1 |
280 |
jeremybenn |
/* Tree based points-to analysis
|
2 |
|
|
Copyright (C) 2005, 2006, 2007, 2008, 2009, 2010
|
3 |
|
|
Free Software Foundation, Inc.
|
4 |
|
|
Contributed by Daniel Berlin <dberlin@dberlin.org>
|
5 |
|
|
|
6 |
|
|
This file is part of GCC.
|
7 |
|
|
|
8 |
|
|
GCC is free software; you can redistribute it and/or modify
|
9 |
|
|
under the terms of the GNU General Public License as published by
|
10 |
|
|
the Free Software Foundation; either version 3 of the License, or
|
11 |
|
|
(at your option) any later version.
|
12 |
|
|
|
13 |
|
|
GCC is distributed in the hope that it will be useful,
|
14 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
15 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
16 |
|
|
GNU General Public License for more details.
|
17 |
|
|
|
18 |
|
|
You should have received a copy of the GNU General Public License
|
19 |
|
|
along with GCC; see the file COPYING3. If not see
|
20 |
|
|
<http://www.gnu.org/licenses/>. */
|
21 |
|
|
|
22 |
|
|
#include "config.h"
|
23 |
|
|
#include "system.h"
|
24 |
|
|
#include "coretypes.h"
|
25 |
|
|
#include "tm.h"
|
26 |
|
|
#include "ggc.h"
|
27 |
|
|
#include "obstack.h"
|
28 |
|
|
#include "bitmap.h"
|
29 |
|
|
#include "flags.h"
|
30 |
|
|
#include "rtl.h"
|
31 |
|
|
#include "tm_p.h"
|
32 |
|
|
#include "hard-reg-set.h"
|
33 |
|
|
#include "basic-block.h"
|
34 |
|
|
#include "output.h"
|
35 |
|
|
#include "tree.h"
|
36 |
|
|
#include "tree-flow.h"
|
37 |
|
|
#include "tree-inline.h"
|
38 |
|
|
#include "varray.h"
|
39 |
|
|
#include "diagnostic.h"
|
40 |
|
|
#include "toplev.h"
|
41 |
|
|
#include "gimple.h"
|
42 |
|
|
#include "hashtab.h"
|
43 |
|
|
#include "function.h"
|
44 |
|
|
#include "cgraph.h"
|
45 |
|
|
#include "tree-pass.h"
|
46 |
|
|
#include "timevar.h"
|
47 |
|
|
#include "alloc-pool.h"
|
48 |
|
|
#include "splay-tree.h"
|
49 |
|
|
#include "params.h"
|
50 |
|
|
#include "cgraph.h"
|
51 |
|
|
#include "alias.h"
|
52 |
|
|
#include "pointer-set.h"
|
53 |
|
|
|
54 |
|
|
/* The idea behind this analyzer is to generate set constraints from the
|
55 |
|
|
program, then solve the resulting constraints in order to generate the
|
56 |
|
|
points-to sets.
|
57 |
|
|
|
58 |
|
|
Set constraints are a way of modeling program analysis problems that
|
59 |
|
|
involve sets. They consist of an inclusion constraint language,
|
60 |
|
|
describing the variables (each variable is a set) and operations that
|
61 |
|
|
are involved on the variables, and a set of rules that derive facts
|
62 |
|
|
from these operations. To solve a system of set constraints, you derive
|
63 |
|
|
all possible facts under the rules, which gives you the correct sets
|
64 |
|
|
as a consequence.
|
65 |
|
|
|
66 |
|
|
See "Efficient Field-sensitive pointer analysis for C" by "David
|
67 |
|
|
J. Pearce and Paul H. J. Kelly and Chris Hankin, at
|
68 |
|
|
http://citeseer.ist.psu.edu/pearce04efficient.html
|
69 |
|
|
|
70 |
|
|
Also see "Ultra-fast Aliasing Analysis using CLA: A Million Lines
|
71 |
|
|
of C Code in a Second" by ""Nevin Heintze and Olivier Tardieu" at
|
72 |
|
|
http://citeseer.ist.psu.edu/heintze01ultrafast.html
|
73 |
|
|
|
74 |
|
|
There are three types of real constraint expressions, DEREF,
|
75 |
|
|
ADDRESSOF, and SCALAR. Each constraint expression consists
|
76 |
|
|
of a constraint type, a variable, and an offset.
|
77 |
|
|
|
78 |
|
|
SCALAR is a constraint expression type used to represent x, whether
|
79 |
|
|
it appears on the LHS or the RHS of a statement.
|
80 |
|
|
DEREF is a constraint expression type used to represent *x, whether
|
81 |
|
|
it appears on the LHS or the RHS of a statement.
|
82 |
|
|
ADDRESSOF is a constraint expression used to represent &x, whether
|
83 |
|
|
it appears on the LHS or the RHS of a statement.
|
84 |
|
|
|
85 |
|
|
Each pointer variable in the program is assigned an integer id, and
|
86 |
|
|
each field of a structure variable is assigned an integer id as well.
|
87 |
|
|
|
88 |
|
|
Structure variables are linked to their list of fields through a "next
|
89 |
|
|
field" in each variable that points to the next field in offset
|
90 |
|
|
order.
|
91 |
|
|
Each variable for a structure field has
|
92 |
|
|
|
93 |
|
|
1. "size", that tells the size in bits of that field.
|
94 |
|
|
2. "fullsize, that tells the size in bits of the entire structure.
|
95 |
|
|
3. "offset", that tells the offset in bits from the beginning of the
|
96 |
|
|
structure to this field.
|
97 |
|
|
|
98 |
|
|
Thus,
|
99 |
|
|
struct f
|
100 |
|
|
{
|
101 |
|
|
int a;
|
102 |
|
|
int b;
|
103 |
|
|
} foo;
|
104 |
|
|
int *bar;
|
105 |
|
|
|
106 |
|
|
looks like
|
107 |
|
|
|
108 |
|
|
foo.a -> id 1, size 32, offset 0, fullsize 64, next foo.b
|
109 |
|
|
foo.b -> id 2, size 32, offset 32, fullsize 64, next NULL
|
110 |
|
|
bar -> id 3, size 32, offset 0, fullsize 32, next NULL
|
111 |
|
|
|
112 |
|
|
|
113 |
|
|
In order to solve the system of set constraints, the following is
|
114 |
|
|
done:
|
115 |
|
|
|
116 |
|
|
1. Each constraint variable x has a solution set associated with it,
|
117 |
|
|
Sol(x).
|
118 |
|
|
|
119 |
|
|
2. Constraints are separated into direct, copy, and complex.
|
120 |
|
|
Direct constraints are ADDRESSOF constraints that require no extra
|
121 |
|
|
processing, such as P = &Q
|
122 |
|
|
Copy constraints are those of the form P = Q.
|
123 |
|
|
Complex constraints are all the constraints involving dereferences
|
124 |
|
|
and offsets (including offsetted copies).
|
125 |
|
|
|
126 |
|
|
3. All direct constraints of the form P = &Q are processed, such
|
127 |
|
|
that Q is added to Sol(P)
|
128 |
|
|
|
129 |
|
|
4. All complex constraints for a given constraint variable are stored in a
|
130 |
|
|
linked list attached to that variable's node.
|
131 |
|
|
|
132 |
|
|
5. A directed graph is built out of the copy constraints. Each
|
133 |
|
|
constraint variable is a node in the graph, and an edge from
|
134 |
|
|
Q to P is added for each copy constraint of the form P = Q
|
135 |
|
|
|
136 |
|
|
6. The graph is then walked, and solution sets are
|
137 |
|
|
propagated along the copy edges, such that an edge from Q to P
|
138 |
|
|
causes Sol(P) <- Sol(P) union Sol(Q).
|
139 |
|
|
|
140 |
|
|
7. As we visit each node, all complex constraints associated with
|
141 |
|
|
that node are processed by adding appropriate copy edges to the graph, or the
|
142 |
|
|
appropriate variables to the solution set.
|
143 |
|
|
|
144 |
|
|
8. The process of walking the graph is iterated until no solution
|
145 |
|
|
sets change.
|
146 |
|
|
|
147 |
|
|
Prior to walking the graph in steps 6 and 7, We perform static
|
148 |
|
|
cycle elimination on the constraint graph, as well
|
149 |
|
|
as off-line variable substitution.
|
150 |
|
|
|
151 |
|
|
TODO: Adding offsets to pointer-to-structures can be handled (IE not punted
|
152 |
|
|
on and turned into anything), but isn't. You can just see what offset
|
153 |
|
|
inside the pointed-to struct it's going to access.
|
154 |
|
|
|
155 |
|
|
TODO: Constant bounded arrays can be handled as if they were structs of the
|
156 |
|
|
same number of elements.
|
157 |
|
|
|
158 |
|
|
TODO: Modeling heap and incoming pointers becomes much better if we
|
159 |
|
|
add fields to them as we discover them, which we could do.
|
160 |
|
|
|
161 |
|
|
TODO: We could handle unions, but to be honest, it's probably not
|
162 |
|
|
worth the pain or slowdown. */
|
163 |
|
|
|
164 |
|
|
static GTY ((if_marked ("tree_map_marked_p"), param_is (struct tree_map)))
|
165 |
|
|
htab_t heapvar_for_stmt;
|
166 |
|
|
|
167 |
|
|
static bool use_field_sensitive = true;
|
168 |
|
|
static int in_ipa_mode = 0;
|
169 |
|
|
|
170 |
|
|
/* Used for predecessor bitmaps. */
|
171 |
|
|
static bitmap_obstack predbitmap_obstack;
|
172 |
|
|
|
173 |
|
|
/* Used for points-to sets. */
|
174 |
|
|
static bitmap_obstack pta_obstack;
|
175 |
|
|
|
176 |
|
|
/* Used for oldsolution members of variables. */
|
177 |
|
|
static bitmap_obstack oldpta_obstack;
|
178 |
|
|
|
179 |
|
|
/* Used for per-solver-iteration bitmaps. */
|
180 |
|
|
static bitmap_obstack iteration_obstack;
|
181 |
|
|
|
182 |
|
|
static unsigned int create_variable_info_for (tree, const char *);
|
183 |
|
|
typedef struct constraint_graph *constraint_graph_t;
|
184 |
|
|
static void unify_nodes (constraint_graph_t, unsigned int, unsigned int, bool);
|
185 |
|
|
|
186 |
|
|
struct constraint;
|
187 |
|
|
typedef struct constraint *constraint_t;
|
188 |
|
|
|
189 |
|
|
DEF_VEC_P(constraint_t);
|
190 |
|
|
DEF_VEC_ALLOC_P(constraint_t,heap);
|
191 |
|
|
|
192 |
|
|
#define EXECUTE_IF_IN_NONNULL_BITMAP(a, b, c, d) \
|
193 |
|
|
if (a) \
|
194 |
|
|
EXECUTE_IF_SET_IN_BITMAP (a, b, c, d)
|
195 |
|
|
|
196 |
|
|
static struct constraint_stats
|
197 |
|
|
{
|
198 |
|
|
unsigned int total_vars;
|
199 |
|
|
unsigned int nonpointer_vars;
|
200 |
|
|
unsigned int unified_vars_static;
|
201 |
|
|
unsigned int unified_vars_dynamic;
|
202 |
|
|
unsigned int iterations;
|
203 |
|
|
unsigned int num_edges;
|
204 |
|
|
unsigned int num_implicit_edges;
|
205 |
|
|
unsigned int points_to_sets_created;
|
206 |
|
|
} stats;
|
207 |
|
|
|
208 |
|
|
struct variable_info
|
209 |
|
|
{
|
210 |
|
|
/* ID of this variable */
|
211 |
|
|
unsigned int id;
|
212 |
|
|
|
213 |
|
|
/* True if this is a variable created by the constraint analysis, such as
|
214 |
|
|
heap variables and constraints we had to break up. */
|
215 |
|
|
unsigned int is_artificial_var : 1;
|
216 |
|
|
|
217 |
|
|
/* True if this is a special variable whose solution set should not be
|
218 |
|
|
changed. */
|
219 |
|
|
unsigned int is_special_var : 1;
|
220 |
|
|
|
221 |
|
|
/* True for variables whose size is not known or variable. */
|
222 |
|
|
unsigned int is_unknown_size_var : 1;
|
223 |
|
|
|
224 |
|
|
/* True for (sub-)fields that represent a whole variable. */
|
225 |
|
|
unsigned int is_full_var : 1;
|
226 |
|
|
|
227 |
|
|
/* True if this is a heap variable. */
|
228 |
|
|
unsigned int is_heap_var : 1;
|
229 |
|
|
|
230 |
|
|
/* True if this is a variable tracking a restrict pointer source. */
|
231 |
|
|
unsigned int is_restrict_var : 1;
|
232 |
|
|
|
233 |
|
|
/* True if this field may contain pointers. */
|
234 |
|
|
unsigned int may_have_pointers : 1;
|
235 |
|
|
|
236 |
|
|
/* True if this represents a global variable. */
|
237 |
|
|
unsigned int is_global_var : 1;
|
238 |
|
|
|
239 |
|
|
/* A link to the variable for the next field in this structure. */
|
240 |
|
|
struct variable_info *next;
|
241 |
|
|
|
242 |
|
|
/* Offset of this variable, in bits, from the base variable */
|
243 |
|
|
unsigned HOST_WIDE_INT offset;
|
244 |
|
|
|
245 |
|
|
/* Size of the variable, in bits. */
|
246 |
|
|
unsigned HOST_WIDE_INT size;
|
247 |
|
|
|
248 |
|
|
/* Full size of the base variable, in bits. */
|
249 |
|
|
unsigned HOST_WIDE_INT fullsize;
|
250 |
|
|
|
251 |
|
|
/* Name of this variable */
|
252 |
|
|
const char *name;
|
253 |
|
|
|
254 |
|
|
/* Tree that this variable is associated with. */
|
255 |
|
|
tree decl;
|
256 |
|
|
|
257 |
|
|
/* Points-to set for this variable. */
|
258 |
|
|
bitmap solution;
|
259 |
|
|
|
260 |
|
|
/* Old points-to set for this variable. */
|
261 |
|
|
bitmap oldsolution;
|
262 |
|
|
};
|
263 |
|
|
typedef struct variable_info *varinfo_t;
|
264 |
|
|
|
265 |
|
|
static varinfo_t first_vi_for_offset (varinfo_t, unsigned HOST_WIDE_INT);
|
266 |
|
|
static varinfo_t first_or_preceding_vi_for_offset (varinfo_t,
|
267 |
|
|
unsigned HOST_WIDE_INT);
|
268 |
|
|
static varinfo_t lookup_vi_for_tree (tree);
|
269 |
|
|
|
270 |
|
|
/* Pool of variable info structures. */
|
271 |
|
|
static alloc_pool variable_info_pool;
|
272 |
|
|
|
273 |
|
|
DEF_VEC_P(varinfo_t);
|
274 |
|
|
|
275 |
|
|
DEF_VEC_ALLOC_P(varinfo_t, heap);
|
276 |
|
|
|
277 |
|
|
/* Table of variable info structures for constraint variables.
|
278 |
|
|
Indexed directly by variable info id. */
|
279 |
|
|
static VEC(varinfo_t,heap) *varmap;
|
280 |
|
|
|
281 |
|
|
/* Return the varmap element N */
|
282 |
|
|
|
283 |
|
|
static inline varinfo_t
|
284 |
|
|
get_varinfo (unsigned int n)
|
285 |
|
|
{
|
286 |
|
|
return VEC_index (varinfo_t, varmap, n);
|
287 |
|
|
}
|
288 |
|
|
|
289 |
|
|
/* Static IDs for the special variables. */
|
290 |
|
|
enum { nothing_id = 0, anything_id = 1, readonly_id = 2,
|
291 |
|
|
escaped_id = 3, nonlocal_id = 4, callused_id = 5,
|
292 |
|
|
storedanything_id = 6, integer_id = 7 };
|
293 |
|
|
|
294 |
|
|
struct GTY(()) heapvar_map {
|
295 |
|
|
struct tree_map map;
|
296 |
|
|
unsigned HOST_WIDE_INT offset;
|
297 |
|
|
};
|
298 |
|
|
|
299 |
|
|
static int
|
300 |
|
|
heapvar_map_eq (const void *p1, const void *p2)
|
301 |
|
|
{
|
302 |
|
|
const struct heapvar_map *h1 = (const struct heapvar_map *)p1;
|
303 |
|
|
const struct heapvar_map *h2 = (const struct heapvar_map *)p2;
|
304 |
|
|
return (h1->map.base.from == h2->map.base.from
|
305 |
|
|
&& h1->offset == h2->offset);
|
306 |
|
|
}
|
307 |
|
|
|
308 |
|
|
static unsigned int
|
309 |
|
|
heapvar_map_hash (struct heapvar_map *h)
|
310 |
|
|
{
|
311 |
|
|
return iterative_hash_host_wide_int (h->offset,
|
312 |
|
|
htab_hash_pointer (h->map.base.from));
|
313 |
|
|
}
|
314 |
|
|
|
315 |
|
|
/* Lookup a heap var for FROM, and return it if we find one. */
|
316 |
|
|
|
317 |
|
|
static tree
|
318 |
|
|
heapvar_lookup (tree from, unsigned HOST_WIDE_INT offset)
|
319 |
|
|
{
|
320 |
|
|
struct heapvar_map *h, in;
|
321 |
|
|
in.map.base.from = from;
|
322 |
|
|
in.offset = offset;
|
323 |
|
|
h = (struct heapvar_map *) htab_find_with_hash (heapvar_for_stmt, &in,
|
324 |
|
|
heapvar_map_hash (&in));
|
325 |
|
|
if (h)
|
326 |
|
|
return h->map.to;
|
327 |
|
|
return NULL_TREE;
|
328 |
|
|
}
|
329 |
|
|
|
330 |
|
|
/* Insert a mapping FROM->TO in the heap var for statement
|
331 |
|
|
hashtable. */
|
332 |
|
|
|
333 |
|
|
static void
|
334 |
|
|
heapvar_insert (tree from, unsigned HOST_WIDE_INT offset, tree to)
|
335 |
|
|
{
|
336 |
|
|
struct heapvar_map *h;
|
337 |
|
|
void **loc;
|
338 |
|
|
|
339 |
|
|
h = GGC_NEW (struct heapvar_map);
|
340 |
|
|
h->map.base.from = from;
|
341 |
|
|
h->offset = offset;
|
342 |
|
|
h->map.hash = heapvar_map_hash (h);
|
343 |
|
|
h->map.to = to;
|
344 |
|
|
loc = htab_find_slot_with_hash (heapvar_for_stmt, h, h->map.hash, INSERT);
|
345 |
|
|
gcc_assert (*loc == NULL);
|
346 |
|
|
*(struct heapvar_map **) loc = h;
|
347 |
|
|
}
|
348 |
|
|
|
349 |
|
|
/* Return a new variable info structure consisting for a variable
|
350 |
|
|
named NAME, and using constraint graph node NODE. Append it
|
351 |
|
|
to the vector of variable info structures. */
|
352 |
|
|
|
353 |
|
|
static varinfo_t
|
354 |
|
|
new_var_info (tree t, const char *name)
|
355 |
|
|
{
|
356 |
|
|
unsigned index = VEC_length (varinfo_t, varmap);
|
357 |
|
|
varinfo_t ret = (varinfo_t) pool_alloc (variable_info_pool);
|
358 |
|
|
|
359 |
|
|
ret->id = index;
|
360 |
|
|
ret->name = name;
|
361 |
|
|
ret->decl = t;
|
362 |
|
|
/* Vars without decl are artificial and do not have sub-variables. */
|
363 |
|
|
ret->is_artificial_var = (t == NULL_TREE);
|
364 |
|
|
ret->is_special_var = false;
|
365 |
|
|
ret->is_unknown_size_var = false;
|
366 |
|
|
ret->is_full_var = (t == NULL_TREE);
|
367 |
|
|
ret->is_heap_var = false;
|
368 |
|
|
ret->is_restrict_var = false;
|
369 |
|
|
ret->may_have_pointers = true;
|
370 |
|
|
ret->is_global_var = (t == NULL_TREE);
|
371 |
|
|
if (t && DECL_P (t))
|
372 |
|
|
ret->is_global_var = is_global_var (t);
|
373 |
|
|
ret->solution = BITMAP_ALLOC (&pta_obstack);
|
374 |
|
|
ret->oldsolution = BITMAP_ALLOC (&oldpta_obstack);
|
375 |
|
|
ret->next = NULL;
|
376 |
|
|
|
377 |
|
|
VEC_safe_push (varinfo_t, heap, varmap, ret);
|
378 |
|
|
|
379 |
|
|
return ret;
|
380 |
|
|
}
|
381 |
|
|
|
382 |
|
|
typedef enum {SCALAR, DEREF, ADDRESSOF} constraint_expr_type;
|
383 |
|
|
|
384 |
|
|
/* An expression that appears in a constraint. */
|
385 |
|
|
|
386 |
|
|
struct constraint_expr
|
387 |
|
|
{
|
388 |
|
|
/* Constraint type. */
|
389 |
|
|
constraint_expr_type type;
|
390 |
|
|
|
391 |
|
|
/* Variable we are referring to in the constraint. */
|
392 |
|
|
unsigned int var;
|
393 |
|
|
|
394 |
|
|
/* Offset, in bits, of this constraint from the beginning of
|
395 |
|
|
variables it ends up referring to.
|
396 |
|
|
|
397 |
|
|
IOW, in a deref constraint, we would deref, get the result set,
|
398 |
|
|
then add OFFSET to each member. */
|
399 |
|
|
HOST_WIDE_INT offset;
|
400 |
|
|
};
|
401 |
|
|
|
402 |
|
|
/* Use 0x8000... as special unknown offset. */
|
403 |
|
|
#define UNKNOWN_OFFSET ((HOST_WIDE_INT)-1 << (HOST_BITS_PER_WIDE_INT-1))
|
404 |
|
|
|
405 |
|
|
typedef struct constraint_expr ce_s;
|
406 |
|
|
DEF_VEC_O(ce_s);
|
407 |
|
|
DEF_VEC_ALLOC_O(ce_s, heap);
|
408 |
|
|
static void get_constraint_for_1 (tree, VEC(ce_s, heap) **, bool);
|
409 |
|
|
static void get_constraint_for (tree, VEC(ce_s, heap) **);
|
410 |
|
|
static void do_deref (VEC (ce_s, heap) **);
|
411 |
|
|
|
412 |
|
|
/* Our set constraints are made up of two constraint expressions, one
|
413 |
|
|
LHS, and one RHS.
|
414 |
|
|
|
415 |
|
|
As described in the introduction, our set constraints each represent an
|
416 |
|
|
operation between set valued variables.
|
417 |
|
|
*/
|
418 |
|
|
struct constraint
|
419 |
|
|
{
|
420 |
|
|
struct constraint_expr lhs;
|
421 |
|
|
struct constraint_expr rhs;
|
422 |
|
|
};
|
423 |
|
|
|
424 |
|
|
/* List of constraints that we use to build the constraint graph from. */
|
425 |
|
|
|
426 |
|
|
static VEC(constraint_t,heap) *constraints;
|
427 |
|
|
static alloc_pool constraint_pool;
|
428 |
|
|
|
429 |
|
|
/* The constraint graph is represented as an array of bitmaps
|
430 |
|
|
containing successor nodes. */
|
431 |
|
|
|
432 |
|
|
struct constraint_graph
|
433 |
|
|
{
|
434 |
|
|
/* Size of this graph, which may be different than the number of
|
435 |
|
|
nodes in the variable map. */
|
436 |
|
|
unsigned int size;
|
437 |
|
|
|
438 |
|
|
/* Explicit successors of each node. */
|
439 |
|
|
bitmap *succs;
|
440 |
|
|
|
441 |
|
|
/* Implicit predecessors of each node (Used for variable
|
442 |
|
|
substitution). */
|
443 |
|
|
bitmap *implicit_preds;
|
444 |
|
|
|
445 |
|
|
/* Explicit predecessors of each node (Used for variable substitution). */
|
446 |
|
|
bitmap *preds;
|
447 |
|
|
|
448 |
|
|
/* Indirect cycle representatives, or -1 if the node has no indirect
|
449 |
|
|
cycles. */
|
450 |
|
|
int *indirect_cycles;
|
451 |
|
|
|
452 |
|
|
/* Representative node for a node. rep[a] == a unless the node has
|
453 |
|
|
been unified. */
|
454 |
|
|
unsigned int *rep;
|
455 |
|
|
|
456 |
|
|
/* Equivalence class representative for a label. This is used for
|
457 |
|
|
variable substitution. */
|
458 |
|
|
int *eq_rep;
|
459 |
|
|
|
460 |
|
|
/* Pointer equivalence label for a node. All nodes with the same
|
461 |
|
|
pointer equivalence label can be unified together at some point
|
462 |
|
|
(either during constraint optimization or after the constraint
|
463 |
|
|
graph is built). */
|
464 |
|
|
unsigned int *pe;
|
465 |
|
|
|
466 |
|
|
/* Pointer equivalence representative for a label. This is used to
|
467 |
|
|
handle nodes that are pointer equivalent but not location
|
468 |
|
|
equivalent. We can unite these once the addressof constraints
|
469 |
|
|
are transformed into initial points-to sets. */
|
470 |
|
|
int *pe_rep;
|
471 |
|
|
|
472 |
|
|
/* Pointer equivalence label for each node, used during variable
|
473 |
|
|
substitution. */
|
474 |
|
|
unsigned int *pointer_label;
|
475 |
|
|
|
476 |
|
|
/* Location equivalence label for each node, used during location
|
477 |
|
|
equivalence finding. */
|
478 |
|
|
unsigned int *loc_label;
|
479 |
|
|
|
480 |
|
|
/* Pointed-by set for each node, used during location equivalence
|
481 |
|
|
finding. This is pointed-by rather than pointed-to, because it
|
482 |
|
|
is constructed using the predecessor graph. */
|
483 |
|
|
bitmap *pointed_by;
|
484 |
|
|
|
485 |
|
|
/* Points to sets for pointer equivalence. This is *not* the actual
|
486 |
|
|
points-to sets for nodes. */
|
487 |
|
|
bitmap *points_to;
|
488 |
|
|
|
489 |
|
|
/* Bitmap of nodes where the bit is set if the node is a direct
|
490 |
|
|
node. Used for variable substitution. */
|
491 |
|
|
sbitmap direct_nodes;
|
492 |
|
|
|
493 |
|
|
/* Bitmap of nodes where the bit is set if the node is address
|
494 |
|
|
taken. Used for variable substitution. */
|
495 |
|
|
bitmap address_taken;
|
496 |
|
|
|
497 |
|
|
/* Vector of complex constraints for each graph node. Complex
|
498 |
|
|
constraints are those involving dereferences or offsets that are
|
499 |
|
|
not 0. */
|
500 |
|
|
VEC(constraint_t,heap) **complex;
|
501 |
|
|
};
|
502 |
|
|
|
503 |
|
|
static constraint_graph_t graph;
|
504 |
|
|
|
505 |
|
|
/* During variable substitution and the offline version of indirect
|
506 |
|
|
cycle finding, we create nodes to represent dereferences and
|
507 |
|
|
address taken constraints. These represent where these start and
|
508 |
|
|
end. */
|
509 |
|
|
#define FIRST_REF_NODE (VEC_length (varinfo_t, varmap))
|
510 |
|
|
#define LAST_REF_NODE (FIRST_REF_NODE + (FIRST_REF_NODE - 1))
|
511 |
|
|
|
512 |
|
|
/* Return the representative node for NODE, if NODE has been unioned
|
513 |
|
|
with another NODE.
|
514 |
|
|
This function performs path compression along the way to finding
|
515 |
|
|
the representative. */
|
516 |
|
|
|
517 |
|
|
static unsigned int
|
518 |
|
|
find (unsigned int node)
|
519 |
|
|
{
|
520 |
|
|
gcc_assert (node < graph->size);
|
521 |
|
|
if (graph->rep[node] != node)
|
522 |
|
|
return graph->rep[node] = find (graph->rep[node]);
|
523 |
|
|
return node;
|
524 |
|
|
}
|
525 |
|
|
|
526 |
|
|
/* Union the TO and FROM nodes to the TO nodes.
|
527 |
|
|
Note that at some point in the future, we may want to do
|
528 |
|
|
union-by-rank, in which case we are going to have to return the
|
529 |
|
|
node we unified to. */
|
530 |
|
|
|
531 |
|
|
static bool
|
532 |
|
|
unite (unsigned int to, unsigned int from)
|
533 |
|
|
{
|
534 |
|
|
gcc_assert (to < graph->size && from < graph->size);
|
535 |
|
|
if (to != from && graph->rep[from] != to)
|
536 |
|
|
{
|
537 |
|
|
graph->rep[from] = to;
|
538 |
|
|
return true;
|
539 |
|
|
}
|
540 |
|
|
return false;
|
541 |
|
|
}
|
542 |
|
|
|
543 |
|
|
/* Create a new constraint consisting of LHS and RHS expressions. */
|
544 |
|
|
|
545 |
|
|
static constraint_t
|
546 |
|
|
new_constraint (const struct constraint_expr lhs,
|
547 |
|
|
const struct constraint_expr rhs)
|
548 |
|
|
{
|
549 |
|
|
constraint_t ret = (constraint_t) pool_alloc (constraint_pool);
|
550 |
|
|
ret->lhs = lhs;
|
551 |
|
|
ret->rhs = rhs;
|
552 |
|
|
return ret;
|
553 |
|
|
}
|
554 |
|
|
|
555 |
|
|
/* Print out constraint C to FILE. */
|
556 |
|
|
|
557 |
|
|
static void
|
558 |
|
|
dump_constraint (FILE *file, constraint_t c)
|
559 |
|
|
{
|
560 |
|
|
if (c->lhs.type == ADDRESSOF)
|
561 |
|
|
fprintf (file, "&");
|
562 |
|
|
else if (c->lhs.type == DEREF)
|
563 |
|
|
fprintf (file, "*");
|
564 |
|
|
fprintf (file, "%s", get_varinfo (c->lhs.var)->name);
|
565 |
|
|
if (c->lhs.offset == UNKNOWN_OFFSET)
|
566 |
|
|
fprintf (file, " + UNKNOWN");
|
567 |
|
|
else if (c->lhs.offset != 0)
|
568 |
|
|
fprintf (file, " + " HOST_WIDE_INT_PRINT_DEC, c->lhs.offset);
|
569 |
|
|
fprintf (file, " = ");
|
570 |
|
|
if (c->rhs.type == ADDRESSOF)
|
571 |
|
|
fprintf (file, "&");
|
572 |
|
|
else if (c->rhs.type == DEREF)
|
573 |
|
|
fprintf (file, "*");
|
574 |
|
|
fprintf (file, "%s", get_varinfo (c->rhs.var)->name);
|
575 |
|
|
if (c->rhs.offset == UNKNOWN_OFFSET)
|
576 |
|
|
fprintf (file, " + UNKNOWN");
|
577 |
|
|
else if (c->rhs.offset != 0)
|
578 |
|
|
fprintf (file, " + " HOST_WIDE_INT_PRINT_DEC, c->rhs.offset);
|
579 |
|
|
fprintf (file, "\n");
|
580 |
|
|
}
|
581 |
|
|
|
582 |
|
|
|
583 |
|
|
void debug_constraint (constraint_t);
|
584 |
|
|
void debug_constraints (void);
|
585 |
|
|
void debug_constraint_graph (void);
|
586 |
|
|
void debug_solution_for_var (unsigned int);
|
587 |
|
|
void debug_sa_points_to_info (void);
|
588 |
|
|
|
589 |
|
|
/* Print out constraint C to stderr. */
|
590 |
|
|
|
591 |
|
|
void
|
592 |
|
|
debug_constraint (constraint_t c)
|
593 |
|
|
{
|
594 |
|
|
dump_constraint (stderr, c);
|
595 |
|
|
}
|
596 |
|
|
|
597 |
|
|
/* Print out all constraints to FILE */
|
598 |
|
|
|
599 |
|
|
static void
|
600 |
|
|
dump_constraints (FILE *file)
|
601 |
|
|
{
|
602 |
|
|
int i;
|
603 |
|
|
constraint_t c;
|
604 |
|
|
for (i = 0; VEC_iterate (constraint_t, constraints, i, c); i++)
|
605 |
|
|
dump_constraint (file, c);
|
606 |
|
|
}
|
607 |
|
|
|
608 |
|
|
/* Print out all constraints to stderr. */
|
609 |
|
|
|
610 |
|
|
void
|
611 |
|
|
debug_constraints (void)
|
612 |
|
|
{
|
613 |
|
|
dump_constraints (stderr);
|
614 |
|
|
}
|
615 |
|
|
|
616 |
|
|
/* Print out to FILE the edge in the constraint graph that is created by
|
617 |
|
|
constraint c. The edge may have a label, depending on the type of
|
618 |
|
|
constraint that it represents. If complex1, e.g: a = *b, then the label
|
619 |
|
|
is "=*", if complex2, e.g: *a = b, then the label is "*=", if
|
620 |
|
|
complex with an offset, e.g: a = b + 8, then the label is "+".
|
621 |
|
|
Otherwise the edge has no label. */
|
622 |
|
|
|
623 |
|
|
static void
|
624 |
|
|
dump_constraint_edge (FILE *file, constraint_t c)
|
625 |
|
|
{
|
626 |
|
|
if (c->rhs.type != ADDRESSOF)
|
627 |
|
|
{
|
628 |
|
|
const char *src = get_varinfo (c->rhs.var)->name;
|
629 |
|
|
const char *dst = get_varinfo (c->lhs.var)->name;
|
630 |
|
|
fprintf (file, " \"%s\" -> \"%s\" ", src, dst);
|
631 |
|
|
/* Due to preprocessing of constraints, instructions like *a = *b are
|
632 |
|
|
illegal; thus, we do not have to handle such cases. */
|
633 |
|
|
if (c->lhs.type == DEREF)
|
634 |
|
|
fprintf (file, " [ label=\"*=\" ] ;\n");
|
635 |
|
|
else if (c->rhs.type == DEREF)
|
636 |
|
|
fprintf (file, " [ label=\"=*\" ] ;\n");
|
637 |
|
|
else
|
638 |
|
|
{
|
639 |
|
|
/* We must check the case where the constraint is an offset.
|
640 |
|
|
In this case, it is treated as a complex constraint. */
|
641 |
|
|
if (c->rhs.offset != c->lhs.offset)
|
642 |
|
|
fprintf (file, " [ label=\"+\" ] ;\n");
|
643 |
|
|
else
|
644 |
|
|
fprintf (file, " ;\n");
|
645 |
|
|
}
|
646 |
|
|
}
|
647 |
|
|
}
|
648 |
|
|
|
649 |
|
|
/* Print the constraint graph in dot format. */
|
650 |
|
|
|
651 |
|
|
static void
|
652 |
|
|
dump_constraint_graph (FILE *file)
|
653 |
|
|
{
|
654 |
|
|
unsigned int i=0, size;
|
655 |
|
|
constraint_t c;
|
656 |
|
|
|
657 |
|
|
/* Only print the graph if it has already been initialized: */
|
658 |
|
|
if (!graph)
|
659 |
|
|
return;
|
660 |
|
|
|
661 |
|
|
/* Print the constraints used to produce the constraint graph. The
|
662 |
|
|
constraints will be printed as comments in the dot file: */
|
663 |
|
|
fprintf (file, "\n\n/* Constraints used in the constraint graph:\n");
|
664 |
|
|
dump_constraints (file);
|
665 |
|
|
fprintf (file, "*/\n");
|
666 |
|
|
|
667 |
|
|
/* Prints the header of the dot file: */
|
668 |
|
|
fprintf (file, "\n\n// The constraint graph in dot format:\n");
|
669 |
|
|
fprintf (file, "strict digraph {\n");
|
670 |
|
|
fprintf (file, " node [\n shape = box\n ]\n");
|
671 |
|
|
fprintf (file, " edge [\n fontsize = \"12\"\n ]\n");
|
672 |
|
|
fprintf (file, "\n // List of nodes in the constraint graph:\n");
|
673 |
|
|
|
674 |
|
|
/* The next lines print the nodes in the graph. In order to get the
|
675 |
|
|
number of nodes in the graph, we must choose the minimum between the
|
676 |
|
|
vector VEC (varinfo_t, varmap) and graph->size. If the graph has not
|
677 |
|
|
yet been initialized, then graph->size == 0, otherwise we must only
|
678 |
|
|
read nodes that have an entry in VEC (varinfo_t, varmap). */
|
679 |
|
|
size = VEC_length (varinfo_t, varmap);
|
680 |
|
|
size = size < graph->size ? size : graph->size;
|
681 |
|
|
for (i = 0; i < size; i++)
|
682 |
|
|
{
|
683 |
|
|
const char *name = get_varinfo (graph->rep[i])->name;
|
684 |
|
|
fprintf (file, " \"%s\" ;\n", name);
|
685 |
|
|
}
|
686 |
|
|
|
687 |
|
|
/* Go over the list of constraints printing the edges in the constraint
|
688 |
|
|
graph. */
|
689 |
|
|
fprintf (file, "\n // The constraint edges:\n");
|
690 |
|
|
for (i = 0; VEC_iterate (constraint_t, constraints, i, c); i++)
|
691 |
|
|
if (c)
|
692 |
|
|
dump_constraint_edge (file, c);
|
693 |
|
|
|
694 |
|
|
/* Prints the tail of the dot file. By now, only the closing bracket. */
|
695 |
|
|
fprintf (file, "}\n\n\n");
|
696 |
|
|
}
|
697 |
|
|
|
698 |
|
|
/* Print out the constraint graph to stderr. */
|
699 |
|
|
|
700 |
|
|
void
|
701 |
|
|
debug_constraint_graph (void)
|
702 |
|
|
{
|
703 |
|
|
dump_constraint_graph (stderr);
|
704 |
|
|
}
|
705 |
|
|
|
706 |
|
|
/* SOLVER FUNCTIONS
|
707 |
|
|
|
708 |
|
|
The solver is a simple worklist solver, that works on the following
|
709 |
|
|
algorithm:
|
710 |
|
|
|
711 |
|
|
sbitmap changed_nodes = all zeroes;
|
712 |
|
|
changed_count = 0;
|
713 |
|
|
For each node that is not already collapsed:
|
714 |
|
|
changed_count++;
|
715 |
|
|
set bit in changed nodes
|
716 |
|
|
|
717 |
|
|
while (changed_count > 0)
|
718 |
|
|
{
|
719 |
|
|
compute topological ordering for constraint graph
|
720 |
|
|
|
721 |
|
|
find and collapse cycles in the constraint graph (updating
|
722 |
|
|
changed if necessary)
|
723 |
|
|
|
724 |
|
|
for each node (n) in the graph in topological order:
|
725 |
|
|
changed_count--;
|
726 |
|
|
|
727 |
|
|
Process each complex constraint associated with the node,
|
728 |
|
|
updating changed if necessary.
|
729 |
|
|
|
730 |
|
|
For each outgoing edge from n, propagate the solution from n to
|
731 |
|
|
the destination of the edge, updating changed as necessary.
