1 |
280 |
jeremybenn |
/* Dead code elimination pass for the GNU compiler.
|
2 |
|
|
Copyright (C) 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
|
3 |
|
|
Free Software Foundation, Inc.
|
4 |
|
|
Contributed by Ben Elliston <bje@redhat.com>
|
5 |
|
|
and Andrew MacLeod <amacleod@redhat.com>
|
6 |
|
|
Adapted to use control dependence by Steven Bosscher, SUSE Labs.
|
7 |
|
|
|
8 |
|
|
This file is part of GCC.
|
9 |
|
|
|
10 |
|
|
GCC is free software; you can redistribute it and/or modify it
|
11 |
|
|
under the terms of the GNU General Public License as published by the
|
12 |
|
|
Free Software Foundation; either version 3, or (at your option) any
|
13 |
|
|
later version.
|
14 |
|
|
|
15 |
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT
|
16 |
|
|
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
17 |
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
18 |
|
|
for more details.
|
19 |
|
|
|
20 |
|
|
You should have received a copy of the GNU General Public License
|
21 |
|
|
along with GCC; see the file COPYING3. If not see
|
22 |
|
|
<http://www.gnu.org/licenses/>. */
|
23 |
|
|
|
24 |
|
|
/* Dead code elimination.
|
25 |
|
|
|
26 |
|
|
References:
|
27 |
|
|
|
28 |
|
|
Building an Optimizing Compiler,
|
29 |
|
|
Robert Morgan, Butterworth-Heinemann, 1998, Section 8.9.
|
30 |
|
|
|
31 |
|
|
Advanced Compiler Design and Implementation,
|
32 |
|
|
Steven Muchnick, Morgan Kaufmann, 1997, Section 18.10.
|
33 |
|
|
|
34 |
|
|
Dead-code elimination is the removal of statements which have no
|
35 |
|
|
impact on the program's output. "Dead statements" have no impact
|
36 |
|
|
on the program's output, while "necessary statements" may have
|
37 |
|
|
impact on the output.
|
38 |
|
|
|
39 |
|
|
The algorithm consists of three phases:
|
40 |
|
|
1. Marking as necessary all statements known to be necessary,
|
41 |
|
|
e.g. most function calls, writing a value to memory, etc;
|
42 |
|
|
2. Propagating necessary statements, e.g., the statements
|
43 |
|
|
giving values to operands in necessary statements; and
|
44 |
|
|
3. Removing dead statements. */
|
45 |
|
|
|
46 |
|
|
#include "config.h"
|
47 |
|
|
#include "system.h"
|
48 |
|
|
#include "coretypes.h"
|
49 |
|
|
#include "tm.h"
|
50 |
|
|
#include "ggc.h"
|
51 |
|
|
|
52 |
|
|
/* These RTL headers are needed for basic-block.h. */
|
53 |
|
|
#include "rtl.h"
|
54 |
|
|
#include "tm_p.h"
|
55 |
|
|
#include "hard-reg-set.h"
|
56 |
|
|
#include "obstack.h"
|
57 |
|
|
#include "basic-block.h"
|
58 |
|
|
|
59 |
|
|
#include "tree.h"
|
60 |
|
|
#include "diagnostic.h"
|
61 |
|
|
#include "tree-flow.h"
|
62 |
|
|
#include "gimple.h"
|
63 |
|
|
#include "tree-dump.h"
|
64 |
|
|
#include "tree-pass.h"
|
65 |
|
|
#include "timevar.h"
|
66 |
|
|
#include "flags.h"
|
67 |
|
|
#include "cfgloop.h"
|
68 |
|
|
#include "tree-scalar-evolution.h"
|
69 |
|
|
|
70 |
|
|
static struct stmt_stats
|
71 |
|
|
{
|
72 |
|
|
int total;
|
73 |
|
|
int total_phis;
|
74 |
|
|
int removed;
|
75 |
|
|
int removed_phis;
|
76 |
|
|
} stats;
|
77 |
|
|
|
78 |
|
|
#define STMT_NECESSARY GF_PLF_1
|
79 |
|
|
|
80 |
|
|
static VEC(gimple,heap) *worklist;
|
81 |
|
|
|
82 |
|
|
/* Vector indicating an SSA name has already been processed and marked
|
83 |
|
|
as necessary. */
|
84 |
|
|
static sbitmap processed;
|
85 |
|
|
|
86 |
|
|
/* Vector indicating that last_stmt if a basic block has already been
|
87 |
|
|
marked as necessary. */
|
88 |
|
|
static sbitmap last_stmt_necessary;
|
89 |
|
|
|
90 |
|
|
/* Vector indicating that BB contains statements that are live. */
|
91 |
|
|
static sbitmap bb_contains_live_stmts;
|
92 |
|
|
|
93 |
|
|
/* Before we can determine whether a control branch is dead, we need to
|
94 |
|
|
compute which blocks are control dependent on which edges.
|
95 |
|
|
|
96 |
|
|
We expect each block to be control dependent on very few edges so we
|
97 |
|
|
use a bitmap for each block recording its edges. An array holds the
|
98 |
|
|
bitmap. The Ith bit in the bitmap is set if that block is dependent
|
99 |
|
|
on the Ith edge. */
|
100 |
|
|
static bitmap *control_dependence_map;
|
101 |
|
|
|
102 |
|
|
/* Vector indicating that a basic block has already had all the edges
|
103 |
|
|
processed that it is control dependent on. */
|
104 |
|
|
static sbitmap visited_control_parents;
|
105 |
|
|
|
106 |
|
|
/* TRUE if this pass alters the CFG (by removing control statements).
|
107 |
|
|
FALSE otherwise.
|
108 |
|
|
|
109 |
|
|
If this pass alters the CFG, then it will arrange for the dominators
|
110 |
|
|
to be recomputed. */
|
111 |
|
|
static bool cfg_altered;
|
112 |
|
|
|
113 |
|
|
/* Execute code that follows the macro for each edge (given number
|
114 |
|
|
EDGE_NUMBER within the CODE) for which the block with index N is
|
115 |
|
|
control dependent. */
|
116 |
|
|
#define EXECUTE_IF_CONTROL_DEPENDENT(BI, N, EDGE_NUMBER) \
|
117 |
|
|
EXECUTE_IF_SET_IN_BITMAP (control_dependence_map[(N)], 0, \
|
118 |
|
|
(EDGE_NUMBER), (BI))
|
119 |
|
|
|
120 |
|
|
|
121 |
|
|
/* Indicate block BB is control dependent on an edge with index EDGE_INDEX. */
|
122 |
|
|
static inline void
|
123 |
|
|
set_control_dependence_map_bit (basic_block bb, int edge_index)
|
124 |
|
|
{
|
125 |
|
|
if (bb == ENTRY_BLOCK_PTR)
|
126 |
|
|
return;
|
127 |
|
|
gcc_assert (bb != EXIT_BLOCK_PTR);
|
128 |
|
|
bitmap_set_bit (control_dependence_map[bb->index], edge_index);
|
129 |
|
|
}
|
130 |
|
|
|
131 |
|
|
/* Clear all control dependences for block BB. */
|
132 |
|
|
static inline void
|
133 |
|
|
clear_control_dependence_bitmap (basic_block bb)
|
134 |
|
|
{
|
135 |
|
|
bitmap_clear (control_dependence_map[bb->index]);
|
136 |
|
|
}
|
137 |
|
|
|
138 |
|
|
|
139 |
|
|
/* Find the immediate postdominator PDOM of the specified basic block BLOCK.
