OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-stable/] [gcc-4.5.1/] [gcc/] [tree-data-ref.h] - Blame information for rev 856

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 280 jeremybenn
/* Data references and dependences detectors.
2
   Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009
3
   Free Software Foundation, Inc.
4
   Contributed by Sebastian Pop <pop@cri.ensmp.fr>
5
 
6
This file is part of GCC.
7
 
8
GCC is free software; you can redistribute it and/or modify it under
9
the terms of the GNU General Public License as published by the Free
10
Software Foundation; either version 3, or (at your option) any later
11
version.
12
 
13
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14
WARRANTY; without even the implied warranty of MERCHANTABILITY or
15
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16
for more details.
17
 
18
You should have received a copy of the GNU General Public License
19
along with GCC; see the file COPYING3.  If not see
20
<http://www.gnu.org/licenses/>.  */
21
 
22
#ifndef GCC_TREE_DATA_REF_H
23
#define GCC_TREE_DATA_REF_H
24
 
25
#include "graphds.h"
26
#include "lambda.h"
27
#include "omega.h"
28
#include "tree-chrec.h"
29
 
30
/*
31
  innermost_loop_behavior describes the evolution of the address of the memory
32
  reference in the innermost enclosing loop.  The address is expressed as
33
  BASE + STEP * # of iteration, and base is further decomposed as the base
34
  pointer (BASE_ADDRESS),  loop invariant offset (OFFSET) and
35
  constant offset (INIT).  Examples, in loop nest
36
 
37
  for (i = 0; i < 100; i++)
38
    for (j = 3; j < 100; j++)
39
 
40
                       Example 1                      Example 2
41
      data-ref         a[j].b[i][j]                   *(p + x + 16B + 4B * j)
42
 
43
 
44
  innermost_loop_behavior
45
      base_address     &a                             p
46
      offset           i * D_i                        x
47
      init             3 * D_j + offsetof (b)         28
48
      step             D_j                            4
49
 
50
  */
51
struct innermost_loop_behavior
52
{
53
  tree base_address;
54
  tree offset;
55
  tree init;
56
  tree step;
57
 
58
  /* Alignment information.  ALIGNED_TO is set to the largest power of two
59
     that divides OFFSET.  */
60
  tree aligned_to;
61
};
62
 
63
/* Describes the evolutions of indices of the memory reference.  The indices
64
   are indices of the ARRAY_REFs and the operands of INDIRECT_REFs.
65
   For ARRAY_REFs, BASE_OBJECT is the reference with zeroed indices
66
   (note that this reference does not have to be valid, if zero does not
67
   belong to the range of the array; hence it is not recommended to use
68
   BASE_OBJECT in any code generation).  For INDIRECT_REFs, the address is
69
   set to the loop-invariant part of the address of the object, except for
70
   the constant offset.  For the examples above,
71
 
72
   base_object:        a[0].b[0][0]                   *(p + x + 4B * j_0)
73
   indices:            {j_0, +, 1}_2                  {16, +, 4}_2
74
                       {i_0, +, 1}_1
75
                       {j_0, +, 1}_2
76
*/
77
 
78
struct indices
79
{
80
  /* The object.  */
81
  tree base_object;
82
 
83
  /* A list of chrecs.  Access functions of the indices.  */
84
  VEC(tree,heap) *access_fns;
85
};
86
 
87
struct dr_alias
88
{
89
  /* The alias information that should be used for new pointers to this
90
     location.  SYMBOL_TAG is either a DECL or a SYMBOL_MEMORY_TAG.  */
91
  struct ptr_info_def *ptr_info;
92
 
93
  /* The set of virtual operands corresponding to this memory reference,
94
     serving as a description of the alias information for the memory
95
     reference.  This could be eliminated if we had alias oracle.  */
96
  bitmap vops;
97
};
98
 
99
/* Each vector of the access matrix represents a linear access
100
   function for a subscript.  First elements correspond to the
101
   leftmost indices, ie. for a[i][j] the first vector corresponds to
102
   the subscript in "i".  The elements of a vector are relative to
103
   the loop nests in which the data reference is considered,
104
   i.e. the vector is relative to the SCoP that provides the context
105
   in which this data reference occurs.
106
 
107
   For example, in
108
 
109
   | loop_1
110
   |    loop_2
111
   |      a[i+3][2*j+n-1]
112
 
113
   if "i" varies in loop_1 and "j" varies in loop_2, the access
114
   matrix with respect to the loop nest {loop_1, loop_2} is:
115
 
