OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-stable/] [gcc-4.5.1/] [gcc/] [resource.c] - Blame information for rev 826

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 280 jeremybenn
/* Definitions for computing resource usage of specific insns.
2
   Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
3
   2009 Free Software Foundation, Inc.
4
 
5
This file is part of GCC.
6
 
7
GCC is free software; you can redistribute it and/or modify it under
8
the terms of the GNU General Public License as published by the Free
9
Software Foundation; either version 3, or (at your option) any later
10
version.
11
 
12
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13
WARRANTY; without even the implied warranty of MERCHANTABILITY or
14
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15
for more details.
16
 
17
You should have received a copy of the GNU General Public License
18
along with GCC; see the file COPYING3.  If not see
19
<http://www.gnu.org/licenses/>.  */
20
 
21
#include "config.h"
22
#include "system.h"
23
#include "coretypes.h"
24
#include "tm.h"
25
#include "toplev.h"
26
#include "rtl.h"
27
#include "tm_p.h"
28
#include "hard-reg-set.h"
29
#include "function.h"
30
#include "regs.h"
31
#include "flags.h"
32
#include "output.h"
33
#include "resource.h"
34
#include "except.h"
35
#include "insn-attr.h"
36
#include "params.h"
37
#include "df.h"
38
 
39
/* This structure is used to record liveness information at the targets or
40
   fallthrough insns of branches.  We will most likely need the information
41
   at targets again, so save them in a hash table rather than recomputing them
42
   each time.  */
43
 
44
struct target_info
45
{
46
  int uid;                      /* INSN_UID of target.  */
47
  struct target_info *next;     /* Next info for same hash bucket.  */
48
  HARD_REG_SET live_regs;       /* Registers live at target.  */
49
  int block;                    /* Basic block number containing target.  */
50
  int bb_tick;                  /* Generation count of basic block info.  */
51
};
52
 
53
#define TARGET_HASH_PRIME 257
54
 
55
/* Indicates what resources are required at the beginning of the epilogue.  */
56
static struct resources start_of_epilogue_needs;
57
 
58
/* Indicates what resources are required at function end.  */
59
static struct resources end_of_function_needs;
60
 
61
/* Define the hash table itself.  */
62
static struct target_info **target_hash_table = NULL;
63
 
64
/* For each basic block, we maintain a generation number of its basic
65
   block info, which is updated each time we move an insn from the
66
   target of a jump.  This is the generation number indexed by block
67
   number.  */
68
 
69
static int *bb_ticks;
70
 
71
/* Marks registers possibly live at the current place being scanned by
72
   mark_target_live_regs.  Also used by update_live_status.  */
73
 
74
static HARD_REG_SET current_live_regs;
75
 
76
/* Marks registers for which we have seen a REG_DEAD note but no assignment.
77
   Also only used by the next two functions.  */
78
 
79
static HARD_REG_SET pending_dead_regs;
80
 
81
static void update_live_status (rtx, const_rtx, void *);
82
static int find_basic_block (rtx, int);
83
static rtx next_insn_no_annul (rtx);
84
static rtx find_dead_or_set_registers (rtx, struct resources*,
85
                                       rtx*, int, struct resources,
86
                                       struct resources);
87
 
88
/* Utility function called from mark_target_live_regs via note_stores.
89
   It deadens any CLOBBERed registers and livens any SET registers.  */
90
 
91
static void
92
update_live_status (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
93
{
94
  int first_regno, last_regno;
95
  int i;
96
 
97
  if (!REG_P (dest)
98
      && (GET_CODE (dest) != SUBREG || !REG_P (SUBREG_REG (dest))))
99
    return;
100
 
101
  if (GET_CODE (dest) == SUBREG)
102
    {
103
      first_regno = subreg_regno (dest);
104
      last_regno = first_regno + subreg_nregs (dest);
105
 
106
    }
107
  else
108
    {
109
      first_regno = REGNO (dest);
110
      last_regno = END_HARD_REGNO (dest);
111
    }
112
 
113
  if (GET_CODE (x) == CLOBBER)
114
    for (i = first_regno; i < last_regno; i++)
115
      CLEAR_HARD_REG_BIT (current_live_regs, i);
116
  else
117
    for (i = first_regno; i < last_regno; i++)
118
      {
119
        SET_HARD_REG_BIT (current_live_regs, i);
120
        CLEAR_HARD_REG_BIT (pending_dead_regs, i);
121
      }
122
}
123
 
124
/* Find the number of the basic block with correct live register
125
   information that starts closest to INSN.  Return -1 if we couldn't
126
   find such a basic block or the beginning is more than
127
   SEARCH_LIMIT instructions before INSN.  Use SEARCH_LIMIT = -1 for
128
   an unlimited search.
129
 
130
   The delay slot filling code destroys the control-flow graph so,
131
   instead of finding the basic block containing INSN, we search
132
   backwards toward a BARRIER where the live register information is
133
   correct.  */
134
 
135
static int
136
find_basic_block (rtx insn, int search_limit)
137
{
138
  /* Scan backwards to the previous BARRIER.  Then see if we can find a
139
     label that starts a basic block.  Return the basic block number.  */
140
  for (insn = prev_nonnote_insn (insn);
141
       insn && !BARRIER_P (insn) && search_limit != 0;
142
       insn = prev_nonnote_insn (insn), --search_limit)
143
    ;
144
 
145
  /* The closest BARRIER is too far away.  */
146
  if (search_limit == 0)
147
    return -1;
148
 
149
  /* The start of the function.  */
150
  else if (insn == 0)
151
    return ENTRY_BLOCK_PTR->next_bb->index;
152
 
153
  /* See if any of the upcoming CODE_LABELs start a basic block.  If we reach
154
     anything other than a CODE_LABEL or note, we can't find this code.  */
155
  for (insn = next_nonnote_insn (insn);
156
       insn && LABEL_P (insn);
157
       insn = next_nonnote_insn (insn))
158
    if (BLOCK_FOR_INSN (insn))
159
      return BLOCK_FOR_INSN (insn)->index;
160
 
161
  return -1;
162
}
163
 
164
/* Similar to next_insn, but ignores insns in the delay slots of
165
   an annulled branch.  */
166
 