|
140 |
|
|
This function is necessary because some blocks have negative numbers. */
|
141 |
|
|
|
142 |
|
|
static inline basic_block
|
143 |
|
|
find_pdom (basic_block block)
|
144 |
|
|
{
|
145 |
|
|
gcc_assert (block != ENTRY_BLOCK_PTR);
|
146 |
|
|
|
147 |
|
|
if (block == EXIT_BLOCK_PTR)
|
148 |
|
|
return EXIT_BLOCK_PTR;
|
149 |
|
|
else
|
150 |
|
|
{
|
151 |
|
|
basic_block bb = get_immediate_dominator (CDI_POST_DOMINATORS, block);
|
152 |
|
|
if (! bb)
|
153 |
|
|
return EXIT_BLOCK_PTR;
|
154 |
|
|
return bb;
|
155 |
|
|
}
|
156 |
|
|
}
|
157 |
|
|
|
158 |
|
|
|
159 |
|
|
/* Determine all blocks' control dependences on the given edge with edge_list
|
160 |
|
|
EL index EDGE_INDEX, ala Morgan, Section 3.6. */
|
161 |
|
|
|
162 |
|
|
static void
|
163 |
|
|
find_control_dependence (struct edge_list *el, int edge_index)
|
164 |
|
|
{
|
165 |
|
|
basic_block current_block;
|
166 |
|
|
basic_block ending_block;
|
167 |
|
|
|
168 |
|
|
gcc_assert (INDEX_EDGE_PRED_BB (el, edge_index) != EXIT_BLOCK_PTR);
|
169 |
|
|
|
170 |
|
|
if (INDEX_EDGE_PRED_BB (el, edge_index) == ENTRY_BLOCK_PTR)
|
171 |
|
|
ending_block = single_succ (ENTRY_BLOCK_PTR);
|
172 |
|
|
else
|
173 |
|
|
ending_block = find_pdom (INDEX_EDGE_PRED_BB (el, edge_index));
|
174 |
|
|
|
175 |
|
|
for (current_block = INDEX_EDGE_SUCC_BB (el, edge_index);
|
176 |
|
|
current_block != ending_block && current_block != EXIT_BLOCK_PTR;
|
177 |
|
|
current_block = find_pdom (current_block))
|
178 |
|
|
{
|
179 |
|
|
edge e = INDEX_EDGE (el, edge_index);
|
180 |
|
|
|
181 |
|
|
/* For abnormal edges, we don't make current_block control
|
182 |
|
|
dependent because instructions that throw are always necessary
|
183 |
|
|
anyway. */
|
184 |
|
|
if (e->flags & EDGE_ABNORMAL)
|
185 |
|
|
continue;
|
186 |
|
|
|
187 |
|
|
set_control_dependence_map_bit (current_block, edge_index);
|
188 |
|
|
}
|
189 |
|
|
}
|
190 |
|
|
|
191 |
|
|
|
192 |
|
|
/* Record all blocks' control dependences on all edges in the edge
|
193 |
|
|
list EL, ala Morgan, Section 3.6. */
|
194 |
|
|
|
195 |
|
|
static void
|
196 |
|
|
find_all_control_dependences (struct edge_list *el)
|
197 |
|
|
{
|
198 |
|
|
int i;
|
199 |
|
|
|
200 |
|
|
for (i = 0; i < NUM_EDGES (el); ++i)
|
201 |
|
|
find_control_dependence (el, i);
|
202 |
|
|
}
|
203 |
|
|
|
204 |
|
|
/* If STMT is not already marked necessary, mark it, and add it to the
|
205 |
|
|
worklist if ADD_TO_WORKLIST is true. */
|
206 |
|
|
static inline void
|
207 |
|
|
mark_stmt_necessary (gimple stmt, bool add_to_worklist)
|
208 |
|
|
{
|
209 |
|
|
gcc_assert (stmt);
|
210 |
|
|
|
211 |
|
|
if (gimple_plf (stmt, STMT_NECESSARY))
|
212 |
|
|
return;
|
213 |
|
|
|
214 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
215 |
|
|
{
|
216 |
|
|
fprintf (dump_file, "Marking useful stmt: ");
|
217 |
|
|
print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
|
218 |
|
|
fprintf (dump_file, "\n");
|
219 |
|
|
}
|
220 |
|
|
|
221 |
|
|
gimple_set_plf (stmt, STMT_NECESSARY, true);
|
222 |
|
|
if (add_to_worklist)
|
223 |
|
|
VEC_safe_push (gimple, heap, worklist, stmt);
|
224 |
|
|
if (bb_contains_live_stmts && !is_gimple_debug (stmt))
|
225 |
|
|
SET_BIT (bb_contains_live_stmts, gimple_bb (stmt)->index);
|
226 |
|
|
}
|
227 |
|
|
|
228 |
|
|
|
229 |
|
|
/* Mark the statement defining operand OP as necessary. */
|
230 |
|
|
|
231 |
|
|
static inline void
|
232 |
|
|
mark_operand_necessary (tree op)
|
233 |
|
|
{
|
234 |
|
|
gimple stmt;
|
235 |
|
|
int ver;
|
236 |
|
|
|
237 |
|
|
gcc_assert (op);
|
238 |
|
|
|
239 |
|
|
ver = SSA_NAME_VERSION (op);
|
240 |
|
|
if (TEST_BIT (processed, ver))
|
241 |
|
|
{
|
242 |
|
|
stmt = SSA_NAME_DEF_STMT (op);
|
243 |
|
|
gcc_assert (gimple_nop_p (stmt)
|
244 |
|
|
|| gimple_plf (stmt, STMT_NECESSARY));
|
245 |
|
|
return;
|
246 |
|
|
}
|
247 |
|
|
SET_BIT (processed, ver);
|
248 |
|
|
|
249 |
|
|
stmt = SSA_NAME_DEF_STMT (op);
|
250 |
|
|
gcc_assert (stmt);
|
251 |
|
|
|
252 |
|
|
if (gimple_plf (stmt, STMT_NECESSARY) || gimple_nop_p (stmt))
|
253 |
|
|
return;
|
254 |
|
|
|
255 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
256 |
|
|
{
|
257 |
|
|
fprintf (dump_file, "marking necessary through ");
|
258 |
|
|
print_generic_expr (dump_file, op, 0);
|
259 |
|
|
fprintf (dump_file, " stmt ");
|
260 |
|
|
print_gimple_stmt (dump_file, stmt, 0, 0);
|
261 |
|
|
}
|
262 |
|
|
|
263 |
|
|
gimple_set_plf (stmt, STMT_NECESSARY, true);
|
264 |
|
|
if (bb_contains_live_stmts)
|
265 |
|
|
SET_BIT (bb_contains_live_stmts, gimple_bb (stmt)->index);
|
266 |
|
|
VEC_safe_push (gimple, heap, worklist, stmt);
|
267 |
|
|
}
|
268 |
|
|
|
269 |
|
|
|
270 |
|
|
/* Mark STMT as necessary if it obviously is. Add it to the worklist if
|
271 |
|
|
it can make other statements necessary.
|
272 |
|
|
|
273 |
|
|
If AGGRESSIVE is false, control statements are conservatively marked as
|
274 |
|
|
necessary. */
|
275 |
|
|
|
276 |
|
|
static void
|
277 |
|
|
mark_stmt_if_obviously_necessary (gimple stmt, bool aggressive)
|
278 |
|
|
{
|
279 |
|
|
tree lhs = NULL_TREE;
|
280 |
|
|
/* With non-call exceptions, we have to assume that all statements could
|
281 |
|
|
throw. If a statement may throw, it is inherently necessary. */
|
282 |
|
|
if (flag_non_call_exceptions
|
283 |
|
|
&& stmt_could_throw_p (stmt))
|
284 |
|
|
{
|
285 |
|
|
mark_stmt_necessary (stmt, true);
|
286 |
|
|
return;
|
287 |
|
|
}
|
288 |
|
|
|
289 |
|
|
/* Statements that are implicitly live. Most function calls, asm
|
290 |
|
|
and return statements are required. Labels and GIMPLE_BIND nodes
|
291 |
|
|
are kept because they are control flow, and we have no way of
|
292 |
|
|
knowing whether they can be removed. DCE can eliminate all the
|
293 |
|
|
other statements in a block, and CFG can then remove the block
|
294 |
|
|
and labels. */
|
295 |
|
|
switch (gimple_code (stmt))
|
296 |
|
|
{
|
297 |
|
|
case GIMPLE_PREDICT:
|
298 |
|
|
case GIMPLE_LABEL:
|
299 |
|
|
mark_stmt_necessary (stmt, false);
|
300 |
|
|
return;
|
301 |
|
|
|
302 |
|
|
case GIMPLE_ASM:
|
303 |
|
|
case GIMPLE_RESX:
|
304 |
|
|
case GIMPLE_RETURN:
|
305 |
|
|
mark_stmt_necessary (stmt, true);
|
306 |
|
|
return;
|
307 |
|
|
|
308 |
|
|
case GIMPLE_CALL:
|
309 |
|
|
/* Most, but not all function calls are required. Function calls that
|
310 |
|
|
produce no result and have no side effects (i.e. const pure
|
311 |
|
|
functions) are unnecessary. */
|
312 |
|
|
if (gimple_has_side_effects (stmt))
|
313 |
|
|
{
|
314 |
|
|
mark_stmt_necessary (stmt, true);
|
315 |
|
|
return;
|
316 |
|
|
}
|
317 |
|
|
if (!gimple_call_lhs (stmt))
|
318 |
|
|
return;
|
319 |
|
|
lhs = gimple_call_lhs (stmt);
|
320 |
|
|
/* Fall through */
|
321 |
|
|
|
322 |
|
|
case GIMPLE_ASSIGN:
|
323 |
|
|
if (!lhs)
|
324 |
|
|
lhs = gimple_assign_lhs (stmt);
|
325 |
|
|
break;
|
326 |
|
|
|
327 |
|
|
case GIMPLE_DEBUG:
|
328 |
|
|
/* Debug temps without a value are not useful. ??? If we could
|
329 |
|
|
easily locate the debug temp bind stmt for a use thereof,
|
330 |
|
|
would could refrain from marking all debug temps here, and
|
331 |
|
|
mark them only if they're used. */
|
332 |
|
|
if (gimple_debug_bind_has_value_p (stmt)
|
333 |
|
|
|| TREE_CODE (gimple_debug_bind_get_var (stmt)) != DEBUG_EXPR_DECL)
|
334 |
|
|
mark_stmt_necessary (stmt, false);
|
335 |
|
|
return;
|
336 |
|
|
|
337 |
|
|
case GIMPLE_GOTO:
|
338 |
|
|
gcc_assert (!simple_goto_p (stmt));
|
339 |
|
|
mark_stmt_necessary (stmt, true);
|
340 |
|
|
return;
|
341 |
|
|
|
342 |
|
|
case GIMPLE_COND:
|
343 |
|
|
gcc_assert (EDGE_COUNT (gimple_bb (stmt)->succs) == 2);
|
344 |
|
|
/* Fall through. */
|
345 |
|
|
|
346 |
|
|
case GIMPLE_SWITCH:
|
347 |
|
|
if (! aggressive)
|
348 |
|
|
mark_stmt_necessary (stmt, true);
|
349 |
|
|
break;
|
350 |
|
|
|
351 |
|
|
default:
|
352 |
|
|
break;
|
353 |
|
|
}
|
354 |
|
|
|
355 |
|
|
/* If the statement has volatile operands, it needs to be preserved.
