1 |
280 |
jeremybenn |
/* Global, SSA-based optimizations using mathematical identities.
|
2 |
|
|
Copyright (C) 2005, 2006, 2007, 2008, 2009, 2010
|
3 |
|
|
Free Software Foundation, Inc.
|
4 |
|
|
|
5 |
|
|
This file is part of GCC.
|
6 |
|
|
|
7 |
|
|
GCC is free software; you can redistribute it and/or modify it
|
8 |
|
|
under the terms of the GNU General Public License as published by the
|
9 |
|
|
Free Software Foundation; either version 3, or (at your option) any
|
10 |
|
|
later version.
|
11 |
|
|
|
12 |
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT
|
13 |
|
|
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
14 |
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
15 |
|
|
for more details.
|
16 |
|
|
|
17 |
|
|
You should have received a copy of the GNU General Public License
|
18 |
|
|
along with GCC; see the file COPYING3. If not see
|
19 |
|
|
<http://www.gnu.org/licenses/>. */
|
20 |
|
|
|
21 |
|
|
/* Currently, the only mini-pass in this file tries to CSE reciprocal
|
22 |
|
|
operations. These are common in sequences such as this one:
|
23 |
|
|
|
24 |
|
|
modulus = sqrt(x*x + y*y + z*z);
|
25 |
|
|
x = x / modulus;
|
26 |
|
|
y = y / modulus;
|
27 |
|
|
z = z / modulus;
|
28 |
|
|
|
29 |
|
|
that can be optimized to
|
30 |
|
|
|
31 |
|
|
modulus = sqrt(x*x + y*y + z*z);
|
32 |
|
|
rmodulus = 1.0 / modulus;
|
33 |
|
|
x = x * rmodulus;
|
34 |
|
|
y = y * rmodulus;
|
35 |
|
|
z = z * rmodulus;
|
36 |
|
|
|
37 |
|
|
We do this for loop invariant divisors, and with this pass whenever
|
38 |
|
|
we notice that a division has the same divisor multiple times.
|
39 |
|
|
|
40 |
|
|
Of course, like in PRE, we don't insert a division if a dominator
|
41 |
|
|
already has one. However, this cannot be done as an extension of
|
42 |
|
|
PRE for several reasons.
|
43 |
|
|
|
44 |
|
|
First of all, with some experiments it was found out that the
|
45 |
|
|
transformation is not always useful if there are only two divisions
|
46 |
|
|
hy the same divisor. This is probably because modern processors
|
47 |
|
|
can pipeline the divisions; on older, in-order processors it should
|
48 |
|
|
still be effective to optimize two divisions by the same number.
|
49 |
|
|
We make this a param, and it shall be called N in the remainder of
|
50 |
|
|
this comment.
|
51 |
|
|
|
52 |
|
|
Second, if trapping math is active, we have less freedom on where
|
53 |
|
|
to insert divisions: we can only do so in basic blocks that already
|
54 |
|
|
contain one. (If divisions don't trap, instead, we can insert
|
55 |
|
|
divisions elsewhere, which will be in blocks that are common dominators
|
56 |
|
|
of those that have the division).
|
57 |
|
|
|
58 |
|
|
We really don't want to compute the reciprocal unless a division will
|
59 |
|
|
be found. To do this, we won't insert the division in a basic block
|
60 |
|
|
that has less than N divisions *post-dominating* it.
|
61 |
|
|
|
62 |
|
|
The algorithm constructs a subset of the dominator tree, holding the
|
63 |
|
|
blocks containing the divisions and the common dominators to them,
|
64 |
|
|
and walk it twice. The first walk is in post-order, and it annotates
|
65 |
|
|
each block with the number of divisions that post-dominate it: this
|
66 |
|
|
gives information on where divisions can be inserted profitably.
|
67 |
|
|
The second walk is in pre-order, and it inserts divisions as explained
|
68 |
|
|
above, and replaces divisions by multiplications.
|
69 |
|
|
|
70 |
|
|
In the best case, the cost of the pass is O(n_statements). In the
|
71 |
|
|
worst-case, the cost is due to creating the dominator tree subset,
|
72 |
|
|
with a cost of O(n_basic_blocks ^ 2); however this can only happen
|
73 |
|
|
for n_statements / n_basic_blocks statements. So, the amortized cost
|
74 |
|
|
of creating the dominator tree subset is O(n_basic_blocks) and the
|
75 |
|
|
worst-case cost of the pass is O(n_statements * n_basic_blocks).
|
76 |
|
|
|
77 |
|
|
More practically, the cost will be small because there are few
|
78 |
|
|
divisions, and they tend to be in the same basic block, so insert_bb
|
79 |
|
|
is called very few times.
|
80 |
|
|
|
81 |
|
|
If we did this using domwalk.c, an efficient implementation would have
|
82 |
|
|
to work on all the variables in a single pass, because we could not
|
83 |
|
|
work on just a subset of the dominator tree, as we do now, and the
|
84 |
|
|
cost would also be something like O(n_statements * n_basic_blocks).
|
85 |
|
|
The data structures would be more complex in order to work on all the
|
86 |
|
|
variables in a single pass. */
|
87 |
|
|
|
88 |
|
|
#include "config.h"
|
89 |
|
|
#include "system.h"
|
90 |
|
|
#include "coretypes.h"
|
91 |
|
|
#include "tm.h"
|
92 |
|
|
#include "flags.h"
|
93 |
|
|
#include "tree.h"
|
94 |
|
|
#include "tree-flow.h"
|
95 |
|
|
#include "real.h"
|
96 |
|
|
#include "timevar.h"
|
97 |
|
|
#include "tree-pass.h"
|
98 |
|
|
#include "alloc-pool.h"
|
99 |
|
|
#include "basic-block.h"
|
100 |
|
|
#include "target.h"
|
101 |
|
|
#include "diagnostic.h"
|
102 |
|
|
#include "rtl.h"
|
103 |
|
|
#include "expr.h"
|
104 |
|
|
#include "optabs.h"
|
105 |
|
|
|
106 |
|
|
/* This structure represents one basic block that either computes a
|
107 |
|
|
division, or is a common dominator for basic block that compute a
|
108 |
|
|
division. */
|
109 |
|
|
struct occurrence {
|
110 |
|
|
/* The basic block represented by this structure. */
|
111 |
|
|
basic_block bb;
|
112 |
|
|
|
113 |
|
|
/* If non-NULL, the SSA_NAME holding the definition for a reciprocal
|
114 |
|
|
inserted in BB. */
|
115 |
|
|
tree recip_def;
|
116 |
|
|
|
117 |
|
|
/* If non-NULL, the GIMPLE_ASSIGN for a reciprocal computation that
|
118 |
|
|
was inserted in BB. */
|
119 |
|
|
gimple recip_def_stmt;
|
120 |
|
|
|
121 |
|
|
/* Pointer to a list of "struct occurrence"s for blocks dominated
|
122 |
|
|
by BB. */
|
123 |
|
|
struct occurrence *children;
|
124 |
|
|
|
125 |
|
|
/* Pointer to the next "struct occurrence"s in the list of blocks
|
126 |
|
|
sharing a common dominator. */
|
127 |
|
|
struct occurrence *next;
|
128 |
|
|
|
129 |
|
|
/* The number of divisions that are in BB before compute_merit. The
|
130 |
|
|
number of divisions that are in BB or post-dominate it after
|
131 |
|
|
compute_merit. */
|
132 |
|
|
int num_divisions;
|
133 |
|
|
|
134 |
|
|
/* True if the basic block has a division, false if it is a common
|
135 |
|
|
dominator for basic blocks that do. If it is false and trapping
|
136 |
|
|
math is active, BB is not a candidate for inserting a reciprocal. */
|
137 |
|
|
bool bb_has_division;
|
138 |
|
|
};
|
139 |
|
|
|
140 |
|
|
|
141 |
|
|
/* The instance of "struct occurrence" representing the highest
|
142 |
|
|
interesting block in the dominator tree. */
|
143 |
|
|
static struct occurrence *occ_head;
|
144 |
|
|
|
145 |
|
|
/* Allocation pool for getting instances of "struct occurrence". */
|
146 |
|
|
static alloc_pool occ_pool;
|
147 |
|
|
|
148 |
|
|
|
149 |
|
|
|
150 |
|
|
/* Allocate and return a new struct occurrence for basic block BB, and
|
151 |
|
|
whose children list is headed by CHILDREN. */
|
152 |
|
|
static struct occurrence *
|
153 |
|
|
occ_new (basic_block bb, struct occurrence *children)
|
154 |
|
|
{
|
155 |
|
|
struct occurrence *occ;
|
156 |
|
|
|
157 |
|
|
bb->aux = occ = (struct occurrence *) pool_alloc (occ_pool);
|
158 |
|
|
memset (occ, 0, sizeof (struct occurrence));
|
159 |
|
|
|
160 |
|
|
occ->bb = bb;
|
161 |
|
|
occ->children = children;
|
162 |
|
|
return occ;
|
163 |
|
|
}
|
164 |
|
|
|
165 |
|
|
|
166 |
|
|
/* Insert NEW_OCC into our subset of the dominator tree. P_HEAD points to a
|
167 |
|
|
list of "struct occurrence"s, one per basic block, having IDOM as
|
168 |
|
|
their common dominator.
