1 |
280 |
jeremybenn |
/* SCC value numbering for trees
|
2 |
|
|
Copyright (C) 2006, 2007, 2008, 2009, 2010
|
3 |
|
|
Free Software Foundation, Inc.
|
4 |
|
|
Contributed by Daniel Berlin <dan@dberlin.org>
|
5 |
|
|
|
6 |
|
|
This file is part of GCC.
|
7 |
|
|
|
8 |
|
|
GCC is free software; you can redistribute it and/or modify
|
9 |
|
|
it under the terms of the GNU General Public License as published by
|
10 |
|
|
the Free Software Foundation; either version 3, or (at your option)
|
11 |
|
|
any later version.
|
12 |
|
|
|
13 |
|
|
GCC is distributed in the hope that it will be useful,
|
14 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
15 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
16 |
|
|
GNU General Public License for more details.
|
17 |
|
|
|
18 |
|
|
You should have received a copy of the GNU General Public License
|
19 |
|
|
along with GCC; see the file COPYING3. If not see
|
20 |
|
|
<http://www.gnu.org/licenses/>. */
|
21 |
|
|
|
22 |
|
|
#include "config.h"
|
23 |
|
|
#include "system.h"
|
24 |
|
|
#include "coretypes.h"
|
25 |
|
|
#include "tm.h"
|
26 |
|
|
#include "ggc.h"
|
27 |
|
|
#include "tree.h"
|
28 |
|
|
#include "basic-block.h"
|
29 |
|
|
#include "diagnostic.h"
|
30 |
|
|
#include "tree-inline.h"
|
31 |
|
|
#include "tree-flow.h"
|
32 |
|
|
#include "gimple.h"
|
33 |
|
|
#include "tree-dump.h"
|
34 |
|
|
#include "timevar.h"
|
35 |
|
|
#include "fibheap.h"
|
36 |
|
|
#include "hashtab.h"
|
37 |
|
|
#include "tree-iterator.h"
|
38 |
|
|
#include "real.h"
|
39 |
|
|
#include "alloc-pool.h"
|
40 |
|
|
#include "tree-pass.h"
|
41 |
|
|
#include "flags.h"
|
42 |
|
|
#include "bitmap.h"
|
43 |
|
|
#include "langhooks.h"
|
44 |
|
|
#include "cfgloop.h"
|
45 |
|
|
#include "params.h"
|
46 |
|
|
#include "tree-ssa-propagate.h"
|
47 |
|
|
#include "tree-ssa-sccvn.h"
|
48 |
|
|
|
49 |
|
|
/* This algorithm is based on the SCC algorithm presented by Keith
|
50 |
|
|
Cooper and L. Taylor Simpson in "SCC-Based Value numbering"
|
51 |
|
|
(http://citeseer.ist.psu.edu/41805.html). In
|
52 |
|
|
straight line code, it is equivalent to a regular hash based value
|
53 |
|
|
numbering that is performed in reverse postorder.
|
54 |
|
|
|
55 |
|
|
For code with cycles, there are two alternatives, both of which
|
56 |
|
|
require keeping the hashtables separate from the actual list of
|
57 |
|
|
value numbers for SSA names.
|
58 |
|
|
|
59 |
|
|
1. Iterate value numbering in an RPO walk of the blocks, removing
|
60 |
|
|
all the entries from the hashtable after each iteration (but
|
61 |
|
|
keeping the SSA name->value number mapping between iterations).
|
62 |
|
|
Iterate until it does not change.
|
63 |
|
|
|
64 |
|
|
2. Perform value numbering as part of an SCC walk on the SSA graph,
|
65 |
|
|
iterating only the cycles in the SSA graph until they do not change
|
66 |
|
|
(using a separate, optimistic hashtable for value numbering the SCC
|
67 |
|
|
operands).
|
68 |
|
|
|
69 |
|
|
The second is not just faster in practice (because most SSA graph
|
70 |
|
|
cycles do not involve all the variables in the graph), it also has
|
71 |
|
|
some nice properties.
|
72 |
|
|
|
73 |
|
|
One of these nice properties is that when we pop an SCC off the
|
74 |
|
|
stack, we are guaranteed to have processed all the operands coming from
|
75 |
|
|
*outside of that SCC*, so we do not need to do anything special to
|
76 |
|
|
ensure they have value numbers.
|
77 |
|
|
|
78 |
|
|
Another nice property is that the SCC walk is done as part of a DFS
|
79 |
|
|
of the SSA graph, which makes it easy to perform combining and
|
80 |
|
|
simplifying operations at the same time.
|
81 |
|
|
|
82 |
|
|
The code below is deliberately written in a way that makes it easy
|
83 |
|
|
to separate the SCC walk from the other work it does.
|
84 |
|
|
|
85 |
|
|
In order to propagate constants through the code, we track which
|
86 |
|
|
expressions contain constants, and use those while folding. In
|
87 |
|
|
theory, we could also track expressions whose value numbers are
|
88 |
|
|
replaced, in case we end up folding based on expression
|
89 |
|
|
identities.
|
90 |
|
|
|
91 |
|
|
In order to value number memory, we assign value numbers to vuses.
|
92 |
|
|
This enables us to note that, for example, stores to the same
|
93 |
|
|
address of the same value from the same starting memory states are
|
94 |
|
|
equivalent.
|
95 |
|
|
TODO:
|
96 |
|
|
|
97 |
|
|
1. We can iterate only the changing portions of the SCC's, but
|
98 |
|
|
I have not seen an SCC big enough for this to be a win.
|
99 |
|
|
2. If you differentiate between phi nodes for loops and phi nodes
|
100 |
|
|
for if-then-else, you can properly consider phi nodes in different
|
101 |
|
|
blocks for equivalence.
|
102 |
|
|
3. We could value number vuses in more cases, particularly, whole
|
103 |
|
|
structure copies.
|
104 |
|
|
*/
|
105 |
|
|
|
106 |
|
|
/* The set of hashtables and alloc_pool's for their items. */
|
107 |
|
|
|
108 |
|
|
typedef struct vn_tables_s
|
109 |
|
|
{
|
110 |
|
|
htab_t nary;
|
111 |
|
|
htab_t phis;
|
112 |
|
|
htab_t references;
|
113 |
|
|
struct obstack nary_obstack;
|
114 |
|
|
alloc_pool phis_pool;
|
115 |
|
|
alloc_pool references_pool;
|
116 |
|
|
} *vn_tables_t;
|
117 |
|
|
|
118 |
|
|
static htab_t constant_to_value_id;
|
119 |
|
|
static bitmap constant_value_ids;
|
120 |
|
|
|
121 |
|
|
|
122 |
|
|
/* Valid hashtables storing information we have proven to be
|
123 |
|
|
correct. */
|
124 |
|
|
|
125 |
|
|
static vn_tables_t valid_info;
|
126 |
|
|
|
127 |
|
|
/* Optimistic hashtables storing information we are making assumptions about
|
128 |
|
|
during iterations. */
|
129 |
|
|
|
130 |
|
|
static vn_tables_t optimistic_info;
|
131 |
|
|
|
132 |
|
|
/* Pointer to the set of hashtables that is currently being used.
|
133 |
|
|
Should always point to either the optimistic_info, or the
|
134 |
|
|
valid_info. */
|
135 |
|
|
|
136 |
|
|
static vn_tables_t current_info;
|
137 |
|
|
|
138 |
|
|
|
139 |
|
|
/* Reverse post order index for each basic block. */
|
140 |
|
|
|
141 |
|
|
static int *rpo_numbers;
|
142 |
|
|
|
143 |
|
|
#define SSA_VAL(x) (VN_INFO ((x))->valnum)
|
144 |
|
|
|
145 |
|
|
/* This represents the top of the VN lattice, which is the universal
|
146 |
|
|
value. */
|
147 |
|
|
|
148 |
|
|
tree VN_TOP;
|
149 |
|
|
|
150 |
|
|
/* Unique counter for our value ids. */
|
151 |
|
|
|
152 |
|
|
static unsigned int next_value_id;
|
153 |
|
|
|
154 |
|
|
/* Next DFS number and the stack for strongly connected component
|
155 |
|
|
detection. */
|
156 |
|
|
|
157 |
|
|
static unsigned int next_dfs_num;
|
158 |
|
|
static VEC (tree, heap) *sccstack;
|
159 |
|
|
|
160 |
|
|
static bool may_insert;
|
161 |
|
|
|
162 |
|
|
|
163 |
|
|
DEF_VEC_P(vn_ssa_aux_t);
|
164 |
|
|
DEF_VEC_ALLOC_P(vn_ssa_aux_t, heap);
|
165 |
|
|
|
166 |
|
|
/* Table of vn_ssa_aux_t's, one per ssa_name. The vn_ssa_aux_t objects
|
167 |
|
|
are allocated on an obstack for locality reasons, and to free them
|
168 |
|
|
without looping over the VEC. */
|
169 |
|
|
|
170 |
|
|
static VEC (vn_ssa_aux_t, heap) *vn_ssa_aux_table;
|
171 |
|
|
static struct obstack vn_ssa_aux_obstack;
|
172 |
|
|
|
173 |
|
|
/* Return the value numbering information for a given SSA name. */
|
174 |
|
|
|
175 |
|
|
vn_ssa_aux_t
|
176 |
|
|
VN_INFO (tree name)
|
177 |
|
|
{
|
178 |
|
|
vn_ssa_aux_t res = VEC_index (vn_ssa_aux_t, vn_ssa_aux_table,
|
179 |
|
|
SSA_NAME_VERSION (name));
|
180 |
|
|
gcc_assert (res);
|
181 |
|
|
return res;
|
182 |
|
|
}
|
183 |
|
|
|
184 |
|
|
/* Set the value numbering info for a given SSA name to a given
|
185 |
|
|
value. */
|
186 |
|
|
|
187 |
|
|
static inline void
|
188 |
|
|
VN_INFO_SET (tree name, vn_ssa_aux_t value)
|
189 |
|
|
{
|
190 |
|
|
VEC_replace (vn_ssa_aux_t, vn_ssa_aux_table,
|
191 |
|
|
SSA_NAME_VERSION (name), value);
|
192 |
|
|
}
|
193 |
|
|
|
194 |
|
|
/* Initialize the value numbering info for a given SSA name.
|
195 |
|
|
This should be called just once for every SSA name. */
|
196 |
|
|
|
197 |
|
|
vn_ssa_aux_t
|
198 |
|
|
VN_INFO_GET (tree name)
|
199 |
|
|
{
|
200 |
|
|
vn_ssa_aux_t newinfo;
|
201 |
|
|
|
202 |
|
|
newinfo = XOBNEW (&vn_ssa_aux_obstack, struct vn_ssa_aux);
|
203 |
|
|
memset (newinfo, 0, sizeof (struct vn_ssa_aux));
|
204 |
|
|
if (SSA_NAME_VERSION (name) >= VEC_length (vn_ssa_aux_t, vn_ssa_aux_table))
|
205 |
|
|
VEC_safe_grow (vn_ssa_aux_t, heap, vn_ssa_aux_table,
|
206 |
|
|
SSA_NAME_VERSION (name) + 1);
|
207 |
|
|
VEC_replace (vn_ssa_aux_t, vn_ssa_aux_table,
|
208 |
|
|
SSA_NAME_VERSION (name), newinfo);
|
209 |
|
|
return newinfo;
|
210 |
|
|
}
|
211 |
|
|
|
212 |
|
|
|
213 |
|
|
/* Get the representative expression for the SSA_NAME NAME. Returns
|
214 |
|
|
the representative SSA_NAME if there is no expression associated with it. */
|
215 |
|
|
|
216 |
|
|
tree
|
217 |
|
|
vn_get_expr_for (tree name)
|
218 |
|
|
{
|
219 |
|
|
vn_ssa_aux_t vn = VN_INFO (name);
|
220 |
|
|
gimple def_stmt;
|
221 |
|
|
tree expr = NULL_TREE;
|
222 |
|
|
|
223 |
|
|
if (vn->valnum == VN_TOP)
|
224 |
|
|
return name;
|
225 |
|
|
|
226 |
|
|
/* If the value-number is a constant it is the representative
|
227 |
|
|
expression. */
|
228 |
|
|
if (TREE_CODE (vn->valnum) != SSA_NAME)
|
229 |
|
|
return vn->valnum;
|
230 |
|
|
|
231 |
|
|
/* Get to the information of the value of this SSA_NAME. */
|
232 |
|
|
vn = VN_INFO (vn->valnum);
|
233 |
|
|
|
234 |
|
|
/* If the value-number is a constant it is the representative
|
235 |
|
|
expression. */
|
236 |
|
|
if (TREE_CODE (vn->valnum) != SSA_NAME)
|
237 |
|
|
return vn->valnum;
|
238 |
|
|
|
239 |
|
|
/* Else if we have an expression, return it. */
|
240 |
|
|
if (vn->expr != NULL_TREE)
|
241 |
|
|
return vn->expr;
|
242 |
|
|
|
243 |
|
|
/* Otherwise use the defining statement to build the expression. */
|
244 |
|
|
def_stmt = SSA_NAME_DEF_STMT (vn->valnum);
|
245 |
|
|
|
246 |
|
|
/* If the value number is a default-definition or a PHI result
|
247 |
|
|
use it directly. */
|
248 |
|
|
if (gimple_nop_p (def_stmt)
|
249 |
|
|
|| gimple_code (def_stmt) == GIMPLE_PHI)
|
250 |
|
|
return vn->valnum;
|
251 |
|
|
|
252 |
|
|
if (!is_gimple_assign (def_stmt))
|
253 |
|
|
return vn->valnum;
|
254 |
|
|
|
255 |
|
|
/* FIXME tuples. This is incomplete and likely will miss some
|
256 |
|
|
simplifications. */
|
257 |
|
|
switch (TREE_CODE_CLASS (gimple_assign_rhs_code (def_stmt)))
|
258 |
|
|
{
|
259 |
|
|
case tcc_reference:
|
260 |
|
|
if ((gimple_assign_rhs_code (def_stmt) == VIEW_CONVERT_EXPR
|
261 |
|
|
|| gimple_assign_rhs_code (def_stmt) == REALPART_EXPR
|
262 |
|
|
|| gimple_assign_rhs_code (def_stmt) == IMAGPART_EXPR)
|
263 |
|
|
&& TREE_CODE (gimple_assign_rhs1 (def_stmt)) == SSA_NAME)
|
264 |
|
|
expr = fold_build1 (gimple_assign_rhs_code (def_stmt),
|
265 |
|
|
gimple_expr_type (def_stmt),
|
266 |
|
|
TREE_OPERAND (gimple_assign_rhs1 (def_stmt), 0));
|
267 |
|
|
break;
|
268 |
|
|
|
269 |
|
|
case tcc_unary:
|
270 |
|
|
expr = fold_build1 (gimple_assign_rhs_code (def_stmt),
|
271 |
|
|
gimple_expr_type (def_stmt),
|
272 |
|
|
gimple_assign_rhs1 (def_stmt));
|
273 |
|
|
break;
|
274 |
|
|
|
275 |
|
|
case tcc_binary:
|
276 |
|
|
expr = fold_build2 (gimple_assign_rhs_code (def_stmt),
|
277 |
|
|
gimple_expr_type (def_stmt),
|
278 |
|
|
gimple_assign_rhs1 (def_stmt),
|
279 |
|
|
gimple_assign_rhs2 (def_stmt));
|
280 |
|
|
break;
|
281 |
|
|
|
282 |
|
|
default:;
|
283 |
|
|
}
|
284 |
|
|
if (expr == NULL_TREE)
|
285 |
|
|
return vn->valnum;
|
286 |
|
|
|
287 |
|
|
/* Cache the expression. */
|
288 |
|
|
vn->expr = expr;
|
289 |
|
|
|
290 |
|
|
return expr;
|
291 |
|
|
}
|
292 |
|
|
|
293 |
|
|
|
294 |
|
|
/* Free a phi operation structure VP. */
|
295 |
|
|
|
296 |
|
|
static void
|
297 |
|
|
free_phi (void *vp)
|
298 |
|
|
{
|
299 |
|
|
vn_phi_t phi = (vn_phi_t) vp;
|
300 |
|
|
VEC_free (tree, heap, phi->phiargs);
|
301 |
|
|
}
|
302 |
|
|
|
303 |
|
|
/* Free a reference operation structure VP. */
|
304 |
|
|
|
305 |
|
|
static void
|
306 |
|
|
free_reference (void *vp)
|
307 |
|
|
{
|
308 |
|
|
vn_reference_t vr = (vn_reference_t) vp;
|
309 |
|
|
VEC_free (vn_reference_op_s, heap, vr->operands);
|
310 |
|
|
}
|
311 |
|
|
|
312 |
|
|
/* Hash table equality function for vn_constant_t. */
|
313 |
|
|
|
314 |
|
|
static int
|
315 |
|
|
vn_constant_eq (const void *p1, const void *p2)
|
316 |
|
|
{
|
317 |
|
|
const struct vn_constant_s *vc1 = (const struct vn_constant_s *) p1;
|
318 |
|
|
const struct vn_constant_s *vc2 = (const struct vn_constant_s *) p2;
|
319 |
|
|
|
320 |
|
|
if (vc1->hashcode != vc2->hashcode)
|
321 |
|
|
return false;
|
322 |
|
|
|
323 |
|
|
return vn_constant_eq_with_type (vc1->constant, vc2->constant);
|
324 |
|
|
}
|
325 |
|
|
|
326 |
|
|
/* Hash table hash function for vn_constant_t. */
|
327 |
|
|
|
328 |
|
|
static hashval_t
|
329 |
|
|
vn_constant_hash (const void *p1)
|
330 |
|
|
{
|
331 |
|
|
const struct vn_constant_s *vc1 = (const struct vn_constant_s *) p1;
|
332 |
|
|
return vc1->hashcode;
|
333 |
|
|
}
|
334 |
|
|
|
335 |
|
|
/* Lookup a value id for CONSTANT and return it. If it does not
|
336 |
|
|
exist returns 0. */
|
337 |
|
|
|
338 |
|
|
unsigned int
|
339 |
|
|
get_constant_value_id (tree constant)
|
340 |
|
|
{
|
341 |
|
|
void **slot;
|
342 |
|
|
struct vn_constant_s vc;
|
343 |
|
|
|
344 |
|
|
vc.hashcode = vn_hash_constant_with_type (constant);
|
345 |
|
|
vc.constant = constant;
|
346 |
|
|
slot = htab_find_slot_with_hash (constant_to_value_id, &vc,
|
347 |
|
|
vc.hashcode, NO_INSERT);
|
348 |
|
|
if (slot)
|
349 |
|
|
return ((vn_constant_t)*slot)->value_id;
|
350 |
|
|
return 0;
|
351 |
|
|
}
|
352 |
|
|
|
353 |
|
|
/* Lookup a value id for CONSTANT, and if it does not exist, create a
|
354 |
|
|
new one and return it. If it does exist, return it. */
|
355 |
|
|
|
356 |
|
|
unsigned int
|
357 |
|
|
get_or_alloc_constant_value_id (tree constant)
|
358 |
|
|
{
|
359 |
|
|
void **slot;
|
360 |
|
|
struct vn_constant_s vc;
|
361 |
|
|
vn_constant_t vcp;
|
362 |
|
|
|
363 |
|
|
vc.hashcode = vn_hash_constant_with_type (constant);
|
364 |
|
|
vc.constant = constant;
|
365 |
|
|
slot = htab_find_slot_with_hash (constant_to_value_id, &vc,
|
366 |
|
|
vc.hashcode, INSERT);
|
367 |
|
|
if (*slot)
|
368 |
|
|
return ((vn_constant_t)*slot)->value_id;
|
369 |
|
|
|
370 |
|
|
vcp = XNEW (struct vn_constant_s);
|
371 |
|
|
vcp->hashcode = vc.hashcode;
|
372 |
|
|
vcp->constant = constant;
|
373 |
|
|
vcp->value_id = get_next_value_id ();
|
374 |
|
|
*slot = (void *) vcp;
|
375 |
|
|
bitmap_set_bit (constant_value_ids, vcp->value_id);
|
376 |
|
|
return vcp->value_id;
|
377 |
|
|
}
|
378 |
|
|
|
379 |
|
|
/* Return true if V is a value id for a constant. */
|
380 |
|
|
|
381 |
|
|
bool
|
382 |
|
|
value_id_constant_p (unsigned int v)
|
383 |
|
|
{
|
384 |
|
|
return bitmap_bit_p (constant_value_ids, v);
|
385 |
|
|
}
|
386 |
|
|
|
387 |
|
|
/* Compare two reference operands P1 and P2 for equality. Return true if
|
388 |
|
|
they are equal, and false otherwise. */
|
389 |
|
|
|
390 |
|
|
static int
|
391 |
|
|
vn_reference_op_eq (const void *p1, const void *p2)
|
392 |
|
|
{
|
393 |
|
|
const_vn_reference_op_t const vro1 = (const_vn_reference_op_t) p1;
|
394 |
|
|
const_vn_reference_op_t const vro2 = (const_vn_reference_op_t) p2;
|
395 |
|
|
|
396 |
|
|
return vro1->opcode == vro2->opcode
|
397 |
|
|
&& types_compatible_p (vro1->type, vro2->type)
|
398 |
|
|
&& expressions_equal_p (vro1->op0, vro2->op0)
|
399 |
|
|
&& expressions_equal_p (vro1->op1, vro2->op1)
|
400 |
|
|
&& expressions_equal_p (vro1->op2, vro2->op2);
|
401 |
|
|
}
|
402 |
|
|
|
403 |
|
|
/* Compute the hash for a reference operand VRO1. */
|
404 |
|
|
|
405 |
|
|
static hashval_t
|
406 |
|
|
vn_reference_op_compute_hash (const vn_reference_op_t vro1, hashval_t result)
|
407 |
|
|
{
|
408 |
|
|
result = iterative_hash_hashval_t (vro1->opcode, result);
|
409 |
|
|
if (vro1->op0)
|
410 |
|
|
result = iterative_hash_expr (vro1->op0, result);
|
411 |
|
|
if (vro1->op1)
|
412 |
|
|
result = iterative_hash_expr (vro1->op1, result);
|
413 |
|
|
if (vro1->op2)
|
414 |
|
|
result = iterative_hash_expr (vro1->op2, result);
|
415 |
|
|
return result;
|
416 |
|
|
}
|
417 |
|
|
|
418 |
|
|
/* Return the hashcode for a given reference operation P1. */
|
419 |
|
|
|
420 |
|
|
static hashval_t
|
421 |
|
|
vn_reference_hash (const void *p1)
|
422 |
|
|
{
|
423 |
|
|
const_vn_reference_t const vr1 = (const_vn_reference_t) p1;
|
424 |
|
|
return vr1->hashcode;
|
425 |
|
|
}
|
426 |
|
|
|
427 |
|
|
/* Compute a hash for the reference operation VR1 and return it. */
|
428 |
|
|
|
429 |
|
|
hashval_t
|
430 |
|
|
vn_reference_compute_hash (const vn_reference_t vr1)
|
431 |
|
|
{
|
432 |
|
|
hashval_t result = 0;
|
433 |
|
|
int i;
|
434 |
|
|
vn_reference_op_t vro;
|
435 |
|
|
|
436 |
|
|
for (i = 0; VEC_iterate (vn_reference_op_s, vr1->operands, i, vro); i++)
|
437 |
|
|
result = vn_reference_op_compute_hash (vro, result);
|
438 |
|
|
if (vr1->vuse)
|
439 |
|
|
result += SSA_NAME_VERSION (vr1->vuse);
|
440 |
|
|
|
441 |
|
|
return result;
|
442 |
|
|
}
|
443 |
|
|
|
444 |
|
|
/* Return true if reference operations P1 and P2 are equivalent. This
|
445 |
|
|
means they have the same set of operands and vuses. */
|
446 |
|
|
|
447 |
|
|
int
|
448 |
|
|
vn_reference_eq (const void *p1, const void *p2)
|
449 |
|
|
{
|
450 |
|
|
int i;
|
451 |
|
|
vn_reference_op_t vro;
|
452 |
|
|
|
453 |
|
|
const_vn_reference_t const vr1 = (const_vn_reference_t) p1;
|
454 |
|
|
const_vn_reference_t const vr2 = (const_vn_reference_t) p2;
|
455 |
|
|
if (vr1->hashcode != vr2->hashcode)
|
456 |
|
|
return false;
|
457 |
|
|
|
458 |
|
|
/* Early out if this is not a hash collision. */
|
459 |
|
|
if (vr1->hashcode != vr2->hashcode)
|
460 |
|
|
return false;
|
461 |
|
|
|
462 |
|
|
/* The VOP needs to be the same. */
|
463 |
|
|
if (vr1->vuse != vr2->vuse)
|
464 |
|
|
return false;
|
465 |
|
|
|
466 |
|
|
/* If the operands are the same we are done. */
|
467 |
|
|
if (vr1->operands == vr2->operands)
|
468 |
|
|
return true;
|
469 |
|
|
|
470 |
|
|
/* We require that address operands be canonicalized in a way that
|
471 |
|
|
two memory references will have the same operands if they are
|
472 |
|
|
equivalent. */
|
473 |
|
|
if (VEC_length (vn_reference_op_s, vr1->operands)
|
474 |
|
|
!= VEC_length (vn_reference_op_s, vr2->operands))
|
475 |
|
|
return false;
|
476 |
|
|
|
477 |
|
|
for (i = 0; VEC_iterate (vn_reference_op_s, vr1->operands, i, vro); i++)