|
356 |
|
|
Same for statements that can alter control flow in unpredictable
|
357 |
|
|
ways. */
|
358 |
|
|
if (gimple_has_volatile_ops (stmt) || is_ctrl_altering_stmt (stmt))
|
359 |
|
|
{
|
360 |
|
|
mark_stmt_necessary (stmt, true);
|
361 |
|
|
return;
|
362 |
|
|
}
|
363 |
|
|
|
364 |
|
|
if (is_hidden_global_store (stmt))
|
365 |
|
|
{
|
366 |
|
|
mark_stmt_necessary (stmt, true);
|
367 |
|
|
return;
|
368 |
|
|
}
|
369 |
|
|
|
370 |
|
|
return;
|
371 |
|
|
}
|
372 |
|
|
|
373 |
|
|
|
374 |
|
|
/* Make corresponding control dependent edges necessary. We only
|
375 |
|
|
have to do this once for each basic block, so we clear the bitmap
|
376 |
|
|
after we're done. */
|
377 |
|
|
static void
|
378 |
|
|
mark_control_dependent_edges_necessary (basic_block bb, struct edge_list *el)
|
379 |
|
|
{
|
380 |
|
|
bitmap_iterator bi;
|
381 |
|
|
unsigned edge_number;
|
382 |
|
|
|
383 |
|
|
gcc_assert (bb != EXIT_BLOCK_PTR);
|
384 |
|
|
|
385 |
|
|
if (bb == ENTRY_BLOCK_PTR)
|
386 |
|
|
return;
|
387 |
|
|
|
388 |
|
|
EXECUTE_IF_CONTROL_DEPENDENT (bi, bb->index, edge_number)
|
389 |
|
|
{
|
390 |
|
|
gimple stmt;
|
391 |
|
|
basic_block cd_bb = INDEX_EDGE_PRED_BB (el, edge_number);
|
392 |
|
|
|
393 |
|
|
if (TEST_BIT (last_stmt_necessary, cd_bb->index))
|
394 |
|
|
continue;
|
395 |
|
|
SET_BIT (last_stmt_necessary, cd_bb->index);
|
396 |
|
|
SET_BIT (bb_contains_live_stmts, cd_bb->index);
|
397 |
|
|
|
398 |
|
|
stmt = last_stmt (cd_bb);
|
399 |
|
|
if (stmt && is_ctrl_stmt (stmt))
|
400 |
|
|
mark_stmt_necessary (stmt, true);
|
401 |
|
|
}
|
402 |
|
|
}
|
403 |
|
|
|
404 |
|
|
|
405 |
|
|
/* Find obviously necessary statements. These are things like most function
|
406 |
|
|
calls, and stores to file level variables.
|
407 |
|
|
|
408 |
|
|
If EL is NULL, control statements are conservatively marked as
|
409 |
|
|
necessary. Otherwise it contains the list of edges used by control
|
410 |
|
|
dependence analysis. */
|
411 |
|
|
|
412 |
|
|
static void
|
413 |
|
|
find_obviously_necessary_stmts (struct edge_list *el)
|
414 |
|
|
{
|
415 |
|
|
basic_block bb;
|
416 |
|
|
gimple_stmt_iterator gsi;
|
417 |
|
|
edge e;
|
418 |
|
|
gimple phi, stmt;
|
419 |
|
|
|
420 |
|
|
FOR_EACH_BB (bb)
|
421 |
|
|
{
|
422 |
|
|
/* PHI nodes are never inherently necessary. */
|
423 |
|
|
for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
424 |
|
|
{
|
425 |
|
|
phi = gsi_stmt (gsi);
|
426 |
|
|
gimple_set_plf (phi, STMT_NECESSARY, false);
|
427 |
|
|
}
|
428 |
|
|
|
429 |
|
|
/* Check all statements in the block. */
|
430 |
|
|
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
431 |
|
|
{
|
432 |
|
|
stmt = gsi_stmt (gsi);
|
433 |
|
|
gimple_set_plf (stmt, STMT_NECESSARY, false);
|
434 |
|
|
mark_stmt_if_obviously_necessary (stmt, el != NULL);
|
435 |
|
|
}
|
436 |
|
|
}
|
437 |
|
|
|
438 |
|
|
/* Pure and const functions are finite and thus have no infinite loops in
|
439 |
|
|
them. */
|
440 |
|
|
if ((TREE_READONLY (current_function_decl)
|
441 |
|
|
|| DECL_PURE_P (current_function_decl))
|
442 |
|
|
&& !DECL_LOOPING_CONST_OR_PURE_P (current_function_decl))
|
443 |
|
|
return;
|
444 |
|
|
|
445 |
|
|
/* Prevent the empty possibly infinite loops from being removed. */
|
446 |
|
|
if (el)
|
447 |
|
|
{
|
448 |
|
|
loop_iterator li;
|
449 |
|
|
struct loop *loop;
|
450 |
|
|
scev_initialize ();
|
451 |
|
|
if (mark_irreducible_loops ())
|
452 |
|
|
FOR_EACH_BB (bb)
|
453 |
|
|
{
|
454 |
|
|
edge_iterator ei;
|
455 |
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
456 |
|
|
if ((e->flags & EDGE_DFS_BACK)
|
457 |
|
|
&& (e->flags & EDGE_IRREDUCIBLE_LOOP))
|
458 |
|
|
{
|
459 |
|
|
if (dump_file)
|
460 |
|
|
fprintf (dump_file, "Marking back edge of irreducible loop %i->%i\n",
|
461 |
|
|
e->src->index, e->dest->index);
|
462 |
|
|
mark_control_dependent_edges_necessary (e->dest, el);
|
463 |
|
|
}
|
464 |
|
|
}
|
465 |
|
|
|
466 |
|
|
FOR_EACH_LOOP (li, loop, 0)
|
467 |
|
|
if (!finite_loop_p (loop))
|
468 |
|
|
{
|
469 |
|
|
if (dump_file)
|
470 |
|
|
fprintf (dump_file, "can not prove finiteness of loop %i\n", loop->num);
|
471 |
|
|
mark_control_dependent_edges_necessary (loop->latch, el);
|
472 |
|
|
}
|
473 |
|
|
scev_finalize ();
|
474 |
|
|
}
|
475 |
|
|
}
|
476 |
|
|
|
477 |
|
|
|
478 |
|
|
/* Return true if REF is based on an aliased base, otherwise false. */
|
479 |
|
|
|
480 |
|
|
static bool
|
481 |
|
|
ref_may_be_aliased (tree ref)
|
482 |
|
|
{
|
483 |
|
|
while (handled_component_p (ref))
|
484 |
|
|
ref = TREE_OPERAND (ref, 0);
|
485 |
|
|
return !(DECL_P (ref)
|
486 |
|
|
&& !may_be_aliased (ref));
|
487 |
|
|
}
|
488 |
|
|
|
489 |
|
|
static bitmap visited = NULL;
|
490 |
|
|
static unsigned int longest_chain = 0;
|
491 |
|
|
static unsigned int total_chain = 0;
|
492 |
|
|
static unsigned int nr_walks = 0;
|
493 |
|
|
static bool chain_ovfl = false;
|
494 |
|
|
|
495 |
|
|
/* Worker for the walker that marks reaching definitions of REF,
|
496 |
|
|
which is based on a non-aliased decl, necessary. It returns
|
497 |
|
|
true whenever the defining statement of the current VDEF is
|
498 |
|
|
a kill for REF, as no dominating may-defs are necessary for REF
|
499 |
|
|
anymore. DATA points to the basic-block that contains the
|
500 |
|
|
stmt that refers to REF. */
|
501 |
|
|
|
502 |
|
|
static bool
|
503 |
|
|
mark_aliased_reaching_defs_necessary_1 (ao_ref *ref, tree vdef, void *data)
|
504 |
|
|
{
|
505 |
|
|
gimple def_stmt = SSA_NAME_DEF_STMT (vdef);
|
506 |
|
|
|
507 |
|
|
/* All stmts we visit are necessary. */
|
508 |
|
|
mark_operand_necessary (vdef);
|
509 |
|
|
|
510 |
|
|
/* If the stmt lhs kills ref, then we can stop walking. */
|
511 |
|
|
if (gimple_has_lhs (def_stmt)
|
512 |
|
|
&& TREE_CODE (gimple_get_lhs (def_stmt)) != SSA_NAME)
|
513 |
|
|
{
|
514 |
|
|
tree base, lhs = gimple_get_lhs (def_stmt);
|
515 |
|
|
HOST_WIDE_INT size, offset, max_size;
|
516 |
|
|
ao_ref_base (ref);
|
517 |
|
|
base = get_ref_base_and_extent (lhs, &offset, &size, &max_size);
|
518 |
|
|
/* We can get MEM[symbol: sZ, index: D.8862_1] here,
|
519 |
|
|
so base == refd->base does not always hold. */
|
520 |
|
|
if (base == ref->base)
|
521 |
|
|
{
|
522 |
|
|
/* For a must-alias check we need to be able to constrain
|
523 |
|
|
the accesses properly. */
|
524 |
|
|
if (size != -1 && size == max_size
|
525 |
|
|
&& ref->max_size != -1)
|
526 |
|
|
{
|
527 |
|
|
if (offset <= ref->offset
|
528 |
|
|
&& offset + size >= ref->offset + ref->max_size)
|
529 |
|
|
return true;
|
530 |
|
|
}
|
531 |
|
|
/* Or they need to be exactly the same. */
|
532 |
|
|
else if (ref->ref
|
533 |
|
|
/* Make sure there is no induction variable involved
|
534 |
|
|
in the references (gcc.c-torture/execute/pr42142.c).