116
   | loop_1  loop_2  param_n  cst
117
   |   1       0        0      3
118
   |   0       2        1     -1
119
 
120
   whereas the access matrix with respect to loop_2 considers "i" as
121
   a parameter:
122
 
123
   | loop_2  param_i  param_n  cst
124
   |   0       1         0      3
125
   |   2       0         1     -1
126
*/
127
struct access_matrix
128
{
129
  VEC (loop_p, heap) *loop_nest;
130
  int nb_induction_vars;
131
  VEC (tree, heap) *parameters;
132
  VEC (lambda_vector, gc) *matrix;
133
};
134
 
135
#define AM_LOOP_NEST(M) (M)->loop_nest
136
#define AM_NB_INDUCTION_VARS(M) (M)->nb_induction_vars
137
#define AM_PARAMETERS(M) (M)->parameters
138
#define AM_MATRIX(M) (M)->matrix
139
#define AM_NB_PARAMETERS(M) (VEC_length (tree, AM_PARAMETERS(M)))
140
#define AM_CONST_COLUMN_INDEX(M) (AM_NB_INDUCTION_VARS (M) + AM_NB_PARAMETERS (M))
141
#define AM_NB_COLUMNS(M) (AM_NB_INDUCTION_VARS (M) + AM_NB_PARAMETERS (M) + 1)
142
#define AM_GET_SUBSCRIPT_ACCESS_VECTOR(M, I) VEC_index (lambda_vector, AM_MATRIX (M), I)
143
#define AM_GET_ACCESS_MATRIX_ELEMENT(M, I, J) AM_GET_SUBSCRIPT_ACCESS_VECTOR (M, I)[J]
144
 
145
/* Return the column in the access matrix of LOOP_NUM.  */
146
 
147
static inline int
148
am_vector_index_for_loop (struct access_matrix *access_matrix, int loop_num)
149
{
150
  int i;
151
  loop_p l;
152
 
153
  for (i = 0; VEC_iterate (loop_p, AM_LOOP_NEST (access_matrix), i, l); i++)
154
    if (l->num == loop_num)
155
      return i;
156
 
157
  gcc_unreachable();
158
}
159
 
160
int access_matrix_get_index_for_parameter (tree, struct access_matrix *);
161
 
162
struct data_reference
163
{
164
  /* A pointer to the statement that contains this DR.  */
165
  gimple stmt;
166
 
167
  /* A pointer to the memory reference.  */
168
  tree ref;
169
 
170
  /* Auxiliary info specific to a pass.  */
171
  void *aux;
172
 
173
  /* True when the data reference is in RHS of a stmt.  */
174
  bool is_read;
175
 
176
  /* Behavior of the memory reference in the innermost loop.  */
177
  struct innermost_loop_behavior innermost;
178
 
179
  /* Subscripts of this data reference.  */
180
  struct indices indices;
181
 
182
  /* Alias information for the data reference.  */
183
  struct dr_alias alias;
184
 
185
  /* Matrix representation for the data access functions.  */
186
  struct access_matrix *access_matrix;
187
};
188
 
189
#define DR_STMT(DR)                (DR)->stmt
190
#define DR_REF(DR)                 (DR)->ref
191
#define DR_BASE_OBJECT(DR)         (DR)->indices.base_object
192
#define DR_ACCESS_FNS(DR)          (DR)->indices.access_fns
193
#define DR_ACCESS_FN(DR, I)        VEC_index (tree, DR_ACCESS_FNS (DR), I)
194
#define DR_NUM_DIMENSIONS(DR)      VEC_length (tree, DR_ACCESS_FNS (DR))
195
#define DR_IS_READ(DR)             (DR)->is_read
196
#define DR_BASE_ADDRESS(DR)        (DR)->innermost.base_address
197
#define DR_OFFSET(DR)              (DR)->innermost.offset
198
#define DR_INIT(DR)                (DR)->innermost.init
199
#define DR_STEP(DR)                (DR)->innermost.step
200
#define DR_PTR_INFO(DR)            (DR)->alias.ptr_info
201
#define DR_ALIGNED_TO(DR)          (DR)->innermost.aligned_to
202
#define DR_ACCESS_MATRIX(DR)       (DR)->access_matrix
203
 
204
typedef struct data_reference *data_reference_p;
205
DEF_VEC_P(data_reference_p);
206
DEF_VEC_ALLOC_P (data_reference_p, heap);
207
 