|
732 |
|
|
|
733 |
|
|
} */
|
734 |
|
|
|
735 |
|
|
/* Return true if two constraint expressions A and B are equal. */
|
736 |
|
|
|
737 |
|
|
static bool
|
738 |
|
|
constraint_expr_equal (struct constraint_expr a, struct constraint_expr b)
|
739 |
|
|
{
|
740 |
|
|
return a.type == b.type && a.var == b.var && a.offset == b.offset;
|
741 |
|
|
}
|
742 |
|
|
|
743 |
|
|
/* Return true if constraint expression A is less than constraint expression
|
744 |
|
|
B. This is just arbitrary, but consistent, in order to give them an
|
745 |
|
|
ordering. */
|
746 |
|
|
|
747 |
|
|
static bool
|
748 |
|
|
constraint_expr_less (struct constraint_expr a, struct constraint_expr b)
|
749 |
|
|
{
|
750 |
|
|
if (a.type == b.type)
|
751 |
|
|
{
|
752 |
|
|
if (a.var == b.var)
|
753 |
|
|
return a.offset < b.offset;
|
754 |
|
|
else
|
755 |
|
|
return a.var < b.var;
|
756 |
|
|
}
|
757 |
|
|
else
|
758 |
|
|
return a.type < b.type;
|
759 |
|
|
}
|
760 |
|
|
|
761 |
|
|
/* Return true if constraint A is less than constraint B. This is just
|
762 |
|
|
arbitrary, but consistent, in order to give them an ordering. */
|
763 |
|
|
|
764 |
|
|
static bool
|
765 |
|
|
constraint_less (const constraint_t a, const constraint_t b)
|
766 |
|
|
{
|
767 |
|
|
if (constraint_expr_less (a->lhs, b->lhs))
|
768 |
|
|
return true;
|
769 |
|
|
else if (constraint_expr_less (b->lhs, a->lhs))
|
770 |
|
|
return false;
|
771 |
|
|
else
|
772 |
|
|
return constraint_expr_less (a->rhs, b->rhs);
|
773 |
|
|
}
|
774 |
|
|
|
775 |
|
|
/* Return true if two constraints A and B are equal. */
|
776 |
|
|
|
777 |
|
|
static bool
|
778 |
|
|
constraint_equal (struct constraint a, struct constraint b)
|
779 |
|
|
{
|
780 |
|
|
return constraint_expr_equal (a.lhs, b.lhs)
|
781 |
|
|
&& constraint_expr_equal (a.rhs, b.rhs);
|
782 |
|
|
}
|
783 |
|
|
|
784 |
|
|
|
785 |
|
|
/* Find a constraint LOOKFOR in the sorted constraint vector VEC */
|
786 |
|
|
|
787 |
|
|
static constraint_t
|
788 |
|
|
constraint_vec_find (VEC(constraint_t,heap) *vec,
|
789 |
|
|
struct constraint lookfor)
|
790 |
|
|
{
|
791 |
|
|
unsigned int place;
|
792 |
|
|
constraint_t found;
|
793 |
|
|
|
794 |
|
|
if (vec == NULL)
|
795 |
|
|
return NULL;
|
796 |
|
|
|
797 |
|
|
place = VEC_lower_bound (constraint_t, vec, &lookfor, constraint_less);
|
798 |
|
|
if (place >= VEC_length (constraint_t, vec))
|
799 |
|
|
return NULL;
|
800 |
|
|
found = VEC_index (constraint_t, vec, place);
|
801 |
|
|
if (!constraint_equal (*found, lookfor))
|
802 |
|
|
return NULL;
|
803 |
|
|
return found;
|
804 |
|
|
}
|
805 |
|
|
|
806 |
|
|
/* Union two constraint vectors, TO and FROM. Put the result in TO. */
|
807 |
|
|
|
808 |
|
|
static void
|
809 |
|
|
constraint_set_union (VEC(constraint_t,heap) **to,
|
810 |
|
|
VEC(constraint_t,heap) **from)
|
811 |
|
|
{
|
812 |
|
|
int i;
|
813 |
|
|
constraint_t c;
|
814 |
|
|
|
815 |
|
|
for (i = 0; VEC_iterate (constraint_t, *from, i, c); i++)
|
816 |
|
|
{
|
817 |
|
|
if (constraint_vec_find (*to, *c) == NULL)
|
818 |
|
|
{
|
819 |
|
|
unsigned int place = VEC_lower_bound (constraint_t, *to, c,
|
820 |
|
|
constraint_less);
|
821 |
|
|
VEC_safe_insert (constraint_t, heap, *to, place, c);
|
822 |
|
|
}
|
823 |
|
|
}
|
824 |
|
|
}
|
825 |
|
|
|
826 |
|
|
/* Expands the solution in SET to all sub-fields of variables included.
|
827 |
|
|
Union the expanded result into RESULT. */
|
828 |
|
|
|
829 |
|
|
static void
|
830 |
|
|
solution_set_expand (bitmap result, bitmap set)
|
831 |
|
|
{
|
832 |
|
|
bitmap_iterator bi;
|
833 |
|
|
bitmap vars = NULL;
|
834 |
|
|
unsigned j;
|
835 |
|
|
|
836 |
|
|
/* In a first pass record all variables we need to add all
|
837 |
|
|
sub-fields off. This avoids quadratic behavior. */
|
838 |
|
|
EXECUTE_IF_SET_IN_BITMAP (set, 0, j, bi)
|
839 |
|
|
{
|
840 |
|
|
varinfo_t v = get_varinfo (j);
|
841 |
|
|
if (v->is_artificial_var
|
842 |
|
|
|| v->is_full_var)
|
843 |
|
|
continue;
|
844 |
|
|
v = lookup_vi_for_tree (v->decl);
|
845 |
|
|
if (vars == NULL)
|
846 |
|
|
vars = BITMAP_ALLOC (NULL);
|
847 |
|
|
bitmap_set_bit (vars, v->id);
|
848 |
|
|
}
|
849 |
|
|
|
850 |
|
|
/* In the second pass now do the addition to the solution and
|
851 |
|
|
to speed up solving add it to the delta as well. */
|
852 |
|
|
if (vars != NULL)
|
853 |
|
|
{
|
854 |
|
|
EXECUTE_IF_SET_IN_BITMAP (vars, 0, j, bi)
|
855 |
|
|
{
|
856 |
|
|
varinfo_t v = get_varinfo (j);
|
857 |
|
|
for (; v != NULL; v = v->next)
|
858 |
|
|
bitmap_set_bit (result, v->id);
|
859 |
|
|
}
|
860 |
|
|
BITMAP_FREE (vars);
|
861 |
|
|
}
|
862 |
|
|
}
|
863 |
|
|
|
864 |
|
|
/* Take a solution set SET, add OFFSET to each member of the set, and
|
865 |
|
|
overwrite SET with the result when done. */
|
866 |
|
|
|
867 |
|
|
static void
|
868 |
|
|
solution_set_add (bitmap set, HOST_WIDE_INT offset)
|
869 |
|
|
{
|
870 |
|
|
bitmap result = BITMAP_ALLOC (&iteration_obstack);
|
871 |
|
|
unsigned int i;
|
872 |
|
|
bitmap_iterator bi;
|
873 |
|
|
|
874 |
|
|
/* If the offset is unknown we have to expand the solution to
|
875 |
|
|
all subfields. */
|
876 |
|
|
if (offset == UNKNOWN_OFFSET)
|
877 |
|
|
{
|
878 |
|
|
solution_set_expand (set, set);
|
879 |
|
|
return;
|
880 |
|
|
}
|
881 |
|
|
|
882 |
|
|
EXECUTE_IF_SET_IN_BITMAP (set, 0, i, bi)
|
883 |
|
|
{
|
884 |
|
|
varinfo_t vi = get_varinfo (i);
|
885 |
|
|
|
886 |
|
|
/* If this is a variable with just one field just set its bit
|
887 |
|
|
in the result. */
|
888 |
|
|
if (vi->is_artificial_var
|
889 |
|
|
|| vi->is_unknown_size_var
|
890 |
|
|
|| vi->is_full_var)
|
891 |
|
|
bitmap_set_bit (result, i);
|
892 |
|
|
else
|
893 |
|
|
{
|
894 |
|
|
unsigned HOST_WIDE_INT fieldoffset = vi->offset + offset;
|
895 |
|
|
|
896 |
|
|
/* If the offset makes the pointer point to before the
|
897 |
|
|
variable use offset zero for the field lookup. */
|
898 |
|
|
if (offset < 0
|
899 |
|
|
&& fieldoffset > vi->offset)
|
900 |
|
|
fieldoffset = 0;
|
901 |
|
|
|
902 |
|
|
if (offset != 0)
|
903 |
|
|
vi = first_or_preceding_vi_for_offset (vi, fieldoffset);
|
904 |
|
|
|
905 |
|
|
bitmap_set_bit (result, vi->id);
|
906 |
|
|
/* If the result is not exactly at fieldoffset include the next
|
907 |
|
|
field as well. See get_constraint_for_ptr_offset for more
|
908 |
|
|
rationale. */
|
909 |
|
|
if (vi->offset != fieldoffset
|
910 |
|
|
&& vi->next != NULL)
|
911 |
|
|
bitmap_set_bit (result, vi->next->id);
|
912 |
|
|
}
|
913 |
|
|
}
|
914 |
|
|
|
915 |
|
|
bitmap_copy (set, result);
|
916 |
|
|
BITMAP_FREE (result);
|
917 |
|
|
}
|
918 |
|
|
|
919 |
|
|
/* Union solution sets TO and FROM, and add INC to each member of FROM in the
|
920 |
|
|
process. */
|
921 |
|
|
|
922 |
|
|
static bool
|
923 |
|
|
set_union_with_increment (bitmap to, bitmap from, HOST_WIDE_INT inc)
|
924 |
|
|
{
|
925 |
|
|
if (inc == 0)
|
926 |
|
|
return bitmap_ior_into (to, from);
|
927 |
|
|
else
|
928 |
|
|
{
|
929 |
|
|
bitmap tmp;
|
930 |
|
|
bool res;
|
931 |
|
|
|
932 |
|
|
tmp = BITMAP_ALLOC (&iteration_obstack);
|
933 |
|
|
bitmap_copy (tmp, from);
|
934 |
|
|
solution_set_add (tmp, inc);
|
935 |
|
|
res = bitmap_ior_into (to, tmp);
|
936 |
|
|
BITMAP_FREE (tmp);
|
937 |
|
|
return res;
|
938 |
|
|
}
|
939 |
|
|
}
|
940 |
|
|
|
941 |
|
|
/* Insert constraint C into the list of complex constraints for graph
|
942 |
|
|
node VAR. */
|
943 |
|
|
|
944 |
|
|
static void
|
945 |
|
|
insert_into_complex (constraint_graph_t graph,
|
946 |
|
|
unsigned int var, constraint_t c)
|
947 |
|
|
{
|
948 |
|
|
VEC (constraint_t, heap) *complex = graph->complex[var];
|
949 |
|
|
unsigned int place = VEC_lower_bound (constraint_t, complex, c,
|
950 |
|
|
constraint_less);
|
951 |
|
|
|
952 |
|
|
/* Only insert constraints that do not already exist. */
|
953 |
|
|
if (place >= VEC_length (constraint_t, complex)
|
954 |
|
|
|| !constraint_equal (*c, *VEC_index (constraint_t, complex, place)))
|
955 |
|
|
VEC_safe_insert (constraint_t, heap, graph->complex[var], place, c);
|
956 |
|
|
}
|
957 |
|
|
|
958 |
|
|
|
959 |
|
|
/* Condense two variable nodes into a single variable node, by moving
|
960 |
|
|
all associated info from SRC to TO. */
|
961 |
|
|
|
962 |
|
|
static void
|
963 |
|
|
merge_node_constraints (constraint_graph_t graph, unsigned int to,
|
964 |
|
|
unsigned int from)
|
965 |
|
|
{
|
966 |
|
|
unsigned int i;
|
967 |
|
|
constraint_t c;
|
968 |
|
|
|
969 |
|
|
gcc_assert (find (from) == to);
|
970 |
|
|
|
971 |
|
|
/* Move all complex constraints from src node into to node */
|
972 |
|
|
for (i = 0; VEC_iterate (constraint_t, graph->complex[from], i, c); i++)
|
973 |
|
|
{
|
974 |
|
|
/* In complex constraints for node src, we may have either
|
975 |
|
|
a = *src, and *src = a, or an offseted constraint which are
|
976 |
|
|
always added to the rhs node's constraints. */
|
977 |
|
|
|
978 |
|
|
if (c->rhs.type == DEREF)
|
979 |
|
|
c->rhs.var = to;
|
980 |
|
|
else if (c->lhs.type == DEREF)
|
981 |
|
|
c->lhs.var = to;
|
982 |
|
|
else
|
983 |
|
|
c->rhs.var = to;
|
984 |
|
|
}
|
985 |
|
|
constraint_set_union (&graph->complex[to], &graph->complex[from]);
|
986 |
|
|
VEC_free (constraint_t, heap, graph->complex[from]);
|
987 |
|
|
graph->complex[from] = NULL;
|
988 |
|
|
}
|
989 |
|
|
|
990 |
|
|
|
991 |
|
|
/* Remove edges involving NODE from GRAPH. */
|
992 |
|
|
|
993 |
|
|
static void
|
994 |
|
|
clear_edges_for_node (constraint_graph_t graph, unsigned int node)
|
995 |
|
|
{
|
996 |
|
|
if (graph->succs[node])
|
997 |
|
|
BITMAP_FREE (graph->succs[node]);
|
998 |
|
|
}
|
999 |
|
|
|
1000 |
|
|
/* Merge GRAPH nodes FROM and TO into node TO. */
|
1001 |
|
|
|
1002 |
|
|
static void
|
1003 |
|
|
merge_graph_nodes (constraint_graph_t graph, unsigned int to,
|
1004 |
|
|
unsigned int from)
|
1005 |
|
|
{
|
1006 |
|
|
if (graph->indirect_cycles[from] != -1)
|
1007 |
|
|
{
|
1008 |
|
|
/* If we have indirect cycles with the from node, and we have
|
1009 |
|
|
none on the to node, the to node has indirect cycles from the
|
1010 |
|
|
from node now that they are unified.
|
1011 |
|
|
If indirect cycles exist on both, unify the nodes that they
|
1012 |
|
|
are in a cycle with, since we know they are in a cycle with
|
1013 |
|
|
each other. */
|
1014 |
|
|
if (graph->indirect_cycles[to] == -1)
|
1015 |
|
|
graph->indirect_cycles[to] = graph->indirect_cycles[from];
|
1016 |
|
|
}
|
1017 |
|
|
|
1018 |
|
|
/* Merge all the successor edges. */
|
1019 |
|
|
if (graph->succs[from])
|
1020 |
|
|
{
|
1021 |
|
|
if (!graph->succs[to])
|
1022 |
|
|
graph->succs[to] = BITMAP_ALLOC (&pta_obstack);
|
1023 |
|
|
bitmap_ior_into (graph->succs[to],
|
1024 |
|
|
graph->succs[from]);
|
1025 |
|
|
}
|
1026 |
|
|
|
1027 |
|
|
clear_edges_for_node (graph, from);
|
1028 |
|
|
}
|
1029 |
|
|
|
1030 |
|
|
|
1031 |
|
|
/* Add an indirect graph edge to GRAPH, going from TO to FROM if
|
1032 |
|
|
it doesn't exist in the graph already. */
|
1033 |
|
|
|
1034 |
|
|
static void
|
1035 |
|
|
add_implicit_graph_edge (constraint_graph_t graph, unsigned int to,
|
1036 |
|
|
unsigned int from)
|
1037 |
|
|
{
|
1038 |
|
|
if (to == from)
|
1039 |
|
|
return;
|
1040 |
|
|
|
1041 |
|
|
if (!graph->implicit_preds[to])
|
1042 |
|
|
graph->implicit_preds[to] = BITMAP_ALLOC (&predbitmap_obstack);
|
1043 |
|
|
|
1044 |
|
|
if (bitmap_set_bit (graph->implicit_preds[to], from))
|
1045 |
|
|
stats.num_implicit_edges++;
|
1046 |
|
|
}
|
1047 |
|
|
|
1048 |
|
|
/* Add a predecessor graph edge to GRAPH, going from TO to FROM if
|
1049 |
|
|
it doesn't exist in the graph already.
|
1050 |
|
|
Return false if the edge already existed, true otherwise. */
|
1051 |
|
|
|
1052 |
|
|
static void
|
1053 |
|
|
add_pred_graph_edge (constraint_graph_t graph, unsigned int to,
|
1054 |
|
|
unsigned int from)
|
1055 |
|
|
{
|
1056 |
|
|
if (!graph->preds[to])
|
1057 |
|
|
graph->preds[to] = BITMAP_ALLOC (&predbitmap_obstack);
|
1058 |
|
|
bitmap_set_bit (graph->preds[to], from);
|
1059 |
|
|
}
|
1060 |
|
|
|
1061 |
|
|
/* Add a graph edge to GRAPH, going from FROM to TO if
|
1062 |
|
|
it doesn't exist in the graph already.
|
1063 |
|
|
Return false if the edge already existed, true otherwise. */
|
1064 |
|
|
|
1065 |
|
|
static bool
|
1066 |
|
|
add_graph_edge (constraint_graph_t graph, unsigned int to,
|
1067 |
|
|
unsigned int from)
|
1068 |
|
|
{
|
1069 |
|
|
if (to == from)
|
1070 |
|
|
{
|
1071 |
|
|
return false;
|
1072 |
|
|
}
|
1073 |
|
|
else
|
1074 |
|
|
{
|
1075 |
|
|
bool r = false;
|
1076 |
|
|
|
1077 |
|
|
if (!graph->succs[from])
|
1078 |
|
|
graph->succs[from] = BITMAP_ALLOC (&pta_obstack);
|
1079 |
|
|
if (bitmap_set_bit (graph->succs[from], to))
|
1080 |
|
|
{
|
1081 |
|
|
r = true;
|
1082 |
|
|
if (to < FIRST_REF_NODE && from < FIRST_REF_NODE)
|
1083 |
|
|
stats.num_edges++;
|
1084 |
|
|
}
|
1085 |
|
|
return r;
|
1086 |
|
|
}
|
1087 |
|
|
}
|
1088 |
|
|
|
1089 |
|
|
|
1090 |
|
|
/* Return true if {DEST.SRC} is an existing graph edge in GRAPH. */
|
1091 |
|
|
|
1092 |
|
|
static bool
|
1093 |
|
|
valid_graph_edge (constraint_graph_t graph, unsigned int src,
|
1094 |
|
|
unsigned int dest)
|
1095 |
|
|
{
|
1096 |
|
|
return (graph->succs[dest]
|
1097 |
|
|
&& bitmap_bit_p (graph->succs[dest], src));
|
1098 |
|
|
}
|
1099 |
|
|
|
1100 |
|
|
/* Initialize the constraint graph structure to contain SIZE nodes. */
|
1101 |
|
|
|
1102 |
|
|
static void
|
1103 |
|
|
init_graph (unsigned int size)
|
1104 |
|
|
{
|
1105 |
|
|
unsigned int j;
|
1106 |
|
|
|
1107 |
|
|
graph = XCNEW (struct constraint_graph);
|
1108 |
|
|
graph->size = size;
|
1109 |
|
|
graph->succs = XCNEWVEC (bitmap, graph->size);
|
1110 |
|
|
graph->indirect_cycles = XNEWVEC (int, graph->size);
|
1111 |
|
|
graph->rep = XNEWVEC (unsigned int, graph->size);
|
1112 |
|
|
graph->complex = XCNEWVEC (VEC(constraint_t, heap) *, size);
|
1113 |
|
|
graph->pe = XCNEWVEC (unsigned int, graph->size);
|
1114 |
|
|
graph->pe_rep = XNEWVEC (int, graph->size);
|
1115 |
|
|
|
1116 |
|
|
for (j = 0; j < graph->size; j++)
|
1117 |
|
|
{
|
1118 |
|
|
graph->rep[j] = j;
|
1119 |
|
|
graph->pe_rep[j] = -1;
|
1120 |
|
|
graph->indirect_cycles[j] = -1;
|
1121 |
|
|
}
|
1122 |
|
|
}
|
1123 |
|
|
|
1124 |
|
|
/* Build the constraint graph, adding only predecessor edges right now. */
|
1125 |
|
|
|
1126 |
|
|
static void
|
1127 |
|
|
build_pred_graph (void)
|
1128 |
|
|
{
|
1129 |
|
|
int i;
|
1130 |
|
|
constraint_t c;
|
1131 |
|
|
unsigned int j;
|
1132 |
|
|
|
1133 |
|
|
graph->implicit_preds = XCNEWVEC (bitmap, graph->size);
|
1134 |
|
|
graph->preds = XCNEWVEC (bitmap, graph->size);
|
1135 |
|
|
graph->pointer_label = XCNEWVEC (unsigned int, graph->size);
|
1136 |
|
|
graph->loc_label = XCNEWVEC (unsigned int, graph->size);
|
1137 |
|
|
graph->pointed_by = XCNEWVEC (bitmap, graph->size);
|
1138 |
|
|
graph->points_to = XCNEWVEC (bitmap, graph->size);
|
1139 |
|
|
graph->eq_rep = XNEWVEC (int, graph->size);
|
1140 |
|
|
graph->direct_nodes = sbitmap_alloc (graph->size);
|
1141 |
|
|
graph->address_taken = BITMAP_ALLOC (&predbitmap_obstack);
|
1142 |
|
|
sbitmap_zero (graph->direct_nodes);
|
1143 |
|
|
|
1144 |
|
|
for (j = 0; j < FIRST_REF_NODE; j++)
|
1145 |
|
|
{
|
1146 |
|
|
if (!get_varinfo (j)->is_special_var)
|
1147 |
|
|
SET_BIT (graph->direct_nodes, j);
|
1148 |
|
|
}
|
1149 |
|
|
|
1150 |
|
|
for (j = 0; j < graph->size; j++)
|
1151 |
|
|
graph->eq_rep[j] = -1;
|
1152 |
|
|
|
1153 |
|
|
for (j = 0; j < VEC_length (varinfo_t, varmap); j++)
|
1154 |
|
|
graph->indirect_cycles[j] = -1;
|
1155 |
|
|
|
1156 |
|
|
for (i = 0; VEC_iterate (constraint_t, constraints, i, c); i++)
|
1157 |
|
|
{
|
1158 |
|
|
struct constraint_expr lhs = c->lhs;
|
1159 |
|
|
struct constraint_expr rhs = c->rhs;
|
1160 |
|
|
unsigned int lhsvar = lhs.var;
|
1161 |
|
|
unsigned int rhsvar = rhs.var;
|
1162 |
|
|
|
1163 |
|
|
if (lhs.type == DEREF)
|
1164 |
|
|
{
|
1165 |
|
|
/* *x = y. */
|
1166 |
|
|
if (rhs.offset == 0 && lhs.offset == 0 && rhs.type == SCALAR)
|
1167 |
|
|
add_pred_graph_edge (graph, FIRST_REF_NODE + lhsvar, rhsvar);
|
1168 |
|
|
}
|
1169 |
|
|
else if (rhs.type == DEREF)
|
1170 |
|
|
{
|
1171 |
|
|
/* x = *y */
|
1172 |
|
|
if (rhs.offset == 0 && lhs.offset == 0 && lhs.type == SCALAR)
|
1173 |
|
|
add_pred_graph_edge (graph, lhsvar, FIRST_REF_NODE + rhsvar);
|
1174 |
|
|
else
|
1175 |
|
|
RESET_BIT (graph->direct_nodes, lhsvar);
|
1176 |
|
|
}
|
1177 |
|
|
else if (rhs.type == ADDRESSOF)
|
1178 |
|
|
{
|
1179 |
|
|
varinfo_t v;
|
1180 |
|
|
|
1181 |
|
|
/* x = &y */
|
1182 |
|
|
if (graph->points_to[lhsvar] == NULL)
|
1183 |
|
|
graph->points_to[lhsvar] = BITMAP_ALLOC (&predbitmap_obstack);
|
1184 |
|
|
bitmap_set_bit (graph->points_to[lhsvar], rhsvar);
|
1185 |
|
|
|
1186 |
|
|
if (graph->pointed_by[rhsvar] == NULL)
|
1187 |
|
|
graph->pointed_by[rhsvar] = BITMAP_ALLOC (&predbitmap_obstack);
|
1188 |
|
|
bitmap_set_bit (graph->pointed_by[rhsvar], lhsvar);
|
1189 |
|
|
|
1190 |
|
|
/* Implicitly, *x = y */
|
1191 |
|
|
add_implicit_graph_edge (graph, FIRST_REF_NODE + lhsvar, rhsvar);
|
1192 |
|
|
|
1193 |
|
|
/* All related variables are no longer direct nodes. */
|
1194 |
|
|
RESET_BIT (graph->direct_nodes, rhsvar);
|
1195 |
|
|
v = get_varinfo (rhsvar);
|
1196 |
|
|
if (!v->is_full_var)
|
1197 |
|
|
{
|
1198 |
|
|
v = lookup_vi_for_tree (v->decl);
|
1199 |
|
|
do
|
1200 |
|
|
{
|
1201 |
|
|
RESET_BIT (graph->direct_nodes, v->id);
|
1202 |
|
|
v = v->next;
|
1203 |
|
|
}
|
1204 |
|
|
while (v != NULL);
|
1205 |
|
|
}
|
1206 |
|
|
bitmap_set_bit (graph->address_taken, rhsvar);
|
1207 |
|
|
}
|
1208 |
|
|
else if (lhsvar > anything_id
|
1209 |
|
|
&& lhsvar != rhsvar && lhs.offset == 0 && rhs.offset == 0)
|
1210 |
|
|
{
|
1211 |
|
|
/* x = y */
|
1212 |
|
|
add_pred_graph_edge (graph, lhsvar, rhsvar);
|
1213 |
|
|
/* Implicitly, *x = *y */
|
1214 |
|
|
add_implicit_graph_edge (graph, FIRST_REF_NODE + lhsvar,
|
1215 |
|
|
FIRST_REF_NODE + rhsvar);
|
1216 |
|
|
}
|
1217 |
|
|
else if (lhs.offset != 0 || rhs.offset != 0)
|
1218 |
|
|
{
|
1219 |
|
|
if (rhs.offset != 0)
|
1220 |
|
|
RESET_BIT (graph->direct_nodes, lhs.var);
|
1221 |
|
|
else if (lhs.offset != 0)
|
1222 |
|
|
RESET_BIT (graph->direct_nodes, rhs.var);
|
1223 |
|
|
}
|
1224 |
|
|
}
|
1225 |
|
|
}
|
1226 |
|
|
|
1227 |
|
|
/* Build the constraint graph, adding successor edges. */
|
1228 |
|
|
|
1229 |
|
|
static void
|
1230 |
|
|
build_succ_graph (void)
|
1231 |
|
|
{
|
1232 |
|
|
unsigned i, t;
|
1233 |
|
|
constraint_t c;
|
1234 |
|
|
|
1235 |
|
|
for (i = 0; VEC_iterate (constraint_t, constraints, i, c); i++)
|
1236 |
|
|
{
|
1237 |
|
|
struct constraint_expr lhs;
|
1238 |
|
|
struct constraint_expr rhs;
|
1239 |
|
|
unsigned int lhsvar;
|
1240 |
|
|
unsigned int rhsvar;
|
1241 |
|
|
|
1242 |
|
|
if (!c)
|
1243 |
|
|
continue;
|
1244 |
|
|
|
1245 |
|
|
lhs = c->lhs;
|
1246 |
|
|
rhs = c->rhs;
|
1247 |
|
|
lhsvar = find (lhs.var);
|
1248 |
|
|
rhsvar = find (rhs.var);
|
1249 |
|
|
|
1250 |
|
|
if (lhs.type == DEREF)
|
1251 |
|
|
{
|
1252 |
|
|
if (rhs.offset == 0 && lhs.offset == 0 && rhs.type == SCALAR)
|
1253 |
|
|
add_graph_edge (graph, FIRST_REF_NODE + lhsvar, rhsvar);
|
1254 |
|
|
}
|
1255 |
|
|
else if (rhs.type == DEREF)
|
1256 |
|
|
{
|
1257 |
|
|
if (rhs.offset == 0 && lhs.offset == 0 && lhs.type == SCALAR)
|
1258 |
|
|
add_graph_edge (graph, lhsvar, FIRST_REF_NODE + rhsvar);
|
1259 |
|
|
}
|
1260 |
|
|
else if (rhs.type == ADDRESSOF)
|
1261 |
|
|
{
|
1262 |
|
|
/* x = &y */
|
1263 |
|
|
gcc_assert (find (rhs.var) == rhs.var);
|
1264 |
|
|
bitmap_set_bit (get_varinfo (lhsvar)->solution, rhsvar);
|
1265 |
|
|
}
|
1266 |
|
|
else if (lhsvar > anything_id
|
1267 |
|
|
&& lhsvar != rhsvar && lhs.offset == 0 && rhs.offset == 0)
|
1268 |
|
|
{
|
1269 |
|
|
add_graph_edge (graph, lhsvar, rhsvar);
|
1270 |
|
|
}
|
1271 |
|
|
}
|
1272 |
|
|
|
1273 |
|
|
/* Add edges from STOREDANYTHING to all non-direct nodes that can
|
1274 |
|
|
receive pointers. */
|
1275 |
|
|
t = find (storedanything_id);
|
1276 |
|
|
for (i = integer_id + 1; i < FIRST_REF_NODE; ++i)
|
1277 |
|
|
{
|
1278 |
|
|
if (!TEST_BIT (graph->direct_nodes, i)
|
1279 |
|
|
&& get_varinfo (i)->may_have_pointers)
|
1280 |
|
|
add_graph_edge (graph, find (i), t);
|
1281 |
|
|
}
|
1282 |
|
|
|
1283 |
|
|
/* Everything stored to ANYTHING also potentially escapes. */
|
1284 |
|
|
add_graph_edge (graph, find (escaped_id), t);
|
1285 |
|
|
}
|
1286 |
|
|
|
1287 |
|
|
|
1288 |
|
|
/* Changed variables on the last iteration. */
|
1289 |
|
|
static unsigned int changed_count;
|
1290 |
|
|
static sbitmap changed;
|
1291 |
|
|
|
1292 |
|
|
/* Strongly Connected Component visitation info. */
|
1293 |
|
|
|
1294 |
|
|
struct scc_info
|
1295 |
|
|
{
|
1296 |
|
|
sbitmap visited;
|
1297 |
|
|
sbitmap deleted;
|
1298 |
|
|
unsigned int *dfs;
|
1299 |
|
|
unsigned int *node_mapping;
|
1300 |
|
|
int current_index;
|
1301 |
|
|
VEC(unsigned,heap) *scc_stack;
|
1302 |
|
|
};
|
1303 |
|
|
|
1304 |
|
|
|
1305 |
|
|
/* Recursive routine to find strongly connected components in GRAPH.
|
1306 |
|
|
SI is the SCC info to store the information in, and N is the id of current
|
1307 |
|
|
graph node we are processing.
|
1308 |
|
|
|
1309 |
|
|
This is Tarjan's strongly connected component finding algorithm, as
|
1310 |
|
|
modified by Nuutila to keep only non-root nodes on the stack.
|
1311 |
|
|
The algorithm can be found in "On finding the strongly connected
|
1312 |
|
|
connected components in a directed graph" by Esko Nuutila and Eljas
|
1313 |
|
|
Soisalon-Soininen, in Information Processing Letters volume 49,
|
1314 |
|
|
number 1, pages 9-14. */
|
1315 |
|
|
|
1316 |
|
|
static void
|
1317 |
|
|
scc_visit (constraint_graph_t graph, struct scc_info *si, unsigned int n)
|
1318 |
|
|
{
|
1319 |
|
|
unsigned int i;
|
1320 |
|
|
bitmap_iterator bi;
|
1321 |
|
|
unsigned int my_dfs;
|
1322 |
|
|
|
1323 |
|
|
SET_BIT (si->visited, n);
|
1324 |
|
|
si->dfs[n] = si->current_index ++;
|
1325 |
|
|
my_dfs = si->dfs[n];
|
1326 |
|
|
|
1327 |
|
|
/* Visit all the successors. */
|
1328 |
|
|
EXECUTE_IF_IN_NONNULL_BITMAP (graph->succs[n], 0, i, bi)
|
1329 |
|
|
{
|
1330 |
|
|
unsigned int w;
|
1331 |
|
|
|
1332 |
|
|
if (i > LAST_REF_NODE)
|
1333 |
|
|
break;
|
1334 |
|
|
|
1335 |
|
|
w = find (i);
|
1336 |
|
|
if (TEST_BIT (si->deleted, w))
|
1337 |
|
|
continue;
|
1338 |
|
|
|
1339 |
|
|
if (!TEST_BIT (si->visited, w))
|
1340 |
|
|
scc_visit (graph, si, w);
|
1341 |
|
|
{
|
1342 |
|
|
unsigned int t = find (w);
|
1343 |
|
|
unsigned int nnode = find (n);
|
1344 |
|
|
gcc_assert (nnode == n);
|
1345 |
|
|
|
1346 |
|
|
if (si->dfs[t] < si->dfs[nnode])
|
1347 |
|
|
si->dfs[n] = si->dfs[t];
|
1348 |
|
|
}
|
1349 |
|
|
}
|
1350 |
|
|
|
1351 |
|
|
/* See if any components have been identified. */
|
1352 |
|
|
if (si->dfs[n] == my_dfs)
|
1353 |
|
|
{
|
1354 |
|
|
if (VEC_length (unsigned, si->scc_stack) > 0
|
1355 |
|
|
&& si->dfs[VEC_last (unsigned, si->scc_stack)] >= my_dfs)
|
1356 |
|
|
{
|
1357 |
|
|
bitmap scc = BITMAP_ALLOC (NULL);
|
1358 |
|
|
unsigned int lowest_node;
|
1359 |
|
|
bitmap_iterator bi;
|
1360 |
|
|
|
1361 |
|
|
bitmap_set_bit (scc, n);
|
1362 |
|
|
|
1363 |
|
|
while (VEC_length (unsigned, si->scc_stack) != 0
|
1364 |
|
|
&& si->dfs[VEC_last (unsigned, si->scc_stack)] >= my_dfs)
|
1365 |
|
|
{
|
1366 |
|
|
unsigned int w = VEC_pop (unsigned, si->scc_stack);
|
1367 |
|
|
|
1368 |
|
|
bitmap_set_bit (scc, w);
|
1369 |
|
|
}
|
1370 |
|
|
|
1371 |
|
|
lowest_node = bitmap_first_set_bit (scc);
|
1372 |
|
|
gcc_assert (lowest_node < FIRST_REF_NODE);
|
1373 |
|
|
|
1374 |
|
|
/* Collapse the SCC nodes into a single node, and mark the
|
1375 |
|
|
indirect cycles. */
|
1376 |
|
|
EXECUTE_IF_SET_IN_BITMAP (scc, 0, i, bi)
|
1377 |
|
|
{
|
1378 |
|
|
if (i < FIRST_REF_NODE)
|
1379 |
|
|
{
|
1380 |
|
|
if (unite (lowest_node, i))
|
1381 |
|
|
unify_nodes (graph, lowest_node, i, false);
|
1382 |
|
|
}
|
1383 |
|
|
else
|
1384 |
|
|
{
|
1385 |
|
|
unite (lowest_node, i);
|
1386 |
|
|
graph->indirect_cycles[i - FIRST_REF_NODE] = lowest_node;
|
1387 |
|
|
}
|
1388 |
|
|
}
|
1389 |
|
|
}
|
1390 |
|
|
SET_BIT (si->deleted, n);
|
1391 |
|
|
}
|
1392 |
|
|
else
|
1393 |
|
|
VEC_safe_push (unsigned, heap, si->scc_stack, n);
|
1394 |
|
|
}
|
1395 |
|
|
|
1396 |
|
|
/* Unify node FROM into node TO, updating the changed count if
|
1397 |
|
|
necessary when UPDATE_CHANGED is true. */
|
1398 |
|
|
|
1399 |
|
|
static void
|
1400 |
|
|
unify_nodes (constraint_graph_t graph, unsigned int to, unsigned int from,
|
1401 |
|
|
bool update_changed)
|
1402 |
|
|
{
|
1403 |
|
|
|
1404 |
|
|
gcc_assert (to != from && find (to) == to);
|
1405 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
1406 |
|
|
fprintf (dump_file, "Unifying %s to %s\n",
|
1407 |
|
|
get_varinfo (from)->name,
|
1408 |
|
|
get_varinfo (to)->name);
|
1409 |
|
|
|
1410 |
|
|
if (update_changed)
|
1411 |
|
|
stats.unified_vars_dynamic++;
|
1412 |
|
|
else
|
1413 |
|
|
stats.unified_vars_static++;
|
1414 |
|
|
|
1415 |
|
|
merge_graph_nodes (graph, to, from);
|
1416 |
|
|
merge_node_constraints (graph, to, from);
|
1417 |
|
|
|
1418 |
|
|
/* Mark TO as changed if FROM was changed. If TO was already marked
|
1419 |
|
|
as changed, decrease the changed count. */
|
1420 |
|
|
|
1421 |
|
|
if (update_changed && TEST_BIT (changed, from))
|
1422 |
|
|
{
|
1423 |
|
|
RESET_BIT (changed, from);
|
1424 |
|
|
if (!TEST_BIT (changed, to))
|
1425 |
|
|
SET_BIT (changed, to);
|
1426 |
|
|
else
|
1427 |
|
|
{
|
1428 |
|
|
gcc_assert (changed_count > 0);
|
1429 |
|
|
changed_count--;
|
1430 |
|
|
}
|
1431 |
|
|
}
|
1432 |
|
|
if (get_varinfo (from)->solution)
|
1433 |
|
|
{
|
1434 |
|
|
/* If the solution changes because of the merging, we need to mark
|
1435 |
|
|
the variable as changed. */
|
1436 |
|
|
if (bitmap_ior_into (get_varinfo (to)->solution,
|
1437 |
|
|
get_varinfo (from)->solution))
|
1438 |
|
|
{
|
1439 |
|
|
if (update_changed && !TEST_BIT (changed, to))
|
1440 |
|
|
{
|
1441 |
|
|
SET_BIT (changed, to);
|
1442 |
|
|
changed_count++;
|
1443 |
|
|
}
|
1444 |
|
|
}
|
1445 |
|
|
|
1446 |
|
|
BITMAP_FREE (get_varinfo (from)->solution);
|
1447 |
|
|
BITMAP_FREE (get_varinfo (from)->oldsolution);
|
1448 |
|
|
|
1449 |
|
|
if (stats.iterations > 0)
|
1450 |
|
|
{
|
1451 |
|
|
BITMAP_FREE (get_varinfo (to)->oldsolution);
|
1452 |
|
|
get_varinfo (to)->oldsolution = BITMAP_ALLOC (&oldpta_obstack);
|
1453 |
|
|
}
|
1454 |
|
|
}
|
1455 |
|
|
if (valid_graph_edge (graph, to, to))
|
1456 |
|
|
{
|
1457 |
|
|
if (graph->succs[to])
|
1458 |
|
|
bitmap_clear_bit (graph->succs[to], to);
|
1459 |
|
|
}
|
1460 |
|
|
}
|
1461 |
|
|
|
1462 |
|
|
/* Information needed to compute the topological ordering of a graph. */
|
1463 |
|
|
|
1464 |
|
|
struct topo_info
|
1465 |
|
|
{
|
1466 |
|
|
/* sbitmap of visited nodes. */
|
1467 |
|
|
sbitmap visited;
|
1468 |
|
|
/* Array that stores the topological order of the graph, *in
|
1469 |
|
|
reverse*. */
|
1470 |
|
|
VEC(unsigned,heap) *topo_order;
|
1471 |
|
|
};
|
1472 |
|
|
|
1473 |
|
|
|
1474 |
|
|
/* Initialize and return a topological info structure. */
|
1475 |
|
|
|
1476 |
|
|
static struct topo_info *
|
1477 |
|
|
init_topo_info (void)
|
1478 |
|
|
{
|
1479 |
|
|
size_t size = graph->size;
|
1480 |
|
|
struct topo_info *ti = XNEW (struct topo_info);
|
1481 |
|
|
ti->visited = sbitmap_alloc (size);
|
1482 |
|
|
sbitmap_zero (ti->visited);
|
1483 |
|
|
ti->topo_order = VEC_alloc (unsigned, heap, 1);
|
1484 |
|
|
return ti;
|
1485 |
|
|
}
|
1486 |
|
|
|
1487 |
|
|
|
1488 |
|
|
/* Free the topological sort info pointed to by TI. */
|
1489 |
|
|
|
1490 |
|
|
static void
|
1491 |
|
|
free_topo_info (struct topo_info *ti)
|
1492 |
|
|
{
|
1493 |
|
|
sbitmap_free (ti->visited);
|
1494 |
|
|
VEC_free (unsigned, heap, ti->topo_order);
|
1495 |
|
|
free (ti);
|
1496 |
|
|
}
|
1497 |
|
|
|
1498 |
|
|
/* Visit the graph in topological order, and store the order in the
|
1499 |
|
|
topo_info structure. */
|
1500 |
|
|
|
1501 |
|
|
static void
|
1502 |
|
|
topo_visit (constraint_graph_t graph, struct topo_info *ti,
|
1503 |
|
|
unsigned int n)
|
1504 |
|
|
{
|
1505 |
|
|
bitmap_iterator bi;
|
1506 |
|
|
unsigned int j;
|
1507 |
|
|
|
1508 |
|
|
SET_BIT (ti->visited, n);
|
1509 |
|
|
|
1510 |
|
|
if (graph->succs[n])
|
1511 |
|
|
EXECUTE_IF_SET_IN_BITMAP (graph->succs[n], 0, j, bi)
|
1512 |
|
|
{
|
1513 |
|
|
if (!TEST_BIT (ti->visited, j))
|
1514 |
|
|
topo_visit (graph, ti, j);
|
1515 |
|
|
}
|
1516 |
|
|
|
1517 |
|
|
VEC_safe_push (unsigned, heap, ti->topo_order, n);
|
1518 |
|
|
}
|
1519 |
|
|
|
1520 |
|
|
/* Process a constraint C that represents x = *(y + off), using DELTA as the
|
1521 |
|
|
starting solution for y. */
|
1522 |
|
|
|
1523 |
|
|
static void
|
1524 |
|
|
do_sd_constraint (constraint_graph_t graph, constraint_t c,
|
1525 |
|
|
bitmap delta)
|
1526 |
|
|
{
|
1527 |
|
|
unsigned int lhs = c->lhs.var;
|
1528 |
|
|
bool flag = false;
|
1529 |
|
|
bitmap sol = get_varinfo (lhs)->solution;
|
1530 |
|
|
unsigned int j;
|
1531 |
|
|
bitmap_iterator bi;
|
1532 |
|
|
HOST_WIDE_INT roffset = c->rhs.offset;
|
1533 |
|
|
|
1534 |
|
|
/* Our IL does not allow this. */
|
1535 |
|
|
gcc_assert (c->lhs.offset == 0);
|
1536 |
|
|
|
1537 |
|
|
/* If the solution of Y contains anything it is good enough to transfer
|
1538 |
|
|
this to the LHS. */
|
1539 |
|
|
if (bitmap_bit_p (delta, anything_id))
|
1540 |
|
|
{
|
1541 |
|
|
flag |= bitmap_set_bit (sol, anything_id);
|
1542 |
|
|
goto done;
|
1543 |
|
|
}
|
1544 |
|
|
|
1545 |
|
|
/* If we do not know at with offset the rhs is dereferenced compute
|
1546 |
|
|
the reachability set of DELTA, conservatively assuming it is
|
1547 |
|
|
dereferenced at all valid offsets. */
|
1548 |
|
|
if (roffset == UNKNOWN_OFFSET)
|
1549 |
|
|
{
|
1550 |
|
|
solution_set_expand (delta, delta);
|
1551 |
|
|
/* No further offset processing is necessary. */
|
1552 |
|
|
roffset = 0;
|
1553 |
|
|
}
|
1554 |
|
|
|
1555 |
|
|
/* For each variable j in delta (Sol(y)), add
|
1556 |
|
|
an edge in the graph from j to x, and union Sol(j) into Sol(x). */
|
1557 |
|
|
EXECUTE_IF_SET_IN_BITMAP (delta, 0, j, bi)
|
1558 |
|
|
{
|
1559 |
|
|
varinfo_t v = get_varinfo (j);
|
1560 |
|
|
HOST_WIDE_INT fieldoffset = v->offset + roffset;
|
1561 |
|
|
unsigned int t;
|
1562 |
|
|
|
1563 |
|
|
if (v->is_full_var)
|
1564 |
|
|
fieldoffset = v->offset;
|
1565 |
|
|
else if (roffset != 0)
|
1566 |
|
|
v = first_vi_for_offset (v, fieldoffset);
|
1567 |
|
|
/* If the access is outside of the variable we can ignore it. */
|
1568 |
|
|
if (!v)
|
1569 |
|
|
continue;
|
1570 |
|
|
|
1571 |
|
|
do
|
1572 |
|
|
{
|
1573 |
|
|
t = find (v->id);
|
1574 |
|
|
|
1575 |
|
|
/* Adding edges from the special vars is pointless.