|
535 |
|
|
The simplest way is to check if the kill dominates
|
536 |
|
|
the use. */
|
537 |
|
|
&& dominated_by_p (CDI_DOMINATORS, (basic_block) data,
|
538 |
|
|
gimple_bb (def_stmt))
|
539 |
|
|
&& operand_equal_p (ref->ref, lhs, 0))
|
540 |
|
|
return true;
|
541 |
|
|
}
|
542 |
|
|
}
|
543 |
|
|
|
544 |
|
|
/* Otherwise keep walking. */
|
545 |
|
|
return false;
|
546 |
|
|
}
|
547 |
|
|
|
548 |
|
|
static void
|
549 |
|
|
mark_aliased_reaching_defs_necessary (gimple stmt, tree ref)
|
550 |
|
|
{
|
551 |
|
|
unsigned int chain;
|
552 |
|
|
ao_ref refd;
|
553 |
|
|
gcc_assert (!chain_ovfl);
|
554 |
|
|
ao_ref_init (&refd, ref);
|
555 |
|
|
chain = walk_aliased_vdefs (&refd, gimple_vuse (stmt),
|
556 |
|
|
mark_aliased_reaching_defs_necessary_1,
|
557 |
|
|
gimple_bb (stmt), NULL);
|
558 |
|
|
if (chain > longest_chain)
|
559 |
|
|
longest_chain = chain;
|
560 |
|
|
total_chain += chain;
|
561 |
|
|
nr_walks++;
|
562 |
|
|
}
|
563 |
|
|
|
564 |
|
|
/* Worker for the walker that marks reaching definitions of REF, which
|
565 |
|
|
is not based on a non-aliased decl. For simplicity we need to end
|
566 |
|
|
up marking all may-defs necessary that are not based on a non-aliased
|
567 |
|
|
decl. The only job of this walker is to skip may-defs based on
|
568 |
|
|
a non-aliased decl. */
|
569 |
|
|
|
570 |
|
|
static bool
|
571 |
|
|
mark_all_reaching_defs_necessary_1 (ao_ref *ref ATTRIBUTE_UNUSED,
|
572 |
|
|
tree vdef, void *data ATTRIBUTE_UNUSED)
|
573 |
|
|
{
|
574 |
|
|
gimple def_stmt = SSA_NAME_DEF_STMT (vdef);
|
575 |
|
|
|
576 |
|
|
/* We have to skip already visited (and thus necessary) statements
|
577 |
|
|
to make the chaining work after we dropped back to simple mode. */
|
578 |
|
|
if (chain_ovfl
|
579 |
|
|
&& TEST_BIT (processed, SSA_NAME_VERSION (vdef)))
|
580 |
|
|
{
|
581 |
|
|
gcc_assert (gimple_nop_p (def_stmt)
|
582 |
|
|
|| gimple_plf (def_stmt, STMT_NECESSARY));
|
583 |
|
|
return false;
|
584 |
|
|
}
|
585 |
|
|
|
586 |
|
|
/* We want to skip stores to non-aliased variables. */
|
587 |
|
|
if (!chain_ovfl
|
588 |
|
|
&& gimple_assign_single_p (def_stmt))
|
589 |
|
|
{
|
590 |
|
|
tree lhs = gimple_assign_lhs (def_stmt);
|
591 |
|
|
if (!ref_may_be_aliased (lhs))
|
592 |
|
|
return false;
|
593 |
|
|
}
|
594 |
|
|
|
595 |
|
|
mark_operand_necessary (vdef);
|
596 |
|
|
|
597 |
|
|
return false;
|
598 |
|
|
}
|
599 |
|
|
|
600 |
|
|
static void
|
601 |
|
|
mark_all_reaching_defs_necessary (gimple stmt)
|
602 |
|
|
{
|
603 |
|
|
walk_aliased_vdefs (NULL, gimple_vuse (stmt),
|
604 |
|
|
mark_all_reaching_defs_necessary_1, NULL, &visited);
|
605 |
|
|
}
|
606 |
|
|
|
607 |
|
|
/* Return true for PHI nodes with one or identical arguments
|
608 |
|
|
can be removed. */
|
609 |
|
|
static bool
|
610 |
|
|
degenerate_phi_p (gimple phi)
|
611 |
|
|
{
|
612 |
|
|
unsigned int i;
|
613 |
|
|
tree op = gimple_phi_arg_def (phi, 0);
|
614 |
|
|
for (i = 1; i < gimple_phi_num_args (phi); i++)
|
615 |
|
|
if (gimple_phi_arg_def (phi, i) != op)
|
616 |
|
|
return false;
|
617 |
|
|
return true;
|
618 |
|
|
}
|
619 |
|
|
|
620 |
|
|
/* Propagate necessity using the operands of necessary statements.
|
621 |
|
|
Process the uses on each statement in the worklist, and add all
|
622 |
|
|
feeding statements which contribute to the calculation of this
|
623 |
|
|
value to the worklist.
|
624 |
|
|
|
625 |
|
|
In conservative mode, EL is NULL. */
|
626 |
|
|
|
627 |
|
|
static void
|
628 |
|
|
propagate_necessity (struct edge_list *el)
|
629 |
|
|
{
|
630 |
|
|
gimple stmt;
|
631 |
|
|
bool aggressive = (el ? true : false);
|
632 |
|
|
|
633 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
634 |
|
|
fprintf (dump_file, "\nProcessing worklist:\n");
|
635 |
|
|
|
636 |
|
|
while (VEC_length (gimple, worklist) > 0)
|
637 |
|
|
{
|
638 |
|
|
/* Take STMT from worklist. */
|
639 |
|
|
stmt = VEC_pop (gimple, worklist);
|
640 |
|
|
|
641 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
642 |
|
|
{
|
643 |
|
|
fprintf (dump_file, "processing: ");
|
644 |
|
|
print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
|
645 |
|
|
fprintf (dump_file, "\n");
|
646 |
|
|
}
|
647 |
|
|
|
648 |
|
|
if (aggressive)
|
649 |
|
|
{
|
650 |
|
|
/* Mark the last statements of the basic blocks that the block
|
651 |
|
|
containing STMT is control dependent on, but only if we haven't
|
652 |
|
|
already done so. */
|
653 |
|
|
basic_block bb = gimple_bb (stmt);
|
654 |
|
|
if (bb != ENTRY_BLOCK_PTR
|
655 |
|
|
&& ! TEST_BIT (visited_control_parents, bb->index))
|
656 |
|
|
{
|
657 |
|
|
SET_BIT (visited_control_parents, bb->index);
|
658 |
|
|
mark_control_dependent_edges_necessary (bb, el);
|
659 |
|
|
}
|
660 |
|
|
}
|
661 |
|
|
|
662 |
|
|
if (gimple_code (stmt) == GIMPLE_PHI
|
663 |
|
|
/* We do not process virtual PHI nodes nor do we track their
|
664 |
|
|
necessity. */
|
665 |
|
|
&& is_gimple_reg (gimple_phi_result (stmt)))
|
666 |
|
|
{
|
667 |
|
|
/* PHI nodes are somewhat special in that each PHI alternative has
|
668 |
|
|
data and control dependencies. All the statements feeding the
|
669 |
|
|
PHI node's arguments are always necessary. In aggressive mode,
|
670 |
|
|
we also consider the control dependent edges leading to the
|
671 |
|
|
predecessor block associated with each PHI alternative as
|
672 |
|
|
necessary. */
|
673 |
|
|
size_t k;
|
674 |
|
|
|
675 |
|
|
for (k = 0; k < gimple_phi_num_args (stmt); k++)
|
676 |
|
|
{
|
677 |
|
|
tree arg = PHI_ARG_DEF (stmt, k);
|
678 |
|
|
if (TREE_CODE (arg) == SSA_NAME)
|
679 |
|
|
mark_operand_necessary (arg);
|
680 |
|
|
}
|
681 |
|
|
|
682 |
|
|
if (aggressive && !degenerate_phi_p (stmt))
|
683 |
|
|
{
|
684 |
|
|
for (k = 0; k < gimple_phi_num_args (stmt); k++)
|
685 |
|
|
{
|
686 |
|
|
basic_block arg_bb = gimple_phi_arg_edge (stmt, k)->src;
|
687 |
|
|
if (arg_bb != ENTRY_BLOCK_PTR
|
688 |
|
|
&& ! TEST_BIT (visited_control_parents, arg_bb->index))
|
689 |
|
|
{
|
690 |
|
|
SET_BIT (visited_control_parents, arg_bb->index);
|
691 |
|
|
mark_control_dependent_edges_necessary (arg_bb, el);
|
692 |
|
|
}
|
693 |
|
|
}
|
694 |
|
|
}
|
695 |
|
|
}
|
696 |
|
|
else
|
697 |
|
|
{
|
698 |
|
|
/* Propagate through the operands. Examine all the USE, VUSE and
|
699 |
|
|
VDEF operands in this statement. Mark all the statements
|
700 |
|
|
which feed this statement's uses as necessary. */
|
701 |
|
|
ssa_op_iter iter;
|
702 |
|
|
tree use;
|
703 |
|
|
|
704 |
|
|
FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter, SSA_OP_USE)
|
705 |
|
|
mark_operand_necessary (use);
|
706 |
|
|
|
707 |
|
|
use = gimple_vuse (stmt);
|
708 |
|
|
if (!use)
|
709 |
|
|
continue;
|
710 |
|
|
|
711 |
|
|
/* If we dropped to simple mode make all immediately
|
712 |
|
|
reachable definitions necessary. */
|
713 |
|
|
if (chain_ovfl)
|
714 |
|
|
{
|
715 |
|
|
mark_all_reaching_defs_necessary (stmt);
|
716 |
|
|
continue;
|
717 |
|
|
}
|
718 |
|
|
|
719 |
|
|
/* For statements that may load from memory (have a VUSE) we
|
720 |
|
|
have to mark all reaching (may-)definitions as necessary.
