OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-stable/] [gcc-4.5.1/] [gcc/] [testsuite/] [ada/] [acats/] [tests/] [cxg/] [cxg2004.a] - Blame information for rev 826

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 294 jeremybenn
-- CXG2004.A
2
--
3
--                             Grant of Unlimited Rights
4
--
5
--     Under contracts F33600-87-D-0337, F33600-84-D-0280, MDA903-79-C-0687,
6
--     F08630-91-C-0015, and DCA100-97-D-0025, the U.S. Government obtained
7
--     unlimited rights in the software and documentation contained herein.
8
--     Unlimited rights are defined in DFAR 252.227-7013(a)(19).  By making
9
--     this public release, the Government intends to confer upon all
10
--     recipients unlimited rights  equal to those held by the Government.
11
--     These rights include rights to use, duplicate, release or disclose the
12
--     released technical data and computer software in whole or in part, in
13
--     any manner and for any purpose whatsoever, and to have or permit others
14
--     to do so.
15
--
16
--                                    DISCLAIMER
17
--
18
--     ALL MATERIALS OR INFORMATION HEREIN RELEASED, MADE AVAILABLE OR
19
--     DISCLOSED ARE AS IS.  THE GOVERNMENT MAKES NO EXPRESS OR IMPLIED
20
--     WARRANTY AS TO ANY MATTER WHATSOEVER, INCLUDING THE CONDITIONS OF THE
21
--     SOFTWARE, DOCUMENTATION OR OTHER INFORMATION RELEASED, MADE AVAILABLE
22
--     OR DISCLOSED, OR THE OWNERSHIP, MERCHANTABILITY, OR FITNESS FOR A
23
--     PARTICULAR PURPOSE OF SAID MATERIAL.
24
--*
25
--
26
-- OBJECTIVE:
27
--      Check that the sin and cos functions return
28
--      results that are within the error bound allowed.
29
--
30
-- TEST DESCRIPTION:
31
--      This test consists of a generic package that is
32
--      instantiated to check both float and a long float type.
33
--      The test for each floating point type is divided into
34
--      the following parts:
35
--         Special value checks where the result is a known constant.
36
--         Checks using an identity relationship.
37
--
38
-- SPECIAL REQUIREMENTS
39
--      The Strict Mode for the numerical accuracy must be
40
--      selected.  The method by which this mode is selected
41
--      is implementation dependent.
42
--
43
-- APPLICABILITY CRITERIA:
44
--      This test applies only to implementations supporting the
45
--      Numerics Annex.
46
--      This test only applies to the Strict Mode for numerical
47
--      accuracy.
48
--
49
--
50
-- CHANGE HISTORY:
51
--      13 FEB 96   SAIC    Initial release for 2.1
52
--      22 APR 96   SAIC    Changed to generic implementation.
53
--      18 AUG 96   SAIC    Improvements to commentary.
54
--      23 OCT 96   SAIC    Exact results are not required unless the
55
--                          cycle is specified.
56
--      28 FEB 97   PWB.CTA Removed checks where cycle 2.0*Pi is specified
57
--      02 JUN 98   EDS     Revised calculations to ensure that X is exactly
58
--                          three times Y per advice of numerics experts.
59
--
60
-- CHANGE NOTE:
61
--      According to Ken Dritz, author of the Numerics Annex of the RM,
62
--      one should never specify the cycle 2.0*Pi for the trigonometric
63
--      functions.  In particular, if the machine number for the first
64
--      argument is not an exact multiple of the machine number for the
65
--      explicit cycle, then the specified exact results cannot be
66
--      reasonably expected.  The affected checks in this test have been
67
--      marked as comments, with the additional notation "pwb-math".
68
--      Phil Brashear
69
--!
70
 
71
--
72
-- References:
73
--
74
-- Software Manual for the Elementary Functions
75
-- William J. Cody, Jr. and William Waite
76
-- Prentice-Hall, 1980
77
--
78
-- CRC Standard Mathematical Tables
79
-- 23rd Edition
80
--
81
-- Implementation and Testing of Function Software
82
-- W. J. Cody
83
-- Problems and Methodologies in Mathematical Software Production
84
-- editors P. C. Messina and A. Murli
85
-- Lecture Notes in Computer Science   Volume 142
86
-- Springer Verlag, 1982
87
--
88
-- The sin and cos checks are translated directly from
89
-- the netlib FORTRAN code that was written by W. Cody.
90
--
91
 