|
1576 |
|
|
They don't have sets that can change. */
|
1577 |
|
|
if (get_varinfo (t)->is_special_var)
|
1578 |
|
|
flag |= bitmap_ior_into (sol, get_varinfo (t)->solution);
|
1579 |
|
|
/* Merging the solution from ESCAPED needlessly increases
|
1580 |
|
|
the set. Use ESCAPED as representative instead. */
|
1581 |
|
|
else if (v->id == escaped_id)
|
1582 |
|
|
flag |= bitmap_set_bit (sol, escaped_id);
|
1583 |
|
|
else if (add_graph_edge (graph, lhs, t))
|
1584 |
|
|
flag |= bitmap_ior_into (sol, get_varinfo (t)->solution);
|
1585 |
|
|
|
1586 |
|
|
/* If the variable is not exactly at the requested offset
|
1587 |
|
|
we have to include the next one. */
|
1588 |
|
|
if (v->offset == (unsigned HOST_WIDE_INT)fieldoffset
|
1589 |
|
|
|| v->next == NULL)
|
1590 |
|
|
break;
|
1591 |
|
|
|
1592 |
|
|
v = v->next;
|
1593 |
|
|
fieldoffset = v->offset;
|
1594 |
|
|
}
|
1595 |
|
|
while (1);
|
1596 |
|
|
}
|
1597 |
|
|
|
1598 |
|
|
done:
|
1599 |
|
|
/* If the LHS solution changed, mark the var as changed. */
|
1600 |
|
|
if (flag)
|
1601 |
|
|
{
|
1602 |
|
|
get_varinfo (lhs)->solution = sol;
|
1603 |
|
|
if (!TEST_BIT (changed, lhs))
|
1604 |
|
|
{
|
1605 |
|
|
SET_BIT (changed, lhs);
|
1606 |
|
|
changed_count++;
|
1607 |
|
|
}
|
1608 |
|
|
}
|
1609 |
|
|
}
|
1610 |
|
|
|
1611 |
|
|
/* Process a constraint C that represents *(x + off) = y using DELTA
|
1612 |
|
|
as the starting solution for x. */
|
1613 |
|
|
|
1614 |
|
|
static void
|
1615 |
|
|
do_ds_constraint (constraint_t c, bitmap delta)
|
1616 |
|
|
{
|
1617 |
|
|
unsigned int rhs = c->rhs.var;
|
1618 |
|
|
bitmap sol = get_varinfo (rhs)->solution;
|
1619 |
|
|
unsigned int j;
|
1620 |
|
|
bitmap_iterator bi;
|
1621 |
|
|
HOST_WIDE_INT loff = c->lhs.offset;
|
1622 |
|
|
|
1623 |
|
|
/* Our IL does not allow this. */
|
1624 |
|
|
gcc_assert (c->rhs.offset == 0);
|
1625 |
|
|
|
1626 |
|
|
/* If the solution of y contains ANYTHING simply use the ANYTHING
|
1627 |
|
|
solution. This avoids needlessly increasing the points-to sets. */
|
1628 |
|
|
if (bitmap_bit_p (sol, anything_id))
|
1629 |
|
|
sol = get_varinfo (find (anything_id))->solution;
|
1630 |
|
|
|
1631 |
|
|
/* If the solution for x contains ANYTHING we have to merge the
|
1632 |
|
|
solution of y into all pointer variables which we do via
|
1633 |
|
|
STOREDANYTHING. */
|
1634 |
|
|
if (bitmap_bit_p (delta, anything_id))
|
1635 |
|
|
{
|
1636 |
|
|
unsigned t = find (storedanything_id);
|
1637 |
|
|
if (add_graph_edge (graph, t, rhs))
|
1638 |
|
|
{
|
1639 |
|
|
if (bitmap_ior_into (get_varinfo (t)->solution, sol))
|
1640 |
|
|
{
|
1641 |
|
|
if (!TEST_BIT (changed, t))
|
1642 |
|
|
{
|
1643 |
|
|
SET_BIT (changed, t);
|
1644 |
|
|
changed_count++;
|
1645 |
|
|
}
|
1646 |
|
|
}
|
1647 |
|
|
}
|
1648 |
|
|
return;
|
1649 |
|
|
}
|
1650 |
|
|
|
1651 |
|
|
/* If we do not know at with offset the rhs is dereferenced compute
|
1652 |
|
|
the reachability set of DELTA, conservatively assuming it is
|
1653 |
|
|
dereferenced at all valid offsets. */
|
1654 |
|
|
if (loff == UNKNOWN_OFFSET)
|
1655 |
|
|
{
|
1656 |
|
|
solution_set_expand (delta, delta);
|
1657 |
|
|
loff = 0;
|
1658 |
|
|
}
|
1659 |
|
|
|
1660 |
|
|
/* For each member j of delta (Sol(x)), add an edge from y to j and
|
1661 |
|
|
union Sol(y) into Sol(j) */
|
1662 |
|
|
EXECUTE_IF_SET_IN_BITMAP (delta, 0, j, bi)
|
1663 |
|
|
{
|
1664 |
|
|
varinfo_t v = get_varinfo (j);
|
1665 |
|
|
unsigned int t;
|
1666 |
|
|
HOST_WIDE_INT fieldoffset = v->offset + loff;
|
1667 |
|
|
|
1668 |
|
|
/* If v is a global variable then this is an escape point. */
|
1669 |
|
|
if (v->is_global_var)
|
1670 |
|
|
{
|
1671 |
|
|
t = find (escaped_id);
|
1672 |
|
|
if (add_graph_edge (graph, t, rhs)
|
1673 |
|
|
&& bitmap_ior_into (get_varinfo (t)->solution, sol)
|
1674 |
|
|
&& !TEST_BIT (changed, t))
|
1675 |
|
|
{
|
1676 |
|
|
SET_BIT (changed, t);
|
1677 |
|
|
changed_count++;
|
1678 |
|
|
}
|
1679 |
|
|
}
|
1680 |
|
|
|
1681 |
|
|
if (v->is_special_var)
|
1682 |
|
|
continue;
|
1683 |
|
|
|
1684 |
|
|
if (v->is_full_var)
|
1685 |
|
|
fieldoffset = v->offset;
|
1686 |
|
|
else if (loff != 0)
|
1687 |
|
|
v = first_vi_for_offset (v, fieldoffset);
|
1688 |
|
|
/* If the access is outside of the variable we can ignore it. */
|
1689 |
|
|
if (!v)
|
1690 |
|
|
continue;
|
1691 |
|
|
|
1692 |
|
|
do
|
1693 |
|
|
{
|
1694 |
|
|
if (v->may_have_pointers)
|
1695 |
|
|
{
|
1696 |
|
|
t = find (v->id);
|
1697 |
|
|
if (add_graph_edge (graph, t, rhs)
|
1698 |
|
|
&& bitmap_ior_into (get_varinfo (t)->solution, sol)
|
1699 |
|
|
&& !TEST_BIT (changed, t))
|
1700 |
|
|
{
|
1701 |
|
|
SET_BIT (changed, t);
|
1702 |
|
|
changed_count++;
|
1703 |
|
|
}
|
1704 |
|
|
}
|
1705 |
|
|
|
1706 |
|
|
/* If the variable is not exactly at the requested offset
|
1707 |
|
|
we have to include the next one. */
|
1708 |
|
|
if (v->offset == (unsigned HOST_WIDE_INT)fieldoffset
|
1709 |
|
|
|| v->next == NULL)
|
1710 |
|
|
break;
|
1711 |
|
|
|
1712 |
|
|
v = v->next;
|
1713 |
|
|
fieldoffset = v->offset;
|
1714 |
|
|
}
|
1715 |
|
|
while (1);
|
1716 |
|
|
}
|
1717 |
|
|
}
|
1718 |
|
|
|
1719 |
|
|
/* Handle a non-simple (simple meaning requires no iteration),
|
1720 |
|
|
constraint (IE *x = &y, x = *y, *x = y, and x = y with offsets involved). */
|
1721 |
|
|
|
1722 |
|
|
static void
|
1723 |
|
|
do_complex_constraint (constraint_graph_t graph, constraint_t c, bitmap delta)
|
1724 |
|
|
{
|
1725 |
|
|
if (c->lhs.type == DEREF)
|
1726 |
|
|
{
|
1727 |
|
|
if (c->rhs.type == ADDRESSOF)
|
1728 |
|
|
{
|
1729 |
|
|
gcc_unreachable();
|
1730 |
|
|
}
|
1731 |
|
|
else
|
1732 |
|
|
{
|
1733 |
|
|
/* *x = y */
|
1734 |
|
|
do_ds_constraint (c, delta);
|
1735 |
|
|
}
|
1736 |
|
|
}
|
1737 |
|
|
else if (c->rhs.type == DEREF)
|
1738 |
|
|
{
|
1739 |
|
|
/* x = *y */
|
1740 |
|
|
if (!(get_varinfo (c->lhs.var)->is_special_var))
|
1741 |
|
|
do_sd_constraint (graph, c, delta);
|
1742 |
|
|
}
|
1743 |
|
|
else
|
1744 |
|
|
{
|
1745 |
|
|
bitmap tmp;
|
1746 |
|
|
bitmap solution;
|
1747 |
|
|
bool flag = false;
|
1748 |
|
|
|
1749 |
|
|
gcc_assert (c->rhs.type == SCALAR && c->lhs.type == SCALAR);
|
1750 |
|
|
solution = get_varinfo (c->rhs.var)->solution;
|
1751 |
|
|
tmp = get_varinfo (c->lhs.var)->solution;
|
1752 |
|
|
|
1753 |
|
|
flag = set_union_with_increment (tmp, solution, c->rhs.offset);
|
1754 |
|
|
|
1755 |
|
|
if (flag)
|
1756 |
|
|
{
|
1757 |
|
|
get_varinfo (c->lhs.var)->solution = tmp;
|
1758 |
|
|
if (!TEST_BIT (changed, c->lhs.var))
|
1759 |
|
|
{
|
1760 |
|
|
SET_BIT (changed, c->lhs.var);
|
1761 |
|
|
changed_count++;
|
1762 |
|
|
}
|
1763 |
|
|
}
|
1764 |
|
|
}
|
1765 |
|
|
}
|
1766 |
|
|
|
1767 |
|
|
/* Initialize and return a new SCC info structure. */
|
1768 |
|
|
|
1769 |
|
|
static struct scc_info *
|
1770 |
|
|
init_scc_info (size_t size)
|
1771 |
|
|
{
|
1772 |
|
|
struct scc_info *si = XNEW (struct scc_info);
|
1773 |
|
|
size_t i;
|
1774 |
|
|
|
1775 |
|
|
si->current_index = 0;
|
1776 |
|
|
si->visited = sbitmap_alloc (size);
|
1777 |
|
|
sbitmap_zero (si->visited);
|
1778 |
|
|
si->deleted = sbitmap_alloc (size);
|
1779 |
|
|
sbitmap_zero (si->deleted);
|
1780 |
|
|
si->node_mapping = XNEWVEC (unsigned int, size);
|
1781 |
|
|
si->dfs = XCNEWVEC (unsigned int, size);
|
1782 |
|
|
|
1783 |
|
|
for (i = 0; i < size; i++)
|
1784 |
|
|
si->node_mapping[i] = i;
|
1785 |
|
|
|
1786 |
|
|
si->scc_stack = VEC_alloc (unsigned, heap, 1);
|
1787 |
|
|
return si;
|
1788 |
|
|
}
|
1789 |
|
|
|
1790 |
|
|
/* Free an SCC info structure pointed to by SI */
|
1791 |
|
|
|
1792 |
|
|
static void
|
1793 |
|
|
free_scc_info (struct scc_info *si)
|
1794 |
|
|
{
|
1795 |
|
|
sbitmap_free (si->visited);
|
1796 |
|
|
sbitmap_free (si->deleted);
|
1797 |
|
|
free (si->node_mapping);
|
1798 |
|
|
free (si->dfs);
|
1799 |
|
|
VEC_free (unsigned, heap, si->scc_stack);
|
1800 |
|
|
free (si);
|
1801 |
|
|
}
|
1802 |
|
|
|
1803 |
|
|
|
1804 |
|
|
/* Find indirect cycles in GRAPH that occur, using strongly connected
|
1805 |
|
|
components, and note them in the indirect cycles map.
|
1806 |
|
|
|
1807 |
|
|
This technique comes from Ben Hardekopf and Calvin Lin,
|
1808 |
|
|
"It Pays to be Lazy: Fast and Accurate Pointer Analysis for Millions of
|
1809 |
|
|
Lines of Code", submitted to PLDI 2007. */
|
1810 |
|
|
|
1811 |
|
|
static void
|
1812 |
|
|
find_indirect_cycles (constraint_graph_t graph)
|
1813 |
|
|
{
|
1814 |
|
|
unsigned int i;
|
1815 |
|
|
unsigned int size = graph->size;
|
1816 |
|
|
struct scc_info *si = init_scc_info (size);
|
1817 |
|
|
|
1818 |
|
|
for (i = 0; i < MIN (LAST_REF_NODE, size); i ++ )
|
1819 |
|
|
if (!TEST_BIT (si->visited, i) && find (i) == i)
|
1820 |
|
|
scc_visit (graph, si, i);
|
1821 |
|
|
|
1822 |
|
|
free_scc_info (si);
|
1823 |
|
|
}
|
1824 |
|
|
|
1825 |
|
|
/* Compute a topological ordering for GRAPH, and store the result in the
|
1826 |
|
|
topo_info structure TI. */
|
1827 |
|
|
|
1828 |
|
|
static void
|
1829 |
|
|
compute_topo_order (constraint_graph_t graph,
|
1830 |
|
|
struct topo_info *ti)
|
1831 |
|
|
{
|
1832 |
|
|
unsigned int i;
|
1833 |
|
|
unsigned int size = graph->size;
|
1834 |
|
|
|
1835 |
|
|
for (i = 0; i != size; ++i)
|
1836 |
|
|
if (!TEST_BIT (ti->visited, i) && find (i) == i)
|
1837 |
|
|
topo_visit (graph, ti, i);
|
1838 |
|
|
}
|
1839 |
|
|
|
1840 |
|
|
/* Structure used to for hash value numbering of pointer equivalence
|
1841 |
|
|
classes. */
|
1842 |
|
|
|
1843 |
|
|
typedef struct equiv_class_label
|
1844 |
|
|
{
|
1845 |
|
|
hashval_t hashcode;
|
1846 |
|
|
unsigned int equivalence_class;
|
1847 |
|
|
bitmap labels;
|
1848 |
|
|
} *equiv_class_label_t;
|
1849 |
|
|
typedef const struct equiv_class_label *const_equiv_class_label_t;
|
1850 |
|
|
|
1851 |
|
|
/* A hashtable for mapping a bitmap of labels->pointer equivalence
|
1852 |
|
|
classes. */
|
1853 |
|
|
static htab_t pointer_equiv_class_table;
|
1854 |
|
|
|
1855 |
|
|
/* A hashtable for mapping a bitmap of labels->location equivalence
|
1856 |
|
|
classes. */
|
1857 |
|
|
static htab_t location_equiv_class_table;
|
1858 |
|
|
|
1859 |
|
|
/* Hash function for a equiv_class_label_t */
|
1860 |
|
|
|
1861 |
|
|
static hashval_t
|
1862 |
|
|
equiv_class_label_hash (const void *p)
|
1863 |
|
|
{
|
1864 |
|
|
const_equiv_class_label_t const ecl = (const_equiv_class_label_t) p;
|
1865 |
|
|
return ecl->hashcode;
|
1866 |
|
|
}
|
1867 |
|
|
|
1868 |
|
|
/* Equality function for two equiv_class_label_t's. */
|
1869 |
|
|
|
1870 |
|
|
static int
|
1871 |
|
|
equiv_class_label_eq (const void *p1, const void *p2)
|
1872 |
|
|
{
|
1873 |
|
|
const_equiv_class_label_t const eql1 = (const_equiv_class_label_t) p1;
|
1874 |
|
|
const_equiv_class_label_t const eql2 = (const_equiv_class_label_t) p2;
|
1875 |
|
|
return (eql1->hashcode == eql2->hashcode
|
1876 |
|
|
&& bitmap_equal_p (eql1->labels, eql2->labels));
|
1877 |
|
|
}
|
1878 |
|
|
|
1879 |
|
|
/* Lookup a equivalence class in TABLE by the bitmap of LABELS it
|
1880 |
|
|
contains. */
|
1881 |
|
|
|
1882 |
|
|
static unsigned int
|
1883 |
|
|
equiv_class_lookup (htab_t table, bitmap labels)
|
1884 |
|
|
{
|
1885 |
|
|
void **slot;
|
1886 |
|
|
struct equiv_class_label ecl;
|
1887 |
|
|
|
1888 |
|
|
ecl.labels = labels;
|
1889 |
|
|
ecl.hashcode = bitmap_hash (labels);
|
1890 |
|
|
|
1891 |
|
|
slot = htab_find_slot_with_hash (table, &ecl,
|
1892 |
|
|
ecl.hashcode, NO_INSERT);
|
1893 |
|
|
if (!slot)
|
1894 |
|
|
return 0;
|
1895 |
|
|
else
|
1896 |
|
|
return ((equiv_class_label_t) *slot)->equivalence_class;
|
1897 |
|
|
}
|
1898 |
|
|
|
1899 |
|
|
|
1900 |
|
|
/* Add an equivalence class named EQUIVALENCE_CLASS with labels LABELS
|
1901 |
|
|
to TABLE. */
|
1902 |
|
|
|
1903 |
|
|
static void
|
1904 |
|
|
equiv_class_add (htab_t table, unsigned int equivalence_class,
|
1905 |
|
|
bitmap labels)
|
1906 |
|
|
{
|
1907 |
|
|
void **slot;
|
1908 |
|
|
equiv_class_label_t ecl = XNEW (struct equiv_class_label);
|
1909 |
|
|
|
1910 |
|
|
ecl->labels = labels;
|
1911 |
|
|
ecl->equivalence_class = equivalence_class;
|
1912 |
|
|
ecl->hashcode = bitmap_hash (labels);
|
1913 |
|
|
|
1914 |
|
|
slot = htab_find_slot_with_hash (table, ecl,
|
1915 |
|
|
ecl->hashcode, INSERT);
|
1916 |
|
|
gcc_assert (!*slot);
|
1917 |
|
|
*slot = (void *) ecl;
|
1918 |
|
|
}
|
1919 |
|
|
|
1920 |
|
|
/* Perform offline variable substitution.
|
1921 |
|
|
|
1922 |
|
|
This is a worst case quadratic time way of identifying variables
|
1923 |
|
|
that must have equivalent points-to sets, including those caused by
|
1924 |
|
|
static cycles, and single entry subgraphs, in the constraint graph.
|
1925 |
|
|
|
1926 |
|
|
The technique is described in "Exploiting Pointer and Location
|
1927 |
|
|
Equivalence to Optimize Pointer Analysis. In the 14th International
|
1928 |
|
|
Static Analysis Symposium (SAS), August 2007." It is known as the
|
1929 |
|
|
"HU" algorithm, and is equivalent to value numbering the collapsed
|
1930 |
|
|
constraint graph including evaluating unions.
|
1931 |
|
|
|
1932 |
|
|
The general method of finding equivalence classes is as follows:
|
1933 |
|
|
Add fake nodes (REF nodes) and edges for *a = b and a = *b constraints.
|
1934 |
|
|
Initialize all non-REF nodes to be direct nodes.
|
1935 |
|
|
For each constraint a = a U {b}, we set pts(a) = pts(a) u {fresh
|
1936 |
|
|
variable}
|
1937 |
|
|
For each constraint containing the dereference, we also do the same
|
1938 |
|
|
thing.
|
1939 |
|
|
|
1940 |
|
|
We then compute SCC's in the graph and unify nodes in the same SCC,
|
1941 |
|
|
including pts sets.
|
1942 |
|
|
|
1943 |
|
|
For each non-collapsed node x:
|
1944 |
|
|
Visit all unvisited explicit incoming edges.
|
1945 |
|
|
Ignoring all non-pointers, set pts(x) = Union of pts(a) for y
|
1946 |
|
|
where y->x.
|
1947 |
|
|
Lookup the equivalence class for pts(x).
|
1948 |
|
|
If we found one, equivalence_class(x) = found class.
|
1949 |
|
|
Otherwise, equivalence_class(x) = new class, and new_class is
|
1950 |
|
|
added to the lookup table.
|
1951 |
|
|
|
1952 |
|
|
All direct nodes with the same equivalence class can be replaced
|
1953 |
|
|
with a single representative node.
|
1954 |
|
|
All unlabeled nodes (label == 0) are not pointers and all edges
|
1955 |
|
|
involving them can be eliminated.
|
1956 |
|
|
We perform these optimizations during rewrite_constraints
|
1957 |
|
|
|
1958 |
|
|
In addition to pointer equivalence class finding, we also perform
|
1959 |
|
|
location equivalence class finding. This is the set of variables
|
1960 |
|
|
that always appear together in points-to sets. We use this to
|
1961 |
|
|
compress the size of the points-to sets. */
|
1962 |
|
|
|
1963 |
|
|
/* Current maximum pointer equivalence class id. */
|
1964 |
|
|
static int pointer_equiv_class;
|
1965 |
|
|
|
1966 |
|
|
/* Current maximum location equivalence class id. */
|
1967 |
|
|
static int location_equiv_class;
|
1968 |
|
|
|
1969 |
|
|
/* Recursive routine to find strongly connected components in GRAPH,
|
1970 |
|
|
and label it's nodes with DFS numbers. */
|
1971 |
|
|
|
1972 |
|
|
static void
|
1973 |
|
|
condense_visit (constraint_graph_t graph, struct scc_info *si, unsigned int n)
|
1974 |
|
|
{
|
1975 |
|
|
unsigned int i;
|
1976 |
|
|
bitmap_iterator bi;
|
1977 |
|
|
unsigned int my_dfs;
|
1978 |
|
|
|
1979 |
|
|
gcc_assert (si->node_mapping[n] == n);
|
1980 |
|
|
SET_BIT (si->visited, n);
|
1981 |
|
|
si->dfs[n] = si->current_index ++;
|
1982 |
|
|
my_dfs = si->dfs[n];
|
1983 |
|
|
|
1984 |
|
|
/* Visit all the successors. */
|
1985 |
|
|
EXECUTE_IF_IN_NONNULL_BITMAP (graph->preds[n], 0, i, bi)
|
1986 |
|
|
{
|
1987 |
|
|
unsigned int w = si->node_mapping[i];
|
1988 |
|
|
|
1989 |
|
|
if (TEST_BIT (si->deleted, w))
|
1990 |
|
|
continue;
|
1991 |
|
|
|
1992 |
|
|
if (!TEST_BIT (si->visited, w))
|
1993 |
|
|
condense_visit (graph, si, w);
|
1994 |
|
|
{
|
1995 |
|
|
unsigned int t = si->node_mapping[w];
|
1996 |
|
|
unsigned int nnode = si->node_mapping[n];
|
1997 |
|
|
gcc_assert (nnode == n);
|
1998 |
|
|
|
1999 |
|
|
if (si->dfs[t] < si->dfs[nnode])
|
2000 |
|
|
si->dfs[n] = si->dfs[t];
|
2001 |
|
|
}
|
2002 |
|
|
}
|
2003 |
|
|
|
2004 |
|
|
/* Visit all the implicit predecessors. */
|
2005 |
|
|
EXECUTE_IF_IN_NONNULL_BITMAP (graph->implicit_preds[n], 0, i, bi)
|
2006 |
|
|
{
|
2007 |
|
|
unsigned int w = si->node_mapping[i];
|
2008 |
|
|
|
2009 |
|
|
if (TEST_BIT (si->deleted, w))
|
2010 |
|
|
continue;
|
2011 |
|
|
|
2012 |
|
|
if (!TEST_BIT (si->visited, w))
|
2013 |
|
|
condense_visit (graph, si, w);
|
2014 |
|
|
{
|
2015 |
|
|
unsigned int t = si->node_mapping[w];
|
2016 |
|
|
unsigned int nnode = si->node_mapping[n];
|
2017 |
|
|
gcc_assert (nnode == n);
|
2018 |
|
|
|
2019 |
|
|
if (si->dfs[t] < si->dfs[nnode])
|
2020 |
|
|
si->dfs[n] = si->dfs[t];
|
2021 |
|
|
}
|
2022 |
|
|
}
|
2023 |
|
|
|
2024 |
|
|
/* See if any components have been identified. */
|
2025 |
|
|
if (si->dfs[n] == my_dfs)
|
2026 |
|
|
{
|
2027 |
|
|
while (VEC_length (unsigned, si->scc_stack) != 0
|
2028 |
|
|
&& si->dfs[VEC_last (unsigned, si->scc_stack)] >= my_dfs)
|
2029 |
|
|
{
|
2030 |
|
|
unsigned int w = VEC_pop (unsigned, si->scc_stack);
|
2031 |
|
|
si->node_mapping[w] = n;
|
2032 |
|
|
|
2033 |
|
|
if (!TEST_BIT (graph->direct_nodes, w))
|
2034 |
|
|
RESET_BIT (graph->direct_nodes, n);
|
2035 |
|
|
|
2036 |
|
|
/* Unify our nodes. */
|
2037 |
|
|
if (graph->preds[w])
|
2038 |
|
|
{
|
2039 |
|
|
if (!graph->preds[n])
|
2040 |
|
|
graph->preds[n] = BITMAP_ALLOC (&predbitmap_obstack);
|
2041 |
|
|
bitmap_ior_into (graph->preds[n], graph->preds[w]);
|
2042 |
|
|
}
|
2043 |
|
|
if (graph->implicit_preds[w])
|
2044 |
|
|
{
|
2045 |
|
|
if (!graph->implicit_preds[n])
|
2046 |
|
|
graph->implicit_preds[n] = BITMAP_ALLOC (&predbitmap_obstack);
|
2047 |
|
|
bitmap_ior_into (graph->implicit_preds[n],
|
2048 |
|
|
graph->implicit_preds[w]);
|
2049 |
|
|
}
|
2050 |
|
|
if (graph->points_to[w])
|
2051 |
|
|
{
|
2052 |
|
|
if (!graph->points_to[n])
|
2053 |
|
|
graph->points_to[n] = BITMAP_ALLOC (&predbitmap_obstack);
|
2054 |
|
|
bitmap_ior_into (graph->points_to[n],
|
2055 |
|
|
graph->points_to[w]);
|
2056 |
|
|
}
|
2057 |
|
|
}
|
2058 |
|
|
SET_BIT (si->deleted, n);
|
2059 |
|
|
}
|
2060 |
|
|
else
|
2061 |
|
|
VEC_safe_push (unsigned, heap, si->scc_stack, n);
|
2062 |
|
|
}
|
2063 |
|
|
|
2064 |
|
|
/* Label pointer equivalences. */
|
2065 |
|
|
|
2066 |
|
|
static void
|
2067 |
|
|
label_visit (constraint_graph_t graph, struct scc_info *si, unsigned int n)
|
2068 |
|
|
{
|
2069 |
|
|
unsigned int i;
|
2070 |
|
|
bitmap_iterator bi;
|
2071 |
|
|
SET_BIT (si->visited, n);
|
2072 |
|
|
|
2073 |
|
|
if (!graph->points_to[n])
|
2074 |
|
|
graph->points_to[n] = BITMAP_ALLOC (&predbitmap_obstack);
|
2075 |
|
|
|
2076 |
|
|
/* Label and union our incoming edges's points to sets. */
|
2077 |
|
|
EXECUTE_IF_IN_NONNULL_BITMAP (graph->preds[n], 0, i, bi)
|
2078 |
|
|
{
|
2079 |
|
|
unsigned int w = si->node_mapping[i];
|
2080 |
|
|
if (!TEST_BIT (si->visited, w))
|
2081 |
|
|
label_visit (graph, si, w);
|
2082 |
|
|
|
2083 |
|
|
/* Skip unused edges */
|
2084 |
|
|
if (w == n || graph->pointer_label[w] == 0)
|
2085 |
|
|
continue;
|
2086 |
|
|
|
2087 |
|
|
if (graph->points_to[w])
|
2088 |
|
|
bitmap_ior_into(graph->points_to[n], graph->points_to[w]);
|
2089 |
|
|
}
|
2090 |
|
|
/* Indirect nodes get fresh variables. */
|
2091 |
|
|
if (!TEST_BIT (graph->direct_nodes, n))
|
2092 |
|
|
bitmap_set_bit (graph->points_to[n], FIRST_REF_NODE + n);
|
2093 |
|
|
|
2094 |
|
|
if (!bitmap_empty_p (graph->points_to[n]))
|
2095 |
|
|
{
|
2096 |
|
|
unsigned int label = equiv_class_lookup (pointer_equiv_class_table,
|
2097 |
|
|
graph->points_to[n]);
|
2098 |
|
|
if (!label)
|
2099 |
|
|
{
|
2100 |
|
|
label = pointer_equiv_class++;
|
2101 |
|
|
equiv_class_add (pointer_equiv_class_table,
|
2102 |
|
|
label, graph->points_to[n]);
|
2103 |
|
|
}
|
2104 |
|
|
graph->pointer_label[n] = label;
|
2105 |
|
|
}
|
2106 |
|
|
}
|
2107 |
|
|
|
2108 |
|
|
/* Perform offline variable substitution, discovering equivalence
|
2109 |
|
|
classes, and eliminating non-pointer variables. */
|
2110 |
|
|
|
2111 |
|
|
static struct scc_info *
|
2112 |
|
|
perform_var_substitution (constraint_graph_t graph)
|
2113 |
|
|
{
|
2114 |
|
|
unsigned int i;
|
2115 |
|
|
unsigned int size = graph->size;
|
2116 |
|
|
struct scc_info *si = init_scc_info (size);
|
2117 |
|
|
|
2118 |
|
|
bitmap_obstack_initialize (&iteration_obstack);
|
2119 |
|
|
pointer_equiv_class_table = htab_create (511, equiv_class_label_hash,
|
2120 |
|
|
equiv_class_label_eq, free);
|
2121 |
|
|
location_equiv_class_table = htab_create (511, equiv_class_label_hash,
|
2122 |
|
|
equiv_class_label_eq, free);
|
2123 |
|
|
pointer_equiv_class = 1;
|
2124 |
|
|
location_equiv_class = 1;
|
2125 |
|
|
|
2126 |
|
|
/* Condense the nodes, which means to find SCC's, count incoming
|
2127 |
|
|
predecessors, and unite nodes in SCC's. */
|
2128 |
|
|
for (i = 0; i < FIRST_REF_NODE; i++)
|
2129 |
|
|
if (!TEST_BIT (si->visited, si->node_mapping[i]))
|
2130 |
|
|
condense_visit (graph, si, si->node_mapping[i]);
|
2131 |
|
|
|
2132 |
|
|
sbitmap_zero (si->visited);
|
2133 |
|
|
/* Actually the label the nodes for pointer equivalences */
|
2134 |
|
|
for (i = 0; i < FIRST_REF_NODE; i++)
|
2135 |
|
|
if (!TEST_BIT (si->visited, si->node_mapping[i]))
|
2136 |
|
|
label_visit (graph, si, si->node_mapping[i]);
|
2137 |
|
|
|
2138 |
|
|
/* Calculate location equivalence labels. */
|
2139 |
|
|
for (i = 0; i < FIRST_REF_NODE; i++)
|
2140 |
|
|
{
|
2141 |
|
|
bitmap pointed_by;
|
2142 |
|
|
bitmap_iterator bi;
|
2143 |
|
|
unsigned int j;
|
2144 |
|
|
unsigned int label;
|
2145 |
|
|
|
2146 |
|
|
if (!graph->pointed_by[i])
|
2147 |
|
|
continue;
|
2148 |
|
|
pointed_by = BITMAP_ALLOC (&iteration_obstack);
|
2149 |
|
|
|
2150 |
|
|
/* Translate the pointed-by mapping for pointer equivalence
|
2151 |
|
|
labels. */
|
2152 |
|
|
EXECUTE_IF_SET_IN_BITMAP (graph->pointed_by[i], 0, j, bi)
|
2153 |
|
|
{
|
2154 |
|
|
bitmap_set_bit (pointed_by,
|
2155 |
|
|
graph->pointer_label[si->node_mapping[j]]);
|
2156 |
|
|
}
|
2157 |
|
|
/* The original pointed_by is now dead. */
|
2158 |
|
|
BITMAP_FREE (graph->pointed_by[i]);
|
2159 |
|
|
|
2160 |
|
|
/* Look up the location equivalence label if one exists, or make
|
2161 |
|
|
one otherwise. */
|
2162 |
|
|
label = equiv_class_lookup (location_equiv_class_table,
|
2163 |
|
|
pointed_by);
|
2164 |
|
|
if (label == 0)
|
2165 |
|
|
{
|
2166 |
|
|
label = location_equiv_class++;
|
2167 |
|
|
equiv_class_add (location_equiv_class_table,
|
2168 |
|
|
label, pointed_by);
|
2169 |
|
|
}
|
2170 |
|
|
else
|
2171 |
|
|
{
|
2172 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
2173 |
|
|
fprintf (dump_file, "Found location equivalence for node %s\n",
|
2174 |
|
|
get_varinfo (i)->name);
|
2175 |
|
|
BITMAP_FREE (pointed_by);
|
2176 |
|
|
}
|
2177 |
|
|
graph->loc_label[i] = label;
|
2178 |
|
|
|
2179 |
|
|
}
|
2180 |
|
|
|
2181 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
2182 |
|
|
for (i = 0; i < FIRST_REF_NODE; i++)
|
2183 |
|
|
{
|
2184 |
|
|
bool direct_node = TEST_BIT (graph->direct_nodes, i);
|
2185 |
|
|
fprintf (dump_file,
|
2186 |
|
|
"Equivalence classes for %s node id %d:%s are pointer: %d"
|
2187 |
|
|
", location:%d\n",
|
2188 |
|
|
direct_node ? "Direct node" : "Indirect node", i,
|
2189 |
|
|
get_varinfo (i)->name,
|
2190 |
|
|
graph->pointer_label[si->node_mapping[i]],
|
2191 |
|
|
graph->loc_label[si->node_mapping[i]]);
|
2192 |
|
|
}
|
2193 |
|
|
|
2194 |
|
|
/* Quickly eliminate our non-pointer variables. */
|
2195 |
|
|
|
2196 |
|
|
for (i = 0; i < FIRST_REF_NODE; i++)
|
2197 |
|
|
{
|
2198 |
|
|
unsigned int node = si->node_mapping[i];
|
2199 |
|
|
|
2200 |
|
|
if (graph->pointer_label[node] == 0)
|
2201 |
|
|
{
|
2202 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
2203 |
|
|
fprintf (dump_file,
|
2204 |
|
|
"%s is a non-pointer variable, eliminating edges.\n",
|
2205 |
|
|
get_varinfo (node)->name);
|
2206 |
|
|
stats.nonpointer_vars++;
|
2207 |
|
|
clear_edges_for_node (graph, node);
|
2208 |
|
|
}
|
2209 |
|
|
}
|
2210 |
|
|
|
2211 |
|
|
return si;
|
2212 |
|
|
}
|
2213 |
|
|
|
2214 |
|
|
/* Free information that was only necessary for variable
|
2215 |
|
|
substitution. */
|
2216 |
|
|
|
2217 |
|
|
static void
|
2218 |
|
|
free_var_substitution_info (struct scc_info *si)
|
2219 |
|
|
{
|
2220 |
|
|
free_scc_info (si);
|
2221 |
|
|
free (graph->pointer_label);
|
2222 |
|
|
free (graph->loc_label);
|
2223 |
|
|
free (graph->pointed_by);
|
2224 |
|
|
free (graph->points_to);
|
2225 |
|
|
free (graph->eq_rep);
|
2226 |
|
|
sbitmap_free (graph->direct_nodes);
|
2227 |
|
|
htab_delete (pointer_equiv_class_table);
|
2228 |
|
|
htab_delete (location_equiv_class_table);
|
2229 |
|
|
bitmap_obstack_release (&iteration_obstack);
|
2230 |
|
|
}
|
2231 |
|
|
|
2232 |
|
|
/* Return an existing node that is equivalent to NODE, which has
|
2233 |
|
|
equivalence class LABEL, if one exists. Return NODE otherwise. */
|
2234 |
|
|
|
2235 |
|
|
static unsigned int
|
2236 |
|
|
find_equivalent_node (constraint_graph_t graph,
|
2237 |
|
|
unsigned int node, unsigned int label)
|
2238 |
|
|
{
|
2239 |
|
|
/* If the address version of this variable is unused, we can
|
2240 |
|
|
substitute it for anything else with the same label.
