1 |
280 |
jeremybenn |
/* Statement Analysis and Transformation for Vectorization
|
2 |
|
|
Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
|
3 |
|
|
Free Software Foundation, Inc.
|
4 |
|
|
Contributed by Dorit Naishlos <dorit@il.ibm.com>
|
5 |
|
|
and Ira Rosen <irar@il.ibm.com>
|
6 |
|
|
|
7 |
|
|
This file is part of GCC.
|
8 |
|
|
|
9 |
|
|
GCC is free software; you can redistribute it and/or modify it under
|
10 |
|
|
the terms of the GNU General Public License as published by the Free
|
11 |
|
|
Software Foundation; either version 3, or (at your option) any later
|
12 |
|
|
version.
|
13 |
|
|
|
14 |
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
15 |
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
16 |
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
17 |
|
|
for more details.
|
18 |
|
|
|
19 |
|
|
You should have received a copy of the GNU General Public License
|
20 |
|
|
along with GCC; see the file COPYING3. If not see
|
21 |
|
|
<http://www.gnu.org/licenses/>. */
|
22 |
|
|
|
23 |
|
|
#include "config.h"
|
24 |
|
|
#include "system.h"
|
25 |
|
|
#include "coretypes.h"
|
26 |
|
|
#include "tm.h"
|
27 |
|
|
#include "ggc.h"
|
28 |
|
|
#include "tree.h"
|
29 |
|
|
#include "target.h"
|
30 |
|
|
#include "basic-block.h"
|
31 |
|
|
#include "diagnostic.h"
|
32 |
|
|
#include "tree-flow.h"
|
33 |
|
|
#include "tree-dump.h"
|
34 |
|
|
#include "cfgloop.h"
|
35 |
|
|
#include "cfglayout.h"
|
36 |
|
|
#include "expr.h"
|
37 |
|
|
#include "recog.h"
|
38 |
|
|
#include "optabs.h"
|
39 |
|
|
#include "toplev.h"
|
40 |
|
|
#include "tree-vectorizer.h"
|
41 |
|
|
#include "langhooks.h"
|
42 |
|
|
|
43 |
|
|
|
44 |
|
|
/* Utility functions used by vect_mark_stmts_to_be_vectorized. */
|
45 |
|
|
|
46 |
|
|
/* Function vect_mark_relevant.
|
47 |
|
|
|
48 |
|
|
Mark STMT as "relevant for vectorization" and add it to WORKLIST. */
|
49 |
|
|
|
50 |
|
|
static void
|
51 |
|
|
vect_mark_relevant (VEC(gimple,heap) **worklist, gimple stmt,
|
52 |
|
|
enum vect_relevant relevant, bool live_p)
|
53 |
|
|
{
|
54 |
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
|
55 |
|
|
enum vect_relevant save_relevant = STMT_VINFO_RELEVANT (stmt_info);
|
56 |
|
|
bool save_live_p = STMT_VINFO_LIVE_P (stmt_info);
|
57 |
|
|
|
58 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
59 |
|
|
fprintf (vect_dump, "mark relevant %d, live %d.", relevant, live_p);
|
60 |
|
|
|
61 |
|
|
if (STMT_VINFO_IN_PATTERN_P (stmt_info))
|
62 |
|
|
{
|
63 |
|
|
gimple pattern_stmt;
|
64 |
|
|
|
65 |
|
|
/* This is the last stmt in a sequence that was detected as a
|
66 |
|
|
pattern that can potentially be vectorized. Don't mark the stmt
|
67 |
|
|
as relevant/live because it's not going to be vectorized.
|
68 |
|
|
Instead mark the pattern-stmt that replaces it. */
|
69 |
|
|
|
70 |
|
|
pattern_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
|
71 |
|
|
|
72 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
73 |
|
|
fprintf (vect_dump, "last stmt in pattern. don't mark relevant/live.");
|
74 |
|
|
stmt_info = vinfo_for_stmt (pattern_stmt);
|
75 |
|
|
gcc_assert (STMT_VINFO_RELATED_STMT (stmt_info) == stmt);
|
76 |
|
|
save_relevant = STMT_VINFO_RELEVANT (stmt_info);
|
77 |
|
|
save_live_p = STMT_VINFO_LIVE_P (stmt_info);
|
78 |
|
|
stmt = pattern_stmt;
|
79 |
|
|
}
|
80 |
|
|
|
81 |
|
|
STMT_VINFO_LIVE_P (stmt_info) |= live_p;
|
82 |
|
|
if (relevant > STMT_VINFO_RELEVANT (stmt_info))
|
83 |
|
|
STMT_VINFO_RELEVANT (stmt_info) = relevant;
|
84 |
|
|
|
85 |
|
|
if (STMT_VINFO_RELEVANT (stmt_info) == save_relevant
|
86 |
|
|
&& STMT_VINFO_LIVE_P (stmt_info) == save_live_p)
|
87 |
|
|
{
|
88 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
89 |
|
|
fprintf (vect_dump, "already marked relevant/live.");
|
90 |
|
|
return;
|
91 |
|
|
}
|
92 |
|
|
|
93 |
|
|
VEC_safe_push (gimple, heap, *worklist, stmt);
|
94 |
|
|
}
|
95 |
|
|
|
96 |
|
|
|
97 |
|
|
/* Function vect_stmt_relevant_p.
|
98 |
|
|
|
99 |
|
|
Return true if STMT in loop that is represented by LOOP_VINFO is
|
100 |
|
|
"relevant for vectorization".
|
101 |
|
|
|
102 |
|
|
A stmt is considered "relevant for vectorization" if:
|
103 |
|
|
- it has uses outside the loop.
|
104 |
|
|
- it has vdefs (it alters memory).
|
105 |
|
|
- control stmts in the loop (except for the exit condition).