92
with System;
93
with Report;
94
with Ada.Numerics.Generic_Elementary_Functions;
95
with Ada.Numerics.Elementary_Functions;
96
procedure CXG2004 is
97
   Verbose : constant Boolean := False;
98
   Number_Samples : constant := 1000;
99
 
100
   -- CRC Standard Mathematical Tables;  23rd Edition; pg 738
101
   Sqrt2 : constant :=
102
        1.41421_35623_73095_04880_16887_24209_69807_85696_71875_37695;
103
   Sqrt3 : constant :=
104
        1.73205_08075_68877_29352_74463_41505_87236_69428_05253_81039;
105
 
106
   Pi : constant := Ada.Numerics.Pi;
107
 
108
   generic
109
      type Real is digits <>;
110
   package Generic_Check is
111
      procedure Do_Test;
112
   end Generic_Check;
113
 
114
   package body Generic_Check is
115
      package Elementary_Functions is new
116
           Ada.Numerics.Generic_Elementary_Functions (Real);
117
 
118
      function Sin (X : Real) return Real renames
119
           Elementary_Functions.Sin;
120
      function Cos (X : Real) return Real renames
121
           Elementary_Functions.Cos;
122
      function Sin (X, Cycle : Real) return Real renames
123
           Elementary_Functions.Sin;
124
      function Cos (X, Cycle : Real) return Real renames
125
           Elementary_Functions.Cos;
126
 
127
      Accuracy_Error_Reported : Boolean := False;
128
 
129
      procedure Check (Actual, Expected : Real;
130
                       Test_Name : String;
131
                       MRE : Real) is
132
         Rel_Error,
133
         Abs_Error,
134
         Max_Error : Real;
135
      begin
136
 
137
         -- In the case where the expected result is very small or 0
138
         -- we compute the maximum error as a multiple of Model_Epsilon instead
139
         -- of Model_Epsilon and Expected.
140
         Rel_Error := MRE * abs Expected * Real'Model_Epsilon;
141
         Abs_Error := MRE * Real'Model_Epsilon;
142
         if Rel_Error > Abs_Error then
143
            Max_Error := Rel_Error;
144
         else
145
            Max_Error := Abs_Error;
146
         end if;
147
 
148
 
149
         -- in addition to the relative error checks we apply the
150
         -- criteria of G.2.4(16)
151
         if abs (Actual) > 1.0 then
152
            Accuracy_Error_Reported := True;
153
            Report.Failed (Test_Name & " result > 1.0");
154
         elsif abs (Actual - Expected) > Max_Error then
155
            Accuracy_Error_Reported := True;
156
            Report.Failed (Test_Name &
157
                           " actual: " & Real'Image (Actual) &
158
                           " expected: " & Real'Image (Expected) &
159
                           " difference: " &
160
                           Real'Image (Actual - Expected) &
161
                           " mre:" &
162
                           Real'Image (Max_Error) );
163
         elsif Verbose then
164
            if Actual = Expected then
165
               Report.Comment (Test_Name & "  exact result");
166
            else
167
               Report.Comment (Test_Name & "  passed");
168
            end if;
169
         end if;
170
      end Check;
171
 
172
 
173
      procedure Sin_Check (A, B : Real;
174
                           Arg_Range : String) is
175
         -- test a selection of
176
         -- arguments selected from the range A to B.
177
         --
178
         -- This test uses the identity
179
         --   sin(x) = sin(x/3)*(3 - 4 * sin(x/3)**2)
180
         --
181
         -- Note that in this test we must take into account the
182
         -- error in the calculation of the expected result so
183
         -- the maximum relative error is larger than the
184
         -- accuracy required by the ARM.
185
 
186
         X, Y, ZZ : Real;
187
         Actual, Expected : Real;
188
         MRE : Real;
189
         Ran : Real;
190
      begin
191
         Accuracy_Error_Reported := False;  -- reset
192
         for I in 1 .. Number_Samples loop
193
            -- Evenly distributed selection of arguments
194
            Ran := Real (I) / Real (Number_Samples);
195
 
196
            -- make sure x and x/3 are both exactly representable
197
            -- on the machine.  See "Implementation and Testing of
198
            -- Function Software" page 44.
199
            X := (B - A) * Ran + A;
200
            Y := Real'Leading_Part
201
                      ( X/3.0,
202
                        Real'Machine_Mantissa - Real'Exponent (3.0) );
203
            X := Y * 3.0;
204
 
