1 |
280 |
jeremybenn |
/* High-level loop manipulation functions.
|
2 |
|
|
Copyright (C) 2004, 2005, 2006, 2007, 2008, 2010
|
3 |
|
|
Free Software Foundation, Inc.
|
4 |
|
|
|
5 |
|
|
This file is part of GCC.
|
6 |
|
|
|
7 |
|
|
GCC is free software; you can redistribute it and/or modify it
|
8 |
|
|
under the terms of the GNU General Public License as published by the
|
9 |
|
|
Free Software Foundation; either version 3, or (at your option) any
|
10 |
|
|
later version.
|
11 |
|
|
|
12 |
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT
|
13 |
|
|
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
14 |
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
15 |
|
|
for more details.
|
16 |
|
|
|
17 |
|
|
You should have received a copy of the GNU General Public License
|
18 |
|
|
along with GCC; see the file COPYING3. If not see
|
19 |
|
|
<http://www.gnu.org/licenses/>. */
|
20 |
|
|
|
21 |
|
|
#include "config.h"
|
22 |
|
|
#include "system.h"
|
23 |
|
|
#include "coretypes.h"
|
24 |
|
|
#include "tm.h"
|
25 |
|
|
#include "tree.h"
|
26 |
|
|
#include "rtl.h"
|
27 |
|
|
#include "tm_p.h"
|
28 |
|
|
#include "hard-reg-set.h"
|
29 |
|
|
#include "basic-block.h"
|
30 |
|
|
#include "output.h"
|
31 |
|
|
#include "diagnostic.h"
|
32 |
|
|
#include "tree-flow.h"
|
33 |
|
|
#include "tree-dump.h"
|
34 |
|
|
#include "timevar.h"
|
35 |
|
|
#include "cfgloop.h"
|
36 |
|
|
#include "tree-pass.h"
|
37 |
|
|
#include "cfglayout.h"
|
38 |
|
|
#include "tree-scalar-evolution.h"
|
39 |
|
|
#include "params.h"
|
40 |
|
|
#include "tree-inline.h"
|
41 |
|
|
#include "langhooks.h"
|
42 |
|
|
|
43 |
|
|
/* Creates an induction variable with value BASE + STEP * iteration in LOOP.
|
44 |
|
|
It is expected that neither BASE nor STEP are shared with other expressions
|
45 |
|
|
(unless the sharing rules allow this). Use VAR as a base var_decl for it
|
46 |
|
|
(if NULL, a new temporary will be created). The increment will occur at
|
47 |
|
|
INCR_POS (after it if AFTER is true, before it otherwise). INCR_POS and
|
48 |
|
|
AFTER can be computed using standard_iv_increment_position. The ssa versions
|
49 |
|
|
of the variable before and after increment will be stored in VAR_BEFORE and
|
50 |
|
|
VAR_AFTER (unless they are NULL). */
|
51 |
|
|
|
52 |
|
|
void
|
53 |
|
|
create_iv (tree base, tree step, tree var, struct loop *loop,
|
54 |
|
|
gimple_stmt_iterator *incr_pos, bool after,
|
55 |
|
|
tree *var_before, tree *var_after)
|
56 |
|
|
{
|
57 |
|
|
gimple stmt;
|
58 |
|
|
tree initial, step1;
|
59 |
|
|
gimple_seq stmts;
|
60 |
|
|
tree vb, va;
|
61 |
|
|
enum tree_code incr_op = PLUS_EXPR;
|
62 |
|
|
edge pe = loop_preheader_edge (loop);
|
63 |
|
|
|
64 |
|
|
if (!var)
|
65 |
|
|
{
|
66 |
|
|
var = create_tmp_var (TREE_TYPE (base), "ivtmp");
|
67 |
|
|
add_referenced_var (var);
|
68 |
|
|
}
|
69 |
|
|
|
70 |
|
|
vb = make_ssa_name (var, NULL);
|
71 |
|
|
if (var_before)
|
72 |
|
|
*var_before = vb;
|
73 |
|
|
va = make_ssa_name (var, NULL);
|
74 |
|
|
if (var_after)
|
75 |
|
|
*var_after = va;
|
76 |
|
|
|
77 |
|
|
/* For easier readability of the created code, produce MINUS_EXPRs
|
78 |
|
|
when suitable. */
|
79 |
|
|
if (TREE_CODE (step) == INTEGER_CST)
|
80 |
|
|
{
|
81 |
|
|
if (TYPE_UNSIGNED (TREE_TYPE (step)))
|
82 |
|
|
{
|
83 |
|
|
step1 = fold_build1 (NEGATE_EXPR, TREE_TYPE (step), step);
|
84 |
|
|
if (tree_int_cst_lt (step1, step))
|
85 |
|
|
{
|
86 |
|
|
incr_op = MINUS_EXPR;
|
87 |
|
|
step = step1;
|
88 |
|
|
}
|
89 |
|
|
}
|
90 |
|
|
else
|
91 |
|
|
{
|
92 |
|
|
bool ovf;
|
93 |
|
|
|
94 |
|
|
if (!tree_expr_nonnegative_warnv_p (step, &ovf)
|
95 |
|
|
&& may_negate_without_overflow_p (step))
|
96 |
|
|
{
|
97 |
|
|
incr_op = MINUS_EXPR;
|
98 |
|
|
step = fold_build1 (NEGATE_EXPR, TREE_TYPE (step), step);
|
99 |
|
|
}
|
100 |
|
|
}
|
101 |
|
|
}
|
102 |
|
|
if (POINTER_TYPE_P (TREE_TYPE (base)))
|
103 |
|
|
{
|
104 |
|
|
if (TREE_CODE (base) == ADDR_EXPR)
|
105 |
|
|
mark_addressable (TREE_OPERAND (base, 0));
|
106 |
|
|
step = fold_convert (sizetype, step);
|
107 |
|
|
if (incr_op == MINUS_EXPR)
|
108 |
|
|
step = fold_build1 (NEGATE_EXPR, sizetype, step);
|
109 |
|
|
incr_op = POINTER_PLUS_EXPR;
|
110 |
|
|
}
|
111 |
|
|
/* Gimplify the step if necessary. We put the computations in front of the
|
112 |
|
|
loop (i.e. the step should be loop invariant). */
|
113 |
|
|
step = force_gimple_operand (step, &stmts, true, NULL_TREE);
|
114 |
|
|
if (stmts)
|
115 |
|
|
gsi_insert_seq_on_edge_immediate (pe, stmts);
|
116 |
|
|
|
117 |
|
|
stmt = gimple_build_assign_with_ops (incr_op, va, vb, step);
|
118 |
|
|
if (after)
|
119 |
|
|
gsi_insert_after (incr_pos, stmt, GSI_NEW_STMT);
|
120 |
|
|
else
|
121 |
|
|
gsi_insert_before (incr_pos, stmt, GSI_NEW_STMT);
|
122 |
|
|
|
123 |
|
|
initial = force_gimple_operand (base, &stmts, true, var);
|
124 |
|
|
if (stmts)
|
125 |
|
|
gsi_insert_seq_on_edge_immediate (pe, stmts);
|
126 |
|
|
|
127 |
|
|
stmt = create_phi_node (vb, loop->header);
|
128 |
|
|
SSA_NAME_DEF_STMT (vb) = stmt;
|
129 |
|
|
add_phi_arg (stmt, initial, loop_preheader_edge (loop), UNKNOWN_LOCATION);
|
130 |
|
|
add_phi_arg (stmt, va, loop_latch_edge (loop), UNKNOWN_LOCATION);
|
131 |
|
|
}
|
132 |
|
|
|
133 |
|
|
/* Add exit phis for the USE on EXIT. */
|
134 |
|
|
|
135 |
|
|
static void
|
136 |
|
|
add_exit_phis_edge (basic_block exit, tree use)
|
137 |
|
|
{
|
138 |
|
|
gimple phi, def_stmt = SSA_NAME_DEF_STMT (use);
|
139 |
|
|
basic_block def_bb = gimple_bb (def_stmt);
|
140 |
|
|
struct loop *def_loop;
|
141 |
|
|
edge e;
|
142 |
|
|
edge_iterator ei;
|
143 |
|
|
|
144 |
|
|
/* Check that some of the edges entering the EXIT block exits a loop in
|
145 |
|
|
that USE is defined. */
|
146 |
|
|
FOR_EACH_EDGE (e, ei, exit->preds)
|
147 |
|
|
{
|
148 |
|
|
def_loop = find_common_loop (def_bb->loop_father, e->src->loop_father);
|
149 |
|
|
if (!flow_bb_inside_loop_p (def_loop, e->dest))
|
150 |
|
|
break;
|
151 |
|
|
}
|
152 |
|
|
|
153 |
|
|
if (!e)
|
154 |
|
|
return;
|
155 |
|
|
|
156 |
|
|
phi = create_phi_node (use, exit);
|
157 |
|
|
create_new_def_for (gimple_phi_result (phi), phi,
|
158 |
|
|
gimple_phi_result_ptr (phi));
|
159 |
|
|
FOR_EACH_EDGE (e, ei, exit->preds)
|
160 |
|
|
add_phi_arg (phi, use, e, UNKNOWN_LOCATION);
|
161 |
|
|
}
|
162 |
|
|
|
163 |
|
|
/* Add exit phis for VAR that is used in LIVEIN.
