OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-stable/] [gcc-4.5.1/] [gcc/] [recog.c] - Blame information for rev 859

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 280 jeremybenn
/* Subroutines used by or related to instruction recognition.
2
   Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998
3
   1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4
   Free Software Foundation, Inc.
5
 
6
This file is part of GCC.
7
 
8
GCC is free software; you can redistribute it and/or modify it under
9
the terms of the GNU General Public License as published by the Free
10
Software Foundation; either version 3, or (at your option) any later
11
version.
12
 
13
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14
WARRANTY; without even the implied warranty of MERCHANTABILITY or
15
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16
for more details.
17
 
18
You should have received a copy of the GNU General Public License
19
along with GCC; see the file COPYING3.  If not see
20
<http://www.gnu.org/licenses/>.  */
21
 
22
 
23
#include "config.h"
24
#include "system.h"
25
#include "coretypes.h"
26
#include "tm.h"
27
#include "rtl.h"
28
#include "tm_p.h"
29
#include "insn-config.h"
30
#include "insn-attr.h"
31
#include "hard-reg-set.h"
32
#include "recog.h"
33
#include "regs.h"
34
#include "addresses.h"
35
#include "expr.h"
36
#include "function.h"
37
#include "flags.h"
38
#include "real.h"
39
#include "toplev.h"
40
#include "basic-block.h"
41
#include "output.h"
42
#include "reload.h"
43
#include "target.h"
44
#include "timevar.h"
45
#include "tree-pass.h"
46
#include "df.h"
47
 
48
#ifndef STACK_PUSH_CODE
49
#ifdef STACK_GROWS_DOWNWARD
50
#define STACK_PUSH_CODE PRE_DEC
51
#else
52
#define STACK_PUSH_CODE PRE_INC
53
#endif
54
#endif
55
 
56
#ifndef STACK_POP_CODE
57
#ifdef STACK_GROWS_DOWNWARD
58
#define STACK_POP_CODE POST_INC
59
#else
60
#define STACK_POP_CODE POST_DEC
61
#endif
62
#endif
63
 
64
#ifndef HAVE_ATTR_enabled
65
static inline bool
66
get_attr_enabled (rtx insn ATTRIBUTE_UNUSED)
67
{
68
  return true;
69
}
70
#endif
71
 
72
static void validate_replace_rtx_1 (rtx *, rtx, rtx, rtx, bool);
73
static void validate_replace_src_1 (rtx *, void *);
74
static rtx split_insn (rtx);
75
 
76
/* Nonzero means allow operands to be volatile.
77
   This should be 0 if you are generating rtl, such as if you are calling
78
   the functions in optabs.c and expmed.c (most of the time).
79
   This should be 1 if all valid insns need to be recognized,
80
   such as in reginfo.c and final.c and reload.c.
81
 
82
   init_recog and init_recog_no_volatile are responsible for setting this.  */
83
 
84
int volatile_ok;
85
 
86
struct recog_data recog_data;
87
 
88
/* Contains a vector of operand_alternative structures for every operand.
89
   Set up by preprocess_constraints.  */
90
struct operand_alternative recog_op_alt[MAX_RECOG_OPERANDS][MAX_RECOG_ALTERNATIVES];
91
 
92
/* On return from `constrain_operands', indicate which alternative
93
   was satisfied.  */
94
 
95
int which_alternative;
96
 
97
/* Nonzero after end of reload pass.
98
   Set to 1 or 0 by toplev.c.
99
   Controls the significance of (SUBREG (MEM)).  */
100
 
101
int reload_completed;
102
 
103
/* Nonzero after thread_prologue_and_epilogue_insns has run.  */
104
int epilogue_completed;
105
 
106
/* Initialize data used by the function `recog'.
107
   This must be called once in the compilation of a function
108
   before any insn recognition may be done in the function.  */
109
 
110
void
111
init_recog_no_volatile (void)
112
{
113
  volatile_ok = 0;
114
}
115
 
116
void
117
init_recog (void)
118
{
119
  volatile_ok = 1;
120
}
121
 
122
 
123
/* Check that X is an insn-body for an `asm' with operands
124
   and that the operands mentioned in it are legitimate.  */
125
 
126
int
127
check_asm_operands (rtx x)
128
{
129
  int noperands;
130
  rtx *operands;
131
  const char **constraints;
132
  int i;
133
 
134
  /* Post-reload, be more strict with things.  */
135
  if (reload_completed)
136
    {
137
      /* ??? Doh!  We've not got the wrapping insn.  Cook one up.  */
138
      extract_insn (make_insn_raw (x));
139
      constrain_operands (1);
140
      return which_alternative >= 0;
141
    }
142
 
143
  noperands = asm_noperands (x);
144
  if (noperands < 0)
145
    return 0;
146
  if (noperands == 0)
147
    return 1;
148
 
149
  operands = XALLOCAVEC (rtx, noperands);
150
  constraints = XALLOCAVEC (const char *, noperands);
151
 
152
  decode_asm_operands (x, operands, NULL, constraints, NULL, NULL);
153
 
154
  for (i = 0; i < noperands; i++)
155
    {
156
      const char *c = constraints[i];
157
      if (c[0] == '%')
158
        c++;
159
      if (! asm_operand_ok (operands[i], c, constraints))
160
        return 0;
161
    }
162
 
163
  return 1;
164
}
165
 
166
/* Static data for the next two routines.  */
167
 
168
typedef struct change_t
169
{
170
  rtx object;
171
  int old_code;
172
  rtx *loc;
173
  rtx old;
174
  bool unshare;
175
} change_t;
176
 
177
static change_t *changes;
178
static int changes_allocated;
179
 
180
static int num_changes = 0;
181
 
182
/* Validate a proposed change to OBJECT.  LOC is the location in the rtl
183
   at which NEW_RTX will be placed.  If OBJECT is zero, no validation is done,
184
   the change is simply made.
185
 
186
   Two types of objects are supported:  If OBJECT is a MEM, memory_address_p
187
   will be called with the address and mode as parameters.  If OBJECT is
188
   an INSN, CALL_INSN, or JUMP_INSN, the insn will be re-recognized with
189
   the change in place.
190
 
191
   IN_GROUP is nonzero if this is part of a group of changes that must be
192
   performed as a group.  In that case, the changes will be stored.  The
193
   function `apply_change_group' will validate and apply the changes.
194
 
195
   If IN_GROUP is zero, this is a single change.  Try to recognize the insn
196
   or validate the memory reference with the change applied.  If the result
197
   is not valid for the machine, suppress the change and return zero.
198
   Otherwise, perform the change and return 1.  */
199
 
200
static bool
201
validate_change_1 (rtx object, rtx *loc, rtx new_rtx, bool in_group, bool unshare)
202
{
203
  rtx old = *loc;
204
 
205
  if (old == new_rtx || rtx_equal_p (old, new_rtx))
206
    return 1;
207
 
208
  gcc_assert (in_group != 0 || num_changes == 0);
209
 
210
  *loc = new_rtx;
211
 
212
  /* Save the information describing this change.  */
213
  if (num_changes >= changes_allocated)
214
    {
215
      if (changes_allocated == 0)
216
        /* This value allows for repeated substitutions inside complex
217
           indexed addresses, or changes in up to 5 insns.  */
218
        changes_allocated = MAX_RECOG_OPERANDS * 5;
219
      else
220
        changes_allocated *= 2;
221
 
222
      changes = XRESIZEVEC (change_t, changes, changes_allocated);
223
    }
224
 
225
  changes[num_changes].object = object;
226
  changes[num_changes].loc = loc;
227
  changes[num_changes].old = old;
228
  changes[num_changes].unshare = unshare;
229
 
230
  if (object && !MEM_P (object))
231
    {
232
      /* Set INSN_CODE to force rerecognition of insn.  Save old code in
233
         case invalid.  */
234
      changes[num_changes].old_code = INSN_CODE (object);
235
      INSN_CODE (object) = -1;
236
    }
237
 
238
  num_changes++;
239
 
240
  /* If we are making a group of changes, return 1.  Otherwise, validate the
241
     change group we made.  */
242
 
243
  if (in_group)
244
    return 1;
245
  else
246
    return apply_change_group ();
247
}
248
 
249
/* Wrapper for validate_change_1 without the UNSHARE argument defaulting
250
   UNSHARE to false.  */
251
 
252
bool
253
validate_change (rtx object, rtx *loc, rtx new_rtx, bool in_group)
254
{
255
  return validate_change_1 (object, loc, new_rtx, in_group, false);
256
}
257
 
258
/* Wrapper for validate_change_1 without the UNSHARE argument defaulting
259
   UNSHARE to true.  */
260
 
261
bool
262
validate_unshare_change (rtx object, rtx *loc, rtx new_rtx, bool in_group)
263
{
264
  return validate_change_1 (object, loc, new_rtx, in_group, true);
265
}
266
 
267
 
268
/* Keep X canonicalized if some changes have made it non-canonical; only
269
   modifies the operands of X, not (for example) its code.  Simplifications
270
   are not the job of this routine.
271
 
272
   Return true if anything was changed.  */
273
bool
274
canonicalize_change_group (rtx insn, rtx x)
275
{
276
  if (COMMUTATIVE_P (x)
277
      && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
278
    {
279
      /* Oops, the caller has made X no longer canonical.
280
         Let's redo the changes in the correct order.  */
281
      rtx tem = XEXP (x, 0);
282
      validate_change (insn, &XEXP (x, 0), XEXP (x, 1), 1);
283
      validate_change (insn, &XEXP (x, 1), tem, 1);
284
      return true;
285
    }
286
  else
287
    return false;
288
}
289
 
290
 
291
/* This subroutine of apply_change_group verifies whether the changes to INSN
292
   were valid; i.e. whether INSN can still be recognized.  */
293
 
294
int
295
insn_invalid_p (rtx insn)
296
{
297
  rtx pat = PATTERN (insn);
298
  int num_clobbers = 0;
299
  /* If we are before reload and the pattern is a SET, see if we can add
300
     clobbers.  */
301
  int icode = recog (pat, insn,
302
                     (GET_CODE (pat) == SET
303
                      && ! reload_completed && ! reload_in_progress)
304
                     ? &num_clobbers : 0);
305
  int is_asm = icode < 0 && asm_noperands (PATTERN (insn)) >= 0;
306
 
307
 
308
  /* If this is an asm and the operand aren't legal, then fail.  Likewise if
309
     this is not an asm and the insn wasn't recognized.  */
310
  if ((is_asm && ! check_asm_operands (PATTERN (insn)))
311
      || (!is_asm && icode < 0))
312
    return 1;
313
 
314
  /* If we have to add CLOBBERs, fail if we have to add ones that reference
315
     hard registers since our callers can't know if they are live or not.
316
     Otherwise, add them.  */
317
  if (num_clobbers > 0)
318
    {
319
      rtx newpat;
320
 
321
      if (added_clobbers_hard_reg_p (icode))
322
        return 1;
323
 
324
      newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (num_clobbers + 1));
325
      XVECEXP (newpat, 0, 0) = pat;
326
      add_clobbers (newpat, icode);
327
      PATTERN (insn) = pat = newpat;
328
    }
329
 
330
  /* After reload, verify that all constraints are satisfied.  */
331
  if (reload_completed)
332
    {
333
      extract_insn (insn);
334
 
335
      if (! constrain_operands (1))
336
        return 1;
337
    }
338
 
339
  INSN_CODE (insn) = icode;
340
  return 0;
341
}
342
 
343
/* Return number of changes made and not validated yet.  */
344
int
345
num_changes_pending (void)
346
{
347
  return num_changes;
348
}
349
 
350
/* Tentatively apply the changes numbered NUM and up.
351
   Return 1 if all changes are valid, zero otherwise.  */
352
 
353
int
354
verify_changes (int num)
355
{
356
  int i;
357
  rtx last_validated = NULL_RTX;
358
 
359
  /* The changes have been applied and all INSN_CODEs have been reset to force
360
     rerecognition.
361
 
362
     The changes are valid if we aren't given an object, or if we are
363
     given a MEM and it still is a valid address, or if this is in insn
364
     and it is recognized.  In the latter case, if reload has completed,
365
     we also require that the operands meet the constraints for
366
     the insn.  */
367
 
368
  for (i = num; i < num_changes; i++)
369
    {
370
      rtx object = changes[i].object;
371
 
372
      /* If there is no object to test or if it is the same as the one we
373
         already tested, ignore it.  */
374
      if (object == 0 || object == last_validated)
375
        continue;
376
 
377
      if (MEM_P (object))
378
        {
379
          if (! memory_address_addr_space_p (GET_MODE (object),
380
                                             XEXP (object, 0),
381
                                             MEM_ADDR_SPACE (object)))
382
            break;
383
        }
384
      else if (REG_P (changes[i].old)
385
               && asm_noperands (PATTERN (object)) > 0
386
               && REG_EXPR (changes[i].old) != NULL_TREE
387
               && DECL_ASSEMBLER_NAME_SET_P (REG_EXPR (changes[i].old))
388
               && DECL_REGISTER (REG_EXPR (changes[i].old)))
389
        {
390
          /* Don't allow changes of hard register operands to inline
391
             assemblies if they have been defined as register asm ("x").  */
392
          break;
393
        }
394
      else if (DEBUG_INSN_P (object))
395
        continue;
396
      else if (insn_invalid_p (object))
397
        {
398
          rtx pat = PATTERN (object);
399
 
400
          /* Perhaps we couldn't recognize the insn because there were
401
             extra CLOBBERs at the end.  If so, try to re-recognize
402
             without the last CLOBBER (later iterations will cause each of
403
             them to be eliminated, in turn).  But don't do this if we
404
             have an ASM_OPERAND.  */
405
          if (GET_CODE (pat) == PARALLEL
406
              && GET_CODE (XVECEXP (pat, 0, XVECLEN (pat, 0) - 1)) == CLOBBER
407
              && asm_noperands (PATTERN (object)) < 0)
408
            {
409
              rtx newpat;
410
 
411
              if (XVECLEN (pat, 0) == 2)
412
                newpat = XVECEXP (pat, 0, 0);
413
              else
414
                {
415
                  int j;
416
 
417
                  newpat
418
                    = gen_rtx_PARALLEL (VOIDmode,
419
                                        rtvec_alloc (XVECLEN (pat, 0) - 1));
420
                  for (j = 0; j < XVECLEN (newpat, 0); j++)
421
                    XVECEXP (newpat, 0, j) = XVECEXP (pat, 0, j);
422
                }
423
 
424
              /* Add a new change to this group to replace the pattern
425
                 with this new pattern.  Then consider this change
426
                 as having succeeded.  The change we added will
427
                 cause the entire call to fail if things remain invalid.
428
 
429
                 Note that this can lose if a later change than the one
430
                 we are processing specified &XVECEXP (PATTERN (object), 0, X)
431
                 but this shouldn't occur.  */
432
 
433
              validate_change (object, &PATTERN (object), newpat, 1);
434
              continue;
435
            }
436
          else if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER
437
                   || GET_CODE (pat) == VAR_LOCATION)
438
            /* If this insn is a CLOBBER or USE, it is always valid, but is
439
               never recognized.  */
440
            continue;
441
          else
442
            break;
443
        }
444
      last_validated = object;
445
    }
446
 
447
  return (i == num_changes);
448
}
449
 
450
/* A group of changes has previously been issued with validate_change
451
   and verified with verify_changes.  Call df_insn_rescan for each of
452
   the insn changed and clear num_changes.  */
453
 
454
void
455
confirm_change_group (void)
456
{
457
  int i;
458
  rtx last_object = NULL;
459
 
460
  for (i = 0; i < num_changes; i++)
461
    {
462
      rtx object = changes[i].object;
463
 
464
      if (changes[i].unshare)
465
        *changes[i].loc = copy_rtx (*changes[i].loc);
466
 
467
      /* Avoid unnecessary rescanning when multiple changes to same instruction
468
         are made.  */
469
      if (object)
470
        {
471
          if (object != last_object && last_object && INSN_P (last_object))
472
            df_insn_rescan (last_object);
473
          last_object = object;
474
        }
475
    }
476
 
477
  if (last_object && INSN_P (last_object))
478
    df_insn_rescan (last_object);
479
  num_changes = 0;
480
}
481
 
482
/* Apply a group of changes previously issued with `validate_change'.
483
   If all changes are valid, call confirm_change_group and return 1,
484
   otherwise, call cancel_changes and return 0.  */
485
 
486
int
487
apply_change_group (void)
488
{
489
  if (verify_changes (0))
490
    {
491
      confirm_change_group ();
492
      return 1;
493
    }
494
  else
495
    {
496
      cancel_changes (0);
497
      return 0;
498
    }
499
}
500
 
501
 
502
/* Return the number of changes so far in the current group.  */
503
 
504
int
505
num_validated_changes (void)
506
{
507
  return num_changes;
508
}
509
 
510
/* Retract the changes numbered NUM and up.  */
511
 
512
void
513
cancel_changes (int num)
514
{
515
  int i;
516
 
517
  /* Back out all the changes.  Do this in the opposite order in which
518
     they were made.  */
519
  for (i = num_changes - 1; i >= num; i--)
520
    {
521
      *changes[i].loc = changes[i].old;
522
      if (changes[i].object && !MEM_P (changes[i].object))
523
        INSN_CODE (changes[i].object) = changes[i].old_code;
524
    }
525
  num_changes = num;
526
}
527
 