|
721 |
|
|
We partition this task into two cases:
|
722 |
|
|
1) explicit loads based on decls that are not aliased
|
723 |
|
|
2) implicit loads (like calls) and explicit loads not
|
724 |
|
|
based on decls that are not aliased (like indirect
|
725 |
|
|
references or loads from globals)
|
726 |
|
|
For 1) we mark all reaching may-defs as necessary, stopping
|
727 |
|
|
at dominating kills. For 2) we want to mark all dominating
|
728 |
|
|
references necessary, but non-aliased ones which we handle
|
729 |
|
|
in 1). By keeping a global visited bitmap for references
|
730 |
|
|
we walk for 2) we avoid quadratic behavior for those. */
|
731 |
|
|
|
732 |
|
|
if (is_gimple_call (stmt))
|
733 |
|
|
{
|
734 |
|
|
tree callee = gimple_call_fndecl (stmt);
|
735 |
|
|
unsigned i;
|
736 |
|
|
|
737 |
|
|
/* Calls to functions that are merely acting as barriers
|
738 |
|
|
or that only store to memory do not make any previous
|
739 |
|
|
stores necessary. */
|
740 |
|
|
if (callee != NULL_TREE
|
741 |
|
|
&& DECL_BUILT_IN_CLASS (callee) == BUILT_IN_NORMAL
|
742 |
|
|
&& (DECL_FUNCTION_CODE (callee) == BUILT_IN_MEMSET
|
743 |
|
|
|| DECL_FUNCTION_CODE (callee) == BUILT_IN_MALLOC
|
744 |
|
|
|| DECL_FUNCTION_CODE (callee) == BUILT_IN_FREE))
|
745 |
|
|
continue;
|
746 |
|
|
|
747 |
|
|
/* Calls implicitly load from memory, their arguments
|
748 |
|
|
in addition may explicitly perform memory loads. */
|
749 |
|
|
mark_all_reaching_defs_necessary (stmt);
|
750 |
|
|
for (i = 0; i < gimple_call_num_args (stmt); ++i)
|
751 |
|
|
{
|
752 |
|
|
tree arg = gimple_call_arg (stmt, i);
|
753 |
|
|
if (TREE_CODE (arg) == SSA_NAME
|
754 |
|
|
|| is_gimple_min_invariant (arg))
|
755 |
|
|
continue;
|
756 |
|
|
if (!ref_may_be_aliased (arg))
|
757 |
|
|
mark_aliased_reaching_defs_necessary (stmt, arg);
|
758 |
|
|
}
|
759 |
|
|
}
|
760 |
|
|
else if (gimple_assign_single_p (stmt))
|
761 |
|
|
{
|
762 |
|
|
tree rhs;
|
763 |
|
|
bool rhs_aliased = false;
|
764 |
|
|
/* If this is a load mark things necessary. */
|
765 |
|
|
rhs = gimple_assign_rhs1 (stmt);
|
766 |
|
|
if (TREE_CODE (rhs) != SSA_NAME
|
767 |
|
|
&& !is_gimple_min_invariant (rhs))
|
768 |
|
|
{
|
769 |
|
|
if (!ref_may_be_aliased (rhs))
|
770 |
|
|
mark_aliased_reaching_defs_necessary (stmt, rhs);
|
771 |
|
|
else
|
772 |
|
|
rhs_aliased = true;
|
773 |
|
|
}
|
774 |
|
|
if (rhs_aliased)
|
775 |
|
|
mark_all_reaching_defs_necessary (stmt);
|
776 |
|
|
}
|
777 |
|
|
else if (gimple_code (stmt) == GIMPLE_RETURN)
|
778 |
|
|
{
|
779 |
|
|
tree rhs = gimple_return_retval (stmt);
|
780 |
|
|
/* A return statement may perform a load. */
|
781 |
|
|
if (TREE_CODE (rhs) != SSA_NAME
|
782 |
|
|
&& !is_gimple_min_invariant (rhs))
|
783 |
|
|
{
|
784 |
|
|
if (!ref_may_be_aliased (rhs))
|
785 |
|
|
mark_aliased_reaching_defs_necessary (stmt, rhs);
|
786 |
|
|
else
|
787 |
|
|
mark_all_reaching_defs_necessary (stmt);
|
788 |
|
|
}
|
789 |
|
|
}
|
790 |
|
|
else if (gimple_code (stmt) == GIMPLE_ASM)
|
791 |
|
|
{
|
792 |
|
|
unsigned i;
|
793 |
|
|
mark_all_reaching_defs_necessary (stmt);
|
794 |
|
|
/* Inputs may perform loads. */
|
795 |
|
|
for (i = 0; i < gimple_asm_ninputs (stmt); ++i)
|
796 |
|
|
{
|
797 |
|
|
tree op = TREE_VALUE (gimple_asm_input_op (stmt, i));
|
798 |
|
|
if (TREE_CODE (op) != SSA_NAME
|
799 |
|
|
&& !is_gimple_min_invariant (op)
|
800 |
|
|
&& !ref_may_be_aliased (op))
|
801 |
|
|
mark_aliased_reaching_defs_necessary (stmt, op);
|
802 |
|
|
}
|
803 |
|
|
}
|
804 |
|
|
else
|
805 |
|
|
gcc_unreachable ();
|
806 |
|
|
|
807 |
|
|
/* If we over-used our alias oracle budget drop to simple
|
808 |
|
|
mode. The cost metric allows quadratic behavior
|
809 |
|
|
(number of uses times number of may-defs queries) up to
|
810 |
|
|
a constant maximal number of queries and after that falls back to
|
811 |
|
|
super-linear complexity. */
|
812 |
|
|
if (/* Constant but quadratic for small functions. */
|
813 |
|
|
total_chain > 128 * 128
|
814 |
|
|
/* Linear in the number of may-defs. */
|
815 |
|
|
&& total_chain > 32 * longest_chain
|
816 |
|
|
/* Linear in the number of uses. */
|
817 |
|
|
&& total_chain > nr_walks * 32)
|
818 |
|
|
{
|
819 |
|
|
chain_ovfl = true;
|
820 |
|
|
if (visited)
|
821 |
|
|
bitmap_clear (visited);
|
822 |
|
|
}
|
823 |
|
|
}
|
824 |
|
|
}
|
825 |
|
|
}
|
826 |
|
|
|
827 |
|
|
/* Replace all uses of result of PHI by underlying variable and mark it
|
828 |
|
|
for renaming. */
|
829 |
|
|
|
830 |
|
|
void
|
831 |
|
|
mark_virtual_phi_result_for_renaming (gimple phi)
|
832 |
|
|
{
|
833 |
|
|
bool used = false;
|
834 |
|
|
imm_use_iterator iter;
|
835 |
|
|
use_operand_p use_p;
|
836 |
|
|
gimple stmt;
|
837 |
|
|
tree result_ssa, result_var;
|
838 |
|
|
|
839 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
840 |
|
|
{
|
841 |
|
|
fprintf (dump_file, "Marking result for renaming : ");
|
842 |
|
|
print_gimple_stmt (dump_file, phi, 0, TDF_SLIM);
|
843 |
|
|
fprintf (dump_file, "\n");
|
844 |
|
|
}
|
845 |
|
|
|
846 |
|
|
result_ssa = gimple_phi_result (phi);
|
847 |
|
|
result_var = SSA_NAME_VAR (result_ssa);
|
848 |
|
|
FOR_EACH_IMM_USE_STMT (stmt, iter, result_ssa)
|
849 |
|
|
{
|
850 |
|
|
FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
|
851 |
|
|
SET_USE (use_p, result_var);
|
852 |
|
|
update_stmt (stmt);
|
853 |
|
|
used = true;
|
854 |
|
|
}
|
855 |
|
|
if (used)
|
856 |
|
|
mark_sym_for_renaming (result_var);
|
857 |
|
|
}
|
858 |
|
|
|
859 |
|
|
/* Remove dead PHI nodes from block BB. */
|
860 |
|
|
|
861 |
|
|
static bool
|
862 |
|
|
remove_dead_phis (basic_block bb)
|
863 |
|
|
{
|
864 |
|
|
bool something_changed = false;
|
865 |
|
|
gimple_seq phis;
|
866 |
|
|
gimple phi;
|
867 |
|
|
gimple_stmt_iterator gsi;
|
868 |
|
|
phis = phi_nodes (bb);
|
869 |
|
|
|
870 |
|
|
for (gsi = gsi_start (phis); !gsi_end_p (gsi);)
|
871 |
|
|
{
|
872 |
|
|
stats.total_phis++;
|
873 |
|
|
phi = gsi_stmt (gsi);
|
874 |
|
|
|
875 |
|
|
/* We do not track necessity of virtual PHI nodes. Instead do
|
876 |
|
|
very simple dead PHI removal here. */
|
877 |
|
|
if (!is_gimple_reg (gimple_phi_result (phi)))
|
878 |
|
|
{
|
879 |
|
|
/* Virtual PHI nodes with one or identical arguments
|
880 |
|
|
can be removed. */
|
881 |
|
|
if (degenerate_phi_p (phi))
|
882 |
|
|
{
|
883 |
|
|
tree vdef = gimple_phi_result (phi);
|
884 |
|
|
tree vuse = gimple_phi_arg_def (phi, 0);
|
885 |
|
|
|
886 |
|
|
use_operand_p use_p;
|
887 |
|
|
imm_use_iterator iter;
|
888 |
|
|
gimple use_stmt;
|
889 |
|
|
FOR_EACH_IMM_USE_STMT (use_stmt, iter, vdef)
|
890 |
|
|
FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
|
891 |
|
|
SET_USE (use_p, vuse);
|
892 |
|
|
if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (vdef)
|
893 |
|
|
&& TREE_CODE (vuse) == SSA_NAME)
|
894 |
|
|
SSA_NAME_OCCURS_IN_ABNORMAL_PHI (vuse) = 1;
|
895 |
|
|
}
|
896 |
|
|
else
|
897 |
|
|
gimple_set_plf (phi, STMT_NECESSARY, true);
|
898 |
|
|
}
|
899 |
|
|
|
900 |
|
|
if (!gimple_plf (phi, STMT_NECESSARY))
|
901 |
|
|
{
|
902 |
|
|
something_changed = true;
|
903 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
904 |
|
|
{
|
905 |
|
|
fprintf (dump_file, "Deleting : ");
|
906 |
|
|
print_gimple_stmt (dump_file, phi, 0, TDF_SLIM);
|
907 |
|
|
fprintf (dump_file, "\n");
|
908 |
|
|
}
|
909 |
|
|
|
910 |
|
|
remove_phi_node (&gsi, true);
|
911 |
|
|
stats.removed_phis++;
|
912 |
|
|
continue;
|
913 |
|
|
}
|
914 |
|
|
|
915 |
|
|
gsi_next (&gsi);
|
916 |
|
|
}
|
917 |
|
|
return something_changed;
|
918 |
|
|
}
|
919 |
|
|
|
920 |
|
|
/* Forward edge E to respective POST_DOM_BB and update PHIs. */
|
921 |
|
|
|
922 |
|
|
static edge
|
923 |
|
|
forward_edge_to_pdom (edge e, basic_block post_dom_bb)
|
924 |
|
|
{
|
925 |
|
|
gimple_stmt_iterator gsi;
|
926 |
|
|
edge e2 = NULL;
|
927 |
|
|
edge_iterator ei;
|
928 |
|
|
|
929 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
930 |
|
|
fprintf (dump_file, "Redirecting edge %i->%i to %i\n", e->src->index,
|
931 |
|
|
e->dest->index, post_dom_bb->index);
|
932 |
|
|
|
933 |
|
|
e2 = redirect_edge_and_branch (e, post_dom_bb);
|
934 |
|
|
cfg_altered = true;
|
935 |
|
|
|
936 |
|
|
/* If edge was already around, no updating is neccesary. */
|
937 |
|
|
if (e2 != e)
|
938 |
|
|
return e2;
|
939 |
|
|
|
940 |
|
|
if (!gimple_seq_empty_p (phi_nodes (post_dom_bb)))
|
941 |
|
|
{
|
942 |
|
|
/* We are sure that for every live PHI we are seeing control dependent BB.
