n_calls)
|
486 |
|
|
{
|
487 |
|
|
if (dump_file)
|
488 |
|
|
fprintf (dump_file, "Considering %s for cloning; code would shrink.\n",
|
489 |
|
|
cgraph_node_name (node));
|
490 |
|
|
return true;
|
491 |
|
|
}
|
492 |
|
|
|
493 |
|
|
if (!flag_ipa_cp_clone)
|
494 |
|
|
{
|
495 |
|
|
if (dump_file)
|
496 |
|
|
fprintf (dump_file, "Not considering %s for cloning; -fipa-cp-clone disabled.\n",
|
497 |
|
|
cgraph_node_name (node));
|
498 |
|
|
return false;
|
499 |
|
|
}
|
500 |
|
|
|
501 |
|
|
if (!optimize_function_for_speed_p (DECL_STRUCT_FUNCTION (node->decl)))
|
502 |
|
|
{
|
503 |
|
|
if (dump_file)
|
504 |
|
|
fprintf (dump_file, "Not considering %s for cloning; optimizing it for size.\n",
|
505 |
|
|
cgraph_node_name (node));
|
506 |
|
|
return false;
|
507 |
|
|
}
|
508 |
|
|
|
509 |
|
|
/* When profile is available and function is hot, propagate into it even if
|
510 |
|
|
calls seems cold; constant propagation can improve function's speed
|
511 |
|
|
significandly. */
|
512 |
|
|
if (max_count)
|
513 |
|
|
{
|
514 |
|
|
if (direct_call_sum > node->count * 90 / 100)
|
515 |
|
|
{
|
516 |
|
|
if (dump_file)
|
517 |
|
|
fprintf (dump_file, "Considering %s for cloning; usually called directly.\n",
|
518 |
|
|
cgraph_node_name (node));
|
519 |
|
|
return true;
|
520 |
|
|
}
|
521 |
|
|
}
|
522 |
|
|
if (!n_hot_calls)
|
523 |
|
|
{
|
524 |
|
|
if (dump_file)
|
525 |
|
|
fprintf (dump_file, "Not considering %s for cloning; no hot calls.\n",
|
526 |
|
|
cgraph_node_name (node));
|
527 |
|
|
return false;
|
528 |
|
|
}
|
529 |
|
|
if (dump_file)
|
530 |
|
|
fprintf (dump_file, "Considering %s for cloning.\n",
|
531 |
|
|
cgraph_node_name (node));
|
532 |
|
|
return true;
|
533 |
|
|
}
|
534 |
|
|
|
535 |
|
|
/* Initialize ipcp_lattices array. The lattices corresponding to supported
|
536 |
|
|
types (integers, real types and Fortran constants defined as const_decls)
|
537 |
|
|
are initialized to IPA_TOP, the rest of them to IPA_BOTTOM. */
|
538 |
|
|
static void
|
539 |
|
|
ipcp_initialize_node_lattices (struct cgraph_node *node)
|
540 |
|
|
{
|
541 |
|
|
int i;
|
542 |
|
|
struct ipa_node_params *info = IPA_NODE_REF (node);
|
543 |
|
|
enum ipa_lattice_type type;
|
544 |
|
|
|
545 |
|
|
if (ipa_is_called_with_var_arguments (info))
|
546 |
|
|
type = IPA_BOTTOM;
|
547 |
|
|
else if (cgraph_only_called_directly_p (node))
|
548 |
|
|
type = IPA_TOP;
|
549 |
|
|
/* When cloning is allowed, we can assume that externally visible functions
|
550 |
|
|
are not called. We will compensate this by cloning later. */
|
551 |
|
|
else if (ipcp_cloning_candidate_p (node))
|
552 |
|
|
type = IPA_TOP, n_cloning_candidates ++;
|
553 |
|
|
else
|
554 |
|
|
type = IPA_BOTTOM;
|
555 |
|
|
|
556 |
|
|
for (i = 0; i < ipa_get_param_count (info) ; i++)
|
557 |
|
|
ipcp_get_lattice (info, i)->type = type;
|
558 |
|
|
}
|
559 |
|
|
|
560 |
|
|
/* build INTEGER_CST tree with type TREE_TYPE and value according to LAT.
|
561 |
|
|
Return the tree. */
|
562 |
|
|
static tree
|
563 |
|
|
build_const_val (struct ipcp_lattice *lat, tree tree_type)
|
564 |
|
|
{
|
565 |
|
|
tree val;
|
566 |
|
|
|
567 |
|
|
gcc_assert (ipcp_lat_is_const (lat));
|
568 |
|
|
val = lat->constant;
|
569 |
|
|
|
570 |
|
|
if (!useless_type_conversion_p (tree_type, TREE_TYPE (val)))
|
571 |
|
|
{
|
572 |
|
|
if (fold_convertible_p (tree_type, val))
|
573 |
|
|
return fold_build1 (NOP_EXPR, tree_type, val);
|
574 |
|
|
else
|
575 |
|
|
return fold_build1 (VIEW_CONVERT_EXPR, tree_type, val);
|
576 |
|
|
}
|
577 |
|
|
return val;
|
578 |
|
|
}
|
579 |
|
|
|
580 |
|
|
/* Compute the proper scale for NODE. It is the ratio between the number of
|
581 |
|
|
direct calls (represented on the incoming cgraph_edges) and sum of all
|
582 |
|
|
invocations of NODE (represented as count in cgraph_node).
|
583 |
|
|
|
584 |
|
|
FIXME: This code is wrong. Since the callers can be also clones and
|
585 |
|
|
the clones are not scaled yet, the sums gets unrealistically high.