|
169 |
|
|
|
170 |
|
|
We try to insert NEW_OCC as deep as possible in the tree, and we also
|
171 |
|
|
insert any other block that is a common dominator for BB and one
|
172 |
|
|
block already in the tree. */
|
173 |
|
|
|
174 |
|
|
static void
|
175 |
|
|
insert_bb (struct occurrence *new_occ, basic_block idom,
|
176 |
|
|
struct occurrence **p_head)
|
177 |
|
|
{
|
178 |
|
|
struct occurrence *occ, **p_occ;
|
179 |
|
|
|
180 |
|
|
for (p_occ = p_head; (occ = *p_occ) != NULL; )
|
181 |
|
|
{
|
182 |
|
|
basic_block bb = new_occ->bb, occ_bb = occ->bb;
|
183 |
|
|
basic_block dom = nearest_common_dominator (CDI_DOMINATORS, occ_bb, bb);
|
184 |
|
|
if (dom == bb)
|
185 |
|
|
{
|
186 |
|
|
/* BB dominates OCC_BB. OCC becomes NEW_OCC's child: remove OCC
|
187 |
|
|
from its list. */
|
188 |
|
|
*p_occ = occ->next;
|
189 |
|
|
occ->next = new_occ->children;
|
190 |
|
|
new_occ->children = occ;
|
191 |
|
|
|
192 |
|
|
/* Try the next block (it may as well be dominated by BB). */
|
193 |
|
|
}
|
194 |
|
|
|
195 |
|
|
else if (dom == occ_bb)
|
196 |
|
|
{
|
197 |
|
|
/* OCC_BB dominates BB. Tail recurse to look deeper. */
|
198 |
|
|
insert_bb (new_occ, dom, &occ->children);
|
199 |
|
|
return;
|
200 |
|
|
}
|
201 |
|
|
|
202 |
|
|
else if (dom != idom)
|
203 |
|
|
{
|
204 |
|
|
gcc_assert (!dom->aux);
|
205 |
|
|
|
206 |
|
|
/* There is a dominator between IDOM and BB, add it and make
|
207 |
|
|
two children out of NEW_OCC and OCC. First, remove OCC from
|
208 |
|
|
its list. */
|
209 |
|
|
*p_occ = occ->next;
|
210 |
|
|
new_occ->next = occ;
|
211 |
|
|
occ->next = NULL;
|
212 |
|
|
|
213 |
|
|
/* None of the previous blocks has DOM as a dominator: if we tail
|
214 |
|
|
recursed, we would reexamine them uselessly. Just switch BB with
|
215 |
|
|
DOM, and go on looking for blocks dominated by DOM. */
|
216 |
|
|
new_occ = occ_new (dom, new_occ);
|
217 |
|
|
}
|
218 |
|
|
|
219 |
|
|
else
|
220 |
|
|
{
|
221 |
|
|
/* Nothing special, go on with the next element. */
|
222 |
|
|
p_occ = &occ->next;
|
223 |
|
|
}
|
224 |
|
|
}
|
225 |
|
|
|
226 |
|
|
/* No place was found as a child of IDOM. Make BB a sibling of IDOM. */
|
227 |
|
|
new_occ->next = *p_head;
|
228 |
|
|
*p_head = new_occ;
|
229 |
|
|
}
|
230 |
|
|
|
231 |
|
|
/* Register that we found a division in BB. */
|
232 |
|
|
|
233 |
|
|
static inline void
|
234 |
|
|
register_division_in (basic_block bb)
|
235 |
|
|
{
|
236 |
|
|
struct occurrence *occ;
|
237 |
|
|
|
238 |
|
|
occ = (struct occurrence *) bb->aux;
|
239 |
|
|
if (!occ)
|
240 |
|
|
{
|
241 |
|
|
occ = occ_new (bb, NULL);
|
242 |
|
|
insert_bb (occ, ENTRY_BLOCK_PTR, &occ_head);
|
243 |
|
|
}
|
244 |
|
|
|
245 |
|
|
occ->bb_has_division = true;
|
246 |
|
|
occ->num_divisions++;
|
247 |
|
|
}
|
248 |
|
|
|
249 |
|
|
|
250 |
|
|
/* Compute the number of divisions that postdominate each block in OCC and
|
251 |
|
|
its children. */
|
252 |
|
|
|
253 |
|
|
static void
|
254 |
|
|
compute_merit (struct occurrence *occ)
|
255 |
|
|
{
|
256 |
|
|
struct occurrence *occ_child;
|
257 |
|
|
basic_block dom = occ->bb;
|
258 |
|
|
|
259 |
|
|
for (occ_child = occ->children; occ_child; occ_child = occ_child->next)
|
260 |
|
|
{
|
261 |
|
|
basic_block bb;
|
262 |
|
|
if (occ_child->children)
|
263 |
|
|
compute_merit (occ_child);
|
264 |
|
|
|
265 |
|
|
if (flag_exceptions)
|
266 |
|
|
bb = single_noncomplex_succ (dom);
|
267 |
|
|
else
|
268 |
|
|
bb = dom;
|
269 |
|
|
|
270 |
|
|
if (dominated_by_p (CDI_POST_DOMINATORS, bb, occ_child->bb))
|
271 |
|
|
occ->num_divisions += occ_child->num_divisions;
|
272 |
|
|
}
|
273 |
|
|
}
|
274 |
|
|
|
275 |
|
|
|
276 |
|
|
/* Return whether USE_STMT is a floating-point division by DEF. */
|
277 |
|
|
static inline bool
|
278 |
|
|
is_division_by (gimple use_stmt, tree def)
|
279 |
|
|
{
|
280 |
|
|
return is_gimple_assign (use_stmt)
|
281 |
|
|
&& gimple_assign_rhs_code (use_stmt) == RDIV_EXPR
|
282 |
|
|
&& gimple_assign_rhs2 (use_stmt) == def
|
283 |
|
|
/* Do not recognize x / x as valid division, as we are getting
|
284 |
|
|
confused later by replacing all immediate uses x in such
|
285 |
|
|
a stmt. */
|
286 |
|
|
&& gimple_assign_rhs1 (use_stmt) != def;
|
287 |
|
|
}
|
288 |
|
|
|
289 |
|
|
/* Walk the subset of the dominator tree rooted at OCC, setting the
|
290 |
|
|
RECIP_DEF field to a definition of 1.0 / DEF that can be used in
|
291 |
|
|
the given basic block. The field may be left NULL, of course,
|
292 |
|
|
if it is not possible or profitable to do the optimization.
|
293 |
|
|
|
294 |
|
|
DEF_BSI is an iterator pointing at the statement defining DEF.