|
478 |
|
|
if (!vn_reference_op_eq (VEC_index (vn_reference_op_s, vr2->operands, i),
|
479 |
|
|
vro))
|
480 |
|
|
return false;
|
481 |
|
|
|
482 |
|
|
return true;
|
483 |
|
|
}
|
484 |
|
|
|
485 |
|
|
/* Copy the operations present in load/store REF into RESULT, a vector of
|
486 |
|
|
vn_reference_op_s's. */
|
487 |
|
|
|
488 |
|
|
void
|
489 |
|
|
copy_reference_ops_from_ref (tree ref, VEC(vn_reference_op_s, heap) **result)
|
490 |
|
|
{
|
491 |
|
|
if (TREE_CODE (ref) == TARGET_MEM_REF)
|
492 |
|
|
{
|
493 |
|
|
vn_reference_op_s temp;
|
494 |
|
|
tree base;
|
495 |
|
|
|
496 |
|
|
base = TMR_SYMBOL (ref) ? TMR_SYMBOL (ref) : TMR_BASE (ref);
|
497 |
|
|
if (!base)
|
498 |
|
|
base = build_int_cst (ptr_type_node, 0);
|
499 |
|
|
|
500 |
|
|
memset (&temp, 0, sizeof (temp));
|
501 |
|
|
/* We do not care for spurious type qualifications. */
|
502 |
|
|
temp.type = TYPE_MAIN_VARIANT (TREE_TYPE (ref));
|
503 |
|
|
temp.opcode = TREE_CODE (ref);
|
504 |
|
|
temp.op0 = TMR_INDEX (ref);
|
505 |
|
|
temp.op1 = TMR_STEP (ref);
|
506 |
|
|
temp.op2 = TMR_OFFSET (ref);
|
507 |
|
|
VEC_safe_push (vn_reference_op_s, heap, *result, &temp);
|
508 |
|
|
|
509 |
|
|
memset (&temp, 0, sizeof (temp));
|
510 |
|
|
temp.type = NULL_TREE;
|
511 |
|
|
temp.opcode = TREE_CODE (base);
|
512 |
|
|
temp.op0 = base;
|
513 |
|
|
temp.op1 = TMR_ORIGINAL (ref);
|
514 |
|
|
VEC_safe_push (vn_reference_op_s, heap, *result, &temp);
|
515 |
|
|
return;
|
516 |
|
|
}
|
517 |
|
|
|
518 |
|
|
/* For non-calls, store the information that makes up the address. */
|
519 |
|
|
|
520 |
|
|
while (ref)
|
521 |
|
|
{
|
522 |
|
|
vn_reference_op_s temp;
|
523 |
|
|
|
524 |
|
|
memset (&temp, 0, sizeof (temp));
|
525 |
|
|
/* We do not care for spurious type qualifications. */
|
526 |
|
|
temp.type = TYPE_MAIN_VARIANT (TREE_TYPE (ref));
|
527 |
|
|
temp.opcode = TREE_CODE (ref);
|
528 |
|
|
|
529 |
|
|
switch (temp.opcode)
|
530 |
|
|
{
|
531 |
|
|
case ALIGN_INDIRECT_REF:
|
532 |
|
|
case INDIRECT_REF:
|
533 |
|
|
/* The only operand is the address, which gets its own
|
534 |
|
|
vn_reference_op_s structure. */
|
535 |
|
|
break;
|
536 |
|
|
case MISALIGNED_INDIRECT_REF:
|
537 |
|
|
temp.op0 = TREE_OPERAND (ref, 1);
|
538 |
|
|
break;
|
539 |
|
|
case BIT_FIELD_REF:
|
540 |
|
|
/* Record bits and position. */
|
541 |
|
|
temp.op0 = TREE_OPERAND (ref, 1);
|
542 |
|
|
temp.op1 = TREE_OPERAND (ref, 2);
|
543 |
|
|
break;
|
544 |
|
|
case COMPONENT_REF:
|
545 |
|
|
/* The field decl is enough to unambiguously specify the field,
|
546 |
|
|
a matching type is not necessary and a mismatching type
|
547 |
|
|
is always a spurious difference. */
|
548 |
|
|
temp.type = NULL_TREE;
|
549 |
|
|
temp.op0 = TREE_OPERAND (ref, 1);
|
550 |
|
|
temp.op1 = TREE_OPERAND (ref, 2);
|
551 |
|
|
/* If this is a reference to a union member, record the union
|
552 |
|
|
member size as operand. Do so only if we are doing
|
553 |
|
|
expression insertion (during FRE), as PRE currently gets
|
554 |
|
|
confused with this. */
|
555 |
|
|
if (may_insert
|
556 |
|
|
&& temp.op1 == NULL_TREE
|
557 |
|
|
&& TREE_CODE (DECL_CONTEXT (temp.op0)) == UNION_TYPE
|
558 |
|
|
&& integer_zerop (DECL_FIELD_OFFSET (temp.op0))
|
559 |
|
|
&& integer_zerop (DECL_FIELD_BIT_OFFSET (temp.op0))
|
560 |
|
|
&& host_integerp (DECL_SIZE (temp.op0), 0))
|
561 |
|
|
temp.op0 = DECL_SIZE (temp.op0);
|
562 |
|
|
break;
|
563 |
|
|
case ARRAY_RANGE_REF:
|
564 |
|
|
case ARRAY_REF:
|
565 |
|
|
/* Record index as operand. */
|
566 |
|
|
temp.op0 = TREE_OPERAND (ref, 1);
|
567 |
|
|
/* Always record lower bounds and element size. */
|
568 |
|
|
temp.op1 = array_ref_low_bound (ref);
|
569 |
|
|
temp.op2 = array_ref_element_size (ref);
|
570 |
|
|
break;
|
571 |
|
|
case STRING_CST:
|
572 |
|
|
case INTEGER_CST:
|
573 |
|
|
case COMPLEX_CST:
|
574 |
|
|
case VECTOR_CST:
|
575 |
|
|
case REAL_CST:
|
576 |
|
|
case CONSTRUCTOR:
|
577 |
|
|
case VAR_DECL:
|
578 |
|
|
case PARM_DECL:
|
579 |
|
|
case CONST_DECL:
|
580 |
|
|
case RESULT_DECL:
|
581 |
|
|
case SSA_NAME:
|
582 |
|
|
temp.op0 = ref;
|
583 |
|
|
break;
|
584 |
|
|
case ADDR_EXPR:
|
585 |
|
|
if (is_gimple_min_invariant (ref))
|
586 |
|
|
{
|
587 |
|
|
temp.op0 = ref;
|
588 |
|
|
break;
|
589 |
|
|
}
|
590 |
|
|
/* Fallthrough. */
|
591 |
|
|
/* These are only interesting for their operands, their
|
592 |
|
|
existence, and their type. They will never be the last
|
593 |
|
|
ref in the chain of references (IE they require an
|
594 |
|
|
operand), so we don't have to put anything
|
595 |
|
|
for op* as it will be handled by the iteration */
|
596 |
|
|
case IMAGPART_EXPR:
|
597 |
|
|
case REALPART_EXPR:
|
598 |
|
|
case VIEW_CONVERT_EXPR:
|
599 |
|
|
break;
|
600 |
|
|
default:
|
601 |
|
|
gcc_unreachable ();
|
602 |
|
|
}
|
603 |
|
|
VEC_safe_push (vn_reference_op_s, heap, *result, &temp);
|
604 |
|
|
|
605 |
|
|
if (REFERENCE_CLASS_P (ref)
|
606 |
|
|
|| (TREE_CODE (ref) == ADDR_EXPR
|
607 |
|
|
&& !is_gimple_min_invariant (ref)))
|
608 |
|
|
ref = TREE_OPERAND (ref, 0);
|
609 |
|
|
else
|
610 |
|
|
ref = NULL_TREE;
|
611 |
|
|
}
|
612 |
|
|
}
|
613 |
|
|
|
614 |
|
|
/* Build a alias-oracle reference abstraction in *REF from the vn_reference
|
615 |
|
|
operands in *OPS, the reference alias set SET and the reference type TYPE.
|
616 |
|
|
Return true if something useful was produced. */
|
617 |
|
|
|
618 |
|
|
bool
|
619 |
|
|
ao_ref_init_from_vn_reference (ao_ref *ref,
|
620 |
|
|
alias_set_type set, tree type,
|
621 |
|
|
VEC (vn_reference_op_s, heap) *ops)
|
622 |
|
|
{
|
623 |
|
|
vn_reference_op_t op;
|
624 |
|
|
unsigned i;
|
625 |
|
|
tree base = NULL_TREE;
|
626 |
|
|
tree *op0_p = &base;
|
627 |
|
|
HOST_WIDE_INT offset = 0;
|
628 |
|
|
HOST_WIDE_INT max_size;
|
629 |
|
|
HOST_WIDE_INT size = -1;
|
630 |
|
|
tree size_tree = NULL_TREE;
|
631 |
|
|
|
632 |
|
|
/* First get the final access size from just the outermost expression. */
|
633 |
|
|
op = VEC_index (vn_reference_op_s, ops, 0);
|
634 |
|
|
if (op->opcode == COMPONENT_REF)
|
635 |
|
|
{
|
636 |
|
|
if (TREE_CODE (op->op0) == INTEGER_CST)
|
637 |
|
|
size_tree = op->op0;
|
638 |
|
|
else
|
639 |
|
|
size_tree = DECL_SIZE (op->op0);
|
640 |
|
|
}
|
641 |
|
|
else if (op->opcode == BIT_FIELD_REF)
|
642 |
|
|
size_tree = op->op0;
|
643 |
|
|
else
|
644 |
|
|
{
|
645 |
|
|
enum machine_mode mode = TYPE_MODE (type);
|
646 |
|
|
if (mode == BLKmode)
|
647 |
|
|
size_tree = TYPE_SIZE (type);
|
648 |
|
|
else
|
649 |
|
|
size = GET_MODE_BITSIZE (mode);
|
650 |
|
|
}
|
651 |
|
|
if (size_tree != NULL_TREE)
|
652 |
|
|
{
|
653 |
|
|
if (!host_integerp (size_tree, 1))
|
654 |
|
|
size = -1;
|
655 |
|
|
else
|
656 |
|
|
size = TREE_INT_CST_LOW (size_tree);
|
657 |
|
|
}
|
658 |
|
|
|
659 |
|
|
/* Initially, maxsize is the same as the accessed element size.
|
660 |
|
|
In the following it will only grow (or become -1). */
|
661 |
|
|
max_size = size;
|
662 |
|
|
|
663 |
|
|
/* Compute cumulative bit-offset for nested component-refs and array-refs,
|
664 |
|
|
and find the ultimate containing object. */
|
665 |
|
|
for (i = 0; VEC_iterate (vn_reference_op_s, ops, i, op); ++i)
|
666 |
|
|
{
|
667 |
|
|
switch (op->opcode)
|
668 |
|
|
{
|
669 |
|
|
/* These may be in the reference ops, but we cannot do anything
|
670 |
|
|
sensible with them here. */
|
671 |
|
|
case CALL_EXPR:
|
672 |
|
|
case ADDR_EXPR:
|
673 |
|
|
return false;
|
674 |
|
|
|
675 |
|
|
/* Record the base objects. */
|
676 |
|
|
case ALIGN_INDIRECT_REF:
|
677 |
|
|
case INDIRECT_REF:
|
678 |
|
|
*op0_p = build1 (op->opcode, op->type, NULL_TREE);
|
679 |
|
|
op0_p = &TREE_OPERAND (*op0_p, 0);
|
680 |
|
|
break;
|
681 |
|
|
|
682 |
|
|
case MISALIGNED_INDIRECT_REF:
|
683 |
|
|
*op0_p = build2 (MISALIGNED_INDIRECT_REF, op->type,
|
684 |
|
|
NULL_TREE, op->op0);
|
685 |
|
|
op0_p = &TREE_OPERAND (*op0_p, 0);
|
686 |
|
|
break;
|
687 |
|
|
|
688 |
|
|
case VAR_DECL:
|
689 |
|
|
case PARM_DECL:
|
690 |
|
|
case RESULT_DECL:
|
691 |
|
|
case SSA_NAME:
|
692 |
|
|
*op0_p = op->op0;
|
693 |
|
|
break;
|
694 |
|
|
|
695 |
|
|
/* And now the usual component-reference style ops. */
|
696 |
|
|
case BIT_FIELD_REF:
|
697 |
|
|
offset += tree_low_cst (op->op1, 0);
|
698 |
|
|
break;
|
699 |
|
|
|
700 |
|
|
case COMPONENT_REF:
|
701 |
|
|
{
|
702 |
|
|
tree field = op->op0;
|
703 |
|
|
/* We do not have a complete COMPONENT_REF tree here so we
|
704 |
|
|
cannot use component_ref_field_offset. Do the interesting
|
705 |
|
|
parts manually. */
|
706 |
|
|
|
707 |
|
|
/* Our union trick, done for offset zero only. */
|
708 |
|
|
if (TREE_CODE (field) == INTEGER_CST)
|
709 |
|
|
;
|
710 |
|
|
else if (op->op1
|
711 |
|
|
|| !host_integerp (DECL_FIELD_OFFSET (field), 1))
|
712 |
|
|
max_size = -1;
|
713 |
|
|
else
|
714 |
|
|
{
|
715 |
|
|
offset += (TREE_INT_CST_LOW (DECL_FIELD_OFFSET (field))
|
716 |
|
|
* BITS_PER_UNIT);
|
717 |
|
|
offset += TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (field));
|
718 |
|
|
}
|
719 |
|
|
break;
|
720 |
|
|
}
|
721 |
|
|
|
722 |
|
|
case ARRAY_RANGE_REF:
|
723 |
|
|
case ARRAY_REF:
|
724 |
|
|
/* We recorded the lower bound and the element size. */
|
725 |
|
|
if (!host_integerp (op->op0, 0)
|
726 |
|
|
|| !host_integerp (op->op1, 0)
|
727 |
|
|
|| !host_integerp (op->op2, 0))
|
728 |
|
|
max_size = -1;
|
729 |
|
|
else
|
730 |
|
|
{
|
731 |
|
|
HOST_WIDE_INT hindex = TREE_INT_CST_LOW (op->op0);
|
732 |
|
|
hindex -= TREE_INT_CST_LOW (op->op1);
|
733 |
|
|
hindex *= TREE_INT_CST_LOW (op->op2);
|
734 |
|
|
hindex *= BITS_PER_UNIT;
|
735 |
|
|
offset += hindex;
|
736 |
|
|
}
|
737 |
|
|
break;
|
738 |
|
|
|
739 |
|
|
case REALPART_EXPR:
|
740 |
|
|
break;
|
741 |
|
|
|
742 |
|
|
case IMAGPART_EXPR:
|
743 |
|
|
offset += size;
|
744 |
|
|
break;
|
745 |
|
|
|
746 |
|
|
case VIEW_CONVERT_EXPR:
|
747 |
|
|
break;
|
748 |
|
|
|
749 |
|
|
case STRING_CST:
|
750 |
|
|
case INTEGER_CST:
|
751 |
|
|
case COMPLEX_CST:
|
752 |
|
|
case VECTOR_CST:
|
753 |
|
|
case REAL_CST:
|
754 |
|
|
case CONSTRUCTOR:
|
755 |
|
|
case CONST_DECL:
|
756 |
|
|
return false;
|
757 |
|
|
|
758 |
|
|
default:
|
759 |
|
|
return false;
|
760 |
|
|
}
|
761 |
|
|
}
|
762 |
|
|
|
763 |
|
|
if (base == NULL_TREE)
|
764 |
|
|
return false;
|
765 |
|
|
|
766 |
|
|
ref->ref = NULL_TREE;
|
767 |
|
|
ref->base = base;
|
768 |
|
|
ref->offset = offset;
|
769 |
|
|
ref->size = size;
|
770 |
|
|
ref->max_size = max_size;
|
771 |
|
|
ref->ref_alias_set = set;
|
772 |
|
|
ref->base_alias_set = -1;
|
773 |
|
|
|
774 |
|
|
return true;
|
775 |
|
|
}
|
776 |
|
|
|
777 |
|
|
/* Copy the operations present in load/store/call REF into RESULT, a vector of
|
778 |
|
|
vn_reference_op_s's. */
|
779 |
|
|
|
780 |
|
|
void
|
781 |
|
|
copy_reference_ops_from_call (gimple call,
|
782 |
|
|
VEC(vn_reference_op_s, heap) **result)
|
783 |
|
|
{
|
784 |
|
|
vn_reference_op_s temp;
|
785 |
|
|
unsigned i;
|
786 |
|
|
|
787 |
|
|
/* Copy the type, opcode, function being called and static chain. */
|
788 |
|
|
memset (&temp, 0, sizeof (temp));
|
789 |
|
|
temp.type = gimple_call_return_type (call);
|
790 |
|
|
temp.opcode = CALL_EXPR;
|
791 |
|
|
temp.op0 = gimple_call_fn (call);
|
792 |
|
|
temp.op1 = gimple_call_chain (call);
|
793 |
|
|
VEC_safe_push (vn_reference_op_s, heap, *result, &temp);
|
794 |
|
|
|
795 |
|
|
/* Copy the call arguments. As they can be references as well,
|
796 |
|
|
just chain them together. */
|
797 |
|
|
for (i = 0; i < gimple_call_num_args (call); ++i)
|
798 |
|
|
{
|
799 |
|
|
tree callarg = gimple_call_arg (call, i);
|
800 |
|
|
copy_reference_ops_from_ref (callarg, result);
|
801 |
|
|
}
|
802 |
|
|
}
|
803 |
|
|
|
804 |
|
|
/* Create a vector of vn_reference_op_s structures from REF, a
|
805 |
|
|
REFERENCE_CLASS_P tree. The vector is not shared. */
|
806 |
|
|
|
807 |
|
|
static VEC(vn_reference_op_s, heap) *
|
808 |
|
|
create_reference_ops_from_ref (tree ref)
|
809 |
|
|
{
|
810 |
|
|
VEC (vn_reference_op_s, heap) *result = NULL;
|
811 |
|
|
|
812 |
|
|
copy_reference_ops_from_ref (ref, &result);
|
813 |
|
|
return result;
|
814 |
|
|
}
|
815 |
|
|
|
816 |
|
|
/* Create a vector of vn_reference_op_s structures from CALL, a
|
817 |
|
|
call statement. The vector is not shared. */
|
818 |
|
|
|
819 |
|
|
static VEC(vn_reference_op_s, heap) *
|
820 |
|
|
create_reference_ops_from_call (gimple call)
|
821 |
|
|
{
|
822 |
|
|
VEC (vn_reference_op_s, heap) *result = NULL;
|
823 |
|
|
|
824 |
|
|
copy_reference_ops_from_call (call, &result);
|
825 |
|
|
return result;
|
826 |
|
|
}
|
827 |
|
|
|
828 |
|
|
/* Fold *& at position *I_P in a vn_reference_op_s vector *OPS. Updates
|
829 |
|
|
*I_P to point to the last element of the replacement. */
|
830 |
|
|
void
|
831 |
|
|
vn_reference_fold_indirect (VEC (vn_reference_op_s, heap) **ops,
|
832 |
|
|
unsigned int *i_p)
|
833 |
|
|
{
|
834 |
|
|
VEC(vn_reference_op_s, heap) *mem = NULL;
|
835 |
|
|
vn_reference_op_t op;
|
836 |
|
|
unsigned int i = *i_p;
|
837 |
|
|
unsigned int j;
|
838 |
|
|
|
839 |
|
|
/* Get ops for the addressed object. */
|
840 |
|
|
op = VEC_index (vn_reference_op_s, *ops, i);
|
841 |
|
|
/* ??? If this is our usual typeof &ARRAY vs. &ARRAY[0] problem, work
|
842 |
|
|
around it to avoid later ICEs. */
|
843 |
|
|
if (TREE_CODE (TREE_TYPE (TREE_OPERAND (op->op0, 0))) == ARRAY_TYPE
|
844 |
|
|
&& TREE_CODE (TREE_TYPE (TREE_TYPE (op->op0))) != ARRAY_TYPE)
|
845 |
|
|
{
|
846 |
|
|
vn_reference_op_s aref;
|
847 |
|
|
tree dom;
|
848 |
|
|
aref.type = TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (op->op0)));
|
849 |
|
|
aref.opcode = ARRAY_REF;
|
850 |
|
|
aref.op0 = integer_zero_node;
|
851 |
|
|
if ((dom = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (op->op0, 0))))
|
852 |
|
|
&& TYPE_MIN_VALUE (dom))
|
853 |
|
|
aref.op0 = TYPE_MIN_VALUE (dom);
|
854 |
|
|
aref.op1 = aref.op0;
|
855 |
|
|
aref.op2 = TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (op->op0)));
|
856 |
|
|
VEC_safe_push (vn_reference_op_s, heap, mem, &aref);
|
857 |
|
|
}
|
858 |
|
|
copy_reference_ops_from_ref (TREE_OPERAND (op->op0, 0), &mem);
|
859 |
|
|
|
860 |
|
|
/* Do the replacement - we should have at least one op in mem now. */
|
861 |
|
|
if (VEC_length (vn_reference_op_s, mem) == 1)
|
862 |
|
|
{
|
863 |
|
|
VEC_replace (vn_reference_op_s, *ops, i - 1,
|
864 |
|
|
VEC_index (vn_reference_op_s, mem, 0));
|
865 |
|
|
VEC_ordered_remove (vn_reference_op_s, *ops, i);
|
866 |
|
|
i--;
|
867 |
|
|
}
|
868 |
|
|
else if (VEC_length (vn_reference_op_s, mem) == 2)
|
869 |
|
|
{
|
870 |
|
|
VEC_replace (vn_reference_op_s, *ops, i - 1,
|
871 |
|
|
VEC_index (vn_reference_op_s, mem, 0));
|
872 |
|
|
VEC_replace (vn_reference_op_s, *ops, i,
|
873 |
|
|
VEC_index (vn_reference_op_s, mem, 1));
|
874 |
|
|
}
|
875 |
|
|
else if (VEC_length (vn_reference_op_s, mem) > 2)
|
876 |
|
|
{
|
877 |
|
|
VEC_replace (vn_reference_op_s, *ops, i - 1,
|
878 |
|
|
VEC_index (vn_reference_op_s, mem, 0));
|
879 |
|
|
VEC_replace (vn_reference_op_s, *ops, i,
|
880 |
|
|
VEC_index (vn_reference_op_s, mem, 1));
|
881 |
|
|
/* ??? There is no VEC_splice. */
|
882 |
|
|
for (j = 2; VEC_iterate (vn_reference_op_s, mem, j, op); j++)
|
883 |
|
|
VEC_safe_insert (vn_reference_op_s, heap, *ops, ++i, op);
|
884 |
|
|
}
|
885 |
|
|
else
|
886 |
|
|
gcc_unreachable ();
|
887 |
|
|
|
888 |
|
|
VEC_free (vn_reference_op_s, heap, mem);
|
889 |
|
|
*i_p = i;
|
890 |
|
|
}
|
891 |
|
|
|
892 |
|
|
/* Transform any SSA_NAME's in a vector of vn_reference_op_s
|
893 |
|
|
structures into their value numbers. This is done in-place, and
|
894 |
|
|
the vector passed in is returned. */
|
895 |
|
|
|
896 |
|
|
static VEC (vn_reference_op_s, heap) *
|
897 |
|
|
valueize_refs (VEC (vn_reference_op_s, heap) *orig)
|
898 |
|
|
{
|
899 |
|
|
vn_reference_op_t vro;
|
900 |
|
|
unsigned int i;
|
901 |
|
|
|
902 |
|
|
for (i = 0; VEC_iterate (vn_reference_op_s, orig, i, vro); i++)
|
903 |
|
|
{
|
904 |
|
|
if (vro->opcode == SSA_NAME
|
905 |
|
|
|| (vro->op0 && TREE_CODE (vro->op0) == SSA_NAME))
|
906 |
|
|
{
|
907 |
|
|
vro->op0 = SSA_VAL (vro->op0);
|
908 |
|
|
/* If it transforms from an SSA_NAME to a constant, update
|
909 |
|
|
the opcode. */
|
910 |
|
|
if (TREE_CODE (vro->op0) != SSA_NAME && vro->opcode == SSA_NAME)
|
911 |
|
|
vro->opcode = TREE_CODE (vro->op0);
|
912 |
|
|
/* If it transforms from an SSA_NAME to an address, fold with
|
913 |
|
|
a preceding indirect reference. */
|
914 |
|
|
if (i > 0 && TREE_CODE (vro->op0) == ADDR_EXPR
|
915 |
|
|
&& VEC_index (vn_reference_op_s,
|
916 |
|
|
orig, i - 1)->opcode == INDIRECT_REF)
|
917 |
|
|
{
|
918 |
|
|
vn_reference_fold_indirect (&orig, &i);
|
919 |
|
|
continue;
|
920 |
|
|
}
|
921 |
|
|
}
|
922 |
|
|
if (vro->op1 && TREE_CODE (vro->op1) == SSA_NAME)
|
923 |
|
|
vro->op1 = SSA_VAL (vro->op1);
|
924 |
|
|
if (vro->op2 && TREE_CODE (vro->op2) == SSA_NAME)
|
925 |
|
|
vro->op2 = SSA_VAL (vro->op2);
|
926 |
|
|
}
|
927 |
|
|
|
928 |
|
|
return orig;
|
929 |
|
|
}
|
930 |
|
|
|
931 |
|
|
static VEC(vn_reference_op_s, heap) *shared_lookup_references;
|
932 |
|
|
|
933 |
|
|
/* Create a vector of vn_reference_op_s structures from REF, a
|
934 |
|
|
REFERENCE_CLASS_P tree. The vector is shared among all callers of
|
935 |
|
|
this function. */
|
936 |
|
|
|
937 |
|
|
static VEC(vn_reference_op_s, heap) *
|
938 |
|
|
valueize_shared_reference_ops_from_ref (tree ref)
|
939 |
|
|
{
|
940 |
|
|
if (!ref)
|
941 |
|
|
return NULL;
|
942 |
|
|
VEC_truncate (vn_reference_op_s, shared_lookup_references, 0);
|
943 |
|
|
copy_reference_ops_from_ref (ref, &shared_lookup_references);
|
944 |
|
|
shared_lookup_references = valueize_refs (shared_lookup_references);
|
945 |
|
|
return shared_lookup_references;
|
946 |
|
|
}
|
947 |
|
|
|
948 |
|
|
/* Create a vector of vn_reference_op_s structures from CALL, a
|
949 |
|
|
call statement. The vector is shared among all callers of
|
950 |
|
|
this function. */
|
951 |
|
|
|
952 |
|
|
static VEC(vn_reference_op_s, heap) *
|
953 |
|
|
valueize_shared_reference_ops_from_call (gimple call)
|
954 |
|
|
{
|
955 |
|
|
if (!call)
|
956 |
|
|
return NULL;
|
957 |
|
|
VEC_truncate (vn_reference_op_s, shared_lookup_references, 0);
|
958 |
|
|
copy_reference_ops_from_call (call, &shared_lookup_references);
|
959 |
|
|
shared_lookup_references = valueize_refs (shared_lookup_references);
|
960 |
|
|
return shared_lookup_references;
|
961 |
|
|
}
|
962 |
|
|
|
963 |
|
|
/* Lookup a SCCVN reference operation VR in the current hash table.