167
static rtx
168
next_insn_no_annul (rtx insn)
169
{
170
  if (insn)
171
    {
172
      /* If INSN is an annulled branch, skip any insns from the target
173
         of the branch.  */
174
      if (INSN_P (insn)
175
          && INSN_ANNULLED_BRANCH_P (insn)
176
          && NEXT_INSN (PREV_INSN (insn)) != insn)
177
        {
178
          rtx next = NEXT_INSN (insn);
179
          enum rtx_code code = GET_CODE (next);
180
 
181
          while ((code == INSN || code == JUMP_INSN || code == CALL_INSN)
182
                 && INSN_FROM_TARGET_P (next))
183
            {
184
              insn = next;
185
              next = NEXT_INSN (insn);
186
              code = GET_CODE (next);
187
            }
188
        }
189
 
190
      insn = NEXT_INSN (insn);
191
      if (insn && NONJUMP_INSN_P (insn)
192
          && GET_CODE (PATTERN (insn)) == SEQUENCE)
193
        insn = XVECEXP (PATTERN (insn), 0, 0);
194
    }
195
 
196
  return insn;
197
}
198
 
199
/* Given X, some rtl, and RES, a pointer to a `struct resource', mark
200
   which resources are referenced by the insn.  If INCLUDE_DELAYED_EFFECTS
201
   is TRUE, resources used by the called routine will be included for
202
   CALL_INSNs.  */
203
 
204
void
205
mark_referenced_resources (rtx x, struct resources *res,
206
                           bool include_delayed_effects)
207
{
208
  enum rtx_code code = GET_CODE (x);
209
  int i, j;
210
  unsigned int r;
211
  const char *format_ptr;
212
 
213
  /* Handle leaf items for which we set resource flags.  Also, special-case
214
     CALL, SET and CLOBBER operators.  */
215
  switch (code)
216
    {
217
    case CONST:
218
    case CONST_INT:
219
    case CONST_DOUBLE:
220
    case CONST_FIXED:
221
    case CONST_VECTOR:
222
    case PC:
223
    case SYMBOL_REF:
224
    case LABEL_REF:
225
      return;
226
 
227
    case SUBREG:
228
      if (!REG_P (SUBREG_REG (x)))
229
        mark_referenced_resources (SUBREG_REG (x), res, false);
230
      else
231
        {
232
          unsigned int regno = subreg_regno (x);
233
          unsigned int last_regno = regno + subreg_nregs (x);
234
 
235
          gcc_assert (last_regno <= FIRST_PSEUDO_REGISTER);
236
          for (r = regno; r < last_regno; r++)
237
            SET_HARD_REG_BIT (res->regs, r);
238
        }
239
      return;
240
 
241
    case REG:
242
      gcc_assert (HARD_REGISTER_P (x));
243
      add_to_hard_reg_set (&res->regs, GET_MODE (x), REGNO (x));
244
      return;
245
 
246
    case MEM:
247
      /* If this memory shouldn't change, it really isn't referencing
248
         memory.  */
249
      if (MEM_READONLY_P (x))
250
        res->unch_memory = 1;
251
      else
252
        res->memory = 1;
253
      res->volatil |= MEM_VOLATILE_P (x);
254
 
255
      /* Mark registers used to access memory.  */
256
      mark_referenced_resources (XEXP (x, 0), res, false);
257
      return;
258
 
259
    case CC0:
260
      res->cc = 1;
261
      return;
262
 
263
    case UNSPEC_VOLATILE:
264
    case TRAP_IF:
265
    case ASM_INPUT:
266
      /* Traditional asm's are always volatile.  */
267
      res->volatil = 1;
268
      break;
269
 
270
    case ASM_OPERANDS:
271
      res->volatil |= MEM_VOLATILE_P (x);
272
 
273
      /* For all ASM_OPERANDS, we must traverse the vector of input operands.
274
         We can not just fall through here since then we would be confused
275
         by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
276
         traditional asms unlike their normal usage.  */
277
 
278
      for (i = 0; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
279
        mark_referenced_resources (ASM_OPERANDS_INPUT (x, i), res, false);
280
      return;
281
 
282
    case CALL:
283
      /* The first operand will be a (MEM (xxx)) but doesn't really reference
284
         memory.  The second operand may be referenced, though.  */
285
      mark_referenced_resources (XEXP (XEXP (x, 0), 0), res, false);
286
      mark_referenced_resources (XEXP (x, 1), res, false);
287
      return;
288
 
289
    case SET:
290
      /* Usually, the first operand of SET is set, not referenced.  But
291
         registers used to access memory are referenced.  SET_DEST is
292
         also referenced if it is a ZERO_EXTRACT.  */
293
 
294
      mark_referenced_resources (SET_SRC (x), res, false);
295
 
296
      x = SET_DEST (x);
297
      if (GET_CODE (x) == ZERO_EXTRACT
298
          || GET_CODE (x) == STRICT_LOW_PART)
299
        mark_referenced_resources (x, res, false);
300
      else if (GET_CODE (x) == SUBREG)
301
        x = SUBREG_REG (x);
302
      if (MEM_P (x))
303
        mark_referenced_resources (XEXP (x, 0), res, false);
304
      return;
305
 
306
    case CLOBBER:
307
      return;
308
 
309
    case CALL_INSN:
310
      if (include_delayed_effects)
311
        {
312
          /* A CALL references memory, the frame pointer if it exists, the
313
             stack pointer, any global registers and any registers given in
314
             USE insns immediately in front of the CALL.
315
 
316
             However, we may have moved some of the parameter loading insns
317
             into the delay slot of this CALL.  If so, the USE's for them
318
             don't count and should be skipped.  */
319
          rtx insn = PREV_INSN (x);
320
          rtx sequence = 0;
321
          int seq_size = 0;
322
          int i;
323
 
324
          /* If we are part of a delay slot sequence, point at the SEQUENCE.  */
325
          if (NEXT_INSN (insn) != x)
326
            {
327
              sequence = PATTERN (NEXT_INSN (insn));
328
              seq_size = XVECLEN (sequence, 0);
329
              gcc_assert (GET_CODE (sequence) == SEQUENCE);
330
            }
331
 
332
          res->memory = 1;
333
          SET_HARD_REG_BIT (res->regs, STACK_POINTER_REGNUM);
334
          if (frame_pointer_needed)
335
            {
336
              SET_HARD_REG_BIT (res->regs, FRAME_POINTER_REGNUM);
337
#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
338
              SET_HARD_REG_BIT (res->regs, HARD_FRAME_POINTER_REGNUM);
339
#endif
340
            }
341
 
