1 |
280 |
jeremybenn |
/* Conditional constant propagation pass for the GNU compiler.
|
2 |
|
|
Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
|
3 |
|
|
2010 Free Software Foundation, Inc.
|
4 |
|
|
Adapted from original RTL SSA-CCP by Daniel Berlin <dberlin@dberlin.org>
|
5 |
|
|
Adapted to GIMPLE trees by Diego Novillo <dnovillo@redhat.com>
|
6 |
|
|
|
7 |
|
|
This file is part of GCC.
|
8 |
|
|
|
9 |
|
|
GCC is free software; you can redistribute it and/or modify it
|
10 |
|
|
under the terms of the GNU General Public License as published by the
|
11 |
|
|
Free Software Foundation; either version 3, or (at your option) any
|
12 |
|
|
later version.
|
13 |
|
|
|
14 |
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT
|
15 |
|
|
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
16 |
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
17 |
|
|
for more details.
|
18 |
|
|
|
19 |
|
|
You should have received a copy of the GNU General Public License
|
20 |
|
|
along with GCC; see the file COPYING3. If not see
|
21 |
|
|
<http://www.gnu.org/licenses/>. */
|
22 |
|
|
|
23 |
|
|
/* Conditional constant propagation (CCP) is based on the SSA
|
24 |
|
|
propagation engine (tree-ssa-propagate.c). Constant assignments of
|
25 |
|
|
the form VAR = CST are propagated from the assignments into uses of
|
26 |
|
|
VAR, which in turn may generate new constants. The simulation uses
|
27 |
|
|
a four level lattice to keep track of constant values associated
|
28 |
|
|
with SSA names. Given an SSA name V_i, it may take one of the
|
29 |
|
|
following values:
|
30 |
|
|
|
31 |
|
|
UNINITIALIZED -> the initial state of the value. This value
|
32 |
|
|
is replaced with a correct initial value
|
33 |
|
|
the first time the value is used, so the
|
34 |
|
|
rest of the pass does not need to care about
|
35 |
|
|
it. Using this value simplifies initialization
|
36 |
|
|
of the pass, and prevents us from needlessly
|
37 |
|
|
scanning statements that are never reached.
|
38 |
|
|
|
39 |
|
|
UNDEFINED -> V_i is a local variable whose definition
|
40 |
|
|
has not been processed yet. Therefore we
|
41 |
|
|
don't yet know if its value is a constant
|
42 |
|
|
or not.
|
43 |
|
|
|
44 |
|
|
CONSTANT -> V_i has been found to hold a constant
|
45 |
|
|
value C.
|
46 |
|
|
|
47 |
|
|
VARYING -> V_i cannot take a constant value, or if it
|
48 |
|
|
does, it is not possible to determine it
|
49 |
|
|
at compile time.
|
50 |
|
|
|
51 |
|
|
The core of SSA-CCP is in ccp_visit_stmt and ccp_visit_phi_node:
|
52 |
|
|
|
53 |
|
|
1- In ccp_visit_stmt, we are interested in assignments whose RHS
|
54 |
|
|
evaluates into a constant and conditional jumps whose predicate
|
55 |
|
|
evaluates into a boolean true or false. When an assignment of
|
56 |
|
|
the form V_i = CONST is found, V_i's lattice value is set to
|
57 |
|
|
CONSTANT and CONST is associated with it. This causes the
|
58 |
|
|
propagation engine to add all the SSA edges coming out the
|
59 |
|
|
assignment into the worklists, so that statements that use V_i
|
60 |
|
|
can be visited.
|
61 |
|
|
|
62 |
|
|
If the statement is a conditional with a constant predicate, we
|
63 |
|
|
mark the outgoing edges as executable or not executable
|
64 |
|
|
depending on the predicate's value. This is then used when
|
65 |
|
|
visiting PHI nodes to know when a PHI argument can be ignored.
|
66 |
|
|
|
67 |
|
|
|
68 |
|
|
2- In ccp_visit_phi_node, if all the PHI arguments evaluate to the
|
69 |
|
|
same constant C, then the LHS of the PHI is set to C. This
|
70 |
|
|
evaluation is known as the "meet operation". Since one of the
|
71 |
|
|
goals of this evaluation is to optimistically return constant
|
72 |
|
|
values as often as possible, it uses two main short cuts:
|
73 |
|
|
|
74 |
|
|
- If an argument is flowing in through a non-executable edge, it
|
75 |
|
|
is ignored. This is useful in cases like this:
|
76 |
|
|
|
77 |
|
|
if (PRED)
|
78 |
|
|
a_9 = 3;
|
79 |
|
|
else
|
80 |
|
|
a_10 = 100;
|
81 |
|
|
a_11 = PHI (a_9, a_10)
|
82 |
|
|
|
83 |
|
|
If PRED is known to always evaluate to false, then we can
|
84 |
|
|
assume that a_11 will always take its value from a_10, meaning
|
85 |
|
|
that instead of consider it VARYING (a_9 and a_10 have
|
86 |
|
|
different values), we can consider it CONSTANT 100.
|
87 |
|
|
|
88 |
|
|
- If an argument has an UNDEFINED value, then it does not affect
|
89 |
|
|
the outcome of the meet operation. If a variable V_i has an
|
90 |
|
|
UNDEFINED value, it means that either its defining statement
|
91 |
|
|
hasn't been visited yet or V_i has no defining statement, in
|
92 |
|
|
which case the original symbol 'V' is being used
|
93 |
|
|
uninitialized. Since 'V' is a local variable, the compiler
|
94 |
|
|
may assume any initial value for it.
|
95 |
|
|
|
96 |
|
|
|
97 |
|
|
After propagation, every variable V_i that ends up with a lattice
|
98 |
|
|
value of CONSTANT will have the associated constant value in the
|
99 |
|
|
array CONST_VAL[i].VALUE. That is fed into substitute_and_fold for
|
100 |
|
|
final substitution and folding.
|
101 |
|
|
|
102 |
|
|
|
103 |
|
|
Constant propagation in stores and loads (STORE-CCP)
|
104 |
|
|
----------------------------------------------------
|
105 |
|
|
|
106 |
|
|
While CCP has all the logic to propagate constants in GIMPLE
|
107 |
|
|
registers, it is missing the ability to associate constants with
|
108 |
|
|
stores and loads (i.e., pointer dereferences, structures and
|
109 |
|
|
global/aliased variables). We don't keep loads and stores in
|
110 |
|
|
SSA, but we do build a factored use-def web for them (in the
|
111 |
|
|
virtual operands).
|
112 |
|
|
|
113 |
|
|
For instance, consider the following code fragment:
|
114 |
|
|
|
115 |
|
|
struct A a;
|
116 |
|
|
const int B = 42;
|
117 |
|
|
|
118 |
|
|
void foo (int i)
|
119 |
|
|
{
|
120 |
|
|
if (i > 10)
|
121 |
|
|
a.a = 42;
|
122 |
|
|
else
|
123 |
|
|
{
|
124 |
|
|
a.b = 21;
|
125 |
|
|
a.a = a.b + 21;
|
126 |
|
|
}
|
127 |
|
|
|
128 |
|
|
if (a.a != B)
|
129 |
|
|
never_executed ();
|
130 |
|
|
}
|
131 |
|
|
|
132 |
|
|
We should be able to deduce that the predicate 'a.a != B' is always
|
133 |
|
|
false. To achieve this, we associate constant values to the SSA
|
134 |
|
|
names in the VDEF operands for each store. Additionally,
|
135 |
|
|
since we also glob partial loads/stores with the base symbol, we
|
136 |
|
|
also keep track of the memory reference where the constant value
|
137 |
|
|
was stored (in the MEM_REF field of PROP_VALUE_T). For instance,
|
138 |
|
|
|
139 |
|
|
# a_5 = VDEF <a_4>
|
140 |
|
|
a.a = 2;
|
141 |
|
|
|
142 |
|
|
# VUSE <a_5>
|
143 |
|
|
x_3 = a.b;
|
144 |
|
|
|
145 |
|
|
In the example above, CCP will associate value '2' with 'a_5', but
|
146 |
|
|
it would be wrong to replace the load from 'a.b' with '2', because
|
147 |
|
|
'2' had been stored into a.a.
|
148 |
|
|
|
149 |
|
|
Note that the initial value of virtual operands is VARYING, not
|
150 |
|
|
UNDEFINED. Consider, for instance global variables:
|
151 |
|
|
|
152 |
|
|
int A;
|
153 |
|
|
|
154 |
|
|
foo (int i)
|
155 |
|
|
{
|
156 |
|
|
if (i_3 > 10)
|
157 |
|
|
A_4 = 3;
|
158 |
|
|
# A_5 = PHI (A_4, A_2);
|
159 |
|
|
|
160 |
|
|
# VUSE <A_5>
|
161 |
|
|
A.0_6 = A;
|
162 |
|
|
|
163 |
|
|
return A.0_6;
|
164 |
|
|
}
|
165 |
|
|
|
166 |
|
|
The value of A_2 cannot be assumed to be UNDEFINED, as it may have
|
167 |
|
|
been defined outside of foo. If we were to assume it UNDEFINED, we
|
168 |
|
|
would erroneously optimize the above into 'return 3;'.
|
169 |
|
|
|
170 |
|
|
Though STORE-CCP is not too expensive, it does have to do more work
|
171 |
|
|
than regular CCP, so it is only enabled at -O2. Both regular CCP
|
172 |
|
|
and STORE-CCP use the exact same algorithm. The only distinction
|
173 |
|
|
is that when doing STORE-CCP, the boolean variable DO_STORE_CCP is
|
174 |
|
|
set to true. This affects the evaluation of statements and PHI
|
175 |
|
|
nodes.
|
176 |
|
|
|
177 |
|
|
References:
|
178 |
|
|
|
179 |
|
|
Constant propagation with conditional branches,
|
180 |
|
|
Wegman and Zadeck, ACM TOPLAS 13(2):181-210.
|
181 |
|
|
|
182 |
|
|
Building an Optimizing Compiler,
|
183 |
|
|
Robert Morgan, Butterworth-Heinemann, 1998, Section 8.9.
|
184 |
|
|
|
185 |
|
|
Advanced Compiler Design and Implementation,
|
186 |
|
|
Steven Muchnick, Morgan Kaufmann, 1997, Section 12.6 */
|
187 |
|
|
|
188 |
|
|
#include "config.h"
|
189 |
|
|
#include "system.h"
|
190 |
|
|
#include "coretypes.h"
|
191 |
|
|
#include "tm.h"
|
192 |
|
|
#include "tree.h"
|
193 |
|
|
#include "flags.h"
|
194 |
|
|
#include "rtl.h"
|
195 |
|
|
#include "tm_p.h"
|
196 |
|
|
#include "ggc.h"
|
197 |
|
|
#include "basic-block.h"
|
198 |
|
|
#include "output.h"
|
199 |
|
|
#include "expr.h"
|
200 |
|
|
#include "function.h"
|
201 |
|
|
#include "diagnostic.h"
|
202 |
|
|
#include "timevar.h"
|
203 |
|
|
#include "tree-dump.h"
|
204 |
|
|
#include "tree-flow.h"
|
205 |
|
|
#include "tree-pass.h"
|
206 |
|
|
#include "tree-ssa-propagate.h"
|
207 |
|
|
#include "value-prof.h"
|
208 |
|
|
#include "langhooks.h"
|
209 |
|
|
#include "target.h"
|
210 |
|
|
#include "toplev.h"
|
211 |
|
|
#include "dbgcnt.h"
|
212 |
|
|
|
213 |
|
|
|
214 |
|
|
/* Possible lattice values. */
|
215 |
|
|
typedef enum
|
216 |
|
|
{
|
217 |
|
|
UNINITIALIZED,
|
218 |
|
|
UNDEFINED,
|
219 |
|
|
CONSTANT,
|
220 |
|
|
VARYING
|
221 |
|
|
} ccp_lattice_t;
|
222 |
|
|
|
223 |
|
|
/* Array of propagated constant values. After propagation,
|
224 |
|
|
CONST_VAL[I].VALUE holds the constant value for SSA_NAME(I). If
|
225 |
|
|
the constant is held in an SSA name representing a memory store
|
226 |
|
|
(i.e., a VDEF), CONST_VAL[I].MEM_REF will contain the actual
|
227 |
|
|
memory reference used to store (i.e., the LHS of the assignment
|
228 |
|
|
doing the store). */
|
229 |
|
|
static prop_value_t *const_val;
|
230 |
|
|
|
231 |
|
|
static void canonicalize_float_value (prop_value_t *);
|
232 |
|
|
static bool ccp_fold_stmt (gimple_stmt_iterator *);
|
233 |
|
|
|
234 |
|
|
/* Dump constant propagation value VAL to file OUTF prefixed by PREFIX. */
|
235 |
|
|
|
236 |
|
|
static void
|
237 |
|
|
dump_lattice_value (FILE *outf, const char *prefix, prop_value_t val)
|
238 |
|
|
{
|
239 |
|
|
switch (val.lattice_val)
|
240 |
|
|
{
|
241 |
|
|
case UNINITIALIZED:
|
242 |
|
|
fprintf (outf, "%sUNINITIALIZED", prefix);
|
243 |
|
|
break;
|
244 |
|
|
case UNDEFINED:
|
245 |
|
|
fprintf (outf, "%sUNDEFINED", prefix);
|
246 |
|
|
break;
|
247 |
|
|
case VARYING:
|
248 |
|
|
fprintf (outf, "%sVARYING", prefix);
|
249 |
|
|
break;
|
250 |
|
|
case CONSTANT:
|
251 |
|
|
fprintf (outf, "%sCONSTANT ", prefix);
|
252 |
|
|
print_generic_expr (outf, val.value, dump_flags);
|
253 |
|
|
break;
|
254 |
|
|
default:
|
255 |
|
|
gcc_unreachable ();
|
256 |
|
|
}
|
257 |
|
|
}
|
258 |
|
|
|
259 |
|
|
|
260 |
|
|
/* Print lattice value VAL to stderr. */
|
261 |
|
|
|
262 |
|
|
void debug_lattice_value (prop_value_t val);
|
263 |
|
|
|
264 |
|
|
void
|
265 |
|
|
debug_lattice_value (prop_value_t val)
|
266 |
|
|
{
|
267 |
|
|
dump_lattice_value (stderr, "", val);
|
268 |
|
|
fprintf (stderr, "\n");
|
269 |
|
|
}
|
270 |
|
|
|
271 |
|
|
|
272 |
|
|
|
273 |
|
|
/* If SYM is a constant variable with known value, return the value.
|
274 |
|
|
NULL_TREE is returned otherwise. */
|
275 |
|
|
|
276 |
|
|
tree
|
277 |
|
|
get_symbol_constant_value (tree sym)
|
278 |
|
|
{
|
279 |
|
|
if (TREE_STATIC (sym)
|
280 |
|
|
&& (TREE_READONLY (sym)
|
281 |
|
|
|| TREE_CODE (sym) == CONST_DECL))
|
282 |
|
|
{
|
283 |
|
|
tree val = DECL_INITIAL (sym);
|
284 |
|
|
if (val)
|
285 |
|
|
{
|
286 |
|
|
STRIP_NOPS (val);
|
287 |
|
|
if (is_gimple_min_invariant (val))
|
288 |
|
|
{
|
289 |
|
|
if (TREE_CODE (val) == ADDR_EXPR)
|
290 |
|
|
{
|
291 |
|
|
tree base = get_base_address (TREE_OPERAND (val, 0));
|
292 |
|
|
if (base && TREE_CODE (base) == VAR_DECL)
|
293 |
|
|
{
|
294 |
|
|
TREE_ADDRESSABLE (base) = 1;
|
295 |
|
|
if (gimple_referenced_vars (cfun))
|
296 |
|
|
add_referenced_var (base);
|
297 |
|
|
}
|
298 |
|
|
}
|
299 |
|
|
return val;
|
300 |
|
|
}
|
301 |
|
|
}
|
302 |
|
|
/* Variables declared 'const' without an initializer
|
303 |
|
|
have zero as the initializer if they may not be
|
304 |
|
|
overridden at link or run time. */
|
305 |
|
|
if (!val
|
306 |
|
|
&& !DECL_EXTERNAL (sym)
|
307 |
|
|
&& targetm.binds_local_p (sym)
|
308 |
|
|
&& (INTEGRAL_TYPE_P (TREE_TYPE (sym))
|
309 |
|
|
|| SCALAR_FLOAT_TYPE_P (TREE_TYPE (sym))))
|
310 |
|
|
return fold_convert (TREE_TYPE (sym), integer_zero_node);
|
311 |
|
|
}
|
312 |
|
|
|
313 |
|
|
return NULL_TREE;
|
314 |
|
|
}
|
315 |
|
|
|
316 |
|
|
/* Compute a default value for variable VAR and store it in the
|
317 |
|
|
CONST_VAL array. The following rules are used to get default
|
318 |
|
|
values:
|
319 |
|
|
|
320 |
|
|
1- Global and static variables that are declared constant are
|
321 |
|
|
considered CONSTANT.
|
322 |
|
|
|
323 |
|
|
2- Any other value is considered UNDEFINED. This is useful when
|
324 |
|
|
considering PHI nodes. PHI arguments that are undefined do not
|
325 |
|
|
change the constant value of the PHI node, which allows for more
|
326 |
|
|
constants to be propagated.
|
327 |
|
|
|
328 |
|
|
3- Variables defined by statements other than assignments and PHI
|
329 |
|
|
nodes are considered VARYING.
|
330 |
|
|
|
331 |
|
|
4- Initial values of variables that are not GIMPLE registers are
|
332 |
|
|
considered VARYING. */
|
333 |
|
|
|
334 |
|
|
static prop_value_t
|
335 |
|
|
get_default_value (tree var)
|
336 |
|
|
{
|
337 |
|
|
tree sym = SSA_NAME_VAR (var);
|
338 |
|
|
prop_value_t val = { UNINITIALIZED, NULL_TREE };
|
339 |
|
|
gimple stmt;
|
340 |
|
|
|
341 |
|
|
stmt = SSA_NAME_DEF_STMT (var);
|
342 |
|
|
|
343 |
|
|
if (gimple_nop_p (stmt))
|
344 |
|
|
{
|
345 |
|
|
/* Variables defined by an empty statement are those used
|
346 |
|
|
before being initialized. If VAR is a local variable, we
|
347 |
|
|
can assume initially that it is UNDEFINED, otherwise we must
|
348 |
|
|
consider it VARYING. */
|
349 |
|
|
if (is_gimple_reg (sym) && TREE_CODE (sym) != PARM_DECL)
|
350 |
|
|
val.lattice_val = UNDEFINED;
|
351 |
|
|
else
|
352 |
|
|
val.lattice_val = VARYING;
|
353 |
|
|
}
|
354 |
|
|
else if (is_gimple_assign (stmt)
|
355 |
|
|
/* Value-returning GIMPLE_CALL statements assign to
|
356 |
|
|
a variable, and are treated similarly to GIMPLE_ASSIGN. */
|
357 |
|
|
|| (is_gimple_call (stmt)
|
358 |
|
|
&& gimple_call_lhs (stmt) != NULL_TREE)
|
359 |
|
|
|| gimple_code (stmt) == GIMPLE_PHI)
|
360 |
|
|
{
|
361 |
|
|
tree cst;
|
362 |
|
|
if (gimple_assign_single_p (stmt)
|
363 |
|
|
&& DECL_P (gimple_assign_rhs1 (stmt))
|
364 |
|
|
&& (cst = get_symbol_constant_value (gimple_assign_rhs1 (stmt))))
|
365 |
|
|
{
|
366 |
|
|
val.lattice_val = CONSTANT;
|
367 |
|
|
val.value = cst;
|
368 |
|
|
}
|
369 |
|
|
else
|
370 |
|
|
/* Any other variable defined by an assignment or a PHI node
|
371 |
|
|
is considered UNDEFINED. */
|
372 |
|
|
val.lattice_val = UNDEFINED;
|
373 |
|
|
}
|
374 |
|
|
else
|
375 |
|
|
{
|
376 |
|
|
/* Otherwise, VAR will never take on a constant value. */
|
377 |
|
|
val.lattice_val = VARYING;
|
378 |
|
|
}
|
379 |
|
|
|
380 |
|
|
return val;
|
381 |
|
|
}
|
382 |
|
|
|
383 |
|
|
|
384 |
|
|
/* Get the constant value associated with variable VAR. */
|
385 |
|
|
|
386 |
|
|
static inline prop_value_t *
|
387 |
|
|
get_value (tree var)
|
388 |
|
|
{
|
389 |
|
|
prop_value_t *val;
|
390 |
|
|
|
391 |
|
|
if (const_val == NULL)
|
392 |
|
|
return NULL;
|
393 |
|
|
|
394 |
|
|
val = &const_val[SSA_NAME_VERSION (var)];
|
395 |
|
|
if (val->lattice_val == UNINITIALIZED)
|
396 |
|
|
*val = get_default_value (var);
|
397 |
|
|
|
398 |
|
|
canonicalize_float_value (val);
|
399 |
|
|
|
400 |
|
|
return val;
|
401 |
|
|
}
|
402 |
|
|
|
403 |
|
|
/* Sets the value associated with VAR to VARYING. */
|
404 |
|
|
|
405 |
|
|
static inline void
|
406 |
|
|
set_value_varying (tree var)
|
407 |
|
|
{
|
408 |
|
|
prop_value_t *val = &const_val[SSA_NAME_VERSION (var)];
|
409 |
|
|
|
410 |
|
|
val->lattice_val = VARYING;
|
411 |
|
|
val->value = NULL_TREE;
|
412 |
|
|
}
|
413 |
|
|
|
414 |
|
|
/* For float types, modify the value of VAL to make ccp work correctly
|
415 |
|
|
for non-standard values (-0, NaN):
|
416 |
|
|
|
417 |
|
|
If HONOR_SIGNED_ZEROS is false, and VAL = -0, we canonicalize it to 0.
|
418 |
|
|
If HONOR_NANS is false, and VAL is NaN, we canonicalize it to UNDEFINED.
|
419 |
|
|
This is to fix the following problem (see PR 29921): Suppose we have
|
420 |
|
|
|
421 |
|
|
x = 0.0 * y
|
422 |
|
|
|
423 |
|
|
and we set value of y to NaN. This causes value of x to be set to NaN.
|
424 |
|
|
When we later determine that y is in fact VARYING, fold uses the fact
|
425 |
|
|
that HONOR_NANS is false, and we try to change the value of x to 0,
|
426 |
|
|
causing an ICE. With HONOR_NANS being false, the real appearance of
|
427 |
|
|
NaN would cause undefined behavior, though, so claiming that y (and x)
|
428 |
|
|
are UNDEFINED initially is correct. */
|
429 |
|
|
|
430 |
|
|
static void
|
431 |
|
|
canonicalize_float_value (prop_value_t *val)
|
432 |
|
|
{
|
433 |
|
|
enum machine_mode mode;
|
434 |
|
|
tree type;
|
435 |
|
|
REAL_VALUE_TYPE d;
|
436 |
|
|
|
437 |
|
|
if (val->lattice_val != CONSTANT
|
438 |
|
|
|| TREE_CODE (val->value) != REAL_CST)
|
439 |
|
|
return;
|
440 |
|
|
|
441 |
|
|
d = TREE_REAL_CST (val->value);
|
442 |
|
|
type = TREE_TYPE (val->value);
|
443 |
|
|
mode = TYPE_MODE (type);
|
444 |
|
|
|
445 |
|
|
if (!HONOR_SIGNED_ZEROS (mode)
|
446 |
|
|
&& REAL_VALUE_MINUS_ZERO (d))
|
447 |
|
|
{
|
448 |
|
|
val->value = build_real (type, dconst0);
|
449 |
|
|
return;
|
450 |
|
|
}
|
451 |
|
|
|
452 |
|
|
if (!HONOR_NANS (mode)
|
453 |
|
|
&& REAL_VALUE_ISNAN (d))
|
454 |
|
|
{
|
455 |
|
|
val->lattice_val = UNDEFINED;
|
456 |
|
|
val->value = NULL;
|
457 |
|
|
return;
|
458 |
|
|
}
|
459 |
|
|
}
|
460 |
|
|
|
461 |
|
|
/* Set the value for variable VAR to NEW_VAL. Return true if the new
|
462 |
|
|
value is different from VAR's previous value. */
|
463 |
|
|
|
464 |
|
|
static bool
|
465 |
|
|
set_lattice_value (tree var, prop_value_t new_val)
|
466 |
|
|
{
|
467 |
|
|
prop_value_t *old_val = get_value (var);
|
468 |
|
|
|
469 |
|
|
canonicalize_float_value (&new_val);
|
470 |
|
|
|
471 |
|
|
/* Lattice transitions must always be monotonically increasing in
|
472 |
|
|
value. If *OLD_VAL and NEW_VAL are the same, return false to
|
473 |
|
|
inform the caller that this was a non-transition. */
|
474 |
|
|
|
475 |
|
|
gcc_assert (old_val->lattice_val < new_val.lattice_val
|
476 |
|
|
|| (old_val->lattice_val == new_val.lattice_val
|
477 |
|
|
&& ((!old_val->value && !new_val.value)
|
478 |
|
|
|| operand_equal_p (old_val->value, new_val.value, 0))));
|
479 |
|
|
|
480 |
|
|
if (old_val->lattice_val != new_val.lattice_val)
|
481 |
|
|
{
|
482 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
483 |
|
|
{
|
484 |
|
|
dump_lattice_value (dump_file, "Lattice value changed to ", new_val);
|
485 |
|
|
fprintf (dump_file, ". Adding SSA edges to worklist.\n");
|
486 |
|
|
}
|
487 |
|
|
|
488 |
|
|
*old_val = new_val;
|
489 |
|
|
|
490 |
|
|
gcc_assert (new_val.lattice_val != UNDEFINED);
|
491 |
|
|
return true;
|
492 |
|
|
}
|
493 |
|
|
|
494 |
|
|
return false;
|
495 |
|
|
}
|
496 |
|
|
|
497 |
|
|
|
498 |
|
|
/* Return the likely CCP lattice value for STMT.