|
2241 |
|
|
Otherwise, we know the pointers are equivalent, but not the
|
2242 |
|
|
locations, and we can unite them later. */
|
2243 |
|
|
|
2244 |
|
|
if (!bitmap_bit_p (graph->address_taken, node))
|
2245 |
|
|
{
|
2246 |
|
|
gcc_assert (label < graph->size);
|
2247 |
|
|
|
2248 |
|
|
if (graph->eq_rep[label] != -1)
|
2249 |
|
|
{
|
2250 |
|
|
/* Unify the two variables since we know they are equivalent. */
|
2251 |
|
|
if (unite (graph->eq_rep[label], node))
|
2252 |
|
|
unify_nodes (graph, graph->eq_rep[label], node, false);
|
2253 |
|
|
return graph->eq_rep[label];
|
2254 |
|
|
}
|
2255 |
|
|
else
|
2256 |
|
|
{
|
2257 |
|
|
graph->eq_rep[label] = node;
|
2258 |
|
|
graph->pe_rep[label] = node;
|
2259 |
|
|
}
|
2260 |
|
|
}
|
2261 |
|
|
else
|
2262 |
|
|
{
|
2263 |
|
|
gcc_assert (label < graph->size);
|
2264 |
|
|
graph->pe[node] = label;
|
2265 |
|
|
if (graph->pe_rep[label] == -1)
|
2266 |
|
|
graph->pe_rep[label] = node;
|
2267 |
|
|
}
|
2268 |
|
|
|
2269 |
|
|
return node;
|
2270 |
|
|
}
|
2271 |
|
|
|
2272 |
|
|
/* Unite pointer equivalent but not location equivalent nodes in
|
2273 |
|
|
GRAPH. This may only be performed once variable substitution is
|
2274 |
|
|
finished. */
|
2275 |
|
|
|
2276 |
|
|
static void
|
2277 |
|
|
unite_pointer_equivalences (constraint_graph_t graph)
|
2278 |
|
|
{
|
2279 |
|
|
unsigned int i;
|
2280 |
|
|
|
2281 |
|
|
/* Go through the pointer equivalences and unite them to their
|
2282 |
|
|
representative, if they aren't already. */
|
2283 |
|
|
for (i = 0; i < FIRST_REF_NODE; i++)
|
2284 |
|
|
{
|
2285 |
|
|
unsigned int label = graph->pe[i];
|
2286 |
|
|
if (label)
|
2287 |
|
|
{
|
2288 |
|
|
int label_rep = graph->pe_rep[label];
|
2289 |
|
|
|
2290 |
|
|
if (label_rep == -1)
|
2291 |
|
|
continue;
|
2292 |
|
|
|
2293 |
|
|
label_rep = find (label_rep);
|
2294 |
|
|
if (label_rep >= 0 && unite (label_rep, find (i)))
|
2295 |
|
|
unify_nodes (graph, label_rep, i, false);
|
2296 |
|
|
}
|
2297 |
|
|
}
|
2298 |
|
|
}
|
2299 |
|
|
|
2300 |
|
|
/* Move complex constraints to the GRAPH nodes they belong to. */
|
2301 |
|
|
|
2302 |
|
|
static void
|
2303 |
|
|
move_complex_constraints (constraint_graph_t graph)
|
2304 |
|
|
{
|
2305 |
|
|
int i;
|
2306 |
|
|
constraint_t c;
|
2307 |
|
|
|
2308 |
|
|
for (i = 0; VEC_iterate (constraint_t, constraints, i, c); i++)
|
2309 |
|
|
{
|
2310 |
|
|
if (c)
|
2311 |
|
|
{
|
2312 |
|
|
struct constraint_expr lhs = c->lhs;
|
2313 |
|
|
struct constraint_expr rhs = c->rhs;
|
2314 |
|
|
|
2315 |
|
|
if (lhs.type == DEREF)
|
2316 |
|
|
{
|
2317 |
|
|
insert_into_complex (graph, lhs.var, c);
|
2318 |
|
|
}
|
2319 |
|
|
else if (rhs.type == DEREF)
|
2320 |
|
|
{
|
2321 |
|
|
if (!(get_varinfo (lhs.var)->is_special_var))
|
2322 |
|
|
insert_into_complex (graph, rhs.var, c);
|
2323 |
|
|
}
|
2324 |
|
|
else if (rhs.type != ADDRESSOF && lhs.var > anything_id
|
2325 |
|
|
&& (lhs.offset != 0 || rhs.offset != 0))
|
2326 |
|
|
{
|
2327 |
|
|
insert_into_complex (graph, rhs.var, c);
|
2328 |
|
|
}
|
2329 |
|
|
}
|
2330 |
|
|
}
|
2331 |
|
|
}
|
2332 |
|
|
|
2333 |
|
|
|
2334 |
|
|
/* Optimize and rewrite complex constraints while performing
|
2335 |
|
|
collapsing of equivalent nodes. SI is the SCC_INFO that is the
|
2336 |
|
|
result of perform_variable_substitution. */
|
2337 |
|
|
|
2338 |
|
|
static void
|
2339 |
|
|
rewrite_constraints (constraint_graph_t graph,
|
2340 |
|
|
struct scc_info *si)
|
2341 |
|
|
{
|
2342 |
|
|
int i;
|
2343 |
|
|
unsigned int j;
|
2344 |
|
|
constraint_t c;
|
2345 |
|
|
|
2346 |
|
|
for (j = 0; j < graph->size; j++)
|
2347 |
|
|
gcc_assert (find (j) == j);
|
2348 |
|
|
|
2349 |
|
|
for (i = 0; VEC_iterate (constraint_t, constraints, i, c); i++)
|
2350 |
|
|
{
|
2351 |
|
|
struct constraint_expr lhs = c->lhs;
|
2352 |
|
|
struct constraint_expr rhs = c->rhs;
|
2353 |
|
|
unsigned int lhsvar = find (lhs.var);
|
2354 |
|
|
unsigned int rhsvar = find (rhs.var);
|
2355 |
|
|
unsigned int lhsnode, rhsnode;
|
2356 |
|
|
unsigned int lhslabel, rhslabel;
|
2357 |
|
|
|
2358 |
|
|
lhsnode = si->node_mapping[lhsvar];
|
2359 |
|
|
rhsnode = si->node_mapping[rhsvar];
|
2360 |
|
|
lhslabel = graph->pointer_label[lhsnode];
|
2361 |
|
|
rhslabel = graph->pointer_label[rhsnode];
|
2362 |
|
|
|
2363 |
|
|
/* See if it is really a non-pointer variable, and if so, ignore
|
2364 |
|
|
the constraint. */
|
2365 |
|
|
if (lhslabel == 0)
|
2366 |
|
|
{
|
2367 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
2368 |
|
|
{
|
2369 |
|
|
|
2370 |
|
|
fprintf (dump_file, "%s is a non-pointer variable,"
|
2371 |
|
|
"ignoring constraint:",
|
2372 |
|
|
get_varinfo (lhs.var)->name);
|
2373 |
|
|
dump_constraint (dump_file, c);
|
2374 |
|
|
}
|
2375 |
|
|
VEC_replace (constraint_t, constraints, i, NULL);
|
2376 |
|
|
continue;
|
2377 |
|
|
}
|
2378 |
|
|
|
2379 |
|
|
if (rhslabel == 0)
|
2380 |
|
|
{
|
2381 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
2382 |
|
|
{
|
2383 |
|
|
|
2384 |
|
|
fprintf (dump_file, "%s is a non-pointer variable,"
|
2385 |
|
|
"ignoring constraint:",
|
2386 |
|
|
get_varinfo (rhs.var)->name);
|
2387 |
|
|
dump_constraint (dump_file, c);
|
2388 |
|
|
}
|
2389 |
|
|
VEC_replace (constraint_t, constraints, i, NULL);
|
2390 |
|
|
continue;
|
2391 |
|
|
}
|
2392 |
|
|
|
2393 |
|
|
lhsvar = find_equivalent_node (graph, lhsvar, lhslabel);
|
2394 |
|
|
rhsvar = find_equivalent_node (graph, rhsvar, rhslabel);
|
2395 |
|
|
c->lhs.var = lhsvar;
|
2396 |
|
|
c->rhs.var = rhsvar;
|
2397 |
|
|
|
2398 |
|
|
}
|
2399 |
|
|
}
|
2400 |
|
|
|
2401 |
|
|
/* Eliminate indirect cycles involving NODE. Return true if NODE was
|
2402 |
|
|
part of an SCC, false otherwise. */
|
2403 |
|
|
|
2404 |
|
|
static bool
|
2405 |
|
|
eliminate_indirect_cycles (unsigned int node)
|
2406 |
|
|
{
|
2407 |
|
|
if (graph->indirect_cycles[node] != -1
|
2408 |
|
|
&& !bitmap_empty_p (get_varinfo (node)->solution))
|
2409 |
|
|
{
|
2410 |
|
|
unsigned int i;
|
2411 |
|
|
VEC(unsigned,heap) *queue = NULL;
|
2412 |
|
|
int queuepos;
|
2413 |
|
|
unsigned int to = find (graph->indirect_cycles[node]);
|
2414 |
|
|
bitmap_iterator bi;
|
2415 |
|
|
|
2416 |
|
|
/* We can't touch the solution set and call unify_nodes
|
2417 |
|
|
at the same time, because unify_nodes is going to do
|
2418 |
|
|
bitmap unions into it. */
|
2419 |
|
|
|
2420 |
|
|
EXECUTE_IF_SET_IN_BITMAP (get_varinfo (node)->solution, 0, i, bi)
|
2421 |
|
|
{
|
2422 |
|
|
if (find (i) == i && i != to)
|
2423 |
|
|
{
|
2424 |
|
|
if (unite (to, i))
|
2425 |
|
|
VEC_safe_push (unsigned, heap, queue, i);
|
2426 |
|
|
}
|
2427 |
|
|
}
|
2428 |
|
|
|
2429 |
|
|
for (queuepos = 0;
|
2430 |
|
|
VEC_iterate (unsigned, queue, queuepos, i);
|
2431 |
|
|
queuepos++)
|
2432 |
|
|
{
|
2433 |
|
|
unify_nodes (graph, to, i, true);
|
2434 |
|
|
}
|
2435 |
|
|
VEC_free (unsigned, heap, queue);
|
2436 |
|
|
return true;
|
2437 |
|
|
}
|
2438 |
|
|
return false;
|
2439 |
|
|
}
|
2440 |
|
|
|
2441 |
|
|
/* Solve the constraint graph GRAPH using our worklist solver.
|
2442 |
|
|
This is based on the PW* family of solvers from the "Efficient Field
|
2443 |
|
|
Sensitive Pointer Analysis for C" paper.
|
2444 |
|
|
It works by iterating over all the graph nodes, processing the complex
|
2445 |
|
|
constraints and propagating the copy constraints, until everything stops
|
2446 |
|
|
changed. This corresponds to steps 6-8 in the solving list given above. */
|
2447 |
|
|
|
2448 |
|
|
static void
|
2449 |
|
|
solve_graph (constraint_graph_t graph)
|
2450 |
|
|
{
|
2451 |
|
|
unsigned int size = graph->size;
|
2452 |
|
|
unsigned int i;
|
2453 |
|
|
bitmap pts;
|
2454 |
|
|
|
2455 |
|
|
changed_count = 0;
|
2456 |
|
|
changed = sbitmap_alloc (size);
|
2457 |
|
|
sbitmap_zero (changed);
|
2458 |
|
|
|
2459 |
|
|
/* Mark all initial non-collapsed nodes as changed. */
|
2460 |
|
|
for (i = 0; i < size; i++)
|
2461 |
|
|
{
|
2462 |
|
|
varinfo_t ivi = get_varinfo (i);
|
2463 |
|
|
if (find (i) == i && !bitmap_empty_p (ivi->solution)
|
2464 |
|
|
&& ((graph->succs[i] && !bitmap_empty_p (graph->succs[i]))
|
2465 |
|
|
|| VEC_length (constraint_t, graph->complex[i]) > 0))
|
2466 |
|
|
{
|
2467 |
|
|
SET_BIT (changed, i);
|
2468 |
|
|
changed_count++;
|
2469 |
|
|
}
|
2470 |
|
|
}
|
2471 |
|
|
|
2472 |
|
|
/* Allocate a bitmap to be used to store the changed bits. */
|
2473 |
|
|
pts = BITMAP_ALLOC (&pta_obstack);
|
2474 |
|
|
|
2475 |
|
|
while (changed_count > 0)
|
2476 |
|
|
{
|
2477 |
|
|
unsigned int i;
|
2478 |
|
|
struct topo_info *ti = init_topo_info ();
|
2479 |
|
|
stats.iterations++;
|
2480 |
|
|
|
2481 |
|
|
bitmap_obstack_initialize (&iteration_obstack);
|
2482 |
|
|
|
2483 |
|
|
compute_topo_order (graph, ti);
|
2484 |
|
|
|
2485 |
|
|
while (VEC_length (unsigned, ti->topo_order) != 0)
|
2486 |
|
|
{
|
2487 |
|
|
|
2488 |
|
|
i = VEC_pop (unsigned, ti->topo_order);
|
2489 |
|
|
|
2490 |
|
|
/* If this variable is not a representative, skip it. */
|
2491 |
|
|
if (find (i) != i)
|
2492 |
|
|
continue;
|
2493 |
|
|
|
2494 |
|
|
/* In certain indirect cycle cases, we may merge this
|
2495 |
|
|
variable to another. */
|
2496 |
|
|
if (eliminate_indirect_cycles (i) && find (i) != i)
|
2497 |
|
|
continue;
|
2498 |
|
|
|
2499 |
|
|
/* If the node has changed, we need to process the
|
2500 |
|
|
complex constraints and outgoing edges again. */
|
2501 |
|
|
if (TEST_BIT (changed, i))
|
2502 |
|
|
{
|
2503 |
|
|
unsigned int j;
|
2504 |
|
|
constraint_t c;
|
2505 |
|
|
bitmap solution;
|
2506 |
|
|
VEC(constraint_t,heap) *complex = graph->complex[i];
|
2507 |
|
|
bool solution_empty;
|
2508 |
|
|
|
2509 |
|
|
RESET_BIT (changed, i);
|
2510 |
|
|
changed_count--;
|
2511 |
|
|
|
2512 |
|
|
/* Compute the changed set of solution bits. */
|
2513 |
|
|
bitmap_and_compl (pts, get_varinfo (i)->solution,
|
2514 |
|
|
get_varinfo (i)->oldsolution);
|
2515 |
|
|
|
2516 |
|
|
if (bitmap_empty_p (pts))
|
2517 |
|
|
continue;
|
2518 |
|
|
|
2519 |
|
|
bitmap_ior_into (get_varinfo (i)->oldsolution, pts);
|
2520 |
|
|
|
2521 |
|
|
solution = get_varinfo (i)->solution;
|
2522 |
|
|
solution_empty = bitmap_empty_p (solution);
|
2523 |
|
|
|
2524 |
|
|
/* Process the complex constraints */
|
2525 |
|
|
for (j = 0; VEC_iterate (constraint_t, complex, j, c); j++)
|
2526 |
|
|
{
|
2527 |
|
|
/* XXX: This is going to unsort the constraints in
|
2528 |
|
|
some cases, which will occasionally add duplicate
|
2529 |
|
|
constraints during unification. This does not
|
2530 |
|
|
affect correctness. */
|
2531 |
|
|
c->lhs.var = find (c->lhs.var);
|
2532 |
|
|
c->rhs.var = find (c->rhs.var);
|
2533 |
|
|
|
2534 |
|
|
/* The only complex constraint that can change our
|
2535 |
|
|
solution to non-empty, given an empty solution,
|
2536 |
|
|
is a constraint where the lhs side is receiving
|
2537 |
|
|
some set from elsewhere. */
|
2538 |
|
|
if (!solution_empty || c->lhs.type != DEREF)
|
2539 |
|
|
do_complex_constraint (graph, c, pts);
|
2540 |
|
|
}
|
2541 |
|
|
|
2542 |
|
|
solution_empty = bitmap_empty_p (solution);
|
2543 |
|
|
|
2544 |
|
|
if (!solution_empty)
|
2545 |
|
|
{
|
2546 |
|
|
bitmap_iterator bi;
|
2547 |
|
|
unsigned eff_escaped_id = find (escaped_id);
|
2548 |
|
|
|
2549 |
|
|
/* Propagate solution to all successors. */
|
2550 |
|
|
EXECUTE_IF_IN_NONNULL_BITMAP (graph->succs[i],
|
2551 |
|
|
0, j, bi)
|
2552 |
|
|
{
|
2553 |
|
|
bitmap tmp;
|
2554 |
|
|
bool flag;
|
2555 |
|
|
|
2556 |
|
|
unsigned int to = find (j);
|
2557 |
|
|
tmp = get_varinfo (to)->solution;
|
2558 |
|
|
flag = false;
|
2559 |
|
|
|
2560 |
|
|
/* Don't try to propagate to ourselves. */
|
2561 |
|
|
if (to == i)
|
2562 |
|
|
continue;
|
2563 |
|
|
|
2564 |
|
|
/* If we propagate from ESCAPED use ESCAPED as
|
2565 |
|
|
placeholder. */
|
2566 |
|
|
if (i == eff_escaped_id)
|
2567 |
|
|
flag = bitmap_set_bit (tmp, escaped_id);
|
2568 |
|
|
else
|
2569 |
|
|
flag = set_union_with_increment (tmp, pts, 0);
|
2570 |
|
|
|
2571 |
|
|
if (flag)
|
2572 |
|
|
{
|
2573 |
|
|
get_varinfo (to)->solution = tmp;
|
2574 |
|
|
if (!TEST_BIT (changed, to))
|
2575 |
|
|
{
|
2576 |
|
|
SET_BIT (changed, to);
|
2577 |
|
|
changed_count++;
|
2578 |
|
|
}
|
2579 |
|
|
}
|
2580 |
|
|
}
|
2581 |
|
|
}
|
2582 |
|
|
}
|
2583 |
|
|
}
|
2584 |
|
|
free_topo_info (ti);
|
2585 |
|
|
bitmap_obstack_release (&iteration_obstack);
|
2586 |
|
|
}
|
2587 |
|
|
|
2588 |
|
|
BITMAP_FREE (pts);
|
2589 |
|
|
sbitmap_free (changed);
|
2590 |
|
|
bitmap_obstack_release (&oldpta_obstack);
|
2591 |
|
|
}
|
2592 |
|
|
|
2593 |
|
|
/* Map from trees to variable infos. */
|
2594 |
|
|
static struct pointer_map_t *vi_for_tree;
|
2595 |
|
|
|
2596 |
|
|
|
2597 |
|
|
/* Insert ID as the variable id for tree T in the vi_for_tree map. */
|
2598 |
|
|
|
2599 |
|
|
static void
|
2600 |
|
|
insert_vi_for_tree (tree t, varinfo_t vi)
|
2601 |
|
|
{
|
2602 |
|
|
void **slot = pointer_map_insert (vi_for_tree, t);
|
2603 |
|
|
gcc_assert (vi);
|
2604 |
|
|
gcc_assert (*slot == NULL);
|
2605 |
|
|
*slot = vi;
|
2606 |
|
|
}
|
2607 |
|
|
|
2608 |
|
|
/* Find the variable info for tree T in VI_FOR_TREE. If T does not
|
2609 |
|
|
exist in the map, return NULL, otherwise, return the varinfo we found. */
|
2610 |
|
|
|
2611 |
|
|
static varinfo_t
|
2612 |
|
|
lookup_vi_for_tree (tree t)
|
2613 |
|
|
{
|
2614 |
|
|
void **slot = pointer_map_contains (vi_for_tree, t);
|
2615 |
|
|
if (slot == NULL)
|
2616 |
|
|
return NULL;
|
2617 |
|
|
|
2618 |
|
|
return (varinfo_t) *slot;
|
2619 |
|
|
}
|
2620 |
|
|
|
2621 |
|
|
/* Return a printable name for DECL */
|
2622 |
|
|
|
2623 |
|
|
static const char *
|
2624 |
|
|
alias_get_name (tree decl)
|
2625 |
|
|
{
|
2626 |
|
|
const char *res = get_name (decl);
|
2627 |
|
|
char *temp;
|
2628 |
|
|
int num_printed = 0;
|
2629 |
|
|
|
2630 |
|
|
if (res != NULL)
|
2631 |
|
|
return res;
|
2632 |
|
|
|
2633 |
|
|
res = "NULL";
|
2634 |
|
|
if (!dump_file)
|
2635 |
|
|
return res;
|
2636 |
|
|
|
2637 |
|
|
if (TREE_CODE (decl) == SSA_NAME)
|
2638 |
|
|
{
|
2639 |
|
|
num_printed = asprintf (&temp, "%s_%u",
|
2640 |
|
|
alias_get_name (SSA_NAME_VAR (decl)),
|
2641 |
|
|
SSA_NAME_VERSION (decl));
|
2642 |
|
|
}
|
2643 |
|
|
else if (DECL_P (decl))
|
2644 |
|
|
{
|
2645 |
|
|
num_printed = asprintf (&temp, "D.%u", DECL_UID (decl));
|
2646 |
|
|
}
|
2647 |
|
|
if (num_printed > 0)
|
2648 |
|
|
{
|
2649 |
|
|
res = ggc_strdup (temp);
|
2650 |
|
|
free (temp);
|
2651 |
|
|
}
|
2652 |
|
|
return res;
|
2653 |
|
|
}
|
2654 |
|
|
|
2655 |
|
|
/* Find the variable id for tree T in the map.
|
2656 |
|
|
If T doesn't exist in the map, create an entry for it and return it. */
|
2657 |
|
|
|
2658 |
|
|
static varinfo_t
|
2659 |
|
|
get_vi_for_tree (tree t)
|
2660 |
|
|
{
|
2661 |
|
|
void **slot = pointer_map_contains (vi_for_tree, t);
|
2662 |
|
|
if (slot == NULL)
|
2663 |
|
|
return get_varinfo (create_variable_info_for (t, alias_get_name (t)));
|
2664 |
|
|
|
2665 |
|
|
return (varinfo_t) *slot;
|
2666 |
|
|
}
|
2667 |
|
|
|
2668 |
|
|
/* Get a scalar constraint expression for a new temporary variable. */
|
2669 |
|
|
|
2670 |
|
|
static struct constraint_expr
|
2671 |
|
|
new_scalar_tmp_constraint_exp (const char *name)
|
2672 |
|
|
{
|
2673 |
|
|
struct constraint_expr tmp;
|
2674 |
|
|
varinfo_t vi;
|
2675 |
|
|
|
2676 |
|
|
vi = new_var_info (NULL_TREE, name);
|
2677 |
|
|
vi->offset = 0;
|
2678 |
|
|
vi->size = -1;
|
2679 |
|
|
vi->fullsize = -1;
|
2680 |
|
|
vi->is_full_var = 1;
|
2681 |
|
|
|
2682 |
|
|
tmp.var = vi->id;
|
2683 |
|
|
tmp.type = SCALAR;
|
2684 |
|
|
tmp.offset = 0;
|
2685 |
|
|
|
2686 |
|
|
return tmp;
|
2687 |
|
|
}
|
2688 |
|
|
|
2689 |
|
|
/* Get a constraint expression vector from an SSA_VAR_P node.
|
2690 |
|
|
If address_p is true, the result will be taken its address of. */
|
2691 |
|
|
|
2692 |
|
|
static void
|
2693 |
|
|
get_constraint_for_ssa_var (tree t, VEC(ce_s, heap) **results, bool address_p)
|
2694 |
|
|
{
|
2695 |
|
|
struct constraint_expr cexpr;
|
2696 |
|
|
varinfo_t vi;
|
2697 |
|
|
|
2698 |
|
|
/* We allow FUNCTION_DECLs here even though it doesn't make much sense. */
|
2699 |
|
|
gcc_assert (SSA_VAR_P (t) || DECL_P (t));
|
2700 |
|
|
|
2701 |
|
|
/* For parameters, get at the points-to set for the actual parm
|
2702 |
|
|
decl. */
|
2703 |
|
|
if (TREE_CODE (t) == SSA_NAME
|
2704 |
|
|
&& TREE_CODE (SSA_NAME_VAR (t)) == PARM_DECL
|
2705 |
|
|
&& SSA_NAME_IS_DEFAULT_DEF (t))
|
2706 |
|
|
{
|
2707 |
|
|
get_constraint_for_ssa_var (SSA_NAME_VAR (t), results, address_p);
|
2708 |
|
|
return;
|
2709 |
|
|
}
|
2710 |
|
|
|
2711 |
|
|
vi = get_vi_for_tree (t);
|
2712 |
|
|
cexpr.var = vi->id;
|
2713 |
|
|
cexpr.type = SCALAR;
|
2714 |
|
|
cexpr.offset = 0;
|
2715 |
|
|
/* If we determine the result is "anything", and we know this is readonly,
|
2716 |
|
|
say it points to readonly memory instead. */
|
2717 |
|
|
if (cexpr.var == anything_id && TREE_READONLY (t))
|
2718 |
|
|
{
|
2719 |
|
|
gcc_unreachable ();
|
2720 |
|
|
cexpr.type = ADDRESSOF;
|
2721 |
|
|
cexpr.var = readonly_id;
|
2722 |
|
|
}
|
2723 |
|
|
|
2724 |
|
|
/* If we are not taking the address of the constraint expr, add all
|
2725 |
|
|
sub-fiels of the variable as well. */
|
2726 |
|
|
if (!address_p
|
2727 |
|
|
&& !vi->is_full_var)
|
2728 |
|
|
{
|
2729 |
|
|
for (; vi; vi = vi->next)
|
2730 |
|
|
{
|
2731 |
|
|
cexpr.var = vi->id;
|
2732 |
|
|
VEC_safe_push (ce_s, heap, *results, &cexpr);
|
2733 |
|
|
}
|
2734 |
|
|
return;
|
2735 |
|
|
}
|
2736 |
|
|
|
2737 |
|
|
VEC_safe_push (ce_s, heap, *results, &cexpr);
|
2738 |
|
|
}
|
2739 |
|
|
|
2740 |
|
|
/* Process constraint T, performing various simplifications and then
|
2741 |
|
|
adding it to our list of overall constraints. */
|
2742 |
|
|
|
2743 |
|
|
static void
|
2744 |
|
|
process_constraint (constraint_t t)
|
2745 |
|
|
{
|
2746 |
|
|
struct constraint_expr rhs = t->rhs;
|
2747 |
|
|
struct constraint_expr lhs = t->lhs;
|
2748 |
|
|
|
2749 |
|
|
gcc_assert (rhs.var < VEC_length (varinfo_t, varmap));
|
2750 |
|
|
gcc_assert (lhs.var < VEC_length (varinfo_t, varmap));
|
2751 |
|
|
|
2752 |
|
|
/* If we didn't get any useful constraint from the lhs we get
|
2753 |
|
|
&ANYTHING as fallback from get_constraint_for. Deal with
|
2754 |
|
|
it here by turning it into *ANYTHING. */
|
2755 |
|
|
if (lhs.type == ADDRESSOF
|
2756 |
|
|
&& lhs.var == anything_id)
|
2757 |
|
|
lhs.type = DEREF;
|
2758 |
|
|
|
2759 |
|
|
/* ADDRESSOF on the lhs is invalid. */
|
2760 |
|
|
gcc_assert (lhs.type != ADDRESSOF);
|
2761 |
|
|
|
2762 |
|
|
/* This can happen in our IR with things like n->a = *p */
|
2763 |
|
|
if (rhs.type == DEREF && lhs.type == DEREF && rhs.var != anything_id)
|
2764 |
|
|
{
|
2765 |
|
|
/* Split into tmp = *rhs, *lhs = tmp */
|
2766 |
|
|
struct constraint_expr tmplhs;
|
2767 |
|
|
tmplhs = new_scalar_tmp_constraint_exp ("doubledereftmp");
|
2768 |
|
|
process_constraint (new_constraint (tmplhs, rhs));
|
2769 |
|
|
process_constraint (new_constraint (lhs, tmplhs));
|
2770 |
|
|
}
|
2771 |
|
|
else if (rhs.type == ADDRESSOF && lhs.type == DEREF)
|
2772 |
|
|
{
|
2773 |
|
|
/* Split into tmp = &rhs, *lhs = tmp */
|
2774 |
|
|
struct constraint_expr tmplhs;
|
2775 |
|
|
tmplhs = new_scalar_tmp_constraint_exp ("derefaddrtmp");
|
2776 |
|
|
process_constraint (new_constraint (tmplhs, rhs));
|
2777 |
|
|
process_constraint (new_constraint (lhs, tmplhs));
|
2778 |
|
|
}
|
2779 |
|
|
else
|
2780 |
|
|
{
|
2781 |
|
|
gcc_assert (rhs.type != ADDRESSOF || rhs.offset == 0);
|
2782 |
|
|
VEC_safe_push (constraint_t, heap, constraints, t);
|
2783 |
|
|
}
|
2784 |
|
|
}
|
2785 |
|
|
|
2786 |
|
|
/* Return true if T is a type that could contain pointers. */
|
2787 |
|
|
|
2788 |
|
|
static bool
|
2789 |
|
|
type_could_have_pointers (tree type)
|
2790 |
|
|
{
|
2791 |
|
|
if (POINTER_TYPE_P (type))
|
2792 |
|
|
return true;
|
2793 |
|
|
|
2794 |
|
|
if (TREE_CODE (type) == ARRAY_TYPE)
|
2795 |
|
|
return type_could_have_pointers (TREE_TYPE (type));
|
2796 |
|
|
|
2797 |
|
|
return AGGREGATE_TYPE_P (type);
|
2798 |
|
|
}
|
2799 |
|
|
|
2800 |
|
|
/* Return true if T is a variable of a type that could contain
|
2801 |
|
|
pointers. */
|
2802 |
|
|
|
2803 |
|
|
static bool
|
2804 |
|
|
could_have_pointers (tree t)
|
2805 |
|
|
{
|
2806 |
|
|
return (((TREE_CODE (t) == VAR_DECL
|
2807 |
|
|
|| TREE_CODE (t) == PARM_DECL
|
2808 |
|
|
|| TREE_CODE (t) == RESULT_DECL)
|
2809 |
|
|
&& (TREE_PUBLIC (t) || DECL_EXTERNAL (t) || TREE_ADDRESSABLE (t)))
|
2810 |
|
|
|| type_could_have_pointers (TREE_TYPE (t)));
|
2811 |
|
|
}
|
2812 |
|
|
|
2813 |
|
|
/* Return the position, in bits, of FIELD_DECL from the beginning of its
|
2814 |
|
|
structure. */
|
2815 |
|
|
|
2816 |
|
|
static HOST_WIDE_INT
|
2817 |
|
|
bitpos_of_field (const tree fdecl)
|
2818 |
|
|
{
|
2819 |
|
|
|
2820 |
|
|
if (!host_integerp (DECL_FIELD_OFFSET (fdecl), 0)
|
2821 |
|
|
|| !host_integerp (DECL_FIELD_BIT_OFFSET (fdecl), 0))
|
2822 |
|
|
return -1;
|
2823 |
|
|
|
2824 |
|
|
return (TREE_INT_CST_LOW (DECL_FIELD_OFFSET (fdecl)) * 8
|
2825 |
|
|
+ TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (fdecl)));
|
2826 |
|
|
}
|
2827 |
|
|
|
2828 |
|
|
|
2829 |
|
|
/* Get constraint expressions for offsetting PTR by OFFSET. Stores the
|
2830 |
|
|
resulting constraint expressions in *RESULTS. */
|
2831 |
|
|
|
2832 |
|
|
static void
|
2833 |
|
|
get_constraint_for_ptr_offset (tree ptr, tree offset,
|
2834 |
|
|
VEC (ce_s, heap) **results)
|
2835 |
|
|
{
|
2836 |
|
|
struct constraint_expr c;
|
2837 |
|
|
unsigned int j, n;
|
2838 |
|
|
HOST_WIDE_INT rhsunitoffset, rhsoffset;
|
2839 |
|
|
|
2840 |
|
|
/* If we do not do field-sensitive PTA adding offsets to pointers
|
2841 |
|
|
does not change the points-to solution. */
|
2842 |
|
|
if (!use_field_sensitive)
|
2843 |
|
|
{
|
2844 |
|
|
get_constraint_for (ptr, results);
|
2845 |
|
|
return;
|
2846 |
|
|
}
|
2847 |
|
|
|
2848 |
|
|
/* If the offset is not a non-negative integer constant that fits
|
2849 |
|
|
in a HOST_WIDE_INT, we have to fall back to a conservative
|
2850 |
|
|
solution which includes all sub-fields of all pointed-to
|
2851 |
|
|
variables of ptr. */
|
2852 |
|
|
if (offset == NULL_TREE
|
2853 |
|
|
|| !host_integerp (offset, 0))
|
2854 |
|
|
rhsoffset = UNKNOWN_OFFSET;
|
2855 |
|
|
else
|
2856 |
|
|
{
|
2857 |
|
|
/* Make sure the bit-offset also fits. */
|
2858 |
|
|
rhsunitoffset = TREE_INT_CST_LOW (offset);
|
2859 |
|
|
rhsoffset = rhsunitoffset * BITS_PER_UNIT;
|
2860 |
|
|
if (rhsunitoffset != rhsoffset / BITS_PER_UNIT)
|
2861 |
|
|
rhsoffset = UNKNOWN_OFFSET;
|
2862 |
|
|
}
|
2863 |
|
|
|
2864 |
|
|
get_constraint_for (ptr, results);
|
2865 |
|
|
if (rhsoffset == 0)
|
2866 |
|
|
return;
|
2867 |
|
|
|
2868 |
|
|
/* As we are eventually appending to the solution do not use
|
2869 |
|
|
VEC_iterate here. */
|
2870 |
|
|
n = VEC_length (ce_s, *results);
|
2871 |
|
|
for (j = 0; j < n; j++)
|
2872 |
|
|
{
|
2873 |
|
|
varinfo_t curr;
|
2874 |
|
|
c = *VEC_index (ce_s, *results, j);
|
2875 |
|
|
curr = get_varinfo (c.var);
|
2876 |
|
|
|
2877 |
|
|
if (c.type == ADDRESSOF
|
2878 |
|
|
/* If this varinfo represents a full variable just use it. */
|
2879 |
|
|
&& curr->is_full_var)
|
2880 |
|
|
c.offset = 0;
|
2881 |
|
|
else if (c.type == ADDRESSOF
|
2882 |
|
|
/* If we do not know the offset add all subfields. */
|
2883 |
|
|
&& rhsoffset == UNKNOWN_OFFSET)
|
2884 |
|
|
{
|
2885 |
|
|
varinfo_t temp = lookup_vi_for_tree (curr->decl);
|
2886 |
|
|
do
|
2887 |
|
|
{
|
2888 |
|
|
struct constraint_expr c2;
|
2889 |
|
|
c2.var = temp->id;
|
2890 |
|
|
c2.type = ADDRESSOF;
|
2891 |
|
|
c2.offset = 0;
|
2892 |
|
|
if (c2.var != c.var)
|
2893 |
|
|
VEC_safe_push (ce_s, heap, *results, &c2);
|
2894 |
|
|
temp = temp->next;
|
2895 |
|
|
}
|
2896 |
|
|
while (temp);
|
2897 |
|
|
}
|
2898 |
|
|
else if (c.type == ADDRESSOF)
|
2899 |
|
|
{
|
2900 |
|
|
varinfo_t temp;
|
2901 |
|
|
unsigned HOST_WIDE_INT offset = curr->offset + rhsoffset;
|
2902 |
|
|
|
2903 |
|
|
/* Search the sub-field which overlaps with the
|
2904 |
|
|
pointed-to offset. If the result is outside of the variable
|
2905 |
|
|
we have to provide a conservative result, as the variable is
|
2906 |
|
|
still reachable from the resulting pointer (even though it
|
2907 |
|
|
technically cannot point to anything). The last and first
|
2908 |
|
|
sub-fields are such conservative results.
|
2909 |
|
|
??? If we always had a sub-field for &object + 1 then
|
2910 |
|
|
we could represent this in a more precise way. */
|
2911 |
|
|
if (rhsoffset < 0
|
2912 |
|
|
&& curr->offset < offset)
|
2913 |
|
|
offset = 0;
|
2914 |
|
|
temp = first_or_preceding_vi_for_offset (curr, offset);
|
2915 |
|
|
|
2916 |
|
|
/* If the found variable is not exactly at the pointed to
|
2917 |
|
|
result, we have to include the next variable in the
|
2918 |
|
|
solution as well. Otherwise two increments by offset / 2
|
2919 |
|
|
do not result in the same or a conservative superset
|
2920 |
|
|
solution. */
|
2921 |
|
|
if (temp->offset != offset
|
2922 |
|
|
&& temp->next != NULL)
|
2923 |
|
|
{
|
2924 |
|
|
struct constraint_expr c2;
|
2925 |
|
|
c2.var = temp->next->id;
|
2926 |
|
|
c2.type = ADDRESSOF;
|
2927 |
|
|
c2.offset = 0;
|
2928 |
|
|
VEC_safe_push (ce_s, heap, *results, &c2);
|
2929 |
|
|
}
|
2930 |
|
|
c.var = temp->id;
|
2931 |
|
|
c.offset = 0;
|
2932 |
|
|
}
|
2933 |
|
|
else
|
2934 |
|
|
c.offset = rhsoffset;
|
2935 |
|
|
|
2936 |
|
|
VEC_replace (ce_s, *results, j, &c);
|
2937 |
|
|
}
|
2938 |
|
|
}
|
2939 |
|
|
|
2940 |
|
|
|
2941 |
|
|
/* Given a COMPONENT_REF T, return the constraint_expr vector for it.