342
          for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
343
            if (global_regs[i])
344
              SET_HARD_REG_BIT (res->regs, i);
345
 
346
          /* Check for a REG_SETJMP.  If it exists, then we must
347
             assume that this call can need any register.
348
 
349
             This is done to be more conservative about how we handle setjmp.
350
             We assume that they both use and set all registers.  Using all
351
             registers ensures that a register will not be considered dead
352
             just because it crosses a setjmp call.  A register should be
353
             considered dead only if the setjmp call returns nonzero.  */
354
          if (find_reg_note (x, REG_SETJMP, NULL))
355
            SET_HARD_REG_SET (res->regs);
356
 
357
          {
358
            rtx link;
359
 
360
            for (link = CALL_INSN_FUNCTION_USAGE (x);
361
                 link;
362
                 link = XEXP (link, 1))
363
              if (GET_CODE (XEXP (link, 0)) == USE)
364
                {
365
                  for (i = 1; i < seq_size; i++)
366
                    {
367
                      rtx slot_pat = PATTERN (XVECEXP (sequence, 0, i));
368
                      if (GET_CODE (slot_pat) == SET
369
                          && rtx_equal_p (SET_DEST (slot_pat),
370
                                          XEXP (XEXP (link, 0), 0)))
371
                        break;
372
                    }
373
                  if (i >= seq_size)
374
                    mark_referenced_resources (XEXP (XEXP (link, 0), 0),
375
                                               res, false);
376
                }
377
          }
378
        }
379
 
380
      /* ... fall through to other INSN processing ...  */
381
 
382
    case INSN:
383
    case JUMP_INSN:
384
 
385
#ifdef INSN_REFERENCES_ARE_DELAYED
386
      if (! include_delayed_effects
387
          && INSN_REFERENCES_ARE_DELAYED (x))
388
        return;
389
#endif
390
 
391
      /* No special processing, just speed up.  */
392
      mark_referenced_resources (PATTERN (x), res, include_delayed_effects);
393
      return;
394
 
395
    default:
396
      break;
397
    }
398
 
399
  /* Process each sub-expression and flag what it needs.  */
400
  format_ptr = GET_RTX_FORMAT (code);
401
  for (i = 0; i < GET_RTX_LENGTH (code); i++)
402
    switch (*format_ptr++)
403
      {
404
      case 'e':
405
        mark_referenced_resources (XEXP (x, i), res, include_delayed_effects);
406
        break;
407
 
408
      case 'E':
409
        for (j = 0; j < XVECLEN (x, i); j++)
410
          mark_referenced_resources (XVECEXP (x, i, j), res,
411
                                     include_delayed_effects);
412
        break;
413
      }
414
}
415
 
416
/* A subroutine of mark_target_live_regs.  Search forward from TARGET
417
   looking for registers that are set before they are used.  These are dead.
418
   Stop after passing a few conditional jumps, and/or a small
419
   number of unconditional branches.  */
420
 
421
static rtx
422
find_dead_or_set_registers (rtx target, struct resources *res,
423
                            rtx *jump_target, int jump_count,
424
                            struct resources set, struct resources needed)
425
{
426
  HARD_REG_SET scratch;
427
  rtx insn, next;
428
  rtx jump_insn = 0;
429
  int i;
430
 
431
  for (insn = target; insn; insn = next)
432
    {
433
      rtx this_jump_insn = insn;
434
 
435
      next = NEXT_INSN (insn);
436
 
437
      /* If this instruction can throw an exception, then we don't
438
         know where we might end up next.  That means that we have to
439
         assume that whatever we have already marked as live really is
440
         live.  */
441
      if (can_throw_internal (insn))
442
        break;
443
 
444
      switch (GET_CODE (insn))
445
        {
446
        case CODE_LABEL:
447
          /* After a label, any pending dead registers that weren't yet
448
             used can be made dead.  */
449
          AND_COMPL_HARD_REG_SET (pending_dead_regs, needed.regs);
450
          AND_COMPL_HARD_REG_SET (res->regs, pending_dead_regs);
451
          CLEAR_HARD_REG_SET (pending_dead_regs);
452
 
453
          continue;
454
 
455
        case BARRIER:
456
        case NOTE:
457
          continue;
458
 
459
        case INSN:
460
          if (GET_CODE (PATTERN (insn)) == USE)
461
            {
462
              /* If INSN is a USE made by update_block, we care about the
463
                 underlying insn.  Any registers set by the underlying insn
464
                 are live since the insn is being done somewhere else.  */
465
              if (INSN_P (XEXP (PATTERN (insn), 0)))
466
                mark_set_resources (XEXP (PATTERN (insn), 0), res, 0,
467
                                    MARK_SRC_DEST_CALL);
468
 
469
              /* All other USE insns are to be ignored.  */
470
              continue;
471
            }
472
          else if (GET_CODE (PATTERN (insn)) == CLOBBER)
473
            continue;
474
          else if (GET_CODE (PATTERN (insn)) == SEQUENCE)
475
            {
476
              /* An unconditional jump can be used to fill the delay slot
477
                 of a call, so search for a JUMP_INSN in any position.  */
478
              for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
479
                {
480
                  this_jump_insn = XVECEXP (PATTERN (insn), 0, i);
481
                  if (JUMP_P (this_jump_insn))
482
                    break;
483
                }
484
            }
485
 
486
        default:
487
          break;
488
        }
489
 
490
      if (JUMP_P (this_jump_insn))
491
        {
492
          if (jump_count++ < 10)
493
            {
494
              if (any_uncondjump_p (this_jump_insn)
495
                  || GET_CODE (PATTERN (this_jump_insn)) == RETURN)
496
                {
497
                  next = JUMP_LABEL (this_jump_insn);
498
                  if (jump_insn == 0)
499
                    {
500
                      jump_insn = insn;
501
                      if (jump_target)
502
                        *jump_target = JUMP_LABEL (this_jump_insn);
503
                    }
504
                }
505
              else if (any_condjump_p (this_jump_insn))
506
                {
507
                  struct resources target_set, target_res;
508
                  struct resources fallthrough_res;
509
 