|
106 |
|
|
|
107 |
|
|
CHECKME: what other side effects would the vectorizer allow? */
|
108 |
|
|
|
109 |
|
|
static bool
|
110 |
|
|
vect_stmt_relevant_p (gimple stmt, loop_vec_info loop_vinfo,
|
111 |
|
|
enum vect_relevant *relevant, bool *live_p)
|
112 |
|
|
{
|
113 |
|
|
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
|
114 |
|
|
ssa_op_iter op_iter;
|
115 |
|
|
imm_use_iterator imm_iter;
|
116 |
|
|
use_operand_p use_p;
|
117 |
|
|
def_operand_p def_p;
|
118 |
|
|
|
119 |
|
|
*relevant = vect_unused_in_scope;
|
120 |
|
|
*live_p = false;
|
121 |
|
|
|
122 |
|
|
/* cond stmt other than loop exit cond. */
|
123 |
|
|
if (is_ctrl_stmt (stmt)
|
124 |
|
|
&& STMT_VINFO_TYPE (vinfo_for_stmt (stmt))
|
125 |
|
|
!= loop_exit_ctrl_vec_info_type)
|
126 |
|
|
*relevant = vect_used_in_scope;
|
127 |
|
|
|
128 |
|
|
/* changing memory. */
|
129 |
|
|
if (gimple_code (stmt) != GIMPLE_PHI)
|
130 |
|
|
if (gimple_vdef (stmt))
|
131 |
|
|
{
|
132 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
133 |
|
|
fprintf (vect_dump, "vec_stmt_relevant_p: stmt has vdefs.");
|
134 |
|
|
*relevant = vect_used_in_scope;
|
135 |
|
|
}
|
136 |
|
|
|
137 |
|
|
/* uses outside the loop. */
|
138 |
|
|
FOR_EACH_PHI_OR_STMT_DEF (def_p, stmt, op_iter, SSA_OP_DEF)
|
139 |
|
|
{
|
140 |
|
|
FOR_EACH_IMM_USE_FAST (use_p, imm_iter, DEF_FROM_PTR (def_p))
|
141 |
|
|
{
|
142 |
|
|
basic_block bb = gimple_bb (USE_STMT (use_p));
|
143 |
|
|
if (!flow_bb_inside_loop_p (loop, bb))
|
144 |
|
|
{
|
145 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
146 |
|
|
fprintf (vect_dump, "vec_stmt_relevant_p: used out of loop.");
|
147 |
|
|
|
148 |
|
|
if (is_gimple_debug (USE_STMT (use_p)))
|
149 |
|
|
continue;
|
150 |
|
|
|
151 |
|
|
/* We expect all such uses to be in the loop exit phis
|
152 |
|
|
(because of loop closed form) */
|
153 |
|
|
gcc_assert (gimple_code (USE_STMT (use_p)) == GIMPLE_PHI);
|
154 |
|
|
gcc_assert (bb == single_exit (loop)->dest);
|
155 |
|
|
|
156 |
|
|
*live_p = true;
|
157 |
|
|
}
|
158 |
|
|
}
|
159 |
|
|
}
|
160 |
|
|
|
161 |
|
|
return (*live_p || *relevant);
|
162 |
|
|
}
|
163 |
|
|
|
164 |
|
|
|
165 |
|
|
/* Function exist_non_indexing_operands_for_use_p
|
166 |
|
|
|
167 |
|
|
USE is one of the uses attached to STMT. Check if USE is
|
168 |
|
|
used in STMT for anything other than indexing an array. */
|
169 |
|
|
|
170 |
|
|
static bool
|
171 |
|
|
exist_non_indexing_operands_for_use_p (tree use, gimple stmt)
|
172 |
|
|
{
|
173 |
|
|
tree operand;
|
174 |
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
|
175 |
|
|
|
176 |
|
|
/* USE corresponds to some operand in STMT. If there is no data
|
177 |
|
|
reference in STMT, then any operand that corresponds to USE
|
178 |
|
|
is not indexing an array. */
|
179 |
|
|
if (!STMT_VINFO_DATA_REF (stmt_info))
|
180 |
|
|
return true;
|
181 |
|
|
|
182 |
|
|
/* STMT has a data_ref. FORNOW this means that its of one of
|
183 |
|
|
the following forms:
|
184 |
|
|
-1- ARRAY_REF = var
|
185 |
|
|
-2- var = ARRAY_REF
|
186 |
|
|
(This should have been verified in analyze_data_refs).
|
187 |
|
|
|
188 |
|
|
'var' in the second case corresponds to a def, not a use,
|
189 |
|
|
so USE cannot correspond to any operands that are not used
|
190 |
|
|
for array indexing.
|
191 |
|
|
|
192 |
|
|
Therefore, all we need to check is if STMT falls into the
|
193 |
|
|
first case, and whether var corresponds to USE. */
|
194 |
|
|
|
195 |
|
|
if (!gimple_assign_copy_p (stmt))
|
196 |
|
|
return false;
|
197 |
|
|
if (TREE_CODE (gimple_assign_lhs (stmt)) == SSA_NAME)
|
198 |
|
|
return false;
|
199 |
|
|
operand = gimple_assign_rhs1 (stmt);
|
200 |
|
|
if (TREE_CODE (operand) != SSA_NAME)
|
201 |
|
|
return false;
|
202 |
|
|
|
203 |
|
|
if (operand == use)
|
204 |
|
|
return true;
|
205 |
|
|
|
206 |
|
|
return false;
|
207 |
|
|
}
|
208 |
|
|
|
209 |
|
|
|
210 |
|
|
/*
|
211 |
|
|
Function process_use.
|
212 |
|
|
|
213 |
|
|
Inputs:
|
214 |
|
|
- a USE in STMT in a loop represented by LOOP_VINFO
|
215 |
|
|
- LIVE_P, RELEVANT - enum values to be set in the STMT_VINFO of the stmt
|
216 |
|
|
that defined USE. This is done by calling mark_relevant and passing it
|
217 |
|
|
the WORKLIST (to add DEF_STMT to the WORKLIST in case it is relevant).
|
218 |
|
|
|
219 |
|
|
Outputs:
|
220 |
|
|
Generally, LIVE_P and RELEVANT are used to define the liveness and
|
221 |
|
|
relevance info of the DEF_STMT of this USE:
|
222 |
|
|
STMT_VINFO_LIVE_P (DEF_STMT_info) <-- live_p
|
223 |
|
|
STMT_VINFO_RELEVANT (DEF_STMT_info) <-- relevant
|
224 |
|
|
Exceptions:
|
225 |
|
|
- case 1: If USE is used only for address computations (e.g. array indexing),
|
226 |
|
|
which does not need to be directly vectorized, then the liveness/relevance
|
227 |
|
|
of the respective DEF_STMT is left unchanged.
|
228 |
|
|
- case 2: If STMT is a reduction phi and DEF_STMT is a reduction stmt, we
|
229 |
|
|
skip DEF_STMT cause it had already been processed.
|
230 |
|
|
- case 3: If DEF_STMT and STMT are in different nests, then "relevant" will
|
231 |
|
|
be modified accordingly.
|
232 |
|
|
|
233 |
|
|
Return true if everything is as expected. Return false otherwise. */
|
234 |
|
|
|
235 |
|
|
static bool
|
236 |
|
|
process_use (gimple stmt, tree use, loop_vec_info loop_vinfo, bool live_p,
|
237 |
|
|
enum vect_relevant relevant, VEC(gimple,heap) **worklist)
|
238 |
|
|
{
|
239 |
|
|
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
|
240 |
|
|
stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt);
|
241 |
|
|
stmt_vec_info dstmt_vinfo;
|
242 |
|
|
basic_block bb, def_bb;
|
243 |
|
|
tree def;
|
244 |
|
|
gimple def_stmt;
|
245 |
|
|
enum vect_def_type dt;
|
246 |
|
|
|
247 |
|
|
/* case 1: we are only interested in uses that need to be vectorized. Uses
|
248 |
|
|
that are used for address computation are not considered relevant. */
|
249 |
|
|
if (!exist_non_indexing_operands_for_use_p (use, stmt))
|
250 |
|
|
return true;
|
251 |
|
|
|
252 |
|
|
if (!vect_is_simple_use (use, loop_vinfo, NULL, &def_stmt, &def, &dt))
|
253 |
|
|
{
|
254 |
|
|
if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
|
255 |
|
|
fprintf (vect_dump, "not vectorized: unsupported use in stmt.");
|
256 |
|
|
return false;
|
257 |
|
|
}
|
258 |
|
|
|
259 |
|
|
if (!def_stmt || gimple_nop_p (def_stmt))
|
260 |
|
|
return true;
|
261 |
|
|
|
262 |
|
|
def_bb = gimple_bb (def_stmt);
|
263 |
|
|
if (!flow_bb_inside_loop_p (loop, def_bb))
|
264 |
|
|
{
|
265 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
266 |
|
|
fprintf (vect_dump, "def_stmt is out of loop.");
|
267 |
|
|
return true;
|
268 |
|
|
}
|
269 |
|
|
|
270 |
|
|
/* case 2: A reduction phi (STMT) defined by a reduction stmt (DEF_STMT).