205
            Actual := Sin (X);
206
 
207
            ZZ := Sin(Y);
208
            Expected := ZZ * (3.0 - 4.0 * ZZ * ZZ);
209
 
210
            -- note that since the expected value is computed, we
211
            -- must take the error in that computation into account.
212
            -- See Cody pp 139-141.
213
            MRE := 4.0;
214
 
215
            Check (Actual, Expected,
216
                   "sin test of range" & Arg_Range &
217
                      Integer'Image (I),
218
                   MRE);
219
            exit when Accuracy_Error_Reported;
220
         end loop;
221
      exception
222
         when Constraint_Error =>
223
            Report.Failed
224
               ("Constraint_Error raised in sin check");
225
         when others =>
226
            Report.Failed ("exception in sin check");
227
      end Sin_Check;
228
 
229
 
230
 
231
      procedure Cos_Check (A, B : Real;
232
                                  Arg_Range : String) is
233
         -- test a selection of
234
         -- arguments selected from the range A to B.
235
         --
236
         -- This test uses the identity
237
         --   cos(x) = cos(x/3)*(4 * cos(x/3)**2 - 3)
238
         --
239
         -- Note that in this test we must take into account the
240
         -- error in the calculation of the expected result so
241
         -- the maximum relative error is larger than the
242
         -- accuracy required by the ARM.
243
 
244
         X, Y, ZZ : Real;
245
         Actual, Expected : Real;
246
         MRE : Real;
247
         Ran : Real;
248
      begin
249
         Accuracy_Error_Reported := False;  -- reset
250
         for I in 1 .. Number_Samples loop
251
            -- Evenly distributed selection of arguments
252
            Ran := Real (I) / Real (Number_Samples);
253
 
254
            -- make sure x and x/3 are both exactly representable
255
            -- on the machine.  See "Implementation and Testing of
256
            -- Function Software" page 44.
257
            X := (B - A) * Ran + A;
258
            Y := Real'Leading_Part
259
                      ( X/3.0,
260
                        Real'Machine_Mantissa - Real'Exponent (3.0) );
261
            X := Y * 3.0;
262
 
263
            Actual := Cos (X);
264
 
265
            ZZ := Cos(Y);
266
            Expected := ZZ * (4.0 * ZZ * ZZ - 3.0);
267
 
268
            -- note that since the expected value is computed, we
269
            -- must take the error in that computation into account.
270
            -- See Cody pp 141-143.
271
            MRE := 6.0;
272
 
273
            Check (Actual, Expected,
274
                   "cos test of range" & Arg_Range &
275
                      Integer'Image (I),
276
                   MRE);
277
            exit when Accuracy_Error_Reported;
278
         end loop;
279
      exception
280
         when Constraint_Error =>
281
            Report.Failed
282
               ("Constraint_Error raised in cos check");
283
         when others =>
284
            Report.Failed ("exception in cos check");
285
      end Cos_Check;
286
 
287
 
288
      procedure Special_Angle_Checks is
289
         type Data_Point is
290
            record
291
               Degrees,
292
               Radians,
293
               Sine,
294
               Cosine         : Real;
295
               Sin_Result_Error,
296
               Cos_Result_Error : Boolean;
297
            end record;
298
 
299
         type Test_Data_Type is array (Positive range <>) of Data_Point;
300
 
301
         -- the values in the following table only involve static
302
         -- expressions to minimize any loss of precision.  However,
303
         -- there are two sources of error that must be accounted for
304
         -- in the following tests.
305
         -- First, when a cycle is not specified there can be a roundoff
306
         -- error in the value of Pi used.  This error does not apply
307
         -- when a cycle of 2.0 * Pi is explicitly provided.
308
         -- Second, the expected results that involve sqrt values also
309
         -- have a potential roundoff error.
310
         -- The amount of error due to error in the argument is computed
311
         -- as follows:
312
         --   sin(x+err) = sin(x)*cos(err) + cos(x)*sin(err)
313
         --              ~= sin(x) + err * cos(x)
314
         -- similarly for cos the error due to error in the argument is
315
         -- computed as follows:
316
         --   cos(x+err) = cos(x)*cos(err) - sin(x)*sin(err)
317
         --              ~= cos(x) - err * sin(x)
318
         -- In both cases the term "err" is bounded by 0.5 * argument.
319
 