528
/* A subroutine of validate_replace_rtx_1 that tries to simplify the resulting
529
   rtx.  */
530
 
531
static void
532
simplify_while_replacing (rtx *loc, rtx to, rtx object,
533
                          enum machine_mode op0_mode)
534
{
535
  rtx x = *loc;
536
  enum rtx_code code = GET_CODE (x);
537
  rtx new_rtx;
538
 
539
  if (SWAPPABLE_OPERANDS_P (x)
540
      && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
541
    {
542
      validate_unshare_change (object, loc,
543
                               gen_rtx_fmt_ee (COMMUTATIVE_ARITH_P (x) ? code
544
                                               : swap_condition (code),
545
                                               GET_MODE (x), XEXP (x, 1),
546
                                               XEXP (x, 0)), 1);
547
      x = *loc;
548
      code = GET_CODE (x);
549
    }
550
 
551
  switch (code)
552
    {
553
    case PLUS:
554
      /* If we have a PLUS whose second operand is now a CONST_INT, use
555
         simplify_gen_binary to try to simplify it.
556
         ??? We may want later to remove this, once simplification is
557
         separated from this function.  */
558
      if (CONST_INT_P (XEXP (x, 1)) && XEXP (x, 1) == to)
559
        validate_change (object, loc,
560
                         simplify_gen_binary
561
                         (PLUS, GET_MODE (x), XEXP (x, 0), XEXP (x, 1)), 1);
562
      break;
563
    case MINUS:
564
      if (CONST_INT_P (XEXP (x, 1))
565
          || GET_CODE (XEXP (x, 1)) == CONST_DOUBLE)
566
        validate_change (object, loc,
567
                         simplify_gen_binary
568
                         (PLUS, GET_MODE (x), XEXP (x, 0),
569
                          simplify_gen_unary (NEG,
570
                                              GET_MODE (x), XEXP (x, 1),
571
                                              GET_MODE (x))), 1);
572
      break;
573
    case ZERO_EXTEND:
574
    case SIGN_EXTEND:
575
      if (GET_MODE (XEXP (x, 0)) == VOIDmode)
576
        {
577
          new_rtx = simplify_gen_unary (code, GET_MODE (x), XEXP (x, 0),
578
                                    op0_mode);
579
          /* If any of the above failed, substitute in something that
580
             we know won't be recognized.  */
581
          if (!new_rtx)
582
            new_rtx = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
583
          validate_change (object, loc, new_rtx, 1);
584
        }
585
      break;
586
    case SUBREG:
587
      /* All subregs possible to simplify should be simplified.  */
588
      new_rtx = simplify_subreg (GET_MODE (x), SUBREG_REG (x), op0_mode,
589
                             SUBREG_BYTE (x));
590
 
591
      /* Subregs of VOIDmode operands are incorrect.  */
592
      if (!new_rtx && GET_MODE (SUBREG_REG (x)) == VOIDmode)
593
        new_rtx = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
594
      if (new_rtx)
595
        validate_change (object, loc, new_rtx, 1);
596
      break;
597
    case ZERO_EXTRACT:
598
    case SIGN_EXTRACT:
599
      /* If we are replacing a register with memory, try to change the memory
600
         to be the mode required for memory in extract operations (this isn't
601
         likely to be an insertion operation; if it was, nothing bad will
602
         happen, we might just fail in some cases).  */
603
 
604
      if (MEM_P (XEXP (x, 0))
605
          && CONST_INT_P (XEXP (x, 1))
606
          && CONST_INT_P (XEXP (x, 2))
607
          && !mode_dependent_address_p (XEXP (XEXP (x, 0), 0))
608
          && !MEM_VOLATILE_P (XEXP (x, 0)))
609
        {
610
          enum machine_mode wanted_mode = VOIDmode;
611
          enum machine_mode is_mode = GET_MODE (XEXP (x, 0));
612
          int pos = INTVAL (XEXP (x, 2));
613
 
614
          if (GET_CODE (x) == ZERO_EXTRACT)
615
            {
616
              enum machine_mode new_mode
617
                = mode_for_extraction (EP_extzv, 1);
618
              if (new_mode != MAX_MACHINE_MODE)
619
                wanted_mode = new_mode;
620
            }
621
          else if (GET_CODE (x) == SIGN_EXTRACT)
622
            {
623
              enum machine_mode new_mode
624
                = mode_for_extraction (EP_extv, 1);
625
              if (new_mode != MAX_MACHINE_MODE)
626
                wanted_mode = new_mode;
627
            }
628
 
629
          /* If we have a narrower mode, we can do something.  */
630
          if (wanted_mode != VOIDmode
631
              && GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
632
            {
633
              int offset = pos / BITS_PER_UNIT;
634
              rtx newmem;
635
 
636
              /* If the bytes and bits are counted differently, we
637
                 must adjust the offset.  */
638
              if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
639
                offset =
640
                  (GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (wanted_mode) -
641
                   offset);
642
 
643
              pos %= GET_MODE_BITSIZE (wanted_mode);
644
 
645
              newmem = adjust_address_nv (XEXP (x, 0), wanted_mode, offset);
646
 
647
              validate_change (object, &XEXP (x, 2), GEN_INT (pos), 1);
648
              validate_change (object, &XEXP (x, 0), newmem, 1);
649
            }
650
        }
651
 
652
      break;
653
 
654
    default:
655
      break;
656
    }
657
}
658
 
659
/* Replace every occurrence of FROM in X with TO.  Mark each change with
660
   validate_change passing OBJECT.  */
661
 
662
static void
663
validate_replace_rtx_1 (rtx *loc, rtx from, rtx to, rtx object,
664
                        bool simplify)
665
{
666
  int i, j;
667
  const char *fmt;
668
  rtx x = *loc;
669
  enum rtx_code code;
670
  enum machine_mode op0_mode = VOIDmode;
671
  int prev_changes = num_changes;
672
 
673
  if (!x)
674
    return;
675
 
676
  code = GET_CODE (x);
677
  fmt = GET_RTX_FORMAT (code);
678
  if (fmt[0] == 'e')
679
    op0_mode = GET_MODE (XEXP (x, 0));
680
 
681
  /* X matches FROM if it is the same rtx or they are both referring to the
682
     same register in the same mode.  Avoid calling rtx_equal_p unless the
683
     operands look similar.  */
684
 
685
  if (x == from
686
      || (REG_P (x) && REG_P (from)
687
          && GET_MODE (x) == GET_MODE (from)
688
          && REGNO (x) == REGNO (from))
689
      || (GET_CODE (x) == GET_CODE (from) && GET_MODE (x) == GET_MODE (from)
690
          && rtx_equal_p (x, from)))
691
    {
692
      validate_unshare_change (object, loc, to, 1);
693
      return;
694
    }
695
 
696
  /* Call ourself recursively to perform the replacements.
697
     We must not replace inside already replaced expression, otherwise we
698
     get infinite recursion for replacements like (reg X)->(subreg (reg X))
699
     done by regmove, so we must special case shared ASM_OPERANDS.  */
700
 
701
  if (GET_CODE (x) == PARALLEL)
702
    {
703
      for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
704
        {
705
          if (j && GET_CODE (XVECEXP (x, 0, j)) == SET
706
              && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == ASM_OPERANDS)
707
            {
708
              /* Verify that operands are really shared.  */
709
              gcc_assert (ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP (x, 0, 0)))
710
                          == ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP
711
                                                              (x, 0, j))));
712
              validate_replace_rtx_1 (&SET_DEST (XVECEXP (x, 0, j)),
713
                                      from, to, object, simplify);
714
            }
715
          else
716
            validate_replace_rtx_1 (&XVECEXP (x, 0, j), from, to, object,
717
                                    simplify);
718
        }
719
    }
720
  else
721
    for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
722
      {
723
        if (fmt[i] == 'e')
724
          validate_replace_rtx_1 (&XEXP (x, i), from, to, object, simplify);
725
        else if (fmt[i] == 'E')
726
          for (j = XVECLEN (x, i) - 1; j >= 0; j--)
727
            validate_replace_rtx_1 (&XVECEXP (x, i, j), from, to, object,
728
                                    simplify);
729
      }
730
 
731
  /* If we didn't substitute, there is nothing more to do.  */
732
  if (num_changes == prev_changes)
733
    return;
734
 
735
  /* Allow substituted expression to have different mode.  This is used by
736
     regmove to change mode of pseudo register.  */
737
  if (fmt[0] == 'e' && GET_MODE (XEXP (x, 0)) != VOIDmode)
738
    op0_mode = GET_MODE (XEXP (x, 0));
739
 
740
  /* Do changes needed to keep rtx consistent.  Don't do any other
741
     simplifications, as it is not our job.  */
742
  if (simplify)
743
    simplify_while_replacing (loc, to, object, op0_mode);
744
}
745
 
746
/* Try replacing every occurrence of FROM in subexpression LOC of INSN
747
   with TO.  After all changes have been made, validate by seeing
748
   if INSN is still valid.  */
749
 
750
int
751
validate_replace_rtx_subexp (rtx from, rtx to, rtx insn, rtx *loc)
752
{
753
  validate_replace_rtx_1 (loc, from, to, insn, true);
754
  return apply_change_group ();
755
}
756
 
757
/* Try replacing every occurrence of FROM in INSN with TO.  After all
758
   changes have been made, validate by seeing if INSN is still valid.  */
759
 
760
int
761
validate_replace_rtx (rtx from, rtx to, rtx insn)
762
{
763
  validate_replace_rtx_1 (&PATTERN (insn), from, to, insn, true);
764
  return apply_change_group ();
765
}
766
 
767
/* Try replacing every occurrence of FROM in WHERE with TO.  Assume that WHERE
768
   is a part of INSN.  After all changes have been made, validate by seeing if
769
   INSN is still valid.
770
   validate_replace_rtx (from, to, insn) is equivalent to
771
   validate_replace_rtx_part (from, to, &PATTERN (insn), insn).  */
772
 
773
int
774
validate_replace_rtx_part (rtx from, rtx to, rtx *where, rtx insn)
775
{
776
  validate_replace_rtx_1 (where, from, to, insn, true);
777
  return apply_change_group ();
778
}
779
 
780
/* Same as above, but do not simplify rtx afterwards.  */
781
int
782
validate_replace_rtx_part_nosimplify (rtx from, rtx to, rtx *where,
783
                                      rtx insn)
784
{
785
  validate_replace_rtx_1 (where, from, to, insn, false);
786
  return apply_change_group ();
787
 
788
}
789
 
790
/* Try replacing every occurrence of FROM in INSN with TO.  This also
791
   will replace in REG_EQUAL and REG_EQUIV notes.  */
792
 
793
void
794
validate_replace_rtx_group (rtx from, rtx to, rtx insn)
795
{
796
  rtx note;
797
  validate_replace_rtx_1 (&PATTERN (insn), from, to, insn, true);
798
  for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
799
    if (REG_NOTE_KIND (note) == REG_EQUAL
800
        || REG_NOTE_KIND (note) == REG_EQUIV)
801
      validate_replace_rtx_1 (&XEXP (note, 0), from, to, insn, true);
802
}
803
 
804
/* Function called by note_uses to replace used subexpressions.  */
805
struct validate_replace_src_data
806
{
807
  rtx from;                     /* Old RTX */
808
  rtx to;                       /* New RTX */
809
  rtx insn;                     /* Insn in which substitution is occurring.  */
810
};
811
 
812
static void
813
validate_replace_src_1 (rtx *x, void *data)
814
{
815
  struct validate_replace_src_data *d
816
    = (struct validate_replace_src_data *) data;
817
 
818
  validate_replace_rtx_1 (x, d->from, d->to, d->insn, true);
819
}
820
 
821
/* Try replacing every occurrence of FROM in INSN with TO, avoiding
822
   SET_DESTs.  */
823
 
824
void
825
validate_replace_src_group (rtx from, rtx to, rtx insn)
826
{
827
  struct validate_replace_src_data d;
828
 
829
  d.from = from;
830
  d.to = to;
831
  d.insn = insn;
832
  note_uses (&PATTERN (insn), validate_replace_src_1, &d);
833
}
834
 
835
/* Try simplify INSN.
836
   Invoke simplify_rtx () on every SET_SRC and SET_DEST inside the INSN's
837
   pattern and return true if something was simplified.  */
838
 
839
bool
840
validate_simplify_insn (rtx insn)
841
{
842
  int i;
843
  rtx pat = NULL;
844
  rtx newpat = NULL;
845
 
846
  pat = PATTERN (insn);
847
 
848
  if (GET_CODE (pat) == SET)
849
    {
850
      newpat = simplify_rtx (SET_SRC (pat));
851
      if (newpat && !rtx_equal_p (SET_SRC (pat), newpat))
852
        validate_change (insn, &SET_SRC (pat), newpat, 1);
853
      newpat = simplify_rtx (SET_DEST (pat));
854
      if (newpat && !rtx_equal_p (SET_DEST (pat), newpat))
855
        validate_change (insn, &SET_DEST (pat), newpat, 1);
856
    }
857
  else if (GET_CODE (pat) == PARALLEL)
858
    for (i = 0; i < XVECLEN (pat, 0); i++)
859
      {
860
        rtx s = XVECEXP (pat, 0, i);
861
 
862
        if (GET_CODE (XVECEXP (pat, 0, i)) == SET)
863
          {
864
            newpat = simplify_rtx (SET_SRC (s));
865
            if (newpat && !rtx_equal_p (SET_SRC (s), newpat))
866
              validate_change (insn, &SET_SRC (s), newpat, 1);
867
            newpat = simplify_rtx (SET_DEST (s));
868
            if (newpat && !rtx_equal_p (SET_DEST (s), newpat))
869
              validate_change (insn, &SET_DEST (s), newpat, 1);
870
          }
871
      }
872
  return ((num_changes_pending () > 0) && (apply_change_group () > 0));
873
}
874
 
875
#ifdef HAVE_cc0
876
/* Return 1 if the insn using CC0 set by INSN does not contain
877
   any ordered tests applied to the condition codes.
878
   EQ and NE tests do not count.  */
879
 
880
int
881
next_insn_tests_no_inequality (rtx insn)
882
{
883
  rtx next = next_cc0_user (insn);
884
 
885
  /* If there is no next insn, we have to take the conservative choice.  */
886
  if (next == 0)
887
    return 0;
888
 
889
  return (INSN_P (next)
890
          && ! inequality_comparisons_p (PATTERN (next)));
891
}
892
#endif
893
 
894
/* Return 1 if OP is a valid general operand for machine mode MODE.
895
   This is either a register reference, a memory reference,
896
   or a constant.  In the case of a memory reference, the address
897
   is checked for general validity for the target machine.
898
 
899
   Register and memory references must have mode MODE in order to be valid,
900
   but some constants have no machine mode and are valid for any mode.
901
 
902
   If MODE is VOIDmode, OP is checked for validity for whatever mode
903
   it has.
904
 
905
   The main use of this function is as a predicate in match_operand
906
   expressions in the machine description.
907
 
908
   For an explanation of this function's behavior for registers of
909
   class NO_REGS, see the comment for `register_operand'.  */
910
 
911
int
912
general_operand (rtx op, enum machine_mode mode)
913
{
914
  enum rtx_code code = GET_CODE (op);
915
 
916
  if (mode == VOIDmode)
917
    mode = GET_MODE (op);
918
 
919
  /* Don't accept CONST_INT or anything similar
920
     if the caller wants something floating.  */
921
  if (GET_MODE (op) == VOIDmode && mode != VOIDmode
922
      && GET_MODE_CLASS (mode) != MODE_INT
923
      && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
924
    return 0;
925
 
926
  if (CONST_INT_P (op)
927
      && mode != VOIDmode
928
      && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
929
    return 0;
930
 
931
  if (CONSTANT_P (op))
932
    return ((GET_MODE (op) == VOIDmode || GET_MODE (op) == mode
933
             || mode == VOIDmode)
934
            && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
935
            && LEGITIMATE_CONSTANT_P (op));
936
 
937
  /* Except for certain constants with VOIDmode, already checked for,
938
     OP's mode must match MODE if MODE specifies a mode.  */
939
 
940
  if (GET_MODE (op) != mode)
941
    return 0;
942
 
943
  if (code == SUBREG)
944
    {
945
      rtx sub = SUBREG_REG (op);
946
 
947
#ifdef INSN_SCHEDULING
948
      /* On machines that have insn scheduling, we want all memory
949
         reference to be explicit, so outlaw paradoxical SUBREGs.
950
         However, we must allow them after reload so that they can
951
         get cleaned up by cleanup_subreg_operands.  */
952
      if (!reload_completed && MEM_P (sub)
953
          && GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (sub)))
954
        return 0;
955
#endif
956
      /* Avoid memories with nonzero SUBREG_BYTE, as offsetting the memory
957
         may result in incorrect reference.  We should simplify all valid
958
         subregs of MEM anyway.  But allow this after reload because we
959
         might be called from cleanup_subreg_operands.
960
 
961
         ??? This is a kludge.  */
962
      if (!reload_completed && SUBREG_BYTE (op) != 0
963
          && MEM_P (sub))
964
        return 0;
965
 