|
271 |
|
|
DEF_STMT must have already been processed, because this should be the
|
272 |
|
|
only way that STMT, which is a reduction-phi, was put in the worklist,
|
273 |
|
|
as there should be no other uses for DEF_STMT in the loop. So we just
|
274 |
|
|
check that everything is as expected, and we are done. */
|
275 |
|
|
dstmt_vinfo = vinfo_for_stmt (def_stmt);
|
276 |
|
|
bb = gimple_bb (stmt);
|
277 |
|
|
if (gimple_code (stmt) == GIMPLE_PHI
|
278 |
|
|
&& STMT_VINFO_DEF_TYPE (stmt_vinfo) == vect_reduction_def
|
279 |
|
|
&& gimple_code (def_stmt) != GIMPLE_PHI
|
280 |
|
|
&& STMT_VINFO_DEF_TYPE (dstmt_vinfo) == vect_reduction_def
|
281 |
|
|
&& bb->loop_father == def_bb->loop_father)
|
282 |
|
|
{
|
283 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
284 |
|
|
fprintf (vect_dump, "reduc-stmt defining reduc-phi in the same nest.");
|
285 |
|
|
if (STMT_VINFO_IN_PATTERN_P (dstmt_vinfo))
|
286 |
|
|
dstmt_vinfo = vinfo_for_stmt (STMT_VINFO_RELATED_STMT (dstmt_vinfo));
|
287 |
|
|
gcc_assert (STMT_VINFO_RELEVANT (dstmt_vinfo) < vect_used_by_reduction);
|
288 |
|
|
gcc_assert (STMT_VINFO_LIVE_P (dstmt_vinfo)
|
289 |
|
|
|| STMT_VINFO_RELEVANT (dstmt_vinfo) > vect_unused_in_scope);
|
290 |
|
|
return true;
|
291 |
|
|
}
|
292 |
|
|
|
293 |
|
|
/* case 3a: outer-loop stmt defining an inner-loop stmt:
|
294 |
|
|
outer-loop-header-bb:
|
295 |
|
|
d = def_stmt
|
296 |
|
|
inner-loop:
|
297 |
|
|
stmt # use (d)
|
298 |
|
|
outer-loop-tail-bb:
|
299 |
|
|
... */
|
300 |
|
|
if (flow_loop_nested_p (def_bb->loop_father, bb->loop_father))
|
301 |
|
|
{
|
302 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
303 |
|
|
fprintf (vect_dump, "outer-loop def-stmt defining inner-loop stmt.");
|
304 |
|
|
|
305 |
|
|
switch (relevant)
|
306 |
|
|
{
|
307 |
|
|
case vect_unused_in_scope:
|
308 |
|
|
relevant = (STMT_VINFO_DEF_TYPE (stmt_vinfo) == vect_nested_cycle) ?
|
309 |
|
|
vect_used_in_scope : vect_unused_in_scope;
|
310 |
|
|
break;
|
311 |
|
|
|
312 |
|
|
case vect_used_in_outer_by_reduction:
|
313 |
|
|
gcc_assert (STMT_VINFO_DEF_TYPE (stmt_vinfo) != vect_reduction_def);
|
314 |
|
|
relevant = vect_used_by_reduction;
|
315 |
|
|
break;
|
316 |
|
|
|
317 |
|
|
case vect_used_in_outer:
|
318 |
|
|
gcc_assert (STMT_VINFO_DEF_TYPE (stmt_vinfo) != vect_reduction_def);
|
319 |
|
|
relevant = vect_used_in_scope;
|
320 |
|
|
break;
|
321 |
|
|
|
322 |
|
|
case vect_used_in_scope:
|
323 |
|
|
break;
|
324 |
|
|
|
325 |
|
|
default:
|
326 |
|
|
gcc_unreachable ();
|
327 |
|
|
}
|
328 |
|
|
}
|
329 |
|
|
|
330 |
|
|
/* case 3b: inner-loop stmt defining an outer-loop stmt:
|
331 |
|
|
outer-loop-header-bb:
|
332 |
|
|
...
|
333 |
|
|
inner-loop:
|
334 |
|
|
d = def_stmt
|
335 |
|
|
outer-loop-tail-bb (or outer-loop-exit-bb in double reduction):
|
336 |
|
|
stmt # use (d) */
|
337 |
|
|
else if (flow_loop_nested_p (bb->loop_father, def_bb->loop_father))
|
338 |
|
|
{
|
339 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
340 |
|
|
fprintf (vect_dump, "inner-loop def-stmt defining outer-loop stmt.");
|
341 |
|
|
|
342 |
|
|
switch (relevant)
|
343 |
|
|
{
|
344 |
|
|
case vect_unused_in_scope:
|
345 |
|
|
relevant = (STMT_VINFO_DEF_TYPE (stmt_vinfo) == vect_reduction_def
|
346 |
|
|
|| STMT_VINFO_DEF_TYPE (stmt_vinfo) == vect_double_reduction_def) ?
|
347 |
|
|
vect_used_in_outer_by_reduction : vect_unused_in_scope;
|
348 |
|
|
break;
|
349 |
|
|
|
350 |
|
|
case vect_used_by_reduction:
|
351 |
|
|
relevant = vect_used_in_outer_by_reduction;
|
352 |
|
|
break;
|
353 |
|
|
|
354 |
|
|
case vect_used_in_scope:
|
355 |
|
|
relevant = vect_used_in_outer;
|
356 |
|
|
break;
|
357 |
|
|
|
358 |
|
|
default:
|
359 |
|
|
gcc_unreachable ();
|
360 |
|
|
}
|
361 |
|
|
}
|
362 |
|
|
|
363 |
|
|
vect_mark_relevant (worklist, def_stmt, relevant, live_p);
|
364 |
|
|
return true;
|
365 |
|
|
}
|
366 |
|
|
|
367 |
|
|
|
368 |
|
|
/* Function vect_mark_stmts_to_be_vectorized.
|
369 |
|
|
|
370 |
|
|
Not all stmts in the loop need to be vectorized. For example:
|
371 |
|
|
|
372 |
|
|
for i...
|
373 |
|
|
for j...
|
374 |
|
|
1. T0 = i + j
|
375 |
|
|
2. T1 = a[T0]
|
376 |
|
|
|
377 |
|
|
3. j = j + 1
|
378 |
|
|
|
379 |
|
|
Stmt 1 and 3 do not need to be vectorized, because loop control and
|
380 |
|
|
addressing of vectorized data-refs are handled differently.
