1 |
302 |
jeremybenn |
! { dg-options "-O3 -fgraphite-identity -floop-interchange " }
|
2 |
|
|
|
3 |
|
|
module mqc_m
|
4 |
|
|
|
5 |
|
|
|
6 |
|
|
implicit none
|
7 |
|
|
|
8 |
|
|
private
|
9 |
|
|
public :: mutual_ind_quad_cir_coil
|
10 |
|
|
|
11 |
|
|
integer, parameter, private :: longreal = selected_real_kind(15,90)
|
12 |
|
|
real (kind = longreal), parameter, private :: pi = 3.141592653589793_longreal
|
13 |
|
|
real (kind = longreal), parameter, private :: small = 1.0e-10_longreal
|
14 |
|
|
|
15 |
|
|
contains
|
16 |
|
|
|
17 |
|
|
subroutine mutual_ind_quad_cir_coil (r_coil, x_coil, y_coil, z_coil, h_coil, n_coil, &
|
18 |
|
|
rotate_coil, m, mu, l12)
|
19 |
|
|
real (kind = longreal), intent(in) :: r_coil, x_coil, y_coil, z_coil, h_coil, n_coil, &
|
20 |
|
|
mu
|
21 |
|
|
real (kind = longreal), dimension(:,:), intent(in) :: rotate_coil
|
22 |
|
|
integer, intent(in) :: m
|
23 |
|
|
real (kind = longreal), intent(out) :: l12
|
24 |
|
|
real (kind = longreal), dimension(3,3) :: rotate_quad
|
25 |
|
|
real (kind = longreal), dimension(9), save :: x2gauss, y2gauss, w2gauss, z1gauss, &
|
26 |
|
|
w1gauss
|
27 |
|
|
real (kind = longreal) :: xxvec, xyvec, xzvec, yxvec, yyvec, yzvec, zxvec, zyvec, &
|
28 |
|
|
zzvec, magnitude, l12_lower, l12_upper, dx, dy, dz, theta, &
|
29 |
|
|
a, b1, b2, numerator, denominator, coefficient, angle
|
30 |
|
|
real (kind = longreal), dimension(3) :: c_vector, q_vector, rot_c_vector, &
|
31 |
|
|
rot_q_vector, current_vector, &
|
32 |
|
|
coil_current_vec, coil_tmp_vector
|
33 |
|
|
integer :: i, j, k
|
34 |
|
|
logical, save :: first = .true.
|
35 |
|
|
|
36 |
|
|
do i = 1, 2*m
|
37 |
|
|
theta = pi*real(i,longreal)/real(m,longreal)
|
38 |
|
|
c_vector(1) = r_coil * cos(theta)
|
39 |
|
|
c_vector(2) = r_coil * sin(theta)
|
40 |
|
|
coil_tmp_vector(1) = -sin(theta)
|
41 |
|
|
coil_tmp_vector(2) = cos(theta)
|
42 |
|
|
coil_tmp_vector(3) = 0.0_longreal
|
43 |
|
|
coil_current_vec(1) = dot_product(rotate_coil(1,:),coil_tmp_vector(:))
|
44 |
|
|
coil_current_vec(2) = dot_product(rotate_coil(2,:),coil_tmp_vector(:))
|
45 |
|
|
coil_current_vec(3) = dot_product(rotate_coil(3,:),coil_tmp_vector(:))
|
46 |
|
|
do j = 1, 9
|
47 |
|
|
c_vector(3) = 0.5 * h_coil * z1gauss(j)
|
48 |
|
|
rot_c_vector(1) = dot_product(rotate_coil(1,:),c_vector(:)) + dx
|
49 |
|
|
rot_c_vector(2) = dot_product(rotate_coil(2,:),c_vector(:)) + dy
|
50 |
|
|
rot_c_vector(3) = dot_product(rotate_coil(3,:),c_vector(:)) + dz
|
51 |
|
|
do k = 1, 9
|
52 |
|
|
q_vector(1) = 0.5_longreal * a * (x2gauss(k) + 1.0_longreal)
|
53 |
|
|
q_vector(2) = 0.5_longreal * b1 * (y2gauss(k) - 1.0_longreal)
|
54 |
|
|
q_vector(3) = 0.0_longreal
|
55 |
|
|
rot_q_vector(1) = dot_product(rotate_quad(1,:),q_vector(:))
|
56 |
|
|
rot_q_vector(2) = dot_product(rotate_quad(2,:),q_vector(:))
|
57 |
|
|
rot_q_vector(3) = dot_product(rotate_quad(3,:),q_vector(:))
|
58 |
|
|
numerator = w1gauss(j) * w2gauss(k) * &
|
59 |
|
|
dot_product(coil_current_vec,current_vector)
|
60 |
|
|
denominator = sqrt(dot_product(rot_c_vector-rot_q_vector, &
|
61 |
|
|
rot_c_vector-rot_q_vector))
|
62 |
|
|
l12_lower = l12_lower + numerator/denominator
|
63 |
|
|
end do
|
64 |
|
|
end do
|
65 |
|
|
end do
|
66 |
|
|
l12 = coefficient * (b1 * l12_lower + b2 * l12_upper)
|
67 |
|
|
end subroutine mutual_ind_quad_cir_coil
|
68 |
|
|
|
69 |
|
|
end module mqc_m
|