966
      /* FLOAT_MODE subregs can't be paradoxical.  Combine will occasionally
967
         create such rtl, and we must reject it.  */
968
      if (SCALAR_FLOAT_MODE_P (GET_MODE (op))
969
          && GET_MODE_SIZE (GET_MODE (op)) > GET_MODE_SIZE (GET_MODE (sub)))
970
        return 0;
971
 
972
      op = sub;
973
      code = GET_CODE (op);
974
    }
975
 
976
  if (code == REG)
977
    /* A register whose class is NO_REGS is not a general operand.  */
978
    return (REGNO (op) >= FIRST_PSEUDO_REGISTER
979
            || REGNO_REG_CLASS (REGNO (op)) != NO_REGS);
980
 
981
  if (code == MEM)
982
    {
983
      rtx y = XEXP (op, 0);
984
 
985
      if (! volatile_ok && MEM_VOLATILE_P (op))
986
        return 0;
987
 
988
      /* Use the mem's mode, since it will be reloaded thus.  */
989
      if (memory_address_addr_space_p (GET_MODE (op), y, MEM_ADDR_SPACE (op)))
990
        return 1;
991
    }
992
 
993
  return 0;
994
}
995
 
996
/* Return 1 if OP is a valid memory address for a memory reference
997
   of mode MODE.
998
 
999
   The main use of this function is as a predicate in match_operand
1000
   expressions in the machine description.  */
1001
 
1002
int
1003
address_operand (rtx op, enum machine_mode mode)
1004
{
1005
  return memory_address_p (mode, op);
1006
}
1007
 
1008
/* Return 1 if OP is a register reference of mode MODE.
1009
   If MODE is VOIDmode, accept a register in any mode.
1010
 
1011
   The main use of this function is as a predicate in match_operand
1012
   expressions in the machine description.
1013
 
1014
   As a special exception, registers whose class is NO_REGS are
1015
   not accepted by `register_operand'.  The reason for this change
1016
   is to allow the representation of special architecture artifacts
1017
   (such as a condition code register) without extending the rtl
1018
   definitions.  Since registers of class NO_REGS cannot be used
1019
   as registers in any case where register classes are examined,
1020
   it is most consistent to keep this function from accepting them.  */
1021
 
1022
int
1023
register_operand (rtx op, enum machine_mode mode)
1024
{
1025
  if (GET_MODE (op) != mode && mode != VOIDmode)
1026
    return 0;
1027
 
1028
  if (GET_CODE (op) == SUBREG)
1029
    {
1030
      rtx sub = SUBREG_REG (op);
1031
 
1032
      /* Before reload, we can allow (SUBREG (MEM...)) as a register operand
1033
         because it is guaranteed to be reloaded into one.
1034
         Just make sure the MEM is valid in itself.
1035
         (Ideally, (SUBREG (MEM)...) should not exist after reload,
1036
         but currently it does result from (SUBREG (REG)...) where the
1037
         reg went on the stack.)  */
1038
      if (! reload_completed && MEM_P (sub))
1039
        return general_operand (op, mode);
1040
 
1041
#ifdef CANNOT_CHANGE_MODE_CLASS
1042
      if (REG_P (sub)
1043
          && REGNO (sub) < FIRST_PSEUDO_REGISTER
1044
          && REG_CANNOT_CHANGE_MODE_P (REGNO (sub), GET_MODE (sub), mode)
1045
          && GET_MODE_CLASS (GET_MODE (sub)) != MODE_COMPLEX_INT
1046
          && GET_MODE_CLASS (GET_MODE (sub)) != MODE_COMPLEX_FLOAT)
1047
        return 0;
1048
#endif
1049
 
1050
      /* FLOAT_MODE subregs can't be paradoxical.  Combine will occasionally
1051
         create such rtl, and we must reject it.  */
1052
      if (SCALAR_FLOAT_MODE_P (GET_MODE (op))
1053
          && GET_MODE_SIZE (GET_MODE (op)) > GET_MODE_SIZE (GET_MODE (sub)))
1054
        return 0;
1055
 
1056
      op = sub;
1057
    }
1058
 
1059
  /* We don't consider registers whose class is NO_REGS
1060
     to be a register operand.  */
1061
  return (REG_P (op)
1062
          && (REGNO (op) >= FIRST_PSEUDO_REGISTER
1063
              || REGNO_REG_CLASS (REGNO (op)) != NO_REGS));
1064
}
1065
 
1066
/* Return 1 for a register in Pmode; ignore the tested mode.  */
1067
 
1068
int
1069
pmode_register_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
1070
{
1071
  return register_operand (op, Pmode);
1072
}
1073
 
1074
/* Return 1 if OP should match a MATCH_SCRATCH, i.e., if it is a SCRATCH
1075
   or a hard register.  */
1076
 
1077
int
1078
scratch_operand (rtx op, enum machine_mode mode)
1079
{
1080
  if (GET_MODE (op) != mode && mode != VOIDmode)
1081
    return 0;
1082
 
1083
  return (GET_CODE (op) == SCRATCH
1084
          || (REG_P (op)
1085
              && REGNO (op) < FIRST_PSEUDO_REGISTER));
1086
}
1087
 
1088
/* Return 1 if OP is a valid immediate operand for mode MODE.
1089
 
1090
   The main use of this function is as a predicate in match_operand
1091
   expressions in the machine description.  */
1092
 
1093
int
1094
immediate_operand (rtx op, enum machine_mode mode)
1095
{
1096
  /* Don't accept CONST_INT or anything similar
1097
     if the caller wants something floating.  */
1098
  if (GET_MODE (op) == VOIDmode && mode != VOIDmode
1099
      && GET_MODE_CLASS (mode) != MODE_INT
1100
      && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
1101
    return 0;
1102
 
1103
  if (CONST_INT_P (op)
1104
      && mode != VOIDmode
1105
      && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
1106
    return 0;
1107
 
1108
  return (CONSTANT_P (op)
1109
          && (GET_MODE (op) == mode || mode == VOIDmode
1110
              || GET_MODE (op) == VOIDmode)
1111
          && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
1112
          && LEGITIMATE_CONSTANT_P (op));
1113
}
1114
 
1115
/* Returns 1 if OP is an operand that is a CONST_INT.  */
1116
 
1117
int
1118
const_int_operand (rtx op, enum machine_mode mode)
1119
{
1120
  if (!CONST_INT_P (op))
1121
    return 0;
1122
 
1123
  if (mode != VOIDmode
1124
      && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
1125
    return 0;
1126
 
1127
  return 1;
1128
}
1129
 
1130
/* Returns 1 if OP is an operand that is a constant integer or constant
1131
   floating-point number.  */
1132
 
1133
int
1134
const_double_operand (rtx op, enum machine_mode mode)
1135
{
1136
  /* Don't accept CONST_INT or anything similar
1137
     if the caller wants something floating.  */
1138
  if (GET_MODE (op) == VOIDmode && mode != VOIDmode
1139
      && GET_MODE_CLASS (mode) != MODE_INT
1140
      && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
1141
    return 0;
1142
 
1143
  return ((GET_CODE (op) == CONST_DOUBLE || CONST_INT_P (op))
1144
          && (mode == VOIDmode || GET_MODE (op) == mode
1145
              || GET_MODE (op) == VOIDmode));
1146
}
1147
 
1148
/* Return 1 if OP is a general operand that is not an immediate operand.  */
1149
 
1150
int
1151
nonimmediate_operand (rtx op, enum machine_mode mode)
1152
{
1153
  return (general_operand (op, mode) && ! CONSTANT_P (op));
1154
}
1155
 
1156
/* Return 1 if OP is a register reference or immediate value of mode MODE.  */
1157
 
1158
int
1159
nonmemory_operand (rtx op, enum machine_mode mode)
1160
{
1161
  if (CONSTANT_P (op))
1162
    {
1163
      /* Don't accept CONST_INT or anything similar
1164
         if the caller wants something floating.  */
1165
      if (GET_MODE (op) == VOIDmode && mode != VOIDmode
1166
          && GET_MODE_CLASS (mode) != MODE_INT
1167
          && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
1168
        return 0;
1169
 
1170
      if (CONST_INT_P (op)
1171
          && mode != VOIDmode
1172
          && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
1173
        return 0;
1174
 
1175
      return ((GET_MODE (op) == VOIDmode || GET_MODE (op) == mode
1176
               || mode == VOIDmode)
1177
              && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
1178
              && LEGITIMATE_CONSTANT_P (op));
1179
    }
1180
 
1181
  if (GET_MODE (op) != mode && mode != VOIDmode)
1182
    return 0;
1183
 
1184
  if (GET_CODE (op) == SUBREG)
1185
    {
1186
      /* Before reload, we can allow (SUBREG (MEM...)) as a register operand
1187
         because it is guaranteed to be reloaded into one.
1188
         Just make sure the MEM is valid in itself.
1189
         (Ideally, (SUBREG (MEM)...) should not exist after reload,
1190
         but currently it does result from (SUBREG (REG)...) where the
1191
         reg went on the stack.)  */
1192
      if (! reload_completed && MEM_P (SUBREG_REG (op)))
1193
        return general_operand (op, mode);
1194
      op = SUBREG_REG (op);
1195
    }
1196
 
1197
  /* We don't consider registers whose class is NO_REGS
1198
     to be a register operand.  */
1199
  return (REG_P (op)
1200
          && (REGNO (op) >= FIRST_PSEUDO_REGISTER
1201
              || REGNO_REG_CLASS (REGNO (op)) != NO_REGS));
1202
}
1203
 
1204
/* Return 1 if OP is a valid operand that stands for pushing a
1205
   value of mode MODE onto the stack.
1206
 
1207
   The main use of this function is as a predicate in match_operand
1208
   expressions in the machine description.  */
1209
 
1210
int
1211
push_operand (rtx op, enum machine_mode mode)
1212
{
1213
  unsigned int rounded_size = GET_MODE_SIZE (mode);
1214
 
1215
#ifdef PUSH_ROUNDING
1216
  rounded_size = PUSH_ROUNDING (rounded_size);
1217
#endif
1218
 
1219
  if (!MEM_P (op))
1220
    return 0;
1221
 
1222
  if (mode != VOIDmode && GET_MODE (op) != mode)
1223
    return 0;
1224
 
1225
  op = XEXP (op, 0);
1226
 
1227
  if (rounded_size == GET_MODE_SIZE (mode))
1228
    {
1229
      if (GET_CODE (op) != STACK_PUSH_CODE)
1230
        return 0;
1231
    }
1232
  else
1233
    {
1234
      if (GET_CODE (op) != PRE_MODIFY
1235
          || GET_CODE (XEXP (op, 1)) != PLUS
1236
          || XEXP (XEXP (op, 1), 0) != XEXP (op, 0)
1237
          || !CONST_INT_P (XEXP (XEXP (op, 1), 1))
1238
#ifdef STACK_GROWS_DOWNWARD
1239
          || INTVAL (XEXP (XEXP (op, 1), 1)) != - (int) rounded_size
1240
#else
1241
          || INTVAL (XEXP (XEXP (op, 1), 1)) != (int) rounded_size
1242
#endif
1243
          )
1244
        return 0;
1245
    }
1246
 
1247
  return XEXP (op, 0) == stack_pointer_rtx;
1248
}
1249
 
1250
/* Return 1 if OP is a valid operand that stands for popping a
1251
   value of mode MODE off the stack.
1252
 
1253
   The main use of this function is as a predicate in match_operand
1254
   expressions in the machine description.  */
1255
 
1256
int
1257
pop_operand (rtx op, enum machine_mode mode)
1258
{
1259
  if (!MEM_P (op))
1260
    return 0;
1261
 
1262
  if (mode != VOIDmode && GET_MODE (op) != mode)
1263
    return 0;
1264
 
1265
  op = XEXP (op, 0);
1266
 
1267
  if (GET_CODE (op) != STACK_POP_CODE)
1268
    return 0;
1269
 
1270
  return XEXP (op, 0) == stack_pointer_rtx;
1271
}
1272
 
1273
/* Return 1 if ADDR is a valid memory address
1274
   for mode MODE in address space AS.  */
1275
 
1276
int
1277
memory_address_addr_space_p (enum machine_mode mode ATTRIBUTE_UNUSED,
1278
                             rtx addr, addr_space_t as)
1279
{
1280
#ifdef GO_IF_LEGITIMATE_ADDRESS
1281
  gcc_assert (ADDR_SPACE_GENERIC_P (as));
1282
  GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
1283
  return 0;
1284
 
1285
 win:
1286
  return 1;
1287
#else
1288
  return targetm.addr_space.legitimate_address_p (mode, addr, 0, as);
1289
#endif
1290
}
1291
 
1292
/* Return 1 if OP is a valid memory reference with mode MODE,
1293
   including a valid address.
1294
 
1295
   The main use of this function is as a predicate in match_operand
1296
   expressions in the machine description.  */
1297
 
1298
int
1299
memory_operand (rtx op, enum machine_mode mode)
1300
{
1301
  rtx inner;
1302
 
1303
  if (! reload_completed)
1304
    /* Note that no SUBREG is a memory operand before end of reload pass,
1305
       because (SUBREG (MEM...)) forces reloading into a register.  */
1306
    return MEM_P (op) && general_operand (op, mode);
1307
 
1308
  if (mode != VOIDmode && GET_MODE (op) != mode)
1309
    return 0;
1310
 
1311
  inner = op;
1312
  if (GET_CODE (inner) == SUBREG)
1313
    inner = SUBREG_REG (inner);
1314
 
1315
  return (MEM_P (inner) && general_operand (op, mode));
1316
}
1317
 
1318
/* Return 1 if OP is a valid indirect memory reference with mode MODE;
1319
   that is, a memory reference whose address is a general_operand.  */
1320
 
1321
int
1322
indirect_operand (rtx op, enum machine_mode mode)
1323
{
1324
  /* Before reload, a SUBREG isn't in memory (see memory_operand, above).  */
1325
  if (! reload_completed
1326
      && GET_CODE (op) == SUBREG && MEM_P (SUBREG_REG (op)))
1327
    {
1328
      int offset = SUBREG_BYTE (op);
1329
      rtx inner = SUBREG_REG (op);
1330
 
1331
      if (mode != VOIDmode && GET_MODE (op) != mode)
1332
        return 0;
1333
 
1334
      /* The only way that we can have a general_operand as the resulting
1335
         address is if OFFSET is zero and the address already is an operand
1336
         or if the address is (plus Y (const_int -OFFSET)) and Y is an
1337
         operand.  */
1338
 
1339
      return ((offset == 0 && general_operand (XEXP (inner, 0), Pmode))
1340
              || (GET_CODE (XEXP (inner, 0)) == PLUS
1341
                  && CONST_INT_P (XEXP (XEXP (inner, 0), 1))
1342
                  && INTVAL (XEXP (XEXP (inner, 0), 1)) == -offset
1343
                  && general_operand (XEXP (XEXP (inner, 0), 0), Pmode)));
1344
    }
1345
 
1346
  return (MEM_P (op)
1347
          && memory_operand (op, mode)
1348
          && general_operand (XEXP (op, 0), Pmode));
1349
}
1350
 
1351
/* Return 1 if this is an ordered comparison operator (not including
1352
   ORDERED and UNORDERED).  */
1353
 
1354
int
1355
ordered_comparison_operator (rtx op, enum machine_mode mode)
1356
{
1357
  if (mode != VOIDmode && GET_MODE (op) != mode)
1358
    return false;
1359
  switch (GET_CODE (op))
1360
    {
1361
    case EQ:
1362
    case NE:
1363
    case LT:
1364
    case LTU:
1365
    case LE:
1366
    case LEU:
1367
    case GT:
1368
    case GTU:
1369
    case GE:
1370
    case GEU:
1371
      return true;
1372
    default:
1373
      return false;
1374
    }
1375
}
1376
 
1377
/* Return 1 if this is a comparison operator.  This allows the use of
1378
   MATCH_OPERATOR to recognize all the branch insns.  */
1379
 
1380
int
1381
comparison_operator (rtx op, enum machine_mode mode)
1382
{
1383
  return ((mode == VOIDmode || GET_MODE (op) == mode)
1384
          && COMPARISON_P (op));
1385
}
1386
 
1387
/* If BODY is an insn body that uses ASM_OPERANDS, return it.  */
1388
 
1389
rtx
1390
extract_asm_operands (rtx body)
1391
{
1392
  rtx tmp;
1393
  switch (GET_CODE (body))
1394
    {
1395
    case ASM_OPERANDS:
1396
      return body;
1397
 
1398
    case SET:
1399
      /* Single output operand: BODY is (set OUTPUT (asm_operands ...)).  */
1400
      tmp = SET_SRC (body);
1401
      if (GET_CODE (tmp) == ASM_OPERANDS)
1402
        return tmp;
1403
      break;
1404
 
1405
    case PARALLEL:
1406
      tmp = XVECEXP (body, 0, 0);
1407
      if (GET_CODE (tmp) == ASM_OPERANDS)
1408
        return tmp;
1409
      if (GET_CODE (tmp) == SET)
1410
        {
1411
          tmp = SET_SRC (tmp);
1412
          if (GET_CODE (tmp) == ASM_OPERANDS)
1413
            return tmp;
1414
        }
1415
      break;
1416
 