|
164 |
|
|
Exits of the loops are stored in EXITS. */
|
165 |
|
|
|
166 |
|
|
static void
|
167 |
|
|
add_exit_phis_var (tree var, bitmap livein, bitmap exits)
|
168 |
|
|
{
|
169 |
|
|
bitmap def;
|
170 |
|
|
unsigned index;
|
171 |
|
|
basic_block def_bb = gimple_bb (SSA_NAME_DEF_STMT (var));
|
172 |
|
|
bitmap_iterator bi;
|
173 |
|
|
|
174 |
|
|
if (is_gimple_reg (var))
|
175 |
|
|
bitmap_clear_bit (livein, def_bb->index);
|
176 |
|
|
else
|
177 |
|
|
bitmap_set_bit (livein, def_bb->index);
|
178 |
|
|
|
179 |
|
|
def = BITMAP_ALLOC (NULL);
|
180 |
|
|
bitmap_set_bit (def, def_bb->index);
|
181 |
|
|
compute_global_livein (livein, def);
|
182 |
|
|
BITMAP_FREE (def);
|
183 |
|
|
|
184 |
|
|
EXECUTE_IF_AND_IN_BITMAP (exits, livein, 0, index, bi)
|
185 |
|
|
{
|
186 |
|
|
add_exit_phis_edge (BASIC_BLOCK (index), var);
|
187 |
|
|
}
|
188 |
|
|
}
|
189 |
|
|
|
190 |
|
|
/* Add exit phis for the names marked in NAMES_TO_RENAME.
|
191 |
|
|
Exits of the loops are stored in EXITS. Sets of blocks where the ssa
|
192 |
|
|
names are used are stored in USE_BLOCKS. */
|
193 |
|
|
|
194 |
|
|
static void
|
195 |
|
|
add_exit_phis (bitmap names_to_rename, bitmap *use_blocks, bitmap loop_exits)
|
196 |
|
|
{
|
197 |
|
|
unsigned i;
|
198 |
|
|
bitmap_iterator bi;
|
199 |
|
|
|
200 |
|
|
EXECUTE_IF_SET_IN_BITMAP (names_to_rename, 0, i, bi)
|
201 |
|
|
{
|
202 |
|
|
add_exit_phis_var (ssa_name (i), use_blocks[i], loop_exits);
|
203 |
|
|
}
|
204 |
|
|
}
|
205 |
|
|
|
206 |
|
|
/* Returns a bitmap of all loop exit edge targets. */
|
207 |
|
|
|
208 |
|
|
static bitmap
|
209 |
|
|
get_loops_exits (void)
|
210 |
|
|
{
|
211 |
|
|
bitmap exits = BITMAP_ALLOC (NULL);
|
212 |
|
|
basic_block bb;
|
213 |
|
|
edge e;
|
214 |
|
|
edge_iterator ei;
|
215 |
|
|
|
216 |
|
|
FOR_EACH_BB (bb)
|
217 |
|
|
{
|
218 |
|
|
FOR_EACH_EDGE (e, ei, bb->preds)
|
219 |
|
|
if (e->src != ENTRY_BLOCK_PTR
|
220 |
|
|
&& !flow_bb_inside_loop_p (e->src->loop_father, bb))
|
221 |
|
|
{
|
222 |
|
|
bitmap_set_bit (exits, bb->index);
|
223 |
|
|
break;
|
224 |
|
|
}
|
225 |
|
|
}
|
226 |
|
|
|
227 |
|
|
return exits;
|
228 |
|
|
}
|
229 |
|
|
|
230 |
|
|
/* For USE in BB, if it is used outside of the loop it is defined in,
|
231 |
|
|
mark it for rewrite. Record basic block BB where it is used
|
232 |
|
|
to USE_BLOCKS. Record the ssa name index to NEED_PHIS bitmap. */
|
233 |
|
|
|
234 |
|
|
static void
|
235 |
|
|
find_uses_to_rename_use (basic_block bb, tree use, bitmap *use_blocks,
|
236 |
|
|
bitmap need_phis)
|
237 |
|
|
{
|
238 |
|
|
unsigned ver;
|
239 |
|
|
basic_block def_bb;
|
240 |
|
|
struct loop *def_loop;
|
241 |
|
|
|
242 |
|
|
if (TREE_CODE (use) != SSA_NAME)
|
243 |
|
|
return;
|
244 |
|
|
|
245 |
|
|
/* We don't need to keep virtual operands in loop-closed form. */
|
246 |
|
|
if (!is_gimple_reg (use))
|
247 |
|
|
return;
|
248 |
|
|
|
249 |
|
|
ver = SSA_NAME_VERSION (use);
|
250 |
|
|
def_bb = gimple_bb (SSA_NAME_DEF_STMT (use));
|
251 |
|
|
if (!def_bb)
|
252 |
|
|
return;
|
253 |
|
|
def_loop = def_bb->loop_father;
|
254 |
|
|
|
255 |
|
|
/* If the definition is not inside a loop, it is not interesting. */
|
256 |
|
|
if (!loop_outer (def_loop))
|
257 |
|
|
return;
|
258 |
|
|
|
259 |
|
|
/* If the use is not outside of the loop it is defined in, it is not
|
260 |
|
|
interesting. */
|
261 |
|
|
if (flow_bb_inside_loop_p (def_loop, bb))
|
262 |
|
|
return;
|
263 |
|
|
|
264 |
|
|
if (!use_blocks[ver])
|
265 |
|
|
use_blocks[ver] = BITMAP_ALLOC (NULL);
|
266 |
|
|
bitmap_set_bit (use_blocks[ver], bb->index);
|
267 |
|
|
|
268 |
|
|
bitmap_set_bit (need_phis, ver);
|
269 |
|
|
}
|
270 |
|
|
|
271 |
|
|
/* For uses in STMT, mark names that are used outside of the loop they are
|
272 |
|
|
defined to rewrite. Record the set of blocks in that the ssa
|
273 |
|
|
names are defined to USE_BLOCKS and the ssa names themselves to
|
274 |
|
|
NEED_PHIS. */
|
275 |
|
|
|
276 |
|
|
static void
|
277 |
|
|
find_uses_to_rename_stmt (gimple stmt, bitmap *use_blocks, bitmap need_phis)
|
278 |
|
|
{
|
279 |
|
|
ssa_op_iter iter;
|
280 |
|
|
tree var;
|
281 |
|
|
basic_block bb = gimple_bb (stmt);
|
282 |
|
|
|
283 |
|
|
if (is_gimple_debug (stmt))
|
284 |
|
|
return;
|
285 |
|
|
|
286 |
|
|
FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, SSA_OP_ALL_USES)
|
287 |
|
|
find_uses_to_rename_use (bb, var, use_blocks, need_phis);
|
288 |
|
|
}
|
289 |
|
|
|
290 |
|
|
/* Marks names that are used in BB and outside of the loop they are
|
291 |
|
|
defined in for rewrite. Records the set of blocks in that the ssa
|
292 |
|
|
names are defined to USE_BLOCKS. Record the SSA names that will
|
293 |
|
|
need exit PHIs in NEED_PHIS. */
|
294 |
|
|
|
295 |
|
|
static void
|
296 |
|
|
find_uses_to_rename_bb (basic_block bb, bitmap *use_blocks, bitmap need_phis)
|
297 |
|
|
{
|
298 |
|
|
gimple_stmt_iterator bsi;
|
299 |
|
|
edge e;
|
300 |
|
|
edge_iterator ei;
|
301 |
|
|
|
302 |
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
303 |
|
|
for (bsi = gsi_start_phis (e->dest); !gsi_end_p (bsi); gsi_next (&bsi))
|
304 |
|
|
find_uses_to_rename_use (bb, PHI_ARG_DEF_FROM_EDGE (gsi_stmt (bsi), e),
|
305 |
|
|
use_blocks, need_phis);
|
306 |
|
|
|
307 |
|
|
for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
|
308 |
|
|
find_uses_to_rename_stmt (gsi_stmt (bsi), use_blocks, need_phis);
|
309 |
|
|
}
|
310 |
|
|
|
311 |
|
|
/* Marks names that are used outside of the loop they are defined in
|
312 |
|
|
for rewrite. Records the set of blocks in that the ssa
|
313 |
|
|
names are defined to USE_BLOCKS. If CHANGED_BBS is not NULL,
|
314 |
|
|
scan only blocks in this set. */
|
315 |
|
|
|
316 |
|
|
static void
|
317 |
|
|
find_uses_to_rename (bitmap changed_bbs, bitmap *use_blocks, bitmap need_phis)
|
318 |
|
|
{
|
319 |
|
|
basic_block bb;
|
320 |
|
|
unsigned index;
|
321 |
|
|
bitmap_iterator bi;
|
322 |
|
|
|
323 |
|
|
if (changed_bbs && !bitmap_empty_p (changed_bbs))
|
324 |
|
|
{
|
325 |
|
|
EXECUTE_IF_SET_IN_BITMAP (changed_bbs, 0, index, bi)
|
326 |
|
|
{
|
327 |
|
|
find_uses_to_rename_bb (BASIC_BLOCK (index), use_blocks, need_phis);
|
328 |
|
|
}
|
329 |
|
|
}
|
330 |
|
|
else
|
331 |
|
|
{
|
332 |
|
|
FOR_EACH_BB (bb)
|
333 |
|
|
{
|
334 |
|
|
find_uses_to_rename_bb (bb, use_blocks, need_phis);
|
335 |
|
|
}
|
336 |
|
|
}
|
337 |
|
|
}
|
338 |
|
|
|
339 |
|
|
/* Rewrites the program into a loop closed ssa form -- i.e. inserts extra
|
340 |
|
|
phi nodes to ensure that no variable is used outside the loop it is
|
341 |
|
|
defined in.