|
586 |
|
|
To properly compute the counts, we would need to do propagation across
|
587 |
|
|
callgraph (as external call to A might imply call to non-clonned B
|
588 |
|
|
if A's clone calls clonned B). */
|
589 |
|
|
static void
|
590 |
|
|
ipcp_compute_node_scale (struct cgraph_node *node)
|
591 |
|
|
{
|
592 |
|
|
gcov_type sum;
|
593 |
|
|
struct cgraph_edge *cs;
|
594 |
|
|
|
595 |
|
|
sum = 0;
|
596 |
|
|
/* Compute sum of all counts of callers. */
|
597 |
|
|
for (cs = node->callers; cs != NULL; cs = cs->next_caller)
|
598 |
|
|
sum += cs->count;
|
599 |
|
|
/* Work around the unrealistically high sum problem. We just don't want
|
600 |
|
|
the non-cloned body to have negative or very low frequency. Since
|
601 |
|
|
majority of execution time will be spent in clones anyway, this should
|
602 |
|
|
give good enough profile. */
|
603 |
|
|
if (sum > node->count * 9 / 10)
|
604 |
|
|
sum = node->count * 9 / 10;
|
605 |
|
|
if (node->count == 0)
|
606 |
|
|
ipcp_set_node_scale (node, 0);
|
607 |
|
|
else
|
608 |
|
|
ipcp_set_node_scale (node, sum * REG_BR_PROB_BASE / node->count);
|
609 |
|
|
}
|
610 |
|
|
|
611 |
|
|
/* Initialization and computation of IPCP data structures. This is the initial
|
612 |
|
|
intraprocedural analysis of functions, which gathers information to be
|
613 |
|
|
propagated later on. */
|
614 |
|
|
static void
|
615 |
|
|
ipcp_init_stage (void)
|
616 |
|
|
{
|
617 |
|
|
struct cgraph_node *node;
|
618 |
|
|
struct cgraph_edge *cs;
|
619 |
|
|
|
620 |
|
|
for (node = cgraph_nodes; node; node = node->next)
|
621 |
|
|
if (node->analyzed)
|
622 |
|
|
ipcp_analyze_node (node);
|
623 |
|
|
for (node = cgraph_nodes; node; node = node->next)
|
624 |
|
|
{
|
625 |
|
|
if (!node->analyzed)
|
626 |
|
|
continue;
|
627 |
|
|
/* building jump functions */
|
628 |
|
|
for (cs = node->callees; cs; cs = cs->next_callee)
|
629 |
|
|
{
|
630 |
|
|
/* We do not need to bother analyzing calls to unknown
|
631 |
|
|
functions unless they may become known during lto/whopr. */
|
632 |
|
|
if (!cs->callee->analyzed && !flag_lto && !flag_whopr)
|
633 |
|
|
continue;
|
634 |
|
|
ipa_count_arguments (cs);
|
635 |
|
|
if (ipa_get_cs_argument_count (IPA_EDGE_REF (cs))
|
636 |
|
|
!= ipa_get_param_count (IPA_NODE_REF (cs->callee)))
|
637 |
|
|
ipa_set_called_with_variable_arg (IPA_NODE_REF (cs->callee));
|
638 |
|
|
ipa_compute_jump_functions (cs);
|
639 |
|
|
}
|
640 |
|
|
}
|
641 |
|
|
}
|
642 |
|
|
|
643 |
|
|
/* Return true if there are some formal parameters whose value is IPA_TOP (in
|
644 |
|
|
the whole compilation unit). Change their values to IPA_BOTTOM, since they
|
645 |
|
|
most probably get their values from outside of this compilation unit. */
|
646 |
|
|
static bool
|
647 |
|
|
ipcp_change_tops_to_bottom (void)
|
648 |
|
|
{
|
649 |
|
|
int i, count;
|
650 |
|
|
struct cgraph_node *node;
|
651 |
|
|
bool prop_again;
|
652 |
|
|
|
653 |
|
|
prop_again = false;
|
654 |
|
|
for (node = cgraph_nodes; node; node = node->next)
|
655 |
|
|
{
|
656 |
|
|
struct ipa_node_params *info = IPA_NODE_REF (node);
|
657 |
|
|
count = ipa_get_param_count (info);
|
658 |
|
|
for (i = 0; i < count; i++)
|
659 |
|
|
{
|
660 |
|
|
struct ipcp_lattice *lat = ipcp_get_lattice (info, i);
|
661 |
|
|
if (lat->type == IPA_TOP)
|
662 |
|
|
{
|
663 |
|
|
prop_again = true;
|
664 |
|
|
if (dump_file)
|
665 |
|
|
{
|
666 |
|
|
fprintf (dump_file, "Forcing param ");
|
667 |
|
|
print_generic_expr (dump_file, ipa_get_param (info, i), 0);
|
668 |
|
|
fprintf (dump_file, " of node %s to bottom.\n",
|
669 |
|
|
cgraph_node_name (node));
|
670 |
|
|
}
|
671 |
|
|
lat->type = IPA_BOTTOM;
|
672 |
|
|
}
|
673 |
|
|
}
|
674 |
|
|
}
|
675 |
|
|
return prop_again;
|
676 |
|
|
}
|
677 |
|
|
|
678 |
|
|
/* Interprocedural analysis. The algorithm propagates constants from the
|
679 |
|
|
caller's parameters to the callee's arguments. */
|
680 |
|
|
static void
|
681 |
|
|
ipcp_propagate_stage (void)
|
682 |
|
|
{
|
683 |
|
|
int i;
|
684 |
|
|
struct ipcp_lattice inc_lat = { IPA_BOTTOM, NULL };
|
685 |
|
|
struct ipcp_lattice new_lat = { IPA_BOTTOM, NULL };
|
686 |
|
|
struct ipcp_lattice *dest_lat;
|
687 |
|
|
struct cgraph_edge *cs;
|
688 |
|
|
struct ipa_jump_func *jump_func;
|
689 |
|
|
struct ipa_func_list *wl;
|
690 |
|
|
int count;
|
691 |
|
|
|
692 |
|
|
ipa_check_create_node_params ();
|
693 |
|
|
ipa_check_create_edge_args ();
|
694 |
|
|
|
695 |
|
|
/* Initialize worklist to contain all functions. */
|
696 |
|
|
wl = ipa_init_func_list ();
|
697 |
|
|
while (wl)
|
698 |
|
|
{
|
699 |
|
|
struct cgraph_node *node = ipa_pop_func_from_list (&wl);
|
700 |
|
|
struct ipa_node_params *info = IPA_NODE_REF (node);
|
701 |
|
|
|
702 |
|
|
for (cs = node->callees; cs; cs = cs->next_callee)
|
703 |
|
|
{
|
704 |
|
|
struct ipa_node_params *callee_info = IPA_NODE_REF (cs->callee);
|
705 |
|
|
struct ipa_edge_args *args = IPA_EDGE_REF (cs);
|
706 |
|
|
|
707 |
|
|