|
381 |
|
|
|
382 |
|
|
This pass detects such stmts. */
|
383 |
|
|
|
384 |
|
|
bool
|
385 |
|
|
vect_mark_stmts_to_be_vectorized (loop_vec_info loop_vinfo)
|
386 |
|
|
{
|
387 |
|
|
VEC(gimple,heap) *worklist;
|
388 |
|
|
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
|
389 |
|
|
basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
|
390 |
|
|
unsigned int nbbs = loop->num_nodes;
|
391 |
|
|
gimple_stmt_iterator si;
|
392 |
|
|
gimple stmt;
|
393 |
|
|
unsigned int i;
|
394 |
|
|
stmt_vec_info stmt_vinfo;
|
395 |
|
|
basic_block bb;
|
396 |
|
|
gimple phi;
|
397 |
|
|
bool live_p;
|
398 |
|
|
enum vect_relevant relevant, tmp_relevant;
|
399 |
|
|
enum vect_def_type def_type;
|
400 |
|
|
|
401 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
402 |
|
|
fprintf (vect_dump, "=== vect_mark_stmts_to_be_vectorized ===");
|
403 |
|
|
|
404 |
|
|
worklist = VEC_alloc (gimple, heap, 64);
|
405 |
|
|
|
406 |
|
|
/* 1. Init worklist. */
|
407 |
|
|
for (i = 0; i < nbbs; i++)
|
408 |
|
|
{
|
409 |
|
|
bb = bbs[i];
|
410 |
|
|
for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
|
411 |
|
|
{
|
412 |
|
|
phi = gsi_stmt (si);
|
413 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
414 |
|
|
{
|
415 |
|
|
fprintf (vect_dump, "init: phi relevant? ");
|
416 |
|
|
print_gimple_stmt (vect_dump, phi, 0, TDF_SLIM);
|
417 |
|
|
}
|
418 |
|
|
|
419 |
|
|
if (vect_stmt_relevant_p (phi, loop_vinfo, &relevant, &live_p))
|
420 |
|
|
vect_mark_relevant (&worklist, phi, relevant, live_p);
|
421 |
|
|
}
|
422 |
|
|
for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
|
423 |
|
|
{
|
424 |
|
|
stmt = gsi_stmt (si);
|
425 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
426 |
|
|
{
|
427 |
|
|
fprintf (vect_dump, "init: stmt relevant? ");
|
428 |
|
|
print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
|
429 |
|
|
}
|
430 |
|
|
|
431 |
|
|
if (vect_stmt_relevant_p (stmt, loop_vinfo, &relevant, &live_p))
|
432 |
|
|
vect_mark_relevant (&worklist, stmt, relevant, live_p);
|
433 |
|
|
}
|
434 |
|
|
}
|
435 |
|
|
|
436 |
|
|
/* 2. Process_worklist */
|
437 |
|
|
while (VEC_length (gimple, worklist) > 0)
|
438 |
|
|
{
|
439 |
|
|
use_operand_p use_p;
|
440 |
|
|
ssa_op_iter iter;
|
441 |
|
|
|
442 |
|
|
stmt = VEC_pop (gimple, worklist);
|
443 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
444 |
|
|
{
|
445 |
|
|
fprintf (vect_dump, "worklist: examine stmt: ");
|
446 |
|
|
print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
|
447 |
|
|
}
|
448 |
|
|
|
449 |
|
|
/* Examine the USEs of STMT. For each USE, mark the stmt that defines it
|
450 |
|
|
(DEF_STMT) as relevant/irrelevant and live/dead according to the
|
451 |
|
|
liveness and relevance properties of STMT. */
|
452 |
|
|
stmt_vinfo = vinfo_for_stmt (stmt);
|
453 |
|
|
relevant = STMT_VINFO_RELEVANT (stmt_vinfo);
|
454 |
|
|
live_p = STMT_VINFO_LIVE_P (stmt_vinfo);
|
455 |
|
|
|
456 |
|
|
/* Generally, the liveness and relevance properties of STMT are
|
457 |
|
|
propagated as is to the DEF_STMTs of its USEs:
|
458 |
|
|
live_p <-- STMT_VINFO_LIVE_P (STMT_VINFO)
|
459 |
|
|
relevant <-- STMT_VINFO_RELEVANT (STMT_VINFO)
|
460 |
|
|
|
461 |
|
|
One exception is when STMT has been identified as defining a reduction
|
462 |
|
|
variable; in this case we set the liveness/relevance as follows:
|
463 |
|
|
live_p = false
|
464 |
|
|
relevant = vect_used_by_reduction
|
465 |
|
|
This is because we distinguish between two kinds of relevant stmts -
|
466 |
|
|
those that are used by a reduction computation, and those that are
|
467 |
|
|
(also) used by a regular computation. This allows us later on to
|
468 |
|
|
identify stmts that are used solely by a reduction, and therefore the
|
469 |
|
|
order of the results that they produce does not have to be kept. */
|
470 |
|
|
|
471 |
|
|
def_type = STMT_VINFO_DEF_TYPE (stmt_vinfo);
|
472 |
|
|
tmp_relevant = relevant;
|
473 |
|
|
switch (def_type)
|
474 |
|
|
{
|
475 |
|
|
case vect_reduction_def:
|
476 |
|
|
switch (tmp_relevant)
|
477 |
|
|
{
|
478 |
|
|
case vect_unused_in_scope:
|
479 |
|
|
relevant = vect_used_by_reduction;
|
480 |
|
|
break;
|
481 |
|
|
|
482 |
|
|
case vect_used_by_reduction:
|
483 |
|
|
if (gimple_code (stmt) == GIMPLE_PHI)
|
484 |
|
|
break;
|
485 |
|
|
/* fall through */
|
486 |
|
|
|
487 |
|
|
default:
|
488 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
489 |
|
|
fprintf (vect_dump, "unsupported use of reduction.");
|
490 |
|
|
|
491 |
|
|
VEC_free (gimple, heap, worklist);
|
492 |
|
|
return false;
|
493 |
|
|
}
|
494 |
|
|
|
495 |
|
|
live_p = false;
|
496 |
|
|
break;
|
497 |
|
|
|
498 |
|
|
case vect_nested_cycle:
|
499 |
|
|
if (tmp_relevant != vect_unused_in_scope
|
500 |
|
|
&& tmp_relevant != vect_used_in_outer_by_reduction
|
501 |
|
|
&& tmp_relevant != vect_used_in_outer)
|
502 |
|
|
{
|
503 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
504 |
|
|
fprintf (vect_dump, "unsupported use of nested cycle.");
|
505 |
|
|
|
506 |
|
|
VEC_free (gimple, heap, worklist);
|
507 |
|
|
return false;
|
508 |
|
|
}
|
509 |
|
|
|
510 |
|
|
live_p = false;
|
511 |
|
|
break;
|
512 |
|
|
|
513 |
|
|
case vect_double_reduction_def:
|
514 |
|
|
if (tmp_relevant != vect_unused_in_scope
|
515 |
|
|
&& tmp_relevant != vect_used_by_reduction)
|
516 |
|
|
{
|
517 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
518 |
|
|
fprintf (vect_dump, "unsupported use of double reduction.");
|
519 |
|
|
|
520 |
|
|
VEC_free (gimple, heap, worklist);
|
521 |
|
|
return false;
|
522 |
|
|
}
|
523 |
|
|
|
524 |
|
|
live_p = false;
|
525 |
|
|
break;
|
526 |
|
|
|
527 |
|
|
default:
|
528 |
|
|
break;
|
529 |
|
|
}
|
530 |
|
|
|
531 |
|
|
FOR_EACH_PHI_OR_STMT_USE (use_p, stmt, iter, SSA_OP_USE)
|
532 |
|
|
{
|
533 |
|
|
tree op = USE_FROM_PTR (use_p);
|
534 |
|
|
if (!process_use (stmt, op, loop_vinfo, live_p, relevant, &worklist))
|
535 |
|
|
{
|
536 |
|
|
VEC_free (gimple, heap, worklist);
|
537 |
|
|
return false;
|
538 |
|
|
}
|
539 |
|
|
}
|
540 |
|
|
} /* while worklist */
|
541 |
|
|
|
542 |
|
|
VEC_free (gimple, heap, worklist);
|
543 |
|
|
return true;
|
544 |
|
|
}
|
545 |
|
|
|
546 |
|
|
|
547 |
|
|
int
|
548 |
|
|
cost_for_stmt (gimple stmt)
|
549 |
|
|
{
|
550 |
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
|
551 |
|
|
|
552 |
|
|
switch (STMT_VINFO_TYPE (stmt_info))
|
553 |
|
|
{
|
554 |
|
|
case load_vec_info_type:
|
555 |
|
|
return TARG_SCALAR_LOAD_COST;
|
556 |
|
|
case store_vec_info_type:
|
557 |
|
|
return TARG_SCALAR_STORE_COST;
|
558 |
|
|
case op_vec_info_type:
|
559 |
|
|
case condition_vec_info_type:
|
560 |
|
|
case assignment_vec_info_type:
|
561 |
|
|
case reduc_vec_info_type:
|
562 |
|
|
case induc_vec_info_type:
|
563 |
|
|
case type_promotion_vec_info_type:
|
564 |
|
|
case type_demotion_vec_info_type:
|
565 |
|
|
case type_conversion_vec_info_type:
|
566 |
|
|
case call_vec_info_type:
|
567 |
|
|
return TARG_SCALAR_STMT_COST;
|
568 |
|
|
case undef_vec_info_type:
|
569 |
|
|
default:
|
570 |
|
|
gcc_unreachable ();
|
571 |
|
|
}
|
572 |
|
|
}
|
573 |
|
|
|
574 |
|
|
/* Function vect_model_simple_cost.