1417
    default:
1418
      break;
1419
    }
1420
  return NULL;
1421
}
1422
 
1423
/* If BODY is an insn body that uses ASM_OPERANDS,
1424
   return the number of operands (both input and output) in the insn.
1425
   Otherwise return -1.  */
1426
 
1427
int
1428
asm_noperands (const_rtx body)
1429
{
1430
  rtx asm_op = extract_asm_operands (CONST_CAST_RTX (body));
1431
  int n_sets = 0;
1432
 
1433
  if (asm_op == NULL)
1434
    return -1;
1435
 
1436
  if (GET_CODE (body) == SET)
1437
    n_sets = 1;
1438
  else if (GET_CODE (body) == PARALLEL)
1439
    {
1440
      int i;
1441
      if (GET_CODE (XVECEXP (body, 0, 0)) == SET)
1442
        {
1443
          /* Multiple output operands, or 1 output plus some clobbers:
1444
             body is
1445
             [(set OUTPUT (asm_operands ...))... (clobber (reg ...))...].  */
1446
          /* Count backwards through CLOBBERs to determine number of SETs.  */
1447
          for (i = XVECLEN (body, 0); i > 0; i--)
1448
            {
1449
              if (GET_CODE (XVECEXP (body, 0, i - 1)) == SET)
1450
                break;
1451
              if (GET_CODE (XVECEXP (body, 0, i - 1)) != CLOBBER)
1452
                return -1;
1453
            }
1454
 
1455
          /* N_SETS is now number of output operands.  */
1456
          n_sets = i;
1457
 
1458
          /* Verify that all the SETs we have
1459
             came from a single original asm_operands insn
1460
             (so that invalid combinations are blocked).  */
1461
          for (i = 0; i < n_sets; i++)
1462
            {
1463
              rtx elt = XVECEXP (body, 0, i);
1464
              if (GET_CODE (elt) != SET)
1465
                return -1;
1466
              if (GET_CODE (SET_SRC (elt)) != ASM_OPERANDS)
1467
                return -1;
1468
              /* If these ASM_OPERANDS rtx's came from different original insns
1469
                 then they aren't allowed together.  */
1470
              if (ASM_OPERANDS_INPUT_VEC (SET_SRC (elt))
1471
                  != ASM_OPERANDS_INPUT_VEC (asm_op))
1472
                return -1;
1473
            }
1474
        }
1475
      else
1476
        {
1477
          /* 0 outputs, but some clobbers:
1478
             body is [(asm_operands ...) (clobber (reg ...))...].  */
1479
          /* Make sure all the other parallel things really are clobbers.  */
1480
          for (i = XVECLEN (body, 0) - 1; i > 0; i--)
1481
            if (GET_CODE (XVECEXP (body, 0, i)) != CLOBBER)
1482
              return -1;
1483
        }
1484
    }
1485
 
1486
  return (ASM_OPERANDS_INPUT_LENGTH (asm_op)
1487
          + ASM_OPERANDS_LABEL_LENGTH (asm_op) + n_sets);
1488
}
1489
 
1490
/* Assuming BODY is an insn body that uses ASM_OPERANDS,
1491
   copy its operands (both input and output) into the vector OPERANDS,
1492
   the locations of the operands within the insn into the vector OPERAND_LOCS,
1493
   and the constraints for the operands into CONSTRAINTS.
1494
   Write the modes of the operands into MODES.
1495
   Return the assembler-template.
1496
 
1497
   If MODES, OPERAND_LOCS, CONSTRAINTS or OPERANDS is 0,
1498
   we don't store that info.  */
1499
 
1500
const char *
1501
decode_asm_operands (rtx body, rtx *operands, rtx **operand_locs,
1502
                     const char **constraints, enum machine_mode *modes,
1503
                     location_t *loc)
1504
{
1505
  int nbase = 0, n, i;
1506
  rtx asmop;
1507
 
1508
  switch (GET_CODE (body))
1509
    {
1510
    case ASM_OPERANDS:
1511
      /* Zero output asm: BODY is (asm_operands ...).  */
1512
      asmop = body;
1513
      break;
1514
 
1515
    case SET:
1516
      /* Single output asm: BODY is (set OUTPUT (asm_operands ...)).  */
1517
      asmop = SET_SRC (body);
1518
 
1519
      /* The output is in the SET.
1520
         Its constraint is in the ASM_OPERANDS itself.  */
1521
      if (operands)
1522
        operands[0] = SET_DEST (body);
1523
      if (operand_locs)
1524
        operand_locs[0] = &SET_DEST (body);
1525
      if (constraints)
1526
        constraints[0] = ASM_OPERANDS_OUTPUT_CONSTRAINT (asmop);
1527
      if (modes)
1528
        modes[0] = GET_MODE (SET_DEST (body));
1529
      nbase = 1;
1530
      break;
1531
 
1532
    case PARALLEL:
1533
      {
1534
        int nparallel = XVECLEN (body, 0); /* Includes CLOBBERs.  */
1535
 
1536
        asmop = XVECEXP (body, 0, 0);
1537
        if (GET_CODE (asmop) == SET)
1538
          {
1539
            asmop = SET_SRC (asmop);
1540
 
1541
            /* At least one output, plus some CLOBBERs.  The outputs are in
1542
               the SETs.  Their constraints are in the ASM_OPERANDS itself.  */
1543
            for (i = 0; i < nparallel; i++)
1544
              {
1545
                if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
1546
                  break;                /* Past last SET */
1547
                if (operands)
1548
                  operands[i] = SET_DEST (XVECEXP (body, 0, i));
1549
                if (operand_locs)
1550
                  operand_locs[i] = &SET_DEST (XVECEXP (body, 0, i));
1551
                if (constraints)
1552
                  constraints[i] = XSTR (SET_SRC (XVECEXP (body, 0, i)), 1);
1553
                if (modes)
1554
                  modes[i] = GET_MODE (SET_DEST (XVECEXP (body, 0, i)));
1555
              }
1556
            nbase = i;
1557
          }
1558
        break;
1559
      }
1560
 
1561
    default:
1562
      gcc_unreachable ();
1563
    }
1564
 
1565
  n = ASM_OPERANDS_INPUT_LENGTH (asmop);
1566
  for (i = 0; i < n; i++)
1567
    {
1568
      if (operand_locs)
1569
        operand_locs[nbase + i] = &ASM_OPERANDS_INPUT (asmop, i);
1570
      if (operands)
1571
        operands[nbase + i] = ASM_OPERANDS_INPUT (asmop, i);
1572
      if (constraints)
1573
        constraints[nbase + i] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop, i);
1574
      if (modes)
1575
        modes[nbase + i] = ASM_OPERANDS_INPUT_MODE (asmop, i);
1576
    }
1577
  nbase += n;
1578
 
1579
  n = ASM_OPERANDS_LABEL_LENGTH (asmop);
1580
  for (i = 0; i < n; i++)
1581
    {
1582
      if (operand_locs)
1583
        operand_locs[nbase + i] = &ASM_OPERANDS_LABEL (asmop, i);
1584
      if (operands)
1585
        operands[nbase + i] = ASM_OPERANDS_LABEL (asmop, i);
1586
      if (constraints)
1587
        constraints[nbase + i] = "";
1588
      if (modes)
1589
        modes[nbase + i] = Pmode;
1590
    }
1591
 
1592
  if (loc)
1593
    *loc = ASM_OPERANDS_SOURCE_LOCATION (asmop);
1594
 
1595
  return ASM_OPERANDS_TEMPLATE (asmop);
1596
}
1597
 
1598
/* Check if an asm_operand matches its constraints.
1599
   Return > 0 if ok, = 0 if bad, < 0 if inconclusive.  */
1600
 
1601
int
1602
asm_operand_ok (rtx op, const char *constraint, const char **constraints)
1603
{
1604
  int result = 0;
1605
 
1606
  /* Use constrain_operands after reload.  */
1607
  gcc_assert (!reload_completed);
1608
 
1609
  /* Empty constraint string is the same as "X,...,X", i.e. X for as
1610
     many alternatives as required to match the other operands.  */
1611
  if (*constraint == '\0')
1612
    return 1;
1613
 
1614
  while (*constraint)
1615
    {
1616
      char c = *constraint;
1617
      int len;
1618
      switch (c)
1619
        {
1620
        case ',':
1621
          constraint++;
1622
          continue;
1623
        case '=':
1624
        case '+':
1625
        case '*':
1626
        case '%':
1627
        case '!':
1628
        case '#':
1629
        case '&':
1630
        case '?':
1631
          break;
1632
 
1633
        case '0': case '1': case '2': case '3': case '4':
1634
        case '5': case '6': case '7': case '8': case '9':
1635
          /* If caller provided constraints pointer, look up
1636
             the maching constraint.  Otherwise, our caller should have
1637
             given us the proper matching constraint, but we can't
1638
             actually fail the check if they didn't.  Indicate that
1639
             results are inconclusive.  */
1640
          if (constraints)
1641
            {
1642
              char *end;
1643
              unsigned long match;
1644
 
1645
              match = strtoul (constraint, &end, 10);
1646
              if (!result)
1647
                result = asm_operand_ok (op, constraints[match], NULL);
1648
              constraint = (const char *) end;
1649
            }
1650
          else
1651
            {
1652
              do
1653
                constraint++;
1654
              while (ISDIGIT (*constraint));
1655
              if (! result)
1656
                result = -1;
1657
            }
1658
          continue;
1659
 
1660
        case 'p':
1661
          if (address_operand (op, VOIDmode))
1662
            result = 1;
1663
          break;
1664
 
1665
        case TARGET_MEM_CONSTRAINT:
1666
        case 'V': /* non-offsettable */
1667
          if (memory_operand (op, VOIDmode))
1668
            result = 1;
1669
          break;
1670
 
1671
        case 'o': /* offsettable */
1672
          if (offsettable_nonstrict_memref_p (op))
1673
            result = 1;
1674
          break;
1675
 
1676
        case '<':
1677
          /* ??? Before auto-inc-dec, auto inc/dec insns are not supposed to exist,
1678
             excepting those that expand_call created.  Further, on some
1679
             machines which do not have generalized auto inc/dec, an inc/dec
1680
             is not a memory_operand.
1681
 
1682
             Match any memory and hope things are resolved after reload.  */
1683
 
1684
          if (MEM_P (op)
1685
              && (1
1686
                  || GET_CODE (XEXP (op, 0)) == PRE_DEC
1687
                  || GET_CODE (XEXP (op, 0)) == POST_DEC))
1688
            result = 1;
1689
          break;
1690
 
1691
        case '>':
1692
          if (MEM_P (op)
1693
              && (1
1694
                  || GET_CODE (XEXP (op, 0)) == PRE_INC
1695
                  || GET_CODE (XEXP (op, 0)) == POST_INC))
1696
            result = 1;
1697
          break;
1698
 
1699
        case 'E':
1700
        case 'F':
1701
          if (GET_CODE (op) == CONST_DOUBLE
1702
              || (GET_CODE (op) == CONST_VECTOR
1703
                  && GET_MODE_CLASS (GET_MODE (op)) == MODE_VECTOR_FLOAT))
1704
            result = 1;
1705
          break;
1706
 
1707
        case 'G':
1708
          if (GET_CODE (op) == CONST_DOUBLE
1709
              && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, 'G', constraint))
1710
            result = 1;
1711
          break;
1712
        case 'H':
1713
          if (GET_CODE (op) == CONST_DOUBLE
1714
              && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, 'H', constraint))
1715
            result = 1;
1716
          break;
1717
 
1718
        case 's':
1719
          if (CONST_INT_P (op)
1720
              || (GET_CODE (op) == CONST_DOUBLE
1721
                  && GET_MODE (op) == VOIDmode))
1722
            break;
1723
          /* Fall through.  */
1724
 
1725
        case 'i':
1726
          if (CONSTANT_P (op) && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op)))
1727
            result = 1;
1728
          break;
1729
 
1730
        case 'n':
1731
          if (CONST_INT_P (op)
1732
              || (GET_CODE (op) == CONST_DOUBLE
1733
                  && GET_MODE (op) == VOIDmode))
1734
            result = 1;
1735
          break;
1736
 
1737
        case 'I':
1738
          if (CONST_INT_P (op)
1739
              && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'I', constraint))
1740
            result = 1;
1741
          break;
1742
        case 'J':
1743
          if (CONST_INT_P (op)
1744
              && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'J', constraint))
1745
            result = 1;
1746
          break;
1747
        case 'K':
1748
          if (CONST_INT_P (op)
1749
              && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'K', constraint))
1750
            result = 1;
1751
          break;
1752
        case 'L':
1753
          if (CONST_INT_P (op)
1754
              && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'L', constraint))
1755
            result = 1;
1756
          break;
1757
        case 'M':
1758
          if (CONST_INT_P (op)
1759
              && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'M', constraint))
1760
            result = 1;
1761
          break;
1762
        case 'N':
1763
          if (CONST_INT_P (op)
1764
              && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'N', constraint))
1765
            result = 1;
1766
          break;
1767
        case 'O':
1768
          if (CONST_INT_P (op)
1769
              && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'O', constraint))
1770
            result = 1;
1771
          break;
1772
        case 'P':
1773
          if (CONST_INT_P (op)
1774
              && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'P', constraint))
1775
            result = 1;
1776
          break;
1777
 
1778
        case 'X':
1779
          result = 1;
1780
          break;
1781
 
1782
        case 'g':
1783
          if (general_operand (op, VOIDmode))
1784
            result = 1;
1785
          break;
1786
 
1787
        default:
1788
          /* For all other letters, we first check for a register class,
1789
             otherwise it is an EXTRA_CONSTRAINT.  */
1790
          if (REG_CLASS_FROM_CONSTRAINT (c, constraint) != NO_REGS)
1791
            {
1792
            case 'r':
1793
              if (GET_MODE (op) == BLKmode)
1794
                break;
1795
              if (register_operand (op, VOIDmode))
1796
                result = 1;
1797
            }
1798
#ifdef EXTRA_CONSTRAINT_STR
1799
          else if (EXTRA_MEMORY_CONSTRAINT (c, constraint))
1800
            /* Every memory operand can be reloaded to fit.  */
1801
            result = result || memory_operand (op, VOIDmode);
1802
          else if (EXTRA_ADDRESS_CONSTRAINT (c, constraint))
1803
            /* Every address operand can be reloaded to fit.  */
1804
            result = result || address_operand (op, VOIDmode);
1805
          else if (EXTRA_CONSTRAINT_STR (op, c, constraint))
1806
            result = 1;
1807
#endif
1808
          break;
1809
        }
1810
      len = CONSTRAINT_LEN (c, constraint);
1811
      do
1812
        constraint++;
1813
      while (--len && *constraint);
1814
      if (len)
1815
        return 0;
1816
    }
1817
 
1818
  return result;
1819
}
1820
 
1821
/* Given an rtx *P, if it is a sum containing an integer constant term,
1822
   return the location (type rtx *) of the pointer to that constant term.
1823
   Otherwise, return a null pointer.  */
1824
 
1825
rtx *
1826
find_constant_term_loc (rtx *p)
1827
{
1828
  rtx *tem;
1829
  enum rtx_code code = GET_CODE (*p);
1830
 
1831
  /* If *P IS such a constant term, P is its location.  */
1832
 
1833
  if (code == CONST_INT || code == SYMBOL_REF || code == LABEL_REF
1834
      || code == CONST)
1835
    return p;
1836
 
1837
  /* Otherwise, if not a sum, it has no constant term.  */
1838
 
1839
  if (GET_CODE (*p) != PLUS)
1840
    return 0;
1841
 
1842
  /* If one of the summands is constant, return its location.  */
1843
 
1844
  if (XEXP (*p, 0) && CONSTANT_P (XEXP (*p, 0))
1845
      && XEXP (*p, 1) && CONSTANT_P (XEXP (*p, 1)))
1846
    return p;
1847
 
1848
  /* Otherwise, check each summand for containing a constant term.  */
1849
 
1850
  if (XEXP (*p, 0) != 0)
1851
    {
1852
      tem = find_constant_term_loc (&XEXP (*p, 0));
1853
      if (tem != 0)
1854
        return tem;
1855
    }
1856
 
1857
  if (XEXP (*p, 1) != 0)
1858
    {
1859
      tem = find_constant_term_loc (&XEXP (*p, 1));
1860
      if (tem != 0)
1861
        return tem;
1862
    }
1863
 
1864
  return 0;
1865
}
1866
 
1867
/* Return 1 if OP is a memory reference
1868
   whose address contains no side effects
1869
   and remains valid after the addition
1870
   of a positive integer less than the
1871
   size of the object being referenced.
1872
 
1873
   We assume that the original address is valid and do not check it.
1874
 
1875
   This uses strict_memory_address_p as a subroutine, so
1876
   don't use it before reload.  */
1877
 
1878
int
1879
offsettable_memref_p (rtx op)
1880
{
1881
  return ((MEM_P (op))
1882
          && offsettable_address_addr_space_p (1, GET_MODE (op), XEXP (op, 0),
1883
                                               MEM_ADDR_SPACE (op)));
1884
}
1885
 
1886
/* Similar, but don't require a strictly valid mem ref:
1887
   consider pseudo-regs valid as index or base regs.  */
1888
 