320
         Test_Data : constant Test_Data_Type := (
321
--  degrees      radians          sine       cosine  sin_er cos_er    test #
322
  (  0.0,           0.0,          0.0,         1.0,  False, False ),    -- 1
323
  ( 30.0,        Pi/6.0,          0.5,   Sqrt3/2.0,  False, True  ),    -- 2
324
  ( 60.0,        Pi/3.0,    Sqrt3/2.0,         0.5,  True,  False ),    -- 3
325
  ( 90.0,        Pi/2.0,          1.0,         0.0,  False, False ),    -- 4
326
  (120.0,    2.0*Pi/3.0,    Sqrt3/2.0,        -0.5,  True,  False ),    -- 5
327
  (150.0,    5.0*Pi/6.0,          0.5,  -Sqrt3/2.0,  False, True  ),    -- 6
328
  (180.0,            Pi,          0.0,        -1.0,  False, False ),    -- 7
329
  (210.0,    7.0*Pi/6.0,         -0.5,  -Sqrt3/2.0,  False, True  ),    -- 8
330
  (240.0,    8.0*Pi/6.0,   -Sqrt3/2.0,        -0.5,  True,  False ),    -- 9
331
  (270.0,    9.0*Pi/6.0,         -1.0,         0.0,  False, False ),    -- 10
332
  (300.0,   10.0*Pi/6.0,   -Sqrt3/2.0,         0.5,  True,  False ),    -- 11
333
  (330.0,   11.0*Pi/6.0,         -0.5,   Sqrt3/2.0,  False, True  ),    -- 12
334
  (360.0,        2.0*Pi,          0.0,         1.0,  False, False ),    -- 13
335
  ( 45.0,        Pi/4.0,    Sqrt2/2.0,   Sqrt2/2.0,  True,  True  ),    -- 14
336
  (135.0,    3.0*Pi/4.0,    Sqrt2/2.0,  -Sqrt2/2.0,  True,  True  ),    -- 15
337
  (225.0,    5.0*Pi/4.0,   -Sqrt2/2.0,  -Sqrt2/2.0,  True,  True  ),    -- 16
338
  (315.0,    7.0*Pi/4.0,   -Sqrt2/2.0,   Sqrt2/2.0,  True,  True  ),    -- 17
339
  (405.0,    9.0*Pi/4.0,    Sqrt2/2.0,   Sqrt2/2.0,  True,  True  ) );  -- 18
340
 
341
 
342
         Y : Real;
343
         Sin_Arg_Err,
344
         Cos_Arg_Err,
345
         Sin_Result_Err,
346
         Cos_Result_Err  : Real;
347
      begin
348
         for I in Test_Data'Range loop
349
            -- compute error components
350
            Sin_Arg_Err := abs Test_Data (I).Cosine *
351
                           abs Test_Data (I).Radians / 2.0;
352
            Cos_Arg_Err := abs Test_Data (I).Sine *
353
                           abs Test_Data (I).Radians / 2.0;
354
 
355
            if Test_Data (I).Sin_Result_Error then
356
               Sin_Result_Err := 0.5;
357
            else
358
               Sin_Result_Err := 0.0;
359
            end if;
360
 
361
            if Test_Data (I).Cos_Result_Error then
362
               Cos_Result_Err := 1.0;
363
            else
364
               Cos_Result_Err := 0.0;
365
            end if;
366
 
367
 
368
 
369
            Y := Sin (Test_Data (I).Radians);
370
            Check (Y, Test_Data (I).Sine,
371
                   "test" & Integer'Image (I) & " sin(r)",
372
                   2.0 + Sin_Arg_Err + Sin_Result_Err);
373
            Y := Cos (Test_Data (I).Radians);
374
            Check (Y, Test_Data (I).Cosine,
375
                   "test" & Integer'Image (I) & " cos(r)",
376
                   2.0 + Cos_Arg_Err + Cos_Result_Err);
377
            Y := Sin (Test_Data (I).Degrees, 360.0);
378
            Check (Y, Test_Data (I).Sine,
379
                   "test" & Integer'Image (I) & " sin(d,360)",
380
                   2.0 + Sin_Result_Err);
381
            Y := Cos (Test_Data (I).Degrees, 360.0);
382
            Check (Y, Test_Data (I).Cosine,
383
                   "test" & Integer'Image (I) & " cos(d,360)",
384
                   2.0 + Cos_Result_Err);
385
--pwb-math            Y := Sin (Test_Data (I).Radians, 2.0*Pi);
386
--pwb-math            Check (Y, Test_Data (I).Sine,
387
--pwb-math                   "test" & Integer'Image (I) & " sin(r,2pi)",
388
--pwb-math                   2.0 + Sin_Result_Err);
389
--pwb-math            Y := Cos (Test_Data (I).Radians, 2.0*Pi);
390
--pwb-math            Check (Y, Test_Data (I).Cosine,
391
--pwb-math                   "test" & Integer'Image (I) & " cos(r,2pi)",
392
--pwb-math                   2.0 + Cos_Result_Err);
393
         end loop;
394
      exception
395
         when Constraint_Error =>
396
            Report.Failed ("Constraint_Error raised in special angle test");
397
         when others =>
398
            Report.Failed ("exception in special angle test");
399
      end Special_Angle_Checks;
400
 