|
964 |
|
|
Returns the resulting value number if it exists in the hash table,
|
965 |
|
|
NULL_TREE otherwise. VNRESULT will be filled in with the actual
|
966 |
|
|
vn_reference_t stored in the hashtable if something is found. */
|
967 |
|
|
|
968 |
|
|
static tree
|
969 |
|
|
vn_reference_lookup_1 (vn_reference_t vr, vn_reference_t *vnresult)
|
970 |
|
|
{
|
971 |
|
|
void **slot;
|
972 |
|
|
hashval_t hash;
|
973 |
|
|
|
974 |
|
|
hash = vr->hashcode;
|
975 |
|
|
slot = htab_find_slot_with_hash (current_info->references, vr,
|
976 |
|
|
hash, NO_INSERT);
|
977 |
|
|
if (!slot && current_info == optimistic_info)
|
978 |
|
|
slot = htab_find_slot_with_hash (valid_info->references, vr,
|
979 |
|
|
hash, NO_INSERT);
|
980 |
|
|
if (slot)
|
981 |
|
|
{
|
982 |
|
|
if (vnresult)
|
983 |
|
|
*vnresult = (vn_reference_t)*slot;
|
984 |
|
|
return ((vn_reference_t)*slot)->result;
|
985 |
|
|
}
|
986 |
|
|
|
987 |
|
|
return NULL_TREE;
|
988 |
|
|
}
|
989 |
|
|
|
990 |
|
|
static tree *last_vuse_ptr;
|
991 |
|
|
|
992 |
|
|
/* Callback for walk_non_aliased_vuses. Adjusts the vn_reference_t VR_
|
993 |
|
|
with the current VUSE and performs the expression lookup. */
|
994 |
|
|
|
995 |
|
|
static void *
|
996 |
|
|
vn_reference_lookup_2 (ao_ref *op ATTRIBUTE_UNUSED, tree vuse, void *vr_)
|
997 |
|
|
{
|
998 |
|
|
vn_reference_t vr = (vn_reference_t)vr_;
|
999 |
|
|
void **slot;
|
1000 |
|
|
hashval_t hash;
|
1001 |
|
|
|
1002 |
|
|
if (last_vuse_ptr)
|
1003 |
|
|
*last_vuse_ptr = vuse;
|
1004 |
|
|
|
1005 |
|
|
/* Fixup vuse and hash. */
|
1006 |
|
|
if (vr->vuse)
|
1007 |
|
|
vr->hashcode = vr->hashcode - SSA_NAME_VERSION (vr->vuse);
|
1008 |
|
|
vr->vuse = SSA_VAL (vuse);
|
1009 |
|
|
if (vr->vuse)
|
1010 |
|
|
vr->hashcode = vr->hashcode + SSA_NAME_VERSION (vr->vuse);
|
1011 |
|
|
|
1012 |
|
|
hash = vr->hashcode;
|
1013 |
|
|
slot = htab_find_slot_with_hash (current_info->references, vr,
|
1014 |
|
|
hash, NO_INSERT);
|
1015 |
|
|
if (!slot && current_info == optimistic_info)
|
1016 |
|
|
slot = htab_find_slot_with_hash (valid_info->references, vr,
|
1017 |
|
|
hash, NO_INSERT);
|
1018 |
|
|
if (slot)
|
1019 |
|
|
return *slot;
|
1020 |
|
|
|
1021 |
|
|
return NULL;
|
1022 |
|
|
}
|
1023 |
|
|
|
1024 |
|
|
/* Callback for walk_non_aliased_vuses. Tries to perform a lookup
|
1025 |
|
|
from the statement defining VUSE and if not successful tries to
|
1026 |
|
|
translate *REFP and VR_ through an aggregate copy at the defintion
|
1027 |
|
|
of VUSE. */
|
1028 |
|
|
|
1029 |
|
|
static void *
|
1030 |
|
|
vn_reference_lookup_3 (ao_ref *ref, tree vuse, void *vr_)
|
1031 |
|
|
{
|
1032 |
|
|
vn_reference_t vr = (vn_reference_t)vr_;
|
1033 |
|
|
gimple def_stmt = SSA_NAME_DEF_STMT (vuse);
|
1034 |
|
|
tree fndecl;
|
1035 |
|
|
tree base;
|
1036 |
|
|
HOST_WIDE_INT offset, maxsize;
|
1037 |
|
|
|
1038 |
|
|
base = ao_ref_base (ref);
|
1039 |
|
|
offset = ref->offset;
|
1040 |
|
|
maxsize = ref->max_size;
|
1041 |
|
|
|
1042 |
|
|
/* If we cannot constrain the size of the reference we cannot
|
1043 |
|
|
test if anything kills it. */
|
1044 |
|
|
if (maxsize == -1)
|
1045 |
|
|
return (void *)-1;
|
1046 |
|
|
|
1047 |
|
|
/* def_stmt may-defs *ref. See if we can derive a value for *ref
|
1048 |
|
|
from that defintion.
|
1049 |
|
|
1) Memset. */
|
1050 |
|
|
if (is_gimple_reg_type (vr->type)
|
1051 |
|
|
&& is_gimple_call (def_stmt)
|
1052 |
|
|
&& (fndecl = gimple_call_fndecl (def_stmt))
|
1053 |
|
|
&& DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
|
1054 |
|
|
&& DECL_FUNCTION_CODE (fndecl) == BUILT_IN_MEMSET
|
1055 |
|
|
&& integer_zerop (gimple_call_arg (def_stmt, 1))
|
1056 |
|
|
&& host_integerp (gimple_call_arg (def_stmt, 2), 1)
|
1057 |
|
|
&& TREE_CODE (gimple_call_arg (def_stmt, 0)) == ADDR_EXPR)
|
1058 |
|
|
{
|
1059 |
|
|
tree ref2 = TREE_OPERAND (gimple_call_arg (def_stmt, 0), 0);
|
1060 |
|
|
tree base2;
|
1061 |
|
|
HOST_WIDE_INT offset2, size2, maxsize2;
|
1062 |
|
|
base2 = get_ref_base_and_extent (ref2, &offset2, &size2, &maxsize2);
|
1063 |
|
|
size2 = TREE_INT_CST_LOW (gimple_call_arg (def_stmt, 2)) * 8;
|
1064 |
|
|
if ((unsigned HOST_WIDE_INT)size2 / 8
|
1065 |
|
|
== TREE_INT_CST_LOW (gimple_call_arg (def_stmt, 2))
|
1066 |
|
|
&& operand_equal_p (base, base2, 0)
|
1067 |
|
|
&& offset2 <= offset
|
1068 |
|
|
&& offset2 + size2 >= offset + maxsize)
|
1069 |
|
|
{
|
1070 |
|
|
tree val = fold_convert (vr->type, integer_zero_node);
|
1071 |
|
|
unsigned int value_id = get_or_alloc_constant_value_id (val);
|
1072 |
|
|
return vn_reference_insert_pieces (vuse, vr->set, vr->type,
|
1073 |
|
|
VEC_copy (vn_reference_op_s,
|
1074 |
|
|
heap, vr->operands),
|
1075 |
|
|
val, value_id);
|
1076 |
|
|
}
|
1077 |
|
|
}
|
1078 |
|
|
|
1079 |
|
|
/* 2) Assignment from an empty CONSTRUCTOR. */
|
1080 |
|
|
else if (is_gimple_reg_type (vr->type)
|
1081 |
|
|
&& gimple_assign_single_p (def_stmt)
|
1082 |
|
|
&& gimple_assign_rhs_code (def_stmt) == CONSTRUCTOR
|
1083 |
|
|
&& CONSTRUCTOR_NELTS (gimple_assign_rhs1 (def_stmt)) == 0)
|
1084 |
|
|
{
|
1085 |
|
|
tree base2;
|
1086 |
|
|
HOST_WIDE_INT offset2, size2, maxsize2;
|
1087 |
|
|
base2 = get_ref_base_and_extent (gimple_assign_lhs (def_stmt),
|
1088 |
|
|
&offset2, &size2, &maxsize2);
|
1089 |
|
|
if (operand_equal_p (base, base2, 0)
|
1090 |
|
|
&& offset2 <= offset
|
1091 |
|
|
&& offset2 + size2 >= offset + maxsize)
|
1092 |
|
|
{
|
1093 |
|
|
tree val = fold_convert (vr->type, integer_zero_node);
|
1094 |
|
|
unsigned int value_id = get_or_alloc_constant_value_id (val);
|
1095 |
|
|
return vn_reference_insert_pieces (vuse, vr->set, vr->type,
|
1096 |
|
|
VEC_copy (vn_reference_op_s,
|
1097 |
|
|
heap, vr->operands),
|
1098 |
|
|
val, value_id);
|
1099 |
|
|
}
|
1100 |
|
|
}
|
1101 |
|
|
|
1102 |
|
|
/* For aggregate copies translate the reference through them if
|
1103 |
|
|
the copy kills ref. */
|
1104 |
|
|
else if (gimple_assign_single_p (def_stmt)
|
1105 |
|
|
&& (DECL_P (gimple_assign_rhs1 (def_stmt))
|
1106 |
|
|
|| INDIRECT_REF_P (gimple_assign_rhs1 (def_stmt))
|
1107 |
|
|
|| handled_component_p (gimple_assign_rhs1 (def_stmt))))
|
1108 |
|
|
{
|
1109 |
|
|
tree base2;
|
1110 |
|
|
HOST_WIDE_INT offset2, size2, maxsize2;
|
1111 |
|
|
int i, j;
|
1112 |
|
|
VEC (vn_reference_op_s, heap) *lhs = NULL, *rhs = NULL;
|
1113 |
|
|
vn_reference_op_t vro;
|
1114 |
|
|
ao_ref r;
|
1115 |
|
|
|
1116 |
|
|
/* See if the assignment kills REF. */
|
1117 |
|
|
base2 = get_ref_base_and_extent (gimple_assign_lhs (def_stmt),
|
1118 |
|
|
&offset2, &size2, &maxsize2);
|
1119 |
|
|
if (!operand_equal_p (base, base2, 0)
|
1120 |
|
|
|| offset2 > offset
|
1121 |
|
|
|| offset2 + size2 < offset + maxsize)
|
1122 |
|
|
return (void *)-1;
|
1123 |
|
|
|
1124 |
|
|
/* Find the common base of ref and the lhs. */
|
1125 |
|
|
copy_reference_ops_from_ref (gimple_assign_lhs (def_stmt), &lhs);
|
1126 |
|
|
i = VEC_length (vn_reference_op_s, vr->operands) - 1;
|
1127 |
|
|
j = VEC_length (vn_reference_op_s, lhs) - 1;
|
1128 |
|
|
while (j >= 0 && i >= 0
|
1129 |
|
|
&& vn_reference_op_eq (VEC_index (vn_reference_op_s,
|
1130 |
|
|
vr->operands, i),
|
1131 |
|
|
VEC_index (vn_reference_op_s, lhs, j)))
|
1132 |
|
|
{
|
1133 |
|
|
i--;
|
1134 |
|
|
j--;
|
1135 |
|
|
}
|
1136 |
|
|
|
1137 |
|
|
VEC_free (vn_reference_op_s, heap, lhs);
|
1138 |
|
|
/* i now points to the first additional op.
|
1139 |
|
|
??? LHS may not be completely contained in VR, one or more
|
1140 |
|
|
VIEW_CONVERT_EXPRs could be in its way. We could at least
|
1141 |
|
|
try handling outermost VIEW_CONVERT_EXPRs. */
|
1142 |
|
|
if (j != -1)
|
1143 |
|
|
return (void *)-1;
|
1144 |
|
|
|
1145 |
|
|
/* Now re-write REF to be based on the rhs of the assignment. */
|
1146 |
|
|
copy_reference_ops_from_ref (gimple_assign_rhs1 (def_stmt), &rhs);
|
1147 |
|
|
/* We need to pre-pend vr->operands[0..i] to rhs. */
|
1148 |
|
|
if (i + 1 + VEC_length (vn_reference_op_s, rhs)
|
1149 |
|
|
> VEC_length (vn_reference_op_s, vr->operands))
|
1150 |
|
|
{
|
1151 |
|
|
VEC (vn_reference_op_s, heap) *old = vr->operands;
|
1152 |
|
|
VEC_safe_grow (vn_reference_op_s, heap, vr->operands,
|
1153 |
|
|
i + 1 + VEC_length (vn_reference_op_s, rhs));
|
1154 |
|
|
if (old == shared_lookup_references
|
1155 |
|
|
&& vr->operands != old)
|
1156 |
|
|
shared_lookup_references = NULL;
|
1157 |
|
|
}
|
1158 |
|
|
else
|
1159 |
|
|
VEC_truncate (vn_reference_op_s, vr->operands,
|
1160 |
|
|
i + 1 + VEC_length (vn_reference_op_s, rhs));
|
1161 |
|
|
for (j = 0; VEC_iterate (vn_reference_op_s, rhs, j, vro); ++j)
|
1162 |
|
|
VEC_replace (vn_reference_op_s, vr->operands, i + 1 + j, vro);
|
1163 |
|
|
VEC_free (vn_reference_op_s, heap, rhs);
|
1164 |
|
|
vr->hashcode = vn_reference_compute_hash (vr);
|
1165 |
|
|
|
1166 |
|
|
/* Adjust *ref from the new operands. */
|
1167 |
|
|
if (!ao_ref_init_from_vn_reference (&r, vr->set, vr->type, vr->operands))
|
1168 |
|
|
return (void *)-1;
|
1169 |
|
|
/* This can happen with bitfields. */
|
1170 |
|
|
if (ref->size != r.size)
|
1171 |
|
|
return (void *)-1;
|
1172 |
|
|
*ref = r;
|
1173 |
|
|
|
1174 |
|
|
/* Do not update last seen VUSE after translating. */
|
1175 |
|
|
last_vuse_ptr = NULL;
|
1176 |
|
|
|
1177 |
|
|
/* Keep looking for the adjusted *REF / VR pair. */
|
1178 |
|
|
return NULL;
|
1179 |
|
|
}
|
1180 |
|
|
|
1181 |
|
|
/* Bail out and stop walking. */
|
1182 |
|
|
return (void *)-1;
|
1183 |
|
|
}
|
1184 |
|
|
|
1185 |
|
|
/* Lookup a reference operation by it's parts, in the current hash table.