|
342 |
|
|
|
343 |
|
|
This strengthening of the basic ssa form has several advantages:
|
344 |
|
|
|
345 |
|
|
1) Updating it during unrolling/peeling/versioning is trivial, since
|
346 |
|
|
we do not need to care about the uses outside of the loop.
|
347 |
|
|
2) The behavior of all uses of an induction variable is the same.
|
348 |
|
|
Without this, you need to distinguish the case when the variable
|
349 |
|
|
is used outside of the loop it is defined in, for example
|
350 |
|
|
|
351 |
|
|
for (i = 0; i < 100; i++)
|
352 |
|
|
{
|
353 |
|
|
for (j = 0; j < 100; j++)
|
354 |
|
|
{
|
355 |
|
|
k = i + j;
|
356 |
|
|
use1 (k);
|
357 |
|
|
}
|
358 |
|
|
use2 (k);
|
359 |
|
|
}
|
360 |
|
|
|
361 |
|
|
Looking from the outer loop with the normal SSA form, the first use of k
|
362 |
|
|
is not well-behaved, while the second one is an induction variable with
|
363 |
|
|
base 99 and step 1.
|
364 |
|
|
|
365 |
|
|
If CHANGED_BBS is not NULL, we look for uses outside loops only in
|
366 |
|
|
the basic blocks in this set.
|
367 |
|
|
|
368 |
|
|
UPDATE_FLAG is used in the call to update_ssa. See
|
369 |
|
|
TODO_update_ssa* for documentation. */
|
370 |
|
|
|
371 |
|
|
void
|
372 |
|
|
rewrite_into_loop_closed_ssa (bitmap changed_bbs, unsigned update_flag)
|
373 |
|
|
{
|
374 |
|
|
bitmap loop_exits;
|
375 |
|
|
bitmap *use_blocks;
|
376 |
|
|
unsigned i, old_num_ssa_names;
|
377 |
|
|
bitmap names_to_rename;
|
378 |
|
|
|
379 |
|
|
loops_state_set (LOOP_CLOSED_SSA);
|
380 |
|
|
if (number_of_loops () <= 1)
|
381 |
|
|
return;
|
382 |
|
|
|
383 |
|
|
loop_exits = get_loops_exits ();
|
384 |
|
|
names_to_rename = BITMAP_ALLOC (NULL);
|
385 |
|
|
|
386 |
|
|
/* If the pass has caused the SSA form to be out-of-date, update it
|
387 |
|
|
now. */
|
388 |
|
|
update_ssa (update_flag);
|
389 |
|
|
|
390 |
|
|
old_num_ssa_names = num_ssa_names;
|
391 |
|
|
use_blocks = XCNEWVEC (bitmap, old_num_ssa_names);
|
392 |
|
|
|
393 |
|
|
/* Find the uses outside loops. */
|
394 |
|
|
find_uses_to_rename (changed_bbs, use_blocks, names_to_rename);
|
395 |
|
|
|
396 |
|
|
/* Add the PHI nodes on exits of the loops for the names we need to
|
397 |
|
|
rewrite. */
|
398 |
|
|
add_exit_phis (names_to_rename, use_blocks, loop_exits);
|
399 |
|
|
|
400 |
|
|
for (i = 0; i < old_num_ssa_names; i++)
|
401 |
|
|
BITMAP_FREE (use_blocks[i]);
|
402 |
|
|
free (use_blocks);
|
403 |
|
|
BITMAP_FREE (loop_exits);
|
404 |
|
|
BITMAP_FREE (names_to_rename);
|
405 |
|
|
|
406 |
|
|
/* Fix up all the names found to be used outside their original
|
407 |
|
|
loops. */
|
408 |
|
|
update_ssa (TODO_update_ssa);
|
409 |
|
|
}
|
410 |
|
|
|
411 |
|
|
/* Check invariants of the loop closed ssa form for the USE in BB. */
|
412 |
|
|
|
413 |
|
|
static void
|
414 |
|
|
check_loop_closed_ssa_use (basic_block bb, tree use)
|
415 |
|
|
{
|
416 |
|
|
gimple def;
|
417 |
|
|
basic_block def_bb;
|
418 |
|
|
|
419 |
|
|
if (TREE_CODE (use) != SSA_NAME || !is_gimple_reg (use))
|
420 |
|
|
return;
|
421 |
|
|
|
422 |
|
|
def = SSA_NAME_DEF_STMT (use);
|
423 |
|
|
def_bb = gimple_bb (def);
|
424 |
|
|
gcc_assert (!def_bb
|
425 |
|
|
|| flow_bb_inside_loop_p (def_bb->loop_father, bb));
|
426 |
|
|
}
|
427 |
|
|
|
428 |
|
|
/* Checks invariants of loop closed ssa form in statement STMT in BB. */
|
429 |
|
|
|
430 |
|
|
static void
|
431 |
|
|
check_loop_closed_ssa_stmt (basic_block bb, gimple stmt)
|
432 |
|
|
{
|
433 |
|
|
ssa_op_iter iter;
|
434 |
|
|
tree var;
|
435 |
|
|
|
436 |
|
|
if (is_gimple_debug (stmt))
|
437 |
|
|
return;
|
438 |
|
|
|
439 |
|
|
FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, SSA_OP_ALL_USES)
|
440 |
|
|
check_loop_closed_ssa_use (bb, var);
|
441 |
|
|
}
|
442 |
|
|
|
443 |
|
|
/* Checks that invariants of the loop closed ssa form are preserved. */
|
444 |
|
|
|
445 |
|
|
void
|
446 |
|
|
verify_loop_closed_ssa (void)
|
447 |
|
|
{
|
448 |
|
|
basic_block bb;
|
449 |
|
|
gimple_stmt_iterator bsi;
|
450 |
|
|
gimple phi;
|
451 |
|
|
edge e;
|
452 |
|
|
edge_iterator ei;
|
453 |
|
|
|
454 |
|
|
if (number_of_loops () <= 1)
|
455 |
|
|
return;
|
456 |
|
|
|
457 |
|
|
verify_ssa (false);
|
458 |
|
|
|
459 |
|
|
FOR_EACH_BB (bb)
|
460 |
|
|
{
|
461 |
|
|
for (bsi = gsi_start_phis (bb); !gsi_end_p (bsi); gsi_next (&bsi))
|
462 |
|
|
{
|
463 |
|
|
phi = gsi_stmt (bsi);
|
464 |
|
|
FOR_EACH_EDGE (e, ei, bb->preds)
|
465 |
|
|
check_loop_closed_ssa_use (e->src,
|
466 |
|
|
PHI_ARG_DEF_FROM_EDGE (phi, e));
|
467 |
|
|
}
|
468 |
|
|
|
469 |
|
|
for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
|
470 |
|
|
check_loop_closed_ssa_stmt (bb, gsi_stmt (bsi));
|
471 |
|
|
}
|
472 |
|
|
}
|
473 |
|
|
|
474 |
|
|
/* Split loop exit edge EXIT. The things are a bit complicated by a need to
|
475 |
|
|
preserve the loop closed ssa form. The newly created block is returned. */
|
476 |
|
|
|
477 |
|
|
basic_block
|
478 |
|
|
split_loop_exit_edge (edge exit)
|
479 |
|
|
{
|
480 |
|
|
basic_block dest = exit->dest;
|
481 |
|
|
basic_block bb = split_edge (exit);
|
482 |
|
|
gimple phi, new_phi;
|
483 |
|
|
tree new_name, name;
|
484 |
|
|
use_operand_p op_p;
|
485 |
|
|
gimple_stmt_iterator psi;
|
486 |
|
|
source_location locus;
|
487 |
|
|
|
488 |
|
|
for (psi = gsi_start_phis (dest); !gsi_end_p (psi); gsi_next (&psi))
|
489 |
|
|
{
|
490 |
|
|
phi = gsi_stmt (psi);
|
491 |
|
|
op_p = PHI_ARG_DEF_PTR_FROM_EDGE (phi, single_succ_edge (bb));
|
492 |
|
|
locus = gimple_phi_arg_location_from_edge (phi, single_succ_edge (bb));
|
493 |
|
|
|
494 |
|
|
name = USE_FROM_PTR (op_p);
|
495 |
|
|
|
496 |
|
|
/* If the argument of the PHI node is a constant, we do not need
|
497 |
|
|
to keep it inside loop. */
|
498 |
|
|
if (TREE_CODE (name) != SSA_NAME)
|
499 |
|
|
continue;
|
500 |
|
|
|
501 |
|
|
/* Otherwise create an auxiliary phi node that will copy the value
|
502 |
|
|
of the SSA name out of the loop. */
|
503 |
|
|
new_name = duplicate_ssa_name (name, NULL);
|
504 |
|
|
new_phi = create_phi_node (new_name, bb);
|
505 |
|
|
SSA_NAME_DEF_STMT (new_name) = new_phi;
|
506 |
|
|
add_phi_arg (new_phi, name, exit, locus);
|
507 |
|
|
SET_USE (op_p, new_name);
|
508 |
|
|
}
|
509 |
|
|
|
510 |
|
|
return bb;
|
511 |
|
|
}
|
512 |
|
|
|
513 |
|
|
/* Returns the basic block in that statements should be emitted for induction
|
514 |
|
|
variables incremented at the end of the LOOP. */
|
515 |
|
|
|
516 |
|
|
basic_block
|
517 |
|
|
ip_end_pos (struct loop *loop)
|