1889
int
1890
offsettable_nonstrict_memref_p (rtx op)
1891
{
1892
  return ((MEM_P (op))
1893
          && offsettable_address_addr_space_p (0, GET_MODE (op), XEXP (op, 0),
1894
                                               MEM_ADDR_SPACE (op)));
1895
}
1896
 
1897
/* Return 1 if Y is a memory address which contains no side effects
1898
   and would remain valid for address space AS after the addition of
1899
   a positive integer less than the size of that mode.
1900
 
1901
   We assume that the original address is valid and do not check it.
1902
   We do check that it is valid for narrower modes.
1903
 
1904
   If STRICTP is nonzero, we require a strictly valid address,
1905
   for the sake of use in reload.c.  */
1906
 
1907
int
1908
offsettable_address_addr_space_p (int strictp, enum machine_mode mode, rtx y,
1909
                                  addr_space_t as)
1910
{
1911
  enum rtx_code ycode = GET_CODE (y);
1912
  rtx z;
1913
  rtx y1 = y;
1914
  rtx *y2;
1915
  int (*addressp) (enum machine_mode, rtx, addr_space_t) =
1916
    (strictp ? strict_memory_address_addr_space_p
1917
             : memory_address_addr_space_p);
1918
  unsigned int mode_sz = GET_MODE_SIZE (mode);
1919
 
1920
  if (CONSTANT_ADDRESS_P (y))
1921
    return 1;
1922
 
1923
  /* Adjusting an offsettable address involves changing to a narrower mode.
1924
     Make sure that's OK.  */
1925
 
1926
  if (mode_dependent_address_p (y))
1927
    return 0;
1928
 
1929
  /* ??? How much offset does an offsettable BLKmode reference need?
1930
     Clearly that depends on the situation in which it's being used.
1931
     However, the current situation in which we test 0xffffffff is
1932
     less than ideal.  Caveat user.  */
1933
  if (mode_sz == 0)
1934
    mode_sz = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
1935
 
1936
  /* If the expression contains a constant term,
1937
     see if it remains valid when max possible offset is added.  */
1938
 
1939
  if ((ycode == PLUS) && (y2 = find_constant_term_loc (&y1)))
1940
    {
1941
      int good;
1942
 
1943
      y1 = *y2;
1944
      *y2 = plus_constant (*y2, mode_sz - 1);
1945
      /* Use QImode because an odd displacement may be automatically invalid
1946
         for any wider mode.  But it should be valid for a single byte.  */
1947
      good = (*addressp) (QImode, y, as);
1948
 
1949
      /* In any case, restore old contents of memory.  */
1950
      *y2 = y1;
1951
      return good;
1952
    }
1953
 
1954
  if (GET_RTX_CLASS (ycode) == RTX_AUTOINC)
1955
    return 0;
1956
 
1957
  /* The offset added here is chosen as the maximum offset that
1958
     any instruction could need to add when operating on something
1959
     of the specified mode.  We assume that if Y and Y+c are
1960
     valid addresses then so is Y+d for all 0<d<c.  adjust_address will
1961
     go inside a LO_SUM here, so we do so as well.  */
1962
  if (GET_CODE (y) == LO_SUM
1963
      && mode != BLKmode
1964
      && mode_sz <= GET_MODE_ALIGNMENT (mode) / BITS_PER_UNIT)
1965
    z = gen_rtx_LO_SUM (GET_MODE (y), XEXP (y, 0),
1966
                        plus_constant (XEXP (y, 1), mode_sz - 1));
1967
  else
1968
    z = plus_constant (y, mode_sz - 1);
1969
 
1970
  /* Use QImode because an odd displacement may be automatically invalid
1971
     for any wider mode.  But it should be valid for a single byte.  */
1972
  return (*addressp) (QImode, z, as);
1973
}
1974
 
1975
/* Return 1 if ADDR is an address-expression whose effect depends
1976
   on the mode of the memory reference it is used in.
1977
 
1978
   Autoincrement addressing is a typical example of mode-dependence
1979
   because the amount of the increment depends on the mode.  */
1980
 
1981
int
1982
mode_dependent_address_p (rtx addr)
1983
{
1984
  /* Auto-increment addressing with anything other than post_modify
1985
     or pre_modify always introduces a mode dependency.  Catch such
1986
     cases now instead of deferring to the target.  */
1987
  if (GET_CODE (addr) == PRE_INC
1988
      || GET_CODE (addr) == POST_INC
1989
      || GET_CODE (addr) == PRE_DEC
1990
      || GET_CODE (addr) == POST_DEC)
1991
    return 1;
1992
 
1993
  GO_IF_MODE_DEPENDENT_ADDRESS (addr, win);
1994
  return 0;
1995
  /* Label `win' might (not) be used via GO_IF_MODE_DEPENDENT_ADDRESS.  */
1996
 win: ATTRIBUTE_UNUSED_LABEL
1997
  return 1;
1998
}
1999
 
2000
/* Like extract_insn, but save insn extracted and don't extract again, when
2001
   called again for the same insn expecting that recog_data still contain the
2002
   valid information.  This is used primary by gen_attr infrastructure that
2003
   often does extract insn again and again.  */
2004
void
2005
extract_insn_cached (rtx insn)
2006
{
2007
  if (recog_data.insn == insn && INSN_CODE (insn) >= 0)
2008
    return;
2009
  extract_insn (insn);
2010
  recog_data.insn = insn;
2011
}
2012
 
2013
/* Do cached extract_insn, constrain_operands and complain about failures.
2014
   Used by insn_attrtab.  */
2015
void
2016
extract_constrain_insn_cached (rtx insn)
2017
{
2018
  extract_insn_cached (insn);
2019
  if (which_alternative == -1
2020
      && !constrain_operands (reload_completed))
2021
    fatal_insn_not_found (insn);
2022
}
2023
 
2024
/* Do cached constrain_operands and complain about failures.  */
2025
int
2026
constrain_operands_cached (int strict)
2027
{
2028
  if (which_alternative == -1)
2029
    return constrain_operands (strict);
2030
  else
2031
    return 1;
2032
}
2033
 
2034
/* Analyze INSN and fill in recog_data.  */
2035
 
2036
void
2037
extract_insn (rtx insn)
2038
{
2039
  int i;
2040
  int icode;
2041
  int noperands;
2042
  rtx body = PATTERN (insn);
2043
 
2044
  recog_data.n_operands = 0;
2045
  recog_data.n_alternatives = 0;
2046
  recog_data.n_dups = 0;
2047
 
2048
  switch (GET_CODE (body))
2049
    {
2050
    case USE:
2051
    case CLOBBER:
2052
    case ASM_INPUT:
2053
    case ADDR_VEC:
2054
    case ADDR_DIFF_VEC:
2055
    case VAR_LOCATION:
2056
      return;
2057
 
2058
    case SET:
2059
      if (GET_CODE (SET_SRC (body)) == ASM_OPERANDS)
2060
        goto asm_insn;
2061
      else
2062
        goto normal_insn;
2063
    case PARALLEL:
2064
      if ((GET_CODE (XVECEXP (body, 0, 0)) == SET
2065
           && GET_CODE (SET_SRC (XVECEXP (body, 0, 0))) == ASM_OPERANDS)
2066
          || GET_CODE (XVECEXP (body, 0, 0)) == ASM_OPERANDS)
2067
        goto asm_insn;
2068
      else
2069
        goto normal_insn;
2070
    case ASM_OPERANDS:
2071
    asm_insn:
2072
      recog_data.n_operands = noperands = asm_noperands (body);
2073
      if (noperands >= 0)
2074
        {
2075
          /* This insn is an `asm' with operands.  */
2076
 
2077
          /* expand_asm_operands makes sure there aren't too many operands.  */
2078
          gcc_assert (noperands <= MAX_RECOG_OPERANDS);
2079
 
2080
          /* Now get the operand values and constraints out of the insn.  */
2081
          decode_asm_operands (body, recog_data.operand,
2082
                               recog_data.operand_loc,
2083
                               recog_data.constraints,
2084
                               recog_data.operand_mode, NULL);
2085
          if (noperands > 0)
2086
            {
2087
              const char *p =  recog_data.constraints[0];
2088
              recog_data.n_alternatives = 1;
2089
              while (*p)
2090
                recog_data.n_alternatives += (*p++ == ',');
2091
            }
2092
          break;
2093
        }
2094
      fatal_insn_not_found (insn);
2095
 
2096
    default:
2097
    normal_insn:
2098
      /* Ordinary insn: recognize it, get the operands via insn_extract
2099
         and get the constraints.  */
2100
 
2101
      icode = recog_memoized (insn);
2102
      if (icode < 0)
2103
        fatal_insn_not_found (insn);
2104
 
2105
      recog_data.n_operands = noperands = insn_data[icode].n_operands;
2106
      recog_data.n_alternatives = insn_data[icode].n_alternatives;
2107
      recog_data.n_dups = insn_data[icode].n_dups;
2108
 
2109
      insn_extract (insn);
2110
 
2111
      for (i = 0; i < noperands; i++)
2112
        {
2113
          recog_data.constraints[i] = insn_data[icode].operand[i].constraint;
2114
          recog_data.operand_mode[i] = insn_data[icode].operand[i].mode;
2115
          /* VOIDmode match_operands gets mode from their real operand.  */
2116
          if (recog_data.operand_mode[i] == VOIDmode)
2117
            recog_data.operand_mode[i] = GET_MODE (recog_data.operand[i]);
2118
        }
2119
    }
2120
  for (i = 0; i < noperands; i++)
2121
    recog_data.operand_type[i]
2122
      = (recog_data.constraints[i][0] == '=' ? OP_OUT
2123
         : recog_data.constraints[i][0] == '+' ? OP_INOUT
2124
         : OP_IN);
2125
 
2126
  gcc_assert (recog_data.n_alternatives <= MAX_RECOG_ALTERNATIVES);
2127
 
2128
  if (INSN_CODE (insn) < 0)
2129
    for (i = 0; i < recog_data.n_alternatives; i++)
2130
      recog_data.alternative_enabled_p[i] = true;
2131
  else
2132
    {
2133
      recog_data.insn = insn;
2134
      for (i = 0; i < recog_data.n_alternatives; i++)
2135
        {
2136
          which_alternative = i;
2137
          recog_data.alternative_enabled_p[i] = get_attr_enabled (insn);
2138
        }
2139
    }
2140
 
2141
  recog_data.insn = NULL;
2142
  which_alternative = -1;
2143
}
2144
 
2145
/* After calling extract_insn, you can use this function to extract some
2146
   information from the constraint strings into a more usable form.
2147
   The collected data is stored in recog_op_alt.  */
2148
void
2149
preprocess_constraints (void)
2150
{
2151
  int i;
2152
 
2153
  for (i = 0; i < recog_data.n_operands; i++)
2154
    memset (recog_op_alt[i], 0, (recog_data.n_alternatives
2155
                                 * sizeof (struct operand_alternative)));
2156
 
2157
  for (i = 0; i < recog_data.n_operands; i++)
2158
    {
2159
      int j;
2160
      struct operand_alternative *op_alt;
2161
      const char *p = recog_data.constraints[i];
2162
 
2163
      op_alt = recog_op_alt[i];
2164
 
2165
      for (j = 0; j < recog_data.n_alternatives; j++)
2166
        {
2167
          op_alt[j].cl = NO_REGS;
2168
          op_alt[j].constraint = p;
2169
          op_alt[j].matches = -1;
2170
          op_alt[j].matched = -1;
2171
 
2172
          if (!recog_data.alternative_enabled_p[j])
2173
            {
2174
              p = skip_alternative (p);
2175
              continue;
2176
            }
2177
 
2178
          if (*p == '\0' || *p == ',')
2179
            {
2180
              op_alt[j].anything_ok = 1;
2181
              continue;
2182
            }
2183
 
2184
          for (;;)
2185
            {
2186
              char c = *p;
2187
              if (c == '#')
2188
                do
2189
                  c = *++p;
2190
                while (c != ',' && c != '\0');
2191
              if (c == ',' || c == '\0')
2192
                {
2193
                  p++;
2194
                  break;
2195
                }
2196
 
2197
              switch (c)
2198
                {
2199
                case '=': case '+': case '*': case '%':
2200
                case 'E': case 'F': case 'G': case 'H':
2201
                case 's': case 'i': case 'n':
2202
                case 'I': case 'J': case 'K': case 'L':
2203
                case 'M': case 'N': case 'O': case 'P':
2204
                  /* These don't say anything we care about.  */
2205
                  break;
2206
 
2207
                case '?':
2208
                  op_alt[j].reject += 6;
2209
                  break;
2210
                case '!':
2211
                  op_alt[j].reject += 600;
2212
                  break;
2213
                case '&':
2214
                  op_alt[j].earlyclobber = 1;
2215
                  break;
2216
 
2217
                case '0': case '1': case '2': case '3': case '4':
2218
                case '5': case '6': case '7': case '8': case '9':
2219
                  {
2220
                    char *end;
2221
                    op_alt[j].matches = strtoul (p, &end, 10);
2222
                    recog_op_alt[op_alt[j].matches][j].matched = i;
2223
                    p = end;
2224
                  }
2225
                  continue;
2226
 
2227
                case TARGET_MEM_CONSTRAINT:
2228
                  op_alt[j].memory_ok = 1;
2229
                  break;
2230
                case '<':
2231
                  op_alt[j].decmem_ok = 1;
2232
                  break;
2233
                case '>':
2234
                  op_alt[j].incmem_ok = 1;
2235
                  break;
2236
                case 'V':
2237
                  op_alt[j].nonoffmem_ok = 1;
2238
                  break;
2239
                case 'o':
2240
                  op_alt[j].offmem_ok = 1;
2241
                  break;
2242
                case 'X':
2243
                  op_alt[j].anything_ok = 1;
2244
                  break;
2245
 
2246
                case 'p':
2247
                  op_alt[j].is_address = 1;
2248
                  op_alt[j].cl = reg_class_subunion[(int) op_alt[j].cl]
2249
                      [(int) base_reg_class (VOIDmode, ADDRESS, SCRATCH)];
2250
                  break;
2251
 
2252
                case 'g':
2253
                case 'r':
2254
                  op_alt[j].cl =
2255
                   reg_class_subunion[(int) op_alt[j].cl][(int) GENERAL_REGS];
2256
                  break;
2257
 
2258
                default:
2259
                  if (EXTRA_MEMORY_CONSTRAINT (c, p))
2260
                    {
2261
                      op_alt[j].memory_ok = 1;
2262
                      break;
2263
                    }
2264
                  if (EXTRA_ADDRESS_CONSTRAINT (c, p))
2265
                    {
2266
                      op_alt[j].is_address = 1;
2267
                      op_alt[j].cl
2268
                        = (reg_class_subunion
2269
                           [(int) op_alt[j].cl]
2270
                           [(int) base_reg_class (VOIDmode, ADDRESS,
2271
                                                  SCRATCH)]);
2272
                      break;
2273
                    }
2274
 
2275
                  op_alt[j].cl
2276
                    = (reg_class_subunion
2277
                       [(int) op_alt[j].cl]
2278
                       [(int) REG_CLASS_FROM_CONSTRAINT ((unsigned char) c, p)]);
2279
                  break;
2280
                }
2281
              p += CONSTRAINT_LEN (c, p);
2282
            }
2283
        }
2284
    }
2285
}
2286
 
2287
/* Check the operands of an insn against the insn's operand constraints
2288
   and return 1 if they are valid.
2289
   The information about the insn's operands, constraints, operand modes
2290
   etc. is obtained from the global variables set up by extract_insn.
2291
 
2292
   WHICH_ALTERNATIVE is set to a number which indicates which
2293
   alternative of constraints was matched: 0 for the first alternative,
2294
   1 for the next, etc.
2295
 
2296
   In addition, when two operands are required to match
2297
   and it happens that the output operand is (reg) while the
2298
   input operand is --(reg) or ++(reg) (a pre-inc or pre-dec),
2299
   make the output operand look like the input.
2300
   This is because the output operand is the one the template will print.
2301
 
2302
   This is used in final, just before printing the assembler code and by
2303
   the routines that determine an insn's attribute.
2304
 
2305
   If STRICT is a positive nonzero value, it means that we have been
2306
   called after reload has been completed.  In that case, we must
2307
   do all checks strictly.  If it is zero, it means that we have been called
2308
   before reload has completed.  In that case, we first try to see if we can
2309
   find an alternative that matches strictly.  If not, we try again, this
2310
   time assuming that reload will fix up the insn.  This provides a "best
2311
   guess" for the alternative and is used to compute attributes of insns prior
2312
   to reload.  A negative value of STRICT is used for this internal call.  */
2313
 
2314
struct funny_match
2315
{
2316
  int this_op, other;
2317
};
2318
 
2319
int
2320
constrain_operands (int strict)
2321
{
2322
  const char *constraints[MAX_RECOG_OPERANDS];
2323
  int matching_operands[MAX_RECOG_OPERANDS];
2324
  int earlyclobber[MAX_RECOG_OPERANDS];
2325
  int c;
2326
 
2327
  struct funny_match funny_match[MAX_RECOG_OPERANDS];
2328
  int funny_match_index;
2329
 
2330
  which_alternative = 0;
2331
  if (recog_data.n_operands == 0 || recog_data.n_alternatives == 0)
2332
    return 1;
2333
 