510
                  /* We can handle conditional branches here by following
511
                     both paths, and then IOR the results of the two paths
512
                     together, which will give us registers that are dead
513
                     on both paths.  Since this is expensive, we give it
514
                     a much higher cost than unconditional branches.  The
515
                     cost was chosen so that we will follow at most 1
516
                     conditional branch.  */
517
 
518
                  jump_count += 4;
519
                  if (jump_count >= 10)
520
                    break;
521
 
522
                  mark_referenced_resources (insn, &needed, true);
523
 
524
                  /* For an annulled branch, mark_set_resources ignores slots
525
                     filled by instructions from the target.  This is correct
526
                     if the branch is not taken.  Since we are following both
527
                     paths from the branch, we must also compute correct info
528
                     if the branch is taken.  We do this by inverting all of
529
                     the INSN_FROM_TARGET_P bits, calling mark_set_resources,
530
                     and then inverting the INSN_FROM_TARGET_P bits again.  */
531
 
532
                  if (GET_CODE (PATTERN (insn)) == SEQUENCE
533
                      && INSN_ANNULLED_BRANCH_P (this_jump_insn))
534
                    {
535
                      for (i = 1; i < XVECLEN (PATTERN (insn), 0); i++)
536
                        INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i))
537
                          = ! INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i));
538
 
539
                      target_set = set;
540
                      mark_set_resources (insn, &target_set, 0,
541
                                          MARK_SRC_DEST_CALL);
542
 
543
                      for (i = 1; i < XVECLEN (PATTERN (insn), 0); i++)
544
                        INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i))
545
                          = ! INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i));
546
 
547
                      mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
548
                    }
549
                  else
550
                    {
551
                      mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
552
                      target_set = set;
553
                    }
554
 
555
                  target_res = *res;
556
                  COPY_HARD_REG_SET (scratch, target_set.regs);
557
                  AND_COMPL_HARD_REG_SET (scratch, needed.regs);
558
                  AND_COMPL_HARD_REG_SET (target_res.regs, scratch);
559
 
560
                  fallthrough_res = *res;
561
                  COPY_HARD_REG_SET (scratch, set.regs);
562
                  AND_COMPL_HARD_REG_SET (scratch, needed.regs);
563
                  AND_COMPL_HARD_REG_SET (fallthrough_res.regs, scratch);
564
 
565
                  find_dead_or_set_registers (JUMP_LABEL (this_jump_insn),
566
                                              &target_res, 0, jump_count,
567
                                              target_set, needed);
568
                  find_dead_or_set_registers (next,
569
                                              &fallthrough_res, 0, jump_count,
570
                                              set, needed);
571
                  IOR_HARD_REG_SET (fallthrough_res.regs, target_res.regs);
572
                  AND_HARD_REG_SET (res->regs, fallthrough_res.regs);
573
                  break;
574
                }
575
              else
576
                break;
577
            }
578
          else
579
            {
580
              /* Don't try this optimization if we expired our jump count
581
                 above, since that would mean there may be an infinite loop
582
                 in the function being compiled.  */
583
              jump_insn = 0;
584
              break;
585
            }
586
        }
587
 
588
      mark_referenced_resources (insn, &needed, true);
589
      mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
590
 
591
      COPY_HARD_REG_SET (scratch, set.regs);
592
      AND_COMPL_HARD_REG_SET (scratch, needed.regs);
593
      AND_COMPL_HARD_REG_SET (res->regs, scratch);
594
    }
595
 
596
  return jump_insn;
597
}
598
 
599
/* Given X, a part of an insn, and a pointer to a `struct resource',
600
   RES, indicate which resources are modified by the insn. If
601
   MARK_TYPE is MARK_SRC_DEST_CALL, also mark resources potentially
602
   set by the called routine.
603
 
604
   If IN_DEST is nonzero, it means we are inside a SET.  Otherwise,
605
   objects are being referenced instead of set.
606
 
607
   We never mark the insn as modifying the condition code unless it explicitly
608
   SETs CC0 even though this is not totally correct.  The reason for this is
609
   that we require a SET of CC0 to immediately precede the reference to CC0.
610
   So if some other insn sets CC0 as a side-effect, we know it cannot affect
611
   our computation and thus may be placed in a delay slot.  */
612
 
613
void
614
mark_set_resources (rtx x, struct resources *res, int in_dest,
615
                    enum mark_resource_type mark_type)
616
{
617
  enum rtx_code code;
618
  int i, j;
619
  unsigned int r;
620
  const char *format_ptr;
621
 
622
 restart:
623
 
624
  code = GET_CODE (x);
625
 
626
  switch (code)
627
    {
628
    case NOTE:
629
    case BARRIER:
630
    case CODE_LABEL:
631
    case USE:
632
    case CONST_INT:
633
    case CONST_DOUBLE:
634
    case CONST_FIXED:
635
    case CONST_VECTOR:
636
    case LABEL_REF:
637
    case SYMBOL_REF:
638
    case CONST:
639
    case PC:
640
      /* These don't set any resources.  */
641
      return;
642
 
643
    case CC0:
644
      if (in_dest)
645
        res->cc = 1;
646
      return;
647
 
648
    case CALL_INSN:
649
      /* Called routine modifies the condition code, memory, any registers
650
         that aren't saved across calls, global registers and anything
651
         explicitly CLOBBERed immediately after the CALL_INSN.  */
652
 
653
      if (mark_type == MARK_SRC_DEST_CALL)
654
        {
655
          rtx link;
656
 
657
          res->cc = res->memory = 1;
658
 
659
          IOR_HARD_REG_SET (res->regs, regs_invalidated_by_call);
660
 
661
          for (link = CALL_INSN_FUNCTION_USAGE (x);
662
               link; link = XEXP (link, 1))
663
            if (GET_CODE (XEXP (link, 0)) == CLOBBER)
664
              mark_set_resources (SET_DEST (XEXP (link, 0)), res, 1,
665
                                  MARK_SRC_DEST);
666
 
667
          /* Check for a REG_SETJMP.  If it exists, then we must
668
             assume that this call can clobber any register.  */
669
          if (find_reg_note (x, REG_SETJMP, NULL))
670
            SET_HARD_REG_SET (res->regs);
671
        }
672
 
673
      /* ... and also what its RTL says it modifies, if anything.  */
674
 
675
    case JUMP_INSN:
676
    case INSN:
677
 
678
        /* An insn consisting of just a CLOBBER (or USE) is just for flow
679
           and doesn't actually do anything, so we ignore it.  */
680
 