if (ipa_is_called_with_var_arguments (callee_info)
|
708 |
|
|
|| !cs->callee->analyzed
|
709 |
|
|
|| ipa_is_called_with_var_arguments (callee_info))
|
710 |
|
|
continue;
|
711 |
|
|
|
712 |
|
|
count = ipa_get_cs_argument_count (args);
|
713 |
|
|
for (i = 0; i < count; i++)
|
714 |
|
|
{
|
715 |
|
|
jump_func = ipa_get_ith_jump_func (args, i);
|
716 |
|
|
ipcp_lattice_from_jfunc (info, &inc_lat, jump_func);
|
717 |
|
|
dest_lat = ipcp_get_lattice (callee_info, i);
|
718 |
|
|
ipa_lattice_meet (&new_lat, &inc_lat, dest_lat);
|
719 |
|
|
if (ipcp_lattice_changed (&new_lat, dest_lat))
|
720 |
|
|
{
|
721 |
|
|
dest_lat->type = new_lat.type;
|
722 |
|
|
dest_lat->constant = new_lat.constant;
|
723 |
|
|
ipa_push_func_to_list (&wl, cs->callee);
|
724 |
|
|
}
|
725 |
|
|
}
|
726 |
|
|
}
|
727 |
|
|
}
|
728 |
|
|
}
|
729 |
|
|
|
730 |
|
|
/* Call the constant propagation algorithm and re-call it if necessary
|
731 |
|
|
(if there are undetermined values left). */
|
732 |
|
|
static void
|
733 |
|
|
ipcp_iterate_stage (void)
|
734 |
|
|
{
|
735 |
|
|
struct cgraph_node *node;
|
736 |
|
|
n_cloning_candidates = 0;
|
737 |
|
|
|
738 |
|
|
if (dump_file)
|
739 |
|
|
fprintf (dump_file, "\nIPA iterate stage:\n\n");
|
740 |
|
|
|
741 |
|
|
if (in_lto_p)
|
742 |
|
|
ipa_update_after_lto_read ();
|
743 |
|
|
|
744 |
|
|
for (node = cgraph_nodes; node; node = node->next)
|
745 |
|
|
{
|
746 |
|
|
ipcp_initialize_node_lattices (node);
|
747 |
|
|
ipcp_compute_node_scale (node);
|
748 |
|
|
}
|
749 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
750 |
|
|
{
|
751 |
|
|
ipcp_print_all_lattices (dump_file);
|
752 |
|
|
ipcp_function_scale_print (dump_file);
|
753 |
|
|
}
|
754 |
|
|
|
755 |
|
|
ipcp_propagate_stage ();
|
756 |
|
|
if (ipcp_change_tops_to_bottom ())
|
757 |
|
|
/* Some lattices have changed from IPA_TOP to IPA_BOTTOM.
|
758 |
|
|
This change should be propagated. */
|
759 |
|
|
{
|
760 |
|
|
gcc_assert (n_cloning_candidates);
|
761 |
|
|
ipcp_propagate_stage ();
|
762 |
|
|
}
|
763 |
|
|
if (dump_file)
|
764 |
|
|
{
|
765 |
|
|
fprintf (dump_file, "\nIPA lattices after propagation:\n");
|
766 |
|
|
ipcp_print_all_lattices (dump_file);
|
767 |
|
|
if (dump_flags & TDF_DETAILS)
|
768 |
|
|
ipcp_print_profile_data (dump_file);
|
769 |
|
|
}
|
770 |
|
|
}
|
771 |
|
|
|
772 |
|
|
/* Check conditions to forbid constant insertion to function described by
|
773 |
|
|
NODE. */
|
774 |
|
|
static inline bool
|
775 |
|
|
ipcp_node_modifiable_p (struct cgraph_node *node)
|
776 |
|
|
{
|
777 |
|
|
/* Once we will be able to do in-place replacement, we can be more
|
778 |
|
|
lax here. */
|
779 |
|
|
return ipcp_versionable_function_p (node);
|
780 |
|
|
}
|
781 |
|
|
|
782 |
|
|
/* Print count scale data structures. */
|
783 |
|
|
static void
|
784 |
|
|
ipcp_function_scale_print (FILE * f)
|
785 |
|
|
{
|
786 |
|
|
struct cgraph_node *node;
|
787 |
|
|
|
788 |
|
|
for (node = cgraph_nodes; node; node = node->next)
|
789 |
|
|
{
|
790 |
|
|
if (!node->analyzed)
|
791 |
|
|
continue;
|
792 |
|
|
fprintf (f, "printing scale for %s: ", cgraph_node_name (node));
|
793 |
|
|
fprintf (f, "value is " HOST_WIDE_INT_PRINT_DEC
|
794 |
|
|
" \n", (HOST_WIDE_INT) ipcp_get_node_scale (node));
|
795 |
|
|
}
|
796 |
|
|
}
|
797 |
|
|
|
798 |
|
|
/* Print counts of all cgraph nodes. */
|
799 |
|
|
static void
|
800 |
|
|
ipcp_print_func_profile_counts (FILE * f)
|
801 |
|
|
{
|
802 |
|
|
struct cgraph_node *node;
|
803 |
|
|
|
804 |
|
|
for (node = cgraph_nodes; node; node = node->next)
|
805 |
|
|
{
|
806 |
|
|
fprintf (f, "function %s: ", cgraph_node_name (node));
|
807 |
|
|
fprintf (f, "count is " HOST_WIDE_INT_PRINT_DEC
|
808 |
|
|
" \n", (HOST_WIDE_INT) node->count);
|
809 |
|
|
}
|
810 |
|
|
}
|
811 |
|
|
|
812 |
|
|
/* Print counts of all cgraph edges. */
|
813 |
|
|
static void
|
814 |
|
|
ipcp_print_call_profile_counts (FILE * f)
|
815 |
|
|
{
|
816 |
|
|
struct cgraph_node *node;
|
817 |
|
|
struct cgraph_edge *cs;
|
818 |
|
|
|
819 |
|
|
for (node = cgraph_nodes; node; node = node->next)
|
820 |
|
|
{
|
821 |
|
|
for (cs = node->callees; cs; cs = cs->next_callee)
|
822 |
|
|
{
|
823 |
|
|
fprintf (f, "%s -> %s ", cgraph_node_name (cs->caller),
|
824 |
|
|
cgraph_node_name (cs->callee));
|
825 |
|
|
fprintf (f, "count is " HOST_WIDE_INT_PRINT_DEC " \n",
|
826 |
|
|
(HOST_WIDE_INT) cs->count);
|
827 |
|
|
}
|
828 |
|
|
}
|
829 |
|
|
}
|
830 |
|
|
|
831 |
|
|
/* Print profile info for all functions. */
|
832 |
|
|
static void
|
833 |
|
|
ipcp_print_profile_data (FILE * f)
|
834 |
|
|
{
|
835 |
|
|
fprintf (f, "\nNODE COUNTS :\n");
|
836 |
|
|
ipcp_print_func_profile_counts (f);
|
837 |
|
|
fprintf (f, "\nCS COUNTS stage:\n");
|
838 |
|
|
ipcp_print_call_profile_counts (f);
|
839 |
|
|
}
|
840 |
|
|
|
841 |
|
|
/* Build and initialize ipa_replace_map struct according to LAT. This struct is
|
842 |
|
|
processed by versioning, which operates according to the flags set.