|
295 |
|
|
If RECIP_DEF is set, a dominator already has a computation that can
|
296 |
|
|
be used. */
|
297 |
|
|
|
298 |
|
|
static void
|
299 |
|
|
insert_reciprocals (gimple_stmt_iterator *def_gsi, struct occurrence *occ,
|
300 |
|
|
tree def, tree recip_def, int threshold)
|
301 |
|
|
{
|
302 |
|
|
tree type;
|
303 |
|
|
gimple new_stmt;
|
304 |
|
|
gimple_stmt_iterator gsi;
|
305 |
|
|
struct occurrence *occ_child;
|
306 |
|
|
|
307 |
|
|
if (!recip_def
|
308 |
|
|
&& (occ->bb_has_division || !flag_trapping_math)
|
309 |
|
|
&& occ->num_divisions >= threshold)
|
310 |
|
|
{
|
311 |
|
|
/* Make a variable with the replacement and substitute it. */
|
312 |
|
|
type = TREE_TYPE (def);
|
313 |
|
|
recip_def = make_rename_temp (type, "reciptmp");
|
314 |
|
|
new_stmt = gimple_build_assign_with_ops (RDIV_EXPR, recip_def,
|
315 |
|
|
build_one_cst (type), def);
|
316 |
|
|
|
317 |
|
|
if (occ->bb_has_division)
|
318 |
|
|
{
|
319 |
|
|
/* Case 1: insert before an existing division. */
|
320 |
|
|
gsi = gsi_after_labels (occ->bb);
|
321 |
|
|
while (!gsi_end_p (gsi) && !is_division_by (gsi_stmt (gsi), def))
|
322 |
|
|
gsi_next (&gsi);
|
323 |
|
|
|
324 |
|
|
gsi_insert_before (&gsi, new_stmt, GSI_SAME_STMT);
|
325 |
|
|
}
|
326 |
|
|
else if (def_gsi && occ->bb == def_gsi->bb)
|
327 |
|
|
{
|
328 |
|
|
/* Case 2: insert right after the definition. Note that this will
|
329 |
|
|
never happen if the definition statement can throw, because in
|
330 |
|
|
that case the sole successor of the statement's basic block will
|
331 |
|
|
dominate all the uses as well. */
|
332 |
|
|
gsi_insert_after (def_gsi, new_stmt, GSI_NEW_STMT);
|
333 |
|
|
}
|
334 |
|
|
else
|
335 |
|
|
{
|
336 |
|
|
/* Case 3: insert in a basic block not containing defs/uses. */
|
337 |
|
|
gsi = gsi_after_labels (occ->bb);
|
338 |
|
|
gsi_insert_before (&gsi, new_stmt, GSI_SAME_STMT);
|
339 |
|
|
}
|
340 |
|
|
|
341 |
|
|
occ->recip_def_stmt = new_stmt;
|
342 |
|
|
}
|
343 |
|
|
|
344 |
|
|
occ->recip_def = recip_def;
|
345 |
|
|
for (occ_child = occ->children; occ_child; occ_child = occ_child->next)
|
346 |
|
|
insert_reciprocals (def_gsi, occ_child, def, recip_def, threshold);
|
347 |
|
|
}
|
348 |
|
|
|
349 |
|
|
|
350 |
|
|
/* Replace the division at USE_P with a multiplication by the reciprocal, if
|
351 |
|
|
possible. */
|
352 |
|
|
|
353 |
|
|
static inline void
|
354 |
|
|
replace_reciprocal (use_operand_p use_p)
|
355 |
|
|
{
|
356 |
|
|
gimple use_stmt = USE_STMT (use_p);
|
357 |
|
|
basic_block bb = gimple_bb (use_stmt);
|
358 |
|
|
struct occurrence *occ = (struct occurrence *) bb->aux;
|
359 |
|
|
|
360 |
|
|
if (optimize_bb_for_speed_p (bb)
|
361 |
|
|
&& occ->recip_def && use_stmt != occ->recip_def_stmt)
|
362 |
|
|
{
|
363 |
|
|
gimple_assign_set_rhs_code (use_stmt, MULT_EXPR);
|
364 |
|
|
SET_USE (use_p, occ->recip_def);
|
365 |
|
|
fold_stmt_inplace (use_stmt);
|
366 |
|
|
update_stmt (use_stmt);
|
367 |
|
|
}
|
368 |
|
|
}
|
369 |
|
|
|
370 |
|
|
|
371 |
|
|
/* Free OCC and return one more "struct occurrence" to be freed. */
|
372 |
|
|
|
373 |
|
|
static struct occurrence *
|
374 |
|
|
free_bb (struct occurrence *occ)
|
375 |
|
|
{
|
376 |
|
|
struct occurrence *child, *next;
|
377 |
|
|
|
378 |
|
|
/* First get the two pointers hanging off OCC. */
|
379 |
|
|
next = occ->next;
|
380 |
|
|
child = occ->children;
|
381 |
|
|
occ->bb->aux = NULL;
|
382 |
|
|
pool_free (occ_pool, occ);
|
383 |
|
|
|
384 |
|
|
/* Now ensure that we don't recurse unless it is necessary. */
|
385 |
|
|
if (!child)
|
386 |
|
|
return next;
|
387 |
|
|
else
|
388 |
|
|
{
|
389 |
|
|
while (next)
|
390 |
|
|
next = free_bb (next);
|
391 |
|
|
|
392 |
|
|
return child;
|
393 |
|
|
}
|
394 |
|
|
}
|
395 |
|
|
|
396 |
|
|
|
397 |
|
|
/* Look for floating-point divisions among DEF's uses, and try to
|
398 |
|
|
replace them by multiplications with the reciprocal. Add
|
399 |
|
|
as many statements computing the reciprocal as needed.
|
400 |
|
|
|
401 |
|
|
DEF must be a GIMPLE register of a floating-point type. */
|
402 |
|
|
|
403 |
|
|
static void
|
404 |
|
|
execute_cse_reciprocals_1 (gimple_stmt_iterator *def_gsi, tree def)
|
405 |
|
|
{
|
406 |
|
|
use_operand_p use_p;
|
407 |
|
|
imm_use_iterator use_iter;
|
408 |
|
|
struct occurrence *occ;
|
409 |
|
|
int count = 0, threshold;
|
410 |
|
|
|
411 |
|
|
gcc_assert (FLOAT_TYPE_P (TREE_TYPE (def)) && is_gimple_reg (def));
|
412 |
|
|
|
413 |
|
|
FOR_EACH_IMM_USE_FAST (use_p, use_iter, def)
|
414 |
|
|
{
|
415 |
|
|
gimple use_stmt = USE_STMT (use_p);
|
416 |
|
|
if (is_division_by (use_stmt, def))
|
417 |
|
|
{
|
418 |
|
|
register_division_in (gimple_bb (use_stmt));
|
419 |
|
|
count++;
|
420 |
|
|
}
|
421 |
|
|
}
|
422 |
|
|
|
423 |
|
|
/* Do the expensive part only if we can hope to optimize something. */
|
424 |
|
|
threshold = targetm.min_divisions_for_recip_mul (TYPE_MODE (TREE_TYPE (def)));
|
425 |
|
|
if (count >= threshold)
|
426 |
|
|
{
|
427 |
|
|
gimple use_stmt;
|
428 |
|
|
for (occ = occ_head; occ; occ = occ->next)
|
429 |
|
|
{
|
430 |
|
|
compute_merit (occ);
|
431 |
|
|
insert_reciprocals (def_gsi, occ, def, NULL, threshold);
|
432 |
|
|
}
|
433 |
|
|
|
434 |
|
|
FOR_EACH_IMM_USE_STMT (use_stmt, use_iter, def)
|
435 |
|
|
{
|
436 |
|
|
if (is_division_by (use_stmt, def))
|
437 |
|
|
{
|
438 |
|
|
FOR_EACH_IMM_USE_ON_STMT (use_p, use_iter)
|
439 |
|
|
replace_reciprocal (use_p);
|
440 |
|
|
}
|
441 |
|
|
}
|
442 |
|
|
}
|
443 |
|
|
|
444 |
|
|
for (occ = occ_head; occ; )
|
445 |
|
|
occ = free_bb (occ);
|
446 |
|
|
|
447 |
|
|
occ_head = NULL;
|
448 |
|
|
}
|
449 |
|
|
|
450 |
|
|
static bool
|
451 |
|
|
gate_cse_reciprocals (void)
|
452 |
|
|
{
|
453 |
|
|
return optimize && flag_reciprocal_math;
|
454 |
|
|
}
|
455 |
|
|
|
456 |
|
|
/* Go through all the floating-point SSA_NAMEs, and call
|
457 |
|
|
execute_cse_reciprocals_1 on each of them. */
|
458 |
|
|
static unsigned int
|
459 |
|
|
execute_cse_reciprocals (void)
|
460 |
|
|
{
|
461 |
|
|
basic_block bb;
|
462 |
|
|
tree arg;
|
463 |
|
|
|
464 |
|
|
occ_pool = create_alloc_pool ("dominators for recip",
|
465 |
|
|