|
2942 |
|
|
If address_p is true the result will be taken its address of. */
|
2943 |
|
|
|
2944 |
|
|
static void
|
2945 |
|
|
get_constraint_for_component_ref (tree t, VEC(ce_s, heap) **results,
|
2946 |
|
|
bool address_p)
|
2947 |
|
|
{
|
2948 |
|
|
tree orig_t = t;
|
2949 |
|
|
HOST_WIDE_INT bitsize = -1;
|
2950 |
|
|
HOST_WIDE_INT bitmaxsize = -1;
|
2951 |
|
|
HOST_WIDE_INT bitpos;
|
2952 |
|
|
tree forzero;
|
2953 |
|
|
struct constraint_expr *result;
|
2954 |
|
|
|
2955 |
|
|
/* Some people like to do cute things like take the address of
|
2956 |
|
|
&0->a.b */
|
2957 |
|
|
forzero = t;
|
2958 |
378 |
julius |
while (handled_component_p (forzero)
|
2959 |
|
|
|| INDIRECT_REF_P (forzero))
|
2960 |
280 |
jeremybenn |
forzero = TREE_OPERAND (forzero, 0);
|
2961 |
|
|
|
2962 |
|
|
if (CONSTANT_CLASS_P (forzero) && integer_zerop (forzero))
|
2963 |
|
|
{
|
2964 |
|
|
struct constraint_expr temp;
|
2965 |
|
|
|
2966 |
|
|
temp.offset = 0;
|
2967 |
|
|
temp.var = integer_id;
|
2968 |
|
|
temp.type = SCALAR;
|
2969 |
|
|
VEC_safe_push (ce_s, heap, *results, &temp);
|
2970 |
|
|
return;
|
2971 |
|
|
}
|
2972 |
|
|
|
2973 |
|
|
t = get_ref_base_and_extent (t, &bitpos, &bitsize, &bitmaxsize);
|
2974 |
|
|
|
2975 |
|
|
/* Pretend to take the address of the base, we'll take care of
|
2976 |
|
|
adding the required subset of sub-fields below. */
|
2977 |
|
|
get_constraint_for_1 (t, results, true);
|
2978 |
|
|
gcc_assert (VEC_length (ce_s, *results) == 1);
|
2979 |
|
|
result = VEC_last (ce_s, *results);
|
2980 |
|
|
|
2981 |
|
|
if (result->type == SCALAR
|
2982 |
|
|
&& get_varinfo (result->var)->is_full_var)
|
2983 |
|
|
/* For single-field vars do not bother about the offset. */
|
2984 |
|
|
result->offset = 0;
|
2985 |
|
|
else if (result->type == SCALAR)
|
2986 |
|
|
{
|
2987 |
|
|
/* In languages like C, you can access one past the end of an
|
2988 |
|
|
array. You aren't allowed to dereference it, so we can
|
2989 |
|
|
ignore this constraint. When we handle pointer subtraction,
|
2990 |
|
|
we may have to do something cute here. */
|
2991 |
|
|
|
2992 |
|
|
if ((unsigned HOST_WIDE_INT)bitpos < get_varinfo (result->var)->fullsize
|
2993 |
|
|
&& bitmaxsize != 0)
|
2994 |
|
|
{
|
2995 |
|
|
/* It's also not true that the constraint will actually start at the
|
2996 |
|
|
right offset, it may start in some padding. We only care about
|
2997 |
|
|
setting the constraint to the first actual field it touches, so
|
2998 |
|
|
walk to find it. */
|
2999 |
|
|
struct constraint_expr cexpr = *result;
|
3000 |
|
|
varinfo_t curr;
|
3001 |
|
|
VEC_pop (ce_s, *results);
|
3002 |
|
|
cexpr.offset = 0;
|
3003 |
|
|
for (curr = get_varinfo (cexpr.var); curr; curr = curr->next)
|
3004 |
|
|
{
|
3005 |
|
|
if (ranges_overlap_p (curr->offset, curr->size,
|
3006 |
|
|
bitpos, bitmaxsize))
|
3007 |
|
|
{
|
3008 |
|
|
cexpr.var = curr->id;
|
3009 |
|
|
VEC_safe_push (ce_s, heap, *results, &cexpr);
|
3010 |
|
|
if (address_p)
|
3011 |
|
|
break;
|
3012 |
|
|
}
|
3013 |
|
|
}
|
3014 |
|
|
/* If we are going to take the address of this field then
|
3015 |
|
|
to be able to compute reachability correctly add at least
|
3016 |
|
|
the last field of the variable. */
|
3017 |
|
|
if (address_p
|
3018 |
|
|
&& VEC_length (ce_s, *results) == 0)
|
3019 |
|
|
{
|
3020 |
|
|
curr = get_varinfo (cexpr.var);
|
3021 |
|
|
while (curr->next != NULL)
|
3022 |
|
|
curr = curr->next;
|
3023 |
|
|
cexpr.var = curr->id;
|
3024 |
|
|
VEC_safe_push (ce_s, heap, *results, &cexpr);
|
3025 |
|
|
}
|
3026 |
|
|
else
|
3027 |
|
|
/* Assert that we found *some* field there. The user couldn't be
|
3028 |
|
|
accessing *only* padding. */
|
3029 |
|
|
/* Still the user could access one past the end of an array
|
3030 |
|
|
embedded in a struct resulting in accessing *only* padding. */
|
3031 |
|
|
gcc_assert (VEC_length (ce_s, *results) >= 1
|
3032 |
|
|
|| ref_contains_array_ref (orig_t));
|
3033 |
|
|
}
|
3034 |
|
|
else if (bitmaxsize == 0)
|
3035 |
|
|
{
|
3036 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
3037 |
|
|
fprintf (dump_file, "Access to zero-sized part of variable,"
|
3038 |
|
|
"ignoring\n");
|
3039 |
|
|
}
|
3040 |
|
|
else
|
3041 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
3042 |
|
|
fprintf (dump_file, "Access to past the end of variable, ignoring\n");
|
3043 |
|
|
}
|
3044 |
|
|
else if (result->type == DEREF)
|
3045 |
|
|
{
|
3046 |
|
|
/* If we do not know exactly where the access goes say so. Note
|
3047 |
|
|
that only for non-structure accesses we know that we access
|
3048 |
|
|
at most one subfiled of any variable. */
|
3049 |
|
|
if (bitpos == -1
|
3050 |
|
|
|| bitsize != bitmaxsize
|
3051 |
|
|
|| AGGREGATE_TYPE_P (TREE_TYPE (orig_t)))
|
3052 |
|
|
result->offset = UNKNOWN_OFFSET;
|
3053 |
|
|
else
|
3054 |
|
|
result->offset = bitpos;
|
3055 |
|
|
}
|
3056 |
|
|
else if (result->type == ADDRESSOF)
|
3057 |
|
|
{
|
3058 |
|
|
/* We can end up here for component references on a
|
3059 |
|
|
VIEW_CONVERT_EXPR <>(&foobar). */
|
3060 |
|
|
result->type = SCALAR;
|
3061 |
|
|
result->var = anything_id;
|
3062 |
|
|
result->offset = 0;
|
3063 |
|
|
}
|
3064 |
|
|
else
|
3065 |
|
|
gcc_unreachable ();
|
3066 |
|
|
}
|
3067 |
|
|
|
3068 |
|
|
|
3069 |
|
|
/* Dereference the constraint expression CONS, and return the result.
|
3070 |
|
|
DEREF (ADDRESSOF) = SCALAR
|
3071 |
|
|
DEREF (SCALAR) = DEREF
|
3072 |
|
|
DEREF (DEREF) = (temp = DEREF1; result = DEREF(temp))
|
3073 |
|
|
This is needed so that we can handle dereferencing DEREF constraints. */
|
3074 |
|
|
|
3075 |
|
|
static void
|
3076 |
|
|
do_deref (VEC (ce_s, heap) **constraints)
|
3077 |
|
|
{
|
3078 |
|
|
struct constraint_expr *c;
|
3079 |
|
|
unsigned int i = 0;
|
3080 |
|
|
|
3081 |
|
|
for (i = 0; VEC_iterate (ce_s, *constraints, i, c); i++)
|
3082 |
|
|
{
|
3083 |
|
|
if (c->type == SCALAR)
|
3084 |
|
|
c->type = DEREF;
|
3085 |
|
|
else if (c->type == ADDRESSOF)
|
3086 |
|
|
c->type = SCALAR;
|
3087 |
|
|
else if (c->type == DEREF)
|
3088 |
|
|
{
|
3089 |
|
|
struct constraint_expr tmplhs;
|
3090 |
|
|
tmplhs = new_scalar_tmp_constraint_exp ("dereftmp");
|
3091 |
|
|
process_constraint (new_constraint (tmplhs, *c));
|
3092 |
|
|
c->var = tmplhs.var;
|
3093 |
|
|
}
|
3094 |
|
|
else
|
3095 |
|
|
gcc_unreachable ();
|
3096 |
|
|
}
|
3097 |
|
|
}
|
3098 |
|
|
|
3099 |
|
|
static void get_constraint_for_1 (tree, VEC (ce_s, heap) **, bool);
|
3100 |
|
|
|
3101 |
|
|
/* Given a tree T, return the constraint expression for taking the
|
3102 |
|
|
address of it. */
|
3103 |
|
|
|
3104 |
|
|
static void
|
3105 |
|
|
get_constraint_for_address_of (tree t, VEC (ce_s, heap) **results)
|
3106 |
|
|
{
|
3107 |
|
|
struct constraint_expr *c;
|
3108 |
|
|
unsigned int i;
|
3109 |
|
|
|
3110 |
|
|
get_constraint_for_1 (t, results, true);
|
3111 |
|
|
|
3112 |
|
|
for (i = 0; VEC_iterate (ce_s, *results, i, c); i++)
|
3113 |
|
|
{
|
3114 |
|
|
if (c->type == DEREF)
|
3115 |
|
|
c->type = SCALAR;
|
3116 |
|
|
else
|
3117 |
|
|
c->type = ADDRESSOF;
|
3118 |
|
|
}
|
3119 |
|
|
}
|
3120 |
|
|
|
3121 |
|
|
/* Given a tree T, return the constraint expression for it. */
|
3122 |
|
|
|
3123 |
|
|
static void
|
3124 |
|
|
get_constraint_for_1 (tree t, VEC (ce_s, heap) **results, bool address_p)
|
3125 |
|
|
{
|
3126 |
|
|
struct constraint_expr temp;
|
3127 |
|
|
|
3128 |
|
|
/* x = integer is all glommed to a single variable, which doesn't
|
3129 |
|
|
point to anything by itself. That is, of course, unless it is an
|
3130 |
|
|
integer constant being treated as a pointer, in which case, we
|
3131 |
|
|
will return that this is really the addressof anything. This
|
3132 |
|
|
happens below, since it will fall into the default case. The only
|
3133 |
|
|
case we know something about an integer treated like a pointer is
|
3134 |
|
|
when it is the NULL pointer, and then we just say it points to
|
3135 |
|
|
NULL.
|
3136 |
|
|
|
3137 |
|
|
Do not do that if -fno-delete-null-pointer-checks though, because
|
3138 |
|
|
in that case *NULL does not fail, so it _should_ alias *anything.
|
3139 |
|
|
It is not worth adding a new option or renaming the existing one,
|
3140 |
|
|
since this case is relatively obscure. */
|
3141 |
|
|
if (flag_delete_null_pointer_checks
|
3142 |
|
|
&& ((TREE_CODE (t) == INTEGER_CST
|
3143 |
|
|
&& integer_zerop (t))
|
3144 |
|
|
/* The only valid CONSTRUCTORs in gimple with pointer typed
|
3145 |
|
|
elements are zero-initializer. */
|
3146 |
|
|
|| TREE_CODE (t) == CONSTRUCTOR))
|
3147 |
|
|
{
|
3148 |
|
|
temp.var = nothing_id;
|
3149 |
|
|
temp.type = ADDRESSOF;
|
3150 |
|
|
temp.offset = 0;
|
3151 |
|
|
VEC_safe_push (ce_s, heap, *results, &temp);
|
3152 |
|
|
return;
|
3153 |
|
|
}
|
3154 |
|
|
|
3155 |
|
|
/* String constants are read-only. */
|
3156 |
|
|
if (TREE_CODE (t) == STRING_CST)
|
3157 |
|
|
{
|
3158 |
|
|
temp.var = readonly_id;
|
3159 |
|
|
temp.type = SCALAR;
|
3160 |
|
|
temp.offset = 0;
|
3161 |
|
|
VEC_safe_push (ce_s, heap, *results, &temp);
|
3162 |
|
|
return;
|
3163 |
|
|
}
|
3164 |
|
|
|
3165 |
|
|
switch (TREE_CODE_CLASS (TREE_CODE (t)))
|
3166 |
|
|
{
|
3167 |
|
|
case tcc_expression:
|
3168 |
|
|
{
|
3169 |
|
|
switch (TREE_CODE (t))
|
3170 |
|
|
{
|
3171 |
|
|
case ADDR_EXPR:
|
3172 |
|
|
get_constraint_for_address_of (TREE_OPERAND (t, 0), results);
|
3173 |
|
|
return;
|
3174 |
|
|
default:;
|
3175 |
|
|
}
|
3176 |
|
|
break;
|
3177 |
|
|
}
|
3178 |
|
|
case tcc_reference:
|
3179 |
|
|
{
|
3180 |
|
|
switch (TREE_CODE (t))
|
3181 |
|
|
{
|
3182 |
|
|
case INDIRECT_REF:
|
3183 |
|
|
{
|
3184 |
|
|
get_constraint_for_1 (TREE_OPERAND (t, 0), results, address_p);
|
3185 |
|
|
do_deref (results);
|
3186 |
|
|
return;
|
3187 |
|
|
}
|
3188 |
|
|
case ARRAY_REF:
|
3189 |
|
|
case ARRAY_RANGE_REF:
|
3190 |
|
|
case COMPONENT_REF:
|
3191 |
|
|
get_constraint_for_component_ref (t, results, address_p);
|
3192 |
|
|
return;
|
3193 |
|
|
case VIEW_CONVERT_EXPR:
|
3194 |
|
|
get_constraint_for_1 (TREE_OPERAND (t, 0), results, address_p);
|
3195 |
|
|
return;
|
3196 |
|
|
/* We are missing handling for TARGET_MEM_REF here. */
|
3197 |
|
|
default:;
|
3198 |
|
|
}
|
3199 |
|
|
break;
|
3200 |
|
|
}
|
3201 |
|
|
case tcc_exceptional:
|
3202 |
|
|
{
|
3203 |
|
|
switch (TREE_CODE (t))
|
3204 |
|
|
{
|
3205 |
|
|
case SSA_NAME:
|
3206 |
|
|
{
|
3207 |
|
|
get_constraint_for_ssa_var (t, results, address_p);
|
3208 |
|
|
return;
|
3209 |
|
|
}
|
3210 |
|
|
default:;
|
3211 |
|
|
}
|
3212 |
|
|
break;
|
3213 |
|
|
}
|
3214 |
|
|
case tcc_declaration:
|
3215 |
|
|
{
|
3216 |
|
|
get_constraint_for_ssa_var (t, results, address_p);
|
3217 |
|
|
return;
|
3218 |
|
|
}
|
3219 |
|
|
default:;
|
3220 |
|
|
}
|
3221 |
|
|
|
3222 |
|
|
/* The default fallback is a constraint from anything. */
|
3223 |
|
|
temp.type = ADDRESSOF;
|
3224 |
|
|
temp.var = anything_id;
|
3225 |
|
|
temp.offset = 0;
|
3226 |
|
|
VEC_safe_push (ce_s, heap, *results, &temp);
|
3227 |
|
|
}
|
3228 |
|
|
|
3229 |
|
|
/* Given a gimple tree T, return the constraint expression vector for it. */
|
3230 |
|
|
|
3231 |
|
|
static void
|
3232 |
|
|
get_constraint_for (tree t, VEC (ce_s, heap) **results)
|
3233 |
|
|
{
|
3234 |
|
|
gcc_assert (VEC_length (ce_s, *results) == 0);
|
3235 |
|
|
|
3236 |
|
|
get_constraint_for_1 (t, results, false);
|
3237 |
|
|
}
|
3238 |
|
|
|
3239 |
|
|
|
3240 |
|
|
/* Efficiently generates constraints from all entries in *RHSC to all
|
3241 |
|
|
entries in *LHSC. */
|
3242 |
|
|
|
3243 |
|
|
static void
|
3244 |
|
|
process_all_all_constraints (VEC (ce_s, heap) *lhsc, VEC (ce_s, heap) *rhsc)
|
3245 |
|
|
{
|
3246 |
|
|
struct constraint_expr *lhsp, *rhsp;
|
3247 |
|
|
unsigned i, j;
|
3248 |
|
|
|
3249 |
|
|
if (VEC_length (ce_s, lhsc) <= 1
|
3250 |
|
|
|| VEC_length (ce_s, rhsc) <= 1)
|
3251 |
|
|
{
|
3252 |
|
|
for (i = 0; VEC_iterate (ce_s, lhsc, i, lhsp); ++i)
|
3253 |
|
|
for (j = 0; VEC_iterate (ce_s, rhsc, j, rhsp); ++j)
|
3254 |
|
|
process_constraint (new_constraint (*lhsp, *rhsp));
|
3255 |
|
|
}
|
3256 |
|
|
else
|
3257 |
|
|
{
|
3258 |
|
|
struct constraint_expr tmp;
|
3259 |
|
|
tmp = new_scalar_tmp_constraint_exp ("allalltmp");
|
3260 |
|
|
for (i = 0; VEC_iterate (ce_s, rhsc, i, rhsp); ++i)
|
3261 |
|
|
process_constraint (new_constraint (tmp, *rhsp));
|
3262 |
|
|
for (i = 0; VEC_iterate (ce_s, lhsc, i, lhsp); ++i)
|
3263 |
|
|
process_constraint (new_constraint (*lhsp, tmp));
|
3264 |
|
|
}
|
3265 |
|
|
}
|
3266 |
|
|
|
3267 |
|
|
/* Handle aggregate copies by expanding into copies of the respective
|
3268 |
|
|
fields of the structures. */
|
3269 |
|
|
|
3270 |
|
|
static void
|
3271 |
|
|
do_structure_copy (tree lhsop, tree rhsop)
|
3272 |
|
|
{
|
3273 |
|
|
struct constraint_expr *lhsp, *rhsp;
|
3274 |
|
|
VEC (ce_s, heap) *lhsc = NULL, *rhsc = NULL;
|
3275 |
|
|
unsigned j;
|
3276 |
|
|
|
3277 |
|
|
get_constraint_for (lhsop, &lhsc);
|
3278 |
|
|
get_constraint_for (rhsop, &rhsc);
|
3279 |
|
|
lhsp = VEC_index (ce_s, lhsc, 0);
|
3280 |
|
|
rhsp = VEC_index (ce_s, rhsc, 0);
|
3281 |
|
|
if (lhsp->type == DEREF
|
3282 |
|
|
|| (lhsp->type == ADDRESSOF && lhsp->var == anything_id)
|
3283 |
|
|
|| rhsp->type == DEREF)
|
3284 |
|
|
process_all_all_constraints (lhsc, rhsc);
|
3285 |
|
|
else if (lhsp->type == SCALAR
|
3286 |
|
|
&& (rhsp->type == SCALAR
|
3287 |
|
|
|| rhsp->type == ADDRESSOF))
|
3288 |
|
|
{
|
3289 |
|
|
HOST_WIDE_INT lhssize, lhsmaxsize, lhsoffset;
|
3290 |
|
|
HOST_WIDE_INT rhssize, rhsmaxsize, rhsoffset;
|
3291 |
|
|
unsigned k = 0;
|
3292 |
|
|
get_ref_base_and_extent (lhsop, &lhsoffset, &lhssize, &lhsmaxsize);
|
3293 |
|
|
get_ref_base_and_extent (rhsop, &rhsoffset, &rhssize, &rhsmaxsize);
|
3294 |
|
|
for (j = 0; VEC_iterate (ce_s, lhsc, j, lhsp);)
|
3295 |
|
|
{
|
3296 |
|
|
varinfo_t lhsv, rhsv;
|
3297 |
|
|
rhsp = VEC_index (ce_s, rhsc, k);
|
3298 |
|
|
lhsv = get_varinfo (lhsp->var);
|
3299 |
|
|
rhsv = get_varinfo (rhsp->var);
|
3300 |
|
|
if (lhsv->may_have_pointers
|
3301 |
|
|
&& ranges_overlap_p (lhsv->offset + rhsoffset, lhsv->size,
|
3302 |
|
|
rhsv->offset + lhsoffset, rhsv->size))
|
3303 |
|
|
process_constraint (new_constraint (*lhsp, *rhsp));
|
3304 |
|
|
if (lhsv->offset + rhsoffset + lhsv->size
|
3305 |
|
|
> rhsv->offset + lhsoffset + rhsv->size)
|
3306 |
|
|
{
|
3307 |
|
|
++k;
|
3308 |
|
|
if (k >= VEC_length (ce_s, rhsc))
|
3309 |
|
|
break;
|
3310 |
|
|
}
|
3311 |
|
|
else
|
3312 |
|
|
++j;
|
3313 |
|
|
}
|
3314 |
|
|
}
|
3315 |
|
|
else
|
3316 |
|
|
gcc_unreachable ();
|
3317 |
|
|
|
3318 |
|
|
VEC_free (ce_s, heap, lhsc);
|
3319 |
|
|
VEC_free (ce_s, heap, rhsc);
|
3320 |
|
|
}
|
3321 |
|
|
|
3322 |
|
|
/* Create a constraint ID = OP. */
|
3323 |
|
|
|
3324 |
|
|
static void
|
3325 |
|
|
make_constraint_to (unsigned id, tree op)
|
3326 |
|
|
{
|
3327 |
|
|
VEC(ce_s, heap) *rhsc = NULL;
|
3328 |
|
|
struct constraint_expr *c;
|
3329 |
|
|
struct constraint_expr includes;
|
3330 |
|
|
unsigned int j;
|
3331 |
|
|
|
3332 |
|
|
includes.var = id;
|
3333 |
|
|
includes.offset = 0;
|
3334 |
|
|
includes.type = SCALAR;
|
3335 |
|
|
|
3336 |
|
|
get_constraint_for (op, &rhsc);
|
3337 |
|
|
for (j = 0; VEC_iterate (ce_s, rhsc, j, c); j++)
|
3338 |
|
|
process_constraint (new_constraint (includes, *c));
|
3339 |
|
|
VEC_free (ce_s, heap, rhsc);
|
3340 |
|
|
}
|
3341 |
|
|
|
3342 |
|
|
/* Create a constraint ID = &FROM. */
|
3343 |
|
|
|
3344 |
|
|
static void
|
3345 |
|
|
make_constraint_from (varinfo_t vi, int from)
|
3346 |
|
|
{
|
3347 |
|
|
struct constraint_expr lhs, rhs;
|
3348 |
|
|
|
3349 |
|
|
lhs.var = vi->id;
|
3350 |
|
|
lhs.offset = 0;
|
3351 |
|
|
lhs.type = SCALAR;
|
3352 |
|
|
|
3353 |
|
|
rhs.var = from;
|
3354 |
|
|
rhs.offset = 0;
|
3355 |
|
|
rhs.type = ADDRESSOF;
|
3356 |
|
|
process_constraint (new_constraint (lhs, rhs));
|
3357 |
|
|
}
|
3358 |
|
|
|
3359 |
|
|
/* Create a constraint ID = FROM. */
|
3360 |
|
|
|
3361 |
|
|
static void
|
3362 |
|
|
make_copy_constraint (varinfo_t vi, int from)
|
3363 |
|
|
{
|
3364 |
|
|
struct constraint_expr lhs, rhs;
|
3365 |
|
|
|
3366 |
|
|
lhs.var = vi->id;
|
3367 |
|
|
lhs.offset = 0;
|
3368 |
|
|
lhs.type = SCALAR;
|
3369 |
|
|
|
3370 |
|
|
rhs.var = from;
|
3371 |
|
|
rhs.offset = 0;
|
3372 |
|
|
rhs.type = SCALAR;
|
3373 |
|
|
process_constraint (new_constraint (lhs, rhs));
|
3374 |
|
|
}
|
3375 |
|
|
|
3376 |
|
|
/* Make constraints necessary to make OP escape. */
|
3377 |
|
|
|
3378 |
|
|
static void
|
3379 |
|
|
make_escape_constraint (tree op)
|
3380 |
|
|
{
|
3381 |
|
|
make_constraint_to (escaped_id, op);
|
3382 |
|
|
}
|
3383 |
|
|
|
3384 |
|
|
/* Create a new artificial heap variable with NAME and make a
|
3385 |
|
|
constraint from it to LHS. Return the created variable. */
|
3386 |
|
|
|
3387 |
|
|
static varinfo_t
|
3388 |
|
|
make_constraint_from_heapvar (varinfo_t lhs, const char *name)
|
3389 |
|
|
{
|
3390 |
|
|
varinfo_t vi;
|
3391 |
|
|
tree heapvar = heapvar_lookup (lhs->decl, lhs->offset);
|
3392 |
|
|
|
3393 |
|
|
if (heapvar == NULL_TREE)
|
3394 |
|
|
{
|
3395 |
|
|
var_ann_t ann;
|
3396 |
|
|
heapvar = create_tmp_var_raw (ptr_type_node, name);
|
3397 |
|
|
DECL_EXTERNAL (heapvar) = 1;
|
3398 |
|
|
|
3399 |
|
|
heapvar_insert (lhs->decl, lhs->offset, heapvar);
|
3400 |
|
|
|
3401 |
|
|
ann = get_var_ann (heapvar);
|
3402 |
|
|
ann->is_heapvar = 1;
|
3403 |
|
|
}
|
3404 |
|
|
|
3405 |
|
|
/* For global vars we need to add a heapvar to the list of referenced
|
3406 |
|
|
vars of a different function than it was created for originally. */
|
3407 |
|
|
if (gimple_referenced_vars (cfun))
|
3408 |
|
|
add_referenced_var (heapvar);
|
3409 |
|
|
|
3410 |
|
|
vi = new_var_info (heapvar, name);
|
3411 |
|
|
vi->is_artificial_var = true;
|
3412 |
|
|
vi->is_heap_var = true;
|
3413 |
|
|
vi->is_unknown_size_var = true;
|
3414 |
|
|
vi->offset = 0;
|
3415 |
|
|
vi->fullsize = ~0;
|
3416 |
|
|
vi->size = ~0;
|
3417 |
|
|
vi->is_full_var = true;
|
3418 |
|
|
insert_vi_for_tree (heapvar, vi);
|
3419 |
|
|
|
3420 |
|
|
make_constraint_from (lhs, vi->id);
|
3421 |
|
|
|
3422 |
|
|
return vi;
|
3423 |
|
|
}
|
3424 |
|
|
|
3425 |
|
|
/* Create a new artificial heap variable with NAME and make a
|
3426 |
|
|
constraint from it to LHS. Set flags according to a tag used
|
3427 |
|
|
for tracking restrict pointers. */
|
3428 |
|
|
|
3429 |
|
|
static void
|
3430 |
|
|
make_constraint_from_restrict (varinfo_t lhs, const char *name)
|
3431 |
|
|
{
|
3432 |
|
|
varinfo_t vi;
|
3433 |
|
|
vi = make_constraint_from_heapvar (lhs, name);
|
3434 |
|
|
vi->is_restrict_var = 1;
|
3435 |
|
|
vi->is_global_var = 0;
|
3436 |
|
|
vi->is_special_var = 1;
|
3437 |
|
|
vi->may_have_pointers = 0;
|
3438 |
|
|
}
|
3439 |
|
|
|
3440 |
|
|
/* For non-IPA mode, generate constraints necessary for a call on the
|
3441 |
|
|
RHS. */
|
3442 |
|
|
|
3443 |
|
|
static void
|
3444 |
|
|
handle_rhs_call (gimple stmt, VEC(ce_s, heap) **results)
|
3445 |
|
|
{
|
3446 |
|
|
struct constraint_expr rhsc;
|
3447 |
|
|
unsigned i;
|
3448 |
|
|
|
3449 |
|
|
for (i = 0; i < gimple_call_num_args (stmt); ++i)
|
3450 |
|
|
{
|
3451 |
|
|
tree arg = gimple_call_arg (stmt, i);
|
3452 |
|
|
|
3453 |
|
|
/* Find those pointers being passed, and make sure they end up
|
3454 |
|
|
pointing to anything. */
|
3455 |
|
|
if (could_have_pointers (arg))
|
3456 |
|
|
make_escape_constraint (arg);
|
3457 |
|
|
}
|
3458 |
|
|
|
3459 |
|
|
/* The static chain escapes as well. */
|
3460 |
|
|
if (gimple_call_chain (stmt))
|
3461 |
|
|
make_escape_constraint (gimple_call_chain (stmt));
|
3462 |
|
|
|
3463 |
|
|
/* And if we applied NRV the address of the return slot escapes as well. */
|
3464 |
|
|
if (gimple_call_return_slot_opt_p (stmt)
|
3465 |
|
|
&& gimple_call_lhs (stmt) != NULL_TREE
|
3466 |
|
|
&& TREE_ADDRESSABLE (TREE_TYPE (gimple_call_lhs (stmt))))
|
3467 |
|
|
{
|
3468 |
|
|
VEC(ce_s, heap) *tmpc = NULL;
|
3469 |
|
|
struct constraint_expr lhsc, *c;
|
3470 |
|
|
get_constraint_for_address_of (gimple_call_lhs (stmt), &tmpc);
|
3471 |
|
|
lhsc.var = escaped_id;
|
3472 |
|
|
lhsc.offset = 0;
|
3473 |
|
|
lhsc.type = SCALAR;
|
3474 |
|
|
for (i = 0; VEC_iterate (ce_s, tmpc, i, c); ++i)
|
3475 |
|
|
process_constraint (new_constraint (lhsc, *c));
|
3476 |
|
|
VEC_free(ce_s, heap, tmpc);
|
3477 |
|
|
}
|
3478 |
|
|
|
3479 |
|
|
/* Regular functions return nonlocal memory. */
|
3480 |
|
|
rhsc.var = nonlocal_id;
|
3481 |
|
|
rhsc.offset = 0;
|
3482 |
|
|
rhsc.type = SCALAR;
|
3483 |
|
|
VEC_safe_push (ce_s, heap, *results, &rhsc);
|
3484 |
|
|
}
|
3485 |
|
|
|
3486 |
|
|
/* For non-IPA mode, generate constraints necessary for a call
|
3487 |
|
|
that returns a pointer and assigns it to LHS. This simply makes
|
3488 |
|
|
the LHS point to global and escaped variables. */
|
3489 |
|
|
|
3490 |
|
|
static void
|
3491 |
|
|
handle_lhs_call (tree lhs, int flags, VEC(ce_s, heap) *rhsc, tree fndecl)
|
3492 |
|
|
{
|
3493 |
|
|
VEC(ce_s, heap) *lhsc = NULL;
|
3494 |
|
|
|
3495 |
|
|
get_constraint_for (lhs, &lhsc);
|
3496 |
|
|
|
3497 |
|
|
if (flags & ECF_MALLOC)
|
3498 |
|
|
{
|
3499 |
|
|
varinfo_t vi;
|
3500 |
|
|
vi = make_constraint_from_heapvar (get_vi_for_tree (lhs), "HEAP");
|
3501 |
|
|
/* We delay marking allocated storage global until we know if
|
3502 |
|
|
it escapes. */
|
3503 |
|
|
DECL_EXTERNAL (vi->decl) = 0;
|
3504 |
|
|
vi->is_global_var = 0;
|
3505 |
|
|
/* If this is not a real malloc call assume the memory was
|
3506 |
|
|
initialized and thus may point to global memory. All
|
3507 |
|
|
builtin functions with the malloc attribute behave in a sane way. */
|
3508 |
|
|
if (!fndecl
|
3509 |
|
|
|| DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_NORMAL)
|
3510 |
|
|
make_constraint_from (vi, nonlocal_id);
|
3511 |
|
|
}
|
3512 |
|
|
else if (VEC_length (ce_s, rhsc) > 0)
|
3513 |
|
|
{
|
3514 |
|
|
/* If the store is to a global decl make sure to
|
3515 |
|
|
add proper escape constraints. */
|
3516 |
|
|
lhs = get_base_address (lhs);
|
3517 |
|
|
if (lhs
|
3518 |
|
|
&& DECL_P (lhs)
|
3519 |
|
|
&& is_global_var (lhs))
|
3520 |
|
|
{
|
3521 |
|
|
struct constraint_expr tmpc;
|
3522 |
|
|
tmpc.var = escaped_id;
|
3523 |
|
|
tmpc.offset = 0;
|
3524 |
|
|
tmpc.type = SCALAR;
|
3525 |
|
|
VEC_safe_push (ce_s, heap, lhsc, &tmpc);
|
3526 |
|
|
}
|
3527 |
|
|
process_all_all_constraints (lhsc, rhsc);
|
3528 |
|
|
}
|
3529 |
|
|
VEC_free (ce_s, heap, lhsc);
|
3530 |
|
|
}
|
3531 |
|
|
|
3532 |
|
|
/* For non-IPA mode, generate constraints necessary for a call of a
|
3533 |
|
|
const function that returns a pointer in the statement STMT. */
|
3534 |
|
|
|
3535 |
|
|
static void
|
3536 |
|
|
handle_const_call (gimple stmt, VEC(ce_s, heap) **results)
|
3537 |
|
|
{
|
3538 |
|
|
struct constraint_expr rhsc;
|
3539 |
|
|
unsigned int k;
|
3540 |
|
|
|
3541 |
|
|
/* Treat nested const functions the same as pure functions as far
|
3542 |
|
|
as the static chain is concerned. */
|
3543 |
|
|
if (gimple_call_chain (stmt))
|
3544 |
|
|
{
|
3545 |
|
|
make_constraint_to (callused_id, gimple_call_chain (stmt));
|
3546 |
|
|
rhsc.var = callused_id;
|
3547 |
|
|
rhsc.offset = 0;
|
3548 |
|
|
rhsc.type = SCALAR;
|
3549 |
|
|
VEC_safe_push (ce_s, heap, *results, &rhsc);
|
3550 |
|
|
}
|
3551 |
|
|
|
3552 |
|
|
/* May return arguments. */
|
3553 |
|
|
for (k = 0; k < gimple_call_num_args (stmt); ++k)
|
3554 |
|
|
{
|
3555 |
|
|
tree arg = gimple_call_arg (stmt, k);
|
3556 |
|
|
|
3557 |
|
|
if (could_have_pointers (arg))
|
3558 |
|
|
{
|
3559 |
|
|
VEC(ce_s, heap) *argc = NULL;
|
3560 |
|
|
unsigned i;
|
3561 |
|
|
struct constraint_expr *argp;
|
3562 |
|
|
get_constraint_for (arg, &argc);
|
3563 |
|
|
for (i = 0; VEC_iterate (ce_s, argc, i, argp); ++i)
|
3564 |
|
|
VEC_safe_push (ce_s, heap, *results, argp);
|
3565 |
|
|
VEC_free(ce_s, heap, argc);
|
3566 |
|
|
}
|
3567 |
|
|
}
|
3568 |
|
|
|
3569 |
|
|
/* May return addresses of globals. */
|
3570 |
|
|
rhsc.var = nonlocal_id;
|
3571 |
|
|
rhsc.offset = 0;
|
3572 |
|
|
rhsc.type = ADDRESSOF;
|
3573 |
|
|
VEC_safe_push (ce_s, heap, *results, &rhsc);
|
3574 |
|
|
}
|
3575 |
|
|
|
3576 |
|
|
/* For non-IPA mode, generate constraints necessary for a call to a
|
3577 |
|
|
pure function in statement STMT. */
|
3578 |
|
|
|
3579 |
|
|
static void
|
3580 |
|
|
handle_pure_call (gimple stmt, VEC(ce_s, heap) **results)
|
3581 |
|
|
{
|
3582 |
|
|
struct constraint_expr rhsc;
|
3583 |
|
|
unsigned i;
|
3584 |
|
|
bool need_callused = false;
|
3585 |
|
|
|
3586 |
|
|
/* Memory reached from pointer arguments is call-used. */
|
3587 |
|
|
for (i = 0; i < gimple_call_num_args (stmt); ++i)
|
3588 |
|
|
{
|
3589 |
|
|
tree arg = gimple_call_arg (stmt, i);
|
3590 |
|
|
|
3591 |
|
|
if (could_have_pointers (arg))
|
3592 |
|
|
{
|
3593 |
|
|
make_constraint_to (callused_id, arg);
|
3594 |
|
|
need_callused = true;
|
3595 |
|
|
}
|
3596 |
|
|
}
|
3597 |
|
|
|
3598 |
|
|
/* The static chain is used as well. */
|
3599 |
|
|
if (gimple_call_chain (stmt))
|
3600 |
|
|
{
|
3601 |
|
|
make_constraint_to (callused_id, gimple_call_chain (stmt));
|
3602 |
|
|
need_callused = true;
|
3603 |
|
|
}
|
3604 |
|
|
|
3605 |
|
|
/* Pure functions may return callused and nonlocal memory. */
|
3606 |
|
|
if (need_callused)
|
3607 |
|
|
{
|
3608 |
|
|
rhsc.var = callused_id;
|
3609 |
|
|
rhsc.offset = 0;
|
3610 |
|
|
rhsc.type = SCALAR;
|
3611 |
|
|
VEC_safe_push (ce_s, heap, *results, &rhsc);
|
3612 |
|
|
}
|
3613 |
|
|
rhsc.var = nonlocal_id;
|
3614 |
|
|
rhsc.offset = 0;
|
3615 |
|
|
rhsc.type = SCALAR;
|
3616 |
|
|
VEC_safe_push (ce_s, heap, *results, &rhsc);
|
3617 |
|
|
}
|
3618 |
|
|
|
3619 |
|
|
/* Walk statement T setting up aliasing constraints according to the
|
3620 |
|
|
references found in T. This function is the main part of the
|
3621 |
|
|
constraint builder. AI points to auxiliary alias information used
|
3622 |
|
|
when building alias sets and computing alias grouping heuristics. */
|
3623 |
|
|
|
3624 |
|
|
static void
|
3625 |
|
|
find_func_aliases (gimple origt)
|
3626 |
|
|
{
|
3627 |
|
|
gimple t = origt;
|
3628 |
|
|
VEC(ce_s, heap) *lhsc = NULL;
|
3629 |
|
|
VEC(ce_s, heap) *rhsc = NULL;
|
3630 |
|
|
struct constraint_expr *c;
|
3631 |
|
|
|
3632 |
|
|
/* Now build constraints expressions. */
|
3633 |
|
|
if (gimple_code (t) == GIMPLE_PHI)
|
3634 |
|
|
{
|
3635 |
|
|
gcc_assert (!AGGREGATE_TYPE_P (TREE_TYPE (gimple_phi_result (t))));
|
3636 |
|
|
|
3637 |
|
|
/* Only care about pointers and structures containing
|
3638 |
|
|
pointers. */
|
3639 |
|
|
if (could_have_pointers (gimple_phi_result (t)))
|
3640 |
|
|
{
|
3641 |
|
|
size_t i;
|
3642 |
|
|
unsigned int j;
|
3643 |
|
|
|
3644 |
|
|
/* For a phi node, assign all the arguments to
|
3645 |
|
|
the result. */
|
3646 |
|
|
get_constraint_for (gimple_phi_result (t), &lhsc);
|
3647 |
|
|
for (i = 0; i < gimple_phi_num_args (t); i++)
|
3648 |
|
|
{
|
3649 |
|
|
tree strippedrhs = PHI_ARG_DEF (t, i);
|
3650 |
|
|
|
3651 |
|
|
STRIP_NOPS (strippedrhs);
|
3652 |
|
|
get_constraint_for (gimple_phi_arg_def (t, i), &rhsc);
|
3653 |
|
|
|
3654 |
|
|
for (j = 0; VEC_iterate (ce_s, lhsc, j, c); j++)
|
3655 |
|
|
{
|
3656 |
|
|
struct constraint_expr *c2;
|
3657 |
|
|
while (VEC_length (ce_s, rhsc) > 0)
|
3658 |
|
|
{
|
3659 |
|
|
c2 = VEC_last (ce_s, rhsc);
|
3660 |
|
|
process_constraint (new_constraint (*c, *c2));
|
3661 |
|
|
VEC_pop (ce_s, rhsc);
|
3662 |
|
|
}
|
3663 |
|
|
}
|
3664 |
|
|
}
|
3665 |
|
|
}
|
3666 |
|
|
}
|
3667 |
|
|
/* In IPA mode, we need to generate constraints to pass call
|
3668 |
|
|
arguments through their calls. There are two cases,
|
3669 |
|
|
either a GIMPLE_CALL returning a value, or just a plain
|
3670 |
|
|
GIMPLE_CALL when we are not.