|
1186 |
|
|
Returns the resulting value number if it exists in the hash table,
|
1187 |
|
|
NULL_TREE otherwise. VNRESULT will be filled in with the actual
|
1188 |
|
|
vn_reference_t stored in the hashtable if something is found. */
|
1189 |
|
|
|
1190 |
|
|
tree
|
1191 |
|
|
vn_reference_lookup_pieces (tree vuse, alias_set_type set, tree type,
|
1192 |
|
|
VEC (vn_reference_op_s, heap) *operands,
|
1193 |
|
|
vn_reference_t *vnresult, bool maywalk)
|
1194 |
|
|
{
|
1195 |
|
|
struct vn_reference_s vr1;
|
1196 |
|
|
vn_reference_t tmp;
|
1197 |
|
|
|
1198 |
|
|
if (!vnresult)
|
1199 |
|
|
vnresult = &tmp;
|
1200 |
|
|
*vnresult = NULL;
|
1201 |
|
|
|
1202 |
|
|
vr1.vuse = vuse ? SSA_VAL (vuse) : NULL_TREE;
|
1203 |
|
|
VEC_truncate (vn_reference_op_s, shared_lookup_references, 0);
|
1204 |
|
|
VEC_safe_grow (vn_reference_op_s, heap, shared_lookup_references,
|
1205 |
|
|
VEC_length (vn_reference_op_s, operands));
|
1206 |
|
|
memcpy (VEC_address (vn_reference_op_s, shared_lookup_references),
|
1207 |
|
|
VEC_address (vn_reference_op_s, operands),
|
1208 |
|
|
sizeof (vn_reference_op_s)
|
1209 |
|
|
* VEC_length (vn_reference_op_s, operands));
|
1210 |
|
|
vr1.operands = operands = shared_lookup_references
|
1211 |
|
|
= valueize_refs (shared_lookup_references);
|
1212 |
|
|
vr1.type = type;
|
1213 |
|
|
vr1.set = set;
|
1214 |
|
|
vr1.hashcode = vn_reference_compute_hash (&vr1);
|
1215 |
|
|
vn_reference_lookup_1 (&vr1, vnresult);
|
1216 |
|
|
|
1217 |
|
|
if (!*vnresult
|
1218 |
|
|
&& maywalk
|
1219 |
|
|
&& vr1.vuse)
|
1220 |
|
|
{
|
1221 |
|
|
ao_ref r;
|
1222 |
|
|
if (ao_ref_init_from_vn_reference (&r, set, type, vr1.operands))
|
1223 |
|
|
*vnresult =
|
1224 |
|
|
(vn_reference_t)walk_non_aliased_vuses (&r, vr1.vuse,
|
1225 |
|
|
vn_reference_lookup_2,
|
1226 |
|
|
vn_reference_lookup_3, &vr1);
|
1227 |
|
|
if (vr1.operands != operands)
|
1228 |
|
|
VEC_free (vn_reference_op_s, heap, vr1.operands);
|
1229 |
|
|
}
|
1230 |
|
|
|
1231 |
|
|
if (*vnresult)
|
1232 |
|
|
return (*vnresult)->result;
|
1233 |
|
|
|
1234 |
|
|
return NULL_TREE;
|
1235 |
|
|
}
|
1236 |
|
|
|
1237 |
|
|
/* Lookup OP in the current hash table, and return the resulting value
|
1238 |
|
|
number if it exists in the hash table. Return NULL_TREE if it does
|
1239 |
|
|
not exist in the hash table or if the result field of the structure
|
1240 |
|
|
was NULL.. VNRESULT will be filled in with the vn_reference_t
|
1241 |
|
|
stored in the hashtable if one exists. */
|
1242 |
|
|
|
1243 |
|
|
tree
|
1244 |
|
|
vn_reference_lookup (tree op, tree vuse, bool maywalk,
|
1245 |
|
|
vn_reference_t *vnresult)
|
1246 |
|
|
{
|
1247 |
|
|
VEC (vn_reference_op_s, heap) *operands;
|
1248 |
|
|
struct vn_reference_s vr1;
|
1249 |
|
|
|
1250 |
|
|
if (vnresult)
|
1251 |
|
|
*vnresult = NULL;
|
1252 |
|
|
|
1253 |
|
|
vr1.vuse = vuse ? SSA_VAL (vuse) : NULL_TREE;
|
1254 |
|
|
vr1.operands = operands = valueize_shared_reference_ops_from_ref (op);
|
1255 |
|
|
vr1.type = TREE_TYPE (op);
|
1256 |
|
|
vr1.set = get_alias_set (op);
|
1257 |
|
|
vr1.hashcode = vn_reference_compute_hash (&vr1);
|
1258 |
|
|
|
1259 |
|
|
if (maywalk
|
1260 |
|
|
&& vr1.vuse)
|
1261 |
|
|
{
|
1262 |
|
|
vn_reference_t wvnresult;
|
1263 |
|
|
ao_ref r;
|
1264 |
|
|
ao_ref_init (&r, op);
|
1265 |
|
|
wvnresult =
|
1266 |
|
|
(vn_reference_t)walk_non_aliased_vuses (&r, vr1.vuse,
|
1267 |
|
|
vn_reference_lookup_2,
|
1268 |
|
|
vn_reference_lookup_3, &vr1);
|
1269 |
|
|
if (vr1.operands != operands)
|
1270 |
|
|
VEC_free (vn_reference_op_s, heap, vr1.operands);
|
1271 |
|
|
if (wvnresult)
|
1272 |
|
|
{
|
1273 |
|
|
if (vnresult)
|
1274 |
|
|
*vnresult = wvnresult;
|
1275 |
|
|
return wvnresult->result;
|
1276 |
|
|
}
|
1277 |
|
|
|
1278 |
|
|
return NULL_TREE;
|
1279 |
|
|
}
|
1280 |
|
|
|
1281 |
|
|
return vn_reference_lookup_1 (&vr1, vnresult);
|
1282 |
|
|
}
|
1283 |
|
|
|
1284 |
|
|
|
1285 |
|
|
/* Insert OP into the current hash table with a value number of
|
1286 |
|
|
RESULT, and return the resulting reference structure we created. */
|
1287 |
|
|
|
1288 |
|
|
vn_reference_t
|
1289 |
|
|
vn_reference_insert (tree op, tree result, tree vuse)
|
1290 |
|
|
{
|
1291 |
|
|
void **slot;
|
1292 |
|
|
vn_reference_t vr1;
|
1293 |
|
|
|
1294 |
|
|
vr1 = (vn_reference_t) pool_alloc (current_info->references_pool);
|
1295 |
|
|
if (TREE_CODE (result) == SSA_NAME)
|
1296 |
|
|
vr1->value_id = VN_INFO (result)->value_id;
|
1297 |
|
|
else
|
1298 |
|
|
vr1->value_id = get_or_alloc_constant_value_id (result);
|
1299 |
|
|
vr1->vuse = vuse ? SSA_VAL (vuse) : NULL_TREE;
|
1300 |
|
|
vr1->operands = valueize_refs (create_reference_ops_from_ref (op));
|
1301 |
|
|
vr1->type = TREE_TYPE (op);
|
1302 |
|
|
vr1->set = get_alias_set (op);
|
1303 |
|
|
vr1->hashcode = vn_reference_compute_hash (vr1);
|
1304 |
|
|
vr1->result = TREE_CODE (result) == SSA_NAME ? SSA_VAL (result) : result;
|
1305 |
|
|
|
1306 |
|
|
slot = htab_find_slot_with_hash (current_info->references, vr1, vr1->hashcode,
|
1307 |
|
|
INSERT);
|
1308 |
|
|
|
1309 |
|
|
/* Because we lookup stores using vuses, and value number failures
|
1310 |
|
|
using the vdefs (see visit_reference_op_store for how and why),
|
1311 |
|
|
it's possible that on failure we may try to insert an already
|
1312 |
|
|
inserted store. This is not wrong, there is no ssa name for a
|
1313 |
|
|
store that we could use as a differentiator anyway. Thus, unlike
|
1314 |
|
|
the other lookup functions, you cannot gcc_assert (!*slot)
|
1315 |
|
|
here. */
|
1316 |
|
|
|
1317 |
|
|
/* But free the old slot in case of a collision. */
|
1318 |
|
|
if (*slot)
|
1319 |
|
|
free_reference (*slot);
|
1320 |
|
|
|
1321 |
|
|
*slot = vr1;
|
1322 |
|
|
return vr1;
|
1323 |
|
|
}
|
1324 |
|
|
|
1325 |
|
|
/* Insert a reference by it's pieces into the current hash table with
|
1326 |
|
|
a value number of RESULT. Return the resulting reference
|
1327 |
|
|
structure we created. */
|
1328 |
|
|
|
1329 |
|
|
vn_reference_t
|
1330 |
|
|
vn_reference_insert_pieces (tree vuse, alias_set_type set, tree type,
|
1331 |
|
|
VEC (vn_reference_op_s, heap) *operands,
|
1332 |
|
|
tree result, unsigned int value_id)
|
1333 |
|
|
|
1334 |
|
|
{
|
1335 |
|
|
void **slot;
|
1336 |
|
|
vn_reference_t vr1;
|
1337 |
|
|
|
1338 |
|
|
vr1 = (vn_reference_t) pool_alloc (current_info->references_pool);
|
1339 |
|
|
vr1->value_id = value_id;
|
1340 |
|
|
vr1->vuse = vuse ? SSA_VAL (vuse) : NULL_TREE;
|
1341 |
|
|
vr1->operands = valueize_refs (operands);
|
1342 |
|
|
vr1->type = type;
|
1343 |
|
|
vr1->set = set;
|
1344 |
|
|
vr1->hashcode = vn_reference_compute_hash (vr1);
|
1345 |
|
|
if (result && TREE_CODE (result) == SSA_NAME)
|
1346 |
|
|
result = SSA_VAL (result);
|
1347 |
|
|
vr1->result = result;
|
1348 |
|
|
|
1349 |
|
|
slot = htab_find_slot_with_hash (current_info->references, vr1, vr1->hashcode,
|
1350 |
|
|
INSERT);
|
1351 |
|
|
|
1352 |
|
|
/* At this point we should have all the things inserted that we have
|
1353 |
|
|
seen before, and we should never try inserting something that
|
1354 |
|
|
already exists. */
|
1355 |
|
|
gcc_assert (!*slot);
|
1356 |
|
|
if (*slot)
|
1357 |
|
|
free_reference (*slot);
|
1358 |
|
|
|
1359 |
|
|
*slot = vr1;
|
1360 |
|
|
return vr1;
|
1361 |
|
|
}
|
1362 |
|
|
|
1363 |
|
|
/* Compute and return the hash value for nary operation VBO1. */
|
1364 |
|
|
|
1365 |
|
|
hashval_t
|
1366 |
|
|
vn_nary_op_compute_hash (const vn_nary_op_t vno1)
|
1367 |
|
|
{
|
1368 |
|
|
hashval_t hash;
|
1369 |
|
|
unsigned i;
|
1370 |
|
|
|
1371 |
|
|
for (i = 0; i < vno1->length; ++i)
|
1372 |
|
|
if (TREE_CODE (vno1->op[i]) == SSA_NAME)
|
1373 |
|
|
vno1->op[i] = SSA_VAL (vno1->op[i]);
|
1374 |
|
|
|
1375 |
|
|
if (vno1->length == 2
|
1376 |
|
|
&& commutative_tree_code (vno1->opcode)
|
1377 |
|
|
&& tree_swap_operands_p (vno1->op[0], vno1->op[1], false))
|
1378 |
|
|
{
|
1379 |
|
|
tree temp = vno1->op[0];
|
1380 |
|
|
vno1->op[0] = vno1->op[1];
|
1381 |
|
|
vno1->op[1] = temp;
|
1382 |
|
|
}
|
1383 |
|
|
|
1384 |
|
|
hash = iterative_hash_hashval_t (vno1->opcode, 0);
|
1385 |
|
|
for (i = 0; i < vno1->length; ++i)
|
1386 |
|
|
hash = iterative_hash_expr (vno1->op[i], hash);
|
1387 |
|
|
|
1388 |
|
|
return hash;
|
1389 |
|
|
}
|
1390 |
|
|
|
1391 |
|
|
/* Return the computed hashcode for nary operation P1. */
|
1392 |
|
|
|
1393 |
|
|
static hashval_t
|
1394 |
|
|
vn_nary_op_hash (const void *p1)
|
1395 |
|
|
{
|
1396 |
|
|
const_vn_nary_op_t const vno1 = (const_vn_nary_op_t) p1;
|
1397 |
|
|
return vno1->hashcode;
|
1398 |
|
|
}
|
1399 |
|
|
|
1400 |
|
|
/* Compare nary operations P1 and P2 and return true if they are
|
1401 |
|
|
equivalent. */
|
1402 |
|
|
|
1403 |
|
|
int
|
1404 |
|
|
vn_nary_op_eq (const void *p1, const void *p2)
|
1405 |
|
|
{
|
1406 |
|
|
const_vn_nary_op_t const vno1 = (const_vn_nary_op_t) p1;
|
1407 |
|
|
const_vn_nary_op_t const vno2 = (const_vn_nary_op_t) p2;
|
1408 |
|
|
unsigned i;
|
1409 |
|
|
|
1410 |
|
|
if (vno1->hashcode != vno2->hashcode)
|
1411 |
|
|
return false;
|
1412 |
|
|
|
1413 |
|
|
if (vno1->opcode != vno2->opcode
|
1414 |
|
|
|| !types_compatible_p (vno1->type, vno2->type))
|
1415 |
|
|
return false;
|
1416 |
|
|
|
1417 |
|
|
for (i = 0; i < vno1->length; ++i)
|
1418 |
|
|
if (!expressions_equal_p (vno1->op[i], vno2->op[i]))
|
1419 |
|
|
return false;
|
1420 |
|
|
|
1421 |
|
|
return true;
|
1422 |
|
|
}
|
1423 |
|
|
|
1424 |
|
|
/* Lookup a n-ary operation by its pieces and return the resulting value
|
1425 |
|
|
number if it exists in the hash table. Return NULL_TREE if it does
|
1426 |
|
|
not exist in the hash table or if the result field of the operation
|
1427 |
|
|
is NULL. VNRESULT will contain the vn_nary_op_t from the hashtable
|
1428 |
|
|
if it exists. */
|
1429 |
|
|
|
1430 |
|
|
tree
|
1431 |
|
|
vn_nary_op_lookup_pieces (unsigned int length, enum tree_code code,
|
1432 |
|
|
tree type, tree op0, tree op1, tree op2,
|
1433 |
|
|
tree op3, vn_nary_op_t *vnresult)
|
1434 |
|
|
{
|
1435 |
|
|
void **slot;
|
1436 |
|
|
struct vn_nary_op_s vno1;
|
1437 |
|
|
if (vnresult)
|
1438 |
|
|
*vnresult = NULL;
|
1439 |
|
|
vno1.opcode = code;
|
1440 |
|
|
vno1.length = length;
|
1441 |
|
|
vno1.type = type;
|
1442 |
|
|
vno1.op[0] = op0;
|
1443 |
|
|
vno1.op[1] = op1;
|
1444 |
|
|
vno1.op[2] = op2;
|
1445 |
|
|
vno1.op[3] = op3;
|
1446 |
|
|
vno1.hashcode = vn_nary_op_compute_hash (&vno1);
|
1447 |
|
|
slot = htab_find_slot_with_hash (current_info->nary, &vno1, vno1.hashcode,
|
1448 |
|
|
NO_INSERT);
|
1449 |
|
|
if (!slot && current_info == optimistic_info)
|
1450 |
|
|
slot = htab_find_slot_with_hash (valid_info->nary, &vno1, vno1.hashcode,
|
1451 |
|
|
NO_INSERT);
|
1452 |
|
|
if (!slot)
|
1453 |
|
|
return NULL_TREE;
|
1454 |
|
|
if (vnresult)
|
1455 |
|
|
*vnresult = (vn_nary_op_t)*slot;
|
1456 |
|
|
return ((vn_nary_op_t)*slot)->result;
|
1457 |
|
|
}
|
1458 |
|
|
|
1459 |
|
|
/* Lookup OP in the current hash table, and return the resulting value
|
1460 |
|
|
number if it exists in the hash table. Return NULL_TREE if it does
|
1461 |
|
|
not exist in the hash table or if the result field of the operation
|
1462 |
|
|
is NULL. VNRESULT will contain the vn_nary_op_t from the hashtable
|
1463 |
|
|
if it exists. */
|
1464 |
|
|
|
1465 |
|
|
tree
|
1466 |
|
|
vn_nary_op_lookup (tree op, vn_nary_op_t *vnresult)
|
1467 |
|
|
{
|
1468 |
|
|
void **slot;
|
1469 |
|
|
struct vn_nary_op_s vno1;
|
1470 |
|
|
unsigned i;
|
1471 |
|
|
|
1472 |
|
|
if (vnresult)
|
1473 |
|
|
*vnresult = NULL;
|
1474 |
|
|
vno1.opcode = TREE_CODE (op);
|
1475 |
|
|
vno1.length = TREE_CODE_LENGTH (TREE_CODE (op));
|
1476 |
|
|
vno1.type = TREE_TYPE (op);
|
1477 |
|
|
for (i = 0; i < vno1.length; ++i)
|
1478 |
|
|
vno1.op[i] = TREE_OPERAND (op, i);
|
1479 |
|
|
vno1.hashcode = vn_nary_op_compute_hash (&vno1);
|
1480 |
|
|
slot = htab_find_slot_with_hash (current_info->nary, &vno1, vno1.hashcode,
|
1481 |
|
|
NO_INSERT);
|
1482 |
|
|
if (!slot && current_info == optimistic_info)
|
1483 |
|
|
slot = htab_find_slot_with_hash (valid_info->nary, &vno1, vno1.hashcode,
|
1484 |
|
|
NO_INSERT);
|
1485 |
|
|
if (!slot)
|
1486 |
|
|
return NULL_TREE;
|
1487 |
|
|
if (vnresult)
|
1488 |
|
|
*vnresult = (vn_nary_op_t)*slot;
|
1489 |
|
|
return ((vn_nary_op_t)*slot)->result;
|
1490 |
|
|
}
|
1491 |
|
|
|
1492 |
|
|
/* Lookup the rhs of STMT in the current hash table, and return the resulting
|
1493 |
|
|
value number if it exists in the hash table. Return NULL_TREE if
|
1494 |
|
|
it does not exist in the hash table. VNRESULT will contain the
|
1495 |
|
|
vn_nary_op_t from the hashtable if it exists. */
|
1496 |
|
|
|
1497 |
|
|
tree
|
1498 |
|
|
vn_nary_op_lookup_stmt (gimple stmt, vn_nary_op_t *vnresult)
|
1499 |
|
|
{
|
1500 |
|
|
void **slot;
|
1501 |
|
|
struct vn_nary_op_s vno1;
|
1502 |
|
|
unsigned i;
|
1503 |
|
|
|
1504 |
|
|
if (vnresult)
|
1505 |
|
|
*vnresult = NULL;
|
1506 |
|
|
vno1.opcode = gimple_assign_rhs_code (stmt);
|
1507 |
|
|
vno1.length = gimple_num_ops (stmt) - 1;
|
1508 |
|
|
vno1.type = gimple_expr_type (stmt);
|
1509 |
|
|
for (i = 0; i < vno1.length; ++i)
|
1510 |
|
|
vno1.op[i] = gimple_op (stmt, i + 1);
|
1511 |
|
|
if (vno1.opcode == REALPART_EXPR
|
1512 |
|
|
|| vno1.opcode == IMAGPART_EXPR
|
1513 |
|
|
|| vno1.opcode == VIEW_CONVERT_EXPR)
|
1514 |
|
|
vno1.op[0] = TREE_OPERAND (vno1.op[0], 0);
|
1515 |
|
|
vno1.hashcode = vn_nary_op_compute_hash (&vno1);
|
1516 |
|
|
slot = htab_find_slot_with_hash (current_info->nary, &vno1, vno1.hashcode,
|
1517 |
|
|
NO_INSERT);
|
1518 |
|
|
if (!slot && current_info == optimistic_info)
|
1519 |
|
|
slot = htab_find_slot_with_hash (valid_info->nary, &vno1, vno1.hashcode,
|
1520 |
|
|
NO_INSERT);
|
1521 |
|
|
if (!slot)
|
1522 |
|
|
return NULL_TREE;
|
1523 |
|
|
if (vnresult)
|
1524 |
|
|
*vnresult = (vn_nary_op_t)*slot;
|
1525 |
|
|
return ((vn_nary_op_t)*slot)->result;
|
1526 |
|
|
}
|
1527 |
|
|
|
1528 |
|
|
/* Insert a n-ary operation into the current hash table using it's
|
1529 |
|
|
pieces. Return the vn_nary_op_t structure we created and put in
|
1530 |
|
|
the hashtable. */
|
1531 |
|
|
|
1532 |
|
|
vn_nary_op_t
|
1533 |
|
|
vn_nary_op_insert_pieces (unsigned int length, enum tree_code code,
|
1534 |
|
|
tree type, tree op0,
|
1535 |
|
|
tree op1, tree op2, tree op3,
|
1536 |
|
|
tree result,
|
1537 |
|
|
unsigned int value_id)
|
1538 |
|
|
{
|
1539 |
|
|
void **slot;
|
1540 |
|
|
vn_nary_op_t vno1;
|
1541 |
|
|
|
1542 |
|
|
vno1 = (vn_nary_op_t) obstack_alloc (¤t_info->nary_obstack,
|
1543 |
|
|
(sizeof (struct vn_nary_op_s)
|
1544 |
|
|
- sizeof (tree) * (4 - length)));
|
1545 |
|
|
vno1->value_id = value_id;
|
1546 |
|
|
vno1->opcode = code;
|
1547 |
|
|
vno1->length = length;
|
1548 |
|
|
vno1->type = type;
|
1549 |
|
|
if (length >= 1)
|
1550 |
|
|
vno1->op[0] = op0;
|
1551 |
|
|
if (length >= 2)
|
1552 |
|
|
vno1->op[1] = op1;
|
1553 |
|
|
if (length >= 3)
|
1554 |
|
|
vno1->op[2] = op2;
|
1555 |
|
|
if (length >= 4)
|
1556 |
|
|
vno1->op[3] = op3;
|
1557 |
|
|
vno1->result = result;
|
1558 |
|
|
vno1->hashcode = vn_nary_op_compute_hash (vno1);
|
1559 |
|
|
slot = htab_find_slot_with_hash (current_info->nary, vno1, vno1->hashcode,
|
1560 |
|
|
INSERT);
|
1561 |
|
|
gcc_assert (!*slot);
|
1562 |
|
|
|
1563 |
|
|
*slot = vno1;
|
1564 |
|
|
return vno1;
|
1565 |
|
|
|
1566 |
|
|
}
|
1567 |
|
|
|
1568 |
|
|
/* Insert OP into the current hash table with a value number of
|
1569 |
|
|
RESULT. Return the vn_nary_op_t structure we created and put in
|
1570 |
|
|
the hashtable. */
|
1571 |
|
|
|
1572 |
|
|
vn_nary_op_t
|
1573 |
|
|
vn_nary_op_insert (tree op, tree result)
|
1574 |
|
|
{
|
1575 |
|
|
unsigned length = TREE_CODE_LENGTH (TREE_CODE (op));
|
1576 |
|
|
void **slot;
|
1577 |
|
|
vn_nary_op_t vno1;
|
1578 |
|
|
unsigned i;
|
1579 |
|
|
|
1580 |
|
|
vno1 = (vn_nary_op_t) obstack_alloc (¤t_info->nary_obstack,
|
1581 |
|
|
(sizeof (struct vn_nary_op_s)
|
1582 |
|
|
- sizeof (tree) * (4 - length)));
|
1583 |
|
|
vno1->value_id = VN_INFO (result)->value_id;
|
1584 |
|
|
vno1->opcode = TREE_CODE (op);
|
1585 |
|
|
vno1->length = length;
|
1586 |
|
|
vno1->type = TREE_TYPE (op);
|
1587 |
|
|
for (i = 0; i < vno1->length; ++i)
|
1588 |
|
|
vno1->op[i] = TREE_OPERAND (op, i);
|
1589 |
|
|
vno1->result = result;
|
1590 |
|
|
vno1->hashcode = vn_nary_op_compute_hash (vno1);
|
1591 |
|
|
slot = htab_find_slot_with_hash (current_info->nary, vno1, vno1->hashcode,
|
1592 |
|
|
INSERT);
|
1593 |
|
|
gcc_assert (!*slot);
|
1594 |
|
|
|
1595 |
|
|
*slot = vno1;
|
1596 |
|
|
return vno1;
|
1597 |
|
|
}
|
1598 |
|
|
|
1599 |
|
|
/* Insert the rhs of STMT into the current hash table with a value number of
|
1600 |
|
|
RESULT. */
|
1601 |
|
|
|
1602 |
|
|
vn_nary_op_t
|
1603 |
|
|
vn_nary_op_insert_stmt (gimple stmt, tree result)
|
1604 |
|
|
{
|
1605 |
|
|
unsigned length = gimple_num_ops (stmt) - 1;
|
1606 |
|
|
void **slot;
|
1607 |
|
|
vn_nary_op_t vno1;
|
1608 |
|
|
unsigned i;
|
1609 |
|
|
|
1610 |
|
|
vno1 = (vn_nary_op_t) obstack_alloc (¤t_info->nary_obstack,
|
1611 |
|
|
(sizeof (struct vn_nary_op_s)
|
1612 |
|
|
- sizeof (tree) * (4 - length)));
|
1613 |
|
|
vno1->value_id = VN_INFO (result)->value_id;
|
1614 |
|
|
vno1->opcode = gimple_assign_rhs_code (stmt);
|
1615 |
|
|
vno1->length = length;
|
1616 |
|
|
vno1->type = gimple_expr_type (stmt);
|
1617 |
|
|
for (i = 0; i < vno1->length; ++i)
|
1618 |
|
|
vno1->op[i] = gimple_op (stmt, i + 1);
|
1619 |
|
|
if (vno1->opcode == REALPART_EXPR
|
1620 |
|
|
|| vno1->opcode == IMAGPART_EXPR
|
1621 |
|
|
|| vno1->opcode == VIEW_CONVERT_EXPR)
|
1622 |
|
|
vno1->op[0] = TREE_OPERAND (vno1->op[0], 0);
|
1623 |
|
|
vno1->result = result;
|
1624 |
|
|
vno1->hashcode = vn_nary_op_compute_hash (vno1);
|
1625 |
|
|
slot = htab_find_slot_with_hash (current_info->nary, vno1, vno1->hashcode,
|
1626 |
|
|
INSERT);
|
1627 |
|
|
gcc_assert (!*slot);
|
1628 |
|
|
|
1629 |
|
|
*slot = vno1;
|
1630 |
|
|
return vno1;
|
1631 |
|
|
}
|
1632 |
|
|
|