sizeof (struct occurrence),
|
466 |
|
|
n_basic_blocks / 3 + 1);
|
467 |
|
|
|
468 |
|
|
calculate_dominance_info (CDI_DOMINATORS);
|
469 |
|
|
calculate_dominance_info (CDI_POST_DOMINATORS);
|
470 |
|
|
|
471 |
|
|
#ifdef ENABLE_CHECKING
|
472 |
|
|
FOR_EACH_BB (bb)
|
473 |
|
|
gcc_assert (!bb->aux);
|
474 |
|
|
#endif
|
475 |
|
|
|
476 |
|
|
for (arg = DECL_ARGUMENTS (cfun->decl); arg; arg = TREE_CHAIN (arg))
|
477 |
|
|
if (gimple_default_def (cfun, arg)
|
478 |
|
|
&& FLOAT_TYPE_P (TREE_TYPE (arg))
|
479 |
|
|
&& is_gimple_reg (arg))
|
480 |
|
|
execute_cse_reciprocals_1 (NULL, gimple_default_def (cfun, arg));
|
481 |
|
|
|
482 |
|
|
FOR_EACH_BB (bb)
|
483 |
|
|
{
|
484 |
|
|
gimple_stmt_iterator gsi;
|
485 |
|
|
gimple phi;
|
486 |
|
|
tree def;
|
487 |
|
|
|
488 |
|
|
for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
489 |
|
|
{
|
490 |
|
|
phi = gsi_stmt (gsi);
|
491 |
|
|
def = PHI_RESULT (phi);
|
492 |
|
|
if (FLOAT_TYPE_P (TREE_TYPE (def))
|
493 |
|
|
&& is_gimple_reg (def))
|
494 |
|
|
execute_cse_reciprocals_1 (NULL, def);
|
495 |
|
|
}
|
496 |
|
|
|
497 |
|
|
for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
498 |
|
|
{
|
499 |
|
|
gimple stmt = gsi_stmt (gsi);
|
500 |
|
|
|
501 |
|
|
if (gimple_has_lhs (stmt)
|
502 |
|
|
&& (def = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_DEF)) != NULL
|
503 |
|
|
&& FLOAT_TYPE_P (TREE_TYPE (def))
|
504 |
|
|
&& TREE_CODE (def) == SSA_NAME)
|
505 |
|
|
execute_cse_reciprocals_1 (&gsi, def);
|
506 |
|
|
}
|
507 |
|
|
|
508 |
|
|
if (optimize_bb_for_size_p (bb))
|
509 |
|
|
continue;
|
510 |
|
|
|
511 |
|
|
/* Scan for a/func(b) and convert it to reciprocal a*rfunc(b). */
|
512 |
|
|
for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
513 |
|
|
{
|
514 |
|
|
gimple stmt = gsi_stmt (gsi);
|
515 |
|
|
tree fndecl;
|
516 |
|
|
|
517 |
|
|
if (is_gimple_assign (stmt)
|
518 |
|
|
&& gimple_assign_rhs_code (stmt) == RDIV_EXPR)
|
519 |
|
|
{
|
520 |
|
|
tree arg1 = gimple_assign_rhs2 (stmt);
|
521 |
|
|
gimple stmt1;
|
522 |
|
|
|
523 |
|
|
if (TREE_CODE (arg1) != SSA_NAME)
|
524 |
|
|
continue;
|
525 |
|
|
|
526 |
|
|
stmt1 = SSA_NAME_DEF_STMT (arg1);
|
527 |
|
|
|
528 |
|
|
if (is_gimple_call (stmt1)
|
529 |
|
|
&& gimple_call_lhs (stmt1)
|
530 |
|
|
&& (fndecl = gimple_call_fndecl (stmt1))
|
531 |
|
|
&& (DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
|
532 |
|
|
|| DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_MD))
|
533 |
|
|
{
|
534 |
|
|
enum built_in_function code;
|
535 |
|
|
bool md_code, fail;
|
536 |
|
|
imm_use_iterator ui;
|
537 |
|
|
use_operand_p use_p;
|
538 |
|
|
|
539 |
|
|
code = DECL_FUNCTION_CODE (fndecl);
|
540 |
|
|
md_code = DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_MD;
|
541 |
|
|
|
542 |
|
|
fndecl = targetm.builtin_reciprocal (code, md_code, false);
|
543 |
|
|
if (!fndecl)
|
544 |
|
|
continue;
|
545 |
|
|
|
546 |
|
|
/* Check that all uses of the SSA name are divisions,
|
547 |
|
|
otherwise replacing the defining statement will do
|
548 |
|
|
the wrong thing. */
|
549 |
|
|
fail = false;
|
550 |
|
|
FOR_EACH_IMM_USE_FAST (use_p, ui, arg1)
|
551 |
|
|
{
|
552 |
|
|
gimple stmt2 = USE_STMT (use_p);
|
553 |
|
|
if (is_gimple_debug (stmt2))
|
554 |
|
|
continue;
|
555 |
|
|
if (!is_gimple_assign (stmt2)
|
556 |
|
|
|| gimple_assign_rhs_code (stmt2) != RDIV_EXPR
|
557 |
|
|
|| gimple_assign_rhs1 (stmt2) == arg1
|
558 |
|
|
|| gimple_assign_rhs2 (stmt2) != arg1)
|
559 |
|
|
{
|
560 |
|
|
fail = true;
|
561 |
|
|
break;
|
562 |
|
|
}
|
563 |
|
|
}
|
564 |
|
|
if (fail)
|
565 |
|
|
continue;
|
566 |
|
|
|
567 |
|
|
gimple_replace_lhs (stmt1, arg1);
|
568 |
|
|
gimple_call_set_fndecl (stmt1, fndecl);
|
569 |
|
|
update_stmt (stmt1);
|
570 |
|
|
|
571 |
|
|
FOR_EACH_IMM_USE_STMT (stmt, ui, arg1)
|
572 |
|
|
{
|
573 |
|
|
gimple_assign_set_rhs_code (stmt, MULT_EXPR);
|
574 |
|
|
fold_stmt_inplace (stmt);
|
575 |
|
|
update_stmt (stmt);
|
576 |
|
|
}
|
577 |
|
|
}
|
578 |
|
|
}
|
579 |
|
|
}
|
580 |
|
|
}
|
581 |
|
|
|
582 |
|
|
free_dominance_info (CDI_DOMINATORS);
|
583 |
|
|
free_dominance_info (CDI_POST_DOMINATORS);
|
584 |
|
|
free_alloc_pool (occ_pool);
|
585 |
|
|
return 0;
|
586 |
|
|
}
|
587 |
|
|
|
588 |
|
|
struct gimple_opt_pass pass_cse_reciprocals =
|
589 |
|
|
{
|
590 |
|
|
{
|
591 |
|
|
GIMPLE_PASS,
|
592 |
|
|
"recip", /* name */
|
593 |
|
|
gate_cse_reciprocals, /* gate */
|
594 |
|
|
execute_cse_reciprocals, /* execute */
|
595 |
|
|
NULL, /* sub */
|
596 |
|
|
NULL, /* next */
|
597 |
|
|
0, /* static_pass_number */
|
598 |
|
|
TV_NONE, /* tv_id */
|
599 |
|
|
PROP_ssa, /* properties_required */
|
600 |
|
|
0, /* properties_provided */
|
601 |
|
|
0, /* properties_destroyed */
|
602 |
|
|
0, /* todo_flags_start */
|
603 |
|
|
TODO_dump_func | TODO_update_ssa | TODO_verify_ssa
|
604 |
|
|
| TODO_verify_stmts /* todo_flags_finish */
|
605 |
|
|
}
|
606 |
|
|
};
|
607 |
|
|
|
608 |
|
|
/* Records an occurrence at statement USE_STMT in the vector of trees
|
609 |
|
|
STMTS if it is dominated by *TOP_BB or dominates it or this basic block
|
610 |
|
|
is not yet initialized. Returns true if the occurrence was pushed on
|
611 |
|
|
the vector. Adjusts *TOP_BB to be the basic block dominating all
|
612 |
|
|
statements in the vector. */
|
613 |
|
|
|
614 |
|
|
static bool
|
615 |
|
|
maybe_record_sincos (VEC(gimple, heap) **stmts,
|
616 |
|
|
basic_block *top_bb, gimple use_stmt)
|
617 |
|
|
{
|
618 |
|
|
basic_block use_bb = gimple_bb (use_stmt);
|
619 |
|
|
if (*top_bb
|
620 |
|
|
&& (*top_bb == use_bb
|
621 |
|
|
|| dominated_by_p (CDI_DOMINATORS, use_bb, *top_bb)))
|
622 |
|
|
VEC_safe_push (gimple, heap, *stmts, use_stmt);
|
623 |
|
|
else if (!*top_bb
|
624 |
|
|
|| dominated_by_p (CDI_DOMINATORS, *top_bb, use_bb))
|
625 |
|
|
{
|
626 |
|
|
VEC_safe_push (gimple, heap, *stmts, use_stmt);
|
627 |
|
|
*top_bb = use_bb;
|
628 |
|
|
}
|
629 |
|
|
else
|
630 |
|
|
return false;
|
631 |
|
|
|
632 |
|
|
return true;
|
633 |
|
|
}
|
634 |
|
|
|
635 |
|
|
/* Look for sin, cos and cexpi calls with the same argument NAME and
|
636 |
|
|
create a single call to cexpi CSEing the result in this case.