2334
  for (c = 0; c < recog_data.n_operands; c++)
2335
    {
2336
      constraints[c] = recog_data.constraints[c];
2337
      matching_operands[c] = -1;
2338
    }
2339
 
2340
  do
2341
    {
2342
      int seen_earlyclobber_at = -1;
2343
      int opno;
2344
      int lose = 0;
2345
      funny_match_index = 0;
2346
 
2347
      if (!recog_data.alternative_enabled_p[which_alternative])
2348
        {
2349
          int i;
2350
 
2351
          for (i = 0; i < recog_data.n_operands; i++)
2352
            constraints[i] = skip_alternative (constraints[i]);
2353
 
2354
          which_alternative++;
2355
          continue;
2356
        }
2357
 
2358
      for (opno = 0; opno < recog_data.n_operands; opno++)
2359
        {
2360
          rtx op = recog_data.operand[opno];
2361
          enum machine_mode mode = GET_MODE (op);
2362
          const char *p = constraints[opno];
2363
          int offset = 0;
2364
          int win = 0;
2365
          int val;
2366
          int len;
2367
 
2368
          earlyclobber[opno] = 0;
2369
 
2370
          /* A unary operator may be accepted by the predicate, but it
2371
             is irrelevant for matching constraints.  */
2372
          if (UNARY_P (op))
2373
            op = XEXP (op, 0);
2374
 
2375
          if (GET_CODE (op) == SUBREG)
2376
            {
2377
              if (REG_P (SUBREG_REG (op))
2378
                  && REGNO (SUBREG_REG (op)) < FIRST_PSEUDO_REGISTER)
2379
                offset = subreg_regno_offset (REGNO (SUBREG_REG (op)),
2380
                                              GET_MODE (SUBREG_REG (op)),
2381
                                              SUBREG_BYTE (op),
2382
                                              GET_MODE (op));
2383
              op = SUBREG_REG (op);
2384
            }
2385
 
2386
          /* An empty constraint or empty alternative
2387
             allows anything which matched the pattern.  */
2388
          if (*p == 0 || *p == ',')
2389
            win = 1;
2390
 
2391
          do
2392
            switch (c = *p, len = CONSTRAINT_LEN (c, p), c)
2393
              {
2394
              case '\0':
2395
                len = 0;
2396
                break;
2397
              case ',':
2398
                c = '\0';
2399
                break;
2400
 
2401
              case '?':  case '!': case '*':  case '%':
2402
              case '=':  case '+':
2403
                break;
2404
 
2405
              case '#':
2406
                /* Ignore rest of this alternative as far as
2407
                   constraint checking is concerned.  */
2408
                do
2409
                  p++;
2410
                while (*p && *p != ',');
2411
                len = 0;
2412
                break;
2413
 
2414
              case '&':
2415
                earlyclobber[opno] = 1;
2416
                if (seen_earlyclobber_at < 0)
2417
                  seen_earlyclobber_at = opno;
2418
                break;
2419
 
2420
              case '0':  case '1':  case '2':  case '3':  case '4':
2421
              case '5':  case '6':  case '7':  case '8':  case '9':
2422
                {
2423
                  /* This operand must be the same as a previous one.
2424
                     This kind of constraint is used for instructions such
2425
                     as add when they take only two operands.
2426
 
2427
                     Note that the lower-numbered operand is passed first.
2428
 
2429
                     If we are not testing strictly, assume that this
2430
                     constraint will be satisfied.  */
2431
 
2432
                  char *end;
2433
                  int match;
2434
 
2435
                  match = strtoul (p, &end, 10);
2436
                  p = end;
2437
 
2438
                  if (strict < 0)
2439
                    val = 1;
2440
                  else
2441
                    {
2442
                      rtx op1 = recog_data.operand[match];
2443
                      rtx op2 = recog_data.operand[opno];
2444
 
2445
                      /* A unary operator may be accepted by the predicate,
2446
                         but it is irrelevant for matching constraints.  */
2447
                      if (UNARY_P (op1))
2448
                        op1 = XEXP (op1, 0);
2449
                      if (UNARY_P (op2))
2450
                        op2 = XEXP (op2, 0);
2451
 
2452
                      val = operands_match_p (op1, op2);
2453
                    }
2454
 
2455
                  matching_operands[opno] = match;
2456
                  matching_operands[match] = opno;
2457
 
2458
                  if (val != 0)
2459
                    win = 1;
2460
 
2461
                  /* If output is *x and input is *--x, arrange later
2462
                     to change the output to *--x as well, since the
2463
                     output op is the one that will be printed.  */
2464
                  if (val == 2 && strict > 0)
2465
                    {
2466
                      funny_match[funny_match_index].this_op = opno;
2467
                      funny_match[funny_match_index++].other = match;
2468
                    }
2469
                }
2470
                len = 0;
2471
                break;
2472
 
2473
              case 'p':
2474
                /* p is used for address_operands.  When we are called by
2475
                   gen_reload, no one will have checked that the address is
2476
                   strictly valid, i.e., that all pseudos requiring hard regs
2477
                   have gotten them.  */
2478
                if (strict <= 0
2479
                    || (strict_memory_address_p (recog_data.operand_mode[opno],
2480
                                                 op)))
2481
                  win = 1;
2482
                break;
2483
 
2484
                /* No need to check general_operand again;
2485
                   it was done in insn-recog.c.  Well, except that reload
2486
                   doesn't check the validity of its replacements, but
2487
                   that should only matter when there's a bug.  */
2488
              case 'g':
2489
                /* Anything goes unless it is a REG and really has a hard reg
2490
                   but the hard reg is not in the class GENERAL_REGS.  */
2491
                if (REG_P (op))
2492
                  {
2493
                    if (strict < 0
2494
                        || GENERAL_REGS == ALL_REGS
2495
                        || (reload_in_progress
2496
                            && REGNO (op) >= FIRST_PSEUDO_REGISTER)
2497
                        || reg_fits_class_p (op, GENERAL_REGS, offset, mode))
2498
                      win = 1;
2499
                  }
2500
                else if (strict < 0 || general_operand (op, mode))
2501
                  win = 1;
2502
                break;
2503
 
2504
              case 'X':
2505
                /* This is used for a MATCH_SCRATCH in the cases when
2506
                   we don't actually need anything.  So anything goes
2507
                   any time.  */
2508
                win = 1;
2509
                break;
2510
 
2511
              case TARGET_MEM_CONSTRAINT:
2512
                /* Memory operands must be valid, to the extent
2513
                   required by STRICT.  */
2514
                if (MEM_P (op))
2515
                  {
2516
                    if (strict > 0
2517
                        && !strict_memory_address_addr_space_p
2518
                             (GET_MODE (op), XEXP (op, 0),
2519
                              MEM_ADDR_SPACE (op)))
2520
                      break;
2521
                    if (strict == 0
2522
                        && !memory_address_addr_space_p
2523
                             (GET_MODE (op), XEXP (op, 0),
2524
                              MEM_ADDR_SPACE (op)))
2525
                      break;
2526
                    win = 1;
2527
                  }
2528
                /* Before reload, accept what reload can turn into mem.  */
2529
                else if (strict < 0 && CONSTANT_P (op))
2530
                  win = 1;
2531
                /* During reload, accept a pseudo  */
2532
                else if (reload_in_progress && REG_P (op)
2533
                         && REGNO (op) >= FIRST_PSEUDO_REGISTER)
2534
                  win = 1;
2535
                break;
2536
 
2537
              case '<':
2538
                if (MEM_P (op)
2539
                    && (GET_CODE (XEXP (op, 0)) == PRE_DEC
2540
                        || GET_CODE (XEXP (op, 0)) == POST_DEC))
2541
                  win = 1;
2542
                break;
2543
 
2544
              case '>':
2545
                if (MEM_P (op)
2546
                    && (GET_CODE (XEXP (op, 0)) == PRE_INC
2547
                        || GET_CODE (XEXP (op, 0)) == POST_INC))
2548
                  win = 1;
2549
                break;
2550
 
2551
              case 'E':
2552
              case 'F':
2553
                if (GET_CODE (op) == CONST_DOUBLE
2554
                    || (GET_CODE (op) == CONST_VECTOR
2555
                        && GET_MODE_CLASS (GET_MODE (op)) == MODE_VECTOR_FLOAT))
2556
                  win = 1;
2557
                break;
2558
 
2559
              case 'G':
2560
              case 'H':
2561
                if (GET_CODE (op) == CONST_DOUBLE
2562
                    && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, c, p))
2563
                  win = 1;
2564
                break;
2565
 
2566
              case 's':
2567
                if (CONST_INT_P (op)
2568
                    || (GET_CODE (op) == CONST_DOUBLE
2569
                        && GET_MODE (op) == VOIDmode))
2570
                  break;
2571
              case 'i':
2572
                if (CONSTANT_P (op))
2573
                  win = 1;
2574
                break;
2575
 
2576
              case 'n':
2577
                if (CONST_INT_P (op)
2578
                    || (GET_CODE (op) == CONST_DOUBLE
2579
                        && GET_MODE (op) == VOIDmode))
2580
                  win = 1;
2581
                break;
2582
 
2583
              case 'I':
2584
              case 'J':
2585
              case 'K':
2586
              case 'L':
2587
              case 'M':
2588
              case 'N':
2589
              case 'O':
2590
              case 'P':
2591
                if (CONST_INT_P (op)
2592
                    && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), c, p))
2593
                  win = 1;
2594
                break;
2595
 
2596
              case 'V':
2597
                if (MEM_P (op)
2598
                    && ((strict > 0 && ! offsettable_memref_p (op))
2599
                        || (strict < 0
2600
                            && !(CONSTANT_P (op) || MEM_P (op)))
2601
                        || (reload_in_progress
2602
                            && !(REG_P (op)
2603
                                 && REGNO (op) >= FIRST_PSEUDO_REGISTER))))
2604
                  win = 1;
2605
                break;
2606
 
2607
              case 'o':
2608
                if ((strict > 0 && offsettable_memref_p (op))
2609
                    || (strict == 0 && offsettable_nonstrict_memref_p (op))
2610
                    /* Before reload, accept what reload can handle.  */
2611
                    || (strict < 0
2612
                        && (CONSTANT_P (op) || MEM_P (op)))
2613
                    /* During reload, accept a pseudo  */
2614
                    || (reload_in_progress && REG_P (op)
2615
                        && REGNO (op) >= FIRST_PSEUDO_REGISTER))
2616
                  win = 1;
2617
                break;
2618
 
2619
              default:
2620
                {
2621
                  enum reg_class cl;
2622
 
2623
                  cl = (c == 'r'
2624
                           ? GENERAL_REGS : REG_CLASS_FROM_CONSTRAINT (c, p));
2625
                  if (cl != NO_REGS)
2626
                    {
2627
                      if (strict < 0
2628
                          || (strict == 0
2629
                              && REG_P (op)
2630
                              && REGNO (op) >= FIRST_PSEUDO_REGISTER)
2631
                          || (strict == 0 && GET_CODE (op) == SCRATCH)
2632
                          || (REG_P (op)
2633
                              && reg_fits_class_p (op, cl, offset, mode)))
2634
                        win = 1;
2635
                    }
2636
#ifdef EXTRA_CONSTRAINT_STR
2637
                  else if (EXTRA_CONSTRAINT_STR (op, c, p))
2638
                    win = 1;
2639
 
2640
                  else if (EXTRA_MEMORY_CONSTRAINT (c, p)
2641
                           /* Every memory operand can be reloaded to fit.  */
2642
                           && ((strict < 0 && MEM_P (op))
2643
                               /* Before reload, accept what reload can turn
2644
                                  into mem.  */
2645
                               || (strict < 0 && CONSTANT_P (op))
2646
                               /* During reload, accept a pseudo  */
2647
                               || (reload_in_progress && REG_P (op)
2648
                                   && REGNO (op) >= FIRST_PSEUDO_REGISTER)))
2649
                    win = 1;
2650
                  else if (EXTRA_ADDRESS_CONSTRAINT (c, p)
2651
                           /* Every address operand can be reloaded to fit.  */
2652
                           && strict < 0)
2653
                    win = 1;
2654
#endif
2655
                  break;
2656
                }
2657
              }
2658
          while (p += len, c);
2659
 
2660
          constraints[opno] = p;
2661
          /* If this operand did not win somehow,
2662
             this alternative loses.  */
2663
          if (! win)
2664
            lose = 1;
2665
        }
2666
      /* This alternative won; the operands are ok.
2667
         Change whichever operands this alternative says to change.  */
2668
      if (! lose)
2669
        {
2670
          int opno, eopno;
2671
 
2672
          /* See if any earlyclobber operand conflicts with some other
2673
             operand.  */
2674
 
2675
          if (strict > 0  && seen_earlyclobber_at >= 0)
2676
            for (eopno = seen_earlyclobber_at;
2677
                 eopno < recog_data.n_operands;
2678
                 eopno++)
2679
              /* Ignore earlyclobber operands now in memory,
2680
                 because we would often report failure when we have
2681
                 two memory operands, one of which was formerly a REG.  */
2682
              if (earlyclobber[eopno]
2683
                  && REG_P (recog_data.operand[eopno]))
2684
                for (opno = 0; opno < recog_data.n_operands; opno++)
2685
                  if ((MEM_P (recog_data.operand[opno])
2686
                       || recog_data.operand_type[opno] != OP_OUT)
2687
                      && opno != eopno
2688
                      /* Ignore things like match_operator operands.  */
2689
                      && *recog_data.constraints[opno] != 0
2690
                      && ! (matching_operands[opno] == eopno
2691
                            && operands_match_p (recog_data.operand[opno],
2692
                                                 recog_data.operand[eopno]))
2693
                      && ! safe_from_earlyclobber (recog_data.operand[opno],
2694
                                                   recog_data.operand[eopno]))
2695
                    lose = 1;
2696
 
2697
          if (! lose)
2698
            {
2699
              while (--funny_match_index >= 0)
2700
                {
2701
                  recog_data.operand[funny_match[funny_match_index].other]
2702
                    = recog_data.operand[funny_match[funny_match_index].this_op];
2703
                }
2704
 
2705
              return 1;
2706
            }
2707
        }
2708
 
2709
      which_alternative++;
2710
    }
2711
  while (which_alternative < recog_data.n_alternatives);
2712
 
2713
  which_alternative = -1;
2714
  /* If we are about to reject this, but we are not to test strictly,
2715
     try a very loose test.  Only return failure if it fails also.  */
2716
  if (strict == 0)
2717
    return constrain_operands (-1);
2718
  else
2719
    return 0;
2720
}
2721
 
2722
/* Return 1 iff OPERAND (assumed to be a REG rtx)
2723
   is a hard reg in class CLASS when its regno is offset by OFFSET
2724
   and changed to mode MODE.
2725
   If REG occupies multiple hard regs, all of them must be in CLASS.  */
2726
 
2727
int
2728
reg_fits_class_p (rtx operand, enum reg_class cl, int offset,
2729
                  enum machine_mode mode)
2730
{
2731
  int regno = REGNO (operand);
2732
 
2733
  if (cl == NO_REGS)
2734
    return 0;
2735
 
2736
  return (regno < FIRST_PSEUDO_REGISTER
2737
          && in_hard_reg_set_p (reg_class_contents[(int) cl],
2738
                                mode, regno + offset));
2739
}
2740
 
2741
/* Split single instruction.  Helper function for split_all_insns and
2742
   split_all_insns_noflow.  Return last insn in the sequence if successful,
2743
   or NULL if unsuccessful.  */
2744
 
2745
static rtx
2746
split_insn (rtx insn)
2747
{
2748
  /* Split insns here to get max fine-grain parallelism.  */
2749
  rtx first = PREV_INSN (insn);
2750
  rtx last = try_split (PATTERN (insn), insn, 1);
2751
  rtx insn_set, last_set, note;
2752
 
2753
  if (last == insn)
2754
    return NULL_RTX;
2755
 
2756
  /* If the original instruction was a single set that was known to be
2757
     equivalent to a constant, see if we can say the same about the last
2758
     instruction in the split sequence.  The two instructions must set
2759
     the same destination.  */
2760
  insn_set = single_set (insn);
2761
  if (insn_set)
2762
    {
2763
      last_set = single_set (last);
2764
      if (last_set && rtx_equal_p (SET_DEST (last_set), SET_DEST (insn_set)))
2765
        {
2766
          note = find_reg_equal_equiv_note (insn);
2767
          if (note && CONSTANT_P (XEXP (note, 0)))
2768
            set_unique_reg_note (last, REG_EQUAL, XEXP (note, 0));
2769
          else if (CONSTANT_P (SET_SRC (insn_set)))
2770
            set_unique_reg_note (last, REG_EQUAL, SET_SRC (insn_set));
2771
        }
2772
    }
2773
 
2774
  /* try_split returns the NOTE that INSN became.  */
2775
  SET_INSN_DELETED (insn);
2776
 
2777
  /* ??? Coddle to md files that generate subregs in post-reload
2778
     splitters instead of computing the proper hard register.  */
2779
  if (reload_completed && first != last)
2780
    {
2781
      first = NEXT_INSN (first);
2782
      for (;;)
2783
        {
2784
          if (INSN_P (first))
2785
            cleanup_subreg_operands (first);
2786
          if (first == last)
2787
            break;
2788
          first = NEXT_INSN (first);
2789
        }
2790
    }
2791
 