|
575 |
|
|
|
576 |
|
|
Models cost for simple operations, i.e. those that only emit ncopies of a
|
577 |
|
|
single op. Right now, this does not account for multiple insns that could
|
578 |
|
|
be generated for the single vector op. We will handle that shortly. */
|
579 |
|
|
|
580 |
|
|
void
|
581 |
|
|
vect_model_simple_cost (stmt_vec_info stmt_info, int ncopies,
|
582 |
|
|
enum vect_def_type *dt, slp_tree slp_node)
|
583 |
|
|
{
|
584 |
|
|
int i;
|
585 |
|
|
int inside_cost = 0, outside_cost = 0;
|
586 |
|
|
|
587 |
|
|
/* The SLP costs were already calculated during SLP tree build. */
|
588 |
|
|
if (PURE_SLP_STMT (stmt_info))
|
589 |
|
|
return;
|
590 |
|
|
|
591 |
|
|
inside_cost = ncopies * TARG_VEC_STMT_COST;
|
592 |
|
|
|
593 |
|
|
/* FORNOW: Assuming maximum 2 args per stmts. */
|
594 |
|
|
for (i = 0; i < 2; i++)
|
595 |
|
|
{
|
596 |
|
|
if (dt[i] == vect_constant_def || dt[i] == vect_external_def)
|
597 |
|
|
outside_cost += TARG_SCALAR_TO_VEC_COST;
|
598 |
|
|
}
|
599 |
|
|
|
600 |
|
|
if (vect_print_dump_info (REPORT_COST))
|
601 |
|
|
fprintf (vect_dump, "vect_model_simple_cost: inside_cost = %d, "
|
602 |
|
|
"outside_cost = %d .", inside_cost, outside_cost);
|
603 |
|
|
|
604 |
|
|
/* Set the costs either in STMT_INFO or SLP_NODE (if exists). */
|
605 |
|
|
stmt_vinfo_set_inside_of_loop_cost (stmt_info, slp_node, inside_cost);
|
606 |
|
|
stmt_vinfo_set_outside_of_loop_cost (stmt_info, slp_node, outside_cost);
|
607 |
|
|
}
|
608 |
|
|
|
609 |
|
|
|
610 |
|
|
/* Function vect_cost_strided_group_size
|
611 |
|
|
|
612 |
|
|
For strided load or store, return the group_size only if it is the first
|
613 |
|
|
load or store of a group, else return 1. This ensures that group size is
|
614 |
|
|
only returned once per group. */
|
615 |
|
|
|
616 |
|
|
static int
|
617 |
|
|
vect_cost_strided_group_size (stmt_vec_info stmt_info)
|
618 |
|
|
{
|
619 |
|
|
gimple first_stmt = DR_GROUP_FIRST_DR (stmt_info);
|
620 |
|
|
|
621 |
|
|
if (first_stmt == STMT_VINFO_STMT (stmt_info))
|
622 |
|
|
return DR_GROUP_SIZE (stmt_info);
|
623 |
|
|
|
624 |
|
|
return 1;
|
625 |
|
|
}
|
626 |
|
|
|
627 |
|
|
|
628 |
|
|
/* Function vect_model_store_cost
|
629 |
|
|
|
630 |
|
|
Models cost for stores. In the case of strided accesses, one access
|
631 |
|
|
has the overhead of the strided access attributed to it. */
|
632 |
|
|
|
633 |
|
|
void
|
634 |
|
|
vect_model_store_cost (stmt_vec_info stmt_info, int ncopies,
|
635 |
|
|
enum vect_def_type dt, slp_tree slp_node)
|
636 |
|
|
{
|
637 |
|
|
int group_size;
|
638 |
|
|
int inside_cost = 0, outside_cost = 0;
|
639 |
|
|
|
640 |
|
|
/* The SLP costs were already calculated during SLP tree build. */
|
641 |
|
|
if (PURE_SLP_STMT (stmt_info))
|
642 |
|
|
return;
|
643 |
|
|
|
644 |
|
|
if (dt == vect_constant_def || dt == vect_external_def)
|
645 |
|
|
outside_cost = TARG_SCALAR_TO_VEC_COST;
|
646 |
|
|
|
647 |
|
|
/* Strided access? */
|
648 |
|
|
if (DR_GROUP_FIRST_DR (stmt_info) && !slp_node)
|
649 |
|
|
group_size = vect_cost_strided_group_size (stmt_info);
|
650 |
|
|
/* Not a strided access. */
|
651 |
|
|
else
|
652 |
|
|
group_size = 1;
|
653 |
|
|
|
654 |
|
|
/* Is this an access in a group of stores, which provide strided access?
|
655 |
|
|
If so, add in the cost of the permutes. */
|
656 |
|
|
if (group_size > 1)
|
657 |
|
|
{
|
658 |
|
|
/* Uses a high and low interleave operation for each needed permute. */
|
659 |
|
|
inside_cost = ncopies * exact_log2(group_size) * group_size
|
660 |
|
|
* TARG_VEC_STMT_COST;
|
661 |
|
|
|
662 |
|
|
if (vect_print_dump_info (REPORT_COST))
|
663 |
|
|
fprintf (vect_dump, "vect_model_store_cost: strided group_size = %d .",
|
664 |
|
|
group_size);
|
665 |
|
|
|
666 |
|
|
}
|
667 |
|
|
|
668 |
|
|
/* Costs of the stores. */
|
669 |
|
|
inside_cost += ncopies * TARG_VEC_STORE_COST;
|
670 |
|
|
|
671 |
|
|
if (vect_print_dump_info (REPORT_COST))
|
672 |
|
|
fprintf (vect_dump, "vect_model_store_cost: inside_cost = %d, "
|
673 |
|
|
"outside_cost = %d .", inside_cost, outside_cost);
|
674 |
|
|
|
675 |
|
|
/* Set the costs either in STMT_INFO or SLP_NODE (if exists). */
|
676 |
|
|
stmt_vinfo_set_inside_of_loop_cost (stmt_info, slp_node, inside_cost);
|
677 |
|
|
stmt_vinfo_set_outside_of_loop_cost (stmt_info, slp_node, outside_cost);
|
678 |
|
|
}
|
679 |
|
|
|
680 |
|
|
|
681 |
|
|
/* Function vect_model_load_cost
|
682 |
|
|
|
683 |
|
|
Models cost for loads. In the case of strided accesses, the last access
|
684 |
|
|
has the overhead of the strided access attributed to it. Since unaligned
|
685 |
|
|
accesses are supported for loads, we also account for the costs of the
|
686 |
|
|
access scheme chosen. */
|
687 |
|
|
|
688 |
|
|
void
|
689 |
|
|
vect_model_load_cost (stmt_vec_info stmt_info, int ncopies, slp_tree slp_node)
|
690 |
|
|
|
691 |
|
|
{
|
692 |
|
|
int group_size;
|
693 |
|
|
int alignment_support_cheme;
|
694 |
|
|
gimple first_stmt;
|
695 |
|
|
struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info), *first_dr;
|
696 |
|
|
int inside_cost = 0, outside_cost = 0;
|
697 |
|
|
|
698 |
|
|
/* The SLP costs were already calculated during SLP tree build. */
|
699 |
|
|
if (PURE_SLP_STMT (stmt_info))
|
700 |
|
|
return;
|
701 |
|
|
|
702 |
|
|
/* Strided accesses? */
|
703 |
|
|
first_stmt = DR_GROUP_FIRST_DR (stmt_info);
|
704 |
|
|
if (first_stmt && !slp_node)
|
705 |
|
|
{
|
706 |
|
|
group_size = vect_cost_strided_group_size (stmt_info);
|
707 |
|
|
first_dr = STMT_VINFO_DATA_REF (vinfo_for_stmt (first_stmt));
|
708 |
|
|
}
|
709 |
|
|
/* Not a strided access. */
|
710 |
|
|
else
|
711 |
|
|
{
|
712 |
|
|
group_size = 1;
|
713 |
|
|
first_dr = dr;
|
714 |
|
|
}
|
715 |
|
|
|
716 |
|
|
alignment_support_cheme = vect_supportable_dr_alignment (first_dr);
|
717 |
|
|
|
718 |
|
|
/* Is this an access in a group of loads providing strided access?