208
enum data_dependence_direction {
209
  dir_positive,
210
  dir_negative,
211
  dir_equal,
212
  dir_positive_or_negative,
213
  dir_positive_or_equal,
214
  dir_negative_or_equal,
215
  dir_star,
216
  dir_independent
217
};
218
 
219
/* The description of the grid of iterations that overlap.  At most
220
   two loops are considered at the same time just now, hence at most
221
   two functions are needed.  For each of the functions, we store
222
   the vector of coefficients, f[0] + x * f[1] + y * f[2] + ...,
223
   where x, y, ... are variables.  */
224
 
225
#define MAX_DIM 2
226
 
227
/* Special values of N.  */
228
#define NO_DEPENDENCE 0
229
#define NOT_KNOWN (MAX_DIM + 1)
230
#define CF_NONTRIVIAL_P(CF) ((CF)->n != NO_DEPENDENCE && (CF)->n != NOT_KNOWN)
231
#define CF_NOT_KNOWN_P(CF) ((CF)->n == NOT_KNOWN)
232
#define CF_NO_DEPENDENCE_P(CF) ((CF)->n == NO_DEPENDENCE)
233
 
234
typedef VEC (tree, heap) *affine_fn;
235
 
236
typedef struct
237
{
238
  unsigned n;
239
  affine_fn fns[MAX_DIM];
240
} conflict_function;
241
 
242
/* What is a subscript?  Given two array accesses a subscript is the
243
   tuple composed of the access functions for a given dimension.
244
   Example: Given A[f1][f2][f3] and B[g1][g2][g3], there are three
245
   subscripts: (f1, g1), (f2, g2), (f3, g3).  These three subscripts
246
   are stored in the data_dependence_relation structure under the form
247
   of an array of subscripts.  */
248
 
249
struct subscript
250
{
251
  /* A description of the iterations for which the elements are
252
     accessed twice.  */
253
  conflict_function *conflicting_iterations_in_a;
254
  conflict_function *conflicting_iterations_in_b;
255
 
256
  /* This field stores the information about the iteration domain
257
     validity of the dependence relation.  */
258
  tree last_conflict;
259
 
260
  /* Distance from the iteration that access a conflicting element in
261
     A to the iteration that access this same conflicting element in
262
     B.  The distance is a tree scalar expression, i.e. a constant or a
263
     symbolic expression, but certainly not a chrec function.  */
264
  tree distance;
265
};
266
 
267
typedef struct subscript *subscript_p;
268
DEF_VEC_P(subscript_p);
269
DEF_VEC_ALLOC_P (subscript_p, heap);
270
 
271
#define SUB_CONFLICTS_IN_A(SUB) SUB->conflicting_iterations_in_a
272
#define SUB_CONFLICTS_IN_B(SUB) SUB->conflicting_iterations_in_b
273
#define SUB_LAST_CONFLICT(SUB) SUB->last_conflict
274
#define SUB_DISTANCE(SUB) SUB->distance
275
 
276
/* A data_dependence_relation represents a relation between two
277
   data_references A and B.  */
278
 
279
struct data_dependence_relation
280
{
281
 
282
  struct data_reference *a;
283
  struct data_reference *b;
284
 
285
  /* A "yes/no/maybe" field for the dependence relation:
286
 
287
     - when "ARE_DEPENDENT == NULL_TREE", there exist a dependence
288
       relation between A and B, and the description of this relation
289
       is given in the SUBSCRIPTS array,
290
 
291
     - when "ARE_DEPENDENT == chrec_known", there is no dependence and
292
       SUBSCRIPTS is empty,
293
 
294
     - when "ARE_DEPENDENT == chrec_dont_know", there may be a dependence,
295
       but the analyzer cannot be more specific.  */
296
  tree are_dependent;
297
 
298
  /* For each subscript in the dependence test, there is an element in
299
     this array.  This is the attribute that labels the edge A->B of
300
     the data_dependence_relation.  */
301
  VEC (subscript_p, heap) *subscripts;
302
 
303
  /* The analyzed loop nest.  */
304
  VEC (loop_p, heap) *loop_nest;
305
 
306
  /* The classic direction vector.  */
307
  VEC (lambda_vector, heap) *dir_vects;
308
 
309
  /* The classic distance vector.  */
310
  VEC (lambda_vector, heap) *dist_vects;
311
 
312
  /* An index in loop_nest for the innermost loop that varies for
313
     this data dependence relation.  */
314
  unsigned inner_loop;
315
 
316
  /* Is the dependence reversed with respect to the lexicographic order?  */
317
  bool reversed_p;
318
 