|
843 |
|
|
PARM_TREE is the formal parameter found to be constant. LAT represents the
|
844 |
|
|
constant. */
|
845 |
|
|
static struct ipa_replace_map *
|
846 |
|
|
ipcp_create_replace_map (tree parm_tree, struct ipcp_lattice *lat)
|
847 |
|
|
{
|
848 |
|
|
struct ipa_replace_map *replace_map;
|
849 |
|
|
tree const_val;
|
850 |
|
|
|
851 |
|
|
replace_map = GGC_NEW (struct ipa_replace_map);
|
852 |
|
|
const_val = build_const_val (lat, TREE_TYPE (parm_tree));
|
853 |
|
|
if (dump_file)
|
854 |
|
|
{
|
855 |
|
|
fprintf (dump_file, " replacing param ");
|
856 |
|
|
print_generic_expr (dump_file, parm_tree, 0);
|
857 |
|
|
fprintf (dump_file, " with const ");
|
858 |
|
|
print_generic_expr (dump_file, const_val, 0);
|
859 |
|
|
fprintf (dump_file, "\n");
|
860 |
|
|
}
|
861 |
|
|
replace_map->old_tree = parm_tree;
|
862 |
|
|
replace_map->new_tree = const_val;
|
863 |
|
|
replace_map->replace_p = true;
|
864 |
|
|
replace_map->ref_p = false;
|
865 |
|
|
|
866 |
|
|
return replace_map;
|
867 |
|
|
}
|
868 |
|
|
|
869 |
|
|
/* Return true if this callsite should be redirected to the original callee
|
870 |
|
|
(instead of the cloned one). */
|
871 |
|
|
static bool
|
872 |
|
|
ipcp_need_redirect_p (struct cgraph_edge *cs)
|
873 |
|
|
{
|
874 |
|
|
struct ipa_node_params *orig_callee_info;
|
875 |
|
|
int i, count;
|
876 |
|
|
struct ipa_jump_func *jump_func;
|
877 |
|
|
struct cgraph_node *node = cs->callee, *orig;
|
878 |
|
|
|
879 |
|
|
if (!n_cloning_candidates)
|
880 |
|
|
return false;
|
881 |
|
|
|
882 |
|
|
if ((orig = ipcp_get_orig_node (node)) != NULL)
|
883 |
|
|
node = orig;
|
884 |
|
|
if (ipcp_get_orig_node (cs->caller))
|
885 |
|
|
return false;
|
886 |
|
|
|
887 |
|
|
orig_callee_info = IPA_NODE_REF (node);
|
888 |
|
|
count = ipa_get_param_count (orig_callee_info);
|
889 |
|
|
for (i = 0; i < count; i++)
|
890 |
|
|
{
|
891 |
|
|
struct ipcp_lattice *lat = ipcp_get_lattice (orig_callee_info, i);
|
892 |
|
|
if (ipcp_lat_is_const (lat))
|
893 |
|
|
{
|
894 |
|
|
jump_func = ipa_get_ith_jump_func (IPA_EDGE_REF (cs), i);
|
895 |
|
|
if (jump_func->type != IPA_JF_CONST)
|
896 |
|
|
return true;
|
897 |
|
|
}
|
898 |
|
|
}
|
899 |
|
|
|
900 |
|
|
return false;
|
901 |
|
|
}
|
902 |
|
|
|
903 |
|
|
/* Fix the callsites and the call graph after function cloning was done. */
|
904 |
|
|
static void
|
905 |
|
|
ipcp_update_callgraph (void)
|
906 |
|
|
{
|
907 |
|
|
struct cgraph_node *node;
|
908 |
|
|
|
909 |
|
|
for (node = cgraph_nodes; node; node = node->next)
|
910 |
|
|
if (node->analyzed && ipcp_node_is_clone (node))
|
911 |
|
|
{
|
912 |
|
|
bitmap args_to_skip = BITMAP_ALLOC (NULL);
|
913 |
|
|
struct cgraph_node *orig_node = ipcp_get_orig_node (node);
|
914 |
|
|
struct ipa_node_params *info = IPA_NODE_REF (orig_node);
|
915 |
|
|
int i, count = ipa_get_param_count (info);
|
916 |
|
|
struct cgraph_edge *cs, *next;
|
917 |
|
|
|
918 |
|
|
for (i = 0; i < count; i++)
|
919 |
|
|
{
|
920 |
|
|
struct ipcp_lattice *lat = ipcp_get_lattice (info, i);
|
921 |
|
|
tree parm_tree = ipa_get_param (info, i);
|
922 |
|
|
|
923 |
|
|
/* We can proactively remove obviously unused arguments. */
|
924 |
|
|
if (is_gimple_reg (parm_tree)
|
925 |
|
|
&& !gimple_default_def (DECL_STRUCT_FUNCTION (orig_node->decl),
|
926 |
|
|
parm_tree))
|
927 |
|
|
{
|
928 |
|
|
bitmap_set_bit (args_to_skip, i);
|
929 |
|
|
continue;
|
930 |
|
|
}
|
931 |
|
|
|
932 |
|
|
if (lat->type == IPA_CONST_VALUE)
|
933 |
|
|
bitmap_set_bit (args_to_skip, i);
|
934 |
|
|
}
|
935 |
|
|
for (cs = node->callers; cs; cs = next)
|
936 |
|
|
{
|
937 |
|
|
next = cs->next_caller;
|
938 |
|
|
if (!ipcp_node_is_clone (cs->caller) && ipcp_need_redirect_p (cs))
|
939 |
|
|
cgraph_redirect_edge_callee (cs, orig_node);
|
940 |
|
|
}
|
941 |
|
|
}
|
942 |
|
|
}
|
943 |
|
|
|
944 |
|
|