681
#ifdef INSN_SETS_ARE_DELAYED
682
      if (mark_type != MARK_SRC_DEST_CALL
683
          && INSN_SETS_ARE_DELAYED (x))
684
        return;
685
#endif
686
 
687
      x = PATTERN (x);
688
      if (GET_CODE (x) != USE && GET_CODE (x) != CLOBBER)
689
        goto restart;
690
      return;
691
 
692
    case SET:
693
      /* If the source of a SET is a CALL, this is actually done by
694
         the called routine.  So only include it if we are to include the
695
         effects of the calling routine.  */
696
 
697
      mark_set_resources (SET_DEST (x), res,
698
                          (mark_type == MARK_SRC_DEST_CALL
699
                           || GET_CODE (SET_SRC (x)) != CALL),
700
                          mark_type);
701
 
702
      mark_set_resources (SET_SRC (x), res, 0, MARK_SRC_DEST);
703
      return;
704
 
705
    case CLOBBER:
706
      mark_set_resources (XEXP (x, 0), res, 1, MARK_SRC_DEST);
707
      return;
708
 
709
    case SEQUENCE:
710
      for (i = 0; i < XVECLEN (x, 0); i++)
711
        if (! (INSN_ANNULLED_BRANCH_P (XVECEXP (x, 0, 0))
712
               && INSN_FROM_TARGET_P (XVECEXP (x, 0, i))))
713
          mark_set_resources (XVECEXP (x, 0, i), res, 0, mark_type);
714
      return;
715
 
716
    case POST_INC:
717
    case PRE_INC:
718
    case POST_DEC:
719
    case PRE_DEC:
720
      mark_set_resources (XEXP (x, 0), res, 1, MARK_SRC_DEST);
721
      return;
722
 
723
    case PRE_MODIFY:
724
    case POST_MODIFY:
725
      mark_set_resources (XEXP (x, 0), res, 1, MARK_SRC_DEST);
726
      mark_set_resources (XEXP (XEXP (x, 1), 0), res, 0, MARK_SRC_DEST);
727
      mark_set_resources (XEXP (XEXP (x, 1), 1), res, 0, MARK_SRC_DEST);
728
      return;
729
 
730
    case SIGN_EXTRACT:
731
    case ZERO_EXTRACT:
732
      mark_set_resources (XEXP (x, 0), res, in_dest, MARK_SRC_DEST);
733
      mark_set_resources (XEXP (x, 1), res, 0, MARK_SRC_DEST);
734
      mark_set_resources (XEXP (x, 2), res, 0, MARK_SRC_DEST);
735
      return;
736
 
737
    case MEM:
738
      if (in_dest)
739
        {
740
          res->memory = 1;
741
          res->unch_memory |= MEM_READONLY_P (x);
742
          res->volatil |= MEM_VOLATILE_P (x);
743
        }
744
 
745
      mark_set_resources (XEXP (x, 0), res, 0, MARK_SRC_DEST);
746
      return;
747
 
748
    case SUBREG:
749
      if (in_dest)
750
        {
751
          if (!REG_P (SUBREG_REG (x)))
752
            mark_set_resources (SUBREG_REG (x), res, in_dest, mark_type);
753
          else
754
            {
755
              unsigned int regno = subreg_regno (x);
756
              unsigned int last_regno = regno + subreg_nregs (x);
757
 
758
              gcc_assert (last_regno <= FIRST_PSEUDO_REGISTER);
759
              for (r = regno; r < last_regno; r++)
760
                SET_HARD_REG_BIT (res->regs, r);
761
            }
762
        }
763
      return;
764
 
765
    case REG:
766
      if (in_dest)
767
        {
768
          gcc_assert (HARD_REGISTER_P (x));
769
          add_to_hard_reg_set (&res->regs, GET_MODE (x), REGNO (x));
770
        }
771
      return;
772
 
773
    case UNSPEC_VOLATILE:
774
    case ASM_INPUT:
775
      /* Traditional asm's are always volatile.  */
776
      res->volatil = 1;
777
      return;
778
 
779
    case TRAP_IF:
780
      res->volatil = 1;
781
      break;
782
 
783
    case ASM_OPERANDS:
784
      res->volatil |= MEM_VOLATILE_P (x);
785
 
786
      /* For all ASM_OPERANDS, we must traverse the vector of input operands.
787
         We can not just fall through here since then we would be confused
788
         by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
789
         traditional asms unlike their normal usage.  */
790
 
791
      for (i = 0; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
792
        mark_set_resources (ASM_OPERANDS_INPUT (x, i), res, in_dest,
793
                            MARK_SRC_DEST);
794
      return;
795
 
796
    default:
797
      break;
798
    }
799
 
800
  /* Process each sub-expression and flag what it needs.  */
801
  format_ptr = GET_RTX_FORMAT (code);
802
  for (i = 0; i < GET_RTX_LENGTH (code); i++)
803
    switch (*format_ptr++)
804
      {
805
      case 'e':
806
        mark_set_resources (XEXP (x, i), res, in_dest, mark_type);
807
        break;
808
 
809
      case 'E':
810
        for (j = 0; j < XVECLEN (x, i); j++)
811
          mark_set_resources (XVECEXP (x, i, j), res, in_dest, mark_type);
812
        break;
813
      }
814
}
815
 
816
/* Return TRUE if INSN is a return, possibly with a filled delay slot.  */
817
 
818
static bool
819
return_insn_p (const_rtx insn)
820
{
821
  if (JUMP_P (insn) && GET_CODE (PATTERN (insn)) == RETURN)
822
    return true;
823
 
824
  if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
825
    return return_insn_p (XVECEXP (PATTERN (insn), 0, 0));
826
 
827
  return false;
828
}
829
 
830
/* Set the resources that are live at TARGET.
831
 
832
   If TARGET is zero, we refer to the end of the current function and can
833
   return our precomputed value.
834
 
835
   Otherwise, we try to find out what is live by consulting the basic block
836
   information.  This is tricky, because we must consider the actions of
837
   reload and jump optimization, which occur after the basic block information
838
   has been computed.
839
 