1633 |
|
|
/* Compute a hashcode for PHI operation VP1 and return it. */
|
1634 |
|
|
|
1635 |
|
|
static inline hashval_t
|
1636 |
|
|
vn_phi_compute_hash (vn_phi_t vp1)
|
1637 |
|
|
{
|
1638 |
|
|
hashval_t result;
|
1639 |
|
|
int i;
|
1640 |
|
|
tree phi1op;
|
1641 |
|
|
tree type;
|
1642 |
|
|
|
1643 |
|
|
result = vp1->block->index;
|
1644 |
|
|
|
1645 |
|
|
/* If all PHI arguments are constants we need to distinguish
|
1646 |
|
|
the PHI node via its type. */
|
1647 |
|
|
type = TREE_TYPE (VEC_index (tree, vp1->phiargs, 0));
|
1648 |
|
|
result += (INTEGRAL_TYPE_P (type)
|
1649 |
|
|
+ (INTEGRAL_TYPE_P (type)
|
1650 |
|
|
? TYPE_PRECISION (type) + TYPE_UNSIGNED (type) : 0));
|
1651 |
|
|
|
1652 |
|
|
for (i = 0; VEC_iterate (tree, vp1->phiargs, i, phi1op); i++)
|
1653 |
|
|
{
|
1654 |
|
|
if (phi1op == VN_TOP)
|
1655 |
|
|
continue;
|
1656 |
|
|
result = iterative_hash_expr (phi1op, result);
|
1657 |
|
|
}
|
1658 |
|
|
|
1659 |
|
|
return result;
|
1660 |
|
|
}
|
1661 |
|
|
|
1662 |
|
|
/* Return the computed hashcode for phi operation P1. */
|
1663 |
|
|
|
1664 |
|
|
static hashval_t
|
1665 |
|
|
vn_phi_hash (const void *p1)
|
1666 |
|
|
{
|
1667 |
|
|
const_vn_phi_t const vp1 = (const_vn_phi_t) p1;
|
1668 |
|
|
return vp1->hashcode;
|
1669 |
|
|
}
|
1670 |
|
|
|
1671 |
|
|
/* Compare two phi entries for equality, ignoring VN_TOP arguments. */
|
1672 |
|
|
|
1673 |
|
|
static int
|
1674 |
|
|
vn_phi_eq (const void *p1, const void *p2)
|
1675 |
|
|
{
|
1676 |
|
|
const_vn_phi_t const vp1 = (const_vn_phi_t) p1;
|
1677 |
|
|
const_vn_phi_t const vp2 = (const_vn_phi_t) p2;
|
1678 |
|
|
|
1679 |
|
|
if (vp1->hashcode != vp2->hashcode)
|
1680 |
|
|
return false;
|
1681 |
|
|
|
1682 |
|
|
if (vp1->block == vp2->block)
|
1683 |
|
|
{
|
1684 |
|
|
int i;
|
1685 |
|
|
tree phi1op;
|
1686 |
|
|
|
1687 |
|
|
/* If the PHI nodes do not have compatible types
|
1688 |
|
|
they are not the same. */
|
1689 |
|
|
if (!types_compatible_p (TREE_TYPE (VEC_index (tree, vp1->phiargs, 0)),
|
1690 |
|
|
TREE_TYPE (VEC_index (tree, vp2->phiargs, 0))))
|
1691 |
|
|
return false;
|
1692 |
|
|
|
1693 |
|
|
/* Any phi in the same block will have it's arguments in the
|
1694 |
|
|
same edge order, because of how we store phi nodes. */
|
1695 |
|
|
for (i = 0; VEC_iterate (tree, vp1->phiargs, i, phi1op); i++)
|
1696 |
|
|
{
|
1697 |
|
|
tree phi2op = VEC_index (tree, vp2->phiargs, i);
|
1698 |
|
|
if (phi1op == VN_TOP || phi2op == VN_TOP)
|
1699 |
|
|
continue;
|
1700 |
|
|
if (!expressions_equal_p (phi1op, phi2op))
|
1701 |
|
|
return false;
|
1702 |
|
|
}
|
1703 |
|
|
return true;
|
1704 |
|
|
}
|
1705 |
|
|
return false;
|
1706 |
|
|
}
|
1707 |
|
|
|
1708 |
|
|
static VEC(tree, heap) *shared_lookup_phiargs;
|
1709 |
|
|
|
1710 |
|
|
/* Lookup PHI in the current hash table, and return the resulting
|
1711 |
|
|
value number if it exists in the hash table. Return NULL_TREE if
|
1712 |
|
|
it does not exist in the hash table. */
|
1713 |
|
|
|
1714 |
|
|
static tree
|
1715 |
|
|
vn_phi_lookup (gimple phi)
|
1716 |
|
|
{
|
1717 |
|
|
void **slot;
|
1718 |
|
|
struct vn_phi_s vp1;
|
1719 |
|
|
unsigned i;
|
1720 |
|
|
|
1721 |
|
|
VEC_truncate (tree, shared_lookup_phiargs, 0);
|
1722 |
|
|
|
1723 |
|
|
/* Canonicalize the SSA_NAME's to their value number. */
|
1724 |
|
|
for (i = 0; i < gimple_phi_num_args (phi); i++)
|
1725 |
|
|
{
|
1726 |
|
|
tree def = PHI_ARG_DEF (phi, i);
|
1727 |
|
|
def = TREE_CODE (def) == SSA_NAME ? SSA_VAL (def) : def;
|
1728 |
|
|
VEC_safe_push (tree, heap, shared_lookup_phiargs, def);
|
1729 |
|
|
}
|
1730 |
|
|
vp1.phiargs = shared_lookup_phiargs;
|
1731 |
|
|
vp1.block = gimple_bb (phi);
|
1732 |
|
|
vp1.hashcode = vn_phi_compute_hash (&vp1);
|
1733 |
|
|
slot = htab_find_slot_with_hash (current_info->phis, &vp1, vp1.hashcode,
|
1734 |
|
|
NO_INSERT);
|
1735 |
|
|
if (!slot && current_info == optimistic_info)
|
1736 |
|
|
slot = htab_find_slot_with_hash (valid_info->phis, &vp1, vp1.hashcode,
|
1737 |
|
|
NO_INSERT);
|
1738 |
|
|
if (!slot)
|
1739 |
|
|
return NULL_TREE;
|
1740 |
|
|
return ((vn_phi_t)*slot)->result;
|
1741 |
|
|
}
|
1742 |
|
|
|
1743 |
|
|
/* Insert PHI into the current hash table with a value number of
|
1744 |
|
|
RESULT. */
|
1745 |
|
|
|
1746 |
|
|
static vn_phi_t
|
1747 |
|
|
vn_phi_insert (gimple phi, tree result)
|
1748 |
|
|
{
|
1749 |
|
|
void **slot;
|
1750 |
|
|
vn_phi_t vp1 = (vn_phi_t) pool_alloc (current_info->phis_pool);
|
1751 |
|
|
unsigned i;
|
1752 |
|
|
VEC (tree, heap) *args = NULL;
|
1753 |
|
|
|
1754 |
|
|
/* Canonicalize the SSA_NAME's to their value number. */
|
1755 |
|
|
for (i = 0; i < gimple_phi_num_args (phi); i++)
|
1756 |
|
|
{
|
1757 |
|
|
tree def = PHI_ARG_DEF (phi, i);
|
1758 |
|
|
def = TREE_CODE (def) == SSA_NAME ? SSA_VAL (def) : def;
|
1759 |
|
|
VEC_safe_push (tree, heap, args, def);
|
1760 |
|
|
}
|
1761 |
|
|
vp1->value_id = VN_INFO (result)->value_id;
|
1762 |
|
|
vp1->phiargs = args;
|
1763 |
|
|
vp1->block = gimple_bb (phi);
|
1764 |
|
|
vp1->result = result;
|
1765 |
|
|
vp1->hashcode = vn_phi_compute_hash (vp1);
|
1766 |
|
|
|
1767 |
|
|
slot = htab_find_slot_with_hash (current_info->phis, vp1, vp1->hashcode,
|
1768 |
|
|
INSERT);
|
1769 |
|
|
|
1770 |
|
|
/* Because we iterate over phi operations more than once, it's
|
1771 |
|
|
possible the slot might already exist here, hence no assert.*/
|
1772 |
|
|
*slot = vp1;
|
1773 |
|
|
return vp1;
|
1774 |
|
|
}
|
1775 |
|
|
|
1776 |
|
|
|
1777 |
|
|
/* Print set of components in strongly connected component SCC to OUT. */
|
1778 |
|
|
|
1779 |
|
|
static void
|
1780 |
|
|
print_scc (FILE *out, VEC (tree, heap) *scc)
|
1781 |
|
|
{
|
1782 |
|
|
tree var;
|
1783 |
|
|
unsigned int i;
|
1784 |
|
|
|
1785 |
|
|
fprintf (out, "SCC consists of: ");
|
1786 |
|
|
for (i = 0; VEC_iterate (tree, scc, i, var); i++)
|
1787 |
|
|
{
|
1788 |
|
|
print_generic_expr (out, var, 0);
|
1789 |
|
|
fprintf (out, " ");
|
1790 |
|
|
}
|
1791 |
|
|
fprintf (out, "\n");
|
1792 |
|
|
}
|
1793 |
|
|
|
1794 |
|
|
/* Set the value number of FROM to TO, return true if it has changed
|
1795 |
|
|
as a result. */
|
1796 |
|
|
|
1797 |
|
|
static inline bool
|
1798 |
|
|
set_ssa_val_to (tree from, tree to)
|
1799 |
|
|
{
|
1800 |
|
|
tree currval;
|
1801 |
|
|
|
1802 |
|
|
if (from != to
|
1803 |
|
|
&& TREE_CODE (to) == SSA_NAME
|
1804 |
|
|
&& SSA_NAME_OCCURS_IN_ABNORMAL_PHI (to))
|
1805 |
|
|
to = from;
|
1806 |
|
|
|
1807 |
|
|
/* The only thing we allow as value numbers are VN_TOP, ssa_names
|
1808 |
|
|
and invariants. So assert that here. */
|
1809 |
|
|
gcc_assert (to != NULL_TREE
|
1810 |
|
|
&& (to == VN_TOP
|
1811 |
|
|
|| TREE_CODE (to) == SSA_NAME
|
1812 |
|
|
|| is_gimple_min_invariant (to)));
|
1813 |
|
|
|
1814 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
1815 |
|
|
{
|
1816 |
|
|
fprintf (dump_file, "Setting value number of ");
|
1817 |
|
|
print_generic_expr (dump_file, from, 0);
|
1818 |
|
|
fprintf (dump_file, " to ");
|
1819 |
|
|
print_generic_expr (dump_file, to, 0);
|
1820 |
|
|
}
|
1821 |
|
|
|
1822 |
|
|
currval = SSA_VAL (from);
|
1823 |
|
|
|
1824 |
|
|
if (currval != to && !operand_equal_p (currval, to, OEP_PURE_SAME))
|
1825 |
|
|
{
|
1826 |
|
|
VN_INFO (from)->valnum = to;
|
1827 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
1828 |
|
|
fprintf (dump_file, " (changed)\n");
|
1829 |
|
|
return true;
|
1830 |
|
|
}
|
1831 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
1832 |
|
|
fprintf (dump_file, "\n");
|
1833 |
|
|
return false;
|
1834 |
|
|
}
|
1835 |
|
|
|
1836 |
|
|
/* Set all definitions in STMT to value number to themselves.
|
1837 |
|
|
Return true if a value number changed. */
|
1838 |
|
|
|
1839 |
|
|
static bool
|
1840 |
|
|
defs_to_varying (gimple stmt)
|
1841 |
|
|
{
|
1842 |
|
|
bool changed = false;
|
1843 |
|
|
ssa_op_iter iter;
|
1844 |
|
|
def_operand_p defp;
|
1845 |
|
|
|
1846 |
|
|
FOR_EACH_SSA_DEF_OPERAND (defp, stmt, iter, SSA_OP_ALL_DEFS)
|
1847 |
|
|
{
|
1848 |
|
|
tree def = DEF_FROM_PTR (defp);
|
1849 |
|
|
|
1850 |
|
|
VN_INFO (def)->use_processed = true;
|
1851 |
|
|
changed |= set_ssa_val_to (def, def);
|
1852 |
|
|
}
|
1853 |
|
|
return changed;
|
1854 |
|
|
}
|
1855 |
|
|
|
1856 |
|
|
static bool expr_has_constants (tree expr);
|
1857 |
|
|
static tree valueize_expr (tree expr);
|
1858 |
|
|
|
1859 |
|
|
/* Visit a copy between LHS and RHS, return true if the value number
|
1860 |
|
|
changed. */
|
1861 |
|
|
|
1862 |
|
|
static bool
|
1863 |
|
|
visit_copy (tree lhs, tree rhs)
|
1864 |
|
|
{
|
1865 |
|
|
/* Follow chains of copies to their destination. */
|
1866 |
|
|
while (TREE_CODE (rhs) == SSA_NAME
|
1867 |
|
|
&& SSA_VAL (rhs) != rhs)
|
1868 |
|
|
rhs = SSA_VAL (rhs);
|
1869 |
|
|
|
1870 |
|
|
/* The copy may have a more interesting constant filled expression
|
1871 |
|
|
(we don't, since we know our RHS is just an SSA name). */
|
1872 |
|
|
if (TREE_CODE (rhs) == SSA_NAME)
|
1873 |
|
|
{
|
1874 |
|
|
VN_INFO (lhs)->has_constants = VN_INFO (rhs)->has_constants;
|
1875 |
|
|
VN_INFO (lhs)->expr = VN_INFO (rhs)->expr;
|
1876 |
|
|
}
|
1877 |
|
|
|
1878 |
|
|
return set_ssa_val_to (lhs, rhs);
|
1879 |
|
|
}
|
1880 |
|
|
|
1881 |
|
|
/* Visit a unary operator RHS, value number it, and return true if the
|
1882 |
|
|
value number of LHS has changed as a result. */
|
1883 |
|
|
|
1884 |
|
|
static bool
|
1885 |
|
|
visit_unary_op (tree lhs, gimple stmt)
|
1886 |
|
|
{
|
1887 |
|
|
bool changed = false;
|
1888 |
|
|
tree result = vn_nary_op_lookup_stmt (stmt, NULL);
|
1889 |
|
|
|
1890 |
|
|
if (result)
|
1891 |
|
|
{
|
1892 |
|
|
changed = set_ssa_val_to (lhs, result);
|
1893 |
|
|
}
|
1894 |
|
|
else
|
1895 |
|
|
{
|
1896 |
|
|
changed = set_ssa_val_to (lhs, lhs);
|
1897 |
|
|
vn_nary_op_insert_stmt (stmt, lhs);
|
1898 |
|
|
}
|
1899 |
|
|
|
1900 |
|
|
return changed;
|
1901 |
|
|
}
|
1902 |
|
|
|
1903 |
|
|
/* Visit a binary operator RHS, value number it, and return true if the
|
1904 |
|
|
value number of LHS has changed as a result. */
|
1905 |
|
|
|
1906 |
|
|
static bool
|
1907 |
|
|
visit_binary_op (tree lhs, gimple stmt)
|
1908 |
|
|
{
|
1909 |
|
|
bool changed = false;
|
1910 |
|
|
tree result = vn_nary_op_lookup_stmt (stmt, NULL);
|
1911 |
|
|
|
1912 |
|
|
if (result)
|
1913 |
|
|
{
|
1914 |
|
|
changed = set_ssa_val_to (lhs, result);
|
1915 |
|
|
}
|
1916 |
|
|
else
|
1917 |
|
|
{
|
1918 |
|
|
changed = set_ssa_val_to (lhs, lhs);
|
1919 |
|
|
vn_nary_op_insert_stmt (stmt, lhs);
|
1920 |
|
|
}
|
1921 |
|
|
|
1922 |
|
|
return changed;
|
1923 |
|
|
}
|
1924 |
|
|
|
1925 |
|
|
/* Visit a call STMT storing into LHS. Return true if the value number
|
1926 |
|
|
of the LHS has changed as a result. */
|
1927 |
|
|
|
1928 |
|
|
static bool
|
1929 |
|
|
visit_reference_op_call (tree lhs, gimple stmt)
|
1930 |
|
|
{
|
1931 |
|
|
bool changed = false;
|
1932 |
|
|
struct vn_reference_s vr1;
|
1933 |
|
|
tree result;
|
1934 |
|
|
tree vuse = gimple_vuse (stmt);
|
1935 |
|
|
|
1936 |
|
|
vr1.vuse = vuse ? SSA_VAL (vuse) : NULL_TREE;
|
1937 |
|
|
vr1.operands = valueize_shared_reference_ops_from_call (stmt);
|
1938 |
|
|
vr1.type = gimple_expr_type (stmt);
|
1939 |
|
|
vr1.set = 0;
|
1940 |
|
|
vr1.hashcode = vn_reference_compute_hash (&vr1);
|
1941 |
|
|
result = vn_reference_lookup_1 (&vr1, NULL);
|
1942 |
|
|
if (result)
|
1943 |
|
|
{
|
1944 |
|
|
changed = set_ssa_val_to (lhs, result);
|
1945 |
|
|
if (TREE_CODE (result) == SSA_NAME
|
1946 |
|
|
&& VN_INFO (result)->has_constants)
|
1947 |
|
|
VN_INFO (lhs)->has_constants = true;
|
1948 |
|
|
}
|
1949 |
|
|
else
|
1950 |
|
|
{
|
1951 |
|
|
void **slot;
|
1952 |
|
|
vn_reference_t vr2;
|
1953 |
|
|
changed = set_ssa_val_to (lhs, lhs);
|
1954 |
|
|
vr2 = (vn_reference_t) pool_alloc (current_info->references_pool);
|
1955 |
|
|
vr2->vuse = vr1.vuse;
|
1956 |
|
|
vr2->operands = valueize_refs (create_reference_ops_from_call (stmt));
|
1957 |
|
|
vr2->type = vr1.type;
|
1958 |
|
|
vr2->set = vr1.set;
|
1959 |
|
|
vr2->hashcode = vr1.hashcode;
|
1960 |
|
|
vr2->result = lhs;
|
1961 |
|
|
slot = htab_find_slot_with_hash (current_info->references,
|
1962 |
|
|
vr2, vr2->hashcode, INSERT);
|
1963 |
|
|
if (*slot)
|
1964 |
|
|
free_reference (*slot);
|
1965 |
|
|
*slot = vr2;
|
1966 |
|
|
}
|
1967 |
|
|
|
1968 |
|
|
return changed;
|
1969 |
|
|
}
|
1970 |
|
|
|
1971 |
|
|
/* Visit a load from a reference operator RHS, part of STMT, value number it,
|
1972 |
|
|
and return true if the value number of the LHS has changed as a result. */
|
1973 |
|
|
|
1974 |
|
|
static bool
|
1975 |
|
|
visit_reference_op_load (tree lhs, tree op, gimple stmt)
|
1976 |
|
|
{
|
1977 |
|
|
bool changed = false;
|
1978 |
|
|
tree last_vuse;
|
1979 |
|
|
tree result;
|
1980 |
|
|
|
1981 |
|
|
last_vuse = gimple_vuse (stmt);
|
1982 |
|
|
last_vuse_ptr = &last_vuse;
|
1983 |
|
|
result = vn_reference_lookup (op, gimple_vuse (stmt), true, NULL);
|
1984 |
|
|
last_vuse_ptr = NULL;
|
1985 |
|
|
|
1986 |
|
|
/* If we have a VCE, try looking up its operand as it might be stored in
|
1987 |
|
|
a different type. */
|
1988 |
|
|
if (!result && TREE_CODE (op) == VIEW_CONVERT_EXPR)
|
1989 |
|
|
result = vn_reference_lookup (TREE_OPERAND (op, 0), gimple_vuse (stmt),
|
1990 |
|
|
true, NULL);
|
1991 |
|
|
|
1992 |
|
|
/* We handle type-punning through unions by value-numbering based
|
1993 |
|
|
on offset and size of the access. Be prepared to handle a
|
1994 |
|
|
type-mismatch here via creating a VIEW_CONVERT_EXPR. */
|
1995 |
|
|
if (result
|
1996 |
|
|
&& !useless_type_conversion_p (TREE_TYPE (result), TREE_TYPE (op)))
|
1997 |
|
|
{
|
1998 |
|
|
/* We will be setting the value number of lhs to the value number
|
1999 |
|
|
of VIEW_CONVERT_EXPR <TREE_TYPE (result)> (result).
|
2000 |
|
|
So first simplify and lookup this expression to see if it
|
2001 |
|
|
is already available. */
|
2002 |
|
|
tree val = fold_build1 (VIEW_CONVERT_EXPR, TREE_TYPE (op), result);
|
2003 |
|
|
if ((CONVERT_EXPR_P (val)
|
2004 |
|
|
|| TREE_CODE (val) == VIEW_CONVERT_EXPR)
|
2005 |
|
|
&& TREE_CODE (TREE_OPERAND (val, 0)) == SSA_NAME)
|
2006 |
|
|
{
|
2007 |
|
|
tree tem = valueize_expr (vn_get_expr_for (TREE_OPERAND (val, 0)));
|
2008 |
|
|
if ((CONVERT_EXPR_P (tem)
|
2009 |
|
|
|| TREE_CODE (tem) == VIEW_CONVERT_EXPR)
|
2010 |
|
|
&& (tem = fold_unary_ignore_overflow (TREE_CODE (val),
|
2011 |
|
|
TREE_TYPE (val), tem)))
|
2012 |
|
|
val = tem;
|
2013 |
|
|
}
|
2014 |
|
|
result = val;
|
2015 |
|
|
if (!is_gimple_min_invariant (val)
|
2016 |
|
|
&& TREE_CODE (val) != SSA_NAME)
|
2017 |
|
|
result = vn_nary_op_lookup (val, NULL);
|
2018 |
|
|
/* If the expression is not yet available, value-number lhs to
|
2019 |
|
|
a new SSA_NAME we create. */
|
2020 |
|
|
if (!result && may_insert)
|
2021 |
|
|
{
|
2022 |
|
|
result = make_ssa_name (SSA_NAME_VAR (lhs), NULL);
|
2023 |
|
|
/* Initialize value-number information properly. */
|
2024 |
|
|
VN_INFO_GET (result)->valnum = result;
|
2025 |
|
|
VN_INFO (result)->value_id = get_next_value_id ();
|
2026 |
|
|
VN_INFO (result)->expr = val;
|
2027 |
|
|
VN_INFO (result)->has_constants = expr_has_constants (val);
|
2028 |
|
|
VN_INFO (result)->needs_insertion = true;
|
2029 |
|
|
/* As all "inserted" statements are singleton SCCs, insert
|
2030 |
|
|
to the valid table. This is strictly needed to
|
2031 |
|
|
avoid re-generating new value SSA_NAMEs for the same
|
2032 |
|
|
expression during SCC iteration over and over (the
|
2033 |
|
|
optimistic table gets cleared after each iteration).
|
2034 |
|
|
We do not need to insert into the optimistic table, as
|
2035 |
|
|
lookups there will fall back to the valid table. */
|
2036 |
|
|
if (current_info == optimistic_info)
|
2037 |
|
|
{
|
2038 |
|
|
current_info = valid_info;
|
2039 |
|
|
vn_nary_op_insert (val, result);
|
2040 |
|
|
current_info = optimistic_info;
|
2041 |
|
|
}
|
2042 |
|
|
else
|
2043 |
|
|
vn_nary_op_insert (val, result);
|
2044 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
2045 |
|
|
{
|
2046 |
|
|
fprintf (dump_file, "Inserting name ");
|
2047 |
|
|
print_generic_expr (dump_file, result, 0);
|
2048 |
|
|
fprintf (dump_file, " for expression ");
|
2049 |
|
|
print_generic_expr (dump_file, val, 0);
|
2050 |
|
|
fprintf (dump_file, "\n");
|
2051 |
|
|
}
|
2052 |
|
|
}
|
2053 |
|
|
}
|
2054 |
|
|
|
2055 |
|
|
if (result)
|
2056 |
|
|
{
|
2057 |
|
|
changed = set_ssa_val_to (lhs, result);
|
2058 |
|
|
if (TREE_CODE (result) == SSA_NAME
|
2059 |
|
|
&& VN_INFO (result)->has_constants)
|
2060 |
|
|
{
|
2061 |
|
|
VN_INFO (lhs)->expr = VN_INFO (result)->expr;
|
2062 |
|
|
VN_INFO (lhs)->has_constants = true;
|
2063 |
|
|
}
|
2064 |
|
|
}
|
2065 |
|
|
else
|
2066 |
|
|
{
|
2067 |
|
|
changed = set_ssa_val_to (lhs, lhs);
|
2068 |
|
|
vn_reference_insert (op, lhs, last_vuse);
|
2069 |
|
|
}
|
2070 |
|
|
|
2071 |
|
|
return changed;
|
2072 |
|
|
}
|
2073 |
|
|
|
2074 |
|
|
|
2075 |
|
|
/* Visit a store to a reference operator LHS, part of STMT, value number it,
|
2076 |
|
|
and return true if the value number of the LHS has changed as a result. */
|
2077 |
|
|
|
2078 |
|
|
static bool
|
2079 |
|
|
visit_reference_op_store (tree lhs, tree op, gimple stmt)
|
2080 |
|
|
{
|
2081 |
|
|
bool changed = false;
|
2082 |
|
|
tree result;
|
2083 |
|
|
bool resultsame = false;
|
2084 |
|
|
|
2085 |
|
|
/* First we want to lookup using the *vuses* from the store and see
|
2086 |
|
|
if there the last store to this location with the same address
|
2087 |
|
|
had the same value.
|
2088 |
|
|
|
2089 |
|
|
The vuses represent the memory state before the store. If the
|
2090 |
|
|
memory state, address, and value of the store is the same as the
|
2091 |
|
|
last store to this location, then this store will produce the
|
2092 |
|
|
same memory state as that store.
|
2093 |
|
|
|
2094 |
|
|
In this case the vdef versions for this store are value numbered to those
|
2095 |
|
|
vuse versions, since they represent the same memory state after
|
2096 |
|
|
this store.