/* Update profiling info for versioned functions and the functions they were
|
945 |
|
|
versioned from. */
|
946 |
|
|
static void
|
947 |
|
|
ipcp_update_profiling (void)
|
948 |
|
|
{
|
949 |
|
|
struct cgraph_node *node, *orig_node;
|
950 |
|
|
gcov_type scale, scale_complement;
|
951 |
|
|
struct cgraph_edge *cs;
|
952 |
|
|
|
953 |
|
|
for (node = cgraph_nodes; node; node = node->next)
|
954 |
|
|
{
|
955 |
|
|
if (ipcp_node_is_clone (node))
|
956 |
|
|
{
|
957 |
|
|
orig_node = ipcp_get_orig_node (node);
|
958 |
|
|
scale = ipcp_get_node_scale (orig_node);
|
959 |
|
|
node->count = orig_node->count * scale / REG_BR_PROB_BASE;
|
960 |
|
|
scale_complement = REG_BR_PROB_BASE - scale;
|
961 |
|
|
orig_node->count =
|
962 |
|
|
orig_node->count * scale_complement / REG_BR_PROB_BASE;
|
963 |
|
|
for (cs = node->callees; cs; cs = cs->next_callee)
|
964 |
|
|
cs->count = cs->count * scale / REG_BR_PROB_BASE;
|
965 |
|
|
for (cs = orig_node->callees; cs; cs = cs->next_callee)
|
966 |
|
|
cs->count = cs->count * scale_complement / REG_BR_PROB_BASE;
|
967 |
|
|
}
|
968 |
|
|
}
|
969 |
|
|
}
|
970 |
|
|
|
971 |
|
|
/* If NODE was cloned, how much would program grow? */
|
972 |
|
|
static long
|
973 |
|
|
ipcp_estimate_growth (struct cgraph_node *node)
|
974 |
|
|
{
|
975 |
|
|
struct cgraph_edge *cs;
|
976 |
|
|
int redirectable_node_callers = 0;
|
977 |
|
|
int removable_args = 0;
|
978 |
|
|
bool need_original = !cgraph_only_called_directly_p (node);
|
979 |
|
|
struct ipa_node_params *info;
|
980 |
|
|
int i, count;
|
981 |
|
|
int growth;
|
982 |
|
|
|
983 |
|
|
for (cs = node->callers; cs != NULL; cs = cs->next_caller)
|
984 |
|
|
if (cs->caller == node || !ipcp_need_redirect_p (cs))
|
985 |
|
|
redirectable_node_callers++;
|
986 |
|
|
else
|
987 |
|
|
need_original = true;
|
988 |
|
|
|
989 |
|
|
/* If we will be able to fully replace orignal node, we never increase
|
990 |
|
|
program size. */
|
991 |
|
|
if (!need_original)
|
992 |
|
|
return 0;
|
993 |
|
|
|
994 |
|
|
info = IPA_NODE_REF (node);
|
995 |
|
|
count = ipa_get_param_count (info);
|
996 |
|
|
for (i = 0; i < count; i++)
|
997 |
|
|
{
|
998 |
|
|
struct ipcp_lattice *lat = ipcp_get_lattice (info, i);
|
999 |
|
|
tree parm_tree = ipa_get_param (info, i);
|
1000 |
|
|
|
1001 |
|
|
/* We can proactively remove obviously unused arguments. */
|
1002 |
|
|
if (is_gimple_reg (parm_tree)
|
1003 |
|
|
&& !gimple_default_def (DECL_STRUCT_FUNCTION (node->decl),
|
1004 |
|
|
parm_tree))
|
1005 |
|
|
removable_args++;
|
1006 |
|
|
|
1007 |
|
|
if (lat->type == IPA_CONST_VALUE)
|
1008 |
|
|
removable_args++;
|
1009 |
|
|
}
|
1010 |
|
|
|
1011 |
|
|
/* We make just very simple estimate of savings for removal of operand from
|
1012 |
|
|
call site. Precise cost is dificult to get, as our size metric counts
|
1013 |
|
|
constants and moves as free. Generally we are looking for cases that
|
1014 |
|
|
small function is called very many times. */
|
1015 |
|
|
growth = node->local.inline_summary.self_size
|
1016 |
|
|
- removable_args * redirectable_node_callers;
|
1017 |
|
|
if (growth < 0)
|
1018 |
|
|
return 0;
|
1019 |
|
|
return growth;
|
1020 |
|
|
}
|
1021 |
|
|
|
1022 |
|
|
|
1023 |
|
|
/* Estimate cost of cloning NODE. */
|
1024 |
|
|
static long
|
1025 |
|
|
ipcp_estimate_cloning_cost (struct cgraph_node *node)
|
1026 |
|
|
{
|
1027 |
|
|
int freq_sum = 1;
|
1028 |
|
|
gcov_type count_sum = 1;
|
1029 |
|
|
struct cgraph_edge *e;
|
1030 |
|
|
int cost;
|
1031 |
|
|
|
1032 |
|
|
cost = ipcp_estimate_growth (node) * 1000;
|
1033 |
|
|
if (!cost)
|
1034 |
|
|
{
|
1035 |
|
|
if (dump_file)
|
1036 |
|
|
fprintf (dump_file, "Versioning of %s will save code size\n",
|
1037 |
|
|
cgraph_node_name (node));
|
1038 |
|
|
return 0;
|
1039 |
|
|
}
|
1040 |
|
|
|
1041 |
|
|
for (e = node->callers; e; e = e->next_caller)
|
1042 |
|
|
if (!bitmap_bit_p (dead_nodes, e->caller->uid)