|
943 |
|
|
This means that we can pick any edge to duplicate PHI args from. */
|
944 |
|
|
FOR_EACH_EDGE (e2, ei, post_dom_bb->preds)
|
945 |
|
|
if (e2 != e)
|
946 |
|
|
break;
|
947 |
|
|
for (gsi = gsi_start_phis (post_dom_bb); !gsi_end_p (gsi);)
|
948 |
|
|
{
|
949 |
|
|
gimple phi = gsi_stmt (gsi);
|
950 |
|
|
tree op;
|
951 |
|
|
source_location locus;
|
952 |
|
|
|
953 |
|
|
/* PHIs for virtuals have no control dependency relation on them.
|
954 |
|
|
We are lost here and must force renaming of the symbol. */
|
955 |
|
|
if (!is_gimple_reg (gimple_phi_result (phi)))
|
956 |
|
|
{
|
957 |
|
|
mark_virtual_phi_result_for_renaming (phi);
|
958 |
|
|
remove_phi_node (&gsi, true);
|
959 |
|
|
continue;
|
960 |
|
|
}
|
961 |
|
|
|
962 |
|
|
/* Dead PHI do not imply control dependency. */
|
963 |
|
|
if (!gimple_plf (phi, STMT_NECESSARY))
|
964 |
|
|
{
|
965 |
|
|
gsi_next (&gsi);
|
966 |
|
|
continue;
|
967 |
|
|
}
|
968 |
|
|
|
969 |
|
|
op = gimple_phi_arg_def (phi, e2->dest_idx);
|
970 |
|
|
locus = gimple_phi_arg_location (phi, e2->dest_idx);
|
971 |
|
|
add_phi_arg (phi, op, e, locus);
|
972 |
|
|
/* The resulting PHI if not dead can only be degenerate. */
|
973 |
|
|
gcc_assert (degenerate_phi_p (phi));
|
974 |
|
|
gsi_next (&gsi);
|
975 |
|
|
}
|
976 |
|
|
}
|
977 |
|
|
return e;
|
978 |
|
|
}
|
979 |
|
|
|
980 |
|
|
/* Remove dead statement pointed to by iterator I. Receives the basic block BB
|
981 |
|
|
containing I so that we don't have to look it up. */
|
982 |
|
|
|
983 |
|
|
static void
|
984 |
|
|
remove_dead_stmt (gimple_stmt_iterator *i, basic_block bb)
|
985 |
|
|
{
|
986 |
|
|
gimple stmt = gsi_stmt (*i);
|
987 |
|
|
|
988 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
989 |
|
|
{
|
990 |
|
|
fprintf (dump_file, "Deleting : ");
|
991 |
|
|
print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
|
992 |
|
|
fprintf (dump_file, "\n");
|
993 |
|
|
}
|
994 |
|
|
|
995 |
|
|
stats.removed++;
|
996 |
|
|
|
997 |
|
|
/* If we have determined that a conditional branch statement contributes
|
998 |
|
|
nothing to the program, then we not only remove it, but we also change
|
999 |
|
|
the flow graph so that the current block will simply fall-thru to its
|
1000 |
|
|
immediate post-dominator. The blocks we are circumventing will be
|
1001 |
|
|
removed by cleanup_tree_cfg if this change in the flow graph makes them
|
1002 |
|
|
unreachable. */
|
1003 |
|
|
if (is_ctrl_stmt (stmt))
|
1004 |
|
|
{
|
1005 |
|
|
basic_block post_dom_bb;
|
1006 |
|
|
edge e, e2;
|
1007 |
|
|
edge_iterator ei;
|
1008 |
|
|
|
1009 |
|
|
post_dom_bb = get_immediate_dominator (CDI_POST_DOMINATORS, bb);
|
1010 |
|
|
|
1011 |
|
|
e = find_edge (bb, post_dom_bb);
|
1012 |
|
|
|
1013 |
|
|
/* If edge is already there, try to use it. This avoids need to update
|
1014 |
|
|
PHI nodes. Also watch for cases where post dominator does not exists
|
1015 |
|
|
or is exit block. These can happen for infinite loops as we create
|
1016 |
|
|
fake edges in the dominator tree. */
|
1017 |
|
|
if (e)
|
1018 |
|
|
;
|
1019 |
|
|
else if (! post_dom_bb || post_dom_bb == EXIT_BLOCK_PTR)
|
1020 |
|
|
e = EDGE_SUCC (bb, 0);
|
1021 |
|
|
else
|
1022 |
|
|
e = forward_edge_to_pdom (EDGE_SUCC (bb, 0), post_dom_bb);
|
1023 |
|
|
gcc_assert (e);
|
1024 |
|
|
e->probability = REG_BR_PROB_BASE;
|
1025 |
|
|
e->count = bb->count;
|
1026 |
|
|
|
1027 |
|
|
/* The edge is no longer associated with a conditional, so it does
|
1028 |
|
|
not have TRUE/FALSE flags. */
|
1029 |
|
|
e->flags &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
|
1030 |
|
|
|
1031 |
|
|
/* The lone outgoing edge from BB will be a fallthru edge. */
|
1032 |
|
|
e->flags |= EDGE_FALLTHRU;
|
1033 |
|
|
|
1034 |
|
|
/* Remove the remaining outgoing edges. */
|
1035 |
|
|
for (ei = ei_start (bb->succs); (e2 = ei_safe_edge (ei)); )
|
1036 |
|
|
if (e != e2)
|
1037 |
|
|
{
|
1038 |
|
|
cfg_altered = true;
|
1039 |
|
|
remove_edge (e2);
|
1040 |
|
|
}
|
1041 |
|
|
else
|
1042 |
|
|
ei_next (&ei);
|
1043 |
|
|
}
|
1044 |
|
|
|
1045 |
|
|
unlink_stmt_vdef (stmt);
|
1046 |
|
|
gsi_remove (i, true);
|
1047 |
|
|
release_defs (stmt);
|
1048 |
|
|
}
|
1049 |
|
|
|
1050 |
|
|
/* Eliminate unnecessary statements. Any instruction not marked as necessary
|
1051 |
|
|
contributes nothing to the program, and can be deleted. */
|
1052 |
|
|
|
1053 |
|
|
static bool
|
1054 |
|
|
eliminate_unnecessary_stmts (void)
|
1055 |
|
|
{
|
1056 |
|
|
bool something_changed = false;
|
1057 |
|
|
basic_block bb;
|
1058 |
|
|
gimple_stmt_iterator gsi, psi;
|
1059 |
|
|
gimple stmt;
|
1060 |
|
|
tree call;
|
1061 |
|
|
VEC (basic_block, heap) *h;
|
1062 |
|
|
|
1063 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
1064 |
|
|
fprintf (dump_file, "\nEliminating unnecessary statements:\n");
|
1065 |
|
|
|
1066 |
|
|
clear_special_calls ();
|
1067 |
|
|
|
1068 |
|
|
/* Walking basic blocks and statements in reverse order avoids
|
1069 |
|
|
releasing SSA names before any other DEFs that refer to them are
|
1070 |
|
|
released. This helps avoid loss of debug information, as we get
|
1071 |
|
|
a chance to propagate all RHSs of removed SSAs into debug uses,
|
1072 |
|
|
rather than only the latest ones. E.g., consider:
|
1073 |
|
|
|
1074 |
|
|
x_3 = y_1 + z_2;
|
1075 |
|
|
a_5 = x_3 - b_4;
|
1076 |
|
|
# DEBUG a => a_5
|
1077 |
|
|
|
1078 |
|
|
If we were to release x_3 before a_5, when we reached a_5 and
|
1079 |
|
|
tried to substitute it into the debug stmt, we'd see x_3 there,
|
1080 |
|
|
but x_3's DEF, type, etc would have already been disconnected.