|
2097 |
|
|
|
2098 |
|
|
Otherwise, the vdefs for the store are used when inserting into
|
2099 |
|
|
the table, since the store generates a new memory state. */
|
2100 |
|
|
|
2101 |
|
|
result = vn_reference_lookup (lhs, gimple_vuse (stmt), false, NULL);
|
2102 |
|
|
|
2103 |
|
|
if (result)
|
2104 |
|
|
{
|
2105 |
|
|
if (TREE_CODE (result) == SSA_NAME)
|
2106 |
|
|
result = SSA_VAL (result);
|
2107 |
|
|
if (TREE_CODE (op) == SSA_NAME)
|
2108 |
|
|
op = SSA_VAL (op);
|
2109 |
|
|
resultsame = expressions_equal_p (result, op);
|
2110 |
|
|
}
|
2111 |
|
|
|
2112 |
|
|
if (!result || !resultsame)
|
2113 |
|
|
{
|
2114 |
|
|
tree vdef;
|
2115 |
|
|
|
2116 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
2117 |
|
|
{
|
2118 |
|
|
fprintf (dump_file, "No store match\n");
|
2119 |
|
|
fprintf (dump_file, "Value numbering store ");
|
2120 |
|
|
print_generic_expr (dump_file, lhs, 0);
|
2121 |
|
|
fprintf (dump_file, " to ");
|
2122 |
|
|
print_generic_expr (dump_file, op, 0);
|
2123 |
|
|
fprintf (dump_file, "\n");
|
2124 |
|
|
}
|
2125 |
|
|
/* Have to set value numbers before insert, since insert is
|
2126 |
|
|
going to valueize the references in-place. */
|
2127 |
|
|
if ((vdef = gimple_vdef (stmt)))
|
2128 |
|
|
{
|
2129 |
|
|
VN_INFO (vdef)->use_processed = true;
|
2130 |
|
|
changed |= set_ssa_val_to (vdef, vdef);
|
2131 |
|
|
}
|
2132 |
|
|
|
2133 |
|
|
/* Do not insert structure copies into the tables. */
|
2134 |
|
|
if (is_gimple_min_invariant (op)
|
2135 |
|
|
|| is_gimple_reg (op))
|
2136 |
|
|
vn_reference_insert (lhs, op, vdef);
|
2137 |
|
|
}
|
2138 |
|
|
else
|
2139 |
|
|
{
|
2140 |
|
|
/* We had a match, so value number the vdef to have the value
|
2141 |
|
|
number of the vuse it came from. */
|
2142 |
|
|
tree def, use;
|
2143 |
|
|
|
2144 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
2145 |
|
|
fprintf (dump_file, "Store matched earlier value,"
|
2146 |
|
|
"value numbering store vdefs to matching vuses.\n");
|
2147 |
|
|
|
2148 |
|
|
def = gimple_vdef (stmt);
|
2149 |
|
|
use = gimple_vuse (stmt);
|
2150 |
|
|
|
2151 |
|
|
VN_INFO (def)->use_processed = true;
|
2152 |
|
|
changed |= set_ssa_val_to (def, SSA_VAL (use));
|
2153 |
|
|
}
|
2154 |
|
|
|
2155 |
|
|
return changed;
|
2156 |
|
|
}
|
2157 |
|
|
|
2158 |
|
|
/* Visit and value number PHI, return true if the value number
|
2159 |
|
|
changed. */
|
2160 |
|
|
|
2161 |
|
|
static bool
|
2162 |
|
|
visit_phi (gimple phi)
|
2163 |
|
|
{
|
2164 |
|
|
bool changed = false;
|
2165 |
|
|
tree result;
|
2166 |
|
|
tree sameval = VN_TOP;
|
2167 |
|
|
bool allsame = true;
|
2168 |
|
|
unsigned i;
|
2169 |
|
|
|
2170 |
|
|
/* TODO: We could check for this in init_sccvn, and replace this
|
2171 |
|
|
with a gcc_assert. */
|
2172 |
|
|
if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (PHI_RESULT (phi)))
|
2173 |
|
|
return set_ssa_val_to (PHI_RESULT (phi), PHI_RESULT (phi));
|
2174 |
|
|
|
2175 |
|
|
/* See if all non-TOP arguments have the same value. TOP is
|
2176 |
|
|
equivalent to everything, so we can ignore it. */
|
2177 |
|
|
for (i = 0; i < gimple_phi_num_args (phi); i++)
|
2178 |
|
|
{
|
2179 |
|
|
tree def = PHI_ARG_DEF (phi, i);
|
2180 |
|
|
|
2181 |
|
|
if (TREE_CODE (def) == SSA_NAME)
|
2182 |
|
|
def = SSA_VAL (def);
|
2183 |
|
|
if (def == VN_TOP)
|
2184 |
|
|
continue;
|
2185 |
|
|
if (sameval == VN_TOP)
|
2186 |
|
|
{
|
2187 |
|
|
sameval = def;
|
2188 |
|
|
}
|
2189 |
|
|
else
|
2190 |
|
|
{
|
2191 |
|
|
if (!expressions_equal_p (def, sameval))
|
2192 |
|
|
{
|
2193 |
|
|
allsame = false;
|
2194 |
|
|
break;
|
2195 |
|
|
}
|
2196 |
|
|
}
|
2197 |
|
|
}
|
2198 |
|
|
|
2199 |
|
|
/* If all value numbered to the same value, the phi node has that
|
2200 |
|
|
value. */
|
2201 |
|
|
if (allsame)
|
2202 |
|
|
{
|
2203 |
|
|
if (is_gimple_min_invariant (sameval))
|
2204 |
|
|
{
|
2205 |
|
|
VN_INFO (PHI_RESULT (phi))->has_constants = true;
|
2206 |
|
|
VN_INFO (PHI_RESULT (phi))->expr = sameval;
|
2207 |
|
|
}
|
2208 |
|
|
else
|
2209 |
|
|
{
|
2210 |
|
|
VN_INFO (PHI_RESULT (phi))->has_constants = false;
|
2211 |
|
|
VN_INFO (PHI_RESULT (phi))->expr = sameval;
|
2212 |
|
|
}
|
2213 |
|
|
|
2214 |
|
|
if (TREE_CODE (sameval) == SSA_NAME)
|
2215 |
|
|
return visit_copy (PHI_RESULT (phi), sameval);
|
2216 |
|
|
|
2217 |
|
|
return set_ssa_val_to (PHI_RESULT (phi), sameval);
|
2218 |
|
|
}
|
2219 |
|
|
|
2220 |
|
|
/* Otherwise, see if it is equivalent to a phi node in this block. */
|
2221 |
|
|
result = vn_phi_lookup (phi);
|
2222 |
|
|
if (result)
|
2223 |
|
|
{
|
2224 |
|
|
if (TREE_CODE (result) == SSA_NAME)
|
2225 |
|
|
changed = visit_copy (PHI_RESULT (phi), result);
|
2226 |
|
|
else
|
2227 |
|
|
changed = set_ssa_val_to (PHI_RESULT (phi), result);
|
2228 |
|
|
}
|
2229 |
|
|
else
|
2230 |
|
|
{
|
2231 |
|
|
vn_phi_insert (phi, PHI_RESULT (phi));
|
2232 |
|
|
VN_INFO (PHI_RESULT (phi))->has_constants = false;
|
2233 |
|
|
VN_INFO (PHI_RESULT (phi))->expr = PHI_RESULT (phi);
|
2234 |
|
|
changed = set_ssa_val_to (PHI_RESULT (phi), PHI_RESULT (phi));
|
2235 |
|
|
}
|
2236 |
|
|
|
2237 |
|
|
return changed;
|
2238 |
|
|
}
|
2239 |
|
|
|
2240 |
|
|
/* Return true if EXPR contains constants. */
|
2241 |
|
|
|
2242 |
|
|
static bool
|
2243 |
|
|
expr_has_constants (tree expr)
|
2244 |
|
|
{
|
2245 |
|
|
switch (TREE_CODE_CLASS (TREE_CODE (expr)))
|
2246 |
|
|
{
|
2247 |
|
|
case tcc_unary:
|
2248 |
|
|
return is_gimple_min_invariant (TREE_OPERAND (expr, 0));
|
2249 |
|
|
|
2250 |
|
|
case tcc_binary:
|
2251 |
|
|
return is_gimple_min_invariant (TREE_OPERAND (expr, 0))
|
2252 |
|
|
|| is_gimple_min_invariant (TREE_OPERAND (expr, 1));
|
2253 |
|
|
/* Constants inside reference ops are rarely interesting, but
|
2254 |
|
|
it can take a lot of looking to find them. */
|
2255 |
|
|
case tcc_reference:
|
2256 |
|
|
case tcc_declaration:
|
2257 |
|
|
return false;
|
2258 |
|
|
default:
|
2259 |
|
|
return is_gimple_min_invariant (expr);
|
2260 |
|
|
}
|
2261 |
|
|
return false;
|
2262 |
|
|
}
|
2263 |
|
|
|
2264 |
|
|
/* Return true if STMT contains constants. */
|
2265 |
|
|
|
2266 |
|
|
static bool
|
2267 |
|
|
stmt_has_constants (gimple stmt)
|
2268 |
|
|
{
|
2269 |
|
|
if (gimple_code (stmt) != GIMPLE_ASSIGN)
|
2270 |
|
|
return false;
|
2271 |
|
|
|
2272 |
|
|
switch (get_gimple_rhs_class (gimple_assign_rhs_code (stmt)))
|
2273 |
|
|
{
|
2274 |
|
|
case GIMPLE_UNARY_RHS:
|
2275 |
|
|
return is_gimple_min_invariant (gimple_assign_rhs1 (stmt));
|
2276 |
|
|
|
2277 |
|
|
case GIMPLE_BINARY_RHS:
|
2278 |
|
|
return (is_gimple_min_invariant (gimple_assign_rhs1 (stmt))
|
2279 |
|
|
|| is_gimple_min_invariant (gimple_assign_rhs2 (stmt)));
|
2280 |
|
|
case GIMPLE_SINGLE_RHS:
|
2281 |
|
|
/* Constants inside reference ops are rarely interesting, but
|
2282 |
|
|
it can take a lot of looking to find them. */
|
2283 |
|
|
return is_gimple_min_invariant (gimple_assign_rhs1 (stmt));
|
2284 |
|
|
default:
|
2285 |
|
|
gcc_unreachable ();
|
2286 |
|
|
}
|
2287 |
|
|
return false;
|
2288 |
|
|
}
|
2289 |
|
|
|
2290 |
|
|
/* Replace SSA_NAMES in expr with their value numbers, and return the
|
2291 |
|
|
result.
|
2292 |
|
|
This is performed in place. */
|
2293 |
|
|
|
2294 |
|
|
static tree
|
2295 |
|
|
valueize_expr (tree expr)
|
2296 |
|
|
{
|
2297 |
|
|
switch (TREE_CODE_CLASS (TREE_CODE (expr)))
|
2298 |
|
|
{
|
2299 |
|
|
case tcc_unary:
|
2300 |
|
|
if (TREE_CODE (TREE_OPERAND (expr, 0)) == SSA_NAME
|
2301 |
|
|
&& SSA_VAL (TREE_OPERAND (expr, 0)) != VN_TOP)
|
2302 |
|
|
TREE_OPERAND (expr, 0) = SSA_VAL (TREE_OPERAND (expr, 0));
|
2303 |
|
|
break;
|
2304 |
|
|
case tcc_binary:
|
2305 |
|
|
if (TREE_CODE (TREE_OPERAND (expr, 0)) == SSA_NAME
|
2306 |
|
|
&& SSA_VAL (TREE_OPERAND (expr, 0)) != VN_TOP)
|
2307 |
|
|
TREE_OPERAND (expr, 0) = SSA_VAL (TREE_OPERAND (expr, 0));
|
2308 |
|
|
if (TREE_CODE (TREE_OPERAND (expr, 1)) == SSA_NAME
|
2309 |
|
|
&& SSA_VAL (TREE_OPERAND (expr, 1)) != VN_TOP)
|
2310 |
|
|
TREE_OPERAND (expr, 1) = SSA_VAL (TREE_OPERAND (expr, 1));
|
2311 |
|
|
break;
|
2312 |
|
|
default:
|
2313 |
|
|
break;
|
2314 |
|
|
}
|
2315 |
|
|
return expr;
|
2316 |
|
|
}
|
2317 |
|
|
|
2318 |
|
|
/* Simplify the binary expression RHS, and return the result if
|
2319 |
|
|
simplified. */
|
2320 |
|
|
|
2321 |
|
|
static tree
|
2322 |
|
|
simplify_binary_expression (gimple stmt)
|
2323 |
|
|
{
|
2324 |
|
|
tree result = NULL_TREE;
|
2325 |
|
|
tree op0 = gimple_assign_rhs1 (stmt);
|
2326 |
|
|
tree op1 = gimple_assign_rhs2 (stmt);
|
2327 |
|
|
|
2328 |
|
|
/* This will not catch every single case we could combine, but will
|
2329 |
|
|
catch those with constants. The goal here is to simultaneously
|
2330 |
|
|
combine constants between expressions, but avoid infinite
|
2331 |
|
|
expansion of expressions during simplification. */
|
2332 |
|
|
if (TREE_CODE (op0) == SSA_NAME)
|
2333 |
|
|
{
|
2334 |
|
|
if (VN_INFO (op0)->has_constants
|
2335 |
|
|
|| TREE_CODE_CLASS (gimple_assign_rhs_code (stmt)) == tcc_comparison)
|
2336 |
|
|
op0 = valueize_expr (vn_get_expr_for (op0));
|
2337 |
|
|
else if (SSA_VAL (op0) != VN_TOP && SSA_VAL (op0) != op0)
|
2338 |
|
|
op0 = SSA_VAL (op0);
|
2339 |
|
|
}
|
2340 |
|
|
|
2341 |
|
|
if (TREE_CODE (op1) == SSA_NAME)
|
2342 |
|
|
{
|
2343 |
|
|
if (VN_INFO (op1)->has_constants)
|
2344 |
|
|
op1 = valueize_expr (vn_get_expr_for (op1));
|
2345 |
|
|
else if (SSA_VAL (op1) != VN_TOP && SSA_VAL (op1) != op1)
|
2346 |
|
|
op1 = SSA_VAL (op1);
|
2347 |
|
|
}
|
2348 |
|
|
|
2349 |
|
|
/* Avoid folding if nothing changed. */
|
2350 |
|
|
if (op0 == gimple_assign_rhs1 (stmt)
|
2351 |
|
|
&& op1 == gimple_assign_rhs2 (stmt))
|
2352 |
|
|
return NULL_TREE;
|
2353 |
|
|
|
2354 |
|
|
fold_defer_overflow_warnings ();
|
2355 |
|
|
|
2356 |
|
|
result = fold_binary (gimple_assign_rhs_code (stmt),
|
2357 |
|
|
gimple_expr_type (stmt), op0, op1);
|
2358 |
|
|
if (result)
|
2359 |
|
|
STRIP_USELESS_TYPE_CONVERSION (result);
|
2360 |
|
|
|
2361 |
|
|
fold_undefer_overflow_warnings (result && valid_gimple_rhs_p (result),
|
2362 |
|
|
stmt, 0);
|
2363 |
|
|
|
2364 |
|
|
/* Make sure result is not a complex expression consisting
|
2365 |
|
|
of operators of operators (IE (a + b) + (a + c))
|
2366 |
|
|
Otherwise, we will end up with unbounded expressions if
|
2367 |
|
|
fold does anything at all. */
|
2368 |
|
|
if (result && valid_gimple_rhs_p (result))
|
2369 |
|
|
return result;
|
2370 |
|
|
|
2371 |
|
|
return NULL_TREE;
|
2372 |
|
|
}
|
2373 |
|
|
|
2374 |
|
|
/* Simplify the unary expression RHS, and return the result if
|
2375 |
|
|
simplified. */
|
2376 |
|
|
|
2377 |
|
|
static tree
|
2378 |
|
|
simplify_unary_expression (gimple stmt)
|
2379 |
|
|
{
|
2380 |
|
|
tree result = NULL_TREE;
|
2381 |
|
|
tree orig_op0, op0 = gimple_assign_rhs1 (stmt);
|
2382 |
|
|
|
2383 |
|
|
/* We handle some tcc_reference codes here that are all
|
2384 |
|
|
GIMPLE_ASSIGN_SINGLE codes. */
|
2385 |
|
|
if (gimple_assign_rhs_code (stmt) == REALPART_EXPR
|
2386 |
|
|
|| gimple_assign_rhs_code (stmt) == IMAGPART_EXPR
|
2387 |
|
|
|| gimple_assign_rhs_code (stmt) == VIEW_CONVERT_EXPR)
|
2388 |
|
|
op0 = TREE_OPERAND (op0, 0);
|
2389 |
|
|
|
2390 |
|
|
if (TREE_CODE (op0) != SSA_NAME)
|
2391 |
|
|
return NULL_TREE;
|
2392 |
|
|
|
2393 |
|
|
orig_op0 = op0;
|
2394 |
|
|
if (VN_INFO (op0)->has_constants)
|
2395 |
|
|
op0 = valueize_expr (vn_get_expr_for (op0));
|
2396 |
|
|
else if (gimple_assign_cast_p (stmt)
|
2397 |
|
|
|| gimple_assign_rhs_code (stmt) == REALPART_EXPR
|
2398 |
|
|
|| gimple_assign_rhs_code (stmt) == IMAGPART_EXPR
|
2399 |
|
|
|| gimple_assign_rhs_code (stmt) == VIEW_CONVERT_EXPR)
|
2400 |
|
|
{
|
2401 |
|
|
/* We want to do tree-combining on conversion-like expressions.