|
1043 |
|
|
&& !ipcp_need_redirect_p (e))
|
1044 |
|
|
{
|
1045 |
|
|
count_sum += e->count;
|
1046 |
|
|
freq_sum += e->frequency + 1;
|
1047 |
|
|
}
|
1048 |
|
|
|
1049 |
|
|
if (max_count)
|
1050 |
|
|
cost /= count_sum * 1000 / max_count + 1;
|
1051 |
|
|
else
|
1052 |
|
|
cost /= freq_sum * 1000 / REG_BR_PROB_BASE + 1;
|
1053 |
|
|
if (dump_file)
|
1054 |
|
|
fprintf (dump_file, "Cost of versioning %s is %i, (size: %i, freq: %i)\n",
|
1055 |
|
|
cgraph_node_name (node), cost, node->local.inline_summary.self_size,
|
1056 |
|
|
freq_sum);
|
1057 |
|
|
return cost + 1;
|
1058 |
|
|
}
|
1059 |
|
|
|
1060 |
|
|
/* Return number of live constant parameters. */
|
1061 |
|
|
static int
|
1062 |
|
|
ipcp_const_param_count (struct cgraph_node *node)
|
1063 |
|
|
{
|
1064 |
|
|
int const_param = 0;
|
1065 |
|
|
struct ipa_node_params *info = IPA_NODE_REF (node);
|
1066 |
|
|
int count = ipa_get_param_count (info);
|
1067 |
|
|
int i;
|
1068 |
|
|
|
1069 |
|
|
for (i = 0; i < count; i++)
|
1070 |
|
|
{
|
1071 |
|
|
struct ipcp_lattice *lat = ipcp_get_lattice (info, i);
|
1072 |
|
|
tree parm_tree = ipa_get_param (info, i);
|
1073 |
|
|
if (ipcp_lat_is_insertable (lat)
|
1074 |
|
|
/* Do not count obviously unused arguments. */
|
1075 |
|
|
&& (!is_gimple_reg (parm_tree)
|
1076 |
|
|
|| gimple_default_def (DECL_STRUCT_FUNCTION (node->decl),
|
1077 |
|
|
parm_tree)))
|
1078 |
|
|
const_param++;
|
1079 |
|
|
}
|
1080 |
|
|
return const_param;
|
1081 |
|
|
}
|
1082 |
|
|
|
1083 |
|
|
/* Propagate the constant parameters found by ipcp_iterate_stage()
|
1084 |
|
|
to the function's code. */
|
1085 |
|
|
static void
|
1086 |
|
|
ipcp_insert_stage (void)
|
1087 |
|
|
{
|
1088 |
|
|
struct cgraph_node *node, *node1 = NULL;
|
1089 |
|
|
int i;
|
1090 |
|
|
VEC (cgraph_edge_p, heap) * redirect_callers;
|
1091 |
|
|
VEC (ipa_replace_map_p,gc)* replace_trees;
|
1092 |
|
|
int node_callers, count;
|
1093 |
|
|
tree parm_tree;
|
1094 |
|
|
struct ipa_replace_map *replace_param;
|
1095 |
|
|
fibheap_t heap;
|
1096 |
|
|
long overall_size = 0, new_size = 0;
|
1097 |
|
|
long max_new_size;
|
1098 |
|
|
|
1099 |
|
|
ipa_check_create_node_params ();
|
1100 |
|
|
ipa_check_create_edge_args ();
|
1101 |
|
|
if (dump_file)
|
1102 |
|
|
fprintf (dump_file, "\nIPA insert stage:\n\n");
|
1103 |
|
|
|
1104 |
|
|
dead_nodes = BITMAP_ALLOC (NULL);
|
1105 |
|
|
|
1106 |
|
|
for (node = cgraph_nodes; node; node = node->next)
|
1107 |
|
|
if (node->analyzed)
|
1108 |
|
|
{
|
1109 |
|
|
if (node->count > max_count)
|
1110 |
|
|
max_count = node->count;
|
1111 |
|
|
overall_size += node->local.inline_summary.self_size;
|
1112 |
|
|
}
|
1113 |
|
|
|
1114 |
|
|
max_new_size = overall_size;
|
1115 |
|
|
if (max_new_size < PARAM_VALUE (PARAM_LARGE_UNIT_INSNS))
|
1116 |
|
|
max_new_size = PARAM_VALUE (PARAM_LARGE_UNIT_INSNS);
|
1117 |
|
|
max_new_size = max_new_size * PARAM_VALUE (PARAM_IPCP_UNIT_GROWTH) / 100 + 1;
|
1118 |
|
|
|
1119 |
|
|
/* First collect all functions we proved to have constant arguments to heap. */
|
1120 |
|
|
heap = fibheap_new ();
|
1121 |
|
|
for (node = cgraph_nodes; node; node = node->next)
|
1122 |
|
|
{
|
1123 |
|
|
struct ipa_node_params *info;
|
1124 |
|
|
/* Propagation of the constant is forbidden in certain conditions. */
|
1125 |
|
|
if (!node->analyzed || !ipcp_node_modifiable_p (node))
|
1126 |
|
|
continue;
|
1127 |
|
|
info = IPA_NODE_REF (node);
|
1128 |
|
|
if (ipa_is_called_with_var_arguments (info))
|
1129 |
|
|
continue;
|
1130 |
|
|
if (ipcp_const_param_count (node))
|
1131 |
|
|
node->aux = fibheap_insert (heap, ipcp_estimate_cloning_cost (node), node);
|
1132 |
|
|
}
|
1133 |
|
|
|
1134 |
|
|
/* Now clone in priority order until code size growth limits are met or
|
1135 |
|
|
heap is emptied. */
|
1136 |
|
|
while (!fibheap_empty (heap))
|
1137 |
|
|
{
|
1138 |
|
|