2792
  return last;
2793
}
2794
 
2795
/* Split all insns in the function.  If UPD_LIFE, update life info after.  */
2796
 
2797
void
2798
split_all_insns (void)
2799
{
2800
  sbitmap blocks;
2801
  bool changed;
2802
  basic_block bb;
2803
 
2804
  blocks = sbitmap_alloc (last_basic_block);
2805
  sbitmap_zero (blocks);
2806
  changed = false;
2807
 
2808
  FOR_EACH_BB_REVERSE (bb)
2809
    {
2810
      rtx insn, next;
2811
      bool finish = false;
2812
 
2813
      rtl_profile_for_bb (bb);
2814
      for (insn = BB_HEAD (bb); !finish ; insn = next)
2815
        {
2816
          /* Can't use `next_real_insn' because that might go across
2817
             CODE_LABELS and short-out basic blocks.  */
2818
          next = NEXT_INSN (insn);
2819
          finish = (insn == BB_END (bb));
2820
          if (INSN_P (insn))
2821
            {
2822
              rtx set = single_set (insn);
2823
 
2824
              /* Don't split no-op move insns.  These should silently
2825
                 disappear later in final.  Splitting such insns would
2826
                 break the code that handles LIBCALL blocks.  */
2827
              if (set && set_noop_p (set))
2828
                {
2829
                  /* Nops get in the way while scheduling, so delete them
2830
                     now if register allocation has already been done.  It
2831
                     is too risky to try to do this before register
2832
                     allocation, and there are unlikely to be very many
2833
                     nops then anyways.  */
2834
                  if (reload_completed)
2835
                      delete_insn_and_edges (insn);
2836
                }
2837
              else
2838
                {
2839
                  rtx last = split_insn (insn);
2840
                  if (last)
2841
                    {
2842
                      /* The split sequence may include barrier, but the
2843
                         BB boundary we are interested in will be set to
2844
                         previous one.  */
2845
 
2846
                      while (BARRIER_P (last))
2847
                        last = PREV_INSN (last);
2848
                      SET_BIT (blocks, bb->index);
2849
                      changed = true;
2850
                    }
2851
                }
2852
            }
2853
        }
2854
    }
2855
 
2856
  default_rtl_profile ();
2857
  if (changed)
2858
    find_many_sub_basic_blocks (blocks);
2859
 
2860
#ifdef ENABLE_CHECKING
2861
  verify_flow_info ();
2862
#endif
2863
 
2864
  sbitmap_free (blocks);
2865
}
2866
 
2867
/* Same as split_all_insns, but do not expect CFG to be available.
2868
   Used by machine dependent reorg passes.  */
2869
 
2870
unsigned int
2871
split_all_insns_noflow (void)
2872
{
2873
  rtx next, insn;
2874
 
2875
  for (insn = get_insns (); insn; insn = next)
2876
    {
2877
      next = NEXT_INSN (insn);
2878
      if (INSN_P (insn))
2879
        {
2880
          /* Don't split no-op move insns.  These should silently
2881
             disappear later in final.  Splitting such insns would
2882
             break the code that handles LIBCALL blocks.  */
2883
          rtx set = single_set (insn);
2884
          if (set && set_noop_p (set))
2885
            {
2886
              /* Nops get in the way while scheduling, so delete them
2887
                 now if register allocation has already been done.  It
2888
                 is too risky to try to do this before register
2889
                 allocation, and there are unlikely to be very many
2890
                 nops then anyways.
2891
 
2892
                 ??? Should we use delete_insn when the CFG isn't valid?  */
2893
              if (reload_completed)
2894
                delete_insn_and_edges (insn);
2895
            }
2896
          else
2897
            split_insn (insn);
2898
        }
2899
    }
2900
  return 0;
2901
}
2902
 
2903
#ifdef HAVE_peephole2
2904
struct peep2_insn_data
2905
{
2906
  rtx insn;
2907
  regset live_before;
2908
};
2909
 
2910
static struct peep2_insn_data peep2_insn_data[MAX_INSNS_PER_PEEP2 + 1];
2911
static int peep2_current;
2912
/* The number of instructions available to match a peep2.  */
2913
int peep2_current_count;
2914
 
2915
/* A non-insn marker indicating the last insn of the block.
2916
   The live_before regset for this element is correct, indicating
2917
   DF_LIVE_OUT for the block.  */
2918
#define PEEP2_EOB       pc_rtx
2919
 
2920
/* Return the Nth non-note insn after `current', or return NULL_RTX if it
2921
   does not exist.  Used by the recognizer to find the next insn to match
2922
   in a multi-insn pattern.  */
2923
 
2924
rtx
2925
peep2_next_insn (int n)
2926
{
2927
  gcc_assert (n <= peep2_current_count);
2928
 
2929
  n += peep2_current;
2930
  if (n >= MAX_INSNS_PER_PEEP2 + 1)
2931
    n -= MAX_INSNS_PER_PEEP2 + 1;
2932
 
2933
  return peep2_insn_data[n].insn;
2934
}
2935
 
2936
/* Return true if REGNO is dead before the Nth non-note insn
2937
   after `current'.  */
2938
 
2939
int
2940
peep2_regno_dead_p (int ofs, int regno)
2941
{
2942
  gcc_assert (ofs < MAX_INSNS_PER_PEEP2 + 1);
2943
 
2944
  ofs += peep2_current;
2945
  if (ofs >= MAX_INSNS_PER_PEEP2 + 1)
2946
    ofs -= MAX_INSNS_PER_PEEP2 + 1;
2947
 
2948
  gcc_assert (peep2_insn_data[ofs].insn != NULL_RTX);
2949
 
2950
  return ! REGNO_REG_SET_P (peep2_insn_data[ofs].live_before, regno);
2951
}
2952
 
2953
/* Similarly for a REG.  */
2954
 
2955
int
2956
peep2_reg_dead_p (int ofs, rtx reg)
2957
{
2958
  int regno, n;
2959
 
2960
  gcc_assert (ofs < MAX_INSNS_PER_PEEP2 + 1);
2961
 
2962
  ofs += peep2_current;
2963
  if (ofs >= MAX_INSNS_PER_PEEP2 + 1)
2964
    ofs -= MAX_INSNS_PER_PEEP2 + 1;
2965
 
2966
  gcc_assert (peep2_insn_data[ofs].insn != NULL_RTX);
2967
 
2968
  regno = REGNO (reg);
2969
  n = hard_regno_nregs[regno][GET_MODE (reg)];
2970
  while (--n >= 0)
2971
    if (REGNO_REG_SET_P (peep2_insn_data[ofs].live_before, regno + n))
2972
      return 0;
2973
  return 1;
2974
}
2975
 
2976
/* Try to find a hard register of mode MODE, matching the register class in
2977
   CLASS_STR, which is available at the beginning of insn CURRENT_INSN and
2978
   remains available until the end of LAST_INSN.  LAST_INSN may be NULL_RTX,
2979
   in which case the only condition is that the register must be available
2980
   before CURRENT_INSN.
2981
   Registers that already have bits set in REG_SET will not be considered.
2982
 
2983
   If an appropriate register is available, it will be returned and the
2984
   corresponding bit(s) in REG_SET will be set; otherwise, NULL_RTX is
2985
   returned.  */
2986
 
2987
rtx
2988
peep2_find_free_register (int from, int to, const char *class_str,
2989
                          enum machine_mode mode, HARD_REG_SET *reg_set)
2990
{
2991
  static int search_ofs;
2992
  enum reg_class cl;
2993
  HARD_REG_SET live;
2994
  int i;
2995
 
2996
  gcc_assert (from < MAX_INSNS_PER_PEEP2 + 1);
2997
  gcc_assert (to < MAX_INSNS_PER_PEEP2 + 1);
2998
 
2999
  from += peep2_current;
3000
  if (from >= MAX_INSNS_PER_PEEP2 + 1)
3001
    from -= MAX_INSNS_PER_PEEP2 + 1;
3002
  to += peep2_current;
3003
  if (to >= MAX_INSNS_PER_PEEP2 + 1)
3004
    to -= MAX_INSNS_PER_PEEP2 + 1;
3005
 
3006
  gcc_assert (peep2_insn_data[from].insn != NULL_RTX);
3007
  REG_SET_TO_HARD_REG_SET (live, peep2_insn_data[from].live_before);
3008
 
3009
  while (from != to)
3010
    {
3011
      HARD_REG_SET this_live;
3012
 
3013
      if (++from >= MAX_INSNS_PER_PEEP2 + 1)
3014
        from = 0;
3015
      gcc_assert (peep2_insn_data[from].insn != NULL_RTX);
3016
      REG_SET_TO_HARD_REG_SET (this_live, peep2_insn_data[from].live_before);
3017
      IOR_HARD_REG_SET (live, this_live);
3018
    }
3019
 
3020
  cl = (class_str[0] == 'r' ? GENERAL_REGS
3021
           : REG_CLASS_FROM_CONSTRAINT (class_str[0], class_str));
3022
 
3023
  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3024
    {
3025
      int raw_regno, regno, success, j;
3026
 
3027
      /* Distribute the free registers as much as possible.  */
3028
      raw_regno = search_ofs + i;
3029
      if (raw_regno >= FIRST_PSEUDO_REGISTER)
3030
        raw_regno -= FIRST_PSEUDO_REGISTER;
3031
#ifdef REG_ALLOC_ORDER
3032
      regno = reg_alloc_order[raw_regno];
3033
#else
3034
      regno = raw_regno;
3035
#endif
3036
 
3037
      /* Don't allocate fixed registers.  */
3038
      if (fixed_regs[regno])
3039
        continue;
3040
      /* Don't allocate global registers.  */
3041
      if (global_regs[regno])
3042
        continue;
3043
      /* Make sure the register is of the right class.  */
3044
      if (! TEST_HARD_REG_BIT (reg_class_contents[cl], regno))
3045
        continue;
3046
      /* And can support the mode we need.  */
3047
      if (! HARD_REGNO_MODE_OK (regno, mode))
3048
        continue;
3049
      /* And that we don't create an extra save/restore.  */
3050
      if (! call_used_regs[regno] && ! df_regs_ever_live_p (regno))
3051
        continue;
3052
      if (! targetm.hard_regno_scratch_ok (regno))
3053
        continue;
3054
 
3055
      /* And we don't clobber traceback for noreturn functions.  */
3056
      if ((regno == FRAME_POINTER_REGNUM || regno == HARD_FRAME_POINTER_REGNUM)
3057
          && (! reload_completed || frame_pointer_needed))
3058
        continue;
3059
 
3060
      success = 1;
3061
      for (j = hard_regno_nregs[regno][mode] - 1; j >= 0; j--)
3062
        {
3063
          if (TEST_HARD_REG_BIT (*reg_set, regno + j)
3064
              || TEST_HARD_REG_BIT (live, regno + j))
3065
            {
3066
              success = 0;
3067
              break;
3068
            }
3069
        }
3070
      if (success)
3071
        {
3072
          add_to_hard_reg_set (reg_set, mode, regno);
3073
 
3074
          /* Start the next search with the next register.  */
3075
          if (++raw_regno >= FIRST_PSEUDO_REGISTER)
3076
            raw_regno = 0;
3077
          search_ofs = raw_regno;
3078
 
3079
          return gen_rtx_REG (mode, regno);
3080
        }
3081
    }
3082
 
3083
  search_ofs = 0;
3084
  return NULL_RTX;
3085
}
3086
 
3087
/* Forget all currently tracked instructions, only remember current
3088
   LIVE regset.  */
3089
 
3090
static void
3091
peep2_reinit_state (regset live)
3092
{
3093
  int i;
3094
 
3095
  /* Indicate that all slots except the last holds invalid data.  */
3096
  for (i = 0; i < MAX_INSNS_PER_PEEP2; ++i)
3097
    peep2_insn_data[i].insn = NULL_RTX;
3098
  peep2_current_count = 0;
3099
 
3100
  /* Indicate that the last slot contains live_after data.  */
3101
  peep2_insn_data[MAX_INSNS_PER_PEEP2].insn = PEEP2_EOB;
3102
  peep2_current = MAX_INSNS_PER_PEEP2;
3103
 
3104
  COPY_REG_SET (peep2_insn_data[MAX_INSNS_PER_PEEP2].live_before, live);
3105
}
3106
 
3107
/* Perform the peephole2 optimization pass.  */
3108
 
3109
static void
3110
peephole2_optimize (void)
3111
{
3112
  rtx insn, prev;
3113
  bitmap live;
3114
  int i;
3115
  basic_block bb;
3116
  bool do_cleanup_cfg = false;
3117
  bool do_rebuild_jump_labels = false;
3118
 
3119
  df_set_flags (DF_LR_RUN_DCE);
3120
  df_analyze ();
3121
 
3122
  /* Initialize the regsets we're going to use.  */
3123
  for (i = 0; i < MAX_INSNS_PER_PEEP2 + 1; ++i)
3124
    peep2_insn_data[i].live_before = BITMAP_ALLOC (&reg_obstack);
3125
  live = BITMAP_ALLOC (&reg_obstack);
3126
 
3127
  FOR_EACH_BB_REVERSE (bb)
3128
    {
3129
      rtl_profile_for_bb (bb);
3130
 
3131
      /* Start up propagation.  */
3132
      bitmap_copy (live, DF_LR_OUT (bb));
3133
      df_simulate_initialize_backwards (bb, live);
3134
      peep2_reinit_state (live);
3135
 
3136
      for (insn = BB_END (bb); ; insn = prev)
3137
        {
3138
          prev = PREV_INSN (insn);
3139
          if (NONDEBUG_INSN_P (insn))
3140
            {
3141
              rtx attempt, before_try, x;
3142
              int match_len;
3143
              rtx note;
3144
              bool was_call = false;
3145
 
3146
              /* Record this insn.  */
3147
              if (--peep2_current < 0)
3148
                peep2_current = MAX_INSNS_PER_PEEP2;
3149
              if (peep2_current_count < MAX_INSNS_PER_PEEP2
3150
                  && peep2_insn_data[peep2_current].insn == NULL_RTX)
3151
                peep2_current_count++;
3152
              peep2_insn_data[peep2_current].insn = insn;
3153
              df_simulate_one_insn_backwards (bb, insn, live);
3154
              COPY_REG_SET (peep2_insn_data[peep2_current].live_before, live);
3155
 
3156
              if (RTX_FRAME_RELATED_P (insn))
3157
                {
3158
                  /* If an insn has RTX_FRAME_RELATED_P set, peephole
3159
                     substitution would lose the
3160
                     REG_FRAME_RELATED_EXPR that is attached.  */
3161
                  peep2_reinit_state (live);
3162
                  attempt = NULL;
3163
                }
3164
              else
3165
                /* Match the peephole.  */
3166
                attempt = peephole2_insns (PATTERN (insn), insn, &match_len);
3167
 
3168
              if (attempt != NULL)
3169
                {
3170
                  /* If we are splitting a CALL_INSN, look for the CALL_INSN
3171
                     in SEQ and copy our CALL_INSN_FUNCTION_USAGE and other
3172
                     cfg-related call notes.  */
3173
                  for (i = 0; i <= match_len; ++i)
3174
                    {
3175
                      int j;
3176
                      rtx old_insn, new_insn, note;
3177
 
3178
                      j = i + peep2_current;
3179
                      if (j >= MAX_INSNS_PER_PEEP2 + 1)
3180
                        j -= MAX_INSNS_PER_PEEP2 + 1;
3181
                      old_insn = peep2_insn_data[j].insn;
3182
                      if (!CALL_P (old_insn))
3183
                        continue;
3184
                      was_call = true;
3185
 
3186
                      new_insn = attempt;
3187
                      while (new_insn != NULL_RTX)
3188
                        {
3189
                          if (CALL_P (new_insn))
3190
                            break;
3191
                          new_insn = NEXT_INSN (new_insn);
3192
                        }
3193
 
3194
                      gcc_assert (new_insn != NULL_RTX);
3195
 
3196
                      CALL_INSN_FUNCTION_USAGE (new_insn)
3197
                        = CALL_INSN_FUNCTION_USAGE (old_insn);
3198
 
3199
                      for (note = REG_NOTES (old_insn);
3200
                           note;
3201
                           note = XEXP (note, 1))
3202
                        switch (REG_NOTE_KIND (note))
3203
                          {
3204
                          case REG_NORETURN:
3205
                          case REG_SETJMP:
3206
                            add_reg_note (new_insn, REG_NOTE_KIND (note),
3207
                                          XEXP (note, 0));
3208
                            break;
3209
                          default:
3210
                            /* Discard all other reg notes.  */
3211
                            break;
3212
                          }
3213
 
3214
                      /* Croak if there is another call in the sequence.  */
3215
                      while (++i <= match_len)
3216
                        {
3217
                          j = i + peep2_current;
3218
                          if (j >= MAX_INSNS_PER_PEEP2 + 1)
3219
                            j -= MAX_INSNS_PER_PEEP2 + 1;
3220
                          old_insn = peep2_insn_data[j].insn;
3221
                          gcc_assert (!CALL_P (old_insn));
3222
                        }
3223
                      break;
3224
                    }
3225
 
3226
                  i = match_len + peep2_current;
3227
                  if (i >= MAX_INSNS_PER_PEEP2 + 1)
3228
                    i -= MAX_INSNS_PER_PEEP2 + 1;
3229
 