|
2402 |
|
|
Make sure we feed only SSA_NAMEs or constants to fold though. */
|
2403 |
|
|
tree tem = valueize_expr (vn_get_expr_for (op0));
|
2404 |
|
|
if (UNARY_CLASS_P (tem)
|
2405 |
|
|
|| BINARY_CLASS_P (tem)
|
2406 |
|
|
|| TREE_CODE (tem) == VIEW_CONVERT_EXPR
|
2407 |
|
|
|| TREE_CODE (tem) == SSA_NAME
|
2408 |
|
|
|| is_gimple_min_invariant (tem))
|
2409 |
|
|
op0 = tem;
|
2410 |
|
|
}
|
2411 |
|
|
|
2412 |
|
|
/* Avoid folding if nothing changed, but remember the expression. */
|
2413 |
|
|
if (op0 == orig_op0)
|
2414 |
|
|
return NULL_TREE;
|
2415 |
|
|
|
2416 |
|
|
result = fold_unary_ignore_overflow (gimple_assign_rhs_code (stmt),
|
2417 |
|
|
gimple_expr_type (stmt), op0);
|
2418 |
|
|
if (result)
|
2419 |
|
|
{
|
2420 |
|
|
STRIP_USELESS_TYPE_CONVERSION (result);
|
2421 |
|
|
if (valid_gimple_rhs_p (result))
|
2422 |
|
|
return result;
|
2423 |
|
|
}
|
2424 |
|
|
|
2425 |
|
|
return NULL_TREE;
|
2426 |
|
|
}
|
2427 |
|
|
|
2428 |
|
|
/* Try to simplify RHS using equivalences and constant folding. */
|
2429 |
|
|
|
2430 |
|
|
static tree
|
2431 |
|
|
try_to_simplify (gimple stmt)
|
2432 |
|
|
{
|
2433 |
|
|
tree tem;
|
2434 |
|
|
|
2435 |
|
|
/* For stores we can end up simplifying a SSA_NAME rhs. Just return
|
2436 |
|
|
in this case, there is no point in doing extra work. */
|
2437 |
|
|
if (gimple_assign_copy_p (stmt)
|
2438 |
|
|
&& TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME)
|
2439 |
|
|
return NULL_TREE;
|
2440 |
|
|
|
2441 |
|
|
switch (TREE_CODE_CLASS (gimple_assign_rhs_code (stmt)))
|
2442 |
|
|
{
|
2443 |
|
|
case tcc_declaration:
|
2444 |
|
|
tem = get_symbol_constant_value (gimple_assign_rhs1 (stmt));
|
2445 |
|
|
if (tem)
|
2446 |
|
|
return tem;
|
2447 |
|
|
break;
|
2448 |
|
|
|
2449 |
|
|
case tcc_reference:
|
2450 |
|
|
/* Do not do full-blown reference lookup here, but simplify
|
2451 |
|
|
reads from constant aggregates. */
|
2452 |
|
|
tem = fold_const_aggregate_ref (gimple_assign_rhs1 (stmt));
|
2453 |
|
|
if (tem)
|
2454 |
|
|
return tem;
|
2455 |
|
|
|
2456 |
|
|
/* Fallthrough for some codes that can operate on registers. */
|
2457 |
|
|
if (!(TREE_CODE (gimple_assign_rhs1 (stmt)) == REALPART_EXPR
|
2458 |
|
|
|| TREE_CODE (gimple_assign_rhs1 (stmt)) == IMAGPART_EXPR
|
2459 |
|
|
|| TREE_CODE (gimple_assign_rhs1 (stmt)) == VIEW_CONVERT_EXPR))
|
2460 |
|
|
break;
|
2461 |
|
|
/* We could do a little more with unary ops, if they expand
|
2462 |
|
|
into binary ops, but it's debatable whether it is worth it. */
|
2463 |
|
|
case tcc_unary:
|
2464 |
|
|
return simplify_unary_expression (stmt);
|
2465 |
|
|
break;
|
2466 |
|
|
case tcc_comparison:
|
2467 |
|
|
case tcc_binary:
|
2468 |
|
|
return simplify_binary_expression (stmt);
|
2469 |
|
|
break;
|
2470 |
|
|
default:
|
2471 |
|
|
break;
|
2472 |
|
|
}
|
2473 |
|
|
|
2474 |
|
|
return NULL_TREE;
|
2475 |
|
|
}
|
2476 |
|
|
|
2477 |
|
|
/* Visit and value number USE, return true if the value number
|
2478 |
|
|
changed. */
|
2479 |
|
|
|
2480 |
|
|
static bool
|
2481 |
|
|
visit_use (tree use)
|
2482 |
|
|
{
|
2483 |
|
|
bool changed = false;
|
2484 |
|
|
gimple stmt = SSA_NAME_DEF_STMT (use);
|
2485 |
|
|
|
2486 |
|
|
VN_INFO (use)->use_processed = true;
|
2487 |
|
|
|
2488 |
|
|
gcc_assert (!SSA_NAME_IN_FREE_LIST (use));
|
2489 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS)
|
2490 |
|
|
&& !SSA_NAME_IS_DEFAULT_DEF (use))
|
2491 |
|
|
{
|
2492 |
|
|
fprintf (dump_file, "Value numbering ");
|
2493 |
|
|
print_generic_expr (dump_file, use, 0);
|
2494 |
|
|
fprintf (dump_file, " stmt = ");
|
2495 |
|
|
print_gimple_stmt (dump_file, stmt, 0, 0);
|
2496 |
|
|
}
|
2497 |
|
|
|
2498 |
|
|
/* Handle uninitialized uses. */
|
2499 |
|
|
if (SSA_NAME_IS_DEFAULT_DEF (use))
|
2500 |
|
|
changed = set_ssa_val_to (use, use);
|
2501 |
|
|
else
|
2502 |
|
|
{
|
2503 |
|
|
if (gimple_code (stmt) == GIMPLE_PHI)
|
2504 |
|
|
changed = visit_phi (stmt);
|
2505 |
|
|
else if (!gimple_has_lhs (stmt)
|
2506 |
|
|
|| gimple_has_volatile_ops (stmt)
|
2507 |
|
|
|| stmt_could_throw_p (stmt))
|
2508 |
|
|
changed = defs_to_varying (stmt);
|
2509 |
|
|
else if (is_gimple_assign (stmt))
|
2510 |
|
|
{
|
2511 |
|
|
tree lhs = gimple_assign_lhs (stmt);
|
2512 |
|
|
tree simplified;
|
2513 |
|
|
|
2514 |
|
|
/* Shortcut for copies. Simplifying copies is pointless,
|
2515 |
|
|
since we copy the expression and value they represent. */
|
2516 |
|
|
if (gimple_assign_copy_p (stmt)
|
2517 |
|
|
&& TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME
|
2518 |
|
|
&& TREE_CODE (lhs) == SSA_NAME)
|
2519 |
|
|
{
|
2520 |
|
|
changed = visit_copy (lhs, gimple_assign_rhs1 (stmt));
|
2521 |
|
|
goto done;
|
2522 |
|
|
}
|
2523 |
|
|
simplified = try_to_simplify (stmt);
|
2524 |
|
|
if (simplified)
|
2525 |
|
|
{
|
2526 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
2527 |
|
|
{
|
2528 |
|
|
fprintf (dump_file, "RHS ");
|
2529 |
|
|
print_gimple_expr (dump_file, stmt, 0, 0);
|
2530 |
|
|
fprintf (dump_file, " simplified to ");
|
2531 |
|
|
print_generic_expr (dump_file, simplified, 0);
|
2532 |
|
|
if (TREE_CODE (lhs) == SSA_NAME)
|
2533 |
|
|
fprintf (dump_file, " has constants %d\n",
|
2534 |
|
|
expr_has_constants (simplified));
|
2535 |
|
|
else
|
2536 |
|
|
fprintf (dump_file, "\n");
|
2537 |
|
|
}
|
2538 |
|
|
}
|
2539 |
|
|
/* Setting value numbers to constants will occasionally
|
2540 |
|
|
screw up phi congruence because constants are not
|
2541 |
|
|
uniquely associated with a single ssa name that can be
|
2542 |
|
|
looked up. */
|
2543 |
|
|
if (simplified
|
2544 |
|
|
&& is_gimple_min_invariant (simplified)
|
2545 |
|
|
&& TREE_CODE (lhs) == SSA_NAME)
|
2546 |
|
|
{
|
2547 |
|
|
VN_INFO (lhs)->expr = simplified;
|
2548 |
|
|
VN_INFO (lhs)->has_constants = true;
|
2549 |
|
|
changed = set_ssa_val_to (lhs, simplified);
|
2550 |
|
|
goto done;
|
2551 |
|
|
}
|
2552 |
|
|
else if (simplified
|
2553 |
|
|
&& TREE_CODE (simplified) == SSA_NAME
|
2554 |
|
|
&& TREE_CODE (lhs) == SSA_NAME)
|
2555 |
|
|
{
|
2556 |
|
|
changed = visit_copy (lhs, simplified);
|
2557 |
|
|
goto done;
|
2558 |
|
|
}
|
2559 |
|
|
else if (simplified)
|
2560 |
|
|
{
|
2561 |
|
|
if (TREE_CODE (lhs) == SSA_NAME)
|
2562 |
|
|
{
|
2563 |
|
|
VN_INFO (lhs)->has_constants = expr_has_constants (simplified);
|
2564 |
|
|
/* We have to unshare the expression or else
|
2565 |
|
|
valuizing may change the IL stream. */
|
2566 |
|
|
VN_INFO (lhs)->expr = unshare_expr (simplified);
|
2567 |
|
|
}
|
2568 |
|
|
}
|
2569 |
|
|
else if (stmt_has_constants (stmt)
|
2570 |
|
|
&& TREE_CODE (lhs) == SSA_NAME)
|
2571 |
|
|
VN_INFO (lhs)->has_constants = true;
|
2572 |
|
|
else if (TREE_CODE (lhs) == SSA_NAME)
|
2573 |
|
|
{
|
2574 |
|
|
/* We reset expr and constantness here because we may
|
2575 |
|
|
have been value numbering optimistically, and
|
2576 |
|
|
iterating. They may become non-constant in this case,
|
2577 |
|
|
even if they were optimistically constant. */
|
2578 |
|
|
|
2579 |
|
|
VN_INFO (lhs)->has_constants = false;
|
2580 |
|
|
VN_INFO (lhs)->expr = NULL_TREE;
|
2581 |
|
|
}
|
2582 |
|
|
|
2583 |
|
|
if ((TREE_CODE (lhs) == SSA_NAME
|
2584 |
|
|
/* We can substitute SSA_NAMEs that are live over
|
2585 |
|
|
abnormal edges with their constant value. */
|
2586 |
|
|
&& !(gimple_assign_copy_p (stmt)
|
2587 |
|
|
&& is_gimple_min_invariant (gimple_assign_rhs1 (stmt)))
|
2588 |
|
|
&& !(simplified
|
2589 |
|
|
&& is_gimple_min_invariant (simplified))
|
2590 |
|
|
&& SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs))
|
2591 |
|
|
/* Stores or copies from SSA_NAMEs that are live over
|
2592 |
|
|
abnormal edges are a problem. */
|
2593 |
|
|
|| (gimple_assign_single_p (stmt)
|
2594 |
|
|
&& TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME
|
2595 |
|
|
&& SSA_NAME_OCCURS_IN_ABNORMAL_PHI (gimple_assign_rhs1 (stmt))))
|
2596 |
|
|
changed = defs_to_varying (stmt);
|
2597 |
|
|
else if (REFERENCE_CLASS_P (lhs) || DECL_P (lhs))
|
2598 |
|
|
{
|
2599 |
|
|
changed = visit_reference_op_store (lhs, gimple_assign_rhs1 (stmt), stmt);
|
2600 |
|
|
}
|
2601 |
|
|
else if (TREE_CODE (lhs) == SSA_NAME)
|
2602 |
|
|
{
|
2603 |
|
|
if ((gimple_assign_copy_p (stmt)
|
2604 |
|
|
&& is_gimple_min_invariant (gimple_assign_rhs1 (stmt)))
|
2605 |
|
|
|| (simplified
|
2606 |
|
|
&& is_gimple_min_invariant (simplified)))
|
2607 |
|
|
{
|
2608 |
|
|
VN_INFO (lhs)->has_constants = true;
|
2609 |
|
|
if (simplified)
|
2610 |
|
|
changed = set_ssa_val_to (lhs, simplified);
|
2611 |
|
|
else
|
2612 |
|
|
changed = set_ssa_val_to (lhs, gimple_assign_rhs1 (stmt));
|
2613 |
|
|
}
|
2614 |
|
|
else
|
2615 |
|
|
{
|
2616 |
|
|
switch (get_gimple_rhs_class (gimple_assign_rhs_code (stmt)))
|
2617 |
|
|
{
|
2618 |
|
|
case GIMPLE_UNARY_RHS:
|
2619 |
|
|
changed = visit_unary_op (lhs, stmt);
|
2620 |
|
|
break;
|
2621 |
|
|
case GIMPLE_BINARY_RHS:
|
2622 |
|
|
changed = visit_binary_op (lhs, stmt);
|
2623 |
|
|
break;
|
2624 |
|
|
case GIMPLE_SINGLE_RHS:
|
2625 |
|
|
switch (TREE_CODE_CLASS (gimple_assign_rhs_code (stmt)))
|
2626 |
|
|
{
|
2627 |
|
|
case tcc_reference:
|
2628 |
|
|
/* VOP-less references can go through unary case. */
|
2629 |
|
|
if ((gimple_assign_rhs_code (stmt) == REALPART_EXPR
|
2630 |
|
|
|| gimple_assign_rhs_code (stmt) == IMAGPART_EXPR
|
2631 |
|
|
|| gimple_assign_rhs_code (stmt) == VIEW_CONVERT_EXPR )
|
2632 |
|
|
&& TREE_CODE (TREE_OPERAND (gimple_assign_rhs1 (stmt), 0)) == SSA_NAME)
|
2633 |
|
|
{
|
2634 |
|
|
changed = visit_unary_op (lhs, stmt);
|
2635 |
|
|
break;
|
2636 |
|
|
}
|
2637 |
|
|
/* Fallthrough. */
|
2638 |
|
|
case tcc_declaration:
|
2639 |
|
|
changed = visit_reference_op_load
|
2640 |
|
|
(lhs, gimple_assign_rhs1 (stmt), stmt);
|
2641 |
|
|
break;
|
2642 |
|
|
case tcc_expression:
|
2643 |
|
|
if (gimple_assign_rhs_code (stmt) == ADDR_EXPR)
|
2644 |
|
|
{
|
2645 |
|
|
changed = visit_unary_op (lhs, stmt);
|
2646 |
|
|
break;
|
2647 |
|
|
}
|
2648 |
|
|
/* Fallthrough. */
|
2649 |
|
|
default:
|
2650 |
|
|
changed = defs_to_varying (stmt);
|
2651 |
|
|
}
|
2652 |
|
|
break;
|
2653 |
|
|
default:
|
2654 |
|
|
changed = defs_to_varying (stmt);
|
2655 |
|
|
break;
|
2656 |
|
|
}
|
2657 |
|
|
}
|
2658 |
|
|
}
|
2659 |
|
|
else
|
2660 |
|
|
changed = defs_to_varying (stmt);
|
2661 |
|
|
}
|
2662 |
|
|
else if (is_gimple_call (stmt))
|
2663 |
|
|
{
|
2664 |
|
|
tree lhs = gimple_call_lhs (stmt);
|
2665 |
|
|
|
2666 |
|
|
/* ??? We could try to simplify calls. */
|
2667 |
|
|
|
2668 |
|
|
if (stmt_has_constants (stmt)
|
2669 |
|
|
&& TREE_CODE (lhs) == SSA_NAME)
|
2670 |
|
|
VN_INFO (lhs)->has_constants = true;
|
2671 |
|
|
else if (TREE_CODE (lhs) == SSA_NAME)
|
2672 |
|
|
{
|
2673 |
|
|
/* We reset expr and constantness here because we may
|
2674 |
|
|
have been value numbering optimistically, and
|
2675 |
|
|
iterating. They may become non-constant in this case,
|
2676 |
|
|
even if they were optimistically constant. */
|
2677 |
|
|
VN_INFO (lhs)->has_constants = false;
|
2678 |
|
|
VN_INFO (lhs)->expr = NULL_TREE;
|
2679 |
|
|
}
|
2680 |
|
|
|
2681 |
|
|
if (TREE_CODE (lhs) == SSA_NAME
|
2682 |
|
|
&& SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs))
|
2683 |
|
|
changed = defs_to_varying (stmt);
|
2684 |
|
|
/* ??? We should handle stores from calls. */
|
2685 |
|
|
else if (TREE_CODE (lhs) == SSA_NAME)
|
2686 |
|
|
{
|
2687 |
|
|
if (gimple_call_flags (stmt) & (ECF_PURE | ECF_CONST))
|
2688 |
|
|
changed = visit_reference_op_call (lhs, stmt);
|
2689 |
|
|
else
|
2690 |
|
|
changed = defs_to_varying (stmt);
|
2691 |
|
|
}
|
2692 |
|
|
else
|
2693 |
|
|
changed = defs_to_varying (stmt);
|
2694 |
|
|
}
|
2695 |
|
|
}
|
2696 |
|
|
done:
|
2697 |
|
|
return changed;
|
2698 |
|
|
}
|
2699 |
|
|
|
2700 |
|
|
/* Compare two operands by reverse postorder index */
|
2701 |
|
|
|
2702 |
|
|
static int
|
2703 |
|
|
compare_ops (const void *pa, const void *pb)
|
2704 |
|
|
{
|
2705 |
|
|
const tree opa = *((const tree *)pa);
|
2706 |
|
|
const tree opb = *((const tree *)pb);
|
2707 |
|
|
gimple opstmta = SSA_NAME_DEF_STMT (opa);
|
2708 |
|
|
gimple opstmtb = SSA_NAME_DEF_STMT (opb);
|
2709 |
|
|
basic_block bba;
|
2710 |
|
|
basic_block bbb;
|
2711 |
|
|
|
2712 |
|
|
if (gimple_nop_p (opstmta) && gimple_nop_p (opstmtb))
|
2713 |
|
|
return SSA_NAME_VERSION (opa) - SSA_NAME_VERSION (opb);
|
2714 |
|
|
else if (gimple_nop_p (opstmta))
|
2715 |
|
|
return -1;
|
2716 |
|
|
else if (gimple_nop_p (opstmtb))
|
2717 |
|
|
return 1;
|
2718 |
|
|
|
2719 |
|
|
bba = gimple_bb (opstmta);
|
2720 |
|
|
bbb = gimple_bb (opstmtb);
|
2721 |
|
|
|
2722 |
|
|
if (!bba && !bbb)
|
2723 |
|
|
return SSA_NAME_VERSION (opa) - SSA_NAME_VERSION (opb);
|
2724 |
|
|
else if (!bba)
|
2725 |
|
|
return -1;
|
2726 |
|
|
else if (!bbb)
|
2727 |
|
|
return 1;
|
2728 |
|
|
|
2729 |
|
|
if (bba == bbb)
|
2730 |
|
|
{
|
2731 |
|
|
if (gimple_code (opstmta) == GIMPLE_PHI
|
2732 |
|
|
&& gimple_code (opstmtb) == GIMPLE_PHI)
|
2733 |
|
|
return SSA_NAME_VERSION (opa) - SSA_NAME_VERSION (opb);
|
2734 |
|
|
else if (gimple_code (opstmta) == GIMPLE_PHI)
|
2735 |
|
|
return -1;
|
2736 |
|
|
else if (gimple_code (opstmtb) == GIMPLE_PHI)
|
2737 |
|
|
return 1;
|
2738 |
|
|
else if (gimple_uid (opstmta) != gimple_uid (opstmtb))
|
2739 |
|
|
return gimple_uid (opstmta) - gimple_uid (opstmtb);
|
2740 |
|
|
else
|
2741 |
|
|
return SSA_NAME_VERSION (opa) - SSA_NAME_VERSION (opb);
|
2742 |
|
|
}
|
2743 |
|
|
return rpo_numbers[bba->index] - rpo_numbers[bbb->index];
|
2744 |
|
|
}
|
2745 |
|
|
|
2746 |
|
|
/* Sort an array containing members of a strongly connected component
|
2747 |
|
|
SCC so that the members are ordered by RPO number.
|
2748 |
|
|
This means that when the sort is complete, iterating through the
|
2749 |
|
|
array will give you the members in RPO order. */
|
2750 |
|
|
|
2751 |
|
|
static void
|
2752 |
|
|
sort_scc (VEC (tree, heap) *scc)
|
2753 |
|
|
{
|
2754 |
|
|
qsort (VEC_address (tree, scc),
|
2755 |
|
|
VEC_length (tree, scc),
|
2756 |
|
|
sizeof (tree),
|
2757 |
|
|
compare_ops);
|
2758 |
|
|
}
|
2759 |
|
|
|
2760 |
|
|
/* Insert the no longer used nary *ENTRY to the current hash. */
|
2761 |
|
|
|
2762 |
|
|
static int
|
2763 |
|
|
copy_nary (void **entry, void *data ATTRIBUTE_UNUSED)
|
2764 |
|
|
{
|
2765 |
|
|
vn_nary_op_t onary = (vn_nary_op_t) *entry;
|
2766 |
|
|
size_t size = (sizeof (struct vn_nary_op_s)
|
2767 |
|
|
- sizeof (tree) * (4 - onary->length));
|
2768 |
|
|
vn_nary_op_t nary = (vn_nary_op_t) obstack_alloc (¤t_info->nary_obstack,
|
2769 |
|
|
size);
|
2770 |
|
|
void **slot;
|
2771 |
|
|
memcpy (nary, onary, size);
|
2772 |
|
|
slot = htab_find_slot_with_hash (current_info->nary, nary, nary->hashcode,
|
2773 |
|
|
INSERT);
|
2774 |
|
|
gcc_assert (!*slot);
|
2775 |
|
|
*slot = nary;
|
2776 |
|
|
return 1;
|
2777 |
|
|
}
|
2778 |
|
|
|
2779 |
|
|
/* Insert the no longer used phi *ENTRY to the current hash. */
|
2780 |
|
|
|
2781 |
|
|
static int
|
2782 |
|
|
copy_phis (void **entry, void *data ATTRIBUTE_UNUSED)
|
2783 |
|
|
{
|
2784 |
|
|
vn_phi_t ophi = (vn_phi_t) *entry;
|
2785 |
|
|
vn_phi_t phi = (vn_phi_t) pool_alloc (current_info->phis_pool);
|
2786 |
|
|
void **slot;
|
2787 |
|
|
memcpy (phi, ophi, sizeof (*phi));
|
2788 |
|
|
ophi->phiargs = NULL;
|
2789 |
|
|
slot = htab_find_slot_with_hash (current_info->phis, phi, phi->hashcode,
|
2790 |
|
|
INSERT);
|
2791 |
|
|
*slot = phi;
|
2792 |
|
|
return 1;
|
2793 |
|
|
}
|
2794 |
|
|
|
2795 |
|
|
/* Insert the no longer used reference *ENTRY to the current hash. */
|
2796 |
|
|
|
2797 |
|
|
static int
|
2798 |
|
|
copy_references (void **entry, void *data ATTRIBUTE_UNUSED)
|
2799 |
|
|
{
|
2800 |
|
|
vn_reference_t oref = (vn_reference_t) *entry;
|
2801 |
|
|
vn_reference_t ref;
|
2802 |
|
|
void **slot;
|
2803 |
|
|
ref = (vn_reference_t) pool_alloc (current_info->references_pool);
|
2804 |
|
|
memcpy (ref, oref, sizeof (*ref));
|
2805 |
|
|
oref->operands = NULL;
|
2806 |
|
|
slot = htab_find_slot_with_hash (current_info->references, ref, ref->hashcode,
|
2807 |
|
|
INSERT);
|
2808 |
|
|
if (*slot)
|
2809 |
|
|
free_reference (*slot);
|
2810 |
|
|
*slot = ref;
|
2811 |
|
|
return 1;
|
2812 |
|
|
}
|
2813 |
|
|
|
2814 |
|
|
/* Process a strongly connected component in the SSA graph. */
|
2815 |
|
|
|
2816 |
|
|
static void
|
2817 |
|
|
process_scc (VEC (tree, heap) *scc)
|
2818 |
|
|
{
|
2819 |
|
|
/* If the SCC has a single member, just visit it. */
|
2820 |
|
|
|
2821 |
|
|
if (VEC_length (tree, scc) == 1)
|
2822 |
|
|
{
|
2823 |
|
|
tree use = VEC_index (tree, scc, 0);
|
2824 |
|
|
if (!VN_INFO (use)->use_processed)
|
2825 |
|
|
visit_use (use);
|
2826 |
|
|
}
|
2827 |
|
|
else
|
2828 |
|
|
{
|
2829 |
|
|
tree var;
|
2830 |
|
|
unsigned int i;
|
2831 |
|
|
unsigned int iterations = 0;
|
2832 |
|
|
bool changed = true;
|
2833 |
|
|
|
2834 |
|
|
/* Iterate over the SCC with the optimistic table until it stops
|
2835 |
|
|
changing. */
|
2836 |
|
|
current_info = optimistic_info;
|
2837 |
|
|
while (changed)
|
2838 |
|
|
{
|
2839 |
|
|
changed = false;
|
2840 |
|
|
iterations++;
|
2841 |
|
|
/* As we are value-numbering optimistically we have to
|
2842 |
|
|
clear the expression tables and the simplified expressions
|
2843 |
|
|
in each iteration until we converge. */
|
2844 |
|
|
htab_empty (optimistic_info->nary);
|
2845 |
|
|
htab_empty (optimistic_info->phis);
|
2846 |
|
|
htab_empty (optimistic_info->references);
|
2847 |
|
|
obstack_free (&optimistic_info->nary_obstack, NULL);
|
2848 |
|
|
gcc_obstack_init (&optimistic_info->nary_obstack);
|
2849 |
|
|
empty_alloc_pool (optimistic_info->phis_pool);
|
2850 |
|
|
empty_alloc_pool (optimistic_info->references_pool);
|
2851 |
|
|
for (i = 0; VEC_iterate (tree, scc, i, var); i++)
|
2852 |
|
|
VN_INFO (var)->expr = NULL_TREE;
|
2853 |
|
|
for (i = 0; VEC_iterate (tree, scc, i, var); i++)
|
2854 |
|
|
changed |= visit_use (var);
|
2855 |
|
|
}
|
2856 |
|
|
|
2857 |
|
|
statistics_histogram_event (cfun, "SCC iterations", iterations);
|
2858 |
|
|
|
2859 |
|
|
/* Finally, copy the contents of the no longer used optimistic
|
2860 |
|
|
table to the valid table. */
|
2861 |
|
|
current_info = valid_info;
|
2862 |
|
|
htab_traverse (optimistic_info->nary, copy_nary, NULL);
|
2863 |
|
|
htab_traverse (optimistic_info->phis, copy_phis, NULL);
|
2864 |
|
|
htab_traverse (optimistic_info->references, copy_references, NULL);
|
2865 |
|
|
}
|
2866 |
|
|
}
|
2867 |
|
|
|
2868 |
|
|
DEF_VEC_O(ssa_op_iter);
|
2869 |
|
|
DEF_VEC_ALLOC_O(ssa_op_iter,heap);
|
2870 |
|
|
|
2871 |
|
|
/* Pop the components of the found SCC for NAME off the SCC stack
|
2872 |
|
|
and process them. Returns true if all went well, false if
|
2873 |
|
|
we run into resource limits. */
|
2874 |
|
|
|
2875 |
|
|
static bool
|
2876 |
|
|
extract_and_process_scc_for_name (tree name)
|
2877 |
|
|
{
|
2878 |
|
|
VEC (tree, heap) *scc = NULL;
|
2879 |
|
|
tree x;
|
2880 |
|
|
|
2881 |
|
|
/* Found an SCC, pop the components off the SCC stack and
|
2882 |
|
|
process them. */
|
2883 |
|
|
do
|
2884 |
|
|
{
|
2885 |
|
|
x = VEC_pop (tree, sccstack);
|
2886 |
|
|
|
2887 |
|
|
VN_INFO (x)->on_sccstack = false;
|
2888 |
|
|
VEC_safe_push (tree, heap, scc, x);
|
2889 |
|
|
} while (x != name);
|
2890 |
|
|
|
2891 |
|
|
/* Bail out of SCCVN in case a SCC turns out to be incredibly large. */
|
2892 |
|
|
if (VEC_length (tree, scc)
|
2893 |
|
|
> (unsigned)PARAM_VALUE (PARAM_SCCVN_MAX_SCC_SIZE))
|
2894 |
|
|
{
|
2895 |
|
|
if (dump_file)
|
2896 |
|
|
fprintf (dump_file, "WARNING: Giving up with SCCVN due to "
|
2897 |
|
|
"SCC size %u exceeding %u\n", VEC_length (tree, scc),
|
2898 |
|
|
(unsigned)PARAM_VALUE (PARAM_SCCVN_MAX_SCC_SIZE));
|
2899 |
|
|
return false;
|
2900 |
|
|
}
|
2901 |
|
|
|
2902 |
|
|
if (VEC_length (tree, scc) > 1)
|
2903 |
|
|
sort_scc (scc);
|
2904 |
|
|
|
2905 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
2906 |
|
|
print_scc (dump_file, scc);
|
2907 |
|
|
|
2908 |
|
|
process_scc (scc);
|
2909 |
|
|
|
2910 |
|
|
VEC_free (tree, heap, scc);
|
2911 |
|
|
|
2912 |
|
|
return true;
|
2913 |
|
|
}
|
2914 |
|
|
|
2915 |
|
|
/* Depth first search on NAME to discover and process SCC's in the SSA
|
2916 |
|
|
graph.
|
2917 |
|
|
Execution of this algorithm relies on the fact that the SCC's are
|
2918 |
|
|
popped off the stack in topological order.