401
 
402
      -- check the rule of A.5.1(41);6.0 which requires that the
403
      -- result be exact if the mathematical result is 0.0, 1.0,
404
      -- or -1.0
405
      procedure Exact_Result_Checks is
406
         type Data_Point is
407
            record
408
               Degrees,
409
               Sine,
410
               Cosine         : Real;
411
            end record;
412
 
413
         type Test_Data_Type is array (Positive range <>) of Data_Point;
414
         Test_Data : constant Test_Data_Type := (
415
            -- degrees       sine       cosine       test #
416
              (  0.0,         0.0,         1.0  ),    -- 1
417
              ( 90.0,         1.0,         0.0  ),    -- 2
418
              (180.0,         0.0,        -1.0  ),    -- 3
419
              (270.0,        -1.0,         0.0  ),    -- 4
420
              (360.0,         0.0,         1.0  ),    -- 5
421
              ( 90.0 + 360.0, 1.0,         0.0  ),    -- 6
422
              (180.0 + 360.0, 0.0,        -1.0  ),    -- 7
423
              (270.0 + 360.0,-1.0,         0.0  ),    -- 8
424
              (360.0 + 360.0, 0.0,         1.0  ) );  -- 9
425
 
426
         Y : Real;
427
      begin
428
         for I in Test_Data'Range loop
429
            Y := Sin (Test_Data(I).Degrees, 360.0);
430
            if Y /= Test_Data(I).Sine then
431
               Report.Failed ("exact result for sin(" &
432
                  Real'Image (Test_Data(I).Degrees) &
433
                  ", 360.0) is not" &
434
                  Real'Image (Test_Data(I).Sine) &
435
                  "  Difference is " &
436
                  Real'Image (Y - Test_Data(I).Sine) );
437
            end if;
438
 
439
            Y := Cos (Test_Data(I).Degrees, 360.0);
440
            if Y /= Test_Data(I).Cosine then
441
               Report.Failed ("exact result for cos(" &
442
                  Real'Image (Test_Data(I).Degrees) &
443
                  ", 360.0) is not" &
444
                  Real'Image (Test_Data(I).Cosine) &
445
                  "  Difference is " &
446
                  Real'Image (Y - Test_Data(I).Cosine) );
447
            end if;
448
         end loop;
449
      exception
450
         when Constraint_Error =>
451
            Report.Failed ("Constraint_Error raised in exact result check");
452
         when others =>
453
            Report.Failed ("exception in exact result check");
454
      end Exact_Result_Checks;
455
 
456
 
457
      procedure Do_Test is
458
      begin
459
         Special_Angle_Checks;
460
         Sin_Check (0.0, Pi/2.0, "0..pi/2");
461
         Sin_Check (6.0*Pi, 6.5*Pi, "6pi..6.5pi");
462
         Cos_Check (7.0*Pi, 7.5*Pi, "7pi..7.5pi");
463
         Exact_Result_Checks;
464
      end Do_Test;
465
   end Generic_Check;
466
 
467
   -----------------------------------------------------------------------
468
   -----------------------------------------------------------------------
469
 
470
   package Float_Check is new Generic_Check (Float);
471
 
472
   -- check the floating point type with the most digits
473
   type A_Long_Float is digits System.Max_Digits;
474
   package A_Long_Float_Check is new Generic_Check (A_Long_Float);
475
 
476
   -----------------------------------------------------------------------
477
   -----------------------------------------------------------------------
478
 
479
 
480
begin
481
   Report.Test ("CXG2004",
482
                "Check the accuracy of the sin and cos functions");
483
 
484
   if Verbose then
485
      Report.Comment ("checking Standard.Float");
486
   end if;
487
 
488
   Float_Check.Do_Test;
489
 
490
   if Verbose then
491
      Report.Comment ("checking a digits" &
492
                      Integer'Image (System.Max_Digits) &
493
                      " floating point type");
494
   end if;
495
 
496
   A_Long_Float_Check.Do_Test;
497
 
498
   Report.Result;
499
end CXG2004;

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.