518 |
|
|
{
|
519 |
|
|
return loop->latch;
|
520 |
|
|
}
|
521 |
|
|
|
522 |
|
|
/* Returns the basic block in that statements should be emitted for induction
|
523 |
|
|
variables incremented just before exit condition of a LOOP. */
|
524 |
|
|
|
525 |
|
|
basic_block
|
526 |
|
|
ip_normal_pos (struct loop *loop)
|
527 |
|
|
{
|
528 |
|
|
gimple last;
|
529 |
|
|
basic_block bb;
|
530 |
|
|
edge exit;
|
531 |
|
|
|
532 |
|
|
if (!single_pred_p (loop->latch))
|
533 |
|
|
return NULL;
|
534 |
|
|
|
535 |
|
|
bb = single_pred (loop->latch);
|
536 |
|
|
last = last_stmt (bb);
|
537 |
|
|
if (!last
|
538 |
|
|
|| gimple_code (last) != GIMPLE_COND)
|
539 |
|
|
return NULL;
|
540 |
|
|
|
541 |
|
|
exit = EDGE_SUCC (bb, 0);
|
542 |
|
|
if (exit->dest == loop->latch)
|
543 |
|
|
exit = EDGE_SUCC (bb, 1);
|
544 |
|
|
|
545 |
|
|
if (flow_bb_inside_loop_p (loop, exit->dest))
|
546 |
|
|
return NULL;
|
547 |
|
|
|
548 |
|
|
return bb;
|
549 |
|
|
}
|
550 |
|
|
|
551 |
|
|
/* Stores the standard position for induction variable increment in LOOP
|
552 |
|
|
(just before the exit condition if it is available and latch block is empty,
|
553 |
|
|
end of the latch block otherwise) to BSI. INSERT_AFTER is set to true if
|
554 |
|
|
the increment should be inserted after *BSI. */
|
555 |
|
|
|
556 |
|
|
void
|
557 |
|
|
standard_iv_increment_position (struct loop *loop, gimple_stmt_iterator *bsi,
|
558 |
|
|
bool *insert_after)
|
559 |
|
|
{
|
560 |
|
|
basic_block bb = ip_normal_pos (loop), latch = ip_end_pos (loop);
|
561 |
|
|
gimple last = last_stmt (latch);
|
562 |
|
|
|
563 |
|
|
if (!bb
|
564 |
|
|
|| (last && gimple_code (last) != GIMPLE_LABEL))
|
565 |
|
|
{
|
566 |
|
|
*bsi = gsi_last_bb (latch);
|
567 |
|
|
*insert_after = true;
|
568 |
|
|
}
|
569 |
|
|
else
|
570 |
|
|
{
|
571 |
|
|
*bsi = gsi_last_bb (bb);
|
572 |
|
|
*insert_after = false;
|
573 |
|
|
}
|
574 |
|
|
}
|
575 |
|
|
|
576 |
|
|
/* Copies phi node arguments for duplicated blocks. The index of the first
|
577 |
|
|
duplicated block is FIRST_NEW_BLOCK. */
|
578 |
|
|
|
579 |
|
|
static void
|
580 |
|
|
copy_phi_node_args (unsigned first_new_block)
|
581 |
|
|
{
|
582 |
|
|
unsigned i;
|
583 |
|
|
|
584 |
|
|
for (i = first_new_block; i < (unsigned) last_basic_block; i++)
|
585 |
|
|
BASIC_BLOCK (i)->flags |= BB_DUPLICATED;
|
586 |
|
|
|
587 |
|
|
for (i = first_new_block; i < (unsigned) last_basic_block; i++)
|
588 |
|
|
add_phi_args_after_copy_bb (BASIC_BLOCK (i));
|
589 |
|
|
|
590 |
|
|
for (i = first_new_block; i < (unsigned) last_basic_block; i++)
|
591 |
|
|
BASIC_BLOCK (i)->flags &= ~BB_DUPLICATED;
|
592 |
|
|
}
|
593 |
|
|
|
594 |
|
|
|
595 |
|
|
/* The same as cfgloopmanip.c:duplicate_loop_to_header_edge, but also
|
596 |
|
|
updates the PHI nodes at start of the copied region. In order to
|
597 |
|
|
achieve this, only loops whose exits all lead to the same location
|
598 |
|
|
are handled.
|
599 |
|
|
|
600 |
|
|
Notice that we do not completely update the SSA web after
|
601 |
|
|
duplication. The caller is responsible for calling update_ssa
|
602 |
|
|
after the loop has been duplicated. */
|
603 |
|
|
|
604 |
|
|
bool
|
605 |
|
|
gimple_duplicate_loop_to_header_edge (struct loop *loop, edge e,
|
606 |
|
|
unsigned int ndupl, sbitmap wont_exit,
|
607 |
|
|
edge orig, VEC (edge, heap) **to_remove,
|
608 |
|
|
int flags)
|
609 |
|
|
{
|
610 |
|
|
unsigned first_new_block;
|
611 |
|
|
|
612 |
|
|
if (!loops_state_satisfies_p (LOOPS_HAVE_SIMPLE_LATCHES))
|
613 |
|
|
return false;
|
614 |
|
|
if (!loops_state_satisfies_p (LOOPS_HAVE_PREHEADERS))
|
615 |
|
|
return false;
|
616 |
|
|
|
617 |
|
|
#ifdef ENABLE_CHECKING
|
618 |
|
|
if (loops_state_satisfies_p (LOOP_CLOSED_SSA))
|
619 |
|
|
verify_loop_closed_ssa ();
|
620 |
|
|
#endif
|
621 |
|
|
|
622 |
|
|
first_new_block = last_basic_block;
|
623 |
|
|
if (!duplicate_loop_to_header_edge (loop, e, ndupl, wont_exit,
|
624 |
|
|
orig, to_remove, flags))
|
625 |
|
|
return false;
|
626 |
|
|
|
627 |
|
|
/* Readd the removed phi args for e. */
|
628 |
|
|
flush_pending_stmts (e);
|
629 |
|
|
|
630 |
|
|
/* Copy the phi node arguments. */
|
631 |
|
|
copy_phi_node_args (first_new_block);
|
632 |
|
|
|
633 |
|
|
scev_reset ();
|
634 |
|
|
|
635 |
|
|
return true;
|
636 |
|
|
}
|
637 |
|
|
|
638 |
|
|
/* Returns true if we can unroll LOOP FACTOR times. Number
|
639 |
|
|
of iterations of the loop is returned in NITER. */
|
640 |
|
|
|
641 |
|
|
bool
|
642 |
|
|
can_unroll_loop_p (struct loop *loop, unsigned factor,
|
643 |
|
|
struct tree_niter_desc *niter)
|
644 |
|
|
{
|
645 |
|
|
edge exit;
|
646 |
|
|
|
647 |
|
|
/* Check whether unrolling is possible. We only want to unroll loops
|
648 |
|
|
for that we are able to determine number of iterations. We also
|
649 |
|
|
want to split the extra iterations of the loop from its end,
|
650 |
|
|
therefore we require that the loop has precisely one
|
651 |
|
|
exit. */
|
652 |
|
|
|
653 |
|
|
exit = single_dom_exit (loop);
|
654 |
|
|
if (!exit)
|
655 |
|
|
return false;
|
656 |
|
|
|
657 |
|
|
if (!number_of_iterations_exit (loop, exit, niter, false)
|
658 |
|
|
|| niter->cmp == ERROR_MARK
|
659 |
|
|
/* Scalar evolutions analysis might have copy propagated
|
660 |
|
|
the abnormal ssa names into these expressions, hence
|
661 |
|
|
emitting the computations based on them during loop
|
662 |
|
|
unrolling might create overlapping life ranges for
|
663 |
|
|
them, and failures in out-of-ssa. */
|
664 |
|
|
|| contains_abnormal_ssa_name_p (niter->may_be_zero)
|
665 |
|
|
|| contains_abnormal_ssa_name_p (niter->control.base)
|
666 |
|
|
|| contains_abnormal_ssa_name_p (niter->control.step)
|
667 |
|
|
|| contains_abnormal_ssa_name_p (niter->bound))
|
668 |
|
|
return false;
|
669 |
|
|
|
670 |
|
|
/* And of course, we must be able to duplicate the loop. */
|
671 |
|
|
if (!can_duplicate_loop_p (loop))
|
672 |
|
|
return false;
|
673 |
|
|
|
674 |
|
|
/* The final loop should be small enough. */
|
675 |
|
|
if (tree_num_loop_insns (loop, &eni_size_weights) * factor
|
676 |
|
|
> (unsigned) PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS))
|
677 |
|
|
return false;
|
678 |
|
|
|
679 |
|
|
return true;
|
680 |
|
|
}
|
681 |
|
|
|
682 |
|
|
/* Determines the conditions that control execution of LOOP unrolled FACTOR
|
683 |
|
|
times. DESC is number of iterations of LOOP. ENTER_COND is set to
|
684 |
|
|
condition that must be true if the main loop can be entered.