|
499 |
|
|
|
500 |
|
|
If STMT has no operands, then return CONSTANT.
|
501 |
|
|
|
502 |
|
|
Else if undefinedness of operands of STMT cause its value to be
|
503 |
|
|
undefined, then return UNDEFINED.
|
504 |
|
|
|
505 |
|
|
Else if any operands of STMT are constants, then return CONSTANT.
|
506 |
|
|
|
507 |
|
|
Else return VARYING. */
|
508 |
|
|
|
509 |
|
|
static ccp_lattice_t
|
510 |
|
|
likely_value (gimple stmt)
|
511 |
|
|
{
|
512 |
|
|
bool has_constant_operand, has_undefined_operand, all_undefined_operands;
|
513 |
|
|
tree use;
|
514 |
|
|
ssa_op_iter iter;
|
515 |
|
|
unsigned i;
|
516 |
|
|
|
517 |
|
|
enum gimple_code code = gimple_code (stmt);
|
518 |
|
|
|
519 |
|
|
/* This function appears to be called only for assignments, calls,
|
520 |
|
|
conditionals, and switches, due to the logic in visit_stmt. */
|
521 |
|
|
gcc_assert (code == GIMPLE_ASSIGN
|
522 |
|
|
|| code == GIMPLE_CALL
|
523 |
|
|
|| code == GIMPLE_COND
|
524 |
|
|
|| code == GIMPLE_SWITCH);
|
525 |
|
|
|
526 |
|
|
/* If the statement has volatile operands, it won't fold to a
|
527 |
|
|
constant value. */
|
528 |
|
|
if (gimple_has_volatile_ops (stmt))
|
529 |
|
|
return VARYING;
|
530 |
|
|
|
531 |
|
|
/* Arrive here for more complex cases. */
|
532 |
|
|
has_constant_operand = false;
|
533 |
|
|
has_undefined_operand = false;
|
534 |
|
|
all_undefined_operands = true;
|
535 |
|
|
FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter, SSA_OP_USE)
|
536 |
|
|
{
|
537 |
|
|
prop_value_t *val = get_value (use);
|
538 |
|
|
|
539 |
|
|
if (val->lattice_val == UNDEFINED)
|
540 |
|
|
has_undefined_operand = true;
|
541 |
|
|
else
|
542 |
|
|
all_undefined_operands = false;
|
543 |
|
|
|
544 |
|
|
if (val->lattice_val == CONSTANT)
|
545 |
|
|
has_constant_operand = true;
|
546 |
|
|
}
|
547 |
|
|
|
548 |
|
|
/* There may be constants in regular rhs operands. For calls we
|
549 |
|
|
have to ignore lhs, fndecl and static chain, otherwise only
|
550 |
|
|
the lhs. */
|
551 |
|
|
for (i = (is_gimple_call (stmt) ? 2 : 0) + gimple_has_lhs (stmt);
|
552 |
|
|
i < gimple_num_ops (stmt); ++i)
|
553 |
|
|
{
|
554 |
|
|
tree op = gimple_op (stmt, i);
|
555 |
|
|
if (!op || TREE_CODE (op) == SSA_NAME)
|
556 |
|
|
continue;
|
557 |
|
|
if (is_gimple_min_invariant (op))
|
558 |
|
|
has_constant_operand = true;
|
559 |
|
|
}
|
560 |
|
|
|
561 |
|
|
if (has_constant_operand)
|
562 |
|
|
all_undefined_operands = false;
|
563 |
|
|
|
564 |
|
|
/* If the operation combines operands like COMPLEX_EXPR make sure to
|
565 |
|
|
not mark the result UNDEFINED if only one part of the result is
|
566 |
|
|
undefined. */
|
567 |
|
|
if (has_undefined_operand && all_undefined_operands)
|
568 |
|
|
return UNDEFINED;
|
569 |
|
|
else if (code == GIMPLE_ASSIGN && has_undefined_operand)
|
570 |
|
|
{
|
571 |
|
|
switch (gimple_assign_rhs_code (stmt))
|
572 |
|
|
{
|
573 |
|
|
/* Unary operators are handled with all_undefined_operands. */
|
574 |
|
|
case PLUS_EXPR:
|
575 |
|
|
case MINUS_EXPR:
|
576 |
|
|
case POINTER_PLUS_EXPR:
|
577 |
|
|
/* Not MIN_EXPR, MAX_EXPR. One VARYING operand may be selected.
|
578 |
|
|
Not bitwise operators, one VARYING operand may specify the
|
579 |
|
|
result completely. Not logical operators for the same reason.
|
580 |
|
|
Not COMPLEX_EXPR as one VARYING operand makes the result partly
|
581 |
|
|
not UNDEFINED. Not *DIV_EXPR, comparisons and shifts because
|
582 |
|
|
the undefined operand may be promoted. */
|
583 |
|
|
return UNDEFINED;
|
584 |
|
|
|
585 |
|
|
default:
|
586 |
|
|
;
|
587 |
|
|
}
|
588 |
|
|
}
|
589 |
|
|
/* If there was an UNDEFINED operand but the result may be not UNDEFINED
|
590 |
|
|
fall back to VARYING even if there were CONSTANT operands. */
|
591 |
|
|
if (has_undefined_operand)
|
592 |
|
|
return VARYING;
|
593 |
|
|
|
594 |
|
|
/* We do not consider virtual operands here -- load from read-only
|
595 |
|
|
memory may have only VARYING virtual operands, but still be
|
596 |
|
|
constant. */
|
597 |
|
|
if (has_constant_operand
|
598 |
|
|
|| gimple_references_memory_p (stmt))
|
599 |
|
|
return CONSTANT;
|
600 |
|
|
|
601 |
|
|
return VARYING;
|
602 |
|
|
}
|
603 |
|
|
|
604 |
|
|
/* Returns true if STMT cannot be constant. */
|
605 |
|
|
|
606 |
|
|
static bool
|
607 |
|
|
surely_varying_stmt_p (gimple stmt)
|
608 |
|
|
{
|
609 |
|
|
/* If the statement has operands that we cannot handle, it cannot be
|
610 |
|
|
constant. */
|
611 |
|
|
if (gimple_has_volatile_ops (stmt))
|
612 |
|
|
return true;
|
613 |
|
|
|
614 |
|
|
/* If it is a call and does not return a value or is not a
|
615 |
|
|
builtin and not an indirect call, it is varying. */
|
616 |
|
|
if (is_gimple_call (stmt))
|
617 |
|
|
{
|
618 |
|
|
tree fndecl;
|
619 |
|
|
if (!gimple_call_lhs (stmt)
|
620 |
|
|
|| ((fndecl = gimple_call_fndecl (stmt)) != NULL_TREE
|
621 |
|
|
&& !DECL_BUILT_IN (fndecl)))
|
622 |
|
|
return true;
|
623 |
|
|
}
|
624 |
|
|
|
625 |
|
|
/* Any other store operation is not interesting. */
|
626 |
|
|
else if (gimple_vdef (stmt))
|
627 |
|
|
return true;
|
628 |
|
|
|
629 |
|
|
/* Anything other than assignments and conditional jumps are not
|
630 |
|
|
interesting for CCP. */
|
631 |
|
|
if (gimple_code (stmt) != GIMPLE_ASSIGN
|
632 |
|
|
&& gimple_code (stmt) != GIMPLE_COND
|
633 |
|
|
&& gimple_code (stmt) != GIMPLE_SWITCH
|
634 |
|
|
&& gimple_code (stmt) != GIMPLE_CALL)
|
635 |
|
|
return true;
|
636 |
|
|
|
637 |
|
|
return false;
|
638 |
|
|
}
|
639 |
|
|
|
640 |
|
|
/* Initialize local data structures for CCP. */
|
641 |
|
|
|
642 |
|
|
static void
|
643 |
|
|
ccp_initialize (void)
|
644 |
|
|
{
|
645 |
|
|
basic_block bb;
|
646 |
|
|
|
647 |
|
|
const_val = XCNEWVEC (prop_value_t, num_ssa_names);
|
648 |
|
|
|
649 |
|
|
/* Initialize simulation flags for PHI nodes and statements. */
|
650 |
|
|
FOR_EACH_BB (bb)
|
651 |
|
|
{
|
652 |
|
|
gimple_stmt_iterator i;
|
653 |
|
|
|
654 |
|
|
for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
|
655 |
|
|
{
|
656 |
|
|
gimple stmt = gsi_stmt (i);
|
657 |
|
|
bool is_varying;
|
658 |
|
|
|
659 |
|
|
/* If the statement is a control insn, then we do not
|
660 |
|
|
want to avoid simulating the statement once. Failure
|
661 |
|
|
to do so means that those edges will never get added. */
|
662 |
|
|
if (stmt_ends_bb_p (stmt))
|
663 |
|
|
is_varying = false;
|
664 |
|
|
else
|
665 |
|
|
is_varying = surely_varying_stmt_p (stmt);
|
666 |
|
|
|
667 |
|
|
if (is_varying)
|
668 |
|
|
{
|
669 |
|
|
tree def;
|
670 |
|
|
ssa_op_iter iter;
|
671 |
|
|
|
672 |
|
|
/* If the statement will not produce a constant, mark
|
673 |
|
|
all its outputs VARYING. */
|
674 |
|
|
FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_ALL_DEFS)
|
675 |
|
|
set_value_varying (def);
|
676 |
|
|
}
|
677 |
|
|
prop_set_simulate_again (stmt, !is_varying);
|
678 |
|
|
}
|
679 |
|
|
}
|
680 |
|
|
|
681 |
|
|
/* Now process PHI nodes. We never clear the simulate_again flag on
|
682 |
|
|
phi nodes, since we do not know which edges are executable yet,
|
683 |
|
|
except for phi nodes for virtual operands when we do not do store ccp. */
|
684 |
|
|
FOR_EACH_BB (bb)
|
685 |
|
|
{
|
686 |
|
|
gimple_stmt_iterator i;
|
687 |
|
|
|
688 |
|
|
for (i = gsi_start_phis (bb); !gsi_end_p (i); gsi_next (&i))
|
689 |
|
|
{
|
690 |
|
|
gimple phi = gsi_stmt (i);
|
691 |
|
|
|
692 |
|
|
if (!is_gimple_reg (gimple_phi_result (phi)))
|
693 |
|
|
prop_set_simulate_again (phi, false);
|
694 |
|
|
else
|
695 |
|
|
prop_set_simulate_again (phi, true);
|
696 |
|
|
}
|
697 |
|
|
}
|
698 |
|
|
}
|
699 |
|
|
|
700 |
|
|
/* Debug count support. Reset the values of ssa names
|
701 |
|
|
VARYING when the total number ssa names analyzed is
|
702 |
|
|
beyond the debug count specified. */
|
703 |
|
|
|
704 |
|
|
static void
|
705 |
|
|
do_dbg_cnt (void)
|
706 |
|
|
{
|
707 |
|
|
unsigned i;
|
708 |
|
|
for (i = 0; i < num_ssa_names; i++)
|
709 |
|
|
{
|
710 |
|
|
if (!dbg_cnt (ccp))
|
711 |
|
|
{
|
712 |
|
|
const_val[i].lattice_val = VARYING;
|
713 |
|
|
const_val[i].value = NULL_TREE;
|
714 |
|
|
}
|
715 |
|
|
}
|
716 |
|
|
}
|
717 |
|
|
|
718 |
|
|
|
719 |
|
|
/* Do final substitution of propagated values, cleanup the flowgraph and
|
720 |
|
|
free allocated storage.
|
721 |
|
|
|
722 |
|
|
Return TRUE when something was optimized. */
|
723 |
|
|
|
724 |
|
|
static bool
|
725 |
|
|
ccp_finalize (void)
|
726 |
|
|
{
|
727 |
|
|
bool something_changed;
|
728 |
|
|
|
729 |
|
|
do_dbg_cnt ();
|
730 |
|
|
/* Perform substitutions based on the known constant values. */
|
731 |
|
|
something_changed = substitute_and_fold (const_val, ccp_fold_stmt, true);
|
732 |
|
|
|
733 |
|
|
free (const_val);
|
734 |
|
|
const_val = NULL;
|
735 |
|
|
return something_changed;;
|
736 |
|
|
}
|
737 |
|
|
|
738 |
|
|
|
739 |
|
|
/* Compute the meet operator between *VAL1 and *VAL2. Store the result
|
740 |
|
|
in VAL1.
|
741 |
|
|
|
742 |
|
|
any M UNDEFINED = any
|
743 |
|
|
any M VARYING = VARYING
|
744 |
|
|
Ci M Cj = Ci if (i == j)
|
745 |
|
|
Ci M Cj = VARYING if (i != j)
|
746 |
|
|
*/
|
747 |
|
|
|
748 |
|
|
static void
|
749 |
|
|
ccp_lattice_meet (prop_value_t *val1, prop_value_t *val2)
|
750 |
|
|
{
|
751 |
|
|
if (val1->lattice_val == UNDEFINED)
|
752 |
|
|
{
|
753 |
|
|
/* UNDEFINED M any = any */
|
754 |
|
|
*val1 = *val2;
|
755 |
|
|
}
|
756 |
|
|
else if (val2->lattice_val == UNDEFINED)
|
757 |
|
|
{
|
758 |
|
|
/* any M UNDEFINED = any
|
759 |
|
|
Nothing to do. VAL1 already contains the value we want. */
|
760 |
|
|
;
|
761 |
|
|
}
|
762 |
|
|
else if (val1->lattice_val == VARYING
|
763 |
|
|
|| val2->lattice_val == VARYING)
|
764 |
|
|
{
|
765 |
|
|
/* any M VARYING = VARYING. */
|
766 |
|
|
val1->lattice_val = VARYING;
|
767 |
|
|
val1->value = NULL_TREE;
|
768 |
|
|
}
|
769 |
|
|
else if (val1->lattice_val == CONSTANT
|
770 |
|
|
&& val2->lattice_val == CONSTANT
|
771 |
|
|
&& simple_cst_equal (val1->value, val2->value) == 1)
|
772 |
|
|
{
|
773 |
|
|
/* Ci M Cj = Ci if (i == j)
|
774 |
|
|
Ci M Cj = VARYING if (i != j)
|
775 |
|
|
|
776 |
|
|
If these two values come from memory stores, make sure that
|
777 |
|
|
they come from the same memory reference. */
|
778 |
|
|
val1->lattice_val = CONSTANT;
|
779 |
|
|
val1->value = val1->value;
|
780 |
|
|
}
|
781 |
|
|
else
|
782 |
|
|
{
|
783 |
|
|
/* Any other combination is VARYING. */
|
784 |
|
|
val1->lattice_val = VARYING;
|
785 |
|
|
val1->value = NULL_TREE;
|
786 |
|
|
}
|
787 |
|
|
}
|
788 |
|
|
|
789 |
|
|
|
790 |
|
|
/* Loop through the PHI_NODE's parameters for BLOCK and compare their
|
791 |
|
|
lattice values to determine PHI_NODE's lattice value. The value of a
|
792 |
|
|
PHI node is determined calling ccp_lattice_meet with all the arguments
|
793 |
|
|
of the PHI node that are incoming via executable edges. */
|
794 |
|
|
|
795 |
|
|
static enum ssa_prop_result
|
796 |
|
|
ccp_visit_phi_node (gimple phi)
|
797 |
|
|
{
|
798 |
|
|
unsigned i;
|
799 |
|
|
prop_value_t *old_val, new_val;
|
800 |
|
|
|
801 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
802 |
|
|
{
|
803 |
|
|
fprintf (dump_file, "\nVisiting PHI node: ");
|
804 |
|
|
print_gimple_stmt (dump_file, phi, 0, dump_flags);
|
805 |
|
|
}
|
806 |
|
|
|
807 |
|
|
old_val = get_value (gimple_phi_result (phi));
|
808 |
|
|
switch (old_val->lattice_val)
|
809 |
|
|
{
|
810 |
|
|
case VARYING:
|
811 |
|
|
return SSA_PROP_VARYING;
|
812 |
|
|
|
813 |
|
|
case CONSTANT:
|
814 |
|
|
new_val = *old_val;
|
815 |
|
|
break;
|
816 |
|
|
|
817 |
|
|
case UNDEFINED:
|
818 |
|
|
new_val.lattice_val = UNDEFINED;
|
819 |
|
|
new_val.value = NULL_TREE;
|
820 |
|
|
break;
|
821 |
|
|
|
822 |
|
|
default:
|
823 |
|
|
gcc_unreachable ();
|
824 |
|
|
}
|
825 |
|
|
|
826 |
|
|
for (i = 0; i < gimple_phi_num_args (phi); i++)
|
827 |
|
|
{
|
828 |
|
|
/* Compute the meet operator over all the PHI arguments flowing
|
829 |
|
|
through executable edges. */
|
830 |
|
|
edge e = gimple_phi_arg_edge (phi, i);
|
831 |
|
|
|
832 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
833 |
|
|
{
|
834 |
|
|
fprintf (dump_file,
|
835 |
|
|
"\n Argument #%d (%d -> %d %sexecutable)\n",
|
836 |
|
|
i, e->src->index, e->dest->index,
|
837 |
|
|
(e->flags & EDGE_EXECUTABLE) ? "" : "not ");
|
838 |
|
|
}
|
839 |
|
|
|
840 |
|
|
/* If the incoming edge is executable, Compute the meet operator for
|
841 |
|
|
the existing value of the PHI node and the current PHI argument. */
|
842 |
|
|
if (e->flags & EDGE_EXECUTABLE)
|
843 |
|
|
{
|
844 |
|
|
tree arg = gimple_phi_arg (phi, i)->def;
|
845 |
|
|
prop_value_t arg_val;
|
846 |
|
|
|
847 |
|
|
if (is_gimple_min_invariant (arg))
|
848 |
|
|
{
|
849 |
|
|
arg_val.lattice_val = CONSTANT;
|
850 |
|
|
arg_val.value = arg;
|
851 |
|
|
}
|
852 |
|
|
else
|
853 |
|
|
arg_val = *(get_value (arg));
|
854 |
|
|
|
855 |
|
|
ccp_lattice_meet (&new_val, &arg_val);
|
856 |
|
|
|
857 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
858 |
|
|
{
|
859 |
|
|
fprintf (dump_file, "\t");
|
860 |
|
|
print_generic_expr (dump_file, arg, dump_flags);
|
861 |
|
|
dump_lattice_value (dump_file, "\tValue: ", arg_val);
|
862 |
|
|
fprintf (dump_file, "\n");
|
863 |
|
|
}
|
864 |
|
|
|
865 |
|
|
if (new_val.lattice_val == VARYING)
|
866 |
|
|
break;
|
867 |
|
|
}
|
868 |
|
|
}
|
869 |
|
|
|
870 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
871 |
|
|
{
|
872 |
|
|
dump_lattice_value (dump_file, "\n PHI node value: ", new_val);
|
873 |
|
|
fprintf (dump_file, "\n\n");
|
874 |
|
|
}
|
875 |
|
|
|
876 |
|
|
/* Make the transition to the new value. */
|
877 |
|
|
if (set_lattice_value (gimple_phi_result (phi), new_val))
|
878 |
|
|
{
|
879 |
|
|
if (new_val.lattice_val == VARYING)
|
880 |
|
|
return SSA_PROP_VARYING;
|
881 |
|
|
else
|
882 |
|
|
return SSA_PROP_INTERESTING;
|
883 |
|
|
}
|
884 |
|
|
else
|
885 |
|
|
return SSA_PROP_NOT_INTERESTING;
|
886 |
|
|
}
|
887 |
|
|
|
888 |
|
|
/* Return true if we may propagate the address expression ADDR into the
|
889 |
|
|
dereference DEREF and cancel them. */
|
890 |
|
|
|
891 |
|
|
bool
|
892 |
|
|
may_propagate_address_into_dereference (tree addr, tree deref)
|
893 |
|
|
{
|
894 |
|
|
gcc_assert (INDIRECT_REF_P (deref)
|
895 |
|
|
&& TREE_CODE (addr) == ADDR_EXPR);
|
896 |
|
|
|
897 |
|
|
/* Don't propagate if ADDR's operand has incomplete type. */
|
898 |
|
|
if (!COMPLETE_TYPE_P (TREE_TYPE (TREE_OPERAND (addr, 0))))
|
899 |
|
|
return false;
|
900 |
|
|
|
901 |
|
|
/* If the address is invariant then we do not need to preserve restrict
|
902 |
|
|
qualifications. But we do need to preserve volatile qualifiers until
|
903 |
|
|
we can annotate the folded dereference itself properly. */
|
904 |
|
|
if (is_gimple_min_invariant (addr)
|
905 |
|
|
&& (!TREE_THIS_VOLATILE (deref)
|
906 |
|
|
|| TYPE_VOLATILE (TREE_TYPE (addr))))
|
907 |
|
|
return useless_type_conversion_p (TREE_TYPE (deref),
|
908 |
|
|
TREE_TYPE (TREE_OPERAND (addr, 0)));
|
909 |
|
|
|
910 |
|
|
/* Else both the address substitution and the folding must result in
|
911 |
|
|
a valid useless type conversion sequence. */
|
912 |
|
|
return (useless_type_conversion_p (TREE_TYPE (TREE_OPERAND (deref, 0)),
|
913 |
|
|
TREE_TYPE (addr))
|
914 |
|
|
&& useless_type_conversion_p (TREE_TYPE (deref),
|
915 |
|
|
TREE_TYPE (TREE_OPERAND (addr, 0))));
|
916 |
|
|
}
|
917 |
|
|
|
918 |
|
|
/* CCP specific front-end to the non-destructive constant folding
|
919 |
|
|
routines.
|
920 |
|
|
|
921 |
|
|
Attempt to simplify the RHS of STMT knowing that one or more
|
922 |
|
|
operands are constants.
|
923 |
|
|
|
924 |
|
|
If simplification is possible, return the simplified RHS,
|
925 |
|
|
otherwise return the original RHS or NULL_TREE. */
|
926 |
|
|
|
927 |
|
|
static tree
|
928 |
|
|
ccp_fold (gimple stmt)
|
929 |
|
|
{
|
930 |
|
|
location_t loc = gimple_location (stmt);
|
931 |
|
|
switch (gimple_code (stmt))
|
932 |
|
|
{
|
933 |
|
|
case GIMPLE_ASSIGN:
|
934 |
|
|
{
|
935 |
|
|
enum tree_code subcode = gimple_assign_rhs_code (stmt);
|
936 |
|
|
|
937 |
|
|
switch (get_gimple_rhs_class (subcode))
|
938 |
|
|
{
|
939 |
|
|
case GIMPLE_SINGLE_RHS:
|
940 |
|
|
{
|
941 |
|
|
tree rhs = gimple_assign_rhs1 (stmt);
|
942 |
|
|
enum tree_code_class kind = TREE_CODE_CLASS (subcode);
|
943 |
|
|
|
944 |
|
|
if (TREE_CODE (rhs) == SSA_NAME)
|
945 |
|
|
{
|
946 |
|
|
/* If the RHS is an SSA_NAME, return its known constant value,
|
947 |
|
|
if any. */
|
948 |
|
|
return get_value (rhs)->value;
|
949 |
|
|
}
|
950 |
|
|
/* Handle propagating invariant addresses into address operations.