|
1081 |
|
|
By going backwards, the debug stmt first changes to:
|
1082 |
|
|
|
1083 |
|
|
# DEBUG a => x_3 - b_4
|
1084 |
|
|
|
1085 |
|
|
and then to:
|
1086 |
|
|
|
1087 |
|
|
# DEBUG a => y_1 + z_2 - b_4
|
1088 |
|
|
|
1089 |
|
|
as desired. */
|
1090 |
|
|
gcc_assert (dom_info_available_p (CDI_DOMINATORS));
|
1091 |
|
|
h = get_all_dominated_blocks (CDI_DOMINATORS, single_succ (ENTRY_BLOCK_PTR));
|
1092 |
|
|
|
1093 |
|
|
while (VEC_length (basic_block, h))
|
1094 |
|
|
{
|
1095 |
|
|
bb = VEC_pop (basic_block, h);
|
1096 |
|
|
|
1097 |
|
|
/* Remove dead statements. */
|
1098 |
|
|
for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi = psi)
|
1099 |
|
|
{
|
1100 |
|
|
stmt = gsi_stmt (gsi);
|
1101 |
|
|
|
1102 |
|
|
psi = gsi;
|
1103 |
|
|
gsi_prev (&psi);
|
1104 |
|
|
|
1105 |
|
|
stats.total++;
|
1106 |
|
|
|
1107 |
|
|
/* If GSI is not necessary then remove it. */
|
1108 |
|
|
if (!gimple_plf (stmt, STMT_NECESSARY))
|
1109 |
|
|
{
|
1110 |
|
|
if (!is_gimple_debug (stmt))
|
1111 |
|
|
something_changed = true;
|
1112 |
|
|
remove_dead_stmt (&gsi, bb);
|
1113 |
|
|
}
|
1114 |
|
|
else if (is_gimple_call (stmt))
|
1115 |
|
|
{
|
1116 |
|
|
call = gimple_call_fndecl (stmt);
|
1117 |
|
|
if (call)
|
1118 |
|
|
{
|
1119 |
|
|
tree name;
|
1120 |
|
|
|
1121 |
|
|
/* When LHS of var = call (); is dead, simplify it into
|
1122 |
|
|
call (); saving one operand. */
|
1123 |
|
|
name = gimple_call_lhs (stmt);
|
1124 |
|
|
if (name && TREE_CODE (name) == SSA_NAME
|
1125 |
|
|
&& !TEST_BIT (processed, SSA_NAME_VERSION (name)))
|
1126 |
|
|
{
|
1127 |
|
|
something_changed = true;
|
1128 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
1129 |
|
|
{
|
1130 |
|
|
fprintf (dump_file, "Deleting LHS of call: ");
|
1131 |
|
|
print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
|
1132 |
|
|
fprintf (dump_file, "\n");
|
1133 |
|
|
}
|
1134 |
|
|
|
1135 |
|
|
gimple_call_set_lhs (stmt, NULL_TREE);
|
1136 |
|
|
maybe_clean_or_replace_eh_stmt (stmt, stmt);
|
1137 |
|
|
update_stmt (stmt);
|
1138 |
|
|
release_ssa_name (name);
|
1139 |
|
|
}
|
1140 |
|
|
notice_special_calls (stmt);
|
1141 |
|
|
}
|
1142 |
|
|
}
|
1143 |
|
|
}
|
1144 |
|
|
}
|
1145 |
|
|
|
1146 |
|
|
VEC_free (basic_block, heap, h);
|
1147 |
|
|
|
1148 |
|
|
/* Since we don't track liveness of virtual PHI nodes, it is possible that we
|
1149 |
|
|
rendered some PHI nodes unreachable while they are still in use.
|
1150 |
|
|
Mark them for renaming. */
|
1151 |
|
|
if (cfg_altered)
|
1152 |
|
|
{
|
1153 |
|
|
basic_block prev_bb;
|
1154 |
|
|
|
1155 |
|
|
find_unreachable_blocks ();
|
1156 |
|
|
|
1157 |
|
|
/* Delete all unreachable basic blocks in reverse dominator order. */
|
1158 |
|
|
for (bb = EXIT_BLOCK_PTR->prev_bb; bb != ENTRY_BLOCK_PTR; bb = prev_bb)
|
1159 |
|
|
{
|
1160 |
|
|
prev_bb = bb->prev_bb;
|
1161 |
|
|
|
1162 |
|
|
if (!TEST_BIT (bb_contains_live_stmts, bb->index)
|
1163 |
|
|
|| !(bb->flags & BB_REACHABLE))
|
1164 |
|
|
{
|
1165 |
|
|
for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
1166 |
|
|
if (!is_gimple_reg (gimple_phi_result (gsi_stmt (gsi))))
|
1167 |
|
|
{
|
1168 |
|
|
bool found = false;
|
1169 |
|
|
imm_use_iterator iter;
|
1170 |
|
|
|
1171 |
|
|
FOR_EACH_IMM_USE_STMT (stmt, iter, gimple_phi_result (gsi_stmt (gsi)))
|
1172 |
|
|
{
|
1173 |
|
|
if (!(gimple_bb (stmt)->flags & BB_REACHABLE))
|
1174 |
|
|
continue;
|
1175 |
|
|
if (gimple_code (stmt) == GIMPLE_PHI
|
1176 |
|
|
|| gimple_plf (stmt, STMT_NECESSARY))
|
1177 |
|
|
{
|
1178 |
|
|
found = true;
|
1179 |
|
|
BREAK_FROM_IMM_USE_STMT (iter);
|
1180 |
|
|
}
|
1181 |
|
|
}
|
1182 |
|
|
if (found)
|
1183 |
|
|
mark_virtual_phi_result_for_renaming (gsi_stmt (gsi));
|
1184 |
|
|
}
|
1185 |
|
|
|
1186 |
|
|
if (!(bb->flags & BB_REACHABLE))
|
1187 |
|
|
{
|
1188 |
|
|
/* Speed up the removal of blocks that don't
|
1189 |
|
|
dominate others. Walking backwards, this should
|
1190 |
|
|
be the common case. ??? Do we need to recompute
|
1191 |
|
|
dominators because of cfg_altered? */
|
1192 |
|
|
if (!MAY_HAVE_DEBUG_STMTS
|
1193 |
|
|
|| !first_dom_son (CDI_DOMINATORS, bb))
|
1194 |
|
|
delete_basic_block (bb);
|
1195 |
|
|
else
|
1196 |
|
|
{
|
1197 |
|
|
h = get_all_dominated_blocks (CDI_DOMINATORS, bb);
|
1198 |
|
|
|
1199 |
|
|
while (VEC_length (basic_block, h))
|
1200 |
|
|
{
|
1201 |
|
|
bb = VEC_pop (basic_block, h);
|
1202 |
|
|
prev_bb = bb->prev_bb;
|
1203 |
|
|
/* Rearrangements to the CFG may have failed
|
1204 |
|
|
to update the dominators tree, so that
|
1205 |
|
|
formerly-dominated blocks are now
|
1206 |
|
|
otherwise reachable. */
|
1207 |
|
|
if (!!(bb->flags & BB_REACHABLE))
|
1208 |
|
|
continue;
|
1209 |
|
|
delete_basic_block (bb);
|
1210 |
|
|
}
|
1211 |
|
|
|
1212 |
|
|
VEC_free (basic_block, heap, h);
|
1213 |
|
|
}
|
1214 |
|
|
}
|
1215 |
|
|
}
|
1216 |
|
|
}
|
1217 |
|
|
}
|
1218 |
|
|
FOR_EACH_BB (bb)
|
1219 |
|
|
{
|
1220 |
|
|
/* Remove dead PHI nodes. */
|
1221 |
|
|
something_changed |= remove_dead_phis (bb);
|
1222 |
|
|
}
|
1223 |
|
|
|
1224 |
|
|
return something_changed;
|
1225 |
|
|
}
|
1226 |
|
|
|
1227 |
|
|
|
1228 |
|
|
/* Print out removed statement statistics. */
|
1229 |
|
|
|
1230 |
|
|
static void
|
1231 |
|
|
print_stats (void)
|
1232 |
|
|
{
|
1233 |
|
|
float percg;
|
1234 |
|
|
|
1235 |
|
|
percg = ((float) stats.removed / (float) stats.total) * 100;
|
1236 |
|
|
fprintf (dump_file, "Removed %d of %d statements (%d%%)\n",
|
1237 |
|
|
stats.removed, stats.total, (int) percg);
|
1238 |
|
|
|
1239 |
|
|
if (stats.total_phis == 0)
|
1240 |
|
|
percg = 0;
|
1241 |
|
|
else
|
1242 |
|
|
percg = ((float) stats.removed_phis / (float) stats.total_phis) * 100;
|
1243 |
|
|
|
1244 |
|
|
fprintf (dump_file, "Removed %d of %d PHI nodes (%d%%)\n",
|
1245 |
|
|
stats.removed_phis, stats.total_phis, (int) percg);
|
1246 |
|
|
}
|
1247 |
|
|
|
1248 |
|
|
/* Initialization for this pass. Set up the used data structures. */
|
1249 |
|
|
|
1250 |
|
|
static void
|
1251 |
|
|
tree_dce_init (bool aggressive)
|
1252 |
|
|
{
|
1253 |
|
|
memset ((void *) &stats, 0, sizeof (stats));
|
1254 |
|
|
|
1255 |
|
|
if (aggressive)
|
1256 |
|
|
{
|
1257 |
|
|
int i;
|
1258 |
|
|
|
1259 |
|
|
control_dependence_map = XNEWVEC (bitmap, last_basic_block);
|
1260 |
|
|
for (i = 0; i < last_basic_block; ++i)
|
1261 |
|
|
control_dependence_map[i] = BITMAP_ALLOC (NULL);
|
1262 |
|
|
|
1263 |
|
|
last_stmt_necessary = sbitmap_alloc (last_basic_block);
|
1264 |
|
|
sbitmap_zero (last_stmt_necessary);
|
1265 |
|
|
bb_contains_live_stmts = sbitmap_alloc (last_basic_block);
|
1266 |
|
|
sbitmap_zero (bb_contains_live_stmts);
|
1267 |
|
|
}
|
1268 |
|
|
|
1269 |
|
|
processed = sbitmap_alloc (num_ssa_names + 1);
|
1270 |
|
|
sbitmap_zero (processed);
|
1271 |
|
|
|
1272 |
|
|
worklist = VEC_alloc (gimple, heap, 64);
|
1273 |
|
|
cfg_altered = false;
|
1274 |
|
|
}
|
1275 |
|
|
|
1276 |
|
|
/* Cleanup after this pass. */
|
1277 |
|
|
|
1278 |
|
|
static void
|
1279 |
|
|
tree_dce_done (bool aggressive)
|
1280 |
|
|
{
|
1281 |
|
|
if (aggressive)
|
1282 |
|
|
{
|
1283 |
|
|
int i;
|
1284 |
|
|
|
1285 |
|
|
for (i = 0; i < last_basic_block; ++i)
|
1286 |
|
|
BITMAP_FREE (control_dependence_map[i]);
|
1287 |
|
|
free (control_dependence_map);
|
1288 |
|
|
|
1289 |
|
|
sbitmap_free (visited_control_parents);
|
1290 |
|
|
sbitmap_free (last_stmt_necessary);
|
1291 |
|
|
sbitmap_free (bb_contains_live_stmts);
|
1292 |
|
|
bb_contains_live_stmts = NULL;
|
1293 |
|
|
}
|
1294 |
|
|
|
1295 |
|
|
sbitmap_free (processed);
|
1296 |
|
|
|
1297 |
|
|
VEC_free (gimple, heap, worklist);
|
1298 |
|
|
}
|
1299 |
|
|
|
1300 |
|
|
/* Main routine to eliminate dead code.