319
  /* When the dependence relation is affine, it can be represented by
320
     a distance vector.  */
321
  bool affine_p;
322
 
323
  /* Set to true when the dependence relation is on the same data
324
     access.  */
325
  bool self_reference_p;
326
};
327
 
328
typedef struct data_dependence_relation *ddr_p;
329
DEF_VEC_P(ddr_p);
330
DEF_VEC_ALLOC_P(ddr_p,heap);
331
 
332
#define DDR_A(DDR) DDR->a
333
#define DDR_B(DDR) DDR->b
334
#define DDR_AFFINE_P(DDR) DDR->affine_p
335
#define DDR_ARE_DEPENDENT(DDR) DDR->are_dependent
336
#define DDR_SUBSCRIPTS(DDR) DDR->subscripts
337
#define DDR_SUBSCRIPT(DDR, I) VEC_index (subscript_p, DDR_SUBSCRIPTS (DDR), I)
338
#define DDR_NUM_SUBSCRIPTS(DDR) VEC_length (subscript_p, DDR_SUBSCRIPTS (DDR))
339
 
340
#define DDR_LOOP_NEST(DDR) DDR->loop_nest
341
/* The size of the direction/distance vectors: the number of loops in
342
   the loop nest.  */
343
#define DDR_NB_LOOPS(DDR) (VEC_length (loop_p, DDR_LOOP_NEST (DDR)))
344
#define DDR_INNER_LOOP(DDR) DDR->inner_loop
345
#define DDR_SELF_REFERENCE(DDR) DDR->self_reference_p
346
 
347
#define DDR_DIST_VECTS(DDR) ((DDR)->dist_vects)
348
#define DDR_DIR_VECTS(DDR) ((DDR)->dir_vects)
349
#define DDR_NUM_DIST_VECTS(DDR) \
350
  (VEC_length (lambda_vector, DDR_DIST_VECTS (DDR)))
351
#define DDR_NUM_DIR_VECTS(DDR) \
352
  (VEC_length (lambda_vector, DDR_DIR_VECTS (DDR)))
353
#define DDR_DIR_VECT(DDR, I) \
354
  VEC_index (lambda_vector, DDR_DIR_VECTS (DDR), I)
355
#define DDR_DIST_VECT(DDR, I) \
356
  VEC_index (lambda_vector, DDR_DIST_VECTS (DDR), I)
357
#define DDR_REVERSED_P(DDR) DDR->reversed_p
358
 
359
 
360
 
361
/* Describes a location of a memory reference.  */
362
 
363
typedef struct data_ref_loc_d
364
{
365
  /* Position of the memory reference.  */
366
  tree *pos;
367
 
368
  /* True if the memory reference is read.  */
369
  bool is_read;
370
} data_ref_loc;
371
 
372
DEF_VEC_O (data_ref_loc);
373
DEF_VEC_ALLOC_O (data_ref_loc, heap);
374
 
375
bool get_references_in_stmt (gimple, VEC (data_ref_loc, heap) **);
376
bool dr_analyze_innermost (struct data_reference *);
377
extern bool compute_data_dependences_for_loop (struct loop *, bool,
378
                                               VEC (data_reference_p, heap) **,
379
                                               VEC (ddr_p, heap) **);
380
extern bool compute_data_dependences_for_bb (basic_block, bool,
381
                                             VEC (data_reference_p, heap) **,
382
                                             VEC (ddr_p, heap) **);
383
extern tree find_data_references_in_loop (struct loop *,
384
                                          VEC (data_reference_p, heap) **);
385
extern void print_direction_vector (FILE *, lambda_vector, int);
386
extern void print_dir_vectors (FILE *, VEC (lambda_vector, heap) *, int);
387
extern void print_dist_vectors (FILE *, VEC (lambda_vector, heap) *, int);
388
extern void dump_subscript (FILE *, struct subscript *);
389
extern void dump_ddrs (FILE *, VEC (ddr_p, heap) *);
390
extern void dump_dist_dir_vectors (FILE *, VEC (ddr_p, heap) *);
391
extern void dump_data_reference (FILE *, struct data_reference *);
392
extern void debug_data_reference (struct data_reference *);
393
extern void dump_data_references (FILE *, VEC (data_reference_p, heap) *);
394
extern void debug_data_references (VEC (data_reference_p, heap) *);
395
extern void debug_data_dependence_relation (struct data_dependence_relation *);
396
extern void dump_data_dependence_relation (FILE *,
397
                                           struct data_dependence_relation *);
398
extern void dump_data_dependence_relations (FILE *, VEC (ddr_p, heap) *);
399
extern void debug_data_dependence_relations (VEC (ddr_p, heap) *);
400
extern void dump_data_dependence_direction (FILE *,
401
                                            enum data_dependence_direction);
402
extern void free_dependence_relation (struct data_dependence_relation *);
403
extern void free_dependence_relations (VEC (ddr_p, heap) *);
404
extern void free_data_ref (data_reference_p);
405
extern void free_data_refs (VEC (data_reference_p, heap) *);
406
extern bool find_data_references_in_stmt (struct loop *, gimple,
407
                                          VEC (data_reference_p, heap) **);
408
extern bool graphite_find_data_references_in_stmt (struct loop *, gimple,
409
                                                   VEC (data_reference_p, heap) **);
410
struct data_reference *create_data_ref (struct loop *, tree, gimple, bool);
411
extern bool find_loop_nest (struct loop *, VEC (loop_p, heap) **);
412
extern void compute_all_dependences (VEC (data_reference_p, heap) *,
413
                                     VEC (ddr_p, heap) **, VEC (loop_p, heap) *,
414
                                     bool);
415
 