|
951 |
|
|
The folding we do here matches that in tree-ssa-forwprop.c. */
|
952 |
|
|
else if (TREE_CODE (rhs) == ADDR_EXPR)
|
953 |
|
|
{
|
954 |
|
|
tree *base;
|
955 |
|
|
base = &TREE_OPERAND (rhs, 0);
|
956 |
|
|
while (handled_component_p (*base))
|
957 |
|
|
base = &TREE_OPERAND (*base, 0);
|
958 |
|
|
if (TREE_CODE (*base) == INDIRECT_REF
|
959 |
|
|
&& TREE_CODE (TREE_OPERAND (*base, 0)) == SSA_NAME)
|
960 |
|
|
{
|
961 |
|
|
prop_value_t *val = get_value (TREE_OPERAND (*base, 0));
|
962 |
|
|
if (val->lattice_val == CONSTANT
|
963 |
|
|
&& TREE_CODE (val->value) == ADDR_EXPR
|
964 |
|
|
&& may_propagate_address_into_dereference
|
965 |
|
|
(val->value, *base))
|
966 |
|
|
{
|
967 |
|
|
/* We need to return a new tree, not modify the IL
|
968 |
|
|
or share parts of it. So play some tricks to
|
969 |
|
|
avoid manually building it. */
|
970 |
|
|
tree ret, save = *base;
|
971 |
|
|
*base = TREE_OPERAND (val->value, 0);
|
972 |
|
|
ret = unshare_expr (rhs);
|
973 |
|
|
recompute_tree_invariant_for_addr_expr (ret);
|
974 |
|
|
*base = save;
|
975 |
|
|
return ret;
|
976 |
|
|
}
|
977 |
|
|
}
|
978 |
|
|
}
|
979 |
|
|
else if (TREE_CODE (rhs) == CONSTRUCTOR
|
980 |
|
|
&& TREE_CODE (TREE_TYPE (rhs)) == VECTOR_TYPE
|
981 |
|
|
&& (CONSTRUCTOR_NELTS (rhs)
|
982 |
|
|
== TYPE_VECTOR_SUBPARTS (TREE_TYPE (rhs))))
|
983 |
|
|
{
|
984 |
|
|
unsigned i;
|
985 |
|
|
tree val, list;
|
986 |
|
|
|
987 |
|
|
list = NULL_TREE;
|
988 |
|
|
FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (rhs), i, val)
|
989 |
|
|
{
|
990 |
|
|
if (TREE_CODE (val) == SSA_NAME
|
991 |
|
|
&& get_value (val)->lattice_val == CONSTANT)
|
992 |
|
|
val = get_value (val)->value;
|
993 |
|
|
if (TREE_CODE (val) == INTEGER_CST
|
994 |
|
|
|| TREE_CODE (val) == REAL_CST
|
995 |
|
|
|| TREE_CODE (val) == FIXED_CST)
|
996 |
|
|
list = tree_cons (NULL_TREE, val, list);
|
997 |
|
|
else
|
998 |
|
|
return NULL_TREE;
|
999 |
|
|
}
|
1000 |
|
|
|
1001 |
|
|
return build_vector (TREE_TYPE (rhs), nreverse (list));
|
1002 |
|
|
}
|
1003 |
|
|
|
1004 |
|
|
if (kind == tcc_reference)
|
1005 |
|
|
{
|
1006 |
|
|
if ((TREE_CODE (rhs) == VIEW_CONVERT_EXPR
|
1007 |
|
|
|| TREE_CODE (rhs) == REALPART_EXPR
|
1008 |
|
|
|| TREE_CODE (rhs) == IMAGPART_EXPR)
|
1009 |
|
|
&& TREE_CODE (TREE_OPERAND (rhs, 0)) == SSA_NAME)
|
1010 |
|
|
{
|
1011 |
|
|
prop_value_t *val = get_value (TREE_OPERAND (rhs, 0));
|
1012 |
|
|
if (val->lattice_val == CONSTANT)
|
1013 |
|
|
return fold_unary_loc (EXPR_LOCATION (rhs),
|
1014 |
|
|
TREE_CODE (rhs),
|
1015 |
|
|
TREE_TYPE (rhs), val->value);
|
1016 |
|
|
}
|
1017 |
|
|
else if (TREE_CODE (rhs) == INDIRECT_REF
|
1018 |
|
|
&& TREE_CODE (TREE_OPERAND (rhs, 0)) == SSA_NAME)
|
1019 |
|
|
{
|
1020 |
|
|
prop_value_t *val = get_value (TREE_OPERAND (rhs, 0));
|
1021 |
|
|
if (val->lattice_val == CONSTANT
|
1022 |
|
|
&& TREE_CODE (val->value) == ADDR_EXPR
|
1023 |
|
|
&& useless_type_conversion_p (TREE_TYPE (rhs),
|
1024 |
|
|
TREE_TYPE (TREE_TYPE (val->value))))
|
1025 |
|
|
rhs = TREE_OPERAND (val->value, 0);
|
1026 |
|
|
}
|
1027 |
|
|
return fold_const_aggregate_ref (rhs);
|
1028 |
|
|
}
|
1029 |
|
|
else if (kind == tcc_declaration)
|
1030 |
|
|
return get_symbol_constant_value (rhs);
|
1031 |
|
|
return rhs;
|
1032 |
|
|
}
|
1033 |
|
|
|
1034 |
|
|
case GIMPLE_UNARY_RHS:
|
1035 |
|
|
{
|
1036 |
|
|
/* Handle unary operators that can appear in GIMPLE form.
|
1037 |
|
|
Note that we know the single operand must be a constant,
|
1038 |
|
|
so this should almost always return a simplified RHS. */
|
1039 |
|
|
tree lhs = gimple_assign_lhs (stmt);
|
1040 |
|
|
tree op0 = gimple_assign_rhs1 (stmt);
|
1041 |
|
|
|
1042 |
|
|
/* Simplify the operand down to a constant. */
|
1043 |
|
|
if (TREE_CODE (op0) == SSA_NAME)
|
1044 |
|
|
{
|
1045 |
|
|
prop_value_t *val = get_value (op0);
|
1046 |
|
|
if (val->lattice_val == CONSTANT)
|
1047 |
|
|
op0 = get_value (op0)->value;
|
1048 |
|
|
}
|
1049 |
|
|
|
1050 |
|
|
/* Conversions are useless for CCP purposes if they are
|
1051 |
|
|
value-preserving. Thus the restrictions that
|
1052 |
|
|
useless_type_conversion_p places for pointer type conversions
|
1053 |
|
|
do not apply here. Substitution later will only substitute to
|
1054 |
|
|
allowed places. */
|
1055 |
|
|
if (CONVERT_EXPR_CODE_P (subcode)
|
1056 |
|
|
&& POINTER_TYPE_P (TREE_TYPE (lhs))
|
1057 |
|
|
&& POINTER_TYPE_P (TREE_TYPE (op0))
|
1058 |
|
|
/* Do not allow differences in volatile qualification
|
1059 |
|
|
as this might get us confused as to whether a
|
1060 |
|
|
propagation destination statement is volatile
|
1061 |
|
|
or not. See PR36988. */
|
1062 |
|
|
&& (TYPE_VOLATILE (TREE_TYPE (TREE_TYPE (lhs)))
|
1063 |
|
|
== TYPE_VOLATILE (TREE_TYPE (TREE_TYPE (op0)))))
|
1064 |
|
|
{
|
1065 |
|
|
tree tem;
|
1066 |
|
|
/* Still try to generate a constant of correct type. */
|
1067 |
|
|
if (!useless_type_conversion_p (TREE_TYPE (lhs),
|
1068 |
|
|
TREE_TYPE (op0))
|
1069 |
|
|
&& ((tem = maybe_fold_offset_to_address
|
1070 |
|
|
(loc,
|
1071 |
|
|
op0, integer_zero_node, TREE_TYPE (lhs)))
|
1072 |
|
|
!= NULL_TREE))
|
1073 |
|
|
return tem;
|
1074 |
|
|
return op0;
|
1075 |
|
|
}
|
1076 |
|
|
|
1077 |
|
|
return
|
1078 |
|
|
fold_unary_ignore_overflow_loc (loc, subcode,
|
1079 |
|
|
gimple_expr_type (stmt), op0);
|
1080 |
|
|
}
|
1081 |
|
|
|
1082 |
|
|
case GIMPLE_BINARY_RHS:
|
1083 |
|
|
{
|
1084 |
|
|
/* Handle binary operators that can appear in GIMPLE form. */
|
1085 |
|
|
tree op0 = gimple_assign_rhs1 (stmt);
|
1086 |
|
|
tree op1 = gimple_assign_rhs2 (stmt);
|
1087 |
|
|
|
1088 |
|
|
/* Simplify the operands down to constants when appropriate. */
|
1089 |
|
|
if (TREE_CODE (op0) == SSA_NAME)
|
1090 |
|
|
{
|
1091 |
|
|
prop_value_t *val = get_value (op0);
|
1092 |
|
|
if (val->lattice_val == CONSTANT)
|
1093 |
|
|
op0 = val->value;
|
1094 |
|
|
}
|
1095 |
|
|
|
1096 |
|
|
if (TREE_CODE (op1) == SSA_NAME)
|
1097 |
|
|
{
|
1098 |
|
|
prop_value_t *val = get_value (op1);
|
1099 |
|
|
if (val->lattice_val == CONSTANT)
|
1100 |
|
|
op1 = val->value;
|
1101 |
|
|
}
|
1102 |
|
|
|
1103 |
|
|
/* Fold &foo + CST into an invariant reference if possible. */
|
1104 |
|
|
if (gimple_assign_rhs_code (stmt) == POINTER_PLUS_EXPR
|
1105 |
|
|
&& TREE_CODE (op0) == ADDR_EXPR
|
1106 |
|
|
&& TREE_CODE (op1) == INTEGER_CST)
|
1107 |
|
|
{
|
1108 |
|
|
tree tem = maybe_fold_offset_to_address
|
1109 |
|
|
(loc, op0, op1, TREE_TYPE (op0));
|
1110 |
|
|
if (tem != NULL_TREE)
|
1111 |
|
|
return tem;
|
1112 |
|
|
}
|
1113 |
|
|
|
1114 |
|
|
return fold_binary_loc (loc, subcode,
|
1115 |
|
|
gimple_expr_type (stmt), op0, op1);
|
1116 |
|
|
}
|
1117 |
|
|
|
1118 |
|
|
default:
|
1119 |
|
|
gcc_unreachable ();
|
1120 |
|
|
}
|
1121 |
|
|
}
|
1122 |
|
|
break;
|
1123 |
|
|
|
1124 |
|
|
case GIMPLE_CALL:
|
1125 |
|
|
{
|
1126 |
|
|
tree fn = gimple_call_fn (stmt);
|
1127 |
|
|
prop_value_t *val;
|
1128 |
|
|
|
1129 |
|
|
if (TREE_CODE (fn) == SSA_NAME)
|
1130 |
|
|
{
|
1131 |
|
|
val = get_value (fn);
|
1132 |
|
|
if (val->lattice_val == CONSTANT)
|
1133 |
|
|
fn = val->value;
|
1134 |
|
|
}
|
1135 |
|
|
if (TREE_CODE (fn) == ADDR_EXPR
|
1136 |
|
|
&& TREE_CODE (TREE_OPERAND (fn, 0)) == FUNCTION_DECL
|
1137 |
|
|
&& DECL_BUILT_IN (TREE_OPERAND (fn, 0)))
|
1138 |
|
|
{
|
1139 |
|
|
tree *args = XALLOCAVEC (tree, gimple_call_num_args (stmt));
|
1140 |
|
|
tree call, retval;
|
1141 |
|
|
unsigned i;
|
1142 |
|
|
for (i = 0; i < gimple_call_num_args (stmt); ++i)
|
1143 |
|
|
{
|
1144 |
|
|
args[i] = gimple_call_arg (stmt, i);
|
1145 |
|
|
if (TREE_CODE (args[i]) == SSA_NAME)
|
1146 |
|
|
{
|
1147 |
|
|
val = get_value (args[i]);
|
1148 |
|
|
if (val->lattice_val == CONSTANT)
|
1149 |
|
|
args[i] = val->value;
|
1150 |
|
|
}
|
1151 |
|
|
}
|
1152 |
|
|
call = build_call_array_loc (loc,
|
1153 |
|
|
gimple_call_return_type (stmt),
|
1154 |
|
|
fn, gimple_call_num_args (stmt), args);
|
1155 |
|
|
retval = fold_call_expr (EXPR_LOCATION (call), call, false);
|
1156 |
|
|
if (retval)
|
1157 |
|
|
/* fold_call_expr wraps the result inside a NOP_EXPR. */
|
1158 |
|
|
STRIP_NOPS (retval);
|
1159 |
|
|
return retval;
|
1160 |
|
|
}
|
1161 |
|
|
return NULL_TREE;
|
1162 |
|
|
}
|
1163 |
|
|
|
1164 |
|
|
case GIMPLE_COND:
|
1165 |
|
|
{
|
1166 |
|
|
/* Handle comparison operators that can appear in GIMPLE form. */
|
1167 |
|
|
tree op0 = gimple_cond_lhs (stmt);
|
1168 |
|
|
tree op1 = gimple_cond_rhs (stmt);
|
1169 |
|
|
enum tree_code code = gimple_cond_code (stmt);
|
1170 |
|
|
|
1171 |
|
|
/* Simplify the operands down to constants when appropriate. */
|
1172 |
|
|
if (TREE_CODE (op0) == SSA_NAME)
|
1173 |
|
|
{
|
1174 |
|
|
prop_value_t *val = get_value (op0);
|
1175 |
|
|
if (val->lattice_val == CONSTANT)
|
1176 |
|
|
op0 = val->value;
|
1177 |
|
|
}
|
1178 |
|
|
|
1179 |
|
|
if (TREE_CODE (op1) == SSA_NAME)
|
1180 |
|
|
{
|
1181 |
|
|
prop_value_t *val = get_value (op1);
|
1182 |
|
|
if (val->lattice_val == CONSTANT)
|
1183 |
|
|
op1 = val->value;
|
1184 |
|
|
}
|
1185 |
|
|
|
1186 |
|
|
return fold_binary_loc (loc, code, boolean_type_node, op0, op1);
|
1187 |
|
|
}
|
1188 |
|
|
|
1189 |
|
|
case GIMPLE_SWITCH:
|
1190 |
|
|
{
|
1191 |
|
|
tree rhs = gimple_switch_index (stmt);
|
1192 |
|
|
|
1193 |
|
|
if (TREE_CODE (rhs) == SSA_NAME)
|
1194 |
|
|
{
|
1195 |
|
|
/* If the RHS is an SSA_NAME, return its known constant value,
|
1196 |
|
|
if any. */
|
1197 |
|
|
return get_value (rhs)->value;
|
1198 |
|
|
}
|
1199 |
|
|
|
1200 |
|
|
return rhs;
|
1201 |
|
|
}
|
1202 |
|
|
|
1203 |
|
|
default:
|
1204 |
|
|
gcc_unreachable ();
|
1205 |
|
|
}
|
1206 |
|
|
}
|
1207 |
|
|
|
1208 |
|
|
|
1209 |
|
|
/* Return the tree representing the element referenced by T if T is an
|
1210 |
|
|
ARRAY_REF or COMPONENT_REF into constant aggregates. Return
|
1211 |
|
|
NULL_TREE otherwise. */
|
1212 |
|
|
|
1213 |
|
|
tree
|
1214 |
|
|
fold_const_aggregate_ref (tree t)
|
1215 |
|
|
{
|
1216 |
|
|
prop_value_t *value;
|
1217 |
|
|
tree base, ctor, idx, field;
|
1218 |
|
|
unsigned HOST_WIDE_INT cnt;
|
1219 |
|
|
tree cfield, cval;
|
1220 |
|
|
|
1221 |
|
|
if (TREE_CODE_CLASS (TREE_CODE (t)) == tcc_declaration)
|
1222 |
|
|
return get_symbol_constant_value (t);
|
1223 |
|
|
|
1224 |
|
|
switch (TREE_CODE (t))
|
1225 |
|
|
{
|
1226 |
|
|
case ARRAY_REF:
|
1227 |
|
|
/* Get a CONSTRUCTOR. If BASE is a VAR_DECL, get its
|
1228 |
|
|
DECL_INITIAL. If BASE is a nested reference into another
|
1229 |
|
|
ARRAY_REF or COMPONENT_REF, make a recursive call to resolve
|
1230 |
|
|
the inner reference. */
|
1231 |
|
|
base = TREE_OPERAND (t, 0);
|
1232 |
|
|
switch (TREE_CODE (base))
|
1233 |
|
|
{
|
1234 |
|
|
case VAR_DECL:
|
1235 |
|
|
if (!TREE_READONLY (base)
|
1236 |
|
|
|| TREE_CODE (TREE_TYPE (base)) != ARRAY_TYPE
|
1237 |
|
|
|| !targetm.binds_local_p (base))
|
1238 |
|
|
return NULL_TREE;
|
1239 |
|
|
|
1240 |
|
|
ctor = DECL_INITIAL (base);
|
1241 |
|
|
break;
|
1242 |
|
|
|
1243 |
|
|
case ARRAY_REF:
|
1244 |
|
|
case COMPONENT_REF:
|
1245 |
|
|
ctor = fold_const_aggregate_ref (base);
|
1246 |
|
|
break;
|
1247 |
|
|
|
1248 |
|
|
case STRING_CST:
|
1249 |
|
|
case CONSTRUCTOR:
|
1250 |
|
|
ctor = base;
|
1251 |
|
|
break;
|
1252 |
|
|
|
1253 |
|
|
default:
|
1254 |
|
|
return NULL_TREE;
|
1255 |
|
|
}
|
1256 |
|
|
|
1257 |
|
|
if (ctor == NULL_TREE
|
1258 |
|
|
|| (TREE_CODE (ctor) != CONSTRUCTOR
|
1259 |
|
|
&& TREE_CODE (ctor) != STRING_CST)
|
1260 |
|
|
|| !TREE_STATIC (ctor))
|
1261 |
|
|
return NULL_TREE;
|
1262 |
|
|
|
1263 |
|
|
/* Get the index. If we have an SSA_NAME, try to resolve it
|
1264 |
|
|
with the current lattice value for the SSA_NAME. */
|
1265 |
|
|
idx = TREE_OPERAND (t, 1);
|
1266 |
|
|
switch (TREE_CODE (idx))
|
1267 |
|
|
{
|
1268 |
|
|
case SSA_NAME:
|
1269 |
|
|
if ((value = get_value (idx))
|
1270 |
|
|
&& value->lattice_val == CONSTANT
|
1271 |
|
|
&& TREE_CODE (value->value) == INTEGER_CST)
|
1272 |
|
|
idx = value->value;
|
1273 |
|
|
else
|
1274 |
|
|
return NULL_TREE;
|
1275 |
|
|
break;
|
1276 |
|
|
|
1277 |
|
|
case INTEGER_CST:
|
1278 |
|
|
break;
|
1279 |
|
|
|
1280 |
|
|
default:
|
1281 |
|
|
return NULL_TREE;
|
1282 |
|
|
}
|
1283 |
|
|
|
1284 |
|
|
/* Fold read from constant string. */
|
1285 |
|
|
if (TREE_CODE (ctor) == STRING_CST)
|
1286 |
|
|
{
|
1287 |
|
|
if ((TYPE_MODE (TREE_TYPE (t))
|
1288 |
|
|
== TYPE_MODE (TREE_TYPE (TREE_TYPE (ctor))))
|
1289 |
|
|
&& (GET_MODE_CLASS (TYPE_MODE (TREE_TYPE (TREE_TYPE (ctor))))
|
1290 |
|
|
== MODE_INT)
|
1291 |
|
|
&& GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (TREE_TYPE (ctor)))) == 1
|
1292 |
|
|
&& compare_tree_int (idx, TREE_STRING_LENGTH (ctor)) < 0)
|
1293 |
|
|
return build_int_cst_type (TREE_TYPE (t),
|
1294 |
|
|
(TREE_STRING_POINTER (ctor)
|
1295 |
|
|
[TREE_INT_CST_LOW (idx)]));
|
1296 |
|
|
return NULL_TREE;
|
1297 |
|
|
}
|
1298 |
|
|
|
1299 |
|
|
/* Whoo-hoo! I'll fold ya baby. Yeah! */
|
1300 |
|
|
FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor), cnt, cfield, cval)
|
1301 |
|
|
if (tree_int_cst_equal (cfield, idx))
|
1302 |
|
|
{
|
1303 |
|
|
STRIP_NOPS (cval);
|
1304 |
|
|
if (TREE_CODE (cval) == ADDR_EXPR)
|
1305 |
|
|
{
|
1306 |
|
|
tree base = get_base_address (TREE_OPERAND (cval, 0));
|
1307 |
|
|
if (base && TREE_CODE (base) == VAR_DECL)
|
1308 |
|
|
add_referenced_var (base);
|
1309 |
|
|
}
|
1310 |
|
|
return cval;
|
1311 |
|
|
}
|
1312 |
|
|
break;
|
1313 |
|
|
|
1314 |
|
|
case COMPONENT_REF:
|
1315 |
|
|
/* Get a CONSTRUCTOR. If BASE is a VAR_DECL, get its
|
1316 |
|
|
DECL_INITIAL. If BASE is a nested reference into another
|
1317 |
|
|
ARRAY_REF or COMPONENT_REF, make a recursive call to resolve
|
1318 |
|
|
the inner reference. */
|
1319 |
|
|
base = TREE_OPERAND (t, 0);
|
1320 |
|
|
switch (TREE_CODE (base))
|
1321 |
|
|
{
|
1322 |
|
|
case VAR_DECL:
|
1323 |
|
|
if (!TREE_READONLY (base)
|
1324 |
|
|
|| TREE_CODE (TREE_TYPE (base)) != RECORD_TYPE
|
1325 |
|
|
|| !targetm.binds_local_p (base))
|
1326 |
|
|
return NULL_TREE;
|
1327 |
|
|
|
1328 |
|
|
ctor = DECL_INITIAL (base);
|
1329 |
|
|
break;
|
1330 |
|
|
|
1331 |
|
|
case ARRAY_REF:
|
1332 |
|
|
case COMPONENT_REF:
|
1333 |
|
|
ctor = fold_const_aggregate_ref (base);
|
1334 |
|
|
break;
|
1335 |
|
|
|
1336 |
|
|
default:
|
1337 |
|
|
return NULL_TREE;
|
1338 |
|
|
}
|
1339 |
|
|
|
1340 |
|
|
if (ctor == NULL_TREE
|
1341 |
|
|
|| TREE_CODE (ctor) != CONSTRUCTOR
|
1342 |
|
|
|| !TREE_STATIC (ctor))
|
1343 |
|
|
return NULL_TREE;
|
1344 |
|
|
|
1345 |
|
|
field = TREE_OPERAND (t, 1);
|
1346 |
|
|
|
1347 |
|
|
FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor), cnt, cfield, cval)
|
1348 |
|
|
if (cfield == field
|
1349 |
|
|
/* FIXME: Handle bit-fields. */
|
1350 |
|
|
&& ! DECL_BIT_FIELD (cfield))
|
1351 |
|
|
{
|
1352 |
|
|
STRIP_NOPS (cval);
|
1353 |
|
|
if (TREE_CODE (cval) == ADDR_EXPR)
|
1354 |
|
|
{
|
1355 |
|
|
tree base = get_base_address (TREE_OPERAND (cval, 0));
|
1356 |
|
|
if (base && TREE_CODE (base) == VAR_DECL)
|
1357 |
|
|
add_referenced_var (base);
|
1358 |
|
|
}
|
1359 |
|
|
return cval;
|
1360 |
|
|
}
|
1361 |
|
|
break;
|
1362 |
|
|
|
1363 |
|
|
case REALPART_EXPR:
|
1364 |
|
|
case IMAGPART_EXPR:
|
1365 |
|
|
{
|
1366 |
|
|
tree c = fold_const_aggregate_ref (TREE_OPERAND (t, 0));
|
1367 |
|
|
if (c && TREE_CODE (c) == COMPLEX_CST)
|
1368 |
|
|
return fold_build1_loc (EXPR_LOCATION (t),
|
1369 |
|
|
TREE_CODE (t), TREE_TYPE (t), c);
|
1370 |
|
|
break;
|
1371 |
|
|
}
|
1372 |
|
|
|
1373 |
|
|
case INDIRECT_REF:
|
1374 |
|
|
{
|
1375 |
|
|
tree base = TREE_OPERAND (t, 0);
|
1376 |
|
|
if (TREE_CODE (base) == SSA_NAME
|
1377 |
|
|
&& (value = get_value (base))
|
1378 |
|
|
&& value->lattice_val == CONSTANT
|
1379 |
|
|
&& TREE_CODE (value->value) == ADDR_EXPR
|
1380 |
|
|
&& useless_type_conversion_p (TREE_TYPE (t),
|
1381 |
|
|
TREE_TYPE (TREE_TYPE (value->value))))
|
1382 |
|
|
return fold_const_aggregate_ref (TREE_OPERAND (value->value, 0));
|
1383 |
|
|
break;
|
1384 |
|
|
}
|
1385 |
|
|
|
1386 |
|
|
default:
|
1387 |
|
|
break;
|
1388 |
|
|
}
|
1389 |
|
|
|
1390 |
|
|
return NULL_TREE;
|
1391 |
|
|
}
|
1392 |
|
|
|
1393 |
|
|
/* Evaluate statement STMT.