|
637 |
|
|
We first walk over all immediate uses of the argument collecting
|
638 |
|
|
statements that we can CSE in a vector and in a second pass replace
|
639 |
|
|
the statement rhs with a REALPART or IMAGPART expression on the
|
640 |
|
|
result of the cexpi call we insert before the use statement that
|
641 |
|
|
dominates all other candidates. */
|
642 |
|
|
|
643 |
|
|
static void
|
644 |
|
|
execute_cse_sincos_1 (tree name)
|
645 |
|
|
{
|
646 |
|
|
gimple_stmt_iterator gsi;
|
647 |
|
|
imm_use_iterator use_iter;
|
648 |
|
|
tree fndecl, res, type;
|
649 |
|
|
gimple def_stmt, use_stmt, stmt;
|
650 |
|
|
int seen_cos = 0, seen_sin = 0, seen_cexpi = 0;
|
651 |
|
|
VEC(gimple, heap) *stmts = NULL;
|
652 |
|
|
basic_block top_bb = NULL;
|
653 |
|
|
int i;
|
654 |
|
|
|
655 |
|
|
type = TREE_TYPE (name);
|
656 |
|
|
FOR_EACH_IMM_USE_STMT (use_stmt, use_iter, name)
|
657 |
|
|
{
|
658 |
|
|
if (gimple_code (use_stmt) != GIMPLE_CALL
|
659 |
|
|
|| !gimple_call_lhs (use_stmt)
|
660 |
|
|
|| !(fndecl = gimple_call_fndecl (use_stmt))
|
661 |
|
|
|| DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_NORMAL)
|
662 |
|
|
continue;
|
663 |
|
|
|
664 |
|
|
switch (DECL_FUNCTION_CODE (fndecl))
|
665 |
|
|
{
|
666 |
|
|
CASE_FLT_FN (BUILT_IN_COS):
|
667 |
|
|
seen_cos |= maybe_record_sincos (&stmts, &top_bb, use_stmt) ? 1 : 0;
|
668 |
|
|
break;
|
669 |
|
|
|
670 |
|
|
CASE_FLT_FN (BUILT_IN_SIN):
|
671 |
|
|
seen_sin |= maybe_record_sincos (&stmts, &top_bb, use_stmt) ? 1 : 0;
|
672 |
|
|
break;
|
673 |
|
|
|
674 |
|
|
CASE_FLT_FN (BUILT_IN_CEXPI):
|
675 |
|
|
seen_cexpi |= maybe_record_sincos (&stmts, &top_bb, use_stmt) ? 1 : 0;
|
676 |
|
|
break;
|
677 |
|
|
|
678 |
|
|
default:;
|
679 |
|
|
}
|
680 |
|
|
}
|
681 |
|
|
|
682 |
|
|
if (seen_cos + seen_sin + seen_cexpi <= 1)
|
683 |
|
|
{
|
684 |
|
|
VEC_free(gimple, heap, stmts);
|
685 |
|
|
return;
|
686 |
|
|
}
|
687 |
|
|
|
688 |
|
|
/* Simply insert cexpi at the beginning of top_bb but not earlier than
|
689 |
|
|
the name def statement. */
|
690 |
|
|
fndecl = mathfn_built_in (type, BUILT_IN_CEXPI);
|
691 |
|
|
if (!fndecl)
|
692 |
|
|
return;
|
693 |
|
|
res = make_rename_temp (TREE_TYPE (TREE_TYPE (fndecl)), "sincostmp");
|
694 |
|
|
stmt = gimple_build_call (fndecl, 1, name);
|
695 |
|
|
gimple_call_set_lhs (stmt, res);
|
696 |
|
|
|
697 |
|
|
def_stmt = SSA_NAME_DEF_STMT (name);
|
698 |
|
|
if (!SSA_NAME_IS_DEFAULT_DEF (name)
|
699 |
|
|
&& gimple_code (def_stmt) != GIMPLE_PHI
|
700 |
|
|
&& gimple_bb (def_stmt) == top_bb)
|
701 |
|
|
{
|
702 |
|
|
gsi = gsi_for_stmt (def_stmt);
|
703 |
|
|
gsi_insert_after (&gsi, stmt, GSI_SAME_STMT);
|
704 |
|
|
}
|
705 |
|
|
else
|
706 |
|
|
{
|
707 |
|
|
gsi = gsi_after_labels (top_bb);
|
708 |
|
|
gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
|
709 |
|
|
}
|
710 |
|
|
update_stmt (stmt);
|
711 |
|
|
|
712 |
|
|
/* And adjust the recorded old call sites. */
|
713 |
|
|
for (i = 0; VEC_iterate(gimple, stmts, i, use_stmt); ++i)
|
714 |
|
|
{
|
715 |
|
|
tree rhs = NULL;
|
716 |
|
|
fndecl = gimple_call_fndecl (use_stmt);
|
717 |
|
|
|
718 |
|
|
switch (DECL_FUNCTION_CODE (fndecl))
|
719 |
|
|
{
|
720 |
|
|
CASE_FLT_FN (BUILT_IN_COS):
|
721 |
|
|
rhs = fold_build1 (REALPART_EXPR, type, res);
|
722 |
|
|
break;
|
723 |
|
|
|
724 |
|
|
CASE_FLT_FN (BUILT_IN_SIN):
|
725 |
|
|
rhs = fold_build1 (IMAGPART_EXPR, type, res);
|
726 |
|
|
break;
|
727 |
|
|
|
728 |
|
|
CASE_FLT_FN (BUILT_IN_CEXPI):
|
729 |
|
|
rhs = res;
|
730 |
|
|
break;
|
731 |
|
|
|
732 |
|
|
default:;
|
733 |
|
|
gcc_unreachable ();
|
734 |
|
|
}
|
735 |
|
|
|
736 |
|
|
/* Replace call with a copy. */
|
737 |
|
|
stmt = gimple_build_assign (gimple_call_lhs (use_stmt), rhs);
|
738 |
|
|
|
739 |
|
|
gsi = gsi_for_stmt (use_stmt);
|
740 |
|
|
gsi_insert_after (&gsi, stmt, GSI_SAME_STMT);
|
741 |
|
|
gsi_remove (&gsi, true);
|
742 |
|
|
}
|
743 |
|
|
|
744 |
|
|
VEC_free(gimple, heap, stmts);
|
745 |
|
|
}
|
746 |
|
|
|
747 |
|
|
/* Go through all calls to sin, cos and cexpi and call execute_cse_sincos_1
|
748 |
|
|
on the SSA_NAME argument of each of them. */
|
749 |
|
|
|
750 |
|
|
static unsigned int
|
751 |
|
|
execute_cse_sincos (void)
|
752 |
|
|
{
|
753 |
|
|
basic_block bb;
|
754 |
|
|
|
755 |
|
|
calculate_dominance_info (CDI_DOMINATORS);
|
756 |
|
|
|
757 |
|
|
FOR_EACH_BB (bb)
|
758 |
|
|
{
|
759 |
|
|
gimple_stmt_iterator gsi;
|
760 |
|
|
|
761 |
|
|
for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
762 |
|
|
{
|
763 |
|
|
gimple stmt = gsi_stmt (gsi);
|
764 |
|
|
tree fndecl;
|
765 |
|
|
|
766 |
|
|
if (is_gimple_call (stmt)
|
767 |
|
|
&& gimple_call_lhs (stmt)
|
768 |
|
|
&& (fndecl = gimple_call_fndecl (stmt))
|
769 |
|
|
&& DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
|
770 |
|
|
{
|
771 |
|
|
tree arg;
|
772 |
|
|
|
773 |
|
|
switch (DECL_FUNCTION_CODE (fndecl))
|
774 |
|
|
{
|
775 |
|
|
CASE_FLT_FN (BUILT_IN_COS):
|
776 |
|
|
CASE_FLT_FN (BUILT_IN_SIN):
|
777 |
|
|
CASE_FLT_FN (BUILT_IN_CEXPI):
|
778 |
|
|
arg = gimple_call_arg (stmt, 0);
|
779 |
|
|
if (TREE_CODE (arg) == SSA_NAME)
|
780 |
|
|
execute_cse_sincos_1 (arg);
|
781 |
|
|
break;
|
782 |
|
|
|
783 |
|
|
default:;
|
784 |
|
|
}
|
785 |
|
|
}
|
786 |
|
|
}
|
787 |
|
|
}
|
788 |
|
|
|
789 |
|
|
free_dominance_info (CDI_DOMINATORS);
|
790 |
|
|
return 0;
|
791 |
|
|
}
|
792 |
|
|
|
793 |
|
|
static bool
|
794 |
|
|
gate_cse_sincos (void)
|
795 |
|
|
{
|
796 |
|
|
/* Make sure we have either sincos or cexp. */
|
797 |