416
extern void create_rdg_vertices (struct graph *, VEC (gimple, heap) *);
417
extern bool dr_may_alias_p (const struct data_reference *,
418
                            const struct data_reference *);
419
 
420
/* Return true when the DDR contains two data references that have the
421
   same access functions.  */
422
 
423
static inline bool
424
same_access_functions (const struct data_dependence_relation *ddr)
425
{
426
  unsigned i;
427
 
428
  for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
429
    if (!eq_evolutions_p (DR_ACCESS_FN (DDR_A (ddr), i),
430
                          DR_ACCESS_FN (DDR_B (ddr), i)))
431
      return false;
432
 
433
  return true;
434
}
435
 
436
/* Return true when DDR is an anti-dependence relation.  */
437
 
438
static inline bool
439
ddr_is_anti_dependent (ddr_p ddr)
440
{
441
  return (DDR_ARE_DEPENDENT (ddr) == NULL_TREE
442
          && DR_IS_READ (DDR_A (ddr))
443
          && !DR_IS_READ (DDR_B (ddr))
444
          && !same_access_functions (ddr));
445
}
446
 
447
/* Return true when DEPENDENCE_RELATIONS contains an anti-dependence.  */
448
 
449
static inline bool
450
ddrs_have_anti_deps (VEC (ddr_p, heap) *dependence_relations)
451
{
452
  unsigned i;
453
  ddr_p ddr;
454
 
455
  for (i = 0; VEC_iterate (ddr_p, dependence_relations, i, ddr); i++)
456
    if (ddr_is_anti_dependent (ddr))
457
      return true;
458
 
459
  return false;
460
}
461
 
462
/* Return the dependence level for the DDR relation.  */
463
 
464
static inline unsigned
465
ddr_dependence_level (ddr_p ddr)
466
{
467
  unsigned vector;
468
  unsigned level = 0;
469
 
470
  if (DDR_DIST_VECTS (ddr))
471
    level = dependence_level (DDR_DIST_VECT (ddr, 0), DDR_NB_LOOPS (ddr));
472
 
473
  for (vector = 1; vector < DDR_NUM_DIST_VECTS (ddr); vector++)
474
    level = MIN (level, dependence_level (DDR_DIST_VECT (ddr, vector),
475
                                          DDR_NB_LOOPS (ddr)));
476
  return level;
477
}
478
 
479
 
480
 
481
/* A Reduced Dependence Graph (RDG) vertex representing a statement.  */
482
typedef struct rdg_vertex
483
{
484
  /* The statement represented by this vertex.  */
485
  gimple stmt;
486
 
487
  /* True when the statement contains a write to memory.  */
488
  bool has_mem_write;
489
 
490
  /* True when the statement contains a read from memory.  */
491
  bool has_mem_reads;
492
} *rdg_vertex_p;
493
 
494
#define RDGV_STMT(V)     ((struct rdg_vertex *) ((V)->data))->stmt
495
#define RDGV_HAS_MEM_WRITE(V) ((struct rdg_vertex *) ((V)->data))->has_mem_write
496
#define RDGV_HAS_MEM_READS(V) ((struct rdg_vertex *) ((V)->data))->has_mem_reads
497
#define RDG_STMT(RDG, I) RDGV_STMT (&(RDG->vertices[I]))
498
#define RDG_MEM_WRITE_STMT(RDG, I) RDGV_HAS_MEM_WRITE (&(RDG->vertices[I]))
499
#define RDG_MEM_READS_STMT(RDG, I) RDGV_HAS_MEM_READS (&(RDG->vertices[I]))
500
 