|
685 |
|
|
EXIT_BASE, EXIT_STEP, EXIT_CMP and EXIT_BOUND are set to values describing
|
686 |
|
|
how the exit from the unrolled loop should be controlled. */
|
687 |
|
|
|
688 |
|
|
static void
|
689 |
|
|
determine_exit_conditions (struct loop *loop, struct tree_niter_desc *desc,
|
690 |
|
|
unsigned factor, tree *enter_cond,
|
691 |
|
|
tree *exit_base, tree *exit_step,
|
692 |
|
|
enum tree_code *exit_cmp, tree *exit_bound)
|
693 |
|
|
{
|
694 |
|
|
gimple_seq stmts;
|
695 |
|
|
tree base = desc->control.base;
|
696 |
|
|
tree step = desc->control.step;
|
697 |
|
|
tree bound = desc->bound;
|
698 |
|
|
tree type = TREE_TYPE (step);
|
699 |
|
|
tree bigstep, delta;
|
700 |
|
|
tree min = lower_bound_in_type (type, type);
|
701 |
|
|
tree max = upper_bound_in_type (type, type);
|
702 |
|
|
enum tree_code cmp = desc->cmp;
|
703 |
|
|
tree cond = boolean_true_node, assum;
|
704 |
|
|
|
705 |
|
|
/* For pointers, do the arithmetics in the type of step (sizetype). */
|
706 |
|
|
base = fold_convert (type, base);
|
707 |
|
|
bound = fold_convert (type, bound);
|
708 |
|
|
|
709 |
|
|
*enter_cond = boolean_false_node;
|
710 |
|
|
*exit_base = NULL_TREE;
|
711 |
|
|
*exit_step = NULL_TREE;
|
712 |
|
|
*exit_cmp = ERROR_MARK;
|
713 |
|
|
*exit_bound = NULL_TREE;
|
714 |
|
|
gcc_assert (cmp != ERROR_MARK);
|
715 |
|
|
|
716 |
|
|
/* We only need to be correct when we answer question
|
717 |
|
|
"Do at least FACTOR more iterations remain?" in the unrolled loop.
|
718 |
|
|
Thus, transforming BASE + STEP * i <> BOUND to
|
719 |
|
|
BASE + STEP * i < BOUND is ok. */
|
720 |
|
|
if (cmp == NE_EXPR)
|
721 |
|
|
{
|
722 |
|
|
if (tree_int_cst_sign_bit (step))
|
723 |
|
|
cmp = GT_EXPR;
|
724 |
|
|
else
|
725 |
|
|
cmp = LT_EXPR;
|
726 |
|
|
}
|
727 |
|
|
else if (cmp == LT_EXPR)
|
728 |
|
|
{
|
729 |
|
|
gcc_assert (!tree_int_cst_sign_bit (step));
|
730 |
|
|
}
|
731 |
|
|
else if (cmp == GT_EXPR)
|
732 |
|
|
{
|
733 |
|
|
gcc_assert (tree_int_cst_sign_bit (step));
|
734 |
|
|
}
|
735 |
|
|
else
|
736 |
|
|
gcc_unreachable ();
|
737 |
|
|
|
738 |
|
|
/* The main body of the loop may be entered iff:
|
739 |
|
|
|
740 |
|
|
1) desc->may_be_zero is false.
|
741 |
|
|
2) it is possible to check that there are at least FACTOR iterations
|
742 |
|
|
of the loop, i.e., BOUND - step * FACTOR does not overflow.
|
743 |
|
|
3) # of iterations is at least FACTOR */
|
744 |
|
|
|
745 |
|
|
if (!integer_zerop (desc->may_be_zero))
|
746 |
|
|
cond = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
|
747 |
|
|
invert_truthvalue (desc->may_be_zero),
|
748 |
|
|
cond);
|
749 |
|
|
|
750 |
|
|
bigstep = fold_build2 (MULT_EXPR, type, step,
|
751 |
|
|
build_int_cst_type (type, factor));
|
752 |
|
|
delta = fold_build2 (MINUS_EXPR, type, bigstep, step);
|
753 |
|
|
if (cmp == LT_EXPR)
|
754 |
|
|
assum = fold_build2 (GE_EXPR, boolean_type_node,
|
755 |
|
|
bound,
|
756 |
|
|
fold_build2 (PLUS_EXPR, type, min, delta));
|
757 |
|
|
else
|
758 |
|
|
assum = fold_build2 (LE_EXPR, boolean_type_node,
|
759 |
|
|
bound,
|
760 |
|
|
fold_build2 (PLUS_EXPR, type, max, delta));
|
761 |
|
|
cond = fold_build2 (TRUTH_AND_EXPR, boolean_type_node, assum, cond);
|
762 |
|
|
|
763 |
|
|
bound = fold_build2 (MINUS_EXPR, type, bound, delta);
|
764 |
|
|
assum = fold_build2 (cmp, boolean_type_node, base, bound);
|
765 |
|
|
cond = fold_build2 (TRUTH_AND_EXPR, boolean_type_node, assum, cond);
|
766 |
|
|
|
767 |
|
|
cond = force_gimple_operand (unshare_expr (cond), &stmts, false, NULL_TREE);
|
768 |
|
|
if (stmts)
|
769 |
|
|
gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
|
770 |
|
|
/* cond now may be a gimple comparison, which would be OK, but also any
|
771 |
|
|
other gimple rhs (say a && b). In this case we need to force it to
|
772 |
|
|
operand. */
|
773 |
|
|
if (!is_gimple_condexpr (cond))
|
774 |
|
|
{
|
775 |
|
|
cond = force_gimple_operand (cond, &stmts, true, NULL_TREE);
|
776 |
|
|
if (stmts)
|
777 |
|
|
gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
|
778 |
|
|
}
|
779 |
|
|
*enter_cond = cond;
|
780 |
|
|
|
781 |
|
|
base = force_gimple_operand (unshare_expr (base), &stmts, true, NULL_TREE);
|
782 |
|
|
if (stmts)
|
783 |
|
|
gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
|
784 |
|
|
bound = force_gimple_operand (unshare_expr (bound), &stmts, true, NULL_TREE);
|
785 |
|
|
if (stmts)
|
786 |
|
|
gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
|
787 |
|
|
|
788 |
|
|
*exit_base = base;
|
789 |
|
|
*exit_step = bigstep;
|
790 |
|
|
*exit_cmp = cmp;
|
791 |
|
|
*exit_bound = bound;
|
792 |
|
|
}
|
793 |
|
|
|
794 |
|
|
/* Scales the frequencies of all basic blocks in LOOP that are strictly
|
795 |
|
|
dominated by BB by NUM/DEN. */
|
796 |
|
|
|
797 |
|
|
static void
|
798 |
|
|
scale_dominated_blocks_in_loop (struct loop *loop, basic_block bb,
|
799 |
|
|
int num, int den)
|
800 |
|
|
{
|
801 |
|
|
basic_block son;
|
802 |
|
|
|
803 |
|
|
if (den == 0)
|
804 |
|
|
return;
|
805 |
|
|
|
806 |
|
|
for (son = first_dom_son (CDI_DOMINATORS, bb);
|
807 |
|
|
son;
|
808 |
|
|
son = next_dom_son (CDI_DOMINATORS, son))
|
809 |
|
|
{
|
810 |
|
|
if (!flow_bb_inside_loop_p (loop, son))
|
811 |
|
|
continue;
|
812 |
|
|
scale_bbs_frequencies_int (&son, 1, num, den);
|
813 |
|
|
scale_dominated_blocks_in_loop (loop, son, num, den);
|
814 |
|
|
}
|
815 |
|
|
}
|
816 |
|
|
|
817 |
|
|
/* Unroll LOOP FACTOR times. DESC describes number of iterations of LOOP.