|
1394 |
|
|
Valid only for assignments, calls, conditionals, and switches. */
|
1395 |
|
|
|
1396 |
|
|
static prop_value_t
|
1397 |
|
|
evaluate_stmt (gimple stmt)
|
1398 |
|
|
{
|
1399 |
|
|
prop_value_t val;
|
1400 |
|
|
tree simplified = NULL_TREE;
|
1401 |
|
|
ccp_lattice_t likelyvalue = likely_value (stmt);
|
1402 |
|
|
bool is_constant;
|
1403 |
|
|
|
1404 |
|
|
fold_defer_overflow_warnings ();
|
1405 |
|
|
|
1406 |
|
|
/* If the statement is likely to have a CONSTANT result, then try
|
1407 |
|
|
to fold the statement to determine the constant value. */
|
1408 |
|
|
/* FIXME. This is the only place that we call ccp_fold.
|
1409 |
|
|
Since likely_value never returns CONSTANT for calls, we will
|
1410 |
|
|
not attempt to fold them, including builtins that may profit. */
|
1411 |
|
|
if (likelyvalue == CONSTANT)
|
1412 |
|
|
simplified = ccp_fold (stmt);
|
1413 |
|
|
/* If the statement is likely to have a VARYING result, then do not
|
1414 |
|
|
bother folding the statement. */
|
1415 |
|
|
else if (likelyvalue == VARYING)
|
1416 |
|
|
{
|
1417 |
|
|
enum gimple_code code = gimple_code (stmt);
|
1418 |
|
|
if (code == GIMPLE_ASSIGN)
|
1419 |
|
|
{
|
1420 |
|
|
enum tree_code subcode = gimple_assign_rhs_code (stmt);
|
1421 |
|
|
|
1422 |
|
|
/* Other cases cannot satisfy is_gimple_min_invariant
|
1423 |
|
|
without folding. */
|
1424 |
|
|
if (get_gimple_rhs_class (subcode) == GIMPLE_SINGLE_RHS)
|
1425 |
|
|
simplified = gimple_assign_rhs1 (stmt);
|
1426 |
|
|
}
|
1427 |
|
|
else if (code == GIMPLE_SWITCH)
|
1428 |
|
|
simplified = gimple_switch_index (stmt);
|
1429 |
|
|
else
|
1430 |
|
|
/* These cannot satisfy is_gimple_min_invariant without folding. */
|
1431 |
|
|
gcc_assert (code == GIMPLE_CALL || code == GIMPLE_COND);
|
1432 |
|
|
}
|
1433 |
|
|
|
1434 |
|
|
is_constant = simplified && is_gimple_min_invariant (simplified);
|
1435 |
|
|
|
1436 |
|
|
fold_undefer_overflow_warnings (is_constant, stmt, 0);
|
1437 |
|
|
|
1438 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
1439 |
|
|
{
|
1440 |
|
|
fprintf (dump_file, "which is likely ");
|
1441 |
|
|
switch (likelyvalue)
|
1442 |
|
|
{
|
1443 |
|
|
case CONSTANT:
|
1444 |
|
|
fprintf (dump_file, "CONSTANT");
|
1445 |
|
|
break;
|
1446 |
|
|
case UNDEFINED:
|
1447 |
|
|
fprintf (dump_file, "UNDEFINED");
|
1448 |
|
|
break;
|
1449 |
|
|
case VARYING:
|
1450 |
|
|
fprintf (dump_file, "VARYING");
|
1451 |
|
|
break;
|
1452 |
|
|
default:;
|
1453 |
|
|
}
|
1454 |
|
|
fprintf (dump_file, "\n");
|
1455 |
|
|
}
|
1456 |
|
|
|
1457 |
|
|
if (is_constant)
|
1458 |
|
|
{
|
1459 |
|
|
/* The statement produced a constant value. */
|
1460 |
|
|
val.lattice_val = CONSTANT;
|
1461 |
|
|
val.value = simplified;
|
1462 |
|
|
}
|
1463 |
|
|
else
|
1464 |
|
|
{
|
1465 |
|
|
/* The statement produced a nonconstant value. If the statement
|
1466 |
|
|
had UNDEFINED operands, then the result of the statement
|
1467 |
|
|
should be UNDEFINED. Otherwise, the statement is VARYING. */
|
1468 |
|
|
if (likelyvalue == UNDEFINED)
|
1469 |
|
|
val.lattice_val = likelyvalue;
|
1470 |
|
|
else
|
1471 |
|
|
val.lattice_val = VARYING;
|
1472 |
|
|
|
1473 |
|
|
val.value = NULL_TREE;
|
1474 |
|
|
}
|
1475 |
|
|
|
1476 |
|
|
return val;
|
1477 |
|
|
}
|
1478 |
|
|
|
1479 |
|
|
/* Fold the stmt at *GSI with CCP specific information that propagating
|
1480 |
|
|
and regular folding does not catch. */
|
1481 |
|
|
|
1482 |
|
|
static bool
|
1483 |
|
|
ccp_fold_stmt (gimple_stmt_iterator *gsi)
|
1484 |
|
|
{
|
1485 |
|
|
gimple stmt = gsi_stmt (*gsi);
|
1486 |
|
|
|
1487 |
|
|
switch (gimple_code (stmt))
|
1488 |
|
|
{
|
1489 |
|
|
case GIMPLE_COND:
|
1490 |
|
|
{
|
1491 |
|
|
prop_value_t val;
|
1492 |
|
|
/* Statement evaluation will handle type mismatches in constants
|
1493 |
|
|
more gracefully than the final propagation. This allows us to
|
1494 |
|
|
fold more conditionals here. */
|
1495 |
|
|
val = evaluate_stmt (stmt);
|
1496 |
|
|
if (val.lattice_val != CONSTANT
|
1497 |
|
|
|| TREE_CODE (val.value) != INTEGER_CST)
|
1498 |
|
|
return false;
|
1499 |
|
|
|
1500 |
|
|
if (integer_zerop (val.value))
|
1501 |
|
|
gimple_cond_make_false (stmt);
|
1502 |
|
|
else
|
1503 |
|
|
gimple_cond_make_true (stmt);
|
1504 |
|
|
|
1505 |
|
|
return true;
|
1506 |
|
|
}
|
1507 |
|
|
|
1508 |
|
|
case GIMPLE_CALL:
|
1509 |
|
|
{
|
1510 |
|
|
tree lhs = gimple_call_lhs (stmt);
|
1511 |
|
|
prop_value_t *val;
|
1512 |
|
|
tree argt;
|
1513 |
|
|
bool changed = false;
|
1514 |
|
|
unsigned i;
|
1515 |
|
|
|
1516 |
|
|
/* If the call was folded into a constant make sure it goes
|
1517 |
|
|
away even if we cannot propagate into all uses because of
|
1518 |
|
|
type issues. */
|
1519 |
|
|
if (lhs
|
1520 |
|
|
&& TREE_CODE (lhs) == SSA_NAME
|
1521 |
|
|
&& (val = get_value (lhs))
|
1522 |
|
|
&& val->lattice_val == CONSTANT)
|
1523 |
|
|
{
|
1524 |
|
|
tree new_rhs = unshare_expr (val->value);
|
1525 |
|
|
bool res;
|
1526 |
|
|
if (!useless_type_conversion_p (TREE_TYPE (lhs),
|
1527 |
|
|
TREE_TYPE (new_rhs)))
|
1528 |
|
|
new_rhs = fold_convert (TREE_TYPE (lhs), new_rhs);
|
1529 |
|
|
res = update_call_from_tree (gsi, new_rhs);
|
1530 |
|
|
gcc_assert (res);
|
1531 |
|
|
return true;
|
1532 |
|
|
}
|
1533 |
|
|
|
1534 |
|
|
/* Propagate into the call arguments. Compared to replace_uses_in
|
1535 |
|
|
this can use the argument slot types for type verification
|
1536 |
|
|
instead of the current argument type. We also can safely
|
1537 |
|
|
drop qualifiers here as we are dealing with constants anyway. */
|
1538 |
|
|
argt = TYPE_ARG_TYPES (TREE_TYPE (TREE_TYPE (gimple_call_fn (stmt))));
|
1539 |
|
|
for (i = 0; i < gimple_call_num_args (stmt) && argt;
|
1540 |
|
|
++i, argt = TREE_CHAIN (argt))
|
1541 |
|
|
{
|
1542 |
|
|
tree arg = gimple_call_arg (stmt, i);
|
1543 |
|
|
if (TREE_CODE (arg) == SSA_NAME
|
1544 |
|
|
&& (val = get_value (arg))
|
1545 |
|
|
&& val->lattice_val == CONSTANT
|
1546 |
|
|
&& useless_type_conversion_p
|
1547 |
|
|
(TYPE_MAIN_VARIANT (TREE_VALUE (argt)),
|
1548 |
|
|
TYPE_MAIN_VARIANT (TREE_TYPE (val->value))))
|
1549 |
|
|
{
|
1550 |
|
|
gimple_call_set_arg (stmt, i, unshare_expr (val->value));
|
1551 |
|
|
changed = true;
|
1552 |
|
|
}
|
1553 |
|
|
}
|
1554 |
|
|
|
1555 |
|
|
return changed;
|
1556 |
|
|
}
|
1557 |
|
|
|
1558 |
|
|
case GIMPLE_ASSIGN:
|
1559 |
|
|
{
|
1560 |
|
|
tree lhs = gimple_assign_lhs (stmt);
|
1561 |
|
|
prop_value_t *val;
|
1562 |
|
|
|
1563 |
|
|
/* If we have a load that turned out to be constant replace it
|
1564 |
|
|
as we cannot propagate into all uses in all cases. */
|
1565 |
|
|
if (gimple_assign_single_p (stmt)
|
1566 |
|
|
&& TREE_CODE (lhs) == SSA_NAME
|
1567 |
|
|
&& (val = get_value (lhs))
|
1568 |
|
|
&& val->lattice_val == CONSTANT)
|
1569 |
|
|
{
|
1570 |
|
|
tree rhs = unshare_expr (val->value);
|
1571 |
|
|
if (!useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (rhs)))
|
1572 |
|
|
rhs = fold_convert (TREE_TYPE (lhs), rhs);
|
1573 |
|
|
gimple_assign_set_rhs_from_tree (gsi, rhs);
|
1574 |
|
|
return true;
|
1575 |
|
|
}
|
1576 |
|
|
|
1577 |
|
|
return false;
|
1578 |
|
|
}
|
1579 |
|
|
|
1580 |
|
|
default:
|
1581 |
|
|
return false;
|
1582 |
|
|
}
|
1583 |
|
|
}
|
1584 |
|
|
|
1585 |
|
|
/* Visit the assignment statement STMT. Set the value of its LHS to the
|
1586 |
|
|
value computed by the RHS and store LHS in *OUTPUT_P. If STMT
|
1587 |
|
|
creates virtual definitions, set the value of each new name to that
|
1588 |
|
|
of the RHS (if we can derive a constant out of the RHS).
|
1589 |
|
|
Value-returning call statements also perform an assignment, and
|
1590 |
|
|
are handled here. */
|
1591 |
|
|
|
1592 |
|
|
static enum ssa_prop_result
|
1593 |
|
|
visit_assignment (gimple stmt, tree *output_p)
|
1594 |
|
|
{
|
1595 |
|
|
prop_value_t val;
|
1596 |
|
|
enum ssa_prop_result retval;
|
1597 |
|
|
|
1598 |
|
|
tree lhs = gimple_get_lhs (stmt);
|
1599 |
|
|
|
1600 |
|
|
gcc_assert (gimple_code (stmt) != GIMPLE_CALL
|
1601 |
|
|
|| gimple_call_lhs (stmt) != NULL_TREE);
|
1602 |
|
|
|
1603 |
|
|
if (gimple_assign_copy_p (stmt))
|
1604 |
|
|
{
|
1605 |
|
|
tree rhs = gimple_assign_rhs1 (stmt);
|
1606 |
|
|
|
1607 |
|
|
if (TREE_CODE (rhs) == SSA_NAME)
|
1608 |
|
|
{
|
1609 |
|
|
/* For a simple copy operation, we copy the lattice values. */
|
1610 |
|
|
prop_value_t *nval = get_value (rhs);
|
1611 |
|
|
val = *nval;
|
1612 |
|
|
}
|
1613 |
|
|
else
|
1614 |
|
|
val = evaluate_stmt (stmt);
|
1615 |
|
|
}
|
1616 |
|
|
else
|
1617 |
|
|
/* Evaluate the statement, which could be
|
1618 |
|
|
either a GIMPLE_ASSIGN or a GIMPLE_CALL. */
|
1619 |
|
|
val = evaluate_stmt (stmt);
|
1620 |
|
|
|
1621 |
|
|
retval = SSA_PROP_NOT_INTERESTING;
|
1622 |
|
|
|
1623 |
|
|
/* Set the lattice value of the statement's output. */
|
1624 |
|
|
if (TREE_CODE (lhs) == SSA_NAME)
|
1625 |
|
|
{
|
1626 |
|
|
/* If STMT is an assignment to an SSA_NAME, we only have one
|
1627 |
|
|
value to set. */
|
1628 |
|
|
if (set_lattice_value (lhs, val))
|
1629 |
|
|
{
|
1630 |
|
|
*output_p = lhs;
|
1631 |
|
|
if (val.lattice_val == VARYING)
|
1632 |
|
|
retval = SSA_PROP_VARYING;
|
1633 |
|
|
else
|
1634 |
|
|
retval = SSA_PROP_INTERESTING;
|
1635 |
|
|
}
|
1636 |
|
|
}
|
1637 |
|
|
|
1638 |
|
|
return retval;
|
1639 |
|
|
}
|
1640 |
|
|
|
1641 |
|
|
|
1642 |
|
|
/* Visit the conditional statement STMT. Return SSA_PROP_INTERESTING
|
1643 |
|
|
if it can determine which edge will be taken. Otherwise, return
|
1644 |
|
|
SSA_PROP_VARYING. */
|
1645 |
|
|
|
1646 |
|
|
static enum ssa_prop_result
|
1647 |
|
|
visit_cond_stmt (gimple stmt, edge *taken_edge_p)
|
1648 |
|
|
{
|
1649 |
|
|
prop_value_t val;
|
1650 |
|
|
basic_block block;
|
1651 |
|
|
|
1652 |
|
|
block = gimple_bb (stmt);
|
1653 |
|
|
val = evaluate_stmt (stmt);
|
1654 |
|
|
|
1655 |
|
|
/* Find which edge out of the conditional block will be taken and add it
|
1656 |
|
|
to the worklist. If no single edge can be determined statically,
|
1657 |
|
|
return SSA_PROP_VARYING to feed all the outgoing edges to the
|
1658 |
|
|
propagation engine. */
|
1659 |
|
|
*taken_edge_p = val.value ? find_taken_edge (block, val.value) : 0;
|
1660 |
|
|
if (*taken_edge_p)
|
1661 |
|
|
return SSA_PROP_INTERESTING;
|
1662 |
|
|
else
|
1663 |
|
|
return SSA_PROP_VARYING;
|
1664 |
|
|
}
|
1665 |
|
|
|
1666 |
|
|
|
1667 |
|
|
/* Evaluate statement STMT. If the statement produces an output value and
|
1668 |
|
|
its evaluation changes the lattice value of its output, return
|
1669 |
|
|
SSA_PROP_INTERESTING and set *OUTPUT_P to the SSA_NAME holding the
|
1670 |
|
|
output value.
|
1671 |
|
|
|
1672 |
|
|
If STMT is a conditional branch and we can determine its truth
|
1673 |
|
|
value, set *TAKEN_EDGE_P accordingly. If STMT produces a varying
|
1674 |
|
|
value, return SSA_PROP_VARYING. */
|
1675 |
|
|
|
1676 |
|
|
static enum ssa_prop_result
|
1677 |
|
|
ccp_visit_stmt (gimple stmt, edge *taken_edge_p, tree *output_p)
|
1678 |
|
|
{
|
1679 |
|
|
tree def;
|
1680 |
|
|
ssa_op_iter iter;
|
1681 |
|
|
|
1682 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
1683 |
|
|
{
|
1684 |
|
|
fprintf (dump_file, "\nVisiting statement:\n");
|
1685 |
|
|
print_gimple_stmt (dump_file, stmt, 0, dump_flags);
|
1686 |
|
|
}
|
1687 |
|
|
|
1688 |
|
|
switch (gimple_code (stmt))
|
1689 |
|
|
{
|
1690 |
|
|
case GIMPLE_ASSIGN:
|
1691 |
|
|
/* If the statement is an assignment that produces a single
|
1692 |
|
|
output value, evaluate its RHS to see if the lattice value of
|
1693 |
|
|
its output has changed. */
|
1694 |
|
|
return visit_assignment (stmt, output_p);
|
1695 |
|
|
|
1696 |
|
|
case GIMPLE_CALL:
|
1697 |
|
|
/* A value-returning call also performs an assignment. */
|
1698 |
|
|
if (gimple_call_lhs (stmt) != NULL_TREE)
|
1699 |
|
|
return visit_assignment (stmt, output_p);
|
1700 |
|
|
break;
|
1701 |
|
|
|
1702 |
|
|
case GIMPLE_COND:
|
1703 |
|
|
case GIMPLE_SWITCH:
|
1704 |
|
|
/* If STMT is a conditional branch, see if we can determine
|
1705 |
|
|
which branch will be taken. */
|
1706 |
|
|
/* FIXME. It appears that we should be able to optimize
|
1707 |
|
|
computed GOTOs here as well. */
|
1708 |
|
|
return visit_cond_stmt (stmt, taken_edge_p);
|
1709 |
|
|
|
1710 |
|
|
default:
|
1711 |
|
|
break;
|
1712 |
|
|
}
|
1713 |
|
|
|
1714 |
|
|
/* Any other kind of statement is not interesting for constant
|
1715 |
|
|
propagation and, therefore, not worth simulating. */
|
1716 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
1717 |
|
|
fprintf (dump_file, "No interesting values produced. Marked VARYING.\n");
|
1718 |
|
|
|
1719 |
|
|
/* Definitions made by statements other than assignments to
|
1720 |
|
|
SSA_NAMEs represent unknown modifications to their outputs.
|
1721 |
|
|
Mark them VARYING. */
|
1722 |
|
|
FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_ALL_DEFS)
|
1723 |
|
|
{
|
1724 |
|
|
prop_value_t v = { VARYING, NULL_TREE };
|
1725 |
|
|
set_lattice_value (def, v);
|
1726 |
|
|
}
|
1727 |
|
|
|
1728 |
|
|
return SSA_PROP_VARYING;
|
1729 |
|
|
}
|
1730 |
|
|
|
1731 |
|
|
|
1732 |
|
|
/* Main entry point for SSA Conditional Constant Propagation. */
|
1733 |
|
|
|
1734 |
|
|
static unsigned int
|
1735 |
|
|
do_ssa_ccp (void)
|
1736 |
|
|
{
|
1737 |
|
|
ccp_initialize ();
|
1738 |
|
|
ssa_propagate (ccp_visit_stmt, ccp_visit_phi_node);
|
1739 |
|
|
if (ccp_finalize ())
|
1740 |
|
|
return (TODO_cleanup_cfg | TODO_update_ssa | TODO_remove_unused_locals);
|
1741 |
|
|
else
|
1742 |
|
|
return 0;
|
1743 |
|
|
}
|
1744 |
|
|
|
1745 |
|
|
|
1746 |
|
|
static bool
|
1747 |
|
|
gate_ccp (void)
|
1748 |
|
|
{
|
1749 |
|
|
return flag_tree_ccp != 0;
|
1750 |
|
|
}
|
1751 |
|
|
|
1752 |
|
|
|
1753 |
|
|
struct gimple_opt_pass pass_ccp =
|
1754 |
|
|
{
|
1755 |
|
|
{
|
1756 |
|
|
GIMPLE_PASS,
|
1757 |
|
|
"ccp", /* name */
|
1758 |
|
|
gate_ccp, /* gate */
|
1759 |
|
|
do_ssa_ccp, /* execute */
|
1760 |
|
|
NULL, /* sub */
|
1761 |
|
|
NULL, /* next */
|
1762 |
|
|
0, /* static_pass_number */
|
1763 |
|
|
TV_TREE_CCP, /* tv_id */
|
1764 |
|
|
PROP_cfg | PROP_ssa, /* properties_required */
|
1765 |
|
|
0, /* properties_provided */
|
1766 |
|
|
0, /* properties_destroyed */
|
1767 |
|
|
0, /* todo_flags_start */
|
1768 |
|
|
TODO_dump_func | TODO_verify_ssa
|
1769 |
|
|
| TODO_verify_stmts | TODO_ggc_collect/* todo_flags_finish */
|
1770 |
|
|
}
|
1771 |
|
|
};
|
1772 |
|
|
|
1773 |
|
|
|
1774 |
|
|
/* A subroutine of fold_stmt. Attempts to fold *(A+O) to A[X].
|
1775 |
|
|
BASE is an array type. OFFSET is a byte displacement. ORIG_TYPE
|
1776 |
|
|
is the desired result type.
|
1777 |
|
|
|
1778 |
|
|
LOC is the location of the original expression. */
|
1779 |
|
|
|
1780 |
|
|
static tree
|
1781 |
|
|
maybe_fold_offset_to_array_ref (location_t loc, tree base, tree offset,
|
1782 |
|
|
tree orig_type,
|
1783 |
|
|
bool allow_negative_idx)
|
1784 |
|
|
{
|
1785 |
|
|
tree min_idx, idx, idx_type, elt_offset = integer_zero_node;
|
1786 |
|
|
tree array_type, elt_type, elt_size;
|
1787 |
|
|
tree domain_type;
|
1788 |
|
|
|
1789 |
|
|
/* If BASE is an ARRAY_REF, we can pick up another offset (this time
|
1790 |
|
|
measured in units of the size of elements type) from that ARRAY_REF).
|
1791 |
|
|
We can't do anything if either is variable.
|
1792 |
|
|
|
1793 |
|
|
The case we handle here is *(&A[N]+O). */
|
1794 |
|
|
if (TREE_CODE (base) == ARRAY_REF)
|
1795 |
|
|
{
|
1796 |
|
|
tree low_bound = array_ref_low_bound (base);
|
1797 |
|
|
|
1798 |
|
|
elt_offset = TREE_OPERAND (base, 1);
|
1799 |
|
|
if (TREE_CODE (low_bound) != INTEGER_CST
|
1800 |
|
|
|| TREE_CODE (elt_offset) != INTEGER_CST)
|
1801 |
|
|
return NULL_TREE;
|
1802 |
|
|
|
1803 |
|
|
elt_offset = int_const_binop (MINUS_EXPR, elt_offset, low_bound, 0);
|
1804 |
|
|
base = TREE_OPERAND (base, 0);
|
1805 |
|
|
}
|
1806 |
|
|
|
1807 |
|
|
/* Ignore stupid user tricks of indexing non-array variables. */
|
1808 |
|
|
array_type = TREE_TYPE (base);
|
1809 |
|
|
if (TREE_CODE (array_type) != ARRAY_TYPE)
|
1810 |
|
|
return NULL_TREE;
|
1811 |
|
|
elt_type = TREE_TYPE (array_type);
|
1812 |
|
|
if (!useless_type_conversion_p (orig_type, elt_type))
|
1813 |
|
|
return NULL_TREE;
|
1814 |
|
|
|
1815 |
|
|
/* Use signed size type for intermediate computation on the index. */
|
1816 |
|
|
idx_type = signed_type_for (size_type_node);
|
1817 |
|
|
|
1818 |
|
|
/* If OFFSET and ELT_OFFSET are zero, we don't care about the size of the
|
1819 |
|
|
element type (so we can use the alignment if it's not constant).