|
|
return (TARGET_HAS_SINCOS
|
798 |
|
|
|| TARGET_C99_FUNCTIONS)
|
799 |
|
|
&& optimize;
|
800 |
|
|
}
|
801 |
|
|
|
802 |
|
|
struct gimple_opt_pass pass_cse_sincos =
|
803 |
|
|
{
|
804 |
|
|
{
|
805 |
|
|
GIMPLE_PASS,
|
806 |
|
|
"sincos", /* name */
|
807 |
|
|
gate_cse_sincos, /* gate */
|
808 |
|
|
execute_cse_sincos, /* execute */
|
809 |
|
|
NULL, /* sub */
|
810 |
|
|
NULL, /* next */
|
811 |
|
|
0, /* static_pass_number */
|
812 |
|
|
TV_NONE, /* tv_id */
|
813 |
|
|
PROP_ssa, /* properties_required */
|
814 |
|
|
0, /* properties_provided */
|
815 |
|
|
0, /* properties_destroyed */
|
816 |
|
|
0, /* todo_flags_start */
|
817 |
|
|
TODO_dump_func | TODO_update_ssa | TODO_verify_ssa
|
818 |
|
|
| TODO_verify_stmts /* todo_flags_finish */
|
819 |
|
|
}
|
820 |
|
|
};
|
821 |
|
|
|
822 |
|
|
/* A symbolic number is used to detect byte permutation and selection
|
823 |
|
|
patterns. Therefore the field N contains an artificial number
|
824 |
|
|
consisting of byte size markers:
|
825 |
|
|
|
826 |
|
|
|
827 |
|
|
1..size - byte contains the content of the byte
|
828 |
|
|
number indexed with that value minus one */
|
829 |
|
|
|
830 |
|
|
struct symbolic_number {
|
831 |
|
|
unsigned HOST_WIDEST_INT n;
|
832 |
|
|
int size;
|
833 |
|
|
};
|
834 |
|
|
|
835 |
|
|
/* Perform a SHIFT or ROTATE operation by COUNT bits on symbolic
|
836 |
|
|
number N. Return false if the requested operation is not permitted
|
837 |
|
|
on a symbolic number. */
|
838 |
|
|
|
839 |
|
|
static inline bool
|
840 |
|
|
do_shift_rotate (enum tree_code code,
|
841 |
|
|
struct symbolic_number *n,
|
842 |
|
|
int count)
|
843 |
|
|
{
|
844 |
|
|
if (count % 8 != 0)
|
845 |
|
|
return false;
|
846 |
|
|
|
847 |
|
|
/* Zero out the extra bits of N in order to avoid them being shifted
|
848 |
|
|
into the significant bits. */
|
849 |
|
|
if (n->size < (int)sizeof (HOST_WIDEST_INT))
|
850 |
|
|
n->n &= ((unsigned HOST_WIDEST_INT)1 << (n->size * BITS_PER_UNIT)) - 1;
|
851 |
|
|
|
852 |
|
|
switch (code)
|
853 |
|
|
{
|
854 |
|
|
case LSHIFT_EXPR:
|
855 |
|
|
n->n <<= count;
|
856 |
|
|
break;
|
857 |
|
|
case RSHIFT_EXPR:
|
858 |
|
|
n->n >>= count;
|
859 |
|
|
break;
|
860 |
|
|
case LROTATE_EXPR:
|
861 |
|
|
n->n = (n->n << count) | (n->n >> ((n->size * BITS_PER_UNIT) - count));
|
862 |
|
|
break;
|
863 |
|
|
case RROTATE_EXPR:
|
864 |
|
|
n->n = (n->n >> count) | (n->n << ((n->size * BITS_PER_UNIT) - count));
|
865 |
|
|
break;
|
866 |
|
|
default:
|
867 |
|
|
return false;
|
868 |
|
|
}
|
869 |
|
|
return true;
|
870 |
|
|
}
|
871 |
|
|
|
872 |
|
|
/* Perform sanity checking for the symbolic number N and the gimple
|
873 |
|
|
statement STMT. */
|
874 |
|
|
|
875 |
|
|
static inline bool
|
876 |
|
|
verify_symbolic_number_p (struct symbolic_number *n, gimple stmt)
|
877 |
|
|
{
|
878 |
|
|
tree lhs_type;
|
879 |
|
|
|
880 |
|
|
lhs_type = gimple_expr_type (stmt);
|
881 |
|
|
|
882 |
|
|
if (TREE_CODE (lhs_type) != INTEGER_TYPE)
|
883 |
|
|
return false;
|
884 |
|
|
|
885 |
|
|
if (TYPE_PRECISION (lhs_type) != n->size * BITS_PER_UNIT)
|
886 |
|
|
return false;
|
887 |
|
|
|
888 |
|
|
return true;
|
889 |
|
|
}
|
890 |
|
|
|
891 |
|
|
/* find_bswap_1 invokes itself recursively with N and tries to perform
|
892 |
|
|
the operation given by the rhs of STMT on the result. If the
|
893 |
|
|
operation could successfully be executed the function returns the
|
894 |
|
|
tree expression of the source operand and NULL otherwise. */
|
895 |
|
|
|
896 |
|
|
static tree
|
897 |
|
|
find_bswap_1 (gimple stmt, struct symbolic_number *n, int limit)
|
898 |
|
|
{
|
899 |
|
|
enum tree_code code;
|
900 |
|
|
tree rhs1, rhs2 = NULL;
|
901 |
|
|
gimple rhs1_stmt, rhs2_stmt;
|
902 |
|
|
tree source_expr1;
|
903 |
|
|
enum gimple_rhs_class rhs_class;
|
904 |
|
|
|
905 |
|
|
if (!limit || !is_gimple_assign (stmt))
|
906 |
|
|
return NULL_TREE;
|
907 |
|
|
|
908 |
|
|
rhs1 = gimple_assign_rhs1 (stmt);
|
909 |
|
|
|
910 |
|
|
if (TREE_CODE (rhs1) != SSA_NAME)
|
911 |
|
|
return NULL_TREE;
|
912 |
|
|
|
913 |
|
|
code = gimple_assign_rhs_code (stmt);
|
914 |
|
|
rhs_class = gimple_assign_rhs_class (stmt);
|
915 |
|
|
rhs1_stmt = SSA_NAME_DEF_STMT (rhs1);
|
916 |
|
|
|
917 |
|
|
if (rhs_class == GIMPLE_BINARY_RHS)
|
918 |
|
|
rhs2 = gimple_assign_rhs2 (stmt);
|
919 |
|
|
|
920 |
|
|
/* Handle unary rhs and binary rhs with integer constants as second
|
921 |
|
|
operand. */
|
922 |
|
|
|
923 |
|
|
if (rhs_class == GIMPLE_UNARY_RHS
|
924 |
|
|
|| (rhs_class == GIMPLE_BINARY_RHS
|
925 |
|
|
&& TREE_CODE (rhs2) == INTEGER_CST))
|
926 |
|
|
{
|
927 |
|
|
if (code != BIT_AND_EXPR
|
928 |
|
|
&& code != LSHIFT_EXPR
|
929 |
|
|
&& code != RSHIFT_EXPR
|
930 |
|
|
&& code != LROTATE_EXPR
|
931 |
|
|
&& code != RROTATE_EXPR
|
932 |
|
|
&& code != NOP_EXPR
|
933 |
|
|
&& code != CONVERT_EXPR)
|
934 |
|
|
return NULL_TREE;
|
935 |
|
|
|
936 |
|
|
source_expr1 = find_bswap_1 (rhs1_stmt, n, limit - 1);
|
937 |
|
|
|
938 |
|
|
/* If find_bswap_1 returned NULL STMT is a leaf node and we have
|
939 |
|
|
to initialize the symbolic number. */
|
940 |
|
|
if (!source_expr1)
|
941 |
|
|
{
|
942 |
|
|
/* Set up the symbolic number N by setting each byte to a
|
943 |
|
|
value between 1 and the byte size of rhs1. The highest
|
944 |
|
|
order byte is set to n->size and the lowest order
|
945 |
|
|
byte to 1. */
|
946 |
|
|
n->size = TYPE_PRECISION (TREE_TYPE (rhs1));
|
947 |
|
|
if (n->size % BITS_PER_UNIT != 0)
|
948 |
|
|
return NULL_TREE;