|
1301 |
|
|
|
1302 |
|
|
AGGRESSIVE controls the aggressiveness of the algorithm.
|
1303 |
|
|
In conservative mode, we ignore control dependence and simply declare
|
1304 |
|
|
all but the most trivially dead branches necessary. This mode is fast.
|
1305 |
|
|
In aggressive mode, control dependences are taken into account, which
|
1306 |
|
|
results in more dead code elimination, but at the cost of some time.
|
1307 |
|
|
|
1308 |
|
|
FIXME: Aggressive mode before PRE doesn't work currently because
|
1309 |
|
|
the dominance info is not invalidated after DCE1. This is
|
1310 |
|
|
not an issue right now because we only run aggressive DCE
|
1311 |
|
|
as the last tree SSA pass, but keep this in mind when you
|
1312 |
|
|
start experimenting with pass ordering. */
|
1313 |
|
|
|
1314 |
|
|
static unsigned int
|
1315 |
|
|
perform_tree_ssa_dce (bool aggressive)
|
1316 |
|
|
{
|
1317 |
|
|
struct edge_list *el = NULL;
|
1318 |
|
|
bool something_changed = 0;
|
1319 |
|
|
|
1320 |
|
|
/* Preheaders are needed for SCEV to work.
|
1321 |
|
|
Simple lateches and recorded exits improve chances that loop will
|
1322 |
|
|
proved to be finite in testcases such as in loop-15.c and loop-24.c */
|
1323 |
|
|
if (aggressive)
|
1324 |
|
|
loop_optimizer_init (LOOPS_NORMAL
|
1325 |
|
|
| LOOPS_HAVE_RECORDED_EXITS);
|
1326 |
|
|
|
1327 |
|
|
tree_dce_init (aggressive);
|
1328 |
|
|
|
1329 |
|
|
if (aggressive)
|
1330 |
|
|
{
|
1331 |
|
|
/* Compute control dependence. */
|
1332 |
|
|
timevar_push (TV_CONTROL_DEPENDENCES);
|
1333 |
|
|
calculate_dominance_info (CDI_POST_DOMINATORS);
|
1334 |
|
|
el = create_edge_list ();
|
1335 |
|
|
find_all_control_dependences (el);
|
1336 |
|
|
timevar_pop (TV_CONTROL_DEPENDENCES);
|
1337 |
|
|
|
1338 |
|
|
visited_control_parents = sbitmap_alloc (last_basic_block);
|
1339 |
|
|
sbitmap_zero (visited_control_parents);
|
1340 |
|
|
|
1341 |
|
|
mark_dfs_back_edges ();
|
1342 |
|
|
}
|
1343 |
|
|
|
1344 |
|
|
find_obviously_necessary_stmts (el);
|
1345 |
|
|
|
1346 |
|
|
if (aggressive)
|
1347 |
|
|
loop_optimizer_finalize ();
|
1348 |
|
|
|
1349 |
|
|
longest_chain = 0;
|
1350 |
|
|
total_chain = 0;
|
1351 |
|
|
nr_walks = 0;
|
1352 |
|
|
chain_ovfl = false;
|
1353 |
|
|
visited = BITMAP_ALLOC (NULL);
|
1354 |
|
|
propagate_necessity (el);
|
1355 |
|
|
BITMAP_FREE (visited);
|
1356 |
|
|
|
1357 |
|
|
something_changed |= eliminate_unnecessary_stmts ();
|
1358 |
|
|
something_changed |= cfg_altered;
|
1359 |
|
|
|
1360 |
|
|
/* We do not update postdominators, so free them unconditionally. */
|
1361 |
|
|
free_dominance_info (CDI_POST_DOMINATORS);
|
1362 |
|
|
|
1363 |
|
|
/* If we removed paths in the CFG, then we need to update
|
1364 |
|
|
dominators as well. I haven't investigated the possibility
|
1365 |
|
|
of incrementally updating dominators. */
|
1366 |
|
|
if (cfg_altered)
|
1367 |
|
|
free_dominance_info (CDI_DOMINATORS);
|
1368 |
|
|
|
1369 |
|
|
statistics_counter_event (cfun, "Statements deleted", stats.removed);
|
1370 |
|
|
statistics_counter_event (cfun, "PHI nodes deleted", stats.removed_phis);
|
1371 |
|
|
|
1372 |
|
|
/* Debugging dumps. */
|
1373 |
|
|
if (dump_file && (dump_flags & (TDF_STATS|TDF_DETAILS)))
|
1374 |
|
|
print_stats ();
|
1375 |
|
|
|
1376 |
|
|
tree_dce_done (aggressive);
|
1377 |
|
|
|
1378 |
|
|
free_edge_list (el);
|
1379 |
|
|
|
1380 |
|
|
if (something_changed)
|
1381 |
|
|
return (TODO_update_ssa | TODO_cleanup_cfg | TODO_ggc_collect
|
1382 |
|
|
| TODO_remove_unused_locals);
|
1383 |
|
|
else
|
1384 |
|
|
return 0;
|
1385 |
|
|
}
|
1386 |
|
|
|
1387 |
|
|
/* Pass entry points. */
|
1388 |
|
|
static unsigned int
|
1389 |
|
|
tree_ssa_dce (void)
|
1390 |
|
|
{
|
1391 |
|
|
return perform_tree_ssa_dce (/*aggressive=*/false);
|
1392 |
|
|
}
|
1393 |
|
|
|
1394 |
|
|
static unsigned int
|
1395 |
|
|
tree_ssa_dce_loop (void)
|
1396 |
|
|
{
|
1397 |
|
|
unsigned int todo;
|
1398 |
|
|
todo = perform_tree_ssa_dce (/*aggressive=*/false);
|
1399 |
|
|
if (todo)
|
1400 |
|
|
{
|
1401 |
|
|
free_numbers_of_iterations_estimates ();
|
1402 |
|
|
scev_reset ();
|
1403 |
|
|
}
|
1404 |
|
|
return todo;
|
1405 |
|
|
}
|
1406 |
|
|
|
1407 |
|
|
static unsigned int
|
1408 |
|
|
tree_ssa_cd_dce (void)
|
1409 |
|
|
{
|
1410 |
|
|
return perform_tree_ssa_dce (/*aggressive=*/optimize >= 2);
|
1411 |
|
|
}
|
1412 |
|
|
|
1413 |
|
|
static bool
|
1414 |
|
|
gate_dce (void)
|
1415 |
|
|
{
|
1416 |
|
|
return flag_tree_dce != 0;
|
1417 |
|
|
}
|
1418 |
|
|
|
1419 |
|
|
struct gimple_opt_pass pass_dce =
|
1420 |
|
|
{
|
1421 |
|
|
{
|
1422 |
|
|
GIMPLE_PASS,
|
1423 |
|
|
"dce", /* name */
|
1424 |
|
|
gate_dce, /* gate */
|
1425 |
|
|
tree_ssa_dce, /* execute */
|
1426 |
|
|
NULL, /* sub */
|
1427 |
|
|
NULL, /* next */
|
1428 |
|
|
0, /* static_pass_number */
|
1429 |
|
|
TV_TREE_DCE, /* tv_id */
|
1430 |
|
|
PROP_cfg | PROP_ssa, /* properties_required */
|
1431 |
|
|
0, /* properties_provided */
|
1432 |
|
|
0, /* properties_destroyed */
|
1433 |
|
|
0, /* todo_flags_start */
|
1434 |
|
|
TODO_dump_func | TODO_verify_ssa /* todo_flags_finish */
|
1435 |
|
|
}
|
1436 |
|
|
};
|
1437 |
|
|
|
1438 |
|
|
struct gimple_opt_pass pass_dce_loop =
|
1439 |
|
|
{
|
1440 |
|
|
{
|
1441 |
|
|
GIMPLE_PASS,
|
1442 |
|
|
"dceloop", /* name */
|
1443 |
|
|
gate_dce, /* gate */
|
1444 |
|
|
tree_ssa_dce_loop, /* execute */
|
1445 |
|
|
NULL, /* sub */
|
1446 |
|
|
NULL, /* next */
|
1447 |
|
|
0, /* static_pass_number */
|
1448 |
|
|
TV_TREE_DCE, /* tv_id */
|
1449 |
|
|
PROP_cfg | PROP_ssa, /* properties_required */
|
1450 |
|
|
0, /* properties_provided */
|
1451 |
|
|
0, /* properties_destroyed */
|
1452 |
|
|
0, /* todo_flags_start */
|
1453 |
|
|
TODO_dump_func | TODO_verify_ssa /* todo_flags_finish */
|
1454 |
|
|
}
|
1455 |
|
|
};
|
1456 |
|
|
|
1457 |
|
|
struct gimple_opt_pass pass_cd_dce =
|
1458 |
|
|
{
|
1459 |
|
|
{
|
1460 |
|
|
GIMPLE_PASS,
|
1461 |
|
|
"cddce", /* name */
|
1462 |
|
|
gate_dce, /* gate */
|
1463 |
|
|
tree_ssa_cd_dce, /* execute */
|
1464 |
|
|
NULL, /* sub */
|
1465 |
|
|
NULL, /* next */
|
1466 |
|
|
0, /* static_pass_number */
|
1467 |
|
|
TV_TREE_CD_DCE, /* tv_id */
|
1468 |
|
|
PROP_cfg | PROP_ssa, /* properties_required */
|
1469 |
|
|
0, /* properties_provided */
|
1470 |
|
|
0, /* properties_destroyed */
|
1471 |
|
|
0, /* todo_flags_start */
|
1472 |
|
|
TODO_dump_func | TODO_verify_ssa
|
1473 |
|
|
| TODO_verify_flow /* todo_flags_finish */
|
1474 |
|
|
}
|
1475 |
|
|
};
|