|
3671 |
|
|
|
3672 |
|
|
In non-ipa mode, we need to generate constraints for each
|
3673 |
|
|
pointer passed by address. */
|
3674 |
|
|
else if (is_gimple_call (t))
|
3675 |
|
|
{
|
3676 |
|
|
tree fndecl = gimple_call_fndecl (t);
|
3677 |
|
|
if (fndecl != NULL_TREE
|
3678 |
|
|
&& DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
|
3679 |
|
|
/* ??? All builtins that are handled here need to be handled
|
3680 |
|
|
in the alias-oracle query functions explicitly! */
|
3681 |
|
|
switch (DECL_FUNCTION_CODE (fndecl))
|
3682 |
|
|
{
|
3683 |
|
|
/* All the following functions return a pointer to the same object
|
3684 |
|
|
as their first argument points to. The functions do not add
|
3685 |
|
|
to the ESCAPED solution. The functions make the first argument
|
3686 |
|
|
pointed to memory point to what the second argument pointed to
|
3687 |
|
|
memory points to. */
|
3688 |
|
|
case BUILT_IN_STRCPY:
|
3689 |
|
|
case BUILT_IN_STRNCPY:
|
3690 |
|
|
case BUILT_IN_BCOPY:
|
3691 |
|
|
case BUILT_IN_MEMCPY:
|
3692 |
|
|
case BUILT_IN_MEMMOVE:
|
3693 |
|
|
case BUILT_IN_MEMPCPY:
|
3694 |
|
|
case BUILT_IN_STPCPY:
|
3695 |
|
|
case BUILT_IN_STPNCPY:
|
3696 |
|
|
case BUILT_IN_STRCAT:
|
3697 |
|
|
case BUILT_IN_STRNCAT:
|
3698 |
|
|
{
|
3699 |
|
|
tree res = gimple_call_lhs (t);
|
3700 |
|
|
tree dest = gimple_call_arg (t, (DECL_FUNCTION_CODE (fndecl)
|
3701 |
|
|
== BUILT_IN_BCOPY ? 1 : 0));
|
3702 |
|
|
tree src = gimple_call_arg (t, (DECL_FUNCTION_CODE (fndecl)
|
3703 |
|
|
== BUILT_IN_BCOPY ? 0 : 1));
|
3704 |
|
|
if (res != NULL_TREE)
|
3705 |
|
|
{
|
3706 |
|
|
get_constraint_for (res, &lhsc);
|
3707 |
|
|
if (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_MEMPCPY
|
3708 |
|
|
|| DECL_FUNCTION_CODE (fndecl) == BUILT_IN_STPCPY
|
3709 |
|
|
|| DECL_FUNCTION_CODE (fndecl) == BUILT_IN_STPNCPY)
|
3710 |
|
|
get_constraint_for_ptr_offset (dest, NULL_TREE, &rhsc);
|
3711 |
|
|
else
|
3712 |
|
|
get_constraint_for (dest, &rhsc);
|
3713 |
|
|
process_all_all_constraints (lhsc, rhsc);
|
3714 |
|
|
VEC_free (ce_s, heap, lhsc);
|
3715 |
|
|
VEC_free (ce_s, heap, rhsc);
|
3716 |
|
|
}
|
3717 |
|
|
get_constraint_for_ptr_offset (dest, NULL_TREE, &lhsc);
|
3718 |
|
|
get_constraint_for_ptr_offset (src, NULL_TREE, &rhsc);
|
3719 |
|
|
do_deref (&lhsc);
|
3720 |
|
|
do_deref (&rhsc);
|
3721 |
|
|
process_all_all_constraints (lhsc, rhsc);
|
3722 |
|
|
VEC_free (ce_s, heap, lhsc);
|
3723 |
|
|
VEC_free (ce_s, heap, rhsc);
|
3724 |
|
|
return;
|
3725 |
|
|
}
|
3726 |
|
|
case BUILT_IN_MEMSET:
|
3727 |
|
|
{
|
3728 |
|
|
tree res = gimple_call_lhs (t);
|
3729 |
|
|
tree dest = gimple_call_arg (t, 0);
|
3730 |
|
|
unsigned i;
|
3731 |
|
|
ce_s *lhsp;
|
3732 |
|
|
struct constraint_expr ac;
|
3733 |
|
|
if (res != NULL_TREE)
|
3734 |
|
|
{
|
3735 |
|
|
get_constraint_for (res, &lhsc);
|
3736 |
|
|
get_constraint_for (dest, &rhsc);
|
3737 |
|
|
process_all_all_constraints (lhsc, rhsc);
|
3738 |
|
|
VEC_free (ce_s, heap, lhsc);
|
3739 |
|
|
VEC_free (ce_s, heap, rhsc);
|
3740 |
|
|
}
|
3741 |
|
|
get_constraint_for_ptr_offset (dest, NULL_TREE, &lhsc);
|
3742 |
|
|
do_deref (&lhsc);
|
3743 |
|
|
if (flag_delete_null_pointer_checks
|
3744 |
|
|
&& integer_zerop (gimple_call_arg (t, 1)))
|
3745 |
|
|
{
|
3746 |
|
|
ac.type = ADDRESSOF;
|
3747 |
|
|
ac.var = nothing_id;
|
3748 |
|
|
}
|
3749 |
|
|
else
|
3750 |
|
|
{
|
3751 |
|
|
ac.type = SCALAR;
|
3752 |
|
|
ac.var = integer_id;
|
3753 |
|
|
}
|
3754 |
|
|
ac.offset = 0;
|
3755 |
|
|
for (i = 0; VEC_iterate (ce_s, lhsc, i, lhsp); ++i)
|
3756 |
|
|
process_constraint (new_constraint (*lhsp, ac));
|
3757 |
|
|
VEC_free (ce_s, heap, lhsc);
|
3758 |
|
|
return;
|
3759 |
|
|
}
|
3760 |
|
|
/* All the following functions do not return pointers, do not
|
3761 |
|
|
modify the points-to sets of memory reachable from their
|
3762 |
|
|
arguments and do not add to the ESCAPED solution. */
|
3763 |
|
|
case BUILT_IN_SINCOS:
|
3764 |
|
|
case BUILT_IN_SINCOSF:
|
3765 |
|
|
case BUILT_IN_SINCOSL:
|
3766 |
|
|
case BUILT_IN_FREXP:
|
3767 |
|
|
case BUILT_IN_FREXPF:
|
3768 |
|
|
case BUILT_IN_FREXPL:
|
3769 |
|
|
case BUILT_IN_GAMMA_R:
|
3770 |
|
|
case BUILT_IN_GAMMAF_R:
|
3771 |
|
|
case BUILT_IN_GAMMAL_R:
|
3772 |
|
|
case BUILT_IN_LGAMMA_R:
|
3773 |
|
|
case BUILT_IN_LGAMMAF_R:
|
3774 |
|
|
case BUILT_IN_LGAMMAL_R:
|
3775 |
|
|
case BUILT_IN_MODF:
|
3776 |
|
|
case BUILT_IN_MODFF:
|
3777 |
|
|
case BUILT_IN_MODFL:
|
3778 |
|
|
case BUILT_IN_REMQUO:
|
3779 |
|
|
case BUILT_IN_REMQUOF:
|
3780 |
|
|
case BUILT_IN_REMQUOL:
|
3781 |
|
|
case BUILT_IN_FREE:
|
3782 |
|
|
return;
|
3783 |
|
|
/* printf-style functions may have hooks to set pointers to
|
3784 |
|
|
point to somewhere into the generated string. Leave them
|
3785 |
|
|
for a later excercise... */
|
3786 |
|
|
default:
|
3787 |
|
|
/* Fallthru to general call handling. */;
|
3788 |
|
|
}
|
3789 |
|
|
if (!in_ipa_mode
|
3790 |
|
|
|| (fndecl
|
3791 |
|
|
&& !lookup_vi_for_tree (fndecl)))
|
3792 |
|
|
{
|
3793 |
|
|
VEC(ce_s, heap) *rhsc = NULL;
|
3794 |
|
|
int flags = gimple_call_flags (t);
|
3795 |
|
|
|
3796 |
|
|
/* Const functions can return their arguments and addresses
|
3797 |
|
|
of global memory but not of escaped memory. */
|
3798 |
|
|
if (flags & (ECF_CONST|ECF_NOVOPS))
|
3799 |
|
|
{
|
3800 |
|
|
if (gimple_call_lhs (t)
|
3801 |
|
|
&& could_have_pointers (gimple_call_lhs (t)))
|
3802 |
|
|
handle_const_call (t, &rhsc);
|
3803 |
|
|
}
|
3804 |
|
|
/* Pure functions can return addresses in and of memory
|
3805 |
|
|
reachable from their arguments, but they are not an escape
|
3806 |
|
|
point for reachable memory of their arguments. */
|
3807 |
|
|
else if (flags & (ECF_PURE|ECF_LOOPING_CONST_OR_PURE))
|
3808 |
|
|
handle_pure_call (t, &rhsc);
|
3809 |
|
|
else
|
3810 |
|
|
handle_rhs_call (t, &rhsc);
|
3811 |
|
|
if (gimple_call_lhs (t)
|
3812 |
|
|
&& could_have_pointers (gimple_call_lhs (t)))
|
3813 |
|
|
handle_lhs_call (gimple_call_lhs (t), flags, rhsc, fndecl);
|
3814 |
|
|
VEC_free (ce_s, heap, rhsc);
|
3815 |
|
|
}
|
3816 |
|
|
else
|
3817 |
|
|
{
|
3818 |
|
|
tree lhsop;
|
3819 |
|
|
varinfo_t fi;
|
3820 |
|
|
int i = 1;
|
3821 |
|
|
size_t j;
|
3822 |
|
|
tree decl;
|
3823 |
|
|
|
3824 |
|
|
lhsop = gimple_call_lhs (t);
|
3825 |
|
|
decl = gimple_call_fndecl (t);
|
3826 |
|
|
|
3827 |
|
|
/* If we can directly resolve the function being called, do so.
|
3828 |
|
|
Otherwise, it must be some sort of indirect expression that
|
3829 |
|
|
we should still be able to handle. */
|
3830 |
|
|
if (decl)
|
3831 |
|
|
fi = get_vi_for_tree (decl);
|
3832 |
|
|
else
|
3833 |
|
|
{
|
3834 |
|
|
decl = gimple_call_fn (t);
|
3835 |
|
|
fi = get_vi_for_tree (decl);
|
3836 |
|
|
}
|
3837 |
|
|
|
3838 |
|
|
/* Assign all the passed arguments to the appropriate incoming
|
3839 |
|
|
parameters of the function. */
|
3840 |
|
|
for (j = 0; j < gimple_call_num_args (t); j++)
|
3841 |
|
|
{
|
3842 |
|
|
struct constraint_expr lhs ;
|
3843 |
|
|
struct constraint_expr *rhsp;
|
3844 |
|
|
tree arg = gimple_call_arg (t, j);
|
3845 |
|
|
|
3846 |
|
|
get_constraint_for (arg, &rhsc);
|
3847 |
|
|
if (TREE_CODE (decl) != FUNCTION_DECL)
|
3848 |
|
|
{
|
3849 |
|
|
lhs.type = DEREF;
|
3850 |
|
|
lhs.var = fi->id;
|
3851 |
|
|
lhs.offset = i;
|
3852 |
|
|
}
|
3853 |
|
|
else
|
3854 |
|
|
{
|
3855 |
|
|
lhs.type = SCALAR;
|
3856 |
|
|
lhs.var = first_vi_for_offset (fi, i)->id;
|
3857 |
|
|
lhs.offset = 0;
|
3858 |
|
|
}
|
3859 |
|
|
while (VEC_length (ce_s, rhsc) != 0)
|
3860 |
|
|
{
|
3861 |
|
|
rhsp = VEC_last (ce_s, rhsc);
|
3862 |
|
|
process_constraint (new_constraint (lhs, *rhsp));
|
3863 |
|
|
VEC_pop (ce_s, rhsc);
|
3864 |
|
|
}
|
3865 |
|
|
i++;
|
3866 |
|
|
}
|
3867 |
|
|
|
3868 |
|
|
/* If we are returning a value, assign it to the result. */
|
3869 |
|
|
if (lhsop)
|
3870 |
|
|
{
|
3871 |
|
|
struct constraint_expr rhs;
|
3872 |
|
|
struct constraint_expr *lhsp;
|
3873 |
|
|
unsigned int j = 0;
|
3874 |
|
|
|
3875 |
|
|
get_constraint_for (lhsop, &lhsc);
|
3876 |
|
|
if (TREE_CODE (decl) != FUNCTION_DECL)
|
3877 |
|
|
{
|
3878 |
|
|
rhs.type = DEREF;
|
3879 |
|
|
rhs.var = fi->id;
|
3880 |
|
|
rhs.offset = i;
|
3881 |
|
|
}
|
3882 |
|
|
else
|
3883 |
|
|
{
|
3884 |
|
|
rhs.type = SCALAR;
|
3885 |
|
|
rhs.var = first_vi_for_offset (fi, i)->id;
|
3886 |
|
|
rhs.offset = 0;
|
3887 |
|
|
}
|
3888 |
|
|
for (j = 0; VEC_iterate (ce_s, lhsc, j, lhsp); j++)
|
3889 |
|
|
process_constraint (new_constraint (*lhsp, rhs));
|
3890 |
|
|
}
|
3891 |
|
|
}
|
3892 |
|
|
}
|
3893 |
|
|
/* Otherwise, just a regular assignment statement. Only care about
|
3894 |
|
|
operations with pointer result, others are dealt with as escape
|
3895 |
|
|
points if they have pointer operands. */
|
3896 |
|
|
else if (is_gimple_assign (t)
|
3897 |
|
|
&& type_could_have_pointers (TREE_TYPE (gimple_assign_lhs (t))))
|
3898 |
|
|
{
|
3899 |
|
|
/* Otherwise, just a regular assignment statement. */
|
3900 |
|
|
tree lhsop = gimple_assign_lhs (t);
|
3901 |
|
|
tree rhsop = (gimple_num_ops (t) == 2) ? gimple_assign_rhs1 (t) : NULL;
|
3902 |
|
|
|
3903 |
|
|
if (rhsop && AGGREGATE_TYPE_P (TREE_TYPE (lhsop)))
|
3904 |
|
|
do_structure_copy (lhsop, rhsop);
|
3905 |
|
|
else
|
3906 |
|
|
{
|
3907 |
|
|
struct constraint_expr temp;
|
3908 |
|
|
get_constraint_for (lhsop, &lhsc);
|
3909 |
|
|
|
3910 |
|
|
if (gimple_assign_rhs_code (t) == POINTER_PLUS_EXPR)
|
3911 |
|
|
get_constraint_for_ptr_offset (gimple_assign_rhs1 (t),
|
3912 |
|
|
gimple_assign_rhs2 (t), &rhsc);
|
3913 |
|
|
else if ((CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (t))
|
3914 |
|
|
&& !(POINTER_TYPE_P (gimple_expr_type (t))
|
3915 |
|
|
&& !POINTER_TYPE_P (TREE_TYPE (rhsop))))
|
3916 |
|
|
|| gimple_assign_single_p (t))
|
3917 |
|
|
get_constraint_for (rhsop, &rhsc);
|
3918 |
|
|
else
|
3919 |
|
|
{
|
3920 |
|
|
temp.type = ADDRESSOF;
|
3921 |
|
|
temp.var = anything_id;
|
3922 |
|
|
temp.offset = 0;
|
3923 |
|
|
VEC_safe_push (ce_s, heap, rhsc, &temp);
|
3924 |
|
|
}
|
3925 |
|
|
process_all_all_constraints (lhsc, rhsc);
|
3926 |
|
|
}
|
3927 |
|
|
/* If there is a store to a global variable the rhs escapes. */
|
3928 |
|
|
if ((lhsop = get_base_address (lhsop)) != NULL_TREE
|
3929 |
|
|
&& DECL_P (lhsop)
|
3930 |
|
|
&& is_global_var (lhsop))
|
3931 |
|
|
make_escape_constraint (rhsop);
|
3932 |
|
|
/* If this is a conversion of a non-restrict pointer to a
|
3933 |
|
|
restrict pointer track it with a new heapvar. */
|
3934 |
|
|
else if (gimple_assign_cast_p (t)
|
3935 |
|
|
&& POINTER_TYPE_P (TREE_TYPE (rhsop))
|
3936 |
|
|
&& POINTER_TYPE_P (TREE_TYPE (lhsop))
|
3937 |
|
|
&& !TYPE_RESTRICT (TREE_TYPE (rhsop))
|
3938 |
|
|
&& TYPE_RESTRICT (TREE_TYPE (lhsop)))
|
3939 |
|
|
make_constraint_from_restrict (get_vi_for_tree (lhsop),
|
3940 |
|
|
"CAST_RESTRICT");
|
3941 |
|
|
}
|
3942 |
|
|
/* For conversions of pointers to non-pointers the pointer escapes. */
|
3943 |
|
|
else if (gimple_assign_cast_p (t)
|
3944 |
|
|
&& POINTER_TYPE_P (TREE_TYPE (gimple_assign_rhs1 (t)))
|
3945 |
|
|
&& !POINTER_TYPE_P (TREE_TYPE (gimple_assign_lhs (t))))
|
3946 |
|
|
{
|
3947 |
|
|
make_escape_constraint (gimple_assign_rhs1 (t));
|
3948 |
|
|
}
|
3949 |
|
|
/* Handle escapes through return. */
|
3950 |
|
|
else if (gimple_code (t) == GIMPLE_RETURN
|
3951 |
|
|
&& gimple_return_retval (t) != NULL_TREE
|
3952 |
|
|
&& could_have_pointers (gimple_return_retval (t)))
|
3953 |
|
|
{
|
3954 |
|
|
make_escape_constraint (gimple_return_retval (t));
|
3955 |
|
|
}
|
3956 |
|
|
/* Handle asms conservatively by adding escape constraints to everything. */
|
3957 |
|
|
else if (gimple_code (t) == GIMPLE_ASM)
|
3958 |
|
|
{
|
3959 |
|
|
unsigned i, noutputs;
|
3960 |
|
|
const char **oconstraints;
|
3961 |
|
|
const char *constraint;
|
3962 |
|
|
bool allows_mem, allows_reg, is_inout;
|
3963 |
|
|
|
3964 |
|
|
noutputs = gimple_asm_noutputs (t);
|
3965 |
|
|
oconstraints = XALLOCAVEC (const char *, noutputs);
|
3966 |
|
|
|
3967 |
|
|
for (i = 0; i < noutputs; ++i)
|
3968 |
|
|
{
|
3969 |
|
|
tree link = gimple_asm_output_op (t, i);
|
3970 |
|
|
tree op = TREE_VALUE (link);
|
3971 |
|
|
|
3972 |
|
|
constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (link)));
|
3973 |
|
|
oconstraints[i] = constraint;
|
3974 |
|
|
parse_output_constraint (&constraint, i, 0, 0, &allows_mem,
|
3975 |
|
|
&allows_reg, &is_inout);
|
3976 |
|
|
|
3977 |
|
|
/* A memory constraint makes the address of the operand escape. */
|
3978 |
|
|
if (!allows_reg && allows_mem)
|
3979 |
|
|
make_escape_constraint (build_fold_addr_expr (op));
|
3980 |
|
|
|
3981 |
|
|
/* The asm may read global memory, so outputs may point to
|
3982 |
|
|
any global memory. */
|
3983 |
|
|
if (op && could_have_pointers (op))
|
3984 |
|
|
{
|
3985 |
|
|
VEC(ce_s, heap) *lhsc = NULL;
|
3986 |
|
|
struct constraint_expr rhsc, *lhsp;
|
3987 |
|
|
unsigned j;
|
3988 |
|
|
get_constraint_for (op, &lhsc);
|
3989 |
|
|
rhsc.var = nonlocal_id;
|
3990 |
|
|
rhsc.offset = 0;
|
3991 |
|
|
rhsc.type = SCALAR;
|
3992 |
|
|
for (j = 0; VEC_iterate (ce_s, lhsc, j, lhsp); j++)
|
3993 |
|
|
process_constraint (new_constraint (*lhsp, rhsc));
|
3994 |
|
|
VEC_free (ce_s, heap, lhsc);
|
3995 |
|
|
}
|
3996 |
|
|
}
|
3997 |
|
|
for (i = 0; i < gimple_asm_ninputs (t); ++i)
|
3998 |
|
|
{
|
3999 |
|
|
tree link = gimple_asm_input_op (t, i);
|
4000 |
|
|
tree op = TREE_VALUE (link);
|
4001 |
|
|
|
4002 |
|
|
constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (link)));
|
4003 |
|
|
|
4004 |
|
|
parse_input_constraint (&constraint, 0, 0, noutputs, 0, oconstraints,
|
4005 |
|
|
&allows_mem, &allows_reg);
|
4006 |
|
|
|
4007 |
|
|
/* A memory constraint makes the address of the operand escape. */
|
4008 |
|
|
if (!allows_reg && allows_mem)
|
4009 |
|
|
make_escape_constraint (build_fold_addr_expr (op));
|
4010 |
|
|
/* Strictly we'd only need the constraint to ESCAPED if
|
4011 |
|
|
the asm clobbers memory, otherwise using CALLUSED
|
4012 |
|
|
would be enough. */
|
4013 |
|
|
else if (op && could_have_pointers (op))
|
4014 |
|
|
make_escape_constraint (op);
|
4015 |
|
|
}
|
4016 |
|
|
}
|
4017 |
|
|
|
4018 |
|
|
VEC_free (ce_s, heap, rhsc);
|
4019 |
|
|
VEC_free (ce_s, heap, lhsc);
|
4020 |
|
|
}
|
4021 |
|
|
|
4022 |
|
|
|
4023 |
|
|
/* Find the first varinfo in the same variable as START that overlaps with
|
4024 |
|
|
OFFSET. Return NULL if we can't find one. */
|
4025 |
|
|
|
4026 |
|
|
static varinfo_t
|
4027 |
|
|
first_vi_for_offset (varinfo_t start, unsigned HOST_WIDE_INT offset)
|
4028 |
|
|
{
|
4029 |
|
|
/* If the offset is outside of the variable, bail out. */
|
4030 |
|
|
if (offset >= start->fullsize)
|
4031 |
|
|
return NULL;
|
4032 |
|
|
|
4033 |
|
|
/* If we cannot reach offset from start, lookup the first field
|
4034 |
|
|
and start from there. */
|
4035 |
|
|
if (start->offset > offset)
|
4036 |
|
|
start = lookup_vi_for_tree (start->decl);
|
4037 |
|
|
|
4038 |
|
|
while (start)
|
4039 |
|
|
{
|
4040 |
|
|
/* We may not find a variable in the field list with the actual
|
4041 |
|
|
offset when when we have glommed a structure to a variable.
|
4042 |
|
|
In that case, however, offset should still be within the size
|
4043 |
|
|
of the variable. */
|
4044 |
|
|
if (offset >= start->offset
|
4045 |
|
|
&& (offset - start->offset) < start->size)
|
4046 |
|
|
return start;
|
4047 |
|
|
|
4048 |
|
|
start= start->next;
|
4049 |
|
|
}
|
4050 |
|
|
|
4051 |
|
|
return NULL;
|
4052 |
|
|
}
|
4053 |
|
|
|
4054 |
|
|
/* Find the first varinfo in the same variable as START that overlaps with
|
4055 |
|
|
OFFSET. If there is no such varinfo the varinfo directly preceding
|
4056 |
|
|
OFFSET is returned. */
|
4057 |
|
|
|
4058 |
|
|
static varinfo_t
|
4059 |
|
|
first_or_preceding_vi_for_offset (varinfo_t start,
|
4060 |
|
|
unsigned HOST_WIDE_INT offset)
|
4061 |
|
|
{
|
4062 |
|
|
/* If we cannot reach offset from start, lookup the first field
|
4063 |
|
|
and start from there. */
|
4064 |
|
|
if (start->offset > offset)
|
4065 |
|
|
start = lookup_vi_for_tree (start->decl);
|
4066 |
|
|
|
4067 |
|
|
/* We may not find a variable in the field list with the actual
|
4068 |
|
|
offset when when we have glommed a structure to a variable.
|
4069 |
|
|
In that case, however, offset should still be within the size
|
4070 |
|
|
of the variable.
|
4071 |
|
|
If we got beyond the offset we look for return the field
|
4072 |
|
|
directly preceding offset which may be the last field. */
|
4073 |
|
|
while (start->next
|
4074 |
|
|
&& offset >= start->offset
|
4075 |
|
|
&& !((offset - start->offset) < start->size))
|
4076 |
|
|
start = start->next;
|
4077 |
|
|
|
4078 |
|
|
return start;
|
4079 |
|
|
}
|
4080 |
|
|
|
4081 |
|
|
|
4082 |
|
|
/* Insert the varinfo FIELD into the field list for BASE, at the front
|
4083 |
|
|
of the list. */
|
4084 |
|
|
|
4085 |
|
|
static void
|
4086 |
|
|
insert_into_field_list (varinfo_t base, varinfo_t field)
|
4087 |
|
|
{
|
4088 |
|
|
varinfo_t prev = base;
|
4089 |
|
|
varinfo_t curr = base->next;
|
4090 |
|
|
|
4091 |
|
|
field->next = curr;
|
4092 |
|
|
prev->next = field;
|
4093 |
|
|
}
|
4094 |
|
|
|
4095 |
|
|
/* Insert the varinfo FIELD into the field list for BASE, ordered by
|
4096 |
|
|
offset. */
|
4097 |
|
|
|
4098 |
|
|
static void
|
4099 |
|
|
insert_into_field_list_sorted (varinfo_t base, varinfo_t field)
|
4100 |
|
|
{
|
4101 |
|
|
varinfo_t prev = base;
|
4102 |
|
|
varinfo_t curr = base->next;
|
4103 |
|
|
|
4104 |
|
|
if (curr == NULL)
|
4105 |
|
|
{
|
4106 |
|
|
prev->next = field;
|
4107 |
|
|
field->next = NULL;
|
4108 |
|
|
}
|
4109 |
|
|
else
|
4110 |
|
|
{
|
4111 |
|
|
while (curr)
|
4112 |
|
|
{
|
4113 |
|
|
if (field->offset <= curr->offset)
|
4114 |
|
|
break;
|
4115 |
|
|
prev = curr;
|
4116 |
|
|
curr = curr->next;
|
4117 |
|
|
}
|
4118 |
|
|
field->next = prev->next;
|
4119 |
|
|
prev->next = field;
|
4120 |
|
|
}
|
4121 |
|
|
}
|
4122 |
|
|
|
4123 |
|
|
/* This structure is used during pushing fields onto the fieldstack
|
4124 |
|
|
to track the offset of the field, since bitpos_of_field gives it
|
4125 |
|
|
relative to its immediate containing type, and we want it relative
|
4126 |
|
|
to the ultimate containing object. */
|
4127 |
|
|
|
4128 |
|
|
struct fieldoff
|
4129 |
|
|
{
|
4130 |
|
|
/* Offset from the base of the base containing object to this field. */
|
4131 |
|
|
HOST_WIDE_INT offset;
|
4132 |
|
|
|
4133 |
|
|
/* Size, in bits, of the field. */
|
4134 |
|
|
unsigned HOST_WIDE_INT size;
|
4135 |
|
|
|
4136 |
|
|
unsigned has_unknown_size : 1;
|
4137 |
|
|
|
4138 |
|
|
unsigned may_have_pointers : 1;
|
4139 |
|
|
|
4140 |
|
|
unsigned only_restrict_pointers : 1;
|
4141 |
|
|
};
|
4142 |
|
|
typedef struct fieldoff fieldoff_s;
|
4143 |
|
|
|
4144 |
|
|
DEF_VEC_O(fieldoff_s);
|
4145 |
|
|
DEF_VEC_ALLOC_O(fieldoff_s,heap);
|
4146 |
|
|
|
4147 |
|
|
/* qsort comparison function for two fieldoff's PA and PB */
|
4148 |
|
|
|
4149 |
|
|
static int
|
4150 |
|
|
fieldoff_compare (const void *pa, const void *pb)
|
4151 |
|
|
{
|
4152 |
|
|
const fieldoff_s *foa = (const fieldoff_s *)pa;
|
4153 |
|
|
const fieldoff_s *fob = (const fieldoff_s *)pb;
|
4154 |
|
|
unsigned HOST_WIDE_INT foasize, fobsize;
|
4155 |
|
|
|
4156 |
|
|
if (foa->offset < fob->offset)
|
4157 |
|
|
return -1;
|
4158 |
|
|
else if (foa->offset > fob->offset)
|
4159 |
|
|
return 1;
|
4160 |
|
|
|
4161 |
|
|
foasize = foa->size;
|
4162 |
|
|
fobsize = fob->size;
|
4163 |
|
|
if (foasize < fobsize)
|
4164 |
|
|
return -1;
|
4165 |
|
|
else if (foasize > fobsize)
|
4166 |
|
|
return 1;
|
4167 |
|
|
return 0;
|
4168 |
|
|
}
|
4169 |
|
|
|
4170 |
|
|
/* Sort a fieldstack according to the field offset and sizes. */
|
4171 |
|
|
static void
|
4172 |
|
|
sort_fieldstack (VEC(fieldoff_s,heap) *fieldstack)
|
4173 |
|
|
{
|
4174 |
|
|
qsort (VEC_address (fieldoff_s, fieldstack),
|
4175 |
|
|
VEC_length (fieldoff_s, fieldstack),
|
4176 |
|
|
sizeof (fieldoff_s),
|
4177 |
|
|
fieldoff_compare);
|
4178 |
|
|
}
|
4179 |
|
|
|
4180 |
|
|
/* Return true if V is a tree that we can have subvars for.
|
4181 |
|
|
Normally, this is any aggregate type. Also complex
|
4182 |
|
|
types which are not gimple registers can have subvars. */
|
4183 |
|
|
|
4184 |
|
|
static inline bool
|
4185 |
|
|
var_can_have_subvars (const_tree v)
|
4186 |
|
|
{
|
4187 |
|
|
/* Volatile variables should never have subvars. */
|
4188 |
|
|
if (TREE_THIS_VOLATILE (v))
|
4189 |
|
|
return false;
|
4190 |
|
|
|
4191 |
|
|
/* Non decls or memory tags can never have subvars. */
|
4192 |
|
|
if (!DECL_P (v))
|
4193 |
|
|
return false;
|
4194 |
|
|
|
4195 |
|
|
/* Aggregates without overlapping fields can have subvars. */
|
4196 |
|
|
if (TREE_CODE (TREE_TYPE (v)) == RECORD_TYPE)
|
4197 |
|
|
return true;
|
4198 |
|
|
|
4199 |
|
|
return false;
|
4200 |
|
|
}
|
4201 |
|
|
|
4202 |
|
|
/* Given a TYPE, and a vector of field offsets FIELDSTACK, push all
|
4203 |
|
|
the fields of TYPE onto fieldstack, recording their offsets along
|
4204 |
|
|
the way.
|
4205 |
|
|
|
4206 |
|
|
OFFSET is used to keep track of the offset in this entire
|
4207 |
|
|
structure, rather than just the immediately containing structure.
|
4208 |
|
|
Returns the number of fields pushed. */
|
4209 |
|
|
|
4210 |
|
|
static int
|
4211 |
|
|
push_fields_onto_fieldstack (tree type, VEC(fieldoff_s,heap) **fieldstack,
|
4212 |
|
|
HOST_WIDE_INT offset, bool must_have_pointers_p)
|
4213 |
|
|
{
|
4214 |
|
|
tree field;
|
4215 |
|
|
int count = 0;
|
4216 |
|
|
|
4217 |
|
|
if (TREE_CODE (type) != RECORD_TYPE)
|
4218 |
|
|
return 0;
|
4219 |
|
|
|
4220 |
|
|
/* If the vector of fields is growing too big, bail out early.
|
4221 |
|
|
Callers check for VEC_length <= MAX_FIELDS_FOR_FIELD_SENSITIVE, make
|
4222 |
|
|
sure this fails. */
|
4223 |
|
|
if (VEC_length (fieldoff_s, *fieldstack) > MAX_FIELDS_FOR_FIELD_SENSITIVE)
|
4224 |
|
|
return 0;
|
4225 |
|
|
|
4226 |
|
|
for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
|
4227 |
|
|
if (TREE_CODE (field) == FIELD_DECL)
|
4228 |
|
|
{
|
4229 |
|
|
bool push = false;
|
4230 |
|
|
int pushed = 0;
|
4231 |
|
|
HOST_WIDE_INT foff = bitpos_of_field (field);
|
4232 |
|
|
|
4233 |
|
|
if (!var_can_have_subvars (field)
|
4234 |
|
|
|| TREE_CODE (TREE_TYPE (field)) == QUAL_UNION_TYPE
|
4235 |
|
|
|| TREE_CODE (TREE_TYPE (field)) == UNION_TYPE)
|
4236 |
|
|
push = true;
|
4237 |
|
|
else if (!(pushed = push_fields_onto_fieldstack
|
4238 |
|
|
(TREE_TYPE (field), fieldstack, offset + foff,
|
4239 |
|
|
must_have_pointers_p))
|
4240 |
|
|
&& (DECL_SIZE (field)
|
4241 |
|
|
&& !integer_zerop (DECL_SIZE (field))))
|
4242 |
|
|
/* Empty structures may have actual size, like in C++. So
|
4243 |
|
|
see if we didn't push any subfields and the size is
|
4244 |
|
|
nonzero, push the field onto the stack. */
|
4245 |
|
|
push = true;
|
4246 |
|
|
|
4247 |
|
|
if (push)
|
4248 |
|
|
{
|
4249 |
|
|
fieldoff_s *pair = NULL;
|
4250 |
|
|
bool has_unknown_size = false;
|
4251 |
|
|
|
4252 |
|
|
if (!VEC_empty (fieldoff_s, *fieldstack))
|
4253 |
|
|
pair = VEC_last (fieldoff_s, *fieldstack);
|
4254 |
|
|
|
4255 |
|
|
if (!DECL_SIZE (field)
|
4256 |
|
|
|| !host_integerp (DECL_SIZE (field), 1))
|
4257 |
|
|
has_unknown_size = true;
|
4258 |
|
|
|
4259 |
|
|
/* If adjacent fields do not contain pointers merge them. */
|
4260 |
|
|
if (pair
|
4261 |
|
|
&& !pair->may_have_pointers
|
4262 |
|
|
&& !pair->has_unknown_size
|
4263 |
|
|
&& !has_unknown_size
|
4264 |
|
|
&& pair->offset + (HOST_WIDE_INT)pair->size == offset + foff
|
4265 |
|
|
&& !must_have_pointers_p
|
4266 |
|
|
&& !could_have_pointers (field))
|
4267 |
|
|
{
|
4268 |
|
|
pair = VEC_last (fieldoff_s, *fieldstack);
|
4269 |
|
|
pair->size += TREE_INT_CST_LOW (DECL_SIZE (field));
|
4270 |
|
|
}
|
4271 |
|
|
else
|
4272 |
|
|
{
|
4273 |
|
|
pair = VEC_safe_push (fieldoff_s, heap, *fieldstack, NULL);
|
4274 |
|
|
pair->offset = offset + foff;
|
4275 |
|
|
pair->has_unknown_size = has_unknown_size;
|
4276 |
|
|
if (!has_unknown_size)
|
4277 |
|
|
pair->size = TREE_INT_CST_LOW (DECL_SIZE (field));
|
4278 |
|
|
else
|
4279 |
|
|
pair->size = -1;
|
4280 |
|
|
pair->may_have_pointers
|
4281 |
|
|
= must_have_pointers_p || could_have_pointers (field);
|
4282 |
|
|
pair->only_restrict_pointers
|
4283 |
|
|
= (!has_unknown_size
|
4284 |
|
|
&& POINTER_TYPE_P (TREE_TYPE (field))
|
4285 |
|
|
&& TYPE_RESTRICT (TREE_TYPE (field)));
|
4286 |
|
|
count++;
|
4287 |
|
|
}
|
4288 |
|
|
}
|
4289 |
|
|
else
|
4290 |
|
|
count += pushed;
|
4291 |
|
|
}
|
4292 |
|
|
|
4293 |
|
|
return count;
|
4294 |
|
|
}
|
4295 |
|
|
|
4296 |
|
|
/* Count the number of arguments DECL has, and set IS_VARARGS to true
|
4297 |
|
|
if it is a varargs function. */
|
4298 |
|
|
|
4299 |
|
|
static unsigned int
|
4300 |
|
|
count_num_arguments (tree decl, bool *is_varargs)
|
4301 |
|
|
{
|
4302 |
|
|
unsigned int num = 0;
|
4303 |
|
|
tree t;
|
4304 |
|
|
|
4305 |
|
|
/* Capture named arguments for K&R functions. They do not
|
4306 |
|
|
have a prototype and thus no TYPE_ARG_TYPES. */
|
4307 |
|
|
for (t = DECL_ARGUMENTS (decl); t; t = TREE_CHAIN (t))
|
4308 |
|
|
++num;
|
4309 |
|
|
|
4310 |
|
|
/* Check if the function has variadic arguments. */
|
4311 |
|
|
for (t = TYPE_ARG_TYPES (TREE_TYPE (decl)); t; t = TREE_CHAIN (t))
|
4312 |
|
|
if (TREE_VALUE (t) == void_type_node)
|
4313 |
|
|
break;
|
4314 |
|
|
if (!t)
|
4315 |
|
|
*is_varargs = true;
|
4316 |
|
|
|
4317 |
|
|
return num;
|
4318 |
|
|
}
|
4319 |
|
|
|
4320 |
|
|
/* Creation function node for DECL, using NAME, and return the index
|
4321 |
|
|
of the variable we've created for the function. */
|
4322 |
|
|
|
4323 |
|
|
static unsigned int
|
4324 |
|
|
create_function_info_for (tree decl, const char *name)
|
4325 |
|
|
{
|
4326 |
|
|
varinfo_t vi;
|
4327 |
|
|
tree arg;
|
4328 |
|
|
unsigned int i;
|
4329 |
|
|
bool is_varargs = false;
|
4330 |
|
|
|
4331 |
|
|
/* Create the variable info. */
|
4332 |
|
|
|
4333 |
|
|
vi = new_var_info (decl, name);
|
4334 |
|
|
vi->offset = 0;
|
4335 |
|
|
vi->size = 1;
|
4336 |
|
|
vi->fullsize = count_num_arguments (decl, &is_varargs) + 1;
|
4337 |
|
|
insert_vi_for_tree (vi->decl, vi);
|
4338 |
|
|
|
4339 |
|
|
stats.total_vars++;
|
4340 |
|
|
|
4341 |
|
|
/* If it's varargs, we don't know how many arguments it has, so we
|
4342 |
|
|
can't do much. */
|
4343 |
|
|
if (is_varargs)
|
4344 |
|
|
{
|
4345 |
|
|
vi->fullsize = ~0;
|
4346 |
|
|
vi->size = ~0;
|
4347 |
|
|
vi->is_unknown_size_var = true;
|
4348 |
|
|
return vi->id;
|
4349 |
|
|
}
|
4350 |
|
|
|
4351 |
|
|
arg = DECL_ARGUMENTS (decl);
|
4352 |
|
|
|
4353 |
|
|
/* Set up variables for each argument. */
|
4354 |
|
|
for (i = 1; i < vi->fullsize; i++)
|
4355 |
|
|
{
|
4356 |
|
|
varinfo_t argvi;
|
4357 |
|
|
const char *newname;
|
4358 |
|
|
char *tempname;
|
4359 |
|
|
tree argdecl = decl;
|
4360 |
|
|
|
4361 |
|
|
if (arg)
|
4362 |
|
|
argdecl = arg;
|
4363 |
|
|
|
4364 |
|
|
asprintf (&tempname, "%s.arg%d", name, i-1);
|
4365 |
|
|
newname = ggc_strdup (tempname);
|
4366 |
|
|
free (tempname);
|
4367 |
|
|
|
4368 |
|
|
argvi = new_var_info (argdecl, newname);
|
4369 |
|
|
argvi->offset = i;
|
4370 |
|
|
argvi->size = 1;
|
4371 |
|
|
argvi->is_full_var = true;
|
4372 |
|
|
argvi->fullsize = vi->fullsize;
|
4373 |
|
|
insert_into_field_list_sorted (vi, argvi);
|
4374 |
|
|
stats.total_vars ++;
|
4375 |
|
|
if (arg)
|
4376 |
|
|
{
|
4377 |
|
|
insert_vi_for_tree (arg, argvi);
|
4378 |
|
|
arg = TREE_CHAIN (arg);
|
4379 |
|
|
}
|
4380 |
|
|
}
|
4381 |
|
|
|
4382 |
|
|
/* Create a variable for the return var. */
|
4383 |
|
|
if (DECL_RESULT (decl) != NULL
|
4384 |
|
|
|| !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (decl))))
|
4385 |
|
|
{
|
4386 |
|
|
varinfo_t resultvi;
|
4387 |
|
|
const char *newname;
|
4388 |
|
|
char *tempname;
|
4389 |
|
|
tree resultdecl = decl;
|
4390 |
|
|
|
4391 |
|
|
vi->fullsize ++;
|
4392 |
|
|
|
4393 |
|
|
if (DECL_RESULT (decl))
|
4394 |
|
|
resultdecl = DECL_RESULT (decl);
|
4395 |
|
|
|
4396 |
|
|
asprintf (&tempname, "%s.result", name);
|
4397 |
|
|
newname = ggc_strdup (tempname);
|
4398 |
|
|
free (tempname);
|
4399 |
|
|
|
4400 |
|
|
resultvi = new_var_info (resultdecl, newname);
|
4401 |
|
|
resultvi->offset = i;
|
4402 |
|
|
resultvi->size = 1;
|
4403 |
|
|
resultvi->fullsize = vi->fullsize;
|
4404 |
|
|
resultvi->is_full_var = true;
|
4405 |
|
|
insert_into_field_list_sorted (vi, resultvi);
|
4406 |
|
|
stats.total_vars ++;
|
4407 |
|
|
if (DECL_RESULT (decl))
|
4408 |
|
|
insert_vi_for_tree (DECL_RESULT (decl), resultvi);
|
4409 |
|
|
}
|
4410 |
|
|
|
4411 |
|
|
return vi->id;
|
4412 |
|
|
}
|
4413 |
|
|
|
4414 |
|
|
|
4415 |
|
|
/* Return true if FIELDSTACK contains fields that overlap.