|
719 |
|
|
If so, add in the cost of the permutes. */
|
720 |
|
|
if (group_size > 1)
|
721 |
|
|
{
|
722 |
|
|
/* Uses an even and odd extract operations for each needed permute. */
|
723 |
|
|
inside_cost = ncopies * exact_log2(group_size) * group_size
|
724 |
|
|
* TARG_VEC_STMT_COST;
|
725 |
|
|
|
726 |
|
|
if (vect_print_dump_info (REPORT_COST))
|
727 |
|
|
fprintf (vect_dump, "vect_model_load_cost: strided group_size = %d .",
|
728 |
|
|
group_size);
|
729 |
|
|
|
730 |
|
|
}
|
731 |
|
|
|
732 |
|
|
/* The loads themselves. */
|
733 |
|
|
switch (alignment_support_cheme)
|
734 |
|
|
{
|
735 |
|
|
case dr_aligned:
|
736 |
|
|
{
|
737 |
|
|
inside_cost += ncopies * TARG_VEC_LOAD_COST;
|
738 |
|
|
|
739 |
|
|
if (vect_print_dump_info (REPORT_COST))
|
740 |
|
|
fprintf (vect_dump, "vect_model_load_cost: aligned.");
|
741 |
|
|
|
742 |
|
|
break;
|
743 |
|
|
}
|
744 |
|
|
case dr_unaligned_supported:
|
745 |
|
|
{
|
746 |
|
|
/* Here, we assign an additional cost for the unaligned load. */
|
747 |
|
|
inside_cost += ncopies * TARG_VEC_UNALIGNED_LOAD_COST;
|
748 |
|
|
|
749 |
|
|
if (vect_print_dump_info (REPORT_COST))
|
750 |
|
|
fprintf (vect_dump, "vect_model_load_cost: unaligned supported by "
|
751 |
|
|
"hardware.");
|
752 |
|
|
|
753 |
|
|
break;
|
754 |
|
|
}
|
755 |
|
|
case dr_explicit_realign:
|
756 |
|
|
{
|
757 |
|
|
inside_cost += ncopies * (2*TARG_VEC_LOAD_COST + TARG_VEC_STMT_COST);
|
758 |
|
|
|
759 |
|
|
/* FIXME: If the misalignment remains fixed across the iterations of
|
760 |
|
|
the containing loop, the following cost should be added to the
|
761 |
|
|
outside costs. */
|
762 |
|
|
if (targetm.vectorize.builtin_mask_for_load)
|
763 |
|
|
inside_cost += TARG_VEC_STMT_COST;
|
764 |
|
|
|
765 |
|
|
break;
|
766 |
|
|
}
|
767 |
|
|
case dr_explicit_realign_optimized:
|
768 |
|
|
{
|
769 |
|
|
if (vect_print_dump_info (REPORT_COST))
|
770 |
|
|
fprintf (vect_dump, "vect_model_load_cost: unaligned software "
|
771 |
|
|
"pipelined.");
|
772 |
|
|
|
773 |
|
|
/* Unaligned software pipeline has a load of an address, an initial
|
774 |
|
|
load, and possibly a mask operation to "prime" the loop. However,
|
775 |
|
|
if this is an access in a group of loads, which provide strided
|
776 |
|
|
access, then the above cost should only be considered for one
|
777 |
|
|
access in the group. Inside the loop, there is a load op
|
778 |
|
|
and a realignment op. */
|
779 |
|
|
|
780 |
|
|
if ((!DR_GROUP_FIRST_DR (stmt_info)) || group_size > 1 || slp_node)
|
781 |
|
|
{
|
782 |
|
|
outside_cost = 2*TARG_VEC_STMT_COST;
|
783 |
|
|
if (targetm.vectorize.builtin_mask_for_load)
|
784 |
|
|
outside_cost += TARG_VEC_STMT_COST;
|
785 |
|
|
}
|
786 |
|
|
|
787 |
|
|
inside_cost += ncopies * (TARG_VEC_LOAD_COST + TARG_VEC_STMT_COST);
|
788 |
|
|
|
789 |
|
|
break;
|
790 |
|
|
}
|
791 |
|
|
|
792 |
|
|
default:
|
793 |
|
|
gcc_unreachable ();
|
794 |
|
|
}
|
795 |
|
|
|
796 |
|
|
if (vect_print_dump_info (REPORT_COST))
|
797 |
|
|
fprintf (vect_dump, "vect_model_load_cost: inside_cost = %d, "
|
798 |
|
|
"outside_cost = %d .", inside_cost, outside_cost);
|
799 |
|
|
|
800 |
|
|
/* Set the costs either in STMT_INFO or SLP_NODE (if exists). */
|
801 |
|
|
stmt_vinfo_set_inside_of_loop_cost (stmt_info, slp_node, inside_cost);
|
802 |
|
|
stmt_vinfo_set_outside_of_loop_cost (stmt_info, slp_node, outside_cost);
|
803 |
|
|
}
|
804 |
|
|
|
805 |
|
|
|
806 |
|
|
/* Function vect_init_vector.
|
807 |
|
|
|
808 |
|
|
Insert a new stmt (INIT_STMT) that initializes a new vector variable with
|
809 |
|
|
the vector elements of VECTOR_VAR. Place the initialization at BSI if it
|
810 |
|
|
is not NULL. Otherwise, place the initialization at the loop preheader.
|
811 |
|
|
Return the DEF of INIT_STMT.