|
818 |
|
|
EXIT is the exit of the loop to that DESC corresponds.
|
819 |
|
|
|
820 |
|
|
If N is number of iterations of the loop and MAY_BE_ZERO is the condition
|
821 |
|
|
under that loop exits in the first iteration even if N != 0,
|
822 |
|
|
|
823 |
|
|
while (1)
|
824 |
|
|
{
|
825 |
|
|
x = phi (init, next);
|
826 |
|
|
|
827 |
|
|
pre;
|
828 |
|
|
if (st)
|
829 |
|
|
break;
|
830 |
|
|
post;
|
831 |
|
|
}
|
832 |
|
|
|
833 |
|
|
becomes (with possibly the exit conditions formulated a bit differently,
|
834 |
|
|
avoiding the need to create a new iv):
|
835 |
|
|
|
836 |
|
|
if (MAY_BE_ZERO || N < FACTOR)
|
837 |
|
|
goto rest;
|
838 |
|
|
|
839 |
|
|
do
|
840 |
|
|
{
|
841 |
|
|
x = phi (init, next);
|
842 |
|
|
|
843 |
|
|
pre;
|
844 |
|
|
post;
|
845 |
|
|
pre;
|
846 |
|
|
post;
|
847 |
|
|
...
|
848 |
|
|
pre;
|
849 |
|
|
post;
|
850 |
|
|
N -= FACTOR;
|
851 |
|
|
|
852 |
|
|
} while (N >= FACTOR);
|
853 |
|
|
|
854 |
|
|
rest:
|
855 |
|
|
init' = phi (init, x);
|
856 |
|
|
|
857 |
|
|
while (1)
|
858 |
|
|
{
|
859 |
|
|
x = phi (init', next);
|
860 |
|
|
|
861 |
|
|
pre;
|
862 |
|
|
if (st)
|
863 |
|
|
break;
|
864 |
|
|
post;
|
865 |
|
|
}
|
866 |
|
|
|
867 |
|
|
Before the loop is unrolled, TRANSFORM is called for it (only for the
|
868 |
|
|
unrolled loop, but not for its versioned copy). DATA is passed to
|
869 |
|
|
TRANSFORM. */
|
870 |
|
|
|
871 |
|
|
/* Probability in % that the unrolled loop is entered. Just a guess. */
|
872 |
|
|
#define PROB_UNROLLED_LOOP_ENTERED 90
|
873 |
|
|
|
874 |
|
|
void
|
875 |
|
|
tree_transform_and_unroll_loop (struct loop *loop, unsigned factor,
|
876 |
|
|
edge exit, struct tree_niter_desc *desc,
|
877 |
|
|
transform_callback transform,
|
878 |
|
|
void *data)
|
879 |
|
|
{
|
880 |
|
|
gimple exit_if;
|
881 |
|
|
tree ctr_before, ctr_after;
|
882 |
|
|
tree enter_main_cond, exit_base, exit_step, exit_bound;
|
883 |
|
|
enum tree_code exit_cmp;
|
884 |
|
|
gimple phi_old_loop, phi_new_loop, phi_rest;
|
885 |
|
|
gimple_stmt_iterator psi_old_loop, psi_new_loop;
|
886 |
|
|
tree init, next, new_init, var;
|
887 |
|
|
struct loop *new_loop;
|
888 |
|
|
basic_block rest, exit_bb;
|
889 |
|
|
edge old_entry, new_entry, old_latch, precond_edge, new_exit;
|
890 |
|
|
edge new_nonexit, e;
|
891 |
|
|
gimple_stmt_iterator bsi;
|
892 |
|
|
use_operand_p op;
|
893 |
|
|
bool ok;
|
894 |
|
|
unsigned est_niter, prob_entry, scale_unrolled, scale_rest, freq_e, freq_h;
|
895 |
|
|
unsigned new_est_niter, i, prob;
|
896 |
|
|
unsigned irr = loop_preheader_edge (loop)->flags & EDGE_IRREDUCIBLE_LOOP;
|
897 |
|
|
sbitmap wont_exit;
|
898 |
|
|
VEC (edge, heap) *to_remove = NULL;
|
899 |
|
|
|
900 |
|
|
est_niter = expected_loop_iterations (loop);
|
901 |
|
|
determine_exit_conditions (loop, desc, factor,
|
902 |
|
|
&enter_main_cond, &exit_base, &exit_step,
|
903 |
|
|
&exit_cmp, &exit_bound);
|
904 |
|
|
|
905 |
|
|
/* Let us assume that the unrolled loop is quite likely to be entered. */
|
906 |
|
|
if (integer_nonzerop (enter_main_cond))
|
907 |
|
|
prob_entry = REG_BR_PROB_BASE;
|
908 |
|
|
else
|
909 |
|
|
prob_entry = PROB_UNROLLED_LOOP_ENTERED * REG_BR_PROB_BASE / 100;
|
910 |
|
|
|
911 |
|
|
/* The values for scales should keep profile consistent, and somewhat close
|
912 |
|
|
to correct.
|
913 |
|
|
|
914 |
|
|
TODO: The current value of SCALE_REST makes it appear that the loop that
|
915 |
|
|
is created by splitting the remaining iterations of the unrolled loop is
|
916 |
|
|
executed the same number of times as the original loop, and with the same
|
917 |
|
|
frequencies, which is obviously wrong. This does not appear to cause
|
918 |
|
|
problems, so we do not bother with fixing it for now. To make the profile
|
919 |
|
|
correct, we would need to change the probability of the exit edge of the
|
920 |
|
|
loop, and recompute the distribution of frequencies in its body because
|
921 |
|
|
of this change (scale the frequencies of blocks before and after the exit
|
922 |
|
|
by appropriate factors). */
|
923 |
|
|
scale_unrolled = prob_entry;
|
924 |
|
|
scale_rest = REG_BR_PROB_BASE;
|
925 |
|
|
|
926 |
|
|
new_loop = loop_version (loop, enter_main_cond, NULL,
|
927 |
|
|
prob_entry, scale_unrolled, scale_rest, true);
|
928 |
|
|
gcc_assert (new_loop != NULL);
|
929 |
|
|
update_ssa (TODO_update_ssa);
|
930 |
|
|
|
931 |
|
|
/* Determine the probability of the exit edge of the unrolled loop. */
|
932 |
|
|
new_est_niter = est_niter / factor;
|
933 |
|
|
|
934 |
|
|
/* Without profile feedback, loops for that we do not know a better estimate
|
935 |
|
|
are assumed to roll 10 times. When we unroll such loop, it appears to
|
936 |
|
|
roll too little, and it may even seem to be cold. To avoid this, we
|
937 |
|
|
ensure that the created loop appears to roll at least 5 times (but at
|
938 |
|
|
most as many times as before unrolling). */
|
939 |
|
|
if (new_est_niter < 5)
|
940 |
|
|
{
|
941 |
|
|
if (est_niter < 5)
|
942 |
|
|
new_est_niter = est_niter;
|
943 |
|
|
else
|
944 |
|
|
new_est_niter = 5;
|
945 |
|
|
}
|
946 |
|
|
|
947 |
|
|
/* Prepare the cfg and update the phi nodes. Move the loop exit to the
|
948 |
|
|
loop latch (and make its condition dummy, for the moment). */
|
949 |
|
|
rest = loop_preheader_edge (new_loop)->src;
|
950 |
|
|
precond_edge = single_pred_edge (rest);
|
951 |
|
|
split_edge (loop_latch_edge (loop));
|
952 |
|
|
exit_bb = single_pred (loop->latch);
|
953 |
|
|
|
954 |
|
|
/* Since the exit edge will be removed, the frequency of all the blocks
|
955 |
|
|
in the loop that are dominated by it must be scaled by
|
956 |
|
|
1 / (1 - exit->probability). */
|
957 |
|
|
scale_dominated_blocks_in_loop (loop, exit->src,
|
958 |
|
|
REG_BR_PROB_BASE,
|
959 |
|
|
REG_BR_PROB_BASE - exit->probability);
|
960 |
|
|
|
961 |
|
|
bsi = gsi_last_bb (exit_bb);
|
962 |
|
|
exit_if = gimple_build_cond (EQ_EXPR, integer_zero_node,
|
963 |
|
|
integer_zero_node,
|