|
1820 |
|
|
Otherwise, compute the offset as an index by using a division. If the
|
1821 |
|
|
division isn't exact, then don't do anything. */
|
1822 |
|
|
elt_size = TYPE_SIZE_UNIT (elt_type);
|
1823 |
|
|
if (!elt_size)
|
1824 |
|
|
return NULL;
|
1825 |
|
|
if (integer_zerop (offset))
|
1826 |
|
|
{
|
1827 |
|
|
if (TREE_CODE (elt_size) != INTEGER_CST)
|
1828 |
|
|
elt_size = size_int (TYPE_ALIGN (elt_type));
|
1829 |
|
|
|
1830 |
|
|
idx = build_int_cst (idx_type, 0);
|
1831 |
|
|
}
|
1832 |
|
|
else
|
1833 |
|
|
{
|
1834 |
|
|
unsigned HOST_WIDE_INT lquo, lrem;
|
1835 |
|
|
HOST_WIDE_INT hquo, hrem;
|
1836 |
|
|
double_int soffset;
|
1837 |
|
|
|
1838 |
|
|
/* The final array offset should be signed, so we need
|
1839 |
|
|
to sign-extend the (possibly pointer) offset here
|
1840 |
|
|
and use signed division. */
|
1841 |
|
|
soffset = double_int_sext (tree_to_double_int (offset),
|
1842 |
|
|
TYPE_PRECISION (TREE_TYPE (offset)));
|
1843 |
|
|
if (TREE_CODE (elt_size) != INTEGER_CST
|
1844 |
|
|
|| div_and_round_double (TRUNC_DIV_EXPR, 0,
|
1845 |
|
|
soffset.low, soffset.high,
|
1846 |
|
|
TREE_INT_CST_LOW (elt_size),
|
1847 |
|
|
TREE_INT_CST_HIGH (elt_size),
|
1848 |
|
|
&lquo, &hquo, &lrem, &hrem)
|
1849 |
|
|
|| lrem || hrem)
|
1850 |
|
|
return NULL_TREE;
|
1851 |
|
|
|
1852 |
|
|
idx = build_int_cst_wide (idx_type, lquo, hquo);
|
1853 |
|
|
}
|
1854 |
|
|
|
1855 |
|
|
/* Assume the low bound is zero. If there is a domain type, get the
|
1856 |
|
|
low bound, if any, convert the index into that type, and add the
|
1857 |
|
|
low bound. */
|
1858 |
|
|
min_idx = build_int_cst (idx_type, 0);
|
1859 |
|
|
domain_type = TYPE_DOMAIN (array_type);
|
1860 |
|
|
if (domain_type)
|
1861 |
|
|
{
|
1862 |
|
|
idx_type = domain_type;
|
1863 |
|
|
if (TYPE_MIN_VALUE (idx_type))
|
1864 |
|
|
min_idx = TYPE_MIN_VALUE (idx_type);
|
1865 |
|
|
else
|
1866 |
|
|
min_idx = fold_convert (idx_type, min_idx);
|
1867 |
|
|
|
1868 |
|
|
if (TREE_CODE (min_idx) != INTEGER_CST)
|
1869 |
|
|
return NULL_TREE;
|
1870 |
|
|
|
1871 |
|
|
elt_offset = fold_convert (idx_type, elt_offset);
|
1872 |
|
|
}
|
1873 |
|
|
|
1874 |
|
|
if (!integer_zerop (min_idx))
|
1875 |
|
|
idx = int_const_binop (PLUS_EXPR, idx, min_idx, 0);
|
1876 |
|
|
if (!integer_zerop (elt_offset))
|
1877 |
|
|
idx = int_const_binop (PLUS_EXPR, idx, elt_offset, 0);
|
1878 |
|
|
|
1879 |
|
|
/* Make sure to possibly truncate late after offsetting. */
|
1880 |
|
|
idx = fold_convert (idx_type, idx);
|
1881 |
|
|
|
1882 |
|
|
/* We don't want to construct access past array bounds. For example
|
1883 |
|
|
char *(c[4]);
|
1884 |
|
|
c[3][2];
|
1885 |
|
|
should not be simplified into (*c)[14] or tree-vrp will
|
1886 |
|
|
give false warnings. The same is true for
|
1887 |
|
|
struct A { long x; char d[0]; } *a;
|
1888 |
|
|
(char *)a - 4;
|
1889 |
|
|
which should be not folded to &a->d[-8]. */
|
1890 |
|
|
if (domain_type
|
1891 |
|
|
&& TYPE_MAX_VALUE (domain_type)
|
1892 |
|
|
&& TREE_CODE (TYPE_MAX_VALUE (domain_type)) == INTEGER_CST)
|
1893 |
|
|
{
|
1894 |
|
|
tree up_bound = TYPE_MAX_VALUE (domain_type);
|
1895 |
|
|
|
1896 |
|
|
if (tree_int_cst_lt (up_bound, idx)
|
1897 |
|
|
/* Accesses after the end of arrays of size 0 (gcc
|
1898 |
|
|
extension) and 1 are likely intentional ("struct
|
1899 |
|
|
hack"). */
|
1900 |
|
|
&& compare_tree_int (up_bound, 1) > 0)
|
1901 |
|
|
return NULL_TREE;
|
1902 |
|
|
}
|
1903 |
|
|
if (domain_type
|
1904 |
|
|
&& TYPE_MIN_VALUE (domain_type))
|
1905 |
|
|
{
|
1906 |
|
|
if (!allow_negative_idx
|
1907 |
|
|
&& TREE_CODE (TYPE_MIN_VALUE (domain_type)) == INTEGER_CST
|
1908 |
|
|
&& tree_int_cst_lt (idx, TYPE_MIN_VALUE (domain_type)))
|
1909 |
|
|
return NULL_TREE;
|
1910 |
|
|
}
|
1911 |
|
|
else if (!allow_negative_idx
|
1912 |
|
|
&& compare_tree_int (idx, 0) < 0)
|
1913 |
|
|
return NULL_TREE;
|
1914 |
|
|
|
1915 |
|
|
{
|
1916 |
|
|
tree t = build4 (ARRAY_REF, elt_type, base, idx, NULL_TREE, NULL_TREE);
|
1917 |
|
|
SET_EXPR_LOCATION (t, loc);
|
1918 |
|
|
return t;
|
1919 |
|
|
}
|
1920 |
|
|
}
|
1921 |
|
|
|
1922 |
|
|
|
1923 |
|
|
/* Attempt to fold *(S+O) to S.X.
|
1924 |
|
|
BASE is a record type. OFFSET is a byte displacement. ORIG_TYPE
|
1925 |
|
|
is the desired result type.
|
1926 |
|
|
|
1927 |
|
|
LOC is the location of the original expression. */
|
1928 |
|
|
|
1929 |
|
|
static tree
|
1930 |
|
|
maybe_fold_offset_to_component_ref (location_t loc, tree record_type,
|
1931 |
|
|
tree base, tree offset, tree orig_type)
|
1932 |
|
|
{
|
1933 |
|
|
tree f, t, field_type, tail_array_field, field_offset;
|
1934 |
|
|
tree ret;
|
1935 |
|
|
tree new_base;
|
1936 |
|
|
|
1937 |
|
|
if (TREE_CODE (record_type) != RECORD_TYPE
|
1938 |
|
|
&& TREE_CODE (record_type) != UNION_TYPE
|
1939 |
|
|
&& TREE_CODE (record_type) != QUAL_UNION_TYPE)
|
1940 |
|
|
return NULL_TREE;
|
1941 |
|
|
|
1942 |
|
|
/* Short-circuit silly cases. */
|
1943 |
|
|
if (useless_type_conversion_p (record_type, orig_type))
|
1944 |
|
|
return NULL_TREE;
|
1945 |
|
|
|
1946 |
|
|
tail_array_field = NULL_TREE;
|
1947 |
|
|
for (f = TYPE_FIELDS (record_type); f ; f = TREE_CHAIN (f))
|
1948 |
|
|
{
|
1949 |
|
|
int cmp;
|
1950 |
|
|
|
1951 |
|
|
if (TREE_CODE (f) != FIELD_DECL)
|
1952 |
|
|
continue;
|
1953 |
|
|
if (DECL_BIT_FIELD (f))
|
1954 |
|
|
continue;
|
1955 |
|
|
|
1956 |
|
|
if (!DECL_FIELD_OFFSET (f))
|
1957 |
|
|
continue;
|
1958 |
|
|
field_offset = byte_position (f);
|
1959 |
|
|
if (TREE_CODE (field_offset) != INTEGER_CST)
|
1960 |
|
|
continue;
|
1961 |
|
|
|
1962 |
|
|
/* ??? Java creates "interesting" fields for representing base classes.
|
1963 |
|
|
They have no name, and have no context. With no context, we get into
|
1964 |
|
|
trouble with nonoverlapping_component_refs_p. Skip them. */
|
1965 |
|
|
if (!DECL_FIELD_CONTEXT (f))
|
1966 |
|
|
continue;
|
1967 |
|
|
|
1968 |
|
|
/* The previous array field isn't at the end. */
|
1969 |
|
|
tail_array_field = NULL_TREE;
|
1970 |
|
|
|
1971 |
|
|
/* Check to see if this offset overlaps with the field. */
|
1972 |
|
|
cmp = tree_int_cst_compare (field_offset, offset);
|
1973 |
|
|
if (cmp > 0)
|
1974 |
|
|
continue;
|
1975 |
|
|
|
1976 |
|
|
field_type = TREE_TYPE (f);
|
1977 |
|
|
|
1978 |
|
|
/* Here we exactly match the offset being checked. If the types match,
|
1979 |
|
|
then we can return that field. */
|
1980 |
|
|
if (cmp == 0
|
1981 |
|
|
&& useless_type_conversion_p (orig_type, field_type))
|
1982 |
|
|
{
|
1983 |
|
|
t = build3 (COMPONENT_REF, field_type, base, f, NULL_TREE);
|
1984 |
|
|
return t;
|
1985 |
|
|
}
|
1986 |
|
|
|
1987 |
|
|
/* Don't care about offsets into the middle of scalars. */
|
1988 |
|
|
if (!AGGREGATE_TYPE_P (field_type))
|
1989 |
|
|
continue;
|
1990 |
|
|
|
1991 |
|
|
/* Check for array at the end of the struct. This is often
|
1992 |
|
|
used as for flexible array members. We should be able to
|
1993 |
|
|
turn this into an array access anyway. */
|
1994 |
|
|
if (TREE_CODE (field_type) == ARRAY_TYPE)
|
1995 |
|
|
tail_array_field = f;
|
1996 |
|
|
|
1997 |
|
|
/* Check the end of the field against the offset. */
|
1998 |
|
|
if (!DECL_SIZE_UNIT (f)
|
1999 |
|
|
|| TREE_CODE (DECL_SIZE_UNIT (f)) != INTEGER_CST)
|
2000 |
|
|
continue;
|
2001 |
|
|
t = int_const_binop (MINUS_EXPR, offset, field_offset, 1);
|
2002 |
|
|
if (!tree_int_cst_lt (t, DECL_SIZE_UNIT (f)))
|
2003 |
|
|
continue;
|
2004 |
|
|
|
2005 |
|
|
/* If we matched, then set offset to the displacement into
|
2006 |
|
|
this field. */
|
2007 |
|
|
new_base = build3 (COMPONENT_REF, field_type, base, f, NULL_TREE);
|
2008 |
|
|
SET_EXPR_LOCATION (new_base, loc);
|
2009 |
|
|
|
2010 |
|
|
/* Recurse to possibly find the match. */
|
2011 |
|
|
ret = maybe_fold_offset_to_array_ref (loc, new_base, t, orig_type,
|
2012 |
|
|
f == TYPE_FIELDS (record_type));
|
2013 |
|
|
if (ret)
|
2014 |
|
|
return ret;
|
2015 |
|
|
ret = maybe_fold_offset_to_component_ref (loc, field_type, new_base, t,
|
2016 |
|
|
orig_type);
|
2017 |
|
|
if (ret)
|
2018 |
|
|
return ret;
|
2019 |
|
|
}
|
2020 |
|
|
|
2021 |
|
|
if (!tail_array_field)
|
2022 |
|
|
return NULL_TREE;
|
2023 |
|
|
|
2024 |
|
|
f = tail_array_field;
|
2025 |
|
|
field_type = TREE_TYPE (f);
|
2026 |
|
|
offset = int_const_binop (MINUS_EXPR, offset, byte_position (f), 1);
|
2027 |
|
|
|
2028 |
|
|
/* If we get here, we've got an aggregate field, and a possibly
|
2029 |
|
|
nonzero offset into them. Recurse and hope for a valid match. */
|
2030 |
|
|
base = build3 (COMPONENT_REF, field_type, base, f, NULL_TREE);
|
2031 |
|
|
SET_EXPR_LOCATION (base, loc);
|
2032 |
|
|
|
2033 |
|
|
t = maybe_fold_offset_to_array_ref (loc, base, offset, orig_type,
|
2034 |
|
|
f == TYPE_FIELDS (record_type));
|
2035 |
|
|
if (t)
|
2036 |
|
|
return t;
|
2037 |
|
|
return maybe_fold_offset_to_component_ref (loc, field_type, base, offset,
|
2038 |
|
|
orig_type);
|
2039 |
|
|
}
|
2040 |
|
|
|
2041 |
|
|
/* Attempt to express (ORIG_TYPE)BASE+OFFSET as BASE->field_of_orig_type
|
2042 |
|
|
or BASE[index] or by combination of those.
|
2043 |
|
|
|
2044 |
|
|
LOC is the location of original expression.
|
2045 |
|
|
|
2046 |
|
|
Before attempting the conversion strip off existing ADDR_EXPRs and
|
2047 |
|
|
handled component refs. */
|
2048 |
|
|
|
2049 |
|
|
tree
|
2050 |
|
|
maybe_fold_offset_to_reference (location_t loc, tree base, tree offset,
|
2051 |
|
|
tree orig_type)
|
2052 |
|
|
{
|
2053 |
|
|
tree ret;
|
2054 |
|
|
tree type;
|
2055 |
|
|
|
2056 |
|
|
STRIP_NOPS (base);
|
2057 |
|
|
if (TREE_CODE (base) != ADDR_EXPR)
|
2058 |
|
|
return NULL_TREE;
|
2059 |
|
|
|
2060 |
|
|
base = TREE_OPERAND (base, 0);
|
2061 |
|
|
|
2062 |
|
|
/* Handle case where existing COMPONENT_REF pick e.g. wrong field of union,
|
2063 |
|
|
so it needs to be removed and new COMPONENT_REF constructed.
|
2064 |
|
|
The wrong COMPONENT_REF are often constructed by folding the
|
2065 |
|
|
(type *)&object within the expression (type *)&object+offset */
|
2066 |
|
|
if (handled_component_p (base))
|
2067 |
|
|
{
|
2068 |
|
|
HOST_WIDE_INT sub_offset, size, maxsize;
|
2069 |
|
|
tree newbase;
|
2070 |
|
|
newbase = get_ref_base_and_extent (base, &sub_offset,
|
2071 |
|
|
&size, &maxsize);
|
2072 |
|
|
gcc_assert (newbase);
|
2073 |
|
|
if (size == maxsize
|
2074 |
|
|
&& size != -1
|
2075 |
|
|
&& !(sub_offset & (BITS_PER_UNIT - 1)))
|
2076 |
|
|
{
|
2077 |
|
|
base = newbase;
|
2078 |
|
|
if (sub_offset)
|
2079 |
|
|
offset = int_const_binop (PLUS_EXPR, offset,
|
2080 |
|
|
build_int_cst (TREE_TYPE (offset),
|
2081 |
|
|
sub_offset / BITS_PER_UNIT), 1);
|
2082 |
|
|
}
|
2083 |
|
|
}
|
2084 |
|
|
if (useless_type_conversion_p (orig_type, TREE_TYPE (base))
|
2085 |
|
|
&& integer_zerop (offset))
|
2086 |
|
|
return base;
|
2087 |
|
|
type = TREE_TYPE (base);
|
2088 |
|
|
|
2089 |
|
|
ret = maybe_fold_offset_to_component_ref (loc, type, base, offset, orig_type);
|
2090 |
|
|
if (!ret)
|
2091 |
|
|
ret = maybe_fold_offset_to_array_ref (loc, base, offset, orig_type, true);
|
2092 |
|
|
|
2093 |
|
|
return ret;
|
2094 |
|
|
}
|
2095 |
|
|
|
2096 |
|
|
/* Attempt to express (ORIG_TYPE)&BASE+OFFSET as &BASE->field_of_orig_type
|
2097 |
|
|
or &BASE[index] or by combination of those.
|
2098 |
|
|
|
2099 |
|
|
LOC is the location of the original expression.
|
2100 |
|
|
|
2101 |
|
|
Before attempting the conversion strip off existing component refs. */
|
2102 |
|
|
|
2103 |
|
|
tree
|
2104 |
|
|
maybe_fold_offset_to_address (location_t loc, tree addr, tree offset,
|
2105 |
|
|
tree orig_type)
|
2106 |
|
|
{
|
2107 |
|
|
tree t;
|
2108 |
|
|
|
2109 |
|
|
gcc_assert (POINTER_TYPE_P (TREE_TYPE (addr))
|
2110 |
|
|
&& POINTER_TYPE_P (orig_type));
|
2111 |
|
|
|
2112 |
|
|
t = maybe_fold_offset_to_reference (loc, addr, offset,
|
2113 |
|
|
TREE_TYPE (orig_type));
|
2114 |
|
|
if (t != NULL_TREE)
|
2115 |
|
|
{
|
2116 |
|
|
tree orig = addr;
|
2117 |
|
|
tree ptr_type;
|
2118 |
|
|
|
2119 |
|
|
/* For __builtin_object_size to function correctly we need to
|
2120 |
|
|
make sure not to fold address arithmetic so that we change
|
2121 |
|
|
reference from one array to another. This would happen for
|
2122 |
|
|
example for
|
2123 |
|
|
|
2124 |
|
|
struct X { char s1[10]; char s2[10] } s;
|
2125 |
|
|
char *foo (void) { return &s.s2[-4]; }
|
2126 |
|
|
|
2127 |
|
|
where we need to avoid generating &s.s1[6]. As the C and
|
2128 |
|
|
C++ frontends create different initial trees
|
2129 |
|
|
(char *) &s.s1 + -4 vs. &s.s1[-4] we have to do some
|
2130 |
|
|
sophisticated comparisons here. Note that checking for the
|
2131 |
|
|
condition after the fact is easier than trying to avoid doing
|
2132 |
|
|
the folding. */
|
2133 |
|
|
STRIP_NOPS (orig);
|
2134 |
|
|
if (TREE_CODE (orig) == ADDR_EXPR)
|
2135 |
|
|
orig = TREE_OPERAND (orig, 0);
|
2136 |
|
|
if ((TREE_CODE (orig) == ARRAY_REF
|
2137 |
|
|
|| (TREE_CODE (orig) == COMPONENT_REF
|
2138 |
|
|
&& TREE_CODE (TREE_TYPE (TREE_OPERAND (orig, 1))) == ARRAY_TYPE))
|
2139 |
|
|
&& (TREE_CODE (t) == ARRAY_REF
|
2140 |
|
|
|| TREE_CODE (t) == COMPONENT_REF)
|
2141 |
|
|
&& !operand_equal_p (TREE_CODE (orig) == ARRAY_REF
|
2142 |
|
|
? TREE_OPERAND (orig, 0) : orig,
|
2143 |
|
|
TREE_CODE (t) == ARRAY_REF
|
2144 |
|
|
? TREE_OPERAND (t, 0) : t, 0))
|
2145 |
|
|
return NULL_TREE;
|
2146 |
|
|
|
2147 |
|
|
ptr_type = build_pointer_type (TREE_TYPE (t));
|
2148 |
|
|
if (!useless_type_conversion_p (orig_type, ptr_type))
|
2149 |
|
|
return NULL_TREE;
|
2150 |
|
|
return build_fold_addr_expr_with_type_loc (loc, t, ptr_type);
|
2151 |
|
|
}
|
2152 |
|
|
|
2153 |
|
|
return NULL_TREE;
|
2154 |
|
|
}
|
2155 |
|
|
|
2156 |
|
|
/* A subroutine of fold_stmt. Attempt to simplify *(BASE+OFFSET).
|
2157 |
|
|
Return the simplified expression, or NULL if nothing could be done. */
|
2158 |
|
|
|
2159 |
|
|
static tree
|
2160 |
|
|
maybe_fold_stmt_indirect (tree expr, tree base, tree offset)
|
2161 |
|
|
{
|
2162 |
|
|
tree t;
|
2163 |
|
|
bool volatile_p = TREE_THIS_VOLATILE (expr);
|
2164 |
|
|
location_t loc = EXPR_LOCATION (expr);
|
2165 |
|
|
|
2166 |
|
|
/* We may well have constructed a double-nested PLUS_EXPR via multiple
|
2167 |
|
|
substitutions. Fold that down to one. Remove NON_LVALUE_EXPRs that
|
2168 |
|
|
are sometimes added. */
|
2169 |
|
|
base = fold (base);
|
2170 |
|
|
STRIP_TYPE_NOPS (base);
|
2171 |
|
|
TREE_OPERAND (expr, 0) = base;
|
2172 |
|
|
|
2173 |
|
|
/* One possibility is that the address reduces to a string constant. */
|
2174 |
|
|
t = fold_read_from_constant_string (expr);
|
2175 |
|
|
if (t)
|
2176 |
|
|
return t;
|
2177 |
|
|
|
2178 |
|
|
/* Add in any offset from a POINTER_PLUS_EXPR. */
|
2179 |
|
|
if (TREE_CODE (base) == POINTER_PLUS_EXPR)
|
2180 |
|
|
{
|
2181 |
|
|
tree offset2;
|
2182 |
|
|
|
2183 |
|
|
offset2 = TREE_OPERAND (base, 1);
|
2184 |
|
|
if (TREE_CODE (offset2) != INTEGER_CST)
|
2185 |
|
|
return NULL_TREE;
|
2186 |
|
|
base = TREE_OPERAND (base, 0);
|
2187 |
|
|
|
2188 |
|
|
offset = fold_convert (sizetype,
|
2189 |
|
|
int_const_binop (PLUS_EXPR, offset, offset2, 1));
|
2190 |
|
|
}
|
2191 |
|
|
|
2192 |
|
|
if (TREE_CODE (base) == ADDR_EXPR)
|
2193 |
|
|
{
|
2194 |
|
|
tree base_addr = base;
|
2195 |
|
|
|
2196 |
|
|
/* Strip the ADDR_EXPR. */
|
2197 |
|
|
base = TREE_OPERAND (base, 0);
|
2198 |
|
|
|
2199 |
|
|
/* Fold away CONST_DECL to its value, if the type is scalar. */
|
2200 |
|
|
if (TREE_CODE (base) == CONST_DECL
|
2201 |
|
|
&& is_gimple_min_invariant (DECL_INITIAL (base)))
|
2202 |
|
|
return DECL_INITIAL (base);
|
2203 |
|
|
|
2204 |
|
|
/* If there is no offset involved simply return the folded base. */
|
2205 |
|
|
if (integer_zerop (offset))
|
2206 |
|
|
return base;
|
2207 |
|
|
|
2208 |
|
|
/* Try folding *(&B+O) to B.X. */
|
2209 |
|
|
t = maybe_fold_offset_to_reference (loc, base_addr, offset,
|
2210 |
|
|
TREE_TYPE (expr));
|
2211 |
|
|
if (t)
|
2212 |
|
|
{
|
2213 |
|
|
/* Preserve volatileness of the original expression.
|
2214 |
|
|
We can end up with a plain decl here which is shared
|
2215 |
|
|
and we shouldn't mess with its flags. */
|
2216 |
|
|
if (!SSA_VAR_P (t))
|
2217 |
|
|
TREE_THIS_VOLATILE (t) = volatile_p;
|
2218 |
|
|
return t;
|
2219 |
|
|
}
|
2220 |
|
|
}
|
2221 |
|
|
else
|
2222 |
|
|
{
|
2223 |
|
|
/* We can get here for out-of-range string constant accesses,
|
2224 |
|
|
such as "_"[3]. Bail out of the entire substitution search
|
2225 |
|
|
and arrange for the entire statement to be replaced by a
|
2226 |
|
|
call to __builtin_trap. In all likelihood this will all be
|
2227 |
|
|
constant-folded away, but in the meantime we can't leave with
|
2228 |
|
|
something that get_expr_operands can't understand. */
|
2229 |
|
|
|
2230 |
|
|
t = base;
|
2231 |
|
|
STRIP_NOPS (t);
|
2232 |
|
|
if (TREE_CODE (t) == ADDR_EXPR
|
2233 |
|
|
&& TREE_CODE (TREE_OPERAND (t, 0)) == STRING_CST)
|
2234 |
|
|
{
|
2235 |
|
|
/* FIXME: Except that this causes problems elsewhere with dead
|
2236 |
|
|
code not being deleted, and we die in the rtl expanders
|
2237 |
|
|
because we failed to remove some ssa_name. In the meantime,
|
2238 |
|
|
just return zero. */
|
2239 |
|
|
/* FIXME2: This condition should be signaled by
|
2240 |
|
|
fold_read_from_constant_string directly, rather than
|
2241 |
|
|
re-checking for it here. */
|
2242 |
|
|
return integer_zero_node;
|
2243 |
|
|
}
|
2244 |
|
|
|
2245 |
|
|
/* Try folding *(B+O) to B->X. Still an improvement. */
|
2246 |
|
|
if (POINTER_TYPE_P (TREE_TYPE (base)))
|
2247 |
|
|
{
|
2248 |
|
|
t = maybe_fold_offset_to_reference (loc, base, offset,
|
2249 |
|
|
TREE_TYPE (expr));
|
2250 |
|
|
if (t)
|
2251 |
|
|
return t;
|
2252 |
|
|
}
|
2253 |
|
|
}
|
2254 |
|
|
|
2255 |
|
|
/* Otherwise we had an offset that we could not simplify. */
|
2256 |
|
|
return NULL_TREE;
|
2257 |
|
|
}
|
2258 |
|
|
|
2259 |
|
|
|
2260 |
|
|
/* A quaint feature extant in our address arithmetic is that there
|
2261 |
|
|
can be hidden type changes here. The type of the result need
|
2262 |
|
|
not be the same as the type of the input pointer.