|
4416 |
|
|
FIELDSTACK is assumed to be sorted by offset. */
|
4417 |
|
|
|
4418 |
|
|
static bool
|
4419 |
|
|
check_for_overlaps (VEC (fieldoff_s,heap) *fieldstack)
|
4420 |
|
|
{
|
4421 |
|
|
fieldoff_s *fo = NULL;
|
4422 |
|
|
unsigned int i;
|
4423 |
|
|
HOST_WIDE_INT lastoffset = -1;
|
4424 |
|
|
|
4425 |
|
|
for (i = 0; VEC_iterate (fieldoff_s, fieldstack, i, fo); i++)
|
4426 |
|
|
{
|
4427 |
|
|
if (fo->offset == lastoffset)
|
4428 |
|
|
return true;
|
4429 |
|
|
lastoffset = fo->offset;
|
4430 |
|
|
}
|
4431 |
|
|
return false;
|
4432 |
|
|
}
|
4433 |
|
|
|
4434 |
|
|
/* Create a varinfo structure for NAME and DECL, and add it to VARMAP.
|
4435 |
|
|
This will also create any varinfo structures necessary for fields
|
4436 |
|
|
of DECL. */
|
4437 |
|
|
|
4438 |
|
|
static unsigned int
|
4439 |
|
|
create_variable_info_for (tree decl, const char *name)
|
4440 |
|
|
{
|
4441 |
|
|
varinfo_t vi;
|
4442 |
|
|
tree decl_type = TREE_TYPE (decl);
|
4443 |
|
|
tree declsize = DECL_P (decl) ? DECL_SIZE (decl) : TYPE_SIZE (decl_type);
|
4444 |
|
|
VEC (fieldoff_s,heap) *fieldstack = NULL;
|
4445 |
|
|
|
4446 |
|
|
if (var_can_have_subvars (decl) && use_field_sensitive)
|
4447 |
|
|
push_fields_onto_fieldstack (decl_type, &fieldstack, 0,
|
4448 |
|
|
TREE_PUBLIC (decl)
|
4449 |
|
|
|| DECL_EXTERNAL (decl)
|
4450 |
|
|
|| TREE_ADDRESSABLE (decl));
|
4451 |
|
|
|
4452 |
|
|
/* If the variable doesn't have subvars, we may end up needing to
|
4453 |
|
|
sort the field list and create fake variables for all the
|
4454 |
|
|
fields. */
|
4455 |
|
|
vi = new_var_info (decl, name);
|
4456 |
|
|
vi->offset = 0;
|
4457 |
|
|
vi->may_have_pointers = could_have_pointers (decl);
|
4458 |
|
|
if (!declsize
|
4459 |
|
|
|| !host_integerp (declsize, 1))
|
4460 |
|
|
{
|
4461 |
|
|
vi->is_unknown_size_var = true;
|
4462 |
|
|
vi->fullsize = ~0;
|
4463 |
|
|
vi->size = ~0;
|
4464 |
|
|
}
|
4465 |
|
|
else
|
4466 |
|
|
{
|
4467 |
|
|
vi->fullsize = TREE_INT_CST_LOW (declsize);
|
4468 |
|
|
vi->size = vi->fullsize;
|
4469 |
|
|
}
|
4470 |
|
|
|
4471 |
|
|
insert_vi_for_tree (vi->decl, vi);
|
4472 |
|
|
if (vi->is_global_var
|
4473 |
|
|
&& (!flag_whole_program || !in_ipa_mode)
|
4474 |
|
|
&& vi->may_have_pointers)
|
4475 |
|
|
{
|
4476 |
|
|
if (POINTER_TYPE_P (TREE_TYPE (decl))
|
4477 |
|
|
&& TYPE_RESTRICT (TREE_TYPE (decl)))
|
4478 |
|
|
make_constraint_from_restrict (vi, "GLOBAL_RESTRICT");
|
4479 |
|
|
make_copy_constraint (vi, nonlocal_id);
|
4480 |
|
|
}
|
4481 |
|
|
|
4482 |
|
|
stats.total_vars++;
|
4483 |
|
|
if (use_field_sensitive
|
4484 |
|
|
&& !vi->is_unknown_size_var
|
4485 |
|
|
&& var_can_have_subvars (decl)
|
4486 |
|
|
&& VEC_length (fieldoff_s, fieldstack) > 1
|
4487 |
|
|
&& VEC_length (fieldoff_s, fieldstack) <= MAX_FIELDS_FOR_FIELD_SENSITIVE)
|
4488 |
|
|
{
|
4489 |
|
|
fieldoff_s *fo = NULL;
|
4490 |
|
|
bool notokay = false;
|
4491 |
|
|
unsigned int i;
|
4492 |
|
|
|
4493 |
|
|
for (i = 0; !notokay && VEC_iterate (fieldoff_s, fieldstack, i, fo); i++)
|
4494 |
|
|
{
|
4495 |
|
|
if (fo->has_unknown_size
|
4496 |
|
|
|| fo->offset < 0)
|
4497 |
|
|
{
|
4498 |
|
|
notokay = true;
|
4499 |
|
|
break;
|
4500 |
|
|
}
|
4501 |
|
|
}
|
4502 |
|
|
|
4503 |
|
|
/* We can't sort them if we have a field with a variable sized type,
|
4504 |
|
|
which will make notokay = true. In that case, we are going to return
|
4505 |
|
|
without creating varinfos for the fields anyway, so sorting them is a
|
4506 |
|
|
waste to boot. */
|
4507 |
|
|
if (!notokay)
|
4508 |
|
|
{
|
4509 |
|
|
sort_fieldstack (fieldstack);
|
4510 |
|
|
/* Due to some C++ FE issues, like PR 22488, we might end up
|
4511 |
|
|
what appear to be overlapping fields even though they,
|
4512 |
|
|
in reality, do not overlap. Until the C++ FE is fixed,
|
4513 |
|
|
we will simply disable field-sensitivity for these cases. */
|
4514 |
|
|
notokay = check_for_overlaps (fieldstack);
|
4515 |
|
|
}
|
4516 |
|
|
|
4517 |
|
|
|
4518 |
|
|
if (VEC_length (fieldoff_s, fieldstack) != 0)
|
4519 |
|
|
fo = VEC_index (fieldoff_s, fieldstack, 0);
|
4520 |
|
|
|
4521 |
|
|
if (fo == NULL || notokay)
|
4522 |
|
|
{
|
4523 |
|
|
vi->is_unknown_size_var = 1;
|
4524 |
|
|
vi->fullsize = ~0;
|
4525 |
|
|
vi->size = ~0;
|
4526 |
|
|
vi->is_full_var = true;
|
4527 |
|
|
VEC_free (fieldoff_s, heap, fieldstack);
|
4528 |
|
|
return vi->id;
|
4529 |
|
|
}
|
4530 |
|
|
|
4531 |
|
|
vi->size = fo->size;
|
4532 |
|
|
vi->offset = fo->offset;
|
4533 |
|
|
vi->may_have_pointers = fo->may_have_pointers;
|
4534 |
|
|
if (vi->is_global_var
|
4535 |
|
|
&& (!flag_whole_program || !in_ipa_mode)
|
4536 |
|
|
&& vi->may_have_pointers)
|
4537 |
|
|
{
|
4538 |
|
|
if (fo->only_restrict_pointers)
|
4539 |
|
|
make_constraint_from_restrict (vi, "GLOBAL_RESTRICT");
|
4540 |
|
|
}
|
4541 |
|
|
for (i = VEC_length (fieldoff_s, fieldstack) - 1;
|
4542 |
|
|
i >= 1 && VEC_iterate (fieldoff_s, fieldstack, i, fo);
|
4543 |
|
|
i--)
|
4544 |
|
|
{
|
4545 |
|
|
varinfo_t newvi;
|
4546 |
|
|
const char *newname = "NULL";
|
4547 |
|
|
char *tempname;
|
4548 |
|
|
|
4549 |
|
|
if (dump_file)
|
4550 |
|
|
{
|
4551 |
|
|
asprintf (&tempname, "%s." HOST_WIDE_INT_PRINT_DEC
|
4552 |
|
|
"+" HOST_WIDE_INT_PRINT_DEC,
|
4553 |
|
|
vi->name, fo->offset, fo->size);
|
4554 |
|
|
newname = ggc_strdup (tempname);
|
4555 |
|
|
free (tempname);
|
4556 |
|
|
}
|
4557 |
|
|
newvi = new_var_info (decl, newname);
|
4558 |
|
|
newvi->offset = fo->offset;
|
4559 |
|
|
newvi->size = fo->size;
|
4560 |
|
|
newvi->fullsize = vi->fullsize;
|
4561 |
|
|
newvi->may_have_pointers = fo->may_have_pointers;
|
4562 |
|
|
insert_into_field_list (vi, newvi);
|
4563 |
|
|
if ((newvi->is_global_var || TREE_CODE (decl) == PARM_DECL)
|
4564 |
|
|
&& newvi->may_have_pointers)
|
4565 |
|
|
{
|
4566 |
|
|
if (fo->only_restrict_pointers)
|
4567 |
|
|
make_constraint_from_restrict (newvi, "GLOBAL_RESTRICT");
|
4568 |
|
|
if (newvi->is_global_var && !in_ipa_mode)
|
4569 |
|
|
make_copy_constraint (newvi, nonlocal_id);
|
4570 |
|
|
}
|
4571 |
|
|
|
4572 |
|
|
stats.total_vars++;
|
4573 |
|
|
}
|
4574 |
|
|
}
|
4575 |
|
|
else
|
4576 |
|
|
vi->is_full_var = true;
|
4577 |
|
|
|
4578 |
|
|
VEC_free (fieldoff_s, heap, fieldstack);
|
4579 |
|
|
|
4580 |
|
|
return vi->id;
|
4581 |
|
|
}
|
4582 |
|
|
|
4583 |
|
|
/* Print out the points-to solution for VAR to FILE. */
|
4584 |
|
|
|
4585 |
|
|
static void
|
4586 |
|
|
dump_solution_for_var (FILE *file, unsigned int var)
|
4587 |
|
|
{
|
4588 |
|
|
varinfo_t vi = get_varinfo (var);
|
4589 |
|
|
unsigned int i;
|
4590 |
|
|
bitmap_iterator bi;
|
4591 |
|
|
|
4592 |
|
|
if (find (var) != var)
|
4593 |
|
|
{
|
4594 |
|
|
varinfo_t vipt = get_varinfo (find (var));
|
4595 |
|
|
fprintf (file, "%s = same as %s\n", vi->name, vipt->name);
|
4596 |
|
|
}
|
4597 |
|
|
else
|
4598 |
|
|
{
|
4599 |
|
|
fprintf (file, "%s = { ", vi->name);
|
4600 |
|
|
EXECUTE_IF_SET_IN_BITMAP (vi->solution, 0, i, bi)
|
4601 |
|
|
{
|
4602 |
|
|
fprintf (file, "%s ", get_varinfo (i)->name);
|
4603 |
|
|
}
|
4604 |
|
|
fprintf (file, "}\n");
|
4605 |
|
|
}
|
4606 |
|
|
}
|
4607 |
|
|
|
4608 |
|
|
/* Print the points-to solution for VAR to stdout. */
|
4609 |
|
|
|
4610 |
|
|
void
|
4611 |
|
|
debug_solution_for_var (unsigned int var)
|
4612 |
|
|
{
|
4613 |
|
|
dump_solution_for_var (stdout, var);
|
4614 |
|
|
}
|
4615 |
|
|
|
4616 |
|
|
/* Create varinfo structures for all of the variables in the
|
4617 |
|
|
function for intraprocedural mode. */
|
4618 |
|
|
|
4619 |
|
|
static void
|
4620 |
|
|
intra_create_variable_infos (void)
|
4621 |
|
|
{
|
4622 |
|
|
tree t;
|
4623 |
|
|
|
4624 |
|
|
/* For each incoming pointer argument arg, create the constraint ARG
|
4625 |
|
|
= NONLOCAL or a dummy variable if flag_argument_noalias is set. */
|
4626 |
|
|
for (t = DECL_ARGUMENTS (current_function_decl); t; t = TREE_CHAIN (t))
|
4627 |
|
|
{
|
4628 |
|
|
varinfo_t p;
|
4629 |
|
|
|
4630 |
|
|
if (!could_have_pointers (t))
|
4631 |
|
|
continue;
|
4632 |
|
|
|
4633 |
|
|
/* For restrict qualified pointers to objects passed by
|
4634 |
|
|
reference build a real representative for the pointed-to object. */
|
4635 |
|
|
if (DECL_BY_REFERENCE (t)
|
4636 |
|
|
&& POINTER_TYPE_P (TREE_TYPE (t))
|
4637 |
|
|
&& TYPE_RESTRICT (TREE_TYPE (t)))
|
4638 |
|
|
{
|
4639 |
|
|
struct constraint_expr lhsc, rhsc;
|
4640 |
|
|
varinfo_t vi;
|
4641 |
|
|
tree heapvar = heapvar_lookup (t, 0);
|
4642 |
|
|
if (heapvar == NULL_TREE)
|
4643 |
|
|
{
|
4644 |
|
|
var_ann_t ann;
|
4645 |
|
|
heapvar = create_tmp_var_raw (TREE_TYPE (TREE_TYPE (t)),
|
4646 |
|
|
"PARM_NOALIAS");
|
4647 |
|
|
DECL_EXTERNAL (heapvar) = 1;
|
4648 |
|
|
heapvar_insert (t, 0, heapvar);
|
4649 |
|
|
ann = get_var_ann (heapvar);
|
4650 |
|
|
ann->is_heapvar = 1;
|
4651 |
|
|
}
|
4652 |
|
|
if (gimple_referenced_vars (cfun))
|
4653 |
|
|
add_referenced_var (heapvar);
|
4654 |
|
|
lhsc.var = get_vi_for_tree (t)->id;
|
4655 |
|
|
lhsc.type = SCALAR;
|
4656 |
|
|
lhsc.offset = 0;
|
4657 |
|
|
rhsc.var = (vi = get_vi_for_tree (heapvar))->id;
|
4658 |
|
|
rhsc.type = ADDRESSOF;
|
4659 |
|
|
rhsc.offset = 0;
|
4660 |
|
|
process_constraint (new_constraint (lhsc, rhsc));
|
4661 |
|
|
vi->is_restrict_var = 1;
|
4662 |
|
|
continue;
|
4663 |
|
|
}
|
4664 |
|
|
|
4665 |
|
|
for (p = get_vi_for_tree (t); p; p = p->next)
|
4666 |
|
|
if (p->may_have_pointers)
|
4667 |
|
|
make_constraint_from (p, nonlocal_id);
|
4668 |
|
|
if (POINTER_TYPE_P (TREE_TYPE (t))
|
4669 |
|
|
&& TYPE_RESTRICT (TREE_TYPE (t)))
|
4670 |
|
|
make_constraint_from_restrict (get_vi_for_tree (t), "PARM_RESTRICT");
|
4671 |
|
|
}
|
4672 |
|
|
|
4673 |
|
|
/* Add a constraint for a result decl that is passed by reference. */
|
4674 |
|
|
if (DECL_RESULT (cfun->decl)
|
4675 |
|
|
&& DECL_BY_REFERENCE (DECL_RESULT (cfun->decl)))
|
4676 |
|
|
{
|
4677 |
|
|
varinfo_t p, result_vi = get_vi_for_tree (DECL_RESULT (cfun->decl));
|
4678 |
|
|
|
4679 |
|
|
for (p = result_vi; p; p = p->next)
|
4680 |
|
|
make_constraint_from (p, nonlocal_id);
|
4681 |
|
|
}
|
4682 |
|
|
|
4683 |
|
|
/* Add a constraint for the incoming static chain parameter. */
|
4684 |
|
|
if (cfun->static_chain_decl != NULL_TREE)
|
4685 |
|
|
{
|
4686 |
|
|
varinfo_t p, chain_vi = get_vi_for_tree (cfun->static_chain_decl);
|
4687 |
|
|
|
4688 |
|
|
for (p = chain_vi; p; p = p->next)
|
4689 |
|
|
make_constraint_from (p, nonlocal_id);
|
4690 |
|
|
}
|
4691 |
|
|
}
|
4692 |
|
|
|
4693 |
|
|
/* Structure used to put solution bitmaps in a hashtable so they can
|
4694 |
|
|
be shared among variables with the same points-to set. */
|
4695 |
|
|
|
4696 |
|
|
typedef struct shared_bitmap_info
|
4697 |
|
|
{
|
4698 |
|
|
bitmap pt_vars;
|
4699 |
|
|
hashval_t hashcode;
|
4700 |
|
|
} *shared_bitmap_info_t;
|
4701 |
|
|
typedef const struct shared_bitmap_info *const_shared_bitmap_info_t;
|
4702 |
|
|
|
4703 |
|
|
static htab_t shared_bitmap_table;
|
4704 |
|
|
|
4705 |
|
|
/* Hash function for a shared_bitmap_info_t */
|
4706 |
|
|
|
4707 |
|
|
static hashval_t
|
4708 |
|
|
shared_bitmap_hash (const void *p)
|
4709 |
|
|
{
|
4710 |
|
|
const_shared_bitmap_info_t const bi = (const_shared_bitmap_info_t) p;
|
4711 |
|
|
return bi->hashcode;
|
4712 |
|
|
}
|
4713 |
|
|
|
4714 |
|
|
/* Equality function for two shared_bitmap_info_t's. */
|
4715 |
|
|
|
4716 |
|
|
static int
|
4717 |
|
|
shared_bitmap_eq (const void *p1, const void *p2)
|
4718 |
|
|
{
|
4719 |
|
|
const_shared_bitmap_info_t const sbi1 = (const_shared_bitmap_info_t) p1;
|
4720 |
|
|
const_shared_bitmap_info_t const sbi2 = (const_shared_bitmap_info_t) p2;
|
4721 |
|
|
return bitmap_equal_p (sbi1->pt_vars, sbi2->pt_vars);
|
4722 |
|
|
}
|
4723 |
|
|
|
4724 |
|
|
/* Lookup a bitmap in the shared bitmap hashtable, and return an already
|
4725 |
|
|
existing instance if there is one, NULL otherwise. */
|
4726 |
|
|
|
4727 |
|
|
static bitmap
|
4728 |
|
|
shared_bitmap_lookup (bitmap pt_vars)
|
4729 |
|
|
{
|
4730 |
|
|
void **slot;
|
4731 |
|
|
struct shared_bitmap_info sbi;
|
4732 |
|
|
|
4733 |
|
|
sbi.pt_vars = pt_vars;
|
4734 |
|
|
sbi.hashcode = bitmap_hash (pt_vars);
|
4735 |
|
|
|
4736 |
|
|
slot = htab_find_slot_with_hash (shared_bitmap_table, &sbi,
|
4737 |
|
|
sbi.hashcode, NO_INSERT);
|
4738 |
|
|
if (!slot)
|
4739 |
|
|
return NULL;
|
4740 |
|
|
else
|
4741 |
|
|
return ((shared_bitmap_info_t) *slot)->pt_vars;
|
4742 |
|
|
}
|
4743 |
|
|
|
4744 |
|
|
|
4745 |
|
|
/* Add a bitmap to the shared bitmap hashtable. */
|
4746 |
|
|
|
4747 |
|
|
static void
|
4748 |
|
|
shared_bitmap_add (bitmap pt_vars)
|
4749 |
|
|
{
|
4750 |
|
|
void **slot;
|
4751 |
|
|
shared_bitmap_info_t sbi = XNEW (struct shared_bitmap_info);
|
4752 |
|
|
|
4753 |
|
|
sbi->pt_vars = pt_vars;
|
4754 |
|
|
sbi->hashcode = bitmap_hash (pt_vars);
|
4755 |
|
|
|
4756 |
|
|
slot = htab_find_slot_with_hash (shared_bitmap_table, sbi,
|
4757 |
|
|
sbi->hashcode, INSERT);
|
4758 |
|
|
gcc_assert (!*slot);
|
4759 |
|
|
*slot = (void *) sbi;
|
4760 |
|
|
}
|
4761 |
|
|
|
4762 |
|
|
|
4763 |
|
|
/* Set bits in INTO corresponding to the variable uids in solution set FROM. */
|
4764 |
|
|
|
4765 |
|
|
static void
|
4766 |
|
|
set_uids_in_ptset (bitmap into, bitmap from, struct pt_solution *pt)
|
4767 |
|
|
{
|
4768 |
|
|
unsigned int i;
|
4769 |
|
|
bitmap_iterator bi;
|
4770 |
|
|
|
4771 |
|
|
EXECUTE_IF_SET_IN_BITMAP (from, 0, i, bi)
|
4772 |
|
|
{
|
4773 |
|
|
varinfo_t vi = get_varinfo (i);
|
4774 |
|
|
|
4775 |
|
|
/* The only artificial variables that are allowed in a may-alias
|
4776 |
|
|
set are heap variables. */
|
4777 |
|
|
if (vi->is_artificial_var && !vi->is_heap_var)
|
4778 |
|
|
continue;
|
4779 |
|
|
|
4780 |
|
|
if (TREE_CODE (vi->decl) == VAR_DECL
|
4781 |
|
|
|| TREE_CODE (vi->decl) == PARM_DECL
|
4782 |
|
|
|| TREE_CODE (vi->decl) == RESULT_DECL)
|
4783 |
|
|
{
|
4784 |
|
|
/* Add the decl to the points-to set. Note that the points-to
|
4785 |
|
|
set contains global variables. */
|
4786 |
|
|
bitmap_set_bit (into, DECL_UID (vi->decl));
|
4787 |
|
|
if (vi->is_global_var)
|
4788 |
|
|
pt->vars_contains_global = true;
|
4789 |
|
|
}
|
4790 |
|
|
}
|
4791 |
|
|
}
|
4792 |
|
|
|
4793 |
|
|
|
4794 |
|
|
/* Compute the points-to solution *PT for the variable VI. */
|
4795 |
|
|
|
4796 |
|
|
static void
|
4797 |
|
|
find_what_var_points_to (varinfo_t orig_vi, struct pt_solution *pt)
|
4798 |
|
|
{
|
4799 |
|
|
unsigned int i;
|
4800 |
|
|
bitmap_iterator bi;
|
4801 |
|
|
bitmap finished_solution;
|
4802 |
|
|
bitmap result;
|
4803 |
|
|
varinfo_t vi;
|
4804 |
|
|
|
4805 |
|
|
memset (pt, 0, sizeof (struct pt_solution));
|
4806 |
|
|
|
4807 |
|
|
/* This variable may have been collapsed, let's get the real
|
4808 |
|
|
variable. */
|
4809 |
|
|
vi = get_varinfo (find (orig_vi->id));
|
4810 |
|
|
|
4811 |
|
|
/* Translate artificial variables into SSA_NAME_PTR_INFO
|
4812 |
|
|
attributes. */
|
4813 |
|
|
EXECUTE_IF_SET_IN_BITMAP (vi->solution, 0, i, bi)
|
4814 |
|
|
{
|
4815 |
|
|
varinfo_t vi = get_varinfo (i);
|
4816 |
|
|
|
4817 |
|
|
if (vi->is_artificial_var)
|
4818 |
|
|
{
|
4819 |
|
|
if (vi->id == nothing_id)
|
4820 |
|
|
pt->null = 1;
|
4821 |
|
|
else if (vi->id == escaped_id)
|
4822 |
|
|
pt->escaped = 1;
|
4823 |
|
|
else if (vi->id == callused_id)
|
4824 |
|
|
gcc_unreachable ();
|
4825 |
|
|
else if (vi->id == nonlocal_id)
|
4826 |
|
|
pt->nonlocal = 1;
|
4827 |
|
|
else if (vi->is_heap_var)
|
4828 |
|
|
/* We represent heapvars in the points-to set properly. */
|
4829 |
|
|
;
|
4830 |
|
|
else if (vi->id == readonly_id)
|
4831 |
|
|
/* Nobody cares. */
|
4832 |
|
|
;
|
4833 |
|
|
else if (vi->id == anything_id
|
4834 |
|
|
|| vi->id == integer_id)
|
4835 |
|
|
pt->anything = 1;
|
4836 |
|
|
}
|
4837 |
|
|
if (vi->is_restrict_var)
|
4838 |
|
|
pt->vars_contains_restrict = true;
|
4839 |
|
|
}
|
4840 |
|
|
|
4841 |
|
|
/* Instead of doing extra work, simply do not create
|
4842 |
|
|
elaborate points-to information for pt_anything pointers. */
|
4843 |
|
|
if (pt->anything
|
4844 |
|
|
&& (orig_vi->is_artificial_var
|
4845 |
|
|
|| !pt->vars_contains_restrict))
|
4846 |
|
|
return;
|
4847 |
|
|
|
4848 |
|
|
/* Share the final set of variables when possible. */
|
4849 |
|
|
finished_solution = BITMAP_GGC_ALLOC ();
|
4850 |
|
|
stats.points_to_sets_created++;
|
4851 |
|
|
|
4852 |
|
|
set_uids_in_ptset (finished_solution, vi->solution, pt);
|
4853 |
|
|
result = shared_bitmap_lookup (finished_solution);
|
4854 |
|
|
if (!result)
|
4855 |
|
|
{
|
4856 |
|
|
shared_bitmap_add (finished_solution);
|
4857 |
|
|
pt->vars = finished_solution;
|
4858 |
|
|
}
|
4859 |
|
|
else
|
4860 |
|
|
{
|
4861 |
|
|
pt->vars = result;
|
4862 |
|
|
bitmap_clear (finished_solution);
|
4863 |
|
|
}
|
4864 |
|
|
}
|
4865 |
|
|
|
4866 |
|
|
/* Given a pointer variable P, fill in its points-to set. */
|
4867 |
|
|
|
4868 |
|
|
static void
|
4869 |
|
|
find_what_p_points_to (tree p)
|
4870 |
|
|
{
|
4871 |
|
|
struct ptr_info_def *pi;
|
4872 |
|
|
tree lookup_p = p;
|
4873 |
|
|
varinfo_t vi;
|
4874 |
|
|
|
4875 |
|
|
/* For parameters, get at the points-to set for the actual parm
|
4876 |
|
|
decl. */
|
4877 |
|
|
if (TREE_CODE (p) == SSA_NAME
|
4878 |
|
|
&& TREE_CODE (SSA_NAME_VAR (p)) == PARM_DECL
|
4879 |
|
|
&& SSA_NAME_IS_DEFAULT_DEF (p))
|
4880 |
|
|
lookup_p = SSA_NAME_VAR (p);
|
4881 |
|
|
|
4882 |
|
|
vi = lookup_vi_for_tree (lookup_p);
|
4883 |
|
|
if (!vi)
|
4884 |
|
|
return;
|
4885 |
|
|
|
4886 |
|
|
pi = get_ptr_info (p);
|
4887 |
|
|
find_what_var_points_to (vi, &pi->pt);
|
4888 |
|
|
}
|
4889 |
|
|
|
4890 |
|
|
|
4891 |
|
|
/* Query statistics for points-to solutions. */
|
4892 |
|
|
|
4893 |
|
|
static struct {
|
4894 |
|
|
unsigned HOST_WIDE_INT pt_solution_includes_may_alias;
|
4895 |
|
|
unsigned HOST_WIDE_INT pt_solution_includes_no_alias;
|
4896 |
|
|
unsigned HOST_WIDE_INT pt_solutions_intersect_may_alias;
|
4897 |
|
|
unsigned HOST_WIDE_INT pt_solutions_intersect_no_alias;
|
4898 |
|
|
} pta_stats;
|
4899 |
|
|
|
4900 |
|
|
void
|
4901 |
|
|
dump_pta_stats (FILE *s)
|
4902 |
|
|
{
|
4903 |
|
|
fprintf (s, "\nPTA query stats:\n");
|
4904 |
|
|
fprintf (s, " pt_solution_includes: "
|
4905 |
|
|
HOST_WIDE_INT_PRINT_DEC" disambiguations, "
|
4906 |
|
|
HOST_WIDE_INT_PRINT_DEC" queries\n",
|
4907 |
|
|
pta_stats.pt_solution_includes_no_alias,
|
4908 |
|
|
pta_stats.pt_solution_includes_no_alias
|
4909 |
|
|
+ pta_stats.pt_solution_includes_may_alias);
|
4910 |
|
|
fprintf (s, " pt_solutions_intersect: "
|
4911 |
|
|
HOST_WIDE_INT_PRINT_DEC" disambiguations, "
|
4912 |
|
|
HOST_WIDE_INT_PRINT_DEC" queries\n",
|
4913 |
|
|
pta_stats.pt_solutions_intersect_no_alias,
|
4914 |
|
|
pta_stats.pt_solutions_intersect_no_alias
|
4915 |
|
|
+ pta_stats.pt_solutions_intersect_may_alias);
|
4916 |
|
|
}
|
4917 |
|
|
|
4918 |
|
|
|
4919 |
|
|
/* Reset the points-to solution *PT to a conservative default
|
4920 |
|
|
(point to anything). */
|
4921 |
|
|
|
4922 |
|
|
void
|
4923 |
|
|
pt_solution_reset (struct pt_solution *pt)
|
4924 |
|
|
{
|
4925 |
|
|
memset (pt, 0, sizeof (struct pt_solution));
|
4926 |
|
|
pt->anything = true;
|
4927 |
|
|
}
|
4928 |
|
|
|
4929 |
|
|
/* Set the points-to solution *PT to point only to the variables
|
4930 |
|
|
in VARS. */
|
4931 |
|
|
|
4932 |
|
|
void
|
4933 |
|
|
pt_solution_set (struct pt_solution *pt, bitmap vars)
|
4934 |
|
|
{
|
4935 |
|
|
bitmap_iterator bi;
|
4936 |
|
|
unsigned i;
|
4937 |
|
|
|
4938 |
|
|
memset (pt, 0, sizeof (struct pt_solution));
|
4939 |
|
|
pt->vars = vars;
|
4940 |
|
|
EXECUTE_IF_SET_IN_BITMAP (vars, 0, i, bi)
|
4941 |
|
|
{
|
4942 |
|
|
tree var = referenced_var_lookup (i);
|
4943 |
|
|
if (is_global_var (var))
|
4944 |
|
|
{
|
4945 |
|
|
pt->vars_contains_global = true;
|
4946 |
|
|
break;
|
4947 |
|
|
}
|
4948 |
|
|
}
|
4949 |
|
|
}
|
4950 |
|
|
|
4951 |
|
|
/* Return true if the points-to solution *PT is empty. */
|
4952 |
|
|
|
4953 |
|
|
static bool
|
4954 |
|
|
pt_solution_empty_p (struct pt_solution *pt)
|
4955 |
|
|
{
|
4956 |
|
|
if (pt->anything
|
4957 |
|
|
|| pt->nonlocal)
|
4958 |
|
|
return false;
|
4959 |
|
|
|
4960 |
|
|
if (pt->vars
|
4961 |
|
|
&& !bitmap_empty_p (pt->vars))
|
4962 |
|
|
return false;
|
4963 |
|
|
|
4964 |
|
|
/* If the solution includes ESCAPED, check if that is empty. */
|
4965 |
|
|
if (pt->escaped
|
4966 |
|
|
&& !pt_solution_empty_p (&cfun->gimple_df->escaped))
|
4967 |
|
|
return false;
|
4968 |
|
|
|
4969 |
|
|
return true;
|
4970 |
|
|
}
|
4971 |
|
|
|
4972 |
|
|
/* Return true if the points-to solution *PT includes global memory. */
|
4973 |
|
|
|
4974 |
|
|
bool
|
4975 |
|
|
pt_solution_includes_global (struct pt_solution *pt)
|
4976 |
|
|
{
|
4977 |
|
|
if (pt->anything
|
4978 |
|
|
|| pt->nonlocal
|
4979 |
|
|
|| pt->vars_contains_global)
|
4980 |
|
|
return true;
|
4981 |
|
|
|
4982 |
|
|
if (pt->escaped)
|
4983 |
|
|
return pt_solution_includes_global (&cfun->gimple_df->escaped);
|
4984 |
|
|
|
4985 |
|
|
return false;
|
4986 |
|
|
}
|
4987 |
|
|
|
4988 |
|
|
/* Return true if the points-to solution *PT includes the variable
|
4989 |
|
|
declaration DECL. */
|
4990 |
|
|
|
4991 |
|
|
static bool
|
4992 |
|
|
pt_solution_includes_1 (struct pt_solution *pt, const_tree decl)
|
4993 |
|
|
{
|
4994 |
|
|
if (pt->anything)
|
4995 |
|
|
return true;
|
4996 |
|
|
|
4997 |
|
|
if (pt->nonlocal
|
4998 |
|
|
&& is_global_var (decl))
|
4999 |
|
|
return true;
|
5000 |
|
|
|
5001 |
|
|
if (pt->vars
|
5002 |
|
|
&& bitmap_bit_p (pt->vars, DECL_UID (decl)))
|
5003 |
|
|
return true;
|
5004 |
|
|
|
5005 |
|
|
/* If the solution includes ESCAPED, check it. */
|
5006 |
|
|
if (pt->escaped
|
5007 |
|
|
&& pt_solution_includes_1 (&cfun->gimple_df->escaped, decl))
|
5008 |
|
|
return true;
|
5009 |
|
|
|
5010 |
|
|
return false;
|
5011 |
|
|
}
|
5012 |
|
|
|
5013 |
|
|
bool
|
5014 |
|
|
pt_solution_includes (struct pt_solution *pt, const_tree decl)
|
5015 |
|
|
{
|
5016 |
|
|
bool res = pt_solution_includes_1 (pt, decl);
|
5017 |
|
|
if (res)
|
5018 |
|
|
++pta_stats.pt_solution_includes_may_alias;
|
5019 |
|
|
else
|
5020 |
|
|
++pta_stats.pt_solution_includes_no_alias;
|
5021 |
|
|
return res;
|
5022 |
|
|
}
|
5023 |
|
|
|
5024 |
|
|
/* Return true if both points-to solutions PT1 and PT2 have a non-empty
|
5025 |
|
|
intersection. */
|
5026 |
|
|
|
5027 |
|
|
static bool
|
5028 |
|
|
pt_solutions_intersect_1 (struct pt_solution *pt1, struct pt_solution *pt2)
|
5029 |
|
|
{
|
5030 |
|
|
if (pt1->anything || pt2->anything)
|
5031 |
|
|
return true;
|
5032 |
|
|
|
5033 |
|
|
/* If either points to unknown global memory and the other points to
|
5034 |
|
|
any global memory they alias. */
|
5035 |
|
|
if ((pt1->nonlocal
|
5036 |
|
|
&& (pt2->nonlocal
|
5037 |
|
|
|| pt2->vars_contains_global))
|
5038 |
|
|
|| (pt2->nonlocal
|
5039 |
|
|
&& pt1->vars_contains_global))
|
5040 |
|
|
return true;
|
5041 |
|
|
|
5042 |
|
|
/* Check the escaped solution if required. */
|
5043 |
|
|
if ((pt1->escaped || pt2->escaped)
|
5044 |
|
|
&& !pt_solution_empty_p (&cfun->gimple_df->escaped))
|
5045 |
|
|
{
|
5046 |
|
|
/* If both point to escaped memory and that solution
|
5047 |
|
|
is not empty they alias. */
|
5048 |
|
|
if (pt1->escaped && pt2->escaped)
|
5049 |
|
|
return true;
|
5050 |
|
|
|
5051 |
|
|
/* If either points to escaped memory see if the escaped solution
|
5052 |
|
|
intersects with the other. */
|
5053 |
|
|
if ((pt1->escaped
|
5054 |
|
|
&& pt_solutions_intersect_1 (&cfun->gimple_df->escaped, pt2))
|
5055 |
|
|
|| (pt2->escaped
|
5056 |
|
|
&& pt_solutions_intersect_1 (&cfun->gimple_df->escaped, pt1)))
|
5057 |
|
|
return true;
|
5058 |
|
|
}
|
5059 |
|
|
|
5060 |
|
|
/* Now both pointers alias if their points-to solution intersects. */
|
5061 |
|
|
return (pt1->vars
|
5062 |
|
|
&& pt2->vars
|
5063 |
|
|
&& bitmap_intersect_p (pt1->vars, pt2->vars));
|
5064 |
|
|
}
|
5065 |
|
|
|
5066 |
|
|
bool
|
5067 |
|
|
pt_solutions_intersect (struct pt_solution *pt1, struct pt_solution *pt2)
|
5068 |
|
|
{
|
5069 |
|
|
bool res = pt_solutions_intersect_1 (pt1, pt2);
|
5070 |
|
|
if (res)
|
5071 |
|
|
++pta_stats.pt_solutions_intersect_may_alias;
|
5072 |
|
|
else
|
5073 |
|
|
++pta_stats.pt_solutions_intersect_no_alias;
|
5074 |
|
|
return res;
|
5075 |
|
|
}
|
5076 |
|
|
|
5077 |
|
|
/* Return true if both points-to solutions PT1 and PT2 for two restrict
|
5078 |
|
|
qualified pointers are possibly based on the same pointer. */
|
5079 |
|
|
|
5080 |
|
|
bool
|
5081 |
|
|
pt_solutions_same_restrict_base (struct pt_solution *pt1,
|
5082 |
|
|
struct pt_solution *pt2)
|
5083 |
|
|
{
|
5084 |
|
|
/* If we deal with points-to solutions of two restrict qualified
|
5085 |
|
|
pointers solely rely on the pointed-to variable bitmap intersection.