964 |
|
|
NULL_TREE, NULL_TREE);
|
965 |
|
|
|
966 |
|
|
gsi_insert_after (&bsi, exit_if, GSI_NEW_STMT);
|
967 |
|
|
new_exit = make_edge (exit_bb, rest, EDGE_FALSE_VALUE | irr);
|
968 |
|
|
rescan_loop_exit (new_exit, true, false);
|
969 |
|
|
|
970 |
|
|
/* Set the probability of new exit to the same of the old one. Fix
|
971 |
|
|
the frequency of the latch block, by scaling it back by
|
972 |
|
|
1 - exit->probability. */
|
973 |
|
|
new_exit->count = exit->count;
|
974 |
|
|
new_exit->probability = exit->probability;
|
975 |
|
|
new_nonexit = single_pred_edge (loop->latch);
|
976 |
|
|
new_nonexit->probability = REG_BR_PROB_BASE - exit->probability;
|
977 |
|
|
new_nonexit->flags = EDGE_TRUE_VALUE;
|
978 |
|
|
new_nonexit->count -= exit->count;
|
979 |
|
|
if (new_nonexit->count < 0)
|
980 |
|
|
new_nonexit->count = 0;
|
981 |
|
|
scale_bbs_frequencies_int (&loop->latch, 1, new_nonexit->probability,
|
982 |
|
|
REG_BR_PROB_BASE);
|
983 |
|
|
|
984 |
|
|
old_entry = loop_preheader_edge (loop);
|
985 |
|
|
new_entry = loop_preheader_edge (new_loop);
|
986 |
|
|
old_latch = loop_latch_edge (loop);
|
987 |
|
|
for (psi_old_loop = gsi_start_phis (loop->header),
|
988 |
|
|
psi_new_loop = gsi_start_phis (new_loop->header);
|
989 |
|
|
!gsi_end_p (psi_old_loop);
|
990 |
|
|
gsi_next (&psi_old_loop), gsi_next (&psi_new_loop))
|
991 |
|
|
{
|
992 |
|
|
phi_old_loop = gsi_stmt (psi_old_loop);
|
993 |
|
|
phi_new_loop = gsi_stmt (psi_new_loop);
|
994 |
|
|
|
995 |
|
|
init = PHI_ARG_DEF_FROM_EDGE (phi_old_loop, old_entry);
|
996 |
|
|
op = PHI_ARG_DEF_PTR_FROM_EDGE (phi_new_loop, new_entry);
|
997 |
|
|
gcc_assert (operand_equal_for_phi_arg_p (init, USE_FROM_PTR (op)));
|
998 |
|
|
next = PHI_ARG_DEF_FROM_EDGE (phi_old_loop, old_latch);
|
999 |
|
|
|
1000 |
|
|
/* Prefer using original variable as a base for the new ssa name.
|
1001 |
|
|
This is necessary for virtual ops, and useful in order to avoid
|
1002 |
|
|
losing debug info for real ops. */
|
1003 |
|
|
if (TREE_CODE (next) == SSA_NAME
|
1004 |
|
|
&& useless_type_conversion_p (TREE_TYPE (next),
|
1005 |
|
|
TREE_TYPE (init)))
|
1006 |
|
|
var = SSA_NAME_VAR (next);
|
1007 |
|
|
else if (TREE_CODE (init) == SSA_NAME
|
1008 |
|
|
&& useless_type_conversion_p (TREE_TYPE (init),
|
1009 |
|
|
TREE_TYPE (next)))
|
1010 |
|
|
var = SSA_NAME_VAR (init);
|
1011 |
|
|
else if (useless_type_conversion_p (TREE_TYPE (next), TREE_TYPE (init)))
|
1012 |
|
|
{
|
1013 |
|
|
var = create_tmp_var (TREE_TYPE (next), "unrinittmp");
|
1014 |
|
|
add_referenced_var (var);
|
1015 |
|
|
}
|
1016 |
|
|
else
|
1017 |
|
|
{
|
1018 |
|
|
var = create_tmp_var (TREE_TYPE (init), "unrinittmp");
|
1019 |
|
|
add_referenced_var (var);
|
1020 |
|
|
}
|
1021 |
|
|
|
1022 |
|
|
new_init = make_ssa_name (var, NULL);
|
1023 |
|
|
phi_rest = create_phi_node (new_init, rest);
|
1024 |
|
|
SSA_NAME_DEF_STMT (new_init) = phi_rest;
|
1025 |
|
|
|
1026 |
|
|
add_phi_arg (phi_rest, init, precond_edge, UNKNOWN_LOCATION);
|
1027 |
|
|
add_phi_arg (phi_rest, next, new_exit, UNKNOWN_LOCATION);
|
1028 |
|
|
SET_USE (op, new_init);
|
1029 |
|
|
}
|
1030 |
|
|
|
1031 |
|
|
remove_path (exit);
|
1032 |
|
|
|
1033 |
|
|
/* Transform the loop. */
|
1034 |
|
|
if (transform)
|
1035 |
|
|
(*transform) (loop, data);
|
1036 |
|
|
|
1037 |
|
|
/* Unroll the loop and remove the exits in all iterations except for the
|
1038 |
|
|
last one. */
|
1039 |
|
|
wont_exit = sbitmap_alloc (factor);
|
1040 |
|
|
sbitmap_ones (wont_exit);
|
1041 |
|
|
RESET_BIT (wont_exit, factor - 1);
|
1042 |
|
|
|
1043 |
|
|
ok = gimple_duplicate_loop_to_header_edge
|
1044 |
|
|
(loop, loop_latch_edge (loop), factor - 1,
|
1045 |
|
|
wont_exit, new_exit, &to_remove, DLTHE_FLAG_UPDATE_FREQ);
|
1046 |
|
|
free (wont_exit);
|
1047 |
|
|
gcc_assert (ok);
|
1048 |
|
|
|
1049 |
|
|
for (i = 0; VEC_iterate (edge, to_remove, i, e); i++)
|
1050 |
|
|
{
|
1051 |
|
|
ok = remove_path (e);
|
1052 |
|
|
gcc_assert (ok);
|
1053 |
|
|
}
|
1054 |
|
|
VEC_free (edge, heap, to_remove);
|
1055 |
|
|
update_ssa (TODO_update_ssa);
|
1056 |
|
|
|
1057 |
|
|
/* Ensure that the frequencies in the loop match the new estimated
|
1058 |
|
|
number of iterations, and change the probability of the new
|
1059 |
|
|
exit edge. */
|
1060 |
|
|
freq_h = loop->header->frequency;
|
1061 |
|
|
freq_e = EDGE_FREQUENCY (loop_preheader_edge (loop));
|
1062 |
|
|
if (freq_h != 0)
|
1063 |
|
|
scale_loop_frequencies (loop, freq_e * (new_est_niter + 1), freq_h);
|
1064 |
|
|
|
1065 |
|
|
exit_bb = single_pred (loop->latch);
|
1066 |
|
|
new_exit = find_edge (exit_bb, rest);
|
1067 |
|
|
new_exit->count = loop_preheader_edge (loop)->count;
|
1068 |
|
|
new_exit->probability = REG_BR_PROB_BASE / (new_est_niter + 1);
|
1069 |
|
|
|
1070 |
|
|
rest->count += new_exit->count;
|
1071 |
|
|
rest->frequency += EDGE_FREQUENCY (new_exit);
|
1072 |
|
|
|
1073 |
|
|
new_nonexit = single_pred_edge (loop->latch);
|
1074 |
|
|
prob = new_nonexit->probability;
|
1075 |
|
|
new_nonexit->probability = REG_BR_PROB_BASE - new_exit->probability;
|
1076 |
|
|
new_nonexit->count = exit_bb->count - new_exit->count;
|
1077 |
|
|
if (new_nonexit->count < 0)
|
1078 |
|
|
new_nonexit->count = 0;
|
1079 |
|
|
if (prob > 0)
|
1080 |
|
|
scale_bbs_frequencies_int (&loop->latch, 1, new_nonexit->probability,
|
1081 |
|
|
prob);
|
1082 |
|
|
|
1083 |
|
|
/* Finally create the new counter for number of iterations and add the new
|
1084 |
|
|
exit instruction. */
|
1085 |
|
|
bsi = gsi_last_bb (exit_bb);
|
1086 |
|
|
exit_if = gsi_stmt (bsi);
|
1087 |
|
|
create_iv (exit_base, exit_step, NULL_TREE, loop,
|
1088 |
|
|
&bsi, false, &ctr_before, &ctr_after);
|
1089 |
|
|
gimple_cond_set_code (exit_if, exit_cmp);
|
1090 |
|
|
gimple_cond_set_lhs (exit_if, ctr_after);
|
1091 |
|
|
gimple_cond_set_rhs (exit_if, exit_bound);
|
1092 |
|
|
update_stmt (exit_if);
|
1093 |
|
|
|
1094 |
|
|
#ifdef ENABLE_CHECKING
|
1095 |
|
|
verify_flow_info ();
|