|
2263 |
|
|
|
2264 |
|
|
What we're after here is an expression of the form
|
2265 |
|
|
(T *)(&array + const)
|
2266 |
|
|
where array is OP0, const is OP1, RES_TYPE is T and
|
2267 |
|
|
the cast doesn't actually exist, but is implicit in the
|
2268 |
|
|
type of the POINTER_PLUS_EXPR. We'd like to turn this into
|
2269 |
|
|
&array[x]
|
2270 |
|
|
which may be able to propagate further. */
|
2271 |
|
|
|
2272 |
|
|
tree
|
2273 |
|
|
maybe_fold_stmt_addition (location_t loc, tree res_type, tree op0, tree op1)
|
2274 |
|
|
{
|
2275 |
|
|
tree ptd_type;
|
2276 |
|
|
tree t;
|
2277 |
|
|
|
2278 |
|
|
/* The first operand should be an ADDR_EXPR. */
|
2279 |
|
|
if (TREE_CODE (op0) != ADDR_EXPR)
|
2280 |
|
|
return NULL_TREE;
|
2281 |
|
|
op0 = TREE_OPERAND (op0, 0);
|
2282 |
|
|
|
2283 |
|
|
/* It had better be a constant. */
|
2284 |
|
|
if (TREE_CODE (op1) != INTEGER_CST)
|
2285 |
|
|
{
|
2286 |
|
|
/* Or op0 should now be A[0] and the non-constant offset defined
|
2287 |
|
|
via a multiplication by the array element size. */
|
2288 |
|
|
if (TREE_CODE (op0) == ARRAY_REF
|
2289 |
|
|
&& integer_zerop (TREE_OPERAND (op0, 1))
|
2290 |
|
|
&& TREE_CODE (op1) == SSA_NAME
|
2291 |
|
|
&& host_integerp (TYPE_SIZE_UNIT (TREE_TYPE (op0)), 1))
|
2292 |
|
|
{
|
2293 |
|
|
gimple offset_def = SSA_NAME_DEF_STMT (op1);
|
2294 |
|
|
if (!is_gimple_assign (offset_def))
|
2295 |
|
|
return NULL_TREE;
|
2296 |
|
|
|
2297 |
|
|
/* As we will end up creating a variable index array access
|
2298 |
|
|
in the outermost array dimension make sure there isn't
|
2299 |
|
|
a more inner array that the index could overflow to. */
|
2300 |
|
|
if (TREE_CODE (TREE_OPERAND (op0, 0)) == ARRAY_REF)
|
2301 |
|
|
return NULL_TREE;
|
2302 |
|
|
|
2303 |
|
|
/* Do not build array references of something that we can't
|
2304 |
|
|
see the true number of array dimensions for. */
|
2305 |
|
|
if (!DECL_P (TREE_OPERAND (op0, 0))
|
2306 |
|
|
&& !handled_component_p (TREE_OPERAND (op0, 0)))
|
2307 |
|
|
return NULL_TREE;
|
2308 |
|
|
|
2309 |
|
|
if (gimple_assign_rhs_code (offset_def) == MULT_EXPR
|
2310 |
|
|
&& TREE_CODE (gimple_assign_rhs2 (offset_def)) == INTEGER_CST
|
2311 |
|
|
&& tree_int_cst_equal (gimple_assign_rhs2 (offset_def),
|
2312 |
|
|
TYPE_SIZE_UNIT (TREE_TYPE (op0))))
|
2313 |
|
|
return build_fold_addr_expr
|
2314 |
|
|
(build4 (ARRAY_REF, TREE_TYPE (op0),
|
2315 |
|
|
TREE_OPERAND (op0, 0),
|
2316 |
|
|
gimple_assign_rhs1 (offset_def),
|
2317 |
|
|
TREE_OPERAND (op0, 2),
|
2318 |
|
|
TREE_OPERAND (op0, 3)));
|
2319 |
|
|
else if (integer_onep (TYPE_SIZE_UNIT (TREE_TYPE (op0)))
|
2320 |
|
|
&& gimple_assign_rhs_code (offset_def) != MULT_EXPR)
|
2321 |
|
|
return build_fold_addr_expr
|
2322 |
|
|
(build4 (ARRAY_REF, TREE_TYPE (op0),
|
2323 |
|
|
TREE_OPERAND (op0, 0),
|
2324 |
|
|
op1,
|
2325 |
|
|
TREE_OPERAND (op0, 2),
|
2326 |
|
|
TREE_OPERAND (op0, 3)));
|
2327 |
|
|
}
|
2328 |
|
|
return NULL_TREE;
|
2329 |
|
|
}
|
2330 |
|
|
|
2331 |
|
|
/* If the first operand is an ARRAY_REF, expand it so that we can fold
|
2332 |
|
|
the offset into it. */
|
2333 |
|
|
while (TREE_CODE (op0) == ARRAY_REF)
|
2334 |
|
|
{
|
2335 |
|
|
tree array_obj = TREE_OPERAND (op0, 0);
|
2336 |
|
|
tree array_idx = TREE_OPERAND (op0, 1);
|
2337 |
|
|
tree elt_type = TREE_TYPE (op0);
|
2338 |
|
|
tree elt_size = TYPE_SIZE_UNIT (elt_type);
|
2339 |
|
|
tree min_idx;
|
2340 |
|
|
|
2341 |
|
|
if (TREE_CODE (array_idx) != INTEGER_CST)
|
2342 |
|
|
break;
|
2343 |
|
|
if (TREE_CODE (elt_size) != INTEGER_CST)
|
2344 |
|
|
break;
|
2345 |
|
|
|
2346 |
|
|
/* Un-bias the index by the min index of the array type. */
|
2347 |
|
|
min_idx = TYPE_DOMAIN (TREE_TYPE (array_obj));
|
2348 |
|
|
if (min_idx)
|
2349 |
|
|
{
|
2350 |
|
|
min_idx = TYPE_MIN_VALUE (min_idx);
|
2351 |
|
|
if (min_idx)
|
2352 |
|
|
{
|
2353 |
|
|
if (TREE_CODE (min_idx) != INTEGER_CST)
|
2354 |
|
|
break;
|
2355 |
|
|
|
2356 |
|
|
array_idx = fold_convert (TREE_TYPE (min_idx), array_idx);
|
2357 |
|
|
if (!integer_zerop (min_idx))
|
2358 |
|
|
array_idx = int_const_binop (MINUS_EXPR, array_idx,
|
2359 |
|
|
min_idx, 0);
|
2360 |
|
|
}
|
2361 |
|
|
}
|
2362 |
|
|
|
2363 |
|
|
/* Convert the index to a byte offset. */
|
2364 |
|
|
array_idx = fold_convert (sizetype, array_idx);
|
2365 |
|
|
array_idx = int_const_binop (MULT_EXPR, array_idx, elt_size, 0);
|
2366 |
|
|
|
2367 |
|
|
/* Update the operands for the next round, or for folding. */
|
2368 |
|
|
op1 = int_const_binop (PLUS_EXPR,
|
2369 |
|
|
array_idx, op1, 0);
|
2370 |
|
|
op0 = array_obj;
|
2371 |
|
|
}
|
2372 |
|
|
|
2373 |
|
|
ptd_type = TREE_TYPE (res_type);
|
2374 |
|
|
/* If we want a pointer to void, reconstruct the reference from the
|
2375 |
|
|
array element type. A pointer to that can be trivially converted
|
2376 |
|
|
to void *. This happens as we fold (void *)(ptr p+ off). */
|
2377 |
|
|
if (VOID_TYPE_P (ptd_type)
|
2378 |
|
|
&& TREE_CODE (TREE_TYPE (op0)) == ARRAY_TYPE)
|
2379 |
|
|
ptd_type = TREE_TYPE (TREE_TYPE (op0));
|
2380 |
|
|
|
2381 |
|
|
/* At which point we can try some of the same things as for indirects. */
|
2382 |
|
|
t = maybe_fold_offset_to_array_ref (loc, op0, op1, ptd_type, true);
|
2383 |
|
|
if (!t)
|
2384 |
|
|
t = maybe_fold_offset_to_component_ref (loc, TREE_TYPE (op0), op0, op1,
|
2385 |
|
|
ptd_type);
|
2386 |
|
|
if (t)
|
2387 |
|
|
{
|
2388 |
|
|
t = build1 (ADDR_EXPR, res_type, t);
|
2389 |
|
|
SET_EXPR_LOCATION (t, loc);
|
2390 |
|
|
}
|
2391 |
|
|
|
2392 |
|
|
return t;
|
2393 |
|
|
}
|
2394 |
|
|
|
2395 |
|
|
/* Subroutine of fold_stmt. We perform several simplifications of the
|
2396 |
|
|
memory reference tree EXPR and make sure to re-gimplify them properly
|
2397 |
|
|
after propagation of constant addresses. IS_LHS is true if the
|
2398 |
|
|
reference is supposed to be an lvalue. */
|
2399 |
|
|
|
2400 |
|
|
static tree
|
2401 |
|
|
maybe_fold_reference (tree expr, bool is_lhs)
|
2402 |
|
|
{
|
2403 |
|
|
tree *t = &expr;
|
2404 |
|
|
|
2405 |
|
|
if (TREE_CODE (expr) == ARRAY_REF
|
2406 |
|
|
&& !is_lhs)
|
2407 |
|
|
{
|
2408 |
|
|
tree tem = fold_read_from_constant_string (expr);
|
2409 |
|
|
if (tem)
|
2410 |
|
|
return tem;
|
2411 |
|
|
}
|
2412 |
|
|
|
2413 |
|
|
/* ??? We might want to open-code the relevant remaining cases
|
2414 |
|
|
to avoid using the generic fold. */
|
2415 |
|
|
if (handled_component_p (*t)
|
2416 |
|
|
&& CONSTANT_CLASS_P (TREE_OPERAND (*t, 0)))
|
2417 |
|
|
{
|
2418 |
|
|
tree tem = fold (*t);
|
2419 |
|
|
if (tem != *t)
|
2420 |
|
|
return tem;
|
2421 |
|
|
}
|
2422 |
|
|
|
2423 |
|
|
while (handled_component_p (*t))
|
2424 |
|
|
t = &TREE_OPERAND (*t, 0);
|
2425 |
|
|
|
2426 |
|
|
if (TREE_CODE (*t) == INDIRECT_REF)
|
2427 |
|
|
{
|
2428 |
|
|
tree tem = maybe_fold_stmt_indirect (*t, TREE_OPERAND (*t, 0),
|
2429 |
|
|
integer_zero_node);
|
2430 |
|
|
/* Avoid folding *"abc" = 5 into 'a' = 5. */
|
2431 |
|
|
if (is_lhs && tem && CONSTANT_CLASS_P (tem))
|
2432 |
|
|
tem = NULL_TREE;
|
2433 |
|
|
if (!tem
|
2434 |
|
|
&& TREE_CODE (TREE_OPERAND (*t, 0)) == ADDR_EXPR)
|
2435 |
|
|
/* If we had a good reason for propagating the address here,
|
2436 |
|
|
make sure we end up with valid gimple. See PR34989. */
|
2437 |
|
|
tem = TREE_OPERAND (TREE_OPERAND (*t, 0), 0);
|
2438 |
|
|
|
2439 |
|
|
if (tem)
|
2440 |
|
|
{
|
2441 |
|
|
*t = tem;
|
2442 |
|
|
tem = maybe_fold_reference (expr, is_lhs);
|
2443 |
|
|
if (tem)
|
2444 |
|
|
return tem;
|
2445 |
|
|
return expr;
|
2446 |
|
|
}
|
2447 |
|
|
}
|
2448 |
|
|
else if (!is_lhs
|
2449 |
|
|
&& DECL_P (*t))
|
2450 |
|
|
{
|
2451 |
|
|
tree tem = get_symbol_constant_value (*t);
|
2452 |
|
|
if (tem
|
2453 |
|
|
&& useless_type_conversion_p (TREE_TYPE (*t), TREE_TYPE (tem)))
|
2454 |
|
|
{
|
2455 |
|
|
*t = unshare_expr (tem);
|
2456 |
|
|
tem = maybe_fold_reference (expr, is_lhs);
|
2457 |
|
|
if (tem)
|
2458 |
|
|
return tem;
|
2459 |
|
|
return expr;
|
2460 |
|
|
}
|
2461 |
|
|
}
|
2462 |
|
|
|
2463 |
|
|
return NULL_TREE;
|
2464 |
|
|
}
|
2465 |
|
|
|
2466 |
|
|
|
2467 |
|
|
/* Return the string length, maximum string length or maximum value of
|
2468 |
|
|
ARG in LENGTH.
|
2469 |
|
|
If ARG is an SSA name variable, follow its use-def chains. If LENGTH
|
2470 |
|
|
is not NULL and, for TYPE == 0, its value is not equal to the length
|
2471 |
|
|
we determine or if we are unable to determine the length or value,
|
2472 |
|
|
return false. VISITED is a bitmap of visited variables.
|
2473 |
|
|
TYPE is 0 if string length should be returned, 1 for maximum string
|
2474 |
|
|
length and 2 for maximum value ARG can have. */
|
2475 |
|
|
|
2476 |
|
|
static bool
|
2477 |
|
|
get_maxval_strlen (tree arg, tree *length, bitmap visited, int type)
|
2478 |
|
|
{
|
2479 |
|
|
tree var, val;
|
2480 |
|
|
gimple def_stmt;
|
2481 |
|
|
|
2482 |
|
|
if (TREE_CODE (arg) != SSA_NAME)
|
2483 |
|
|
{
|
2484 |
|
|
if (TREE_CODE (arg) == COND_EXPR)
|
2485 |
|
|
return get_maxval_strlen (COND_EXPR_THEN (arg), length, visited, type)
|
2486 |
|
|
&& get_maxval_strlen (COND_EXPR_ELSE (arg), length, visited, type);
|
2487 |
|
|
/* We can end up with &(*iftmp_1)[0] here as well, so handle it. */
|
2488 |
|
|
else if (TREE_CODE (arg) == ADDR_EXPR
|
2489 |
|
|
&& TREE_CODE (TREE_OPERAND (arg, 0)) == ARRAY_REF
|
2490 |
|
|
&& integer_zerop (TREE_OPERAND (TREE_OPERAND (arg, 0), 1)))
|
2491 |
|
|
{
|
2492 |
|
|
tree aop0 = TREE_OPERAND (TREE_OPERAND (arg, 0), 0);
|
2493 |
|
|
if (TREE_CODE (aop0) == INDIRECT_REF
|
2494 |
|
|
&& TREE_CODE (TREE_OPERAND (aop0, 0)) == SSA_NAME)
|
2495 |
|
|
return get_maxval_strlen (TREE_OPERAND (aop0, 0),
|
2496 |
|
|
length, visited, type);
|
2497 |
|
|
}
|
2498 |
|
|
|
2499 |
|
|
if (type == 2)
|
2500 |
|
|
{
|
2501 |
|
|
val = arg;
|
2502 |
|
|
if (TREE_CODE (val) != INTEGER_CST
|
2503 |
|
|
|| tree_int_cst_sgn (val) < 0)
|
2504 |
|
|
return false;
|
2505 |
|
|
}
|
2506 |
|
|
else
|
2507 |
|
|
val = c_strlen (arg, 1);
|
2508 |
|
|
if (!val)
|
2509 |
|
|
return false;
|
2510 |
|
|
|
2511 |
|
|
if (*length)
|
2512 |
|
|
{
|
2513 |
|
|
if (type > 0)
|
2514 |
|
|
{
|
2515 |
|
|
if (TREE_CODE (*length) != INTEGER_CST
|
2516 |
|
|
|| TREE_CODE (val) != INTEGER_CST)
|
2517 |
|
|
return false;
|
2518 |
|
|
|
2519 |
|
|
if (tree_int_cst_lt (*length, val))
|
2520 |
|
|
*length = val;
|
2521 |
|
|
return true;
|
2522 |
|
|
}
|
2523 |
|
|
else if (simple_cst_equal (val, *length) != 1)
|
2524 |
|
|
return false;
|
2525 |
|
|
}
|
2526 |
|
|
|
2527 |
|
|
*length = val;
|
2528 |
|
|
return true;
|
2529 |
|
|
}
|
2530 |
|
|
|
2531 |
|
|
/* If we were already here, break the infinite cycle. */
|
2532 |
|
|
if (bitmap_bit_p (visited, SSA_NAME_VERSION (arg)))
|
2533 |
|
|
return true;
|
2534 |
|
|
bitmap_set_bit (visited, SSA_NAME_VERSION (arg));
|
2535 |
|
|
|
2536 |
|
|
var = arg;
|
2537 |
|
|
def_stmt = SSA_NAME_DEF_STMT (var);
|
2538 |
|
|
|
2539 |
|
|
switch (gimple_code (def_stmt))
|
2540 |
|
|
{
|
2541 |
|
|
case GIMPLE_ASSIGN:
|
2542 |
|
|
/* The RHS of the statement defining VAR must either have a
|
2543 |
|
|
constant length or come from another SSA_NAME with a constant
|
2544 |
|
|
length. */
|
2545 |
|
|
if (gimple_assign_single_p (def_stmt)
|
2546 |
|
|
|| gimple_assign_unary_nop_p (def_stmt))
|
2547 |
|
|
{
|
2548 |
|
|
tree rhs = gimple_assign_rhs1 (def_stmt);
|
2549 |
|
|
return get_maxval_strlen (rhs, length, visited, type);
|
2550 |
|
|
}
|
2551 |
|
|
return false;
|
2552 |
|
|
|
2553 |
|
|
case GIMPLE_PHI:
|
2554 |
|
|
{
|
2555 |
|
|
/* All the arguments of the PHI node must have the same constant
|
2556 |
|
|
length. */
|
2557 |
|
|
unsigned i;
|
2558 |
|
|
|
2559 |
|
|
for (i = 0; i < gimple_phi_num_args (def_stmt); i++)
|
2560 |
|
|
{
|
2561 |
|
|
tree arg = gimple_phi_arg (def_stmt, i)->def;
|
2562 |
|
|
|
2563 |
|
|
/* If this PHI has itself as an argument, we cannot
|
2564 |
|
|
determine the string length of this argument. However,
|
2565 |
|
|
if we can find a constant string length for the other
|
2566 |
|
|
PHI args then we can still be sure that this is a
|
2567 |
|
|
constant string length. So be optimistic and just
|
2568 |
|
|
continue with the next argument. */
|
2569 |
|
|
if (arg == gimple_phi_result (def_stmt))
|
2570 |
|
|
continue;
|
2571 |
|
|
|
2572 |
|
|
if (!get_maxval_strlen (arg, length, visited, type))
|
2573 |
|
|
return false;
|
2574 |
|
|
}
|
2575 |
|
|
}
|
2576 |
|
|
return true;
|
2577 |
|
|
|
2578 |
|
|
default:
|
2579 |
|
|
return false;
|
2580 |
|
|
}
|
2581 |
|
|
}
|
2582 |
|
|
|
2583 |
|
|
|
2584 |
|
|
/* Fold builtin call in statement STMT. Returns a simplified tree.
|
2585 |
|
|
We may return a non-constant expression, including another call
|
2586 |
|
|
to a different function and with different arguments, e.g.,
|
2587 |
|
|
substituting memcpy for strcpy when the string length is known.