840
   Accordingly, we proceed as follows::
841
 
842
   We find the previous BARRIER and look at all immediately following labels
843
   (with no intervening active insns) to see if any of them start a basic
844
   block.  If we hit the start of the function first, we use block 0.
845
 
846
   Once we have found a basic block and a corresponding first insn, we can
847
   accurately compute the live status (by starting at a label following a
848
   BARRIER, we are immune to actions taken by reload and jump.)  Then we
849
   scan all insns between that point and our target.  For each CLOBBER (or
850
   for call-clobbered regs when we pass a CALL_INSN), mark the appropriate
851
   registers are dead.  For a SET, mark them as live.
852
 
853
   We have to be careful when using REG_DEAD notes because they are not
854
   updated by such things as find_equiv_reg.  So keep track of registers
855
   marked as dead that haven't been assigned to, and mark them dead at the
856
   next CODE_LABEL since reload and jump won't propagate values across labels.
857
 
858
   If we cannot find the start of a basic block (should be a very rare
859
   case, if it can happen at all), mark everything as potentially live.
860
 
861
   Next, scan forward from TARGET looking for things set or clobbered
862
   before they are used.  These are not live.
863
 
864
   Because we can be called many times on the same target, save our results
865
   in a hash table indexed by INSN_UID.  This is only done if the function
866
   init_resource_info () was invoked before we are called.  */
867
 
868
void
869
mark_target_live_regs (rtx insns, rtx target, struct resources *res)
870
{
871
  int b = -1;
872
  unsigned int i;
873
  struct target_info *tinfo = NULL;
874
  rtx insn;
875
  rtx jump_insn = 0;
876
  rtx jump_target;
877
  HARD_REG_SET scratch;
878
  struct resources set, needed;
879
 
880
  /* Handle end of function.  */
881
  if (target == 0)
882
    {
883
      *res = end_of_function_needs;
884
      return;
885
    }
886
 
887
  /* Handle return insn.  */
888
  else if (return_insn_p (target))
889
    {
890
      *res = end_of_function_needs;
891
      mark_referenced_resources (target, res, false);
892
      return;
893
    }
894
 
895
  /* We have to assume memory is needed, but the CC isn't.  */
896
  res->memory = 1;
897
  res->volatil = res->unch_memory = 0;
898
  res->cc = 0;
899
 
900
  /* See if we have computed this value already.  */
901
  if (target_hash_table != NULL)
902
    {
903
      for (tinfo = target_hash_table[INSN_UID (target) % TARGET_HASH_PRIME];
904
           tinfo; tinfo = tinfo->next)
905
        if (tinfo->uid == INSN_UID (target))
906
          break;
907
 
908
      /* Start by getting the basic block number.  If we have saved
909
         information, we can get it from there unless the insn at the
910
         start of the basic block has been deleted.  */
911
      if (tinfo && tinfo->block != -1
912
          && ! INSN_DELETED_P (BB_HEAD (BASIC_BLOCK (tinfo->block))))
913
        b = tinfo->block;
914
    }
915
 
916
  if (b == -1)
917
    b = find_basic_block (target, MAX_DELAY_SLOT_LIVE_SEARCH);
918
 
919
  if (target_hash_table != NULL)
920
    {
921
      if (tinfo)
922
        {
923
          /* If the information is up-to-date, use it.  Otherwise, we will
924
             update it below.  */
925
          if (b == tinfo->block && b != -1 && tinfo->bb_tick == bb_ticks[b])
926
            {
927
              COPY_HARD_REG_SET (res->regs, tinfo->live_regs);
928
              return;
929
            }
930
        }
931
      else
932
        {
933
          /* Allocate a place to put our results and chain it into the
934
             hash table.  */
935
          tinfo = XNEW (struct target_info);
936
          tinfo->uid = INSN_UID (target);
937
          tinfo->block = b;
938
          tinfo->next
939
            = target_hash_table[INSN_UID (target) % TARGET_HASH_PRIME];
940
          target_hash_table[INSN_UID (target) % TARGET_HASH_PRIME] = tinfo;
941
        }
942
    }
943
 
944
  CLEAR_HARD_REG_SET (pending_dead_regs);
945
 
946
  /* If we found a basic block, get the live registers from it and update
947
     them with anything set or killed between its start and the insn before
948
     TARGET; this custom life analysis is really about registers so we need
949
     to use the LR problem.  Otherwise, we must assume everything is live.  */
950
  if (b != -1)
951
    {
952
      regset regs_live = DF_LR_IN (BASIC_BLOCK (b));
953
      rtx start_insn, stop_insn;
954
 
955
      /* Compute hard regs live at start of block.  */
956
      REG_SET_TO_HARD_REG_SET (current_live_regs, regs_live);
957
 
958
      /* Get starting and ending insn, handling the case where each might
959
         be a SEQUENCE.  */
960
      start_insn = (b == ENTRY_BLOCK_PTR->next_bb->index ?
961
                    insns : BB_HEAD (BASIC_BLOCK (b)));
962
      stop_insn = target;
963
 
964
      if (NONJUMP_INSN_P (start_insn)
965
          && GET_CODE (PATTERN (start_insn)) == SEQUENCE)
966
        start_insn = XVECEXP (PATTERN (start_insn), 0, 0);
967
 
968
      if (NONJUMP_INSN_P (stop_insn)
969
          && GET_CODE (PATTERN (stop_insn)) == SEQUENCE)
970
        stop_insn = next_insn (PREV_INSN (stop_insn));
971
 
972
      for (insn = start_insn; insn != stop_insn;
973
           insn = next_insn_no_annul (insn))
974
        {
975
          rtx link;
976
          rtx real_insn = insn;
977
          enum rtx_code code = GET_CODE (insn);
978
 
979
          if (DEBUG_INSN_P (insn))
980
            continue;
981
 
982
          /* If this insn is from the target of a branch, it isn't going to
983
             be used in the sequel.  If it is used in both cases, this
984
             test will not be true.  */
985
          if ((code == INSN || code == JUMP_INSN || code == CALL_INSN)
986
              && INSN_FROM_TARGET_P (insn))
987
            continue;
988
 
989
          /* If this insn is a USE made by update_block, we care about the
990
             underlying insn.  */
991
          if (code == INSN && GET_CODE (PATTERN (insn)) == USE
992
              && INSN_P (XEXP (PATTERN (insn), 0)))
993
              real_insn = XEXP (PATTERN (insn), 0);
994
 