1096 |
|
|
verify_dominators (CDI_DOMINATORS);
|
1097 |
|
|
verify_loop_structure ();
|
1098 |
|
|
verify_loop_closed_ssa ();
|
1099 |
|
|
#endif
|
1100 |
|
|
}
|
1101 |
|
|
|
1102 |
|
|
/* Wrapper over tree_transform_and_unroll_loop for case we do not
|
1103 |
|
|
want to transform the loop before unrolling. The meaning
|
1104 |
|
|
of the arguments is the same as for tree_transform_and_unroll_loop. */
|
1105 |
|
|
|
1106 |
|
|
void
|
1107 |
|
|
tree_unroll_loop (struct loop *loop, unsigned factor,
|
1108 |
|
|
edge exit, struct tree_niter_desc *desc)
|
1109 |
|
|
{
|
1110 |
|
|
tree_transform_and_unroll_loop (loop, factor, exit, desc,
|
1111 |
|
|
NULL, NULL);
|
1112 |
|
|
}
|
1113 |
|
|
|
1114 |
|
|
/* Rewrite the phi node at position PSI in function of the main
|
1115 |
|
|
induction variable MAIN_IV and insert the generated code at GSI. */
|
1116 |
|
|
|
1117 |
|
|
static void
|
1118 |
|
|
rewrite_phi_with_iv (loop_p loop,
|
1119 |
|
|
gimple_stmt_iterator *psi,
|
1120 |
|
|
gimple_stmt_iterator *gsi,
|
1121 |
|
|
tree main_iv)
|
1122 |
|
|
{
|
1123 |
|
|
affine_iv iv;
|
1124 |
|
|
gimple stmt, phi = gsi_stmt (*psi);
|
1125 |
|
|
tree atype, mtype, val, res = PHI_RESULT (phi);
|
1126 |
|
|
|
1127 |
|
|
if (!is_gimple_reg (res) || res == main_iv)
|
1128 |
|
|
{
|
1129 |
|
|
gsi_next (psi);
|
1130 |
|
|
return;
|
1131 |
|
|
}
|
1132 |
|
|
|
1133 |
|
|
if (!simple_iv (loop, loop, res, &iv, true))
|
1134 |
|
|
{
|
1135 |
|
|
gsi_next (psi);
|
1136 |
|
|
return;
|
1137 |
|
|
}
|
1138 |
|
|
|
1139 |
|
|
remove_phi_node (psi, false);
|
1140 |
|
|
|
1141 |
|
|
atype = TREE_TYPE (res);
|
1142 |
|
|
mtype = POINTER_TYPE_P (atype) ? sizetype : atype;
|
1143 |
|
|
val = fold_build2 (MULT_EXPR, mtype, unshare_expr (iv.step),
|
1144 |
|
|
fold_convert (mtype, main_iv));
|
1145 |
|
|
val = fold_build2 (POINTER_TYPE_P (atype)
|
1146 |
|
|
? POINTER_PLUS_EXPR : PLUS_EXPR,
|
1147 |
|
|
atype, unshare_expr (iv.base), val);
|
1148 |
|
|
val = force_gimple_operand_gsi (gsi, val, false, NULL_TREE, true,
|
1149 |
|
|
GSI_SAME_STMT);
|
1150 |
|
|
stmt = gimple_build_assign (res, val);
|
1151 |
|
|
gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
|
1152 |
|
|
SSA_NAME_DEF_STMT (res) = stmt;
|
1153 |
|
|
}
|
1154 |
|
|
|
1155 |
|
|
/* Rewrite all the phi nodes of LOOP in function of the main induction
|
1156 |
|
|
variable MAIN_IV. */
|
1157 |
|
|
|
1158 |
|
|
static void
|
1159 |
|
|
rewrite_all_phi_nodes_with_iv (loop_p loop, tree main_iv)
|
1160 |
|
|
{
|
1161 |
|
|
unsigned i;
|
1162 |
|
|
basic_block *bbs = get_loop_body_in_dom_order (loop);
|
1163 |
|
|
gimple_stmt_iterator psi;
|
1164 |
|
|
|
1165 |
|
|
for (i = 0; i < loop->num_nodes; i++)
|
1166 |
|
|
{
|
1167 |
|
|
basic_block bb = bbs[i];
|
1168 |
|
|
gimple_stmt_iterator gsi = gsi_after_labels (bb);
|
1169 |
|
|
|
1170 |
|
|
if (bb->loop_father != loop)
|
1171 |
|
|
continue;
|
1172 |
|
|
|
1173 |
|
|
for (psi = gsi_start_phis (bb); !gsi_end_p (psi); )
|
1174 |
|
|
rewrite_phi_with_iv (loop, &psi, &gsi, main_iv);
|
1175 |
|
|
}
|
1176 |
|
|
|
1177 |
|
|
free (bbs);
|
1178 |
|
|
}
|
1179 |
|
|
|
1180 |
|
|
/* Bases all the induction variables in LOOP on a single induction
|
1181 |
|
|
variable (unsigned with base 0 and step 1), whose final value is
|
1182 |
|
|
compared with *NIT. When the IV type precision has to be larger
|
1183 |
|
|
than *NIT type precision, *NIT is converted to the larger type, the
|
1184 |
|
|
conversion code is inserted before the loop, and *NIT is updated to
|
1185 |
|
|
the new definition. When BUMP_IN_LATCH is true, the induction
|
1186 |
|
|
variable is incremented in the loop latch, otherwise it is
|
1187 |
|
|
incremented in the loop header. Return the induction variable that
|
1188 |
|
|
was created. */
|
1189 |
|
|
|
1190 |
|
|
tree
|
1191 |
|
|
canonicalize_loop_ivs (struct loop *loop, tree *nit, bool bump_in_latch)
|
1192 |
|
|
{
|
1193 |
|
|
unsigned precision = TYPE_PRECISION (TREE_TYPE (*nit));
|
1194 |
|
|
unsigned original_precision = precision;
|
1195 |
|
|
tree type, var_before;
|
1196 |
|
|
gimple_stmt_iterator gsi, psi;
|
1197 |
|
|
gimple stmt;
|
1198 |
|
|
edge exit = single_dom_exit (loop);
|
1199 |
|
|
gimple_seq stmts;
|
1200 |
|
|
|
1201 |
|
|
for (psi = gsi_start_phis (loop->header);
|
1202 |
|
|
!gsi_end_p (psi); gsi_next (&psi))
|
1203 |
|
|
{
|
1204 |
|
|
gimple phi = gsi_stmt (psi);
|
1205 |
|
|
tree res = PHI_RESULT (phi);
|
1206 |
|
|
|
1207 |
|
|
if (is_gimple_reg (res) && TYPE_PRECISION (TREE_TYPE (res)) > precision)
|
1208 |
|
|
precision = TYPE_PRECISION (TREE_TYPE (res));
|
1209 |
|
|
}
|
1210 |
|
|
|
1211 |
|
|
type = lang_hooks.types.type_for_size (precision, 1);
|
1212 |
|
|
|
1213 |
|
|
if (original_precision != precision)
|
1214 |
|
|
{
|
1215 |
|
|
*nit = fold_convert (type, *nit);
|
1216 |
|
|
*nit = force_gimple_operand (*nit, &stmts, true, NULL_TREE);
|
1217 |
|
|
if (stmts)
|
1218 |
|
|
gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
|
1219 |
|
|
}
|
1220 |
|
|
|
1221 |
|
|
gsi = gsi_last_bb (bump_in_latch ? loop->latch : loop->header);
|
1222 |
|
|
create_iv (build_int_cst_type (type, 0), build_int_cst (type, 1), NULL_TREE,
|
1223 |
|
|
loop, &gsi, bump_in_latch, &var_before, NULL);
|
1224 |
|
|
|
1225 |
|
|
rewrite_all_phi_nodes_with_iv (loop, var_before);
|
1226 |
|
|
|
1227 |
|
|
stmt = last_stmt (exit->src);
|
1228 |
|
|
/* Make the loop exit if the control condition is not satisfied. */
|
1229 |
|
|
if (exit->flags & EDGE_TRUE_VALUE)
|
1230 |
|
|
{
|
1231 |
|
|
edge te, fe;
|
1232 |
|
|
|
1233 |
|
|
extract_true_false_edges_from_block (exit->src, &te, &fe);
|
1234 |
|
|
te->flags = EDGE_FALSE_VALUE;
|
1235 |
|
|
fe->flags = EDGE_TRUE_VALUE;
|
1236 |
|
|
}
|
1237 |
|
|
gimple_cond_set_code (stmt, LT_EXPR);
|
1238 |
|
|
gimple_cond_set_lhs (stmt, var_before);
|
1239 |
|
|
gimple_cond_set_rhs (stmt, *nit);
|
1240 |
|
|
update_stmt (stmt);
|
1241 |
|
|
|
1242 |
|
|
return var_before;
|
1243 |
|
|
}
|