|
2588 |
|
|
Note that some builtins expand into inline code that may not
|
2589 |
|
|
be valid in GIMPLE. Callers must take care. */
|
2590 |
|
|
|
2591 |
|
|
static tree
|
2592 |
|
|
ccp_fold_builtin (gimple stmt)
|
2593 |
|
|
{
|
2594 |
|
|
tree result, val[3];
|
2595 |
|
|
tree callee, a;
|
2596 |
|
|
int arg_idx, type;
|
2597 |
|
|
bitmap visited;
|
2598 |
|
|
bool ignore;
|
2599 |
|
|
int nargs;
|
2600 |
|
|
location_t loc = gimple_location (stmt);
|
2601 |
|
|
|
2602 |
|
|
gcc_assert (is_gimple_call (stmt));
|
2603 |
|
|
|
2604 |
|
|
ignore = (gimple_call_lhs (stmt) == NULL);
|
2605 |
|
|
|
2606 |
|
|
/* First try the generic builtin folder. If that succeeds, return the
|
2607 |
|
|
result directly. */
|
2608 |
|
|
result = fold_call_stmt (stmt, ignore);
|
2609 |
|
|
if (result)
|
2610 |
|
|
{
|
2611 |
|
|
if (ignore)
|
2612 |
|
|
STRIP_NOPS (result);
|
2613 |
|
|
return result;
|
2614 |
|
|
}
|
2615 |
|
|
|
2616 |
|
|
/* Ignore MD builtins. */
|
2617 |
|
|
callee = gimple_call_fndecl (stmt);
|
2618 |
|
|
if (DECL_BUILT_IN_CLASS (callee) == BUILT_IN_MD)
|
2619 |
|
|
return NULL_TREE;
|
2620 |
|
|
|
2621 |
|
|
/* If the builtin could not be folded, and it has no argument list,
|
2622 |
|
|
we're done. */
|
2623 |
|
|
nargs = gimple_call_num_args (stmt);
|
2624 |
|
|
if (nargs == 0)
|
2625 |
|
|
return NULL_TREE;
|
2626 |
|
|
|
2627 |
|
|
/* Limit the work only for builtins we know how to simplify. */
|
2628 |
|
|
switch (DECL_FUNCTION_CODE (callee))
|
2629 |
|
|
{
|
2630 |
|
|
case BUILT_IN_STRLEN:
|
2631 |
|
|
case BUILT_IN_FPUTS:
|
2632 |
|
|
case BUILT_IN_FPUTS_UNLOCKED:
|
2633 |
|
|
arg_idx = 0;
|
2634 |
|
|
type = 0;
|
2635 |
|
|
break;
|
2636 |
|
|
case BUILT_IN_STRCPY:
|
2637 |
|
|
case BUILT_IN_STRNCPY:
|
2638 |
|
|
arg_idx = 1;
|
2639 |
|
|
type = 0;
|
2640 |
|
|
break;
|
2641 |
|
|
case BUILT_IN_MEMCPY_CHK:
|
2642 |
|
|
case BUILT_IN_MEMPCPY_CHK:
|
2643 |
|
|
case BUILT_IN_MEMMOVE_CHK:
|
2644 |
|
|
case BUILT_IN_MEMSET_CHK:
|
2645 |
|
|
case BUILT_IN_STRNCPY_CHK:
|
2646 |
|
|
arg_idx = 2;
|
2647 |
|
|
type = 2;
|
2648 |
|
|
break;
|
2649 |
|
|
case BUILT_IN_STRCPY_CHK:
|
2650 |
|
|
case BUILT_IN_STPCPY_CHK:
|
2651 |
|
|
arg_idx = 1;
|
2652 |
|
|
type = 1;
|
2653 |
|
|
break;
|
2654 |
|
|
case BUILT_IN_SNPRINTF_CHK:
|
2655 |
|
|
case BUILT_IN_VSNPRINTF_CHK:
|
2656 |
|
|
arg_idx = 1;
|
2657 |
|
|
type = 2;
|
2658 |
|
|
break;
|
2659 |
|
|
default:
|
2660 |
|
|
return NULL_TREE;
|
2661 |
|
|
}
|
2662 |
|
|
|
2663 |
|
|
if (arg_idx >= nargs)
|
2664 |
|
|
return NULL_TREE;
|
2665 |
|
|
|
2666 |
|
|
/* Try to use the dataflow information gathered by the CCP process. */
|
2667 |
|
|
visited = BITMAP_ALLOC (NULL);
|
2668 |
|
|
bitmap_clear (visited);
|
2669 |
|
|
|
2670 |
|
|
memset (val, 0, sizeof (val));
|
2671 |
|
|
a = gimple_call_arg (stmt, arg_idx);
|
2672 |
|
|
if (!get_maxval_strlen (a, &val[arg_idx], visited, type))
|
2673 |
|
|
val[arg_idx] = NULL_TREE;
|
2674 |
|
|
|
2675 |
|
|
BITMAP_FREE (visited);
|
2676 |
|
|
|
2677 |
|
|
result = NULL_TREE;
|
2678 |
|
|
switch (DECL_FUNCTION_CODE (callee))
|
2679 |
|
|
{
|
2680 |
|
|
case BUILT_IN_STRLEN:
|
2681 |
|
|
if (val[0] && nargs == 1)
|
2682 |
|
|
{
|
2683 |
|
|
tree new_val =
|
2684 |
|
|
fold_convert (TREE_TYPE (gimple_call_lhs (stmt)), val[0]);
|
2685 |
|
|
|
2686 |
|
|
/* If the result is not a valid gimple value, or not a cast
|
2687 |
|
|
of a valid gimple value, then we can not use the result. */
|
2688 |
|
|
if (is_gimple_val (new_val)
|
2689 |
|
|
|| (is_gimple_cast (new_val)
|
2690 |
|
|
&& is_gimple_val (TREE_OPERAND (new_val, 0))))
|
2691 |
|
|
return new_val;
|
2692 |
|
|
}
|
2693 |
|
|
break;
|
2694 |
|
|
|
2695 |
|
|
case BUILT_IN_STRCPY:
|
2696 |
|
|
if (val[1] && is_gimple_val (val[1]) && nargs == 2)
|
2697 |
|
|
result = fold_builtin_strcpy (loc, callee,
|
2698 |
|
|
gimple_call_arg (stmt, 0),
|
2699 |
|
|
gimple_call_arg (stmt, 1),
|
2700 |
|
|
val[1]);
|
2701 |
|
|
break;
|
2702 |
|
|
|
2703 |
|
|
case BUILT_IN_STRNCPY:
|
2704 |
|
|
if (val[1] && is_gimple_val (val[1]) && nargs == 3)
|
2705 |
|
|
result = fold_builtin_strncpy (loc, callee,
|
2706 |
|
|
gimple_call_arg (stmt, 0),
|
2707 |
|
|
gimple_call_arg (stmt, 1),
|
2708 |
|
|
gimple_call_arg (stmt, 2),
|
2709 |
|
|
val[1]);
|
2710 |
|
|
break;
|
2711 |
|
|
|
2712 |
|
|
case BUILT_IN_FPUTS:
|
2713 |
|
|
if (nargs == 2)
|
2714 |
|
|
result = fold_builtin_fputs (loc, gimple_call_arg (stmt, 0),
|
2715 |
|
|
gimple_call_arg (stmt, 1),
|
2716 |
|
|
ignore, false, val[0]);
|
2717 |
|
|
break;
|
2718 |
|
|
|
2719 |
|
|
case BUILT_IN_FPUTS_UNLOCKED:
|
2720 |
|
|
if (nargs == 2)
|
2721 |
|
|
result = fold_builtin_fputs (loc, gimple_call_arg (stmt, 0),
|
2722 |
|
|
gimple_call_arg (stmt, 1),
|
2723 |
|
|
ignore, true, val[0]);
|
2724 |
|
|
break;
|
2725 |
|
|
|
2726 |
|
|
case BUILT_IN_MEMCPY_CHK:
|
2727 |
|
|
case BUILT_IN_MEMPCPY_CHK:
|
2728 |
|
|
case BUILT_IN_MEMMOVE_CHK:
|
2729 |
|
|
case BUILT_IN_MEMSET_CHK:
|
2730 |
|
|
if (val[2] && is_gimple_val (val[2]) && nargs == 4)
|
2731 |
|
|
result = fold_builtin_memory_chk (loc, callee,
|
2732 |
|
|
gimple_call_arg (stmt, 0),
|
2733 |
|
|
gimple_call_arg (stmt, 1),
|
2734 |
|
|
gimple_call_arg (stmt, 2),
|
2735 |
|
|
gimple_call_arg (stmt, 3),
|
2736 |
|
|
val[2], ignore,
|
2737 |
|
|
DECL_FUNCTION_CODE (callee));
|
2738 |
|
|
break;
|
2739 |
|
|
|
2740 |
|
|
case BUILT_IN_STRCPY_CHK:
|
2741 |
|
|
case BUILT_IN_STPCPY_CHK:
|
2742 |
|
|
if (val[1] && is_gimple_val (val[1]) && nargs == 3)
|
2743 |
|
|
result = fold_builtin_stxcpy_chk (loc, callee,
|
2744 |
|
|
gimple_call_arg (stmt, 0),
|
2745 |
|
|
gimple_call_arg (stmt, 1),
|
2746 |
|
|
gimple_call_arg (stmt, 2),
|
2747 |
|
|
val[1], ignore,
|
2748 |
|
|
DECL_FUNCTION_CODE (callee));
|
2749 |
|
|
break;
|
2750 |
|
|
|
2751 |
|
|
case BUILT_IN_STRNCPY_CHK:
|
2752 |
|
|
if (val[2] && is_gimple_val (val[2]) && nargs == 4)
|
2753 |
|
|
result = fold_builtin_strncpy_chk (loc, gimple_call_arg (stmt, 0),
|
2754 |
|
|
gimple_call_arg (stmt, 1),
|
2755 |
|
|
gimple_call_arg (stmt, 2),
|
2756 |
|
|
gimple_call_arg (stmt, 3),
|
2757 |
|
|
val[2]);
|
2758 |
|
|
break;
|
2759 |
|
|
|
2760 |
|
|
case BUILT_IN_SNPRINTF_CHK:
|
2761 |
|
|
case BUILT_IN_VSNPRINTF_CHK:
|
2762 |
|
|
if (val[1] && is_gimple_val (val[1]))
|
2763 |
|
|
result = gimple_fold_builtin_snprintf_chk (stmt, val[1],
|
2764 |
|
|
DECL_FUNCTION_CODE (callee));
|
2765 |
|
|
break;
|
2766 |
|
|
|
2767 |
|
|
default:
|
2768 |
|
|
gcc_unreachable ();
|
2769 |
|
|
}
|
2770 |
|
|
|
2771 |
|
|
if (result && ignore)
|
2772 |
|
|
result = fold_ignored_result (result);
|
2773 |
|
|
return result;
|
2774 |
|
|
}
|
2775 |
|
|
|
2776 |
|
|
/* Attempt to fold an assignment statement pointed-to by SI. Returns a
|
2777 |
|
|
replacement rhs for the statement or NULL_TREE if no simplification
|
2778 |
|
|
could be made. It is assumed that the operands have been previously
|
2779 |
|
|
folded. */
|
2780 |
|
|
|
2781 |
|
|
static tree
|
2782 |
|
|
fold_gimple_assign (gimple_stmt_iterator *si)
|
2783 |
|
|
{
|
2784 |
|
|
gimple stmt = gsi_stmt (*si);
|
2785 |
|
|
enum tree_code subcode = gimple_assign_rhs_code (stmt);
|
2786 |
|
|
location_t loc = gimple_location (stmt);
|
2787 |
|
|
|
2788 |
|
|
tree result = NULL_TREE;
|
2789 |
|
|
|
2790 |
|
|
switch (get_gimple_rhs_class (subcode))
|
2791 |
|
|
{
|
2792 |
|
|
case GIMPLE_SINGLE_RHS:
|
2793 |
|
|
{
|
2794 |
|
|
tree rhs = gimple_assign_rhs1 (stmt);
|
2795 |
|
|
|
2796 |
|
|
/* Try to fold a conditional expression. */
|
2797 |
|
|
if (TREE_CODE (rhs) == COND_EXPR)
|
2798 |
|
|
{
|
2799 |
|
|
tree op0 = COND_EXPR_COND (rhs);
|
2800 |
|
|
tree tem;
|
2801 |
|
|
bool set = false;
|
2802 |
|
|
location_t cond_loc = EXPR_LOCATION (rhs);
|
2803 |
|
|
|
2804 |
|
|
if (COMPARISON_CLASS_P (op0))
|
2805 |
|
|
{
|
2806 |
|
|
fold_defer_overflow_warnings ();
|
2807 |
|
|
tem = fold_binary_loc (cond_loc,
|
2808 |
|
|
TREE_CODE (op0), TREE_TYPE (op0),
|
2809 |
|
|
TREE_OPERAND (op0, 0),
|
2810 |
|
|
TREE_OPERAND (op0, 1));
|
2811 |
|
|
/* This is actually a conditional expression, not a GIMPLE
|
2812 |
|
|
conditional statement, however, the valid_gimple_rhs_p
|
2813 |
|
|
test still applies. */
|
2814 |
|
|
set = (tem && is_gimple_condexpr (tem)
|
2815 |
|
|
&& valid_gimple_rhs_p (tem));
|
2816 |
|
|
fold_undefer_overflow_warnings (set, stmt, 0);
|
2817 |
|
|
}
|
2818 |
|
|
else if (is_gimple_min_invariant (op0))
|
2819 |
|
|
{
|
2820 |
|
|
tem = op0;
|
2821 |
|
|
set = true;
|
2822 |
|
|
}
|
2823 |
|
|
else
|
2824 |
|
|
return NULL_TREE;
|
2825 |
|
|
|
2826 |
|
|
if (set)
|
2827 |
|
|
result = fold_build3_loc (cond_loc, COND_EXPR, TREE_TYPE (rhs), tem,
|
2828 |
|
|
COND_EXPR_THEN (rhs), COND_EXPR_ELSE (rhs));
|
2829 |
|
|
}
|
2830 |
|
|
|
2831 |
|
|
else if (TREE_CODE (rhs) == TARGET_MEM_REF)
|
2832 |
|
|
return maybe_fold_tmr (rhs);
|
2833 |
|
|
|
2834 |
|
|
else if (REFERENCE_CLASS_P (rhs))
|
2835 |
|
|
return maybe_fold_reference (rhs, false);
|
2836 |
|
|
|
2837 |
|
|
else if (TREE_CODE (rhs) == ADDR_EXPR)
|
2838 |
|
|
{
|
2839 |
|
|
tree tem = maybe_fold_reference (TREE_OPERAND (rhs, 0), true);
|
2840 |
|
|
if (tem)
|
2841 |
|
|
result = fold_convert (TREE_TYPE (rhs),
|
2842 |
|
|
build_fold_addr_expr_loc (loc, tem));
|
2843 |
|
|
}
|
2844 |
|
|
|
2845 |
|
|
else if (TREE_CODE (rhs) == CONSTRUCTOR
|
2846 |
|
|
&& TREE_CODE (TREE_TYPE (rhs)) == VECTOR_TYPE
|
2847 |
|
|
&& (CONSTRUCTOR_NELTS (rhs)
|
2848 |
|
|
== TYPE_VECTOR_SUBPARTS (TREE_TYPE (rhs))))
|
2849 |
|
|
{
|
2850 |
|
|
/* Fold a constant vector CONSTRUCTOR to VECTOR_CST. */
|
2851 |
|
|
unsigned i;
|
2852 |
|
|
tree val;
|
2853 |
|
|
|
2854 |
|
|
FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (rhs), i, val)
|
2855 |
|
|
if (TREE_CODE (val) != INTEGER_CST
|
2856 |
|
|
&& TREE_CODE (val) != REAL_CST
|
2857 |
|
|
&& TREE_CODE (val) != FIXED_CST)
|
2858 |
|
|
return NULL_TREE;
|
2859 |
|
|
|
2860 |
|
|
return build_vector_from_ctor (TREE_TYPE (rhs),
|
2861 |
|
|
CONSTRUCTOR_ELTS (rhs));
|
2862 |
|
|
}
|
2863 |
|
|
|
2864 |
|
|
else if (DECL_P (rhs))
|
2865 |
|
|
return unshare_expr (get_symbol_constant_value (rhs));
|
2866 |
|
|
|
2867 |
|
|
/* If we couldn't fold the RHS, hand over to the generic
|
2868 |
|
|
fold routines. */
|
2869 |
|
|
if (result == NULL_TREE)
|
2870 |
|
|
result = fold (rhs);
|
2871 |
|
|
|
2872 |
|
|
/* Strip away useless type conversions. Both the NON_LVALUE_EXPR
|
2873 |
|
|
that may have been added by fold, and "useless" type
|
2874 |
|
|
conversions that might now be apparent due to propagation. */
|
2875 |
|
|
STRIP_USELESS_TYPE_CONVERSION (result);
|
2876 |
|
|
|
2877 |
|
|
if (result != rhs && valid_gimple_rhs_p (result))
|
2878 |
|
|
return result;
|
2879 |
|
|
|
2880 |
|
|
return NULL_TREE;
|
2881 |
|
|
}
|
2882 |
|
|
break;
|
2883 |
|
|
|
2884 |
|
|
case GIMPLE_UNARY_RHS:
|
2885 |
|
|
{
|
2886 |
|
|
tree rhs = gimple_assign_rhs1 (stmt);
|
2887 |
|
|
|
2888 |
|
|
result = fold_unary_loc (loc, subcode, gimple_expr_type (stmt), rhs);
|
2889 |
|
|
if (result)
|
2890 |
|
|
{
|
2891 |
|
|
/* If the operation was a conversion do _not_ mark a
|
2892 |
|
|
resulting constant with TREE_OVERFLOW if the original
|
2893 |
|
|
constant was not. These conversions have implementation
|
2894 |
|
|
defined behavior and retaining the TREE_OVERFLOW flag
|
2895 |
|
|
here would confuse later passes such as VRP. */
|
2896 |
|
|
if (CONVERT_EXPR_CODE_P (subcode)
|
2897 |
|
|
&& TREE_CODE (result) == INTEGER_CST
|
2898 |
|
|
&& TREE_CODE (rhs) == INTEGER_CST)
|
2899 |
|
|
TREE_OVERFLOW (result) = TREE_OVERFLOW (rhs);
|
2900 |
|
|
|
2901 |
|
|
STRIP_USELESS_TYPE_CONVERSION (result);
|
2902 |
|
|
if (valid_gimple_rhs_p (result))
|
2903 |
|
|
return result;
|
2904 |
|
|
}
|
2905 |
|
|
else if (CONVERT_EXPR_CODE_P (subcode)
|
2906 |
|
|
&& POINTER_TYPE_P (gimple_expr_type (stmt))
|
2907 |
|
|
&& POINTER_TYPE_P (TREE_TYPE (gimple_assign_rhs1 (stmt))))
|
2908 |
|
|
{
|
2909 |
|
|
tree type = gimple_expr_type (stmt);
|
2910 |
|
|
tree t = maybe_fold_offset_to_address (loc,
|
2911 |
|
|
gimple_assign_rhs1 (stmt),
|
2912 |
|
|
integer_zero_node, type);
|
2913 |
|
|
if (t)
|
2914 |
|
|
return t;
|
2915 |
|
|
}
|
2916 |
|
|
}
|
2917 |
|
|
break;
|
2918 |
|
|
|
2919 |
|
|
case GIMPLE_BINARY_RHS:
|
2920 |
|
|
/* Try to fold pointer addition. */
|
2921 |
|
|
if (gimple_assign_rhs_code (stmt) == POINTER_PLUS_EXPR)
|
2922 |
|
|
{
|
2923 |
|
|
tree type = TREE_TYPE (gimple_assign_rhs1 (stmt));
|
2924 |
|
|
if (TREE_CODE (TREE_TYPE (type)) == ARRAY_TYPE)
|
2925 |
|
|
{
|
2926 |
|
|
type = build_pointer_type (TREE_TYPE (TREE_TYPE (type)));
|
2927 |
|
|
if (!useless_type_conversion_p
|
2928 |
|
|
(TREE_TYPE (gimple_assign_lhs (stmt)), type))
|
2929 |
|
|
type = TREE_TYPE (gimple_assign_rhs1 (stmt));
|
2930 |
|
|
}
|
2931 |
|
|
result = maybe_fold_stmt_addition (gimple_location (stmt),
|
2932 |
|
|
type,
|
2933 |
|
|
gimple_assign_rhs1 (stmt),
|
2934 |
|
|
gimple_assign_rhs2 (stmt));
|
2935 |
|
|
}
|
2936 |
|
|
|
2937 |
|
|
if (!result)
|
2938 |
|
|
result = fold_binary_loc (loc, subcode,
|
2939 |
|
|
TREE_TYPE (gimple_assign_lhs (stmt)),
|
2940 |
|
|
gimple_assign_rhs1 (stmt),
|
2941 |
|
|
gimple_assign_rhs2 (stmt));
|
2942 |
|
|
|
2943 |
|
|
if (result)
|
2944 |
|
|
{
|
2945 |
|
|
STRIP_USELESS_TYPE_CONVERSION (result);
|
2946 |
|
|
if (valid_gimple_rhs_p (result))
|
2947 |
|
|
return result;
|
2948 |
|
|
|
2949 |
|
|
/* Fold might have produced non-GIMPLE, so if we trust it blindly
|
2950 |
|
|
we lose canonicalization opportunities. Do not go again
|
2951 |
|
|
through fold here though, or the same non-GIMPLE will be
|
2952 |
|
|
produced. */
|
2953 |
|
|
if (commutative_tree_code (subcode)
|
2954 |
|
|
&& tree_swap_operands_p (gimple_assign_rhs1 (stmt),
|
2955 |
|
|
gimple_assign_rhs2 (stmt), false))
|
2956 |
|
|
return build2 (subcode, TREE_TYPE (gimple_assign_lhs (stmt)),
|
2957 |
|
|
gimple_assign_rhs2 (stmt),
|
2958 |
|
|
gimple_assign_rhs1 (stmt));
|
2959 |
|
|
}
|
2960 |
|
|
break;
|
2961 |
|
|
|
2962 |
|
|
case GIMPLE_INVALID_RHS:
|
2963 |
|
|
gcc_unreachable ();
|
2964 |
|
|
}
|
2965 |
|
|
|
2966 |
|
|
return NULL_TREE;
|
2967 |
|
|
}
|
2968 |
|
|
|
2969 |
|
|
/* Attempt to fold a conditional statement. Return true if any changes were
|
2970 |
|
|
made. We only attempt to fold the condition expression, and do not perform
|
2971 |
|
|
any transformation that would require alteration of the cfg. It is
|
2972 |
|
|
assumed that the operands have been previously folded. */
|
2973 |
|
|
|
2974 |
|
|
static bool
|
2975 |
|
|
fold_gimple_cond (gimple stmt)
|
2976 |
|
|
{
|
2977 |
|
|
tree result = fold_binary_loc (gimple_location (stmt),
|
2978 |
|
|
gimple_cond_code (stmt),
|
2979 |
|
|
boolean_type_node,
|
2980 |
|
|
gimple_cond_lhs (stmt),
|
2981 |
|
|
gimple_cond_rhs (stmt));
|
2982 |
|
|
|
2983 |
|
|
if (result)
|
2984 |
|
|
{
|
2985 |
|
|
STRIP_USELESS_TYPE_CONVERSION (result);
|
2986 |
|
|
if (is_gimple_condexpr (result) && valid_gimple_rhs_p (result))
|
2987 |
|
|
{
|
2988 |
|
|
gimple_cond_set_condition_from_tree (stmt, result);
|
2989 |
|
|
return true;
|
2990 |
|
|
}
|
2991 |
|
|
}
|
2992 |
|
|
|
2993 |
|
|
return false;
|
2994 |
|
|
}
|
2995 |
|
|
|
2996 |
|
|
static void gimplify_and_update_call_from_tree (gimple_stmt_iterator *, tree);
|
2997 |
|
|
|
2998 |
|
|
/* Attempt to fold a call statement referenced by the statement iterator GSI.
|
2999 |
|
|
The statement may be replaced by another statement, e.g., if the call
|
3000 |
|
|
simplifies to a constant value. Return true if any changes were made.
|
3001 |
|
|
It is assumed that the operands have been previously folded. */
|
3002 |
|
|
|
3003 |
|
|
static bool
|
3004 |
|
|
fold_gimple_call (gimple_stmt_iterator *gsi)
|
3005 |
|
|
{
|
3006 |
|
|
gimple stmt = gsi_stmt (*gsi);
|
3007 |
|
|
|
3008 |
|
|
tree callee = gimple_call_fndecl (stmt);
|
3009 |
|
|
|
3010 |
|
|
/* Check for builtins that CCP can handle using information not
|
3011 |
|
|
available in the generic fold routines. */
|
3012 |
|
|
if (callee && DECL_BUILT_IN (callee))
|
3013 |
|
|
{
|
3014 |
|
|
tree result = ccp_fold_builtin (stmt);
|
3015 |
|
|
|
3016 |
|
|
if (result)
|
3017 |
|
|
{
|
3018 |
|
|
if (!update_call_from_tree (gsi, result))
|
3019 |
|
|
gimplify_and_update_call_from_tree (gsi, result);
|
3020 |
|
|
return true;
|
3021 |
|
|
}
|
3022 |
|
|
}
|
3023 |
|
|
else
|
3024 |
|
|
{
|
3025 |
|
|
/* Check for resolvable OBJ_TYPE_REF. The only sorts we can resolve
|
3026 |
|
|
here are when we've propagated the address of a decl into the
|
3027 |
|
|
object slot. */
|
3028 |
|
|
/* ??? Should perhaps do this in fold proper. However, doing it
|
3029 |
|
|
there requires that we create a new CALL_EXPR, and that requires
|
3030 |
|
|
copying EH region info to the new node. Easier to just do it
|
3031 |
|
|
here where we can just smash the call operand. */
|
3032 |
|
|
/* ??? Is there a good reason not to do this in fold_stmt_inplace? */
|
3033 |
|
|
callee = gimple_call_fn (stmt);
|
3034 |
|
|
if (TREE_CODE (callee) == OBJ_TYPE_REF
|
3035 |
|
|
&& lang_hooks.fold_obj_type_ref
|
3036 |
|
|
&& TREE_CODE (OBJ_TYPE_REF_OBJECT (callee)) == ADDR_EXPR
|
3037 |
|
|
&& DECL_P (TREE_OPERAND
|
3038 |
|
|
(OBJ_TYPE_REF_OBJECT (callee), 0)))
|
3039 |
|
|
{
|
3040 |
|
|
tree t;
|
3041 |
|
|
|
3042 |
|
|
/* ??? Caution: Broken ADDR_EXPR semantics means that
|
3043 |
|
|
looking at the type of the operand of the addr_expr
|
3044 |
|
|
can yield an array type. See silly exception in
|
3045 |
|
|
check_pointer_types_r. */
|
3046 |
|
|
t = TREE_TYPE (TREE_TYPE (OBJ_TYPE_REF_OBJECT (callee)));
|
3047 |
|
|
t = lang_hooks.fold_obj_type_ref (callee, t);
|
3048 |
|
|
if (t)
|
3049 |
|
|
{
|
3050 |
|
|
gimple_call_set_fn (stmt, t);
|
3051 |
|
|
return true;
|
3052 |
|
|
}
|
3053 |
|
|
}
|
3054 |
|
|
}
|
3055 |
|
|
|
3056 |
|
|
return false;
|
3057 |
|
|
}
|
3058 |
|
|
|
3059 |
|
|
/* Worker for both fold_stmt and fold_stmt_inplace. The INPLACE argument
|
3060 |
|
|
distinguishes both cases. */
|
3061 |
|
|
|
3062 |
|
|
static bool
|
3063 |
|
|
fold_stmt_1 (gimple_stmt_iterator *gsi, bool inplace)
|
3064 |
|
|
{
|
3065 |
|
|
bool changed = false;
|
3066 |
|
|
gimple stmt = gsi_stmt (*gsi);
|
3067 |
|
|
unsigned i;
|
3068 |
|
|
|
3069 |
|
|
/* Fold the main computation performed by the statement. */
|
3070 |
|
|
switch (gimple_code (stmt))
|
3071 |
|
|
{
|
3072 |
|
|
case GIMPLE_ASSIGN:
|
3073 |
|
|
{
|
3074 |
|
|
unsigned old_num_ops = gimple_num_ops (stmt);
|
3075 |
|
|
tree new_rhs = fold_gimple_assign (gsi);
|
3076 |
|
|
tree lhs = gimple_assign_lhs (stmt);
|
3077 |
|
|
if (new_rhs
|
3078 |
|
|
&& !useless_type_conversion_p (TREE_TYPE (lhs),
|
3079 |
|
|
TREE_TYPE (new_rhs)))
|
3080 |
|
|
new_rhs = fold_convert (TREE_TYPE (lhs), new_rhs);
|
3081 |
|
|
if (new_rhs
|
3082 |
|
|
&& (!inplace
|
3083 |
|
|
|| get_gimple_rhs_num_ops (TREE_CODE (new_rhs)) < old_num_ops))
|
3084 |
|
|
{
|
3085 |
|
|
gimple_assign_set_rhs_from_tree (gsi, new_rhs);
|
3086 |
|
|
changed = true;
|
3087 |
|
|
}
|
3088 |
|
|
break;
|
3089 |
|
|
}
|
3090 |
|
|
|
3091 |
|
|
case GIMPLE_COND:
|
3092 |
|
|
changed |= fold_gimple_cond (stmt);
|
3093 |
|
|
break;
|
3094 |
|
|
|
3095 |
|
|
case GIMPLE_CALL:
|
3096 |
|
|
/* Fold *& in call arguments. */
|
3097 |
|
|
for (i = 0; i < gimple_call_num_args (stmt); ++i)
|
3098 |
|
|
if (REFERENCE_CLASS_P (gimple_call_arg (stmt, i)))
|
3099 |
|
|
{
|
3100 |
|
|
tree tmp = maybe_fold_reference (gimple_call_arg (stmt, i), false);
|
3101 |
|
|
if (tmp)
|
3102 |
|
|
{
|
3103 |
|
|
gimple_call_set_arg (stmt, i, tmp);
|
3104 |
|
|
changed = true;
|
3105 |
|
|
}
|
3106 |
|
|
}
|
3107 |
|
|
/* The entire statement may be replaced in this case. */
|
3108 |
|
|
if (!inplace)
|
3109 |
|
|
changed |= fold_gimple_call (gsi);
|
3110 |
|
|
break;
|
3111 |
|
|
|
3112 |
|
|
case GIMPLE_ASM:
|
3113 |
|
|
/* Fold *& in asm operands. */
|
3114 |
|
|
for (i = 0; i < gimple_asm_noutputs (stmt); ++i)
|
3115 |
|
|
{
|
3116 |
|
|
tree link = gimple_asm_output_op (stmt, i);
|
3117 |
|
|
tree op = TREE_VALUE (link);
|
3118 |
|
|
if (REFERENCE_CLASS_P (op)
|
3119 |
|
|
&& (op = maybe_fold_reference (op, true)) != NULL_TREE)
|
3120 |
|
|
{
|
3121 |
|
|
TREE_VALUE (link) = op;
|
3122 |
|
|
changed = true;
|
3123 |
|
|
}
|
3124 |
|
|
}
|
3125 |
|
|
for (i = 0; i < gimple_asm_ninputs (stmt); ++i)
|
3126 |
|
|
{
|
3127 |
|
|
tree link = gimple_asm_input_op (stmt, i);
|
3128 |
|
|
tree op = TREE_VALUE (link);
|
3129 |
|
|
if (REFERENCE_CLASS_P (op)
|
3130 |
|
|
&& (op = maybe_fold_reference (op, false)) != NULL_TREE)
|
3131 |
|
|
{
|
3132 |
|
|
TREE_VALUE (link) = op;
|
3133 |
|
|
changed = true;
|
3134 |
|
|
}
|
3135 |
|
|
}
|
3136 |
|
|
break;
|
3137 |
|
|
|
3138 |
|
|
default:;
|
3139 |
|
|
}
|
3140 |
|
|
|
3141 |
|
|
stmt = gsi_stmt (*gsi);
|
3142 |
|
|
|
3143 |
|
|
/* Fold *& on the lhs. */
|
3144 |
|
|
if (gimple_has_lhs (stmt))
|
3145 |
|
|
{
|
3146 |
|
|
tree lhs = gimple_get_lhs (stmt);
|
3147 |
|
|
if (lhs && REFERENCE_CLASS_P (lhs))
|
3148 |
|
|
{
|
3149 |
|
|
tree new_lhs = maybe_fold_reference (lhs, true);
|
3150 |
|
|
if (new_lhs)
|
3151 |
|
|
{
|
3152 |
|
|
gimple_set_lhs (stmt, new_lhs);
|
3153 |
|
|
changed = true;
|
3154 |
|
|
}
|
3155 |
|
|
}
|
3156 |
|
|
}
|
3157 |
|
|
|
3158 |
|
|
return changed;
|
3159 |
|
|
}
|
3160 |
|
|
|
3161 |
|
|
/* Fold the statement pointed to by GSI. In some cases, this function may
|
3162 |
|
|
replace the whole statement with a new one. Returns true iff folding
|
3163 |
|
|
makes any changes.