995
          if (CALL_P (real_insn))
996
            {
997
              /* CALL clobbers all call-used regs that aren't fixed except
998
                 sp, ap, and fp.  Do this before setting the result of the
999
                 call live.  */
1000
              AND_COMPL_HARD_REG_SET (current_live_regs,
1001
                                      regs_invalidated_by_call);
1002
 
1003
              /* A CALL_INSN sets any global register live, since it may
1004
                 have been modified by the call.  */
1005
              for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1006
                if (global_regs[i])
1007
                  SET_HARD_REG_BIT (current_live_regs, i);
1008
            }
1009
 
1010
          /* Mark anything killed in an insn to be deadened at the next
1011
             label.  Ignore USE insns; the only REG_DEAD notes will be for
1012
             parameters.  But they might be early.  A CALL_INSN will usually
1013
             clobber registers used for parameters.  It isn't worth bothering
1014
             with the unlikely case when it won't.  */
1015
          if ((NONJUMP_INSN_P (real_insn)
1016
               && GET_CODE (PATTERN (real_insn)) != USE
1017
               && GET_CODE (PATTERN (real_insn)) != CLOBBER)
1018
              || JUMP_P (real_insn)
1019
              || CALL_P (real_insn))
1020
            {
1021
              for (link = REG_NOTES (real_insn); link; link = XEXP (link, 1))
1022
                if (REG_NOTE_KIND (link) == REG_DEAD
1023
                    && REG_P (XEXP (link, 0))
1024
                    && REGNO (XEXP (link, 0)) < FIRST_PSEUDO_REGISTER)
1025
                  add_to_hard_reg_set (&pending_dead_regs,
1026
                                      GET_MODE (XEXP (link, 0)),
1027
                                      REGNO (XEXP (link, 0)));
1028
 
1029
              note_stores (PATTERN (real_insn), update_live_status, NULL);
1030
 
1031
              /* If any registers were unused after this insn, kill them.
1032
                 These notes will always be accurate.  */
1033
              for (link = REG_NOTES (real_insn); link; link = XEXP (link, 1))
1034
                if (REG_NOTE_KIND (link) == REG_UNUSED
1035
                    && REG_P (XEXP (link, 0))
1036
                    && REGNO (XEXP (link, 0)) < FIRST_PSEUDO_REGISTER)
1037
                  remove_from_hard_reg_set (&current_live_regs,
1038
                                           GET_MODE (XEXP (link, 0)),
1039
                                           REGNO (XEXP (link, 0)));
1040
            }
1041
 
1042
          else if (LABEL_P (real_insn))
1043
            {
1044
              basic_block bb;
1045
 
1046
              /* A label clobbers the pending dead registers since neither
1047
                 reload nor jump will propagate a value across a label.  */
1048
              AND_COMPL_HARD_REG_SET (current_live_regs, pending_dead_regs);
1049
              CLEAR_HARD_REG_SET (pending_dead_regs);
1050
 
1051
              /* We must conservatively assume that all registers that used
1052
                 to be live here still are.  The fallthrough edge may have
1053
                 left a live register uninitialized.  */
1054
              bb = BLOCK_FOR_INSN (real_insn);
1055
              if (bb)
1056
                {
1057
                  HARD_REG_SET extra_live;
1058
 
1059
                  REG_SET_TO_HARD_REG_SET (extra_live, DF_LR_IN (bb));
1060
                  IOR_HARD_REG_SET (current_live_regs, extra_live);
1061
                }
1062
            }
1063
 
1064
          /* The beginning of the epilogue corresponds to the end of the
1065
             RTL chain when there are no epilogue insns.  Certain resources
1066
             are implicitly required at that point.  */
1067
          else if (NOTE_P (real_insn)
1068
                   && NOTE_KIND (real_insn) == NOTE_INSN_EPILOGUE_BEG)
1069
            IOR_HARD_REG_SET (current_live_regs, start_of_epilogue_needs.regs);
1070
        }
1071
 
1072
      COPY_HARD_REG_SET (res->regs, current_live_regs);
1073
      if (tinfo != NULL)
1074
        {
1075
          tinfo->block = b;
1076
          tinfo->bb_tick = bb_ticks[b];
1077
        }
1078
    }
1079
  else
1080
    /* We didn't find the start of a basic block.  Assume everything
1081
       in use.  This should happen only extremely rarely.  */
1082
    SET_HARD_REG_SET (res->regs);
1083
 
1084
  CLEAR_RESOURCE (&set);
1085
  CLEAR_RESOURCE (&needed);
1086
 
1087
  jump_insn = find_dead_or_set_registers (target, res, &jump_target, 0,
1088
                                          set, needed);
1089
 
1090
  /* If we hit an unconditional branch, we have another way of finding out
1091
     what is live: we can see what is live at the branch target and include
1092
     anything used but not set before the branch.  We add the live
1093
     resources found using the test below to those found until now.  */
1094
 
1095
  if (jump_insn)
1096
    {
1097
      struct resources new_resources;
1098
      rtx stop_insn = next_active_insn (jump_insn);
1099
 
1100
      mark_target_live_regs (insns, next_active_insn (jump_target),
1101
                             &new_resources);
1102
      CLEAR_RESOURCE (&set);
1103
      CLEAR_RESOURCE (&needed);
1104
 
1105
      /* Include JUMP_INSN in the needed registers.  */
1106
      for (insn = target; insn != stop_insn; insn = next_active_insn (insn))
1107
        {
1108
          mark_referenced_resources (insn, &needed, true);
1109
 
1110
          COPY_HARD_REG_SET (scratch, needed.regs);
1111
          AND_COMPL_HARD_REG_SET (scratch, set.regs);
1112
          IOR_HARD_REG_SET (new_resources.regs, scratch);
1113
 
1114
          mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
1115
        }
1116
 
1117
      IOR_HARD_REG_SET (res->regs, new_resources.regs);
1118
    }
1119
 
1120
  if (tinfo != NULL)
1121
    {
1122
      COPY_HARD_REG_SET (tinfo->live_regs, res->regs);
1123
    }
1124
}
1125
 
1126
/* Initialize the resources required by mark_target_live_regs ().
1127
   This should be invoked before the first call to mark_target_live_regs.  */
1128
 
1129
void
1130
init_resource_info (rtx epilogue_insn)
1131
{
1132
  int i;
1133
  basic_block bb;
1134
 