struct ipa_node_params *info;
|
1139 |
|
|
int growth = 0;
|
1140 |
|
|
bitmap args_to_skip;
|
1141 |
|
|
struct cgraph_edge *cs;
|
1142 |
|
|
|
1143 |
|
|
node = (struct cgraph_node *)fibheap_extract_min (heap);
|
1144 |
|
|
node->aux = NULL;
|
1145 |
|
|
if (dump_file)
|
1146 |
|
|
fprintf (dump_file, "considering function %s\n",
|
1147 |
|
|
cgraph_node_name (node));
|
1148 |
|
|
|
1149 |
|
|
growth = ipcp_estimate_growth (node);
|
1150 |
|
|
|
1151 |
|
|
if (new_size + growth > max_new_size)
|
1152 |
|
|
break;
|
1153 |
|
|
if (growth
|
1154 |
|
|
&& optimize_function_for_size_p (DECL_STRUCT_FUNCTION (node->decl)))
|
1155 |
|
|
{
|
1156 |
|
|
if (dump_file)
|
1157 |
|
|
fprintf (dump_file, "Not versioning, cold code would grow");
|
1158 |
|
|
continue;
|
1159 |
|
|
}
|
1160 |
|
|
|
1161 |
|
|
new_size += growth;
|
1162 |
|
|
|
1163 |
|
|
/* Look if original function becomes dead after clonning. */
|
1164 |
|
|
for (cs = node->callers; cs != NULL; cs = cs->next_caller)
|
1165 |
|
|
if (cs->caller == node || ipcp_need_redirect_p (cs))
|
1166 |
|
|
break;
|
1167 |
|
|
if (!cs && cgraph_only_called_directly_p (node))
|
1168 |
|
|
bitmap_set_bit (dead_nodes, node->uid);
|
1169 |
|
|
|
1170 |
|
|
info = IPA_NODE_REF (node);
|
1171 |
|
|
count = ipa_get_param_count (info);
|
1172 |
|
|
|
1173 |
|
|
replace_trees = VEC_alloc (ipa_replace_map_p, gc, 1);
|
1174 |
|
|
args_to_skip = BITMAP_GGC_ALLOC ();
|
1175 |
|
|
for (i = 0; i < count; i++)
|
1176 |
|
|
{
|
1177 |
|
|
struct ipcp_lattice *lat = ipcp_get_lattice (info, i);
|
1178 |
|
|
parm_tree = ipa_get_param (info, i);
|
1179 |
|
|
|
1180 |
|
|
/* We can proactively remove obviously unused arguments. */
|
1181 |
|
|
if (is_gimple_reg (parm_tree)
|
1182 |
|
|
&& !gimple_default_def (DECL_STRUCT_FUNCTION (node->decl),
|
1183 |
|
|
parm_tree))
|
1184 |
|
|
{
|
1185 |
|
|
bitmap_set_bit (args_to_skip, i);
|
1186 |
|
|
continue;
|
1187 |
|
|
}
|
1188 |
|
|
|
1189 |
|
|
if (lat->type == IPA_CONST_VALUE)
|
1190 |
|
|
{
|
1191 |
|
|
replace_param =
|
1192 |
|
|
ipcp_create_replace_map (parm_tree, lat);
|
1193 |
|
|
VEC_safe_push (ipa_replace_map_p, gc, replace_trees, replace_param);
|
1194 |
|
|
bitmap_set_bit (args_to_skip, i);
|
1195 |
|
|
}
|
1196 |
|
|
}
|
1197 |
|
|
|
1198 |
|
|
/* Compute how many callers node has. */
|
1199 |
|
|
node_callers = 0;
|
1200 |
|
|
for (cs = node->callers; cs != NULL; cs = cs->next_caller)
|
1201 |
|
|
node_callers++;
|
1202 |
|
|
redirect_callers = VEC_alloc (cgraph_edge_p, heap, node_callers);
|
1203 |
|
|
for (cs = node->callers; cs != NULL; cs = cs->next_caller)
|
1204 |
|
|
VEC_quick_push (cgraph_edge_p, redirect_callers, cs);
|
1205 |
|
|
|
1206 |
|
|
/* Redirecting all the callers of the node to the
|
1207 |
|
|
new versioned node. */
|
1208 |
|
|
node1 =
|
1209 |
|
|
cgraph_create_virtual_clone (node, redirect_callers, replace_trees,
|
1210 |
|
|
args_to_skip);
|
1211 |
|
|
args_to_skip = NULL;
|
1212 |
|
|
VEC_free (cgraph_edge_p, heap, redirect_callers);
|
1213 |
|
|
replace_trees = NULL;
|
1214 |
|
|
|
1215 |
|
|
if (node1 == NULL)
|
1216 |
|
|
continue;
|
1217 |
|
|
if (dump_file)
|
1218 |
|
|
fprintf (dump_file, "versioned function %s with growth %i, overall %i\n",
|
1219 |
|
|
cgraph_node_name (node), (int)growth, (int)new_size);
|
1220 |
|
|
ipcp_init_cloned_node (node, node1);
|
1221 |
|
|
|
1222 |
|
|
/* TODO: We can use indirect inlning info to produce new calls. */
|
1223 |
|
|
|
1224 |
|
|
if (dump_file)
|
1225 |
|
|
dump_function_to_file (node1->decl, dump_file, dump_flags);
|
1226 |
|
|
|
1227 |
|
|
for (cs = node->callees; cs; cs = cs->next_callee)
|
1228 |
|
|
if (cs->callee->aux)
|
1229 |
|
|
{
|
1230 |
|
|
fibheap_delete_node (heap, (fibnode_t) cs->callee->aux);
|
1231 |
|
|
cs->callee->aux = fibheap_insert (heap,
|
1232 |
|
|
ipcp_estimate_cloning_cost (cs->callee),
|
1233 |