|
3164 |
|
|
The statement pointed to by GSI should be in valid gimple form but may
|
3165 |
|
|
be in unfolded state as resulting from for example constant propagation
|
3166 |
|
|
which can produce *&x = 0. */
|
3167 |
|
|
|
3168 |
|
|
bool
|
3169 |
|
|
fold_stmt (gimple_stmt_iterator *gsi)
|
3170 |
|
|
{
|
3171 |
|
|
return fold_stmt_1 (gsi, false);
|
3172 |
|
|
}
|
3173 |
|
|
|
3174 |
|
|
/* Perform the minimal folding on statement STMT. Only operations like
|
3175 |
|
|
*&x created by constant propagation are handled. The statement cannot
|
3176 |
|
|
be replaced with a new one. Return true if the statement was
|
3177 |
|
|
changed, false otherwise.
|
3178 |
|
|
The statement STMT should be in valid gimple form but may
|
3179 |
|
|
be in unfolded state as resulting from for example constant propagation
|
3180 |
|
|
which can produce *&x = 0. */
|
3181 |
|
|
|
3182 |
|
|
bool
|
3183 |
|
|
fold_stmt_inplace (gimple stmt)
|
3184 |
|
|
{
|
3185 |
|
|
gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
|
3186 |
|
|
bool changed = fold_stmt_1 (&gsi, true);
|
3187 |
|
|
gcc_assert (gsi_stmt (gsi) == stmt);
|
3188 |
|
|
return changed;
|
3189 |
|
|
}
|
3190 |
|
|
|
3191 |
|
|
/* Try to optimize out __builtin_stack_restore. Optimize it out
|
3192 |
|
|
if there is another __builtin_stack_restore in the same basic
|
3193 |
|
|
block and no calls or ASM_EXPRs are in between, or if this block's
|
3194 |
|
|
only outgoing edge is to EXIT_BLOCK and there are no calls or
|
3195 |
|
|
ASM_EXPRs after this __builtin_stack_restore. */
|
3196 |
|
|
|
3197 |
|
|
static tree
|
3198 |
|
|
optimize_stack_restore (gimple_stmt_iterator i)
|
3199 |
|
|
{
|
3200 |
|
|
tree callee;
|
3201 |
|
|
gimple stmt;
|
3202 |
|
|
|
3203 |
|
|
basic_block bb = gsi_bb (i);
|
3204 |
|
|
gimple call = gsi_stmt (i);
|
3205 |
|
|
|
3206 |
|
|
if (gimple_code (call) != GIMPLE_CALL
|
3207 |
|
|
|| gimple_call_num_args (call) != 1
|
3208 |
|
|
|| TREE_CODE (gimple_call_arg (call, 0)) != SSA_NAME
|
3209 |
|
|
|| !POINTER_TYPE_P (TREE_TYPE (gimple_call_arg (call, 0))))
|
3210 |
|
|
return NULL_TREE;
|
3211 |
|
|
|
3212 |
|
|
for (gsi_next (&i); !gsi_end_p (i); gsi_next (&i))
|
3213 |
|
|
{
|
3214 |
|
|
stmt = gsi_stmt (i);
|
3215 |
|
|
if (gimple_code (stmt) == GIMPLE_ASM)
|
3216 |
|
|
return NULL_TREE;
|
3217 |
|
|
if (gimple_code (stmt) != GIMPLE_CALL)
|
3218 |
|
|
continue;
|
3219 |
|
|
|
3220 |
|
|
callee = gimple_call_fndecl (stmt);
|
3221 |
|
|
if (!callee
|
3222 |
|
|
|| DECL_BUILT_IN_CLASS (callee) != BUILT_IN_NORMAL
|
3223 |
|
|
/* All regular builtins are ok, just obviously not alloca. */
|
3224 |
|
|
|| DECL_FUNCTION_CODE (callee) == BUILT_IN_ALLOCA)
|
3225 |
|
|
return NULL_TREE;
|
3226 |
|
|
|
3227 |
|
|
if (DECL_FUNCTION_CODE (callee) == BUILT_IN_STACK_RESTORE)
|
3228 |
|
|
goto second_stack_restore;
|
3229 |
|
|
}
|
3230 |
|
|
|
3231 |
|
|
if (!gsi_end_p (i))
|
3232 |
|
|
return NULL_TREE;
|
3233 |
|
|
|
3234 |
|
|
/* Allow one successor of the exit block, or zero successors. */
|
3235 |
|
|
switch (EDGE_COUNT (bb->succs))
|
3236 |
|
|
{
|
3237 |
|
|
case 0:
|
3238 |
|
|
break;
|
3239 |
|
|
case 1:
|
3240 |
|
|
if (single_succ_edge (bb)->dest != EXIT_BLOCK_PTR)
|
3241 |
|
|
return NULL_TREE;
|
3242 |
|
|
break;
|
3243 |
|
|
default:
|
3244 |
|
|
return NULL_TREE;
|
3245 |
|
|
}
|
3246 |
|
|
second_stack_restore:
|
3247 |
|
|
|
3248 |
|
|
/* If there's exactly one use, then zap the call to __builtin_stack_save.
|
3249 |
|
|
If there are multiple uses, then the last one should remove the call.
|
3250 |
|
|
In any case, whether the call to __builtin_stack_save can be removed
|
3251 |
|
|
or not is irrelevant to removing the call to __builtin_stack_restore. */
|
3252 |
|
|
if (has_single_use (gimple_call_arg (call, 0)))
|
3253 |
|
|
{
|
3254 |
|
|
gimple stack_save = SSA_NAME_DEF_STMT (gimple_call_arg (call, 0));
|
3255 |
|
|
if (is_gimple_call (stack_save))
|
3256 |
|
|
{
|
3257 |
|
|
callee = gimple_call_fndecl (stack_save);
|
3258 |
|
|
if (callee
|
3259 |
|
|
&& DECL_BUILT_IN_CLASS (callee) == BUILT_IN_NORMAL
|
3260 |
|
|
&& DECL_FUNCTION_CODE (callee) == BUILT_IN_STACK_SAVE)
|
3261 |
|
|
{
|
3262 |
|
|
gimple_stmt_iterator stack_save_gsi;
|
3263 |
|
|
tree rhs;
|
3264 |
|
|
|
3265 |
|
|
stack_save_gsi = gsi_for_stmt (stack_save);
|
3266 |
|
|
rhs = build_int_cst (TREE_TYPE (gimple_call_arg (call, 0)), 0);
|
3267 |
|
|
update_call_from_tree (&stack_save_gsi, rhs);
|
3268 |
|
|
}
|
3269 |
|
|
}
|
3270 |
|
|
}
|
3271 |
|
|
|
3272 |
|
|
/* No effect, so the statement will be deleted. */
|
3273 |
|
|
return integer_zero_node;
|
3274 |
|
|
}
|
3275 |
|
|
|
3276 |
|
|
/* If va_list type is a simple pointer and nothing special is needed,
|
3277 |
|
|
optimize __builtin_va_start (&ap, 0) into ap = __builtin_next_arg (0),
|
3278 |
|
|
__builtin_va_end (&ap) out as NOP and __builtin_va_copy into a simple
|
3279 |
|
|
pointer assignment. */
|
3280 |
|
|
|
3281 |
|
|
static tree
|
3282 |
|
|
optimize_stdarg_builtin (gimple call)
|
3283 |
|
|
{
|
3284 |
|
|
tree callee, lhs, rhs, cfun_va_list;
|
3285 |
|
|
bool va_list_simple_ptr;
|
3286 |
|
|
location_t loc = gimple_location (call);
|
3287 |
|
|
|
3288 |
|
|
if (gimple_code (call) != GIMPLE_CALL)
|
3289 |
|
|
return NULL_TREE;
|
3290 |
|
|
|
3291 |
|
|
callee = gimple_call_fndecl (call);
|
3292 |
|
|
|
3293 |
|
|
cfun_va_list = targetm.fn_abi_va_list (callee);
|
3294 |
|
|
va_list_simple_ptr = POINTER_TYPE_P (cfun_va_list)
|
3295 |
|
|
&& (TREE_TYPE (cfun_va_list) == void_type_node
|
3296 |
|
|
|| TREE_TYPE (cfun_va_list) == char_type_node);
|
3297 |
|
|
|
3298 |
|
|
switch (DECL_FUNCTION_CODE (callee))
|
3299 |
|
|
{
|
3300 |
|
|
case BUILT_IN_VA_START:
|
3301 |
|
|
if (!va_list_simple_ptr
|
3302 |
|
|
|| targetm.expand_builtin_va_start != NULL
|
3303 |
|
|
|| built_in_decls[BUILT_IN_NEXT_ARG] == NULL)
|
3304 |
|
|
return NULL_TREE;
|
3305 |
|
|
|
3306 |
|
|
if (gimple_call_num_args (call) != 2)
|
3307 |
|
|
return NULL_TREE;
|
3308 |
|
|
|
3309 |
|
|
lhs = gimple_call_arg (call, 0);
|
3310 |
|
|
if (!POINTER_TYPE_P (TREE_TYPE (lhs))
|
3311 |
|
|
|| TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (lhs)))
|
3312 |
|
|
!= TYPE_MAIN_VARIANT (cfun_va_list))
|
3313 |
|
|
return NULL_TREE;
|
3314 |
|
|
|
3315 |
|
|
lhs = build_fold_indirect_ref_loc (loc, lhs);
|
3316 |
|
|
rhs = build_call_expr_loc (loc, built_in_decls[BUILT_IN_NEXT_ARG],
|
3317 |
|
|
1, integer_zero_node);
|
3318 |
|
|
rhs = fold_convert_loc (loc, TREE_TYPE (lhs), rhs);
|
3319 |
|
|
return build2 (MODIFY_EXPR, TREE_TYPE (lhs), lhs, rhs);
|
3320 |
|
|
|
3321 |
|
|
case BUILT_IN_VA_COPY:
|
3322 |
|
|
if (!va_list_simple_ptr)
|
3323 |
|
|
return NULL_TREE;
|
3324 |
|
|
|
3325 |
|
|
if (gimple_call_num_args (call) != 2)
|
3326 |
|
|
return NULL_TREE;
|
3327 |
|
|
|
3328 |
|
|
lhs = gimple_call_arg (call, 0);
|
3329 |
|
|
if (!POINTER_TYPE_P (TREE_TYPE (lhs))
|
3330 |
|
|
|| TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (lhs)))
|
3331 |
|
|
!= TYPE_MAIN_VARIANT (cfun_va_list))
|
3332 |
|
|
return NULL_TREE;
|
3333 |
|
|
|
3334 |
|
|
lhs = build_fold_indirect_ref_loc (loc, lhs);
|
3335 |
|
|
rhs = gimple_call_arg (call, 1);
|
3336 |
|
|
if (TYPE_MAIN_VARIANT (TREE_TYPE (rhs))
|
3337 |
|
|
!= TYPE_MAIN_VARIANT (cfun_va_list))
|
3338 |
|
|
return NULL_TREE;
|
3339 |
|
|
|
3340 |
|
|
rhs = fold_convert_loc (loc, TREE_TYPE (lhs), rhs);
|
3341 |
|
|
return build2 (MODIFY_EXPR, TREE_TYPE (lhs), lhs, rhs);
|
3342 |
|
|
|
3343 |
|
|
case BUILT_IN_VA_END:
|
3344 |
|
|
/* No effect, so the statement will be deleted. */
|
3345 |
|
|
return integer_zero_node;
|
3346 |
|
|
|
3347 |
|
|
default:
|
3348 |
|
|
gcc_unreachable ();
|
3349 |
|
|
}
|
3350 |
|
|
}
|
3351 |
|
|
|
3352 |
|
|
/* Convert EXPR into a GIMPLE value suitable for substitution on the
|
3353 |
|
|
RHS of an assignment. Insert the necessary statements before
|
3354 |
|
|
iterator *SI_P. The statement at *SI_P, which must be a GIMPLE_CALL
|
3355 |
|
|
is replaced. If the call is expected to produces a result, then it
|
3356 |
|
|
is replaced by an assignment of the new RHS to the result variable.
|
3357 |
|
|
If the result is to be ignored, then the call is replaced by a
|
3358 |
|
|
GIMPLE_NOP. */
|
3359 |
|
|
|
3360 |
|
|
static void
|
3361 |
|
|
gimplify_and_update_call_from_tree (gimple_stmt_iterator *si_p, tree expr)
|
3362 |
|
|
{
|
3363 |
|
|
tree lhs;
|
3364 |
|
|
tree tmp = NULL_TREE; /* Silence warning. */
|
3365 |
|
|
gimple stmt, new_stmt;
|
3366 |
|
|
gimple_stmt_iterator i;
|
3367 |
|
|
gimple_seq stmts = gimple_seq_alloc();
|
3368 |
|
|
struct gimplify_ctx gctx;
|
3369 |
|
|
|
3370 |
|
|
stmt = gsi_stmt (*si_p);
|
3371 |
|
|
|
3372 |
|
|
gcc_assert (is_gimple_call (stmt));
|
3373 |
|
|
|
3374 |
|
|
lhs = gimple_call_lhs (stmt);
|
3375 |
|
|
|
3376 |
|
|
push_gimplify_context (&gctx);
|
3377 |
|
|
|
3378 |
|
|
if (lhs == NULL_TREE)
|
3379 |
|
|
gimplify_and_add (expr, &stmts);
|
3380 |
|
|
else
|
3381 |
|
|
tmp = get_initialized_tmp_var (expr, &stmts, NULL);
|
3382 |
|
|
|
3383 |
|
|
pop_gimplify_context (NULL);
|
3384 |
|
|
|
3385 |
|
|
if (gimple_has_location (stmt))
|
3386 |
|
|
annotate_all_with_location (stmts, gimple_location (stmt));
|
3387 |
|
|
|
3388 |
|
|
/* The replacement can expose previously unreferenced variables. */
|
3389 |
|
|
for (i = gsi_start (stmts); !gsi_end_p (i); gsi_next (&i))
|
3390 |
|
|
{
|
3391 |
|
|
new_stmt = gsi_stmt (i);
|
3392 |
|
|
find_new_referenced_vars (new_stmt);
|
3393 |
|
|
gsi_insert_before (si_p, new_stmt, GSI_NEW_STMT);
|
3394 |
|
|
mark_symbols_for_renaming (new_stmt);
|
3395 |
|
|
gsi_next (si_p);
|
3396 |
|
|
}
|
3397 |
|
|
|
3398 |
|
|
if (lhs == NULL_TREE)
|
3399 |
|
|
{
|
3400 |
|
|
new_stmt = gimple_build_nop ();
|
3401 |
|
|
unlink_stmt_vdef (stmt);
|
3402 |
|
|
release_defs (stmt);
|
3403 |
|
|
}
|
3404 |
|
|
else
|
3405 |
|
|
{
|
3406 |
|
|
new_stmt = gimple_build_assign (lhs, tmp);
|
3407 |
|
|
gimple_set_vuse (new_stmt, gimple_vuse (stmt));
|
3408 |
|
|
gimple_set_vdef (new_stmt, gimple_vdef (stmt));
|
3409 |
|
|
move_ssa_defining_stmt_for_defs (new_stmt, stmt);
|
3410 |
|
|
}
|
3411 |
|
|
|
3412 |
|
|
gimple_set_location (new_stmt, gimple_location (stmt));
|
3413 |
|
|
gsi_replace (si_p, new_stmt, false);
|
3414 |
|
|
}
|
3415 |
|
|
|
3416 |
|
|
/* A simple pass that attempts to fold all builtin functions. This pass
|
3417 |
|
|
is run after we've propagated as many constants as we can. */
|
3418 |
|
|
|
3419 |
|
|
static unsigned int
|
3420 |
|
|
execute_fold_all_builtins (void)
|
3421 |
|
|
{
|
3422 |
|
|
bool cfg_changed = false;
|
3423 |
|
|
basic_block bb;
|
3424 |
|
|
unsigned int todoflags = 0;
|
3425 |
|
|
|
3426 |
|
|
FOR_EACH_BB (bb)
|
3427 |
|
|
{
|
3428 |
|
|
gimple_stmt_iterator i;
|
3429 |
|
|
for (i = gsi_start_bb (bb); !gsi_end_p (i); )
|
3430 |
|
|
{
|
3431 |
|
|
gimple stmt, old_stmt;
|
3432 |
|
|
tree callee, result;
|
3433 |
|
|
enum built_in_function fcode;
|
3434 |
|
|
|
3435 |
|
|
stmt = gsi_stmt (i);
|
3436 |
|
|
|
3437 |
|
|
if (gimple_code (stmt) != GIMPLE_CALL)
|
3438 |
|
|
{
|
3439 |
|
|
gsi_next (&i);
|
3440 |
|
|
continue;
|
3441 |
|
|
}
|
3442 |
|
|
callee = gimple_call_fndecl (stmt);
|
3443 |
|
|
if (!callee || DECL_BUILT_IN_CLASS (callee) != BUILT_IN_NORMAL)
|
3444 |
|
|
{
|
3445 |
|
|
gsi_next (&i);
|
3446 |
|
|
continue;
|
3447 |
|
|
}
|
3448 |
|
|
fcode = DECL_FUNCTION_CODE (callee);
|
3449 |
|
|
|
3450 |
|
|
result = ccp_fold_builtin (stmt);
|
3451 |
|
|
|
3452 |
|
|
if (result)
|
3453 |
|
|
gimple_remove_stmt_histograms (cfun, stmt);
|
3454 |
|
|
|
3455 |
|
|
if (!result)
|
3456 |
|
|
switch (DECL_FUNCTION_CODE (callee))
|
3457 |
|
|
{
|
3458 |
|
|
case BUILT_IN_CONSTANT_P:
|
3459 |
|
|
/* Resolve __builtin_constant_p. If it hasn't been
|
3460 |
|
|
folded to integer_one_node by now, it's fairly
|
3461 |
|
|
certain that the value simply isn't constant. */
|
3462 |
|
|
result = integer_zero_node;
|
3463 |
|
|
break;
|
3464 |
|
|
|
3465 |
|
|
case BUILT_IN_STACK_RESTORE:
|
3466 |
|
|
result = optimize_stack_restore (i);
|
3467 |
|
|
if (result)
|
3468 |
|
|
break;
|
3469 |
|
|
gsi_next (&i);
|
3470 |
|
|
continue;
|
3471 |
|
|
|
3472 |
|
|
case BUILT_IN_VA_START:
|
3473 |
|
|
case BUILT_IN_VA_END:
|
3474 |
|
|
case BUILT_IN_VA_COPY:
|
3475 |
|
|
/* These shouldn't be folded before pass_stdarg. */
|
3476 |
|
|
result = optimize_stdarg_builtin (stmt);
|
3477 |
|
|
if (result)
|
3478 |
|
|
break;
|
3479 |
|
|
/* FALLTHRU */
|
3480 |
|
|
|
3481 |
|
|
default:
|
3482 |
|
|
gsi_next (&i);
|
3483 |
|
|
continue;
|
3484 |
|
|
}
|
3485 |
|
|
|
3486 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
3487 |
|
|
{
|
3488 |
|
|
fprintf (dump_file, "Simplified\n ");
|
3489 |
|
|
print_gimple_stmt (dump_file, stmt, 0, dump_flags);
|
3490 |
|
|
}
|
3491 |
|
|
|
3492 |
|
|
old_stmt = stmt;
|
3493 |
|
|
if (!update_call_from_tree (&i, result))
|
3494 |
|
|
{
|
3495 |
|
|
gimplify_and_update_call_from_tree (&i, result);
|
3496 |
|
|
todoflags |= TODO_update_address_taken;
|
3497 |
|
|
}
|
3498 |
|
|
|
3499 |
|
|
stmt = gsi_stmt (i);
|
3500 |
|
|
update_stmt (stmt);
|
3501 |
|
|
|
3502 |
|
|
if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt)
|
3503 |
|
|
&& gimple_purge_dead_eh_edges (bb))
|
3504 |
|
|
cfg_changed = true;
|
3505 |
|
|
|
3506 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
3507 |
|
|
{
|
3508 |
|
|
fprintf (dump_file, "to\n ");
|
3509 |
|
|
print_gimple_stmt (dump_file, stmt, 0, dump_flags);
|
3510 |
|
|
fprintf (dump_file, "\n");
|
3511 |
|
|
}
|
3512 |
|
|
|
3513 |
|
|
/* Retry the same statement if it changed into another
|
3514 |
|
|
builtin, there might be new opportunities now. */
|
3515 |
|
|
if (gimple_code (stmt) != GIMPLE_CALL)
|
3516 |
|
|
{
|
3517 |
|
|
gsi_next (&i);
|
3518 |
|
|
continue;
|
3519 |
|
|
}
|
3520 |
|
|
callee = gimple_call_fndecl (stmt);
|
3521 |
|
|
if (!callee
|
3522 |
|
|
|| DECL_BUILT_IN_CLASS (callee) != BUILT_IN_NORMAL
|
3523 |
|
|
|| DECL_FUNCTION_CODE (callee) == fcode)
|
3524 |
|
|
gsi_next (&i);
|
3525 |
|
|
}
|
3526 |
|
|
}
|
3527 |
|
|
|
3528 |
|
|
/* Delete unreachable blocks. */
|
3529 |
|
|
if (cfg_changed)
|
3530 |
|
|
todoflags |= TODO_cleanup_cfg;
|
3531 |
|
|
|
3532 |
|
|
return todoflags;
|
3533 |
|
|
}
|
3534 |
|
|
|
3535 |
|
|
|
3536 |
|
|
struct gimple_opt_pass pass_fold_builtins =
|
3537 |
|
|
{
|
3538 |
|
|
{
|
3539 |
|
|
GIMPLE_PASS,
|
3540 |
|
|
"fab", /* name */
|
3541 |
|
|
NULL, /* gate */
|
3542 |
|
|
execute_fold_all_builtins, /* execute */
|
3543 |
|
|
NULL, /* sub */
|
3544 |
|
|
NULL, /* next */
|
3545 |
|
|
0, /* static_pass_number */
|
3546 |
|
|
TV_NONE, /* tv_id */
|
3547 |
|
|
PROP_cfg | PROP_ssa, /* properties_required */
|
3548 |
|
|
0, /* properties_provided */
|
3549 |
|
|
0, /* properties_destroyed */
|
3550 |
|
|
0, /* todo_flags_start */
|
3551 |
|
|
TODO_dump_func
|
3552 |
|
|
| TODO_verify_ssa
|
3553 |
|
|
| TODO_update_ssa /* todo_flags_finish */
|
3554 |
|
|
}
|
3555 |
|
|
};
|