|
949 |
|
|
n->size /= BITS_PER_UNIT;
|
950 |
|
|
n->n = (sizeof (HOST_WIDEST_INT) < 8 ? 0 :
|
951 |
|
|
(unsigned HOST_WIDEST_INT)0x08070605 << 32 | 0x04030201);
|
952 |
|
|
|
953 |
|
|
if (n->size < (int)sizeof (HOST_WIDEST_INT))
|
954 |
|
|
n->n &= ((unsigned HOST_WIDEST_INT)1 <<
|
955 |
|
|
(n->size * BITS_PER_UNIT)) - 1;
|
956 |
|
|
|
957 |
|
|
source_expr1 = rhs1;
|
958 |
|
|
}
|
959 |
|
|
|
960 |
|
|
switch (code)
|
961 |
|
|
{
|
962 |
|
|
case BIT_AND_EXPR:
|
963 |
|
|
{
|
964 |
|
|
int i;
|
965 |
|
|
unsigned HOST_WIDEST_INT val = widest_int_cst_value (rhs2);
|
966 |
|
|
unsigned HOST_WIDEST_INT tmp = val;
|
967 |
|
|
|
968 |
|
|
/* Only constants masking full bytes are allowed. */
|
969 |
|
|
for (i = 0; i < n->size; i++, tmp >>= BITS_PER_UNIT)
|
970 |
|
|
if ((tmp & 0xff) != 0 && (tmp & 0xff) != 0xff)
|
971 |
|
|
return NULL_TREE;
|
972 |
|
|
|
973 |
|
|
n->n &= val;
|
974 |
|
|
}
|
975 |
|
|
break;
|
976 |
|
|
case LSHIFT_EXPR:
|
977 |
|
|
case RSHIFT_EXPR:
|
978 |
|
|
case LROTATE_EXPR:
|
979 |
|
|
case RROTATE_EXPR:
|
980 |
|
|
if (!do_shift_rotate (code, n, (int)TREE_INT_CST_LOW (rhs2)))
|
981 |
|
|
return NULL_TREE;
|
982 |
|
|
break;
|
983 |
|
|
CASE_CONVERT:
|
984 |
|
|
{
|
985 |
|
|
int type_size;
|
986 |
|
|
|
987 |
|
|
type_size = TYPE_PRECISION (gimple_expr_type (stmt));
|
988 |
|
|
if (type_size % BITS_PER_UNIT != 0)
|
989 |
|
|
return NULL_TREE;
|
990 |
|
|
|
991 |
|
|
if (type_size / BITS_PER_UNIT < (int)(sizeof (HOST_WIDEST_INT)))
|
992 |
|
|
{
|
993 |
|
|
/* If STMT casts to a smaller type mask out the bits not
|
994 |
|
|
belonging to the target type. */
|
995 |
|
|
n->n &= ((unsigned HOST_WIDEST_INT)1 << type_size) - 1;
|
996 |
|
|
}
|
997 |
|
|
n->size = type_size / BITS_PER_UNIT;
|
998 |
|
|
}
|
999 |
|
|
break;
|
1000 |
|
|
default:
|
1001 |
|
|
return NULL_TREE;
|
1002 |
|
|
};
|
1003 |
|
|
return verify_symbolic_number_p (n, stmt) ? source_expr1 : NULL;
|
1004 |
|
|
}
|
1005 |
|
|
|
1006 |
|
|
/* Handle binary rhs. */
|
1007 |
|
|
|
1008 |
|
|
if (rhs_class == GIMPLE_BINARY_RHS)
|
1009 |
|
|
{
|
1010 |
|
|
struct symbolic_number n1, n2;
|
1011 |
|
|
tree source_expr2;
|
1012 |
|
|
|
1013 |
|
|
if (code != BIT_IOR_EXPR)
|
1014 |
|
|
return NULL_TREE;
|
1015 |
|
|
|
1016 |
|
|
if (TREE_CODE (rhs2) != SSA_NAME)
|
1017 |
|
|
return NULL_TREE;
|
1018 |
|
|
|
1019 |
|
|
rhs2_stmt = SSA_NAME_DEF_STMT (rhs2);
|
1020 |
|
|
|
1021 |
|
|
switch (code)
|
1022 |
|
|
{
|
1023 |
|
|
case BIT_IOR_EXPR:
|
1024 |
|
|
source_expr1 = find_bswap_1 (rhs1_stmt, &n1, limit - 1);
|
1025 |
|
|
|
1026 |
|
|
if (!source_expr1)
|
1027 |
|
|
return NULL_TREE;
|
1028 |
|
|
|
1029 |
|
|
source_expr2 = find_bswap_1 (rhs2_stmt, &n2, limit - 1);
|
1030 |
|
|
|
1031 |
|
|
if (source_expr1 != source_expr2
|
1032 |
|
|
|| n1.size != n2.size)
|
1033 |
|
|
return NULL_TREE;
|
1034 |
|
|
|
1035 |
|
|
n->size = n1.size;
|
1036 |
|
|
n->n = n1.n | n2.n;
|
1037 |
|
|
|
1038 |
|
|
if (!verify_symbolic_number_p (n, stmt))
|
1039 |
|
|
return NULL_TREE;
|
1040 |
|
|
|
1041 |
|
|
break;
|
1042 |
|
|
default:
|
1043 |
|
|
return NULL_TREE;
|
1044 |
|
|
}
|
1045 |
|
|
return source_expr1;
|
1046 |
|
|
}
|
1047 |
|
|
return NULL_TREE;
|
1048 |
|
|
}
|
1049 |
|
|
|
1050 |
|
|
/* Check if STMT completes a bswap implementation consisting of ORs,
|
1051 |
|
|
SHIFTs and ANDs. Return the source tree expression on which the
|
1052 |
|
|
byte swap is performed and NULL if no bswap was found. */
|
1053 |
|
|
|
1054 |
|
|
static tree
|
1055 |
|
|
find_bswap (gimple stmt)
|
1056 |
|
|
{
|
1057 |
|
|
/* The number which the find_bswap result should match in order to
|
1058 |
|
|
have a full byte swap. The number is shifted to the left according
|
1059 |
|
|
to the size of the symbolic number before using it. */
|
1060 |
|
|
unsigned HOST_WIDEST_INT cmp =
|
1061 |
|
|
sizeof (HOST_WIDEST_INT) < 8 ? 0 :
|
1062 |
|
|
(unsigned HOST_WIDEST_INT)0x01020304 << 32 | 0x05060708;
|
1063 |
|
|
|
1064 |
|
|
struct symbolic_number n;
|
1065 |
|
|
tree source_expr;
|
1066 |
|
|
|
1067 |
|
|
/* The last parameter determines the depth search limit. It usually
|
1068 |
|
|
correlates directly to the number of bytes to be touched. We
|
1069 |
|
|
increase that number by one here in order to also cover signed ->
|
1070 |
|
|
unsigned conversions of the src operand as can be seen in
|
1071 |
|
|
libgcc. */
|
1072 |
|
|
source_expr = find_bswap_1 (stmt, &n,
|
1073 |
|
|
TREE_INT_CST_LOW (
|
1074 |
|
|
TYPE_SIZE_UNIT (gimple_expr_type (stmt))) + 1);
|
1075 |
|
|
|
1076 |
|
|
if (!source_expr)
|
1077 |
|
|
return NULL_TREE;
|
1078 |
|
|
|
1079 |
|
|
/* Zero out the extra bits of N and CMP. */
|
1080 |
|
|
if (n.size < (int)sizeof (HOST_WIDEST_INT))
|
1081 |
|
|
{
|
1082 |
|
|
unsigned HOST_WIDEST_INT mask =
|
1083 |
|
|
((unsigned HOST_WIDEST_INT)1 << (n.size * BITS_PER_UNIT)) - 1;
|
1084 |
|
|
|
1085 |
|
|
n.n &= mask;
|
1086 |
|
|
cmp >>= (sizeof (HOST_WIDEST_INT) - n.size) * BITS_PER_UNIT;
|
1087 |
|
|
}
|
1088 |
|
|
|
1089 |
|
|
/* A complete byte swap should make the symbolic number to start
|
1090 |
|
|
with the largest digit in the highest order byte. */
|
1091 |
|
|
if (cmp != n.n)
|
1092 |
|
|
return NULL_TREE;
|
1093 |
|
|
|
1094 |
|
|
return source_expr;
|
1095 |
|
|
}
|
1096 |
|
|
|
1097 |
|
|
/* Find manual byte swap implementations and turn them into a bswap
|
1098 |
|
|
builtin invokation. */
|
1099 |
|
|
|
1100 |
|
|
static unsigned int
|
1101 |
|
|
execute_optimize_bswap (void)
|
1102 |
|
|
{