|
2919 |
|
|
Returns true if successful, false if we stopped processing SCC's due
|
2920 |
|
|
to resource constraints. */
|
2921 |
|
|
|
2922 |
|
|
static bool
|
2923 |
|
|
DFS (tree name)
|
2924 |
|
|
{
|
2925 |
|
|
VEC(ssa_op_iter, heap) *itervec = NULL;
|
2926 |
|
|
VEC(tree, heap) *namevec = NULL;
|
2927 |
|
|
use_operand_p usep = NULL;
|
2928 |
|
|
gimple defstmt;
|
2929 |
|
|
tree use;
|
2930 |
|
|
ssa_op_iter iter;
|
2931 |
|
|
|
2932 |
|
|
start_over:
|
2933 |
|
|
/* SCC info */
|
2934 |
|
|
VN_INFO (name)->dfsnum = next_dfs_num++;
|
2935 |
|
|
VN_INFO (name)->visited = true;
|
2936 |
|
|
VN_INFO (name)->low = VN_INFO (name)->dfsnum;
|
2937 |
|
|
|
2938 |
|
|
VEC_safe_push (tree, heap, sccstack, name);
|
2939 |
|
|
VN_INFO (name)->on_sccstack = true;
|
2940 |
|
|
defstmt = SSA_NAME_DEF_STMT (name);
|
2941 |
|
|
|
2942 |
|
|
/* Recursively DFS on our operands, looking for SCC's. */
|
2943 |
|
|
if (!gimple_nop_p (defstmt))
|
2944 |
|
|
{
|
2945 |
|
|
/* Push a new iterator. */
|
2946 |
|
|
if (gimple_code (defstmt) == GIMPLE_PHI)
|
2947 |
|
|
usep = op_iter_init_phiuse (&iter, defstmt, SSA_OP_ALL_USES);
|
2948 |
|
|
else
|
2949 |
|
|
usep = op_iter_init_use (&iter, defstmt, SSA_OP_ALL_USES);
|
2950 |
|
|
}
|
2951 |
|
|
else
|
2952 |
|
|
clear_and_done_ssa_iter (&iter);
|
2953 |
|
|
|
2954 |
|
|
while (1)
|
2955 |
|
|
{
|
2956 |
|
|
/* If we are done processing uses of a name, go up the stack
|
2957 |
|
|
of iterators and process SCCs as we found them. */
|
2958 |
|
|
if (op_iter_done (&iter))
|
2959 |
|
|
{
|
2960 |
|
|
/* See if we found an SCC. */
|
2961 |
|
|
if (VN_INFO (name)->low == VN_INFO (name)->dfsnum)
|
2962 |
|
|
if (!extract_and_process_scc_for_name (name))
|
2963 |
|
|
{
|
2964 |
|
|
VEC_free (tree, heap, namevec);
|
2965 |
|
|
VEC_free (ssa_op_iter, heap, itervec);
|
2966 |
|
|
return false;
|
2967 |
|
|
}
|
2968 |
|
|
|
2969 |
|
|
/* Check if we are done. */
|
2970 |
|
|
if (VEC_empty (tree, namevec))
|
2971 |
|
|
{
|
2972 |
|
|
VEC_free (tree, heap, namevec);
|
2973 |
|
|
VEC_free (ssa_op_iter, heap, itervec);
|
2974 |
|
|
return true;
|
2975 |
|
|
}
|
2976 |
|
|
|
2977 |
|
|
/* Restore the last use walker and continue walking there. */
|
2978 |
|
|
use = name;
|
2979 |
|
|
name = VEC_pop (tree, namevec);
|
2980 |
|
|
memcpy (&iter, VEC_last (ssa_op_iter, itervec),
|
2981 |
|
|
sizeof (ssa_op_iter));
|
2982 |
|
|
VEC_pop (ssa_op_iter, itervec);
|
2983 |
|
|
goto continue_walking;
|
2984 |
|
|
}
|
2985 |
|
|
|
2986 |
|
|
use = USE_FROM_PTR (usep);
|
2987 |
|
|
|
2988 |
|
|
/* Since we handle phi nodes, we will sometimes get
|
2989 |
|
|
invariants in the use expression. */
|
2990 |
|
|
if (TREE_CODE (use) == SSA_NAME)
|
2991 |
|
|
{
|
2992 |
|
|
if (! (VN_INFO (use)->visited))
|
2993 |
|
|
{
|
2994 |
|
|
/* Recurse by pushing the current use walking state on
|
2995 |
|
|
the stack and starting over. */
|
2996 |
|
|
VEC_safe_push(ssa_op_iter, heap, itervec, &iter);
|
2997 |
|
|
VEC_safe_push(tree, heap, namevec, name);
|
2998 |
|
|
name = use;
|
2999 |
|
|
goto start_over;
|
3000 |
|
|
|
3001 |
|
|
continue_walking:
|
3002 |
|
|
VN_INFO (name)->low = MIN (VN_INFO (name)->low,
|
3003 |
|
|
VN_INFO (use)->low);
|
3004 |
|
|
}
|
3005 |
|
|
if (VN_INFO (use)->dfsnum < VN_INFO (name)->dfsnum
|
3006 |
|
|
&& VN_INFO (use)->on_sccstack)
|
3007 |
|
|
{
|
3008 |
|
|
VN_INFO (name)->low = MIN (VN_INFO (use)->dfsnum,
|
3009 |
|
|
VN_INFO (name)->low);
|
3010 |
|
|
}
|
3011 |
|
|
}
|
3012 |
|
|
|
3013 |
|
|
usep = op_iter_next_use (&iter);
|
3014 |
|
|
}
|
3015 |
|
|
}
|
3016 |
|
|
|
3017 |
|
|
/* Allocate a value number table. */
|
3018 |
|
|
|
3019 |
|
|
static void
|
3020 |
|
|
allocate_vn_table (vn_tables_t table)
|
3021 |
|
|
{
|
3022 |
|
|
table->phis = htab_create (23, vn_phi_hash, vn_phi_eq, free_phi);
|
3023 |
|
|
table->nary = htab_create (23, vn_nary_op_hash, vn_nary_op_eq, NULL);
|
3024 |
|
|
table->references = htab_create (23, vn_reference_hash, vn_reference_eq,
|
3025 |
|
|
free_reference);
|
3026 |
|
|
|
3027 |
|
|
gcc_obstack_init (&table->nary_obstack);
|
3028 |
|
|
table->phis_pool = create_alloc_pool ("VN phis",
|
3029 |
|
|
sizeof (struct vn_phi_s),
|
3030 |
|
|
30);
|
3031 |
|
|
table->references_pool = create_alloc_pool ("VN references",
|
3032 |
|
|
sizeof (struct vn_reference_s),
|
3033 |
|
|
30);
|
3034 |
|
|
}
|
3035 |
|
|
|
3036 |
|
|
/* Free a value number table. */
|
3037 |
|
|
|
3038 |
|
|
static void
|
3039 |
|
|
free_vn_table (vn_tables_t table)
|
3040 |
|
|
{
|
3041 |
|
|
htab_delete (table->phis);
|
3042 |
|
|
htab_delete (table->nary);
|
3043 |
|
|
htab_delete (table->references);
|
3044 |
|
|
obstack_free (&table->nary_obstack, NULL);
|
3045 |
|
|
free_alloc_pool (table->phis_pool);
|
3046 |
|
|
free_alloc_pool (table->references_pool);
|
3047 |
|
|
}
|
3048 |
|
|
|
3049 |
|
|
static void
|
3050 |
|
|
init_scc_vn (void)
|
3051 |
|
|
{
|
3052 |
|
|
size_t i;
|
3053 |
|
|
int j;
|
3054 |
|
|
int *rpo_numbers_temp;
|
3055 |
|
|
|
3056 |
|
|
calculate_dominance_info (CDI_DOMINATORS);
|
3057 |
|
|
sccstack = NULL;
|
3058 |
|
|
constant_to_value_id = htab_create (23, vn_constant_hash, vn_constant_eq,
|
3059 |
|
|
free);
|
3060 |
|
|
|
3061 |
|
|
constant_value_ids = BITMAP_ALLOC (NULL);
|
3062 |
|
|
|
3063 |
|
|
next_dfs_num = 1;
|
3064 |
|
|
next_value_id = 1;
|
3065 |
|
|
|
3066 |
|
|
vn_ssa_aux_table = VEC_alloc (vn_ssa_aux_t, heap, num_ssa_names + 1);
|
3067 |
|
|
/* VEC_alloc doesn't actually grow it to the right size, it just
|
3068 |
|
|
preallocates the space to do so. */
|
3069 |
|
|
VEC_safe_grow_cleared (vn_ssa_aux_t, heap, vn_ssa_aux_table, num_ssa_names + 1);
|
3070 |
|
|
gcc_obstack_init (&vn_ssa_aux_obstack);
|
3071 |
|
|
|
3072 |
|
|
shared_lookup_phiargs = NULL;
|
3073 |
|
|
shared_lookup_references = NULL;
|
3074 |
|
|
rpo_numbers = XCNEWVEC (int, last_basic_block + NUM_FIXED_BLOCKS);
|
3075 |
|
|
rpo_numbers_temp = XCNEWVEC (int, last_basic_block + NUM_FIXED_BLOCKS);
|
3076 |
|
|
pre_and_rev_post_order_compute (NULL, rpo_numbers_temp, false);
|
3077 |
|
|
|
3078 |
|
|
/* RPO numbers is an array of rpo ordering, rpo[i] = bb means that
|
3079 |
|
|
the i'th block in RPO order is bb. We want to map bb's to RPO
|
3080 |
|
|
numbers, so we need to rearrange this array. */
|
3081 |
|
|
for (j = 0; j < n_basic_blocks - NUM_FIXED_BLOCKS; j++)
|
3082 |
|
|
rpo_numbers[rpo_numbers_temp[j]] = j;
|
3083 |
|
|
|
3084 |
|
|
XDELETE (rpo_numbers_temp);
|
3085 |
|
|
|
3086 |
|
|
VN_TOP = create_tmp_var_raw (void_type_node, "vn_top");
|
3087 |
|
|
|
3088 |
|
|
/* Create the VN_INFO structures, and initialize value numbers to
|
3089 |
|
|
TOP. */
|
3090 |
|
|
for (i = 0; i < num_ssa_names; i++)
|
3091 |
|
|
{
|
3092 |
|
|
tree name = ssa_name (i);
|
3093 |
|
|
if (name)
|
3094 |
|
|
{
|
3095 |
|
|
VN_INFO_GET (name)->valnum = VN_TOP;
|
3096 |
|
|
VN_INFO (name)->expr = NULL_TREE;
|
3097 |
|
|
VN_INFO (name)->value_id = 0;
|
3098 |
|
|
}
|
3099 |
|
|
}
|
3100 |
|
|
|
3101 |
|
|
renumber_gimple_stmt_uids ();
|
3102 |
|
|
|
3103 |
|
|
/* Create the valid and optimistic value numbering tables. */
|
3104 |
|
|
valid_info = XCNEW (struct vn_tables_s);
|
3105 |
|
|
allocate_vn_table (valid_info);
|
3106 |
|
|
optimistic_info = XCNEW (struct vn_tables_s);
|
3107 |
|
|
allocate_vn_table (optimistic_info);
|
3108 |
|
|
}
|
3109 |
|
|
|
3110 |
|
|
void
|
3111 |
|
|
free_scc_vn (void)
|
3112 |
|
|
{
|
3113 |
|
|
size_t i;
|
3114 |
|
|
|
3115 |
|
|
htab_delete (constant_to_value_id);
|
3116 |
|
|
BITMAP_FREE (constant_value_ids);
|
3117 |
|
|
VEC_free (tree, heap, shared_lookup_phiargs);
|
3118 |
|
|
VEC_free (vn_reference_op_s, heap, shared_lookup_references);
|
3119 |
|
|
XDELETEVEC (rpo_numbers);
|
3120 |
|
|
|
3121 |
|
|
for (i = 0; i < num_ssa_names; i++)
|
3122 |
|
|
{
|
3123 |
|
|
tree name = ssa_name (i);
|
3124 |
|
|
if (name
|
3125 |
|
|
&& VN_INFO (name)->needs_insertion)
|
3126 |
|
|
release_ssa_name (name);
|
3127 |
|
|
}
|
3128 |
|
|
obstack_free (&vn_ssa_aux_obstack, NULL);
|
3129 |
|
|
VEC_free (vn_ssa_aux_t, heap, vn_ssa_aux_table);
|
3130 |
|
|
|
3131 |
|
|
VEC_free (tree, heap, sccstack);
|
3132 |
|
|
free_vn_table (valid_info);
|
3133 |
|
|
XDELETE (valid_info);
|
3134 |
|
|
free_vn_table (optimistic_info);
|
3135 |
|
|
XDELETE (optimistic_info);
|
3136 |
|
|
}
|
3137 |
|
|
|
3138 |
|
|
/* Set the value ids in the valid hash tables. */
|
3139 |
|
|
|
3140 |
|
|
static void
|
3141 |
|
|
set_hashtable_value_ids (void)
|
3142 |
|
|
{
|
3143 |
|
|
htab_iterator hi;
|
3144 |
|
|
vn_nary_op_t vno;
|
3145 |
|
|
vn_reference_t vr;
|
3146 |
|
|
vn_phi_t vp;
|
3147 |
|
|
|
3148 |
|
|
/* Now set the value ids of the things we had put in the hash
|
3149 |
|
|
table. */
|
3150 |
|
|
|
3151 |
|
|
FOR_EACH_HTAB_ELEMENT (valid_info->nary,
|
3152 |
|
|
vno, vn_nary_op_t, hi)
|
3153 |
|
|
{
|
3154 |
|
|
if (vno->result)
|
3155 |
|
|
{
|
3156 |
|
|
if (TREE_CODE (vno->result) == SSA_NAME)
|
3157 |
|
|
vno->value_id = VN_INFO (vno->result)->value_id;
|
3158 |
|
|
else if (is_gimple_min_invariant (vno->result))
|
3159 |
|
|
vno->value_id = get_or_alloc_constant_value_id (vno->result);
|
3160 |
|
|
}
|
3161 |
|
|
}
|
3162 |
|
|
|
3163 |
|
|
FOR_EACH_HTAB_ELEMENT (valid_info->phis,
|
3164 |
|
|
vp, vn_phi_t, hi)
|
3165 |
|
|
{
|
3166 |
|
|
if (vp->result)
|
3167 |
|
|
{
|
3168 |
|
|
if (TREE_CODE (vp->result) == SSA_NAME)
|
3169 |
|
|
vp->value_id = VN_INFO (vp->result)->value_id;
|
3170 |
|
|
else if (is_gimple_min_invariant (vp->result))
|
3171 |
|
|
vp->value_id = get_or_alloc_constant_value_id (vp->result);
|
3172 |
|
|
}
|
3173 |
|
|
}
|
3174 |
|
|
|
3175 |
|
|
FOR_EACH_HTAB_ELEMENT (valid_info->references,
|
3176 |
|
|
vr, vn_reference_t, hi)
|
3177 |
|
|
{
|
3178 |
|
|
if (vr->result)
|
3179 |
|
|
{
|
3180 |
|
|
if (TREE_CODE (vr->result) == SSA_NAME)
|
3181 |
|
|
vr->value_id = VN_INFO (vr->result)->value_id;
|
3182 |
|
|
else if (is_gimple_min_invariant (vr->result))
|
3183 |
|
|
vr->value_id = get_or_alloc_constant_value_id (vr->result);
|
3184 |
|
|
}
|
3185 |
|
|
}
|
3186 |
|
|
}
|
3187 |
|
|
|
3188 |
|
|
/* Do SCCVN. Returns true if it finished, false if we bailed out
|
3189 |
|
|
due to resource constraints. */
|
3190 |
|
|
|
3191 |
|
|
bool
|
3192 |
|
|
run_scc_vn (bool may_insert_arg)
|
3193 |
|
|
{
|
3194 |
|
|
size_t i;
|
3195 |
|
|
tree param;
|
3196 |
|
|
bool changed = true;
|
3197 |
|
|
|
3198 |
|
|
may_insert = may_insert_arg;
|
3199 |
|
|
|
3200 |
|
|
init_scc_vn ();
|
3201 |
|
|
current_info = valid_info;
|
3202 |
|
|
|
3203 |
|
|
for (param = DECL_ARGUMENTS (current_function_decl);
|
3204 |
|
|
param;
|
3205 |
|
|
param = TREE_CHAIN (param))
|
3206 |
|
|
{
|
3207 |
|
|
if (gimple_default_def (cfun, param) != NULL)
|
3208 |
|
|
{
|
3209 |
|
|
tree def = gimple_default_def (cfun, param);
|
3210 |
|
|
VN_INFO (def)->valnum = def;
|
3211 |
|
|
}
|
3212 |
|
|
}
|
3213 |
|
|
|
3214 |
|
|
for (i = 1; i < num_ssa_names; ++i)
|
3215 |
|
|
{
|
3216 |
|
|
tree name = ssa_name (i);
|
3217 |
|
|
if (name
|
3218 |
|
|
&& VN_INFO (name)->visited == false
|
3219 |
|
|
&& !has_zero_uses (name))
|
3220 |
|
|
if (!DFS (name))
|
3221 |
|
|
{
|
3222 |
|
|
free_scc_vn ();
|
3223 |
|
|
may_insert = false;
|
3224 |
|
|
return false;
|
3225 |
|
|
}
|
3226 |
|
|
}
|
3227 |
|
|
|
3228 |
|
|
/* Initialize the value ids. */
|
3229 |
|
|
|
3230 |
|
|
for (i = 1; i < num_ssa_names; ++i)
|
3231 |
|
|
{
|
3232 |
|
|
tree name = ssa_name (i);
|
3233 |
|
|
vn_ssa_aux_t info;
|
3234 |
|
|
if (!name)
|
3235 |
|
|
continue;
|
3236 |
|
|
info = VN_INFO (name);
|
3237 |
|
|
if (info->valnum == name
|
3238 |
|
|
|| info->valnum == VN_TOP)
|
3239 |
|
|
info->value_id = get_next_value_id ();
|
3240 |
|
|
else if (is_gimple_min_invariant (info->valnum))
|
3241 |
|
|
info->value_id = get_or_alloc_constant_value_id (info->valnum);
|
3242 |
|
|
}
|
3243 |
|
|
|
3244 |
|
|
/* Propagate until they stop changing. */
|
3245 |
|
|
while (changed)
|
3246 |
|
|
{
|
3247 |
|
|
changed = false;
|
3248 |
|
|
for (i = 1; i < num_ssa_names; ++i)
|
3249 |
|
|
{
|
3250 |
|
|
tree name = ssa_name (i);
|
3251 |
|
|
vn_ssa_aux_t info;
|
3252 |
|
|
if (!name)
|
3253 |
|
|
continue;
|
3254 |
|
|
info = VN_INFO (name);
|
3255 |
|
|
if (TREE_CODE (info->valnum) == SSA_NAME
|
3256 |
|
|
&& info->valnum != name
|
3257 |
|
|
&& info->value_id != VN_INFO (info->valnum)->value_id)
|
3258 |
|
|
{
|
3259 |
|
|
changed = true;
|
3260 |
|
|
info->value_id = VN_INFO (info->valnum)->value_id;
|
3261 |
|
|
}
|
3262 |
|
|
}
|
3263 |
|
|
}
|
3264 |
|
|
|
3265 |
|
|
set_hashtable_value_ids ();
|
3266 |
|
|
|
3267 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
3268 |
|
|
{
|
3269 |
|
|
fprintf (dump_file, "Value numbers:\n");
|
3270 |
|
|
for (i = 0; i < num_ssa_names; i++)
|
3271 |
|
|
{
|
3272 |
|
|
tree name = ssa_name (i);
|
3273 |
|
|
if (name
|
3274 |
|
|
&& VN_INFO (name)->visited
|
3275 |
|
|
&& SSA_VAL (name) != name)
|
3276 |
|
|
{
|
3277 |
|
|
print_generic_expr (dump_file, name, 0);
|
3278 |
|
|
fprintf (dump_file, " = ");
|
3279 |
|
|
print_generic_expr (dump_file, SSA_VAL (name), 0);
|
3280 |
|
|
fprintf (dump_file, "\n");
|
3281 |
|
|
}
|
3282 |
|
|
}
|
3283 |
|
|
}
|
3284 |
|
|
|
3285 |
|
|
may_insert = false;
|
3286 |
|
|
return true;
|
3287 |
|
|
}
|
3288 |
|
|
|
3289 |
|
|
/* Return the maximum value id we have ever seen. */
|
3290 |
|
|
|
3291 |
|
|
unsigned int
|
3292 |
|
|
get_max_value_id (void)
|
3293 |
|
|
{
|
3294 |
|
|
return next_value_id;
|
3295 |
|
|
}
|
3296 |
|
|
|
3297 |
|
|
/* Return the next unique value id. */
|
3298 |
|
|
|
3299 |
|
|
unsigned int
|
3300 |
|
|
get_next_value_id (void)
|
3301 |
|
|
{
|
3302 |
|
|
return next_value_id++;
|
3303 |
|
|
}
|
3304 |
|
|
|
3305 |
|
|
|
3306 |
|
|
/* Compare two expressions E1 and E2 and return true if they are equal. */
|
3307 |
|
|
|
3308 |
|
|
bool
|
3309 |
|
|
expressions_equal_p (tree e1, tree e2)
|
3310 |
|
|
{
|
3311 |
|
|
/* The obvious case. */
|
3312 |
|
|
if (e1 == e2)
|
3313 |
|
|
return true;
|
3314 |
|
|
|
3315 |
|
|
/* If only one of them is null, they cannot be equal. */
|
3316 |
|
|
if (!e1 || !e2)
|
3317 |
|
|
return false;
|
3318 |
|
|
|
3319 |
|
|
/* Now perform the actual comparison. */
|
3320 |
|
|
if (TREE_CODE (e1) == TREE_CODE (e2)
|
3321 |
|
|
&& operand_equal_p (e1, e2, OEP_PURE_SAME))
|
3322 |
|
|
return true;
|
3323 |
|
|
|
3324 |
|
|
return false;
|
3325 |
|
|
}
|
3326 |
|
|
|
3327 |
|
|
|
3328 |
|
|
/* Return true if the nary operation NARY may trap. This is a copy
|
3329 |
|
|
of stmt_could_throw_1_p adjusted to the SCCVN IL. */
|
3330 |
|
|
|
3331 |
|
|
bool
|
3332 |
|
|
vn_nary_may_trap (vn_nary_op_t nary)
|
3333 |
|
|
{
|
3334 |
|
|
tree type;
|
3335 |
|
|
tree rhs2 = NULL_TREE;
|
3336 |
|
|
bool honor_nans = false;
|
3337 |
|
|
bool honor_snans = false;
|
3338 |
|
|
bool fp_operation = false;
|
3339 |
|
|
bool honor_trapv = false;
|
3340 |
|
|
bool handled, ret;
|
3341 |
|
|
unsigned i;
|
3342 |
|
|
|
3343 |
|
|
if (TREE_CODE_CLASS (nary->opcode) == tcc_comparison
|
3344 |
|
|
|| TREE_CODE_CLASS (nary->opcode) == tcc_unary
|
3345 |
|
|
|| TREE_CODE_CLASS (nary->opcode) == tcc_binary)
|
3346 |
|
|
{
|
3347 |
|
|
type = nary->type;
|
3348 |
|
|
fp_operation = FLOAT_TYPE_P (type);
|
3349 |
|
|
if (fp_operation)
|
3350 |
|
|
{
|
3351 |
|
|
honor_nans = flag_trapping_math && !flag_finite_math_only;
|
3352 |
|
|
honor_snans = flag_signaling_nans != 0;
|
3353 |
|
|
}
|
3354 |
|
|
else if (INTEGRAL_TYPE_P (type)
|
3355 |
|
|
&& TYPE_OVERFLOW_TRAPS (type))
|
3356 |
|
|
honor_trapv = true;
|
3357 |
|
|
}
|
3358 |
|
|
if (nary->length >= 2)
|
3359 |
|
|
rhs2 = nary->op[1];
|
3360 |
|
|
ret = operation_could_trap_helper_p (nary->opcode, fp_operation,
|
3361 |
|
|
honor_trapv,
|
3362 |
|
|
honor_nans, honor_snans, rhs2,
|
3363 |
|
|
&handled);
|
3364 |
|
|
if (handled
|
3365 |
|
|
&& ret)
|
3366 |
|
|
return true;
|
3367 |
|
|
|
3368 |
|
|
for (i = 0; i < nary->length; ++i)
|
3369 |
|
|
if (tree_could_trap_p (nary->op[i]))
|
3370 |
|
|
return true;
|
3371 |
|
|
|
3372 |
|
|
return false;
|
3373 |
|
|
}
|