|
812 |
|
|
It will be used in the vectorization of STMT. */
|
813 |
|
|
|
814 |
|
|
tree
|
815 |
|
|
vect_init_vector (gimple stmt, tree vector_var, tree vector_type,
|
816 |
|
|
gimple_stmt_iterator *gsi)
|
817 |
|
|
{
|
818 |
|
|
stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt);
|
819 |
|
|
tree new_var;
|
820 |
|
|
gimple init_stmt;
|
821 |
|
|
tree vec_oprnd;
|
822 |
|
|
edge pe;
|
823 |
|
|
tree new_temp;
|
824 |
|
|
basic_block new_bb;
|
825 |
|
|
|
826 |
|
|
new_var = vect_get_new_vect_var (vector_type, vect_simple_var, "cst_");
|
827 |
|
|
add_referenced_var (new_var);
|
828 |
|
|
init_stmt = gimple_build_assign (new_var, vector_var);
|
829 |
|
|
new_temp = make_ssa_name (new_var, init_stmt);
|
830 |
|
|
gimple_assign_set_lhs (init_stmt, new_temp);
|
831 |
|
|
|
832 |
|
|
if (gsi)
|
833 |
|
|
vect_finish_stmt_generation (stmt, init_stmt, gsi);
|
834 |
|
|
else
|
835 |
|
|
{
|
836 |
|
|
loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
|
837 |
|
|
|
838 |
|
|
if (loop_vinfo)
|
839 |
|
|
{
|
840 |
|
|
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
|
841 |
|
|
|
842 |
|
|
if (nested_in_vect_loop_p (loop, stmt))
|
843 |
|
|
loop = loop->inner;
|
844 |
|
|
|
845 |
|
|
pe = loop_preheader_edge (loop);
|
846 |
|
|
new_bb = gsi_insert_on_edge_immediate (pe, init_stmt);
|
847 |
|
|
gcc_assert (!new_bb);
|
848 |
|
|
}
|
849 |
|
|
else
|
850 |
|
|
{
|
851 |
|
|
bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_vinfo);
|
852 |
|
|
basic_block bb;
|
853 |
|
|
gimple_stmt_iterator gsi_bb_start;
|
854 |
|
|
|
855 |
|
|
gcc_assert (bb_vinfo);
|
856 |
|
|
bb = BB_VINFO_BB (bb_vinfo);
|
857 |
|
|
gsi_bb_start = gsi_after_labels (bb);
|
858 |
|
|
gsi_insert_before (&gsi_bb_start, init_stmt, GSI_SAME_STMT);
|
859 |
|
|
}
|
860 |
|
|
}
|
861 |
|
|
|
862 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
863 |
|
|
{
|
864 |
|
|
fprintf (vect_dump, "created new init_stmt: ");
|
865 |
|
|
print_gimple_stmt (vect_dump, init_stmt, 0, TDF_SLIM);
|
866 |
|
|
}
|
867 |
|
|
|
868 |
|
|
vec_oprnd = gimple_assign_lhs (init_stmt);
|
869 |
|
|
return vec_oprnd;
|
870 |
|
|
}
|
871 |
|
|
|
872 |
|
|
|
873 |
|
|
/* Function vect_get_vec_def_for_operand.
|
874 |
|
|
|
875 |
|
|
OP is an operand in STMT. This function returns a (vector) def that will be
|
876 |
|
|
used in the vectorized stmt for STMT.
|
877 |
|
|
|
878 |
|
|
In the case that OP is an SSA_NAME which is defined in the loop, then
|
879 |
|
|
STMT_VINFO_VEC_STMT of the defining stmt holds the relevant def.
|
880 |
|
|
|
881 |
|
|
In case OP is an invariant or constant, a new stmt that creates a vector def
|
882 |
|
|
needs to be introduced. */
|
883 |
|
|
|
884 |
|
|
tree
|
885 |
|
|
vect_get_vec_def_for_operand (tree op, gimple stmt, tree *scalar_def)
|
886 |
|
|
{
|
887 |
|
|
tree vec_oprnd;
|
888 |
|
|
gimple vec_stmt;
|
889 |
|
|
gimple def_stmt;
|
890 |
|
|
stmt_vec_info def_stmt_info = NULL;
|
891 |
|
|
stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt);
|
892 |
|
|
tree vectype = STMT_VINFO_VECTYPE (stmt_vinfo);
|
893 |
|
|
unsigned int nunits = TYPE_VECTOR_SUBPARTS (vectype);
|
894 |
|
|
loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
|
895 |
|
|
tree vec_inv;
|
896 |
|
|
tree vec_cst;
|
897 |
|
|
tree t = NULL_TREE;
|
898 |
|
|
tree def;
|
899 |
|
|
int i;
|
900 |
|
|
enum vect_def_type dt;
|
901 |
|
|
bool is_simple_use;
|
902 |
|
|
tree vector_type;
|
903 |
|
|
|
904 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
905 |
|
|
{
|
906 |
|
|
fprintf (vect_dump, "vect_get_vec_def_for_operand: ");
|
907 |
|
|
print_generic_expr (vect_dump, op, TDF_SLIM);
|
908 |
|
|
}
|
909 |
|
|
|
910 |
|
|
is_simple_use = vect_is_simple_use (op, loop_vinfo, NULL, &def_stmt, &def,
|
911 |
|
|
&dt);
|
912 |
|
|
gcc_assert (is_simple_use);
|
913 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
914 |
|
|
{
|
915 |
|
|
if (def)
|
916 |
|
|
{
|
917 |
|
|
fprintf (vect_dump, "def = ");
|
918 |
|
|
print_generic_expr (vect_dump, def, TDF_SLIM);
|
919 |
|
|
}
|
920 |
|
|
if (def_stmt)
|
921 |
|
|
{
|
922 |
|
|
fprintf (vect_dump, " def_stmt = ");
|
923 |
|
|
print_gimple_stmt (vect_dump, def_stmt, 0, TDF_SLIM);
|
924 |
|
|
}
|
925 |
|
|
}
|
926 |
|
|
|
927 |
|
|
switch (dt)
|
928 |
|
|
{
|
929 |
|
|
/* Case 1: operand is a constant. */
|
930 |
|
|
case vect_constant_def:
|
931 |
|
|
{
|
932 |
|
|
vector_type = get_vectype_for_scalar_type (TREE_TYPE (op));
|
933 |
|
|
gcc_assert (vector_type);
|
934 |
|
|
|
935 |
|
|
if (scalar_def)
|
936 |
|
|
*scalar_def = op;
|
937 |
|
|
|
938 |
|
|
/* Create 'vect_cst_ = {cst,cst,...,cst}' */
|
939 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
940 |
|
|
fprintf (vect_dump, "Create vector_cst. nunits = %d", nunits);
|
941 |
|
|
|
942 |
|
|
for (i = nunits - 1; i >= 0; --i)
|
943 |
|
|
{
|
944 |
|
|
t = tree_cons (NULL_TREE, op, t);
|
945 |
|
|
}
|
946 |
|
|
vec_cst = build_vector (vector_type, t);
|
947 |
|
|
return vect_init_vector (stmt, vec_cst, vector_type, NULL);
|
948 |
|
|
}
|
949 |
|
|
|
950 |
|
|
/* Case 2: operand is defined outside the loop - loop invariant. */
|
951 |
|
|
case vect_external_def:
|
952 |
|
|
{
|
953 |
|
|
vector_type = get_vectype_for_scalar_type (TREE_TYPE (def));
|
954 |
|
|
gcc_assert (vector_type);
|
955 |
|
|
nunits = TYPE_VECTOR_SUBPARTS (vector_type);
|
956 |
|
|
|
957 |
|
|
if (scalar_def)
|
958 |
|
|
*scalar_def = def;
|
959 |
|
|
|
960 |
|
|