|
1103 |
|
|
basic_block bb;
|
1104 |
|
|
bool bswap32_p, bswap64_p;
|
1105 |
|
|
bool changed = false;
|
1106 |
|
|
tree bswap32_type = NULL_TREE, bswap64_type = NULL_TREE;
|
1107 |
|
|
|
1108 |
|
|
if (BITS_PER_UNIT != 8)
|
1109 |
|
|
return 0;
|
1110 |
|
|
|
1111 |
|
|
if (sizeof (HOST_WIDEST_INT) < 8)
|
1112 |
|
|
return 0;
|
1113 |
|
|
|
1114 |
|
|
bswap32_p = (built_in_decls[BUILT_IN_BSWAP32]
|
1115 |
|
|
&& optab_handler (bswap_optab, SImode)->insn_code !=
|
1116 |
|
|
CODE_FOR_nothing);
|
1117 |
|
|
bswap64_p = (built_in_decls[BUILT_IN_BSWAP64]
|
1118 |
|
|
&& (optab_handler (bswap_optab, DImode)->insn_code !=
|
1119 |
|
|
CODE_FOR_nothing
|
1120 |
|
|
|| (bswap32_p && word_mode == SImode)));
|
1121 |
|
|
|
1122 |
|
|
if (!bswap32_p && !bswap64_p)
|
1123 |
|
|
return 0;
|
1124 |
|
|
|
1125 |
|
|
/* Determine the argument type of the builtins. The code later on
|
1126 |
|
|
assumes that the return and argument type are the same. */
|
1127 |
|
|
if (bswap32_p)
|
1128 |
|
|
{
|
1129 |
|
|
tree fndecl = built_in_decls[BUILT_IN_BSWAP32];
|
1130 |
|
|
bswap32_type = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl)));
|
1131 |
|
|
}
|
1132 |
|
|
|
1133 |
|
|
if (bswap64_p)
|
1134 |
|
|
{
|
1135 |
|
|
tree fndecl = built_in_decls[BUILT_IN_BSWAP64];
|
1136 |
|
|
bswap64_type = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl)));
|
1137 |
|
|
}
|
1138 |
|
|
|
1139 |
|
|
FOR_EACH_BB (bb)
|
1140 |
|
|
{
|
1141 |
|
|
gimple_stmt_iterator gsi;
|
1142 |
|
|
|
1143 |
|
|
for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
1144 |
|
|
{
|
1145 |
|
|
gimple stmt = gsi_stmt (gsi);
|
1146 |
|
|
tree bswap_src, bswap_type;
|
1147 |
|
|
tree bswap_tmp;
|
1148 |
|
|
tree fndecl = NULL_TREE;
|
1149 |
|
|
int type_size;
|
1150 |
|
|
gimple call;
|
1151 |
|
|
|
1152 |
|
|
if (!is_gimple_assign (stmt)
|
1153 |
|
|
|| gimple_assign_rhs_code (stmt) != BIT_IOR_EXPR)
|
1154 |
|
|
continue;
|
1155 |
|
|
|
1156 |
|
|
type_size = TYPE_PRECISION (gimple_expr_type (stmt));
|
1157 |
|
|
|
1158 |
|
|
switch (type_size)
|
1159 |
|
|
{
|
1160 |
|
|
case 32:
|
1161 |
|
|
if (bswap32_p)
|
1162 |
|
|
{
|
1163 |
|
|
fndecl = built_in_decls[BUILT_IN_BSWAP32];
|
1164 |
|
|
bswap_type = bswap32_type;
|
1165 |
|
|
}
|
1166 |
|
|
break;
|
1167 |
|
|
case 64:
|
1168 |
|
|
if (bswap64_p)
|
1169 |
|
|
{
|
1170 |
|
|
fndecl = built_in_decls[BUILT_IN_BSWAP64];
|
1171 |
|
|
bswap_type = bswap64_type;
|
1172 |
|
|
}
|
1173 |
|
|
break;
|
1174 |
|
|
default:
|
1175 |
|
|
continue;
|
1176 |
|
|
}
|
1177 |
|
|
|
1178 |
|
|
if (!fndecl)
|
1179 |
|
|
continue;
|
1180 |
|
|
|
1181 |
|
|
bswap_src = find_bswap (stmt);
|
1182 |
|
|
|
1183 |
|
|
if (!bswap_src)
|
1184 |
|
|
continue;
|
1185 |
|
|
|
1186 |
|
|
changed = true;
|
1187 |
|
|
|
1188 |
|
|
bswap_tmp = bswap_src;
|
1189 |
|
|
|
1190 |
|
|
/* Convert the src expression if necessary. */
|
1191 |
|
|
if (!useless_type_conversion_p (TREE_TYPE (bswap_tmp), bswap_type))
|
1192 |
|
|
{
|
1193 |
|
|
gimple convert_stmt;
|
1194 |
|
|
|
1195 |
|
|
bswap_tmp = create_tmp_var (bswap_type, "bswapsrc");
|
1196 |
|
|
add_referenced_var (bswap_tmp);
|
1197 |
|
|
bswap_tmp = make_ssa_name (bswap_tmp, NULL);
|
1198 |
|
|
|
1199 |
|
|
convert_stmt = gimple_build_assign_with_ops (
|
1200 |
|
|
CONVERT_EXPR, bswap_tmp, bswap_src, NULL);
|
1201 |
|
|
gsi_insert_before (&gsi, convert_stmt, GSI_SAME_STMT);
|
1202 |
|
|
}
|
1203 |
|
|
|
1204 |
|
|
call = gimple_build_call (fndecl, 1, bswap_tmp);
|
1205 |
|
|
|
1206 |
|
|
bswap_tmp = gimple_assign_lhs (stmt);
|
1207 |
|
|
|
1208 |
|
|
/* Convert the result if necessary. */
|
1209 |
|
|
if (!useless_type_conversion_p (TREE_TYPE (bswap_tmp), bswap_type))
|
1210 |
|
|
{
|
1211 |
|
|
gimple convert_stmt;
|
1212 |
|
|
|
1213 |
|
|
bswap_tmp = create_tmp_var (bswap_type, "bswapdst");
|
1214 |
|
|
add_referenced_var (bswap_tmp);
|
1215 |
|
|
bswap_tmp = make_ssa_name (bswap_tmp, NULL);
|
1216 |
|
|
convert_stmt = gimple_build_assign_with_ops (
|
1217 |
|
|
CONVERT_EXPR, gimple_assign_lhs (stmt), bswap_tmp, NULL);
|
1218 |
|
|
gsi_insert_after (&gsi, convert_stmt, GSI_SAME_STMT);
|
1219 |
|
|
}
|
1220 |
|
|
|
1221 |
|
|
gimple_call_set_lhs (call, bswap_tmp);
|
1222 |
|
|
|
1223 |
|
|
if (dump_file)
|
1224 |
|
|
{
|
1225 |
|
|
fprintf (dump_file, "%d bit bswap implementation found at: ",
|
1226 |
|
|
(int)type_size);
|
1227 |
|
|
print_gimple_stmt (dump_file, stmt, 0, 0);
|
1228 |
|
|
}
|
1229 |
|
|
|
1230 |
|
|
gsi_insert_after (&gsi, call, GSI_SAME_STMT);
|
1231 |
|
|
gsi_remove (&gsi, true);
|
1232 |
|
|
}
|
1233 |
|
|
}
|
1234 |
|
|
|
1235 |
|
|
return (changed ? TODO_dump_func | TODO_update_ssa | TODO_verify_ssa
|
1236 |
|
|
| TODO_verify_stmts : 0);
|
1237 |
|
|
}
|
1238 |
|
|
|
1239 |
|
|
static bool
|
1240 |
|
|
gate_optimize_bswap (void)
|
1241 |
|
|
{
|
1242 |
|
|
return flag_expensive_optimizations && optimize;
|
1243 |
|
|
}
|
1244 |
|
|
|
1245 |
|
|
struct gimple_opt_pass pass_optimize_bswap =
|
1246 |
|
|
{
|
1247 |
|
|
{
|
1248 |
|
|
GIMPLE_PASS,
|
1249 |
|
|
"bswap", /* name */
|
1250 |
|
|
gate_optimize_bswap, /* gate */
|
1251 |
|
|
execute_optimize_bswap, /* execute */
|
1252 |
|
|
NULL, /* sub */
|
1253 |
|
|
NULL, /* next */
|
1254 |
|
|
0, /* static_pass_number */
|
1255 |
|
|
TV_NONE, /* tv_id */
|
1256 |
|
|
PROP_ssa, /* properties_required */
|
1257 |
|
|
0, /* properties_provided */
|
1258 |
|
|
0, /* properties_destroyed */
|
1259 |
|
|
0, /* todo_flags_start */
|
1260 |
|
|
|
1261 |
|
|
}
|
1262 |
|
|
};
|