|
|
cs->callee);
|
1234 |
|
|
}
|
1235 |
|
|
}
|
1236 |
|
|
|
1237 |
|
|
while (!fibheap_empty (heap))
|
1238 |
|
|
{
|
1239 |
|
|
if (dump_file)
|
1240 |
|
|
fprintf (dump_file, "skipping function %s\n",
|
1241 |
|
|
cgraph_node_name (node));
|
1242 |
|
|
node = (struct cgraph_node *) fibheap_extract_min (heap);
|
1243 |
|
|
node->aux = NULL;
|
1244 |
|
|
}
|
1245 |
|
|
fibheap_delete (heap);
|
1246 |
|
|
BITMAP_FREE (dead_nodes);
|
1247 |
|
|
ipcp_update_callgraph ();
|
1248 |
|
|
ipcp_update_profiling ();
|
1249 |
|
|
}
|
1250 |
|
|
|
1251 |
|
|
/* The IPCP driver. */
|
1252 |
|
|
static unsigned int
|
1253 |
|
|
ipcp_driver (void)
|
1254 |
|
|
{
|
1255 |
|
|
cgraph_remove_unreachable_nodes (true,dump_file);
|
1256 |
|
|
if (dump_file)
|
1257 |
|
|
{
|
1258 |
|
|
fprintf (dump_file, "\nIPA structures before propagation:\n");
|
1259 |
|
|
if (dump_flags & TDF_DETAILS)
|
1260 |
|
|
ipa_print_all_params (dump_file);
|
1261 |
|
|
ipa_print_all_jump_functions (dump_file);
|
1262 |
|
|
}
|
1263 |
|
|
/* 2. Do the interprocedural propagation. */
|
1264 |
|
|
ipcp_iterate_stage ();
|
1265 |
|
|
/* 3. Insert the constants found to the functions. */
|
1266 |
|
|
ipcp_insert_stage ();
|
1267 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
1268 |
|
|
{
|
1269 |
|
|
fprintf (dump_file, "\nProfiling info after insert stage:\n");
|
1270 |
|
|
ipcp_print_profile_data (dump_file);
|
1271 |
|
|
}
|
1272 |
|
|
/* Free all IPCP structures. */
|
1273 |
|
|
free_all_ipa_structures_after_ipa_cp ();
|
1274 |
|
|
if (dump_file)
|
1275 |
|
|
fprintf (dump_file, "\nIPA constant propagation end\n");
|
1276 |
|
|
return 0;
|
1277 |
|
|
}
|
1278 |
|
|
|
1279 |
|
|
/* Note function body size. */
|
1280 |
|
|
static void
|
1281 |
|
|
ipcp_generate_summary (void)
|
1282 |
|
|
{
|
1283 |
|
|
if (dump_file)
|
1284 |
|
|
fprintf (dump_file, "\nIPA constant propagation start:\n");
|
1285 |
|
|
ipa_check_create_node_params ();
|
1286 |
|
|
ipa_check_create_edge_args ();
|
1287 |
|
|
ipa_register_cgraph_hooks ();
|
1288 |
|
|
/* 1. Call the init stage to initialize
|
1289 |
|
|
the ipa_node_params and ipa_edge_args structures. */
|
1290 |
|
|
ipcp_init_stage ();
|
1291 |
|
|
}
|
1292 |
|
|
|
1293 |
|
|
/* Write ipcp summary for nodes in SET. */
|
1294 |
|
|
static void
|
1295 |
|
|
ipcp_write_summary (cgraph_node_set set)
|
1296 |
|
|
{
|
1297 |
|
|
ipa_prop_write_jump_functions (set);
|
1298 |
|
|
}
|
1299 |
|
|
|
1300 |
|
|
/* Read ipcp summary. */
|
1301 |
|
|
static void
|
1302 |
|
|
ipcp_read_summary (void)
|
1303 |
|
|
{
|
1304 |
|
|
ipa_prop_read_jump_functions ();
|
1305 |
|
|
}
|
1306 |
|
|
|
1307 |
|
|
/* Gate for IPCP optimization. */
|
1308 |
|
|
static bool
|
1309 |
|
|
cgraph_gate_cp (void)
|
1310 |
|
|
{
|
1311 |
|
|
return flag_ipa_cp;
|
1312 |
|
|
}
|
1313 |
|
|
|
1314 |
|
|
struct ipa_opt_pass_d pass_ipa_cp =
|
1315 |
|
|
{
|
1316 |
|
|
{
|
1317 |
|
|
IPA_PASS,
|
1318 |
|
|
"cp", /* name */
|
1319 |
|
|
cgraph_gate_cp, /* gate */
|
1320 |
|
|
ipcp_driver, /* execute */
|
1321 |
|
|
NULL, /* sub */
|
1322 |
|
|
NULL, /* next */
|
1323 |
|
|
0, /* static_pass_number */
|
1324 |
|
|
TV_IPA_CONSTANT_PROP, /* tv_id */
|
1325 |
|
|
0, /* properties_required */
|
1326 |
|
|
0, /* properties_provided */
|
1327 |
|
|
0, /* properties_destroyed */
|
1328 |
|
|
0, /* todo_flags_start */
|
1329 |
|
|
TODO_dump_cgraph | TODO_dump_func |
|
1330 |
|
|
TODO_remove_functions /* todo_flags_finish */
|
1331 |
|
|
},
|
1332 |
|
|
ipcp_generate_summary, /* generate_summary */
|
1333 |
|
|
ipcp_write_summary, /* write_summary */
|
1334 |
|
|
ipcp_read_summary, /* read_summary */
|
1335 |
|
|
NULL, /* function_read_summary */
|
1336 |
|
|
lto_ipa_fixup_call_notes, /* stmt_fixup */
|
1337 |
|
|
0, /* TODOs */
|
1338 |
|
|
NULL, /* function_transform */
|
1339 |
|
|
NULL, /* variable_transform */
|
1340 |
|
|
};
|