/* Create 'vec_inv = {inv,inv,..,inv}' */
|
961 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
962 |
|
|
fprintf (vect_dump, "Create vector_inv.");
|
963 |
|
|
|
964 |
|
|
for (i = nunits - 1; i >= 0; --i)
|
965 |
|
|
{
|
966 |
|
|
t = tree_cons (NULL_TREE, def, t);
|
967 |
|
|
}
|
968 |
|
|
|
969 |
|
|
/* FIXME: use build_constructor directly. */
|
970 |
|
|
vec_inv = build_constructor_from_list (vector_type, t);
|
971 |
|
|
return vect_init_vector (stmt, vec_inv, vector_type, NULL);
|
972 |
|
|
}
|
973 |
|
|
|
974 |
|
|
/* Case 3: operand is defined inside the loop. */
|
975 |
|
|
case vect_internal_def:
|
976 |
|
|
{
|
977 |
|
|
if (scalar_def)
|
978 |
|
|
*scalar_def = NULL/* FIXME tuples: def_stmt*/;
|
979 |
|
|
|
980 |
|
|
/* Get the def from the vectorized stmt. */
|
981 |
|
|
def_stmt_info = vinfo_for_stmt (def_stmt);
|
982 |
|
|
vec_stmt = STMT_VINFO_VEC_STMT (def_stmt_info);
|
983 |
|
|
gcc_assert (vec_stmt);
|
984 |
|
|
if (gimple_code (vec_stmt) == GIMPLE_PHI)
|
985 |
|
|
vec_oprnd = PHI_RESULT (vec_stmt);
|
986 |
|
|
else if (is_gimple_call (vec_stmt))
|
987 |
|
|
vec_oprnd = gimple_call_lhs (vec_stmt);
|
988 |
|
|
else
|
989 |
|
|
vec_oprnd = gimple_assign_lhs (vec_stmt);
|
990 |
|
|
return vec_oprnd;
|
991 |
|
|
}
|
992 |
|
|
|
993 |
|
|
/* Case 4: operand is defined by a loop header phi - reduction */
|
994 |
|
|
case vect_reduction_def:
|
995 |
|
|
case vect_double_reduction_def:
|
996 |
|
|
case vect_nested_cycle:
|
997 |
|
|
{
|
998 |
|
|
struct loop *loop;
|
999 |
|
|
|
1000 |
|
|
gcc_assert (gimple_code (def_stmt) == GIMPLE_PHI);
|
1001 |
|
|
loop = (gimple_bb (def_stmt))->loop_father;
|
1002 |
|
|
|
1003 |
|
|
/* Get the def before the loop */
|
1004 |
|
|
op = PHI_ARG_DEF_FROM_EDGE (def_stmt, loop_preheader_edge (loop));
|
1005 |
|
|
return get_initial_def_for_reduction (stmt, op, scalar_def);
|
1006 |
|
|
}
|
1007 |
|
|
|
1008 |
|
|
/* Case 5: operand is defined by loop-header phi - induction. */
|
1009 |
|
|
case vect_induction_def:
|
1010 |
|
|
{
|
1011 |
|
|
gcc_assert (gimple_code (def_stmt) == GIMPLE_PHI);
|
1012 |
|
|
|
1013 |
|
|
/* Get the def from the vectorized stmt. */
|
1014 |
|
|
def_stmt_info = vinfo_for_stmt (def_stmt);
|
1015 |
|
|
vec_stmt = STMT_VINFO_VEC_STMT (def_stmt_info);
|
1016 |
|
|
gcc_assert (vec_stmt && gimple_code (vec_stmt) == GIMPLE_PHI);
|
1017 |
|
|
vec_oprnd = PHI_RESULT (vec_stmt);
|
1018 |
|
|
return vec_oprnd;
|
1019 |
|
|
}
|
1020 |
|
|
|
1021 |
|
|
default:
|
1022 |
|
|
gcc_unreachable ();
|
1023 |
|
|
}
|
1024 |
|
|
}
|
1025 |
|
|
|
1026 |
|
|
|
1027 |
|
|
/* Function vect_get_vec_def_for_stmt_copy
|
1028 |
|
|
|
1029 |
|
|
Return a vector-def for an operand. This function is used when the
|
1030 |
|
|
vectorized stmt to be created (by the caller to this function) is a "copy"
|
1031 |
|
|
created in case the vectorized result cannot fit in one vector, and several
|
1032 |
|
|
copies of the vector-stmt are required. In this case the vector-def is
|
1033 |
|
|
retrieved from the vector stmt recorded in the STMT_VINFO_RELATED_STMT field
|
1034 |
|
|
of the stmt that defines VEC_OPRND.
|
1035 |
|
|
DT is the type of the vector def VEC_OPRND.
|
1036 |
|
|
|
1037 |
|
|
Context:
|
1038 |
|
|
In case the vectorization factor (VF) is bigger than the number
|
1039 |
|
|
of elements that can fit in a vectype (nunits), we have to generate
|
1040 |
|
|
more than one vector stmt to vectorize the scalar stmt. This situation
|
1041 |
|
|
arises when there are multiple data-types operated upon in the loop; the
|
1042 |
|
|
smallest data-type determines the VF, and as a result, when vectorizing
|
1043 |
|
|
stmts operating on wider types we need to create 'VF/nunits' "copies" of the
|
1044 |
|
|
vector stmt (each computing a vector of 'nunits' results, and together
|
1045 |
|
|
computing 'VF' results in each iteration). This function is called when
|
1046 |
|
|
vectorizing such a stmt (e.g. vectorizing S2 in the illustration below, in
|
1047 |
|
|
which VF=16 and nunits=4, so the number of copies required is 4):
|
1048 |
|
|
|
1049 |
|
|
scalar stmt: vectorized into: STMT_VINFO_RELATED_STMT
|
1050 |
|
|
|
1051 |
|
|
S1: x = load VS1.0: vx.0 = memref0 VS1.1
|
1052 |
|
|
VS1.1: vx.1 = memref1 VS1.2
|
1053 |
|
|
VS1.2: vx.2 = memref2 VS1.3
|
1054 |
|
|
VS1.3: vx.3 = memref3
|
1055 |
|
|
|
1056 |
|
|
S2: z = x + ... VSnew.0: vz0 = vx.0 + ... VSnew.1
|
1057 |
|
|
VSnew.1: vz1 = vx.1 + ... VSnew.2
|
1058 |
|
|
VSnew.2: vz2 = vx.2 + ... VSnew.3
|
1059 |
|
|
VSnew.3: vz3 = vx.3 + ...
|
1060 |
|
|
|
1061 |
|
|
The vectorization of S1 is explained in vectorizable_load.
|
1062 |
|
|
The vectorization of S2:
|
1063 |
|
|
To create the first vector-stmt out of the 4 copies - VSnew.0 -
|
1064 |
|
|
the function 'vect_get_vec_def_for_operand' is called to
|
1065 |
|
|
get the relevant vector-def for each operand of S2. For operand x it
|
1066 |
|
|
returns the vector-def 'vx.0'.
|
1067 |
|
|
|
1068 |
|
|
To create the remaining copies of the vector-stmt (VSnew.j), this
|
1069 |
|
|
function is called to get the relevant vector-def for each operand. It is
|
1070 |
|
|
obtained from the respective VS1.j stmt, which is recorded in the
|
1071 |
|
|
STMT_VINFO_RELATED_STMT field of the stmt that defines VEC_OPRND.
|
1072 |
|
|
|
1073 |
|
|
For example, to obtain the vector-def 'vx.1' in order to create the
|
1074 |
|
|
vector stmt 'VSnew.1', this function is called with VEC_OPRND='vx.0'.
|