501
void dump_rdg_vertex (FILE *, struct graph *, int);
502
void debug_rdg_vertex (struct graph *, int);
503
void dump_rdg_component (FILE *, struct graph *, int, bitmap);
504
void debug_rdg_component (struct graph *, int);
505
void dump_rdg (FILE *, struct graph *);
506
void debug_rdg (struct graph *);
507
int rdg_vertex_for_stmt (struct graph *, gimple);
508
 
509
/* Data dependence type.  */
510
 
511
enum rdg_dep_type
512
{
513
  /* Read After Write (RAW).  */
514
  flow_dd = 'f',
515
 
516
  /* Write After Read (WAR).  */
517
  anti_dd = 'a',
518
 
519
  /* Write After Write (WAW).  */
520
  output_dd = 'o',
521
 
522
  /* Read After Read (RAR).  */
523
  input_dd = 'i'
524
};
525
 
526
/* Dependence information attached to an edge of the RDG.  */
527
 
528
typedef struct rdg_edge
529
{
530
  /* Type of the dependence.  */
531
  enum rdg_dep_type type;
532
 
533
  /* Levels of the dependence: the depth of the loops that carry the
534
     dependence.  */
535
  unsigned level;
536
 
537
  /* Dependence relation between data dependences, NULL when one of
538
     the vertices is a scalar.  */
539
  ddr_p relation;
540
} *rdg_edge_p;
541
 
542
#define RDGE_TYPE(E)        ((struct rdg_edge *) ((E)->data))->type
543
#define RDGE_LEVEL(E)       ((struct rdg_edge *) ((E)->data))->level
544
#define RDGE_RELATION(E)    ((struct rdg_edge *) ((E)->data))->relation
545
 
546
struct graph *build_rdg (struct loop *);
547
struct graph *build_empty_rdg (int);
548
void free_rdg (struct graph *);
549
 
550
/* Return the index of the variable VAR in the LOOP_NEST array.  */
551
 
552
static inline int
553
index_in_loop_nest (int var, VEC (loop_p, heap) *loop_nest)
554
{
555
  struct loop *loopi;
556
  int var_index;
557
 
558
  for (var_index = 0; VEC_iterate (loop_p, loop_nest, var_index, loopi);
559
       var_index++)
560
    if (loopi->num == var)
561
      break;
562
 
563
  return var_index;
564
}
565
 
566
void stores_from_loop (struct loop *, VEC (gimple, heap) **);
567
void remove_similar_memory_refs (VEC (gimple, heap) **);
568
bool rdg_defs_used_in_other_loops_p (struct graph *, int);
569
bool have_similar_memory_accesses (gimple, gimple);
570
 
571
/* Determines whether RDG vertices V1 and V2 access to similar memory
572
   locations, in which case they have to be in the same partition.  */
573
 
574
static inline bool
575
rdg_has_similar_memory_accesses (struct graph *rdg, int v1, int v2)
576
{
577
  return have_similar_memory_accesses (RDG_STMT (rdg, v1),
578
                                       RDG_STMT (rdg, v2));
579
}
580
 
581
/* In lambda-code.c  */
582
bool lambda_transform_legal_p (lambda_trans_matrix, int,
583
                               VEC (ddr_p, heap) *);
584
void lambda_collect_parameters (VEC (data_reference_p, heap) *,
585
                                VEC (tree, heap) **);
586
bool lambda_compute_access_matrices (VEC (data_reference_p, heap) *,
587
                                     VEC (tree, heap) *, VEC (loop_p, heap) *);
588
 
589
/* In tree-data-ref.c  */
590
void split_constant_offset (tree , tree *, tree *);
591
 
592
/* Strongly connected components of the reduced data dependence graph.  */
593
 
594
typedef struct rdg_component
595
{
596
  int num;
597
  VEC (int, heap) *vertices;
598
} *rdgc;
599
 
600
DEF_VEC_P (rdgc);
601
DEF_VEC_ALLOC_P (rdgc, heap);
602
 
603
DEF_VEC_P (bitmap);
604
DEF_VEC_ALLOC_P (bitmap, heap);
605
 
606
#endif  /* GCC_TREE_DATA_REF_H  */

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.