3230
                  note = find_reg_note (peep2_insn_data[i].insn,
3231
                                        REG_EH_REGION, NULL_RTX);
3232
 
3233
                  /* Replace the old sequence with the new.  */
3234
                  attempt = emit_insn_after_setloc (attempt,
3235
                                                    peep2_insn_data[i].insn,
3236
                                       INSN_LOCATOR (peep2_insn_data[i].insn));
3237
                  before_try = PREV_INSN (insn);
3238
                  delete_insn_chain (insn, peep2_insn_data[i].insn, false);
3239
 
3240
                  /* Re-insert the EH_REGION notes.  */
3241
                  if (note || (was_call && nonlocal_goto_handler_labels))
3242
                    {
3243
                      edge eh_edge;
3244
                      edge_iterator ei;
3245
 
3246
                      FOR_EACH_EDGE (eh_edge, ei, bb->succs)
3247
                        if (eh_edge->flags & (EDGE_EH | EDGE_ABNORMAL_CALL))
3248
                          break;
3249
 
3250
                      if (note)
3251
                        copy_reg_eh_region_note_backward (note, attempt,
3252
                                                          before_try);
3253
 
3254
                      if (eh_edge)
3255
                        for (x = attempt ; x != before_try ; x = PREV_INSN (x))
3256
                          if (x != BB_END (bb)
3257
                              && (can_throw_internal (x)
3258
                                  || can_nonlocal_goto (x)))
3259
                            {
3260
                              edge nfte, nehe;
3261
                              int flags;
3262
 
3263
                              nfte = split_block (bb, x);
3264
                              flags = (eh_edge->flags
3265
                                       & (EDGE_EH | EDGE_ABNORMAL));
3266
                              if (CALL_P (x))
3267
                                flags |= EDGE_ABNORMAL_CALL;
3268
                              nehe = make_edge (nfte->src, eh_edge->dest,
3269
                                                flags);
3270
 
3271
                              nehe->probability = eh_edge->probability;
3272
                              nfte->probability
3273
                                = REG_BR_PROB_BASE - nehe->probability;
3274
 
3275
                              do_cleanup_cfg |= purge_dead_edges (nfte->dest);
3276
                              bb = nfte->src;
3277
                              eh_edge = nehe;
3278
                            }
3279
 
3280
                      /* Converting possibly trapping insn to non-trapping is
3281
                         possible.  Zap dummy outgoing edges.  */
3282
                      do_cleanup_cfg |= purge_dead_edges (bb);
3283
                    }
3284
 
3285
                  if (targetm.have_conditional_execution ())
3286
                    {
3287
                      for (i = 0; i < MAX_INSNS_PER_PEEP2 + 1; ++i)
3288
                        peep2_insn_data[i].insn = NULL_RTX;
3289
                      peep2_insn_data[peep2_current].insn = PEEP2_EOB;
3290
                      peep2_current_count = 0;
3291
                    }
3292
                  else
3293
                    {
3294
                      /* Back up lifetime information past the end of the
3295
                         newly created sequence.  */
3296
                      if (++i >= MAX_INSNS_PER_PEEP2 + 1)
3297
                        i = 0;
3298
                      bitmap_copy (live, peep2_insn_data[i].live_before);
3299
 
3300
                      /* Update life information for the new sequence.  */
3301
                      x = attempt;
3302
                      do
3303
                        {
3304
                          if (INSN_P (x))
3305
                            {
3306
                              if (--i < 0)
3307
                                i = MAX_INSNS_PER_PEEP2;
3308
                              if (peep2_current_count < MAX_INSNS_PER_PEEP2
3309
                                  && peep2_insn_data[i].insn == NULL_RTX)
3310
                                peep2_current_count++;
3311
                              peep2_insn_data[i].insn = x;
3312
                              df_insn_rescan (x);
3313
                              df_simulate_one_insn_backwards (bb, x, live);
3314
                              bitmap_copy (peep2_insn_data[i].live_before,
3315
                                           live);
3316
                            }
3317
                          x = PREV_INSN (x);
3318
                        }
3319
                      while (x != prev);
3320
 
3321
                      peep2_current = i;
3322
                    }
3323
 
3324
                  /* If we generated a jump instruction, it won't have
3325
                     JUMP_LABEL set.  Recompute after we're done.  */
3326
                  for (x = attempt; x != before_try; x = PREV_INSN (x))
3327
                    if (JUMP_P (x))
3328
                      {
3329
                        do_rebuild_jump_labels = true;
3330
                        break;
3331
                      }
3332
                }
3333
            }
3334
 
3335
          if (insn == BB_HEAD (bb))
3336
            break;
3337
        }
3338
    }
3339
 
3340
  default_rtl_profile ();
3341
  for (i = 0; i < MAX_INSNS_PER_PEEP2 + 1; ++i)
3342
    BITMAP_FREE (peep2_insn_data[i].live_before);
3343
  BITMAP_FREE (live);
3344
  if (do_rebuild_jump_labels)
3345
    rebuild_jump_labels (get_insns ());
3346
}
3347
#endif /* HAVE_peephole2 */
3348
 
3349
/* Common predicates for use with define_bypass.  */
3350
 
3351
/* True if the dependency between OUT_INSN and IN_INSN is on the store
3352
   data not the address operand(s) of the store.  IN_INSN and OUT_INSN
3353
   must be either a single_set or a PARALLEL with SETs inside.  */
3354
 
3355
int
3356
store_data_bypass_p (rtx out_insn, rtx in_insn)
3357
{
3358
  rtx out_set, in_set;
3359
  rtx out_pat, in_pat;
3360
  rtx out_exp, in_exp;
3361
  int i, j;
3362
 
3363
  in_set = single_set (in_insn);
3364
  if (in_set)
3365
    {
3366
      if (!MEM_P (SET_DEST (in_set)))
3367
        return false;
3368
 
3369
      out_set = single_set (out_insn);
3370
      if (out_set)
3371
        {
3372
          if (reg_mentioned_p (SET_DEST (out_set), SET_DEST (in_set)))
3373
            return false;
3374
        }
3375
      else
3376
        {
3377
          out_pat = PATTERN (out_insn);
3378
 
3379
          if (GET_CODE (out_pat) != PARALLEL)
3380
            return false;
3381
 
3382
          for (i = 0; i < XVECLEN (out_pat, 0); i++)
3383
          {
3384
            out_exp = XVECEXP (out_pat, 0, i);
3385
 
3386
            if (GET_CODE (out_exp) == CLOBBER)
3387
              continue;
3388
 
3389
            gcc_assert (GET_CODE (out_exp) == SET);
3390
 
3391
            if (reg_mentioned_p (SET_DEST (out_exp), SET_DEST (in_set)))
3392
              return false;
3393
          }
3394
      }
3395
    }
3396
  else
3397
    {
3398
      in_pat = PATTERN (in_insn);
3399
      gcc_assert (GET_CODE (in_pat) == PARALLEL);
3400
 
3401
      for (i = 0; i < XVECLEN (in_pat, 0); i++)
3402
        {
3403
          in_exp = XVECEXP (in_pat, 0, i);
3404
 
3405
          if (GET_CODE (in_exp) == CLOBBER)
3406
            continue;
3407
 
3408
          gcc_assert (GET_CODE (in_exp) == SET);
3409
 
3410
          if (!MEM_P (SET_DEST (in_exp)))
3411
            return false;
3412
 
3413
          out_set = single_set (out_insn);
3414
          if (out_set)
3415
            {
3416
              if (reg_mentioned_p (SET_DEST (out_set), SET_DEST (in_exp)))
3417
                return false;
3418
            }
3419
          else
3420
            {
3421
              out_pat = PATTERN (out_insn);
3422
              gcc_assert (GET_CODE (out_pat) == PARALLEL);
3423
 
3424
              for (j = 0; j < XVECLEN (out_pat, 0); j++)
3425
                {
3426
                  out_exp = XVECEXP (out_pat, 0, j);
3427
 
3428
                  if (GET_CODE (out_exp) == CLOBBER)
3429
                    continue;
3430
 
3431
                  gcc_assert (GET_CODE (out_exp) == SET);
3432
 
3433
                  if (reg_mentioned_p (SET_DEST (out_exp), SET_DEST (in_exp)))
3434
                    return false;
3435
                }
3436
            }
3437
        }
3438
    }
3439
 
3440
  return true;
3441
}
3442
 
3443
/* True if the dependency between OUT_INSN and IN_INSN is in the IF_THEN_ELSE
3444
   condition, and not the THEN or ELSE branch.  OUT_INSN may be either a single
3445
   or multiple set; IN_INSN should be single_set for truth, but for convenience
3446
   of insn categorization may be any JUMP or CALL insn.  */
3447
 
3448
int
3449
if_test_bypass_p (rtx out_insn, rtx in_insn)
3450
{
3451
  rtx out_set, in_set;
3452
 
3453
  in_set = single_set (in_insn);
3454
  if (! in_set)
3455
    {
3456
      gcc_assert (JUMP_P (in_insn) || CALL_P (in_insn));
3457
      return false;
3458
    }
3459
 
3460
  if (GET_CODE (SET_SRC (in_set)) != IF_THEN_ELSE)
3461
    return false;
3462
  in_set = SET_SRC (in_set);
3463
 
3464
  out_set = single_set (out_insn);
3465
  if (out_set)
3466
    {
3467
      if (reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 1))
3468
          || reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 2)))
3469
        return false;
3470
    }
3471
  else
3472
    {
3473
      rtx out_pat;
3474
      int i;
3475
 
3476
      out_pat = PATTERN (out_insn);
3477
      gcc_assert (GET_CODE (out_pat) == PARALLEL);
3478
 
3479
      for (i = 0; i < XVECLEN (out_pat, 0); i++)
3480
        {
3481
          rtx exp = XVECEXP (out_pat, 0, i);
3482
 
3483
          if (GET_CODE (exp) == CLOBBER)
3484
            continue;
3485
 
3486
          gcc_assert (GET_CODE (exp) == SET);
3487
 
3488
          if (reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 1))
3489
              || reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 2)))
3490
            return false;
3491
        }
3492
    }
3493
 
3494
  return true;
3495
}
3496
 
3497
static bool
3498
gate_handle_peephole2 (void)
3499
{
3500
  return (optimize > 0 && flag_peephole2);
3501
}
3502
 
3503
static unsigned int
3504
rest_of_handle_peephole2 (void)
3505
{
3506
#ifdef HAVE_peephole2
3507
  peephole2_optimize ();
3508
#endif
3509
  return 0;
3510
}
3511
 
3512
struct rtl_opt_pass pass_peephole2 =
3513
{
3514
 {
3515
  RTL_PASS,
3516
  "peephole2",                          /* name */
3517
  gate_handle_peephole2,                /* gate */
3518
  rest_of_handle_peephole2,             /* execute */
3519
  NULL,                                 /* sub */
3520
  NULL,                                 /* next */
3521
  0,                                    /* static_pass_number */
3522
  TV_PEEPHOLE2,                         /* tv_id */
3523
  0,                                    /* properties_required */
3524
  0,                                    /* properties_provided */
3525
  0,                                    /* properties_destroyed */
3526
  0,                                    /* todo_flags_start */
3527
  TODO_df_finish | TODO_verify_rtl_sharing |
3528
  TODO_dump_func                       /* todo_flags_finish */
3529
 }
3530
};
3531
 
3532
static unsigned int
3533
rest_of_handle_split_all_insns (void)
3534
{
3535
  split_all_insns ();
3536
  return 0;
3537
}
3538
 
3539
struct rtl_opt_pass pass_split_all_insns =
3540
{
3541
 {
3542
  RTL_PASS,
3543
  "split1",                             /* name */
3544
  NULL,                                 /* gate */
3545
  rest_of_handle_split_all_insns,       /* execute */
3546
  NULL,                                 /* sub */
3547
  NULL,                                 /* next */
3548
  0,                                    /* static_pass_number */
3549
  TV_NONE,                              /* tv_id */
3550
  0,                                    /* properties_required */
3551
  0,                                    /* properties_provided */
3552
  0,                                    /* properties_destroyed */
3553
  0,                                    /* todo_flags_start */
3554
  TODO_dump_func                        /* todo_flags_finish */
3555
 }
3556
};
3557
 
3558
static unsigned int
3559
rest_of_handle_split_after_reload (void)
3560
{
3561
  /* If optimizing, then go ahead and split insns now.  */
3562
#ifndef STACK_REGS
3563
  if (optimize > 0)
3564
#endif
3565
    split_all_insns ();
3566
  return 0;
3567
}
3568
 
3569
struct rtl_opt_pass pass_split_after_reload =
3570
{
3571
 {
3572
  RTL_PASS,
3573
  "split2",                             /* name */
3574
  NULL,                                 /* gate */
3575
  rest_of_handle_split_after_reload,    /* execute */
3576
  NULL,                                 /* sub */
3577
  NULL,                                 /* next */
3578
  0,                                    /* static_pass_number */
3579
  TV_NONE,                              /* tv_id */
3580
  0,                                    /* properties_required */
3581
  0,                                    /* properties_provided */
3582
  0,                                    /* properties_destroyed */
3583
  0,                                    /* todo_flags_start */
3584
  TODO_dump_func                        /* todo_flags_finish */
3585
 }
3586
};
3587
 
3588
static bool
3589
gate_handle_split_before_regstack (void)
3590
{
3591
#if defined (HAVE_ATTR_length) && defined (STACK_REGS)
3592
  /* If flow2 creates new instructions which need splitting
3593
     and scheduling after reload is not done, they might not be
3594
     split until final which doesn't allow splitting
3595
     if HAVE_ATTR_length.  */
3596
# ifdef INSN_SCHEDULING
3597
  return (optimize && !flag_schedule_insns_after_reload);
3598
# else
3599
  return (optimize);
3600
# endif
3601
#else
3602
  return 0;
3603
#endif
3604
}
3605
 
3606
static unsigned int
3607
rest_of_handle_split_before_regstack (void)
3608
{
3609
  split_all_insns ();
3610
  return 0;
3611
}
3612
 
3613
struct rtl_opt_pass pass_split_before_regstack =
3614
{
3615
 {
3616
  RTL_PASS,
3617
  "split3",                             /* name */
3618
  gate_handle_split_before_regstack,    /* gate */
3619
  rest_of_handle_split_before_regstack, /* execute */
3620
  NULL,                                 /* sub */
3621
  NULL,                                 /* next */
3622
  0,                                    /* static_pass_number */
3623
  TV_NONE,                              /* tv_id */
3624
  0,                                    /* properties_required */
3625
  0,                                    /* properties_provided */
3626
  0,                                    /* properties_destroyed */
3627
  0,                                    /* todo_flags_start */
3628
  TODO_dump_func                        /* todo_flags_finish */
3629
 }
3630
};
3631
 
3632
static bool
3633
gate_handle_split_before_sched2 (void)
3634
{
3635
#ifdef INSN_SCHEDULING
3636
  return optimize > 0 && flag_schedule_insns_after_reload;
3637
#else
3638
  return 0;
3639
#endif
3640
}
3641
 
3642
static unsigned int
3643
rest_of_handle_split_before_sched2 (void)
3644
{
3645
#ifdef INSN_SCHEDULING
3646
  split_all_insns ();
3647
#endif
3648
  return 0;
3649
}
3650
 
3651
struct rtl_opt_pass pass_split_before_sched2 =
3652
{
3653
 {
3654
  RTL_PASS,
3655
  "split4",                             /* name */
3656
  gate_handle_split_before_sched2,      /* gate */
3657
  rest_of_handle_split_before_sched2,   /* execute */
3658
  NULL,                                 /* sub */
3659
  NULL,                                 /* next */
3660
  0,                                    /* static_pass_number */
3661
  TV_NONE,                              /* tv_id */
3662
  0,                                    /* properties_required */
3663
  0,                                    /* properties_provided */
3664
  0,                                    /* properties_destroyed */
3665
  0,                                    /* todo_flags_start */
3666
  TODO_verify_flow |
3667
  TODO_dump_func                        /* todo_flags_finish */
3668
 }
3669
};
3670
 
3671
/* The placement of the splitting that we do for shorten_branches
3672
   depends on whether regstack is used by the target or not.  */
3673
static bool
3674
gate_do_final_split (void)
3675
{
3676
#if defined (HAVE_ATTR_length) && !defined (STACK_REGS)
3677
  return 1;
3678
#else
3679
  return 0;
3680
#endif
3681
}
3682
 
3683
struct rtl_opt_pass pass_split_for_shorten_branches =
3684
{
3685
 {
3686
  RTL_PASS,
3687
  "split5",                             /* name */
3688
  gate_do_final_split,                  /* gate */
3689
  split_all_insns_noflow,               /* execute */
3690
  NULL,                                 /* sub */
3691
  NULL,                                 /* next */
3692
  0,                                    /* static_pass_number */
3693
  TV_NONE,                              /* tv_id */
3694
  0,                                    /* properties_required */
3695
  0,                                    /* properties_provided */
3696
  0,                                    /* properties_destroyed */
3697
  0,                                    /* todo_flags_start */
3698
  TODO_dump_func | TODO_verify_rtl_sharing /* todo_flags_finish */
3699
 }
3700
};

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.