|
5086 |
|
|
For two pointers that are based on each other the bitmaps will
|
5087 |
|
|
intersect. */
|
5088 |
|
|
if (pt1->vars_contains_restrict
|
5089 |
|
|
&& pt2->vars_contains_restrict)
|
5090 |
|
|
{
|
5091 |
|
|
gcc_assert (pt1->vars && pt2->vars);
|
5092 |
|
|
return bitmap_intersect_p (pt1->vars, pt2->vars);
|
5093 |
|
|
}
|
5094 |
|
|
|
5095 |
|
|
return true;
|
5096 |
|
|
}
|
5097 |
|
|
|
5098 |
|
|
|
5099 |
|
|
/* Dump points-to information to OUTFILE. */
|
5100 |
|
|
|
5101 |
|
|
static void
|
5102 |
|
|
dump_sa_points_to_info (FILE *outfile)
|
5103 |
|
|
{
|
5104 |
|
|
unsigned int i;
|
5105 |
|
|
|
5106 |
|
|
fprintf (outfile, "\nPoints-to sets\n\n");
|
5107 |
|
|
|
5108 |
|
|
if (dump_flags & TDF_STATS)
|
5109 |
|
|
{
|
5110 |
|
|
fprintf (outfile, "Stats:\n");
|
5111 |
|
|
fprintf (outfile, "Total vars: %d\n", stats.total_vars);
|
5112 |
|
|
fprintf (outfile, "Non-pointer vars: %d\n",
|
5113 |
|
|
stats.nonpointer_vars);
|
5114 |
|
|
fprintf (outfile, "Statically unified vars: %d\n",
|
5115 |
|
|
stats.unified_vars_static);
|
5116 |
|
|
fprintf (outfile, "Dynamically unified vars: %d\n",
|
5117 |
|
|
stats.unified_vars_dynamic);
|
5118 |
|
|
fprintf (outfile, "Iterations: %d\n", stats.iterations);
|
5119 |
|
|
fprintf (outfile, "Number of edges: %d\n", stats.num_edges);
|
5120 |
|
|
fprintf (outfile, "Number of implicit edges: %d\n",
|
5121 |
|
|
stats.num_implicit_edges);
|
5122 |
|
|
}
|
5123 |
|
|
|
5124 |
|
|
for (i = 0; i < VEC_length (varinfo_t, varmap); i++)
|
5125 |
|
|
dump_solution_for_var (outfile, i);
|
5126 |
|
|
}
|
5127 |
|
|
|
5128 |
|
|
|
5129 |
|
|
/* Debug points-to information to stderr. */
|
5130 |
|
|
|
5131 |
|
|
void
|
5132 |
|
|
debug_sa_points_to_info (void)
|
5133 |
|
|
{
|
5134 |
|
|
dump_sa_points_to_info (stderr);
|
5135 |
|
|
}
|
5136 |
|
|
|
5137 |
|
|
|
5138 |
|
|
/* Initialize the always-existing constraint variables for NULL
|
5139 |
|
|
ANYTHING, READONLY, and INTEGER */
|
5140 |
|
|
|
5141 |
|
|
static void
|
5142 |
|
|
init_base_vars (void)
|
5143 |
|
|
{
|
5144 |
|
|
struct constraint_expr lhs, rhs;
|
5145 |
|
|
varinfo_t var_anything;
|
5146 |
|
|
varinfo_t var_nothing;
|
5147 |
|
|
varinfo_t var_readonly;
|
5148 |
|
|
varinfo_t var_escaped;
|
5149 |
|
|
varinfo_t var_nonlocal;
|
5150 |
|
|
varinfo_t var_callused;
|
5151 |
|
|
varinfo_t var_storedanything;
|
5152 |
|
|
varinfo_t var_integer;
|
5153 |
|
|
|
5154 |
|
|
/* Create the NULL variable, used to represent that a variable points
|
5155 |
|
|
to NULL. */
|
5156 |
|
|
var_nothing = new_var_info (NULL_TREE, "NULL");
|
5157 |
|
|
gcc_assert (var_nothing->id == nothing_id);
|
5158 |
|
|
var_nothing->is_artificial_var = 1;
|
5159 |
|
|
var_nothing->offset = 0;
|
5160 |
|
|
var_nothing->size = ~0;
|
5161 |
|
|
var_nothing->fullsize = ~0;
|
5162 |
|
|
var_nothing->is_special_var = 1;
|
5163 |
|
|
|
5164 |
|
|
/* Create the ANYTHING variable, used to represent that a variable
|
5165 |
|
|
points to some unknown piece of memory. */
|
5166 |
|
|
var_anything = new_var_info (NULL_TREE, "ANYTHING");
|
5167 |
|
|
gcc_assert (var_anything->id == anything_id);
|
5168 |
|
|
var_anything->is_artificial_var = 1;
|
5169 |
|
|
var_anything->size = ~0;
|
5170 |
|
|
var_anything->offset = 0;
|
5171 |
|
|
var_anything->next = NULL;
|
5172 |
|
|
var_anything->fullsize = ~0;
|
5173 |
|
|
var_anything->is_special_var = 1;
|
5174 |
|
|
|
5175 |
|
|
/* Anything points to anything. This makes deref constraints just
|
5176 |
|
|
work in the presence of linked list and other p = *p type loops,
|
5177 |
|
|
by saying that *ANYTHING = ANYTHING. */
|
5178 |
|
|
lhs.type = SCALAR;
|
5179 |
|
|
lhs.var = anything_id;
|
5180 |
|
|
lhs.offset = 0;
|
5181 |
|
|
rhs.type = ADDRESSOF;
|
5182 |
|
|
rhs.var = anything_id;
|
5183 |
|
|
rhs.offset = 0;
|
5184 |
|
|
|
5185 |
|
|
/* This specifically does not use process_constraint because
|
5186 |
|
|
process_constraint ignores all anything = anything constraints, since all
|
5187 |
|
|
but this one are redundant. */
|
5188 |
|
|
VEC_safe_push (constraint_t, heap, constraints, new_constraint (lhs, rhs));
|
5189 |
|
|
|
5190 |
|
|
/* Create the READONLY variable, used to represent that a variable
|
5191 |
|
|
points to readonly memory. */
|
5192 |
|
|
var_readonly = new_var_info (NULL_TREE, "READONLY");
|
5193 |
|
|
gcc_assert (var_readonly->id == readonly_id);
|
5194 |
|
|
var_readonly->is_artificial_var = 1;
|
5195 |
|
|
var_readonly->offset = 0;
|
5196 |
|
|
var_readonly->size = ~0;
|
5197 |
|
|
var_readonly->fullsize = ~0;
|
5198 |
|
|
var_readonly->next = NULL;
|
5199 |
|
|
var_readonly->is_special_var = 1;
|
5200 |
|
|
|
5201 |
|
|
/* readonly memory points to anything, in order to make deref
|
5202 |
|
|
easier. In reality, it points to anything the particular
|
5203 |
|
|
readonly variable can point to, but we don't track this
|
5204 |
|
|
separately. */
|
5205 |
|
|
lhs.type = SCALAR;
|
5206 |
|
|
lhs.var = readonly_id;
|
5207 |
|
|
lhs.offset = 0;
|
5208 |
|
|
rhs.type = ADDRESSOF;
|
5209 |
|
|
rhs.var = readonly_id; /* FIXME */
|
5210 |
|
|
rhs.offset = 0;
|
5211 |
|
|
process_constraint (new_constraint (lhs, rhs));
|
5212 |
|
|
|
5213 |
|
|
/* Create the ESCAPED variable, used to represent the set of escaped
|
5214 |
|
|
memory. */
|
5215 |
|
|
var_escaped = new_var_info (NULL_TREE, "ESCAPED");
|
5216 |
|
|
gcc_assert (var_escaped->id == escaped_id);
|
5217 |
|
|
var_escaped->is_artificial_var = 1;
|
5218 |
|
|
var_escaped->offset = 0;
|
5219 |
|
|
var_escaped->size = ~0;
|
5220 |
|
|
var_escaped->fullsize = ~0;
|
5221 |
|
|
var_escaped->is_special_var = 0;
|
5222 |
|
|
|
5223 |
|
|
/* Create the NONLOCAL variable, used to represent the set of nonlocal
|
5224 |
|
|
memory. */
|
5225 |
|
|
var_nonlocal = new_var_info (NULL_TREE, "NONLOCAL");
|
5226 |
|
|
gcc_assert (var_nonlocal->id == nonlocal_id);
|
5227 |
|
|
var_nonlocal->is_artificial_var = 1;
|
5228 |
|
|
var_nonlocal->offset = 0;
|
5229 |
|
|
var_nonlocal->size = ~0;
|
5230 |
|
|
var_nonlocal->fullsize = ~0;
|
5231 |
|
|
var_nonlocal->is_special_var = 1;
|
5232 |
|
|
|
5233 |
|
|
/* ESCAPED = *ESCAPED, because escaped is may-deref'd at calls, etc. */
|
5234 |
|
|
lhs.type = SCALAR;
|
5235 |
|
|
lhs.var = escaped_id;
|
5236 |
|
|
lhs.offset = 0;
|
5237 |
|
|
rhs.type = DEREF;
|
5238 |
|
|
rhs.var = escaped_id;
|
5239 |
|
|
rhs.offset = 0;
|
5240 |
|
|
process_constraint (new_constraint (lhs, rhs));
|
5241 |
|
|
|
5242 |
|
|
/* ESCAPED = ESCAPED + UNKNOWN_OFFSET, because if a sub-field escapes the
|
5243 |
|
|
whole variable escapes. */
|
5244 |
|
|
lhs.type = SCALAR;
|
5245 |
|
|
lhs.var = escaped_id;
|
5246 |
|
|
lhs.offset = 0;
|
5247 |
|
|
rhs.type = SCALAR;
|
5248 |
|
|
rhs.var = escaped_id;
|
5249 |
|
|
rhs.offset = UNKNOWN_OFFSET;
|
5250 |
|
|
process_constraint (new_constraint (lhs, rhs));
|
5251 |
|
|
|
5252 |
|
|
/* *ESCAPED = NONLOCAL. This is true because we have to assume
|
5253 |
|
|
everything pointed to by escaped points to what global memory can
|
5254 |
|
|
point to. */
|
5255 |
|
|
lhs.type = DEREF;
|
5256 |
|
|
lhs.var = escaped_id;
|
5257 |
|
|
lhs.offset = 0;
|
5258 |
|
|
rhs.type = SCALAR;
|
5259 |
|
|
rhs.var = nonlocal_id;
|
5260 |
|
|
rhs.offset = 0;
|
5261 |
|
|
process_constraint (new_constraint (lhs, rhs));
|
5262 |
|
|
|
5263 |
|
|
/* NONLOCAL = &NONLOCAL, NONLOCAL = &ESCAPED. This is true because
|
5264 |
|
|
global memory may point to global memory and escaped memory. */
|
5265 |
|
|
lhs.type = SCALAR;
|
5266 |
|
|
lhs.var = nonlocal_id;
|
5267 |
|
|
lhs.offset = 0;
|
5268 |
|
|
rhs.type = ADDRESSOF;
|
5269 |
|
|
rhs.var = nonlocal_id;
|
5270 |
|
|
rhs.offset = 0;
|
5271 |
|
|
process_constraint (new_constraint (lhs, rhs));
|
5272 |
|
|
rhs.type = ADDRESSOF;
|
5273 |
|
|
rhs.var = escaped_id;
|
5274 |
|
|
rhs.offset = 0;
|
5275 |
|
|
process_constraint (new_constraint (lhs, rhs));
|
5276 |
|
|
|
5277 |
|
|
/* Create the CALLUSED variable, used to represent the set of call-used
|
5278 |
|
|
memory. */
|
5279 |
|
|
var_callused = new_var_info (NULL_TREE, "CALLUSED");
|
5280 |
|
|
gcc_assert (var_callused->id == callused_id);
|
5281 |
|
|
var_callused->is_artificial_var = 1;
|
5282 |
|
|
var_callused->offset = 0;
|
5283 |
|
|
var_callused->size = ~0;
|
5284 |
|
|
var_callused->fullsize = ~0;
|
5285 |
|
|
var_callused->is_special_var = 0;
|
5286 |
|
|
|
5287 |
|
|
/* CALLUSED = *CALLUSED, because call-used is may-deref'd at calls, etc. */
|
5288 |
|
|
lhs.type = SCALAR;
|
5289 |
|
|
lhs.var = callused_id;
|
5290 |
|
|
lhs.offset = 0;
|
5291 |
|
|
rhs.type = DEREF;
|
5292 |
|
|
rhs.var = callused_id;
|
5293 |
|
|
rhs.offset = 0;
|
5294 |
|
|
process_constraint (new_constraint (lhs, rhs));
|
5295 |
|
|
|
5296 |
|
|
/* CALLUSED = CALLUSED + UNKNOWN, because if a sub-field is call-used the
|
5297 |
|
|
whole variable is call-used. */
|
5298 |
|
|
lhs.type = SCALAR;
|
5299 |
|
|
lhs.var = callused_id;
|
5300 |
|
|
lhs.offset = 0;
|
5301 |
|
|
rhs.type = SCALAR;
|
5302 |
|
|
rhs.var = callused_id;
|
5303 |
|
|
rhs.offset = UNKNOWN_OFFSET;
|
5304 |
|
|
process_constraint (new_constraint (lhs, rhs));
|
5305 |
|
|
|
5306 |
|
|
/* Create the STOREDANYTHING variable, used to represent the set of
|
5307 |
|
|
variables stored to *ANYTHING. */
|
5308 |
|
|
var_storedanything = new_var_info (NULL_TREE, "STOREDANYTHING");
|
5309 |
|
|
gcc_assert (var_storedanything->id == storedanything_id);
|
5310 |
|
|
var_storedanything->is_artificial_var = 1;
|
5311 |
|
|
var_storedanything->offset = 0;
|
5312 |
|
|
var_storedanything->size = ~0;
|
5313 |
|
|
var_storedanything->fullsize = ~0;
|
5314 |
|
|
var_storedanything->is_special_var = 0;
|
5315 |
|
|
|
5316 |
|
|
/* Create the INTEGER variable, used to represent that a variable points
|
5317 |
|
|
to what an INTEGER "points to". */
|
5318 |
|
|
var_integer = new_var_info (NULL_TREE, "INTEGER");
|
5319 |
|
|
gcc_assert (var_integer->id == integer_id);
|
5320 |
|
|
var_integer->is_artificial_var = 1;
|
5321 |
|
|
var_integer->size = ~0;
|
5322 |
|
|
var_integer->fullsize = ~0;
|
5323 |
|
|
var_integer->offset = 0;
|
5324 |
|
|
var_integer->next = NULL;
|
5325 |
|
|
var_integer->is_special_var = 1;
|
5326 |
|
|
|
5327 |
|
|
/* INTEGER = ANYTHING, because we don't know where a dereference of
|
5328 |
|
|
a random integer will point to. */
|
5329 |
|
|
lhs.type = SCALAR;
|
5330 |
|
|
lhs.var = integer_id;
|
5331 |
|
|
lhs.offset = 0;
|
5332 |
|
|
rhs.type = ADDRESSOF;
|
5333 |
|
|
rhs.var = anything_id;
|
5334 |
|
|
rhs.offset = 0;
|
5335 |
|
|
process_constraint (new_constraint (lhs, rhs));
|
5336 |
|
|
}
|
5337 |
|
|
|
5338 |
|
|
/* Initialize things necessary to perform PTA */
|
5339 |
|
|
|
5340 |
|
|
static void
|
5341 |
|
|
init_alias_vars (void)
|
5342 |
|
|
{
|
5343 |
|
|
use_field_sensitive = (MAX_FIELDS_FOR_FIELD_SENSITIVE > 1);
|
5344 |
|
|
|
5345 |
|
|
bitmap_obstack_initialize (&pta_obstack);
|
5346 |
|
|
bitmap_obstack_initialize (&oldpta_obstack);
|
5347 |
|
|
bitmap_obstack_initialize (&predbitmap_obstack);
|
5348 |
|
|
|
5349 |
|
|
constraint_pool = create_alloc_pool ("Constraint pool",
|
5350 |
|
|
sizeof (struct constraint), 30);
|
5351 |
|
|
variable_info_pool = create_alloc_pool ("Variable info pool",
|
5352 |
|
|
sizeof (struct variable_info), 30);
|
5353 |
|
|
constraints = VEC_alloc (constraint_t, heap, 8);
|
5354 |
|
|
varmap = VEC_alloc (varinfo_t, heap, 8);
|
5355 |
|
|
vi_for_tree = pointer_map_create ();
|
5356 |
|
|
|
5357 |
|
|
memset (&stats, 0, sizeof (stats));
|
5358 |
|
|
shared_bitmap_table = htab_create (511, shared_bitmap_hash,
|
5359 |
|
|
shared_bitmap_eq, free);
|
5360 |
|
|
init_base_vars ();
|
5361 |
|
|
}
|
5362 |
|
|
|
5363 |
|
|
/* Remove the REF and ADDRESS edges from GRAPH, as well as all the
|
5364 |
|
|
predecessor edges. */
|
5365 |
|
|
|
5366 |
|
|
static void
|
5367 |
|
|
remove_preds_and_fake_succs (constraint_graph_t graph)
|
5368 |
|
|
{
|
5369 |
|
|
unsigned int i;
|
5370 |
|
|
|
5371 |
|
|
/* Clear the implicit ref and address nodes from the successor
|
5372 |
|
|
lists. */
|
5373 |
|
|
for (i = 0; i < FIRST_REF_NODE; i++)
|
5374 |
|
|
{
|
5375 |
|
|
if (graph->succs[i])
|
5376 |
|
|
bitmap_clear_range (graph->succs[i], FIRST_REF_NODE,
|
5377 |
|
|
FIRST_REF_NODE * 2);
|
5378 |
|
|
}
|
5379 |
|
|
|
5380 |
|
|
/* Free the successor list for the non-ref nodes. */
|
5381 |
|
|
for (i = FIRST_REF_NODE; i < graph->size; i++)
|
5382 |
|
|
{
|
5383 |
|
|
if (graph->succs[i])
|
5384 |
|
|
BITMAP_FREE (graph->succs[i]);
|
5385 |
|
|
}
|
5386 |
|
|
|
5387 |
|
|
/* Now reallocate the size of the successor list as, and blow away
|
5388 |
|
|
the predecessor bitmaps. */
|
5389 |
|
|
graph->size = VEC_length (varinfo_t, varmap);
|
5390 |
|
|
graph->succs = XRESIZEVEC (bitmap, graph->succs, graph->size);
|
5391 |
|
|
|
5392 |
|
|
free (graph->implicit_preds);
|
5393 |
|
|
graph->implicit_preds = NULL;
|
5394 |
|
|
free (graph->preds);
|
5395 |
|
|
graph->preds = NULL;
|
5396 |
|
|
bitmap_obstack_release (&predbitmap_obstack);
|
5397 |
|
|
}
|
5398 |
|
|
|
5399 |
|
|
/* Initialize the heapvar for statement mapping. */
|
5400 |
|
|
|
5401 |
|
|
static void
|
5402 |
|
|
init_alias_heapvars (void)
|
5403 |
|
|
{
|
5404 |
|
|
if (!heapvar_for_stmt)
|
5405 |
|
|
heapvar_for_stmt = htab_create_ggc (11, tree_map_hash, heapvar_map_eq,
|
5406 |
|
|
NULL);
|
5407 |
|
|
}
|
5408 |
|
|
|
5409 |
|
|
/* Delete the heapvar for statement mapping. */
|
5410 |
|
|
|
5411 |
|
|
void
|
5412 |
|
|
delete_alias_heapvars (void)
|
5413 |
|
|
{
|
5414 |
|
|
if (heapvar_for_stmt)
|
5415 |
|
|
htab_delete (heapvar_for_stmt);
|
5416 |
|
|
heapvar_for_stmt = NULL;
|
5417 |
|
|
}
|
5418 |
|
|
|
5419 |
|
|
/* Solve the constraint set. */
|
5420 |
|
|
|
5421 |
|
|
static void
|
5422 |
|
|
solve_constraints (void)
|
5423 |
|
|
{
|
5424 |
|
|
struct scc_info *si;
|
5425 |
|
|
|
5426 |
|
|
if (dump_file)
|
5427 |
|
|
{
|
5428 |
|
|
fprintf (dump_file, "Points-to analysis\n\nConstraints:\n\n");
|
5429 |
|
|
dump_constraints (dump_file);
|
5430 |
|
|
}
|
5431 |
|
|
|
5432 |
|
|
if (dump_file)
|
5433 |
|
|
fprintf (dump_file,
|
5434 |
|
|
"\nCollapsing static cycles and doing variable "
|
5435 |
|
|
"substitution\n");
|
5436 |
|
|
|
5437 |
|
|
init_graph (VEC_length (varinfo_t, varmap) * 2);
|
5438 |
|
|
|
5439 |
|
|
if (dump_file)
|
5440 |
|
|
fprintf (dump_file, "Building predecessor graph\n");
|
5441 |
|
|
build_pred_graph ();
|
5442 |
|
|
|
5443 |
|
|
if (dump_file)
|
5444 |
|
|
fprintf (dump_file, "Detecting pointer and location "
|
5445 |
|
|
"equivalences\n");
|
5446 |
|
|
si = perform_var_substitution (graph);
|
5447 |
|
|
|
5448 |
|
|
if (dump_file)
|
5449 |
|
|
fprintf (dump_file, "Rewriting constraints and unifying "
|
5450 |
|
|
"variables\n");
|
5451 |
|
|
rewrite_constraints (graph, si);
|
5452 |
|
|
|
5453 |
|
|
build_succ_graph ();
|
5454 |
|
|
free_var_substitution_info (si);
|
5455 |
|
|
|
5456 |
|
|
if (dump_file && (dump_flags & TDF_GRAPH))
|
5457 |
|
|
dump_constraint_graph (dump_file);
|
5458 |
|
|
|
5459 |
|
|
move_complex_constraints (graph);
|
5460 |
|
|
|
5461 |
|
|
if (dump_file)
|
5462 |
|
|
fprintf (dump_file, "Uniting pointer but not location equivalent "
|
5463 |
|
|
"variables\n");
|
5464 |
|
|
unite_pointer_equivalences (graph);
|
5465 |
|
|
|
5466 |
|
|
if (dump_file)
|
5467 |
|
|
fprintf (dump_file, "Finding indirect cycles\n");
|
5468 |
|
|
find_indirect_cycles (graph);
|
5469 |
|
|
|
5470 |
|
|
/* Implicit nodes and predecessors are no longer necessary at this
|
5471 |
|
|
point. */
|
5472 |
|
|
remove_preds_and_fake_succs (graph);
|
5473 |
|
|
|
5474 |
|
|
if (dump_file)
|
5475 |
|
|
fprintf (dump_file, "Solving graph\n");
|
5476 |
|
|
|
5477 |
|
|
solve_graph (graph);
|
5478 |
|
|
|
5479 |
|
|
if (dump_file)
|
5480 |
|
|
dump_sa_points_to_info (dump_file);
|
5481 |
|
|
}
|
5482 |
|
|
|
5483 |
|
|
/* Create points-to sets for the current function. See the comments
|
5484 |
|
|
at the start of the file for an algorithmic overview. */
|
5485 |
|
|
|
5486 |
|
|
static void
|
5487 |
|
|
compute_points_to_sets (void)
|
5488 |
|
|
{
|
5489 |
|
|
basic_block bb;
|
5490 |
|
|
unsigned i;
|
5491 |
|
|
varinfo_t vi;
|
5492 |
|
|
|
5493 |
|
|
timevar_push (TV_TREE_PTA);
|
5494 |
|
|
|
5495 |
|
|
init_alias_vars ();
|
5496 |
|
|
init_alias_heapvars ();
|
5497 |
|
|
|
5498 |
|
|
intra_create_variable_infos ();
|
5499 |
|
|
|
5500 |
|
|
/* Now walk all statements and derive aliases. */
|
5501 |
|
|
FOR_EACH_BB (bb)
|
5502 |
|
|
{
|
5503 |
|
|
gimple_stmt_iterator gsi;
|
5504 |
|
|
|
5505 |
|
|
for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
5506 |
|
|
{
|
5507 |
|
|
gimple phi = gsi_stmt (gsi);
|
5508 |
|
|
|
5509 |
|
|
if (is_gimple_reg (gimple_phi_result (phi)))
|
5510 |
|
|
find_func_aliases (phi);
|
5511 |
|
|
}
|
5512 |
|
|
|
5513 |
|
|
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
5514 |
|
|
{
|
5515 |
|
|
gimple stmt = gsi_stmt (gsi);
|
5516 |
|
|
|
5517 |
|
|
find_func_aliases (stmt);
|
5518 |
|
|
}
|
5519 |
|
|
}
|
5520 |
|
|
|
5521 |
|
|
/* From the constraints compute the points-to sets. */
|
5522 |
|
|
solve_constraints ();
|
5523 |
|
|
|
5524 |
|
|
/* Compute the points-to sets for ESCAPED and CALLUSED used for
|
5525 |
|
|
call-clobber analysis. */
|
5526 |
|
|
find_what_var_points_to (get_varinfo (escaped_id),
|
5527 |
|
|
&cfun->gimple_df->escaped);
|
5528 |
|
|
find_what_var_points_to (get_varinfo (callused_id),
|
5529 |
|
|
&cfun->gimple_df->callused);
|
5530 |
|
|
|
5531 |
|
|
/* Make sure the ESCAPED solution (which is used as placeholder in
|
5532 |
|
|
other solutions) does not reference itself. This simplifies
|
5533 |
|
|
points-to solution queries. */
|
5534 |
|
|
cfun->gimple_df->escaped.escaped = 0;
|
5535 |
|
|
|
5536 |
|
|
/* Mark escaped HEAP variables as global. */
|
5537 |
|
|
for (i = 0; VEC_iterate (varinfo_t, varmap, i, vi); ++i)
|
5538 |
|
|
if (vi->is_heap_var
|
5539 |
|
|
&& !vi->is_restrict_var
|
5540 |
|
|
&& !vi->is_global_var)
|
5541 |
|
|
DECL_EXTERNAL (vi->decl) = vi->is_global_var
|
5542 |
|
|
= pt_solution_includes (&cfun->gimple_df->escaped, vi->decl);
|
5543 |
|
|
|
5544 |
|
|
/* Compute the points-to sets for pointer SSA_NAMEs. */
|
5545 |
|
|
for (i = 0; i < num_ssa_names; ++i)
|
5546 |
|
|
{
|
5547 |
|
|
tree ptr = ssa_name (i);
|
5548 |
|
|
if (ptr
|
5549 |
|
|
&& POINTER_TYPE_P (TREE_TYPE (ptr)))
|
5550 |
|
|
find_what_p_points_to (ptr);
|
5551 |
|
|
}
|
5552 |
|
|
|
5553 |
|
|
timevar_pop (TV_TREE_PTA);
|
5554 |
|
|
}
|
5555 |
|
|
|
5556 |
|
|
|
5557 |
|
|
/* Delete created points-to sets. */
|
5558 |
|
|
|
5559 |
|
|
static void
|
5560 |
|
|
delete_points_to_sets (void)
|
5561 |
|
|
{
|
5562 |
|
|
unsigned int i;
|
5563 |
|
|
|
5564 |
|
|
htab_delete (shared_bitmap_table);
|
5565 |
|
|
if (dump_file && (dump_flags & TDF_STATS))
|
5566 |
|
|
fprintf (dump_file, "Points to sets created:%d\n",
|
5567 |
|
|
stats.points_to_sets_created);
|
5568 |
|
|
|
5569 |
|
|
pointer_map_destroy (vi_for_tree);
|
5570 |
|
|
bitmap_obstack_release (&pta_obstack);
|
5571 |
|
|
VEC_free (constraint_t, heap, constraints);
|
5572 |
|
|
|
5573 |
|
|
for (i = 0; i < graph->size; i++)
|
5574 |
|
|
VEC_free (constraint_t, heap, graph->complex[i]);
|
5575 |
|
|
free (graph->complex);
|
5576 |
|
|
|
5577 |
|
|
free (graph->rep);
|
5578 |
|
|
free (graph->succs);
|
5579 |
|
|
free (graph->pe);
|
5580 |
|
|
free (graph->pe_rep);
|
5581 |
|
|
free (graph->indirect_cycles);
|
5582 |
|
|
free (graph);
|
5583 |
|
|
|
5584 |
|
|
VEC_free (varinfo_t, heap, varmap);
|
5585 |
|
|
free_alloc_pool (variable_info_pool);
|
5586 |
|
|
free_alloc_pool (constraint_pool);
|
5587 |
|
|
}
|
5588 |
|
|
|
5589 |
|
|
|
5590 |
|
|
/* Compute points-to information for every SSA_NAME pointer in the
|
5591 |
|
|
current function and compute the transitive closure of escaped
|
5592 |
|
|
variables to re-initialize the call-clobber states of local variables. */
|
5593 |
|
|
|
5594 |
|
|
unsigned int
|
5595 |
|
|
compute_may_aliases (void)
|
5596 |
|
|
{
|
5597 |
|
|
/* For each pointer P_i, determine the sets of variables that P_i may
|
5598 |
|
|
point-to. Compute the reachability set of escaped and call-used
|
5599 |
|
|
variables. */
|
5600 |
|
|
compute_points_to_sets ();
|
5601 |
|
|
|
5602 |
|
|
/* Debugging dumps. */
|
5603 |
|
|
if (dump_file)
|
5604 |
|
|
{
|
5605 |
|
|
dump_alias_info (dump_file);
|
5606 |
|
|
|
5607 |
|
|
if (dump_flags & TDF_DETAILS)
|
5608 |
|
|
dump_referenced_vars (dump_file);
|
5609 |
|
|
}
|
5610 |
|
|
|
5611 |
|
|
/* Deallocate memory used by aliasing data structures and the internal
|
5612 |
|
|
points-to solution. */
|
5613 |
|
|
delete_points_to_sets ();
|
5614 |
|
|
|
5615 |
|
|
gcc_assert (!need_ssa_update_p (cfun));
|
5616 |
|
|
|
5617 |
|
|
return 0;
|
5618 |
|
|
}
|
5619 |
|
|
|
5620 |
|
|
static bool
|
5621 |
|
|
gate_tree_pta (void)
|
5622 |
|
|
{
|
5623 |
|
|
return flag_tree_pta;
|
5624 |
|
|
}
|
5625 |
|
|
|
5626 |
|
|
/* A dummy pass to cause points-to information to be computed via
|
5627 |
|
|
TODO_rebuild_alias. */
|
5628 |
|
|
|
5629 |
|
|
struct gimple_opt_pass pass_build_alias =
|
5630 |
|
|
{
|
5631 |
|
|
{
|
5632 |
|
|
GIMPLE_PASS,
|
5633 |
|
|
"alias", /* name */
|
5634 |
|
|
gate_tree_pta, /* gate */
|
5635 |
|
|
NULL, /* execute */
|
5636 |
|
|
NULL, /* sub */
|
5637 |
|
|
NULL, /* next */
|
5638 |
|
|
0, /* static_pass_number */
|
5639 |
|
|
TV_NONE, /* tv_id */
|
5640 |
|
|
PROP_cfg | PROP_ssa, /* properties_required */
|
5641 |
|
|
0, /* properties_provided */
|
5642 |
|
|
0, /* properties_destroyed */
|
5643 |
|
|
0, /* todo_flags_start */
|
5644 |
|
|
TODO_rebuild_alias | TODO_dump_func /* todo_flags_finish */
|
5645 |
|
|
}
|
5646 |
|
|
};
|
5647 |
|
|
|
5648 |
|
|
/* A dummy pass to cause points-to information to be computed via
|
5649 |
|
|
TODO_rebuild_alias. */
|
5650 |
|
|
|
5651 |
|
|
struct gimple_opt_pass pass_build_ealias =
|
5652 |
|
|
{
|
5653 |
|
|
{
|
5654 |
|
|
GIMPLE_PASS,
|
5655 |
|
|
"ealias", /* name */
|
5656 |
|
|
gate_tree_pta, /* gate */
|
5657 |
|
|
NULL, /* execute */
|
5658 |
|
|
NULL, /* sub */
|
5659 |
|
|
NULL, /* next */
|
5660 |
|
|
0, /* static_pass_number */
|
5661 |
|
|
TV_NONE, /* tv_id */
|
5662 |
|
|
PROP_cfg | PROP_ssa, /* properties_required */
|
5663 |
|
|
0, /* properties_provided */
|
5664 |
|
|
0, /* properties_destroyed */
|
5665 |
|
|
0, /* todo_flags_start */
|
5666 |
|
|
TODO_rebuild_alias | TODO_dump_func /* todo_flags_finish */
|
5667 |
|
|
}
|
5668 |
|
|
};
|
5669 |
|
|
|
5670 |
|
|
|
5671 |
|
|
/* Return true if we should execute IPA PTA. */
|
5672 |
|
|
static bool
|
5673 |
|
|
gate_ipa_pta (void)
|
5674 |
|
|
{
|
5675 |
|
|
return (optimize
|
5676 |
|
|
&& flag_ipa_pta
|
5677 |
|
|
/* Don't bother doing anything if the program has errors. */
|
5678 |
|
|
&& !(errorcount || sorrycount));
|
5679 |
|
|
}
|
5680 |
|
|
|
5681 |
|
|
/* Execute the driver for IPA PTA. */
|
5682 |
|
|
static unsigned int
|
5683 |
|
|
ipa_pta_execute (void)
|
5684 |
|
|
{
|
5685 |
|
|
struct cgraph_node *node;
|
5686 |
|
|
|
5687 |
|
|
in_ipa_mode = 1;
|
5688 |
|
|
|
5689 |
|
|
init_alias_heapvars ();
|
5690 |
|
|
init_alias_vars ();
|
5691 |
|
|
|
5692 |
|
|
/* Build the constraints. */
|
5693 |
|
|
for (node = cgraph_nodes; node; node = node->next)
|
5694 |
|
|
{
|
5695 |
|
|
/* Nodes without a body are not interesting. Especially do not
|
5696 |
|
|
visit clones at this point for now - we get duplicate decls
|
5697 |
|
|
there for inline clones at least. */
|
5698 |
|
|
if (!gimple_has_body_p (node->decl)
|
5699 |
|
|
|| node->clone_of)
|
5700 |
|
|
continue;
|
5701 |
|
|
|
5702 |
|
|
/* It does not make sense to have graph edges into or out of
|
5703 |
|
|
externally visible functions. There is no extra information
|
5704 |
|
|
we can gather from them. */
|
5705 |
|
|
if (node->local.externally_visible)
|
5706 |
|
|
continue;
|
5707 |
|
|
|
5708 |
|
|
create_function_info_for (node->decl,
|
5709 |
|
|
cgraph_node_name (node));
|
5710 |
|
|
}
|
5711 |
|
|
|
5712 |
|
|
for (node = cgraph_nodes; node; node = node->next)
|
5713 |
|
|
{
|
5714 |
|
|
struct function *func;
|
5715 |
|
|
basic_block bb;
|
5716 |
|
|
tree old_func_decl;
|
5717 |
|
|
|
5718 |
|
|
/* Nodes without a body are not interesting. */
|
5719 |
|
|
if (!gimple_has_body_p (node->decl)
|
5720 |
|
|
|| node->clone_of)
|
5721 |
|
|
continue;
|
5722 |
|
|
|
5723 |
|
|
if (dump_file)
|
5724 |
|
|
fprintf (dump_file,
|
5725 |
|
|
"Generating constraints for %s\n",
|
5726 |
|
|
cgraph_node_name (node));
|
5727 |
|
|
|
5728 |
|
|
func = DECL_STRUCT_FUNCTION (node->decl);
|
5729 |
|
|
old_func_decl = current_function_decl;
|
5730 |
|
|
push_cfun (func);
|
5731 |
|
|
current_function_decl = node->decl;
|
5732 |
|
|
|
5733 |
|
|
/* For externally visible functions use local constraints for
|
5734 |
|
|
their arguments. For local functions we see all callers
|
5735 |
|
|
and thus do not need initial constraints for parameters. */
|
5736 |
|
|
if (node->local.externally_visible)
|
5737 |
|
|
intra_create_variable_infos ();
|
5738 |
|
|
|
5739 |
|
|
/* Build constriants for the function body. */
|
5740 |
|
|
FOR_EACH_BB_FN (bb, func)
|
5741 |
|
|
{
|
5742 |
|
|
gimple_stmt_iterator gsi;
|
5743 |
|
|
|
5744 |
|
|
for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
|
5745 |
|
|
gsi_next (&gsi))
|
5746 |
|
|
{
|
5747 |
|
|
gimple phi = gsi_stmt (gsi);
|
5748 |
|
|
|
5749 |
|
|
if (is_gimple_reg (gimple_phi_result (phi)))
|
5750 |
|
|
find_func_aliases (phi);
|
5751 |
|
|
}
|
5752 |
|
|
|
5753 |
|
|
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
5754 |
|
|
{
|
5755 |
|
|
gimple stmt = gsi_stmt (gsi);
|
5756 |
|
|
|
5757 |
|
|
find_func_aliases (stmt);
|
5758 |
|
|
}
|
5759 |
|
|
}
|
5760 |
|
|
|
5761 |
|
|
current_function_decl = old_func_decl;
|
5762 |
|
|
pop_cfun ();
|
5763 |
|
|
}
|
5764 |
|
|
|
5765 |
|
|
/* From the constraints compute the points-to sets. */
|
5766 |
|
|
solve_constraints ();
|
5767 |
|
|
|
5768 |
|
|
delete_points_to_sets ();
|
5769 |
|
|
|
5770 |
|
|
in_ipa_mode = 0;
|
5771 |
|
|
|
5772 |
|
|
return 0;
|
5773 |
|
|
}
|
5774 |
|
|
|
5775 |
|
|
struct simple_ipa_opt_pass pass_ipa_pta =
|
5776 |
|
|
{
|
5777 |
|
|
{
|
5778 |
|
|
SIMPLE_IPA_PASS,
|
5779 |
|
|
"pta", /* name */
|
5780 |
|
|
gate_ipa_pta, /* gate */
|
5781 |
|
|
ipa_pta_execute, /* execute */
|
5782 |
|
|
NULL, /* sub */
|
5783 |
|
|
NULL, /* next */
|
5784 |
|
|
0, /* static_pass_number */
|
5785 |
|
|
TV_IPA_PTA, /* tv_id */
|
5786 |
|
|
0, /* properties_required */
|
5787 |
|
|
0, /* properties_provided */
|
5788 |
|
|
0, /* properties_destroyed */
|
5789 |
|
|
0, /* todo_flags_start */
|
5790 |
|
|
TODO_update_ssa /* todo_flags_finish */
|
5791 |
|
|
}
|
5792 |
|
|
};
|
5793 |
|
|
|
5794 |
|
|
|
5795 |
|
|
#include "gt-tree-ssa-structalias.h"
|