1135
  /* Indicate what resources are required to be valid at the end of the current
1136
     function.  The condition code never is and memory always is.  If the
1137
     frame pointer is needed, it is and so is the stack pointer unless
1138
     EXIT_IGNORE_STACK is nonzero.  If the frame pointer is not needed, the
1139
     stack pointer is.  Registers used to return the function value are
1140
     needed.  Registers holding global variables are needed.  */
1141
 
1142
  end_of_function_needs.cc = 0;
1143
  end_of_function_needs.memory = 1;
1144
  end_of_function_needs.unch_memory = 0;
1145
  CLEAR_HARD_REG_SET (end_of_function_needs.regs);
1146
 
1147
  if (frame_pointer_needed)
1148
    {
1149
      SET_HARD_REG_BIT (end_of_function_needs.regs, FRAME_POINTER_REGNUM);
1150
#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1151
      SET_HARD_REG_BIT (end_of_function_needs.regs, HARD_FRAME_POINTER_REGNUM);
1152
#endif
1153
      if (! EXIT_IGNORE_STACK
1154
          || current_function_sp_is_unchanging)
1155
        SET_HARD_REG_BIT (end_of_function_needs.regs, STACK_POINTER_REGNUM);
1156
    }
1157
  else
1158
    SET_HARD_REG_BIT (end_of_function_needs.regs, STACK_POINTER_REGNUM);
1159
 
1160
  if (crtl->return_rtx != 0)
1161
    mark_referenced_resources (crtl->return_rtx,
1162
                               &end_of_function_needs, true);
1163
 
1164
  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1165
    if (global_regs[i]
1166
#ifdef EPILOGUE_USES
1167
        || EPILOGUE_USES (i)
1168
#endif
1169
        )
1170
      SET_HARD_REG_BIT (end_of_function_needs.regs, i);
1171
 
1172
  /* The registers required to be live at the end of the function are
1173
     represented in the flow information as being dead just prior to
1174
     reaching the end of the function.  For example, the return of a value
1175
     might be represented by a USE of the return register immediately
1176
     followed by an unconditional jump to the return label where the
1177
     return label is the end of the RTL chain.  The end of the RTL chain
1178
     is then taken to mean that the return register is live.
1179
 
1180
     This sequence is no longer maintained when epilogue instructions are
1181
     added to the RTL chain.  To reconstruct the original meaning, the
1182
     start of the epilogue (NOTE_INSN_EPILOGUE_BEG) is regarded as the
1183
     point where these registers become live (start_of_epilogue_needs).
1184
     If epilogue instructions are present, the registers set by those
1185
     instructions won't have been processed by flow.  Thus, those
1186
     registers are additionally required at the end of the RTL chain
1187
     (end_of_function_needs).  */
1188
 
1189
  start_of_epilogue_needs = end_of_function_needs;
1190
 
1191
  while ((epilogue_insn = next_nonnote_insn (epilogue_insn)))
1192
    {
1193
      mark_set_resources (epilogue_insn, &end_of_function_needs, 0,
1194
                          MARK_SRC_DEST_CALL);
1195
      if (return_insn_p (epilogue_insn))
1196
        break;
1197
    }
1198
 
1199
  /* Allocate and initialize the tables used by mark_target_live_regs.  */
1200
  target_hash_table = XCNEWVEC (struct target_info *, TARGET_HASH_PRIME);
1201
  bb_ticks = XCNEWVEC (int, last_basic_block);
1202
 
1203
  /* Set the BLOCK_FOR_INSN of each label that starts a basic block.  */
1204
  FOR_EACH_BB (bb)
1205
    if (LABEL_P (BB_HEAD (bb)))
1206
      BLOCK_FOR_INSN (BB_HEAD (bb)) = bb;
1207
}
1208
 
1209
/* Free up the resources allocated to mark_target_live_regs ().  This
1210
   should be invoked after the last call to mark_target_live_regs ().  */
1211
 
1212
void
1213
free_resource_info (void)
1214
{
1215
  basic_block bb;
1216
 
1217
  if (target_hash_table != NULL)
1218
    {
1219
      int i;
1220
 
1221
      for (i = 0; i < TARGET_HASH_PRIME; ++i)
1222
        {
1223
          struct target_info *ti = target_hash_table[i];
1224
 
1225
          while (ti)
1226
            {
1227
              struct target_info *next = ti->next;
1228
              free (ti);
1229
              ti = next;
1230
            }
1231
        }
1232
 
1233
      free (target_hash_table);
1234
      target_hash_table = NULL;
1235
    }
1236
 
1237
  if (bb_ticks != NULL)
1238
    {
1239
      free (bb_ticks);
1240
      bb_ticks = NULL;
1241
    }
1242
 
1243
  FOR_EACH_BB (bb)
1244
    if (LABEL_P (BB_HEAD (bb)))
1245
      BLOCK_FOR_INSN (BB_HEAD (bb)) = NULL;
1246
}
1247
 
1248
/* Clear any hashed information that we have stored for INSN.  */
1249
 
1250
void
1251
clear_hashed_info_for_insn (rtx insn)
1252
{
1253
  struct target_info *tinfo;
1254
 
1255
  if (target_hash_table != NULL)
1256
    {
1257
      for (tinfo = target_hash_table[INSN_UID (insn) % TARGET_HASH_PRIME];
1258
           tinfo; tinfo = tinfo->next)
1259
        if (tinfo->uid == INSN_UID (insn))
1260
          break;
1261
 
1262
      if (tinfo)
1263
        tinfo->block = -1;
1264
    }
1265
}
1266
 
1267
/* Increment the tick count for the basic block that contains INSN.  */
1268
 
1269
void
1270
incr_ticks_for_insn (rtx insn)
1271
{
1272
  int b = find_basic_block (insn, MAX_DELAY_SLOT_LIVE_SEARCH);
1273
 
1274
  if (b != -1)
1275
    bb_ticks[b]++;
1276
}
1277
 
1278
/* Add TRIAL to the set of resources used at the end of the current
1279
   function.  */
1280
void
1281
mark_end_of_function_resources (rtx trial, bool include_delayed_effects)
1282
{
1283
  mark_referenced_resources (trial, &end_of_function_needs,
1284
                             include_delayed_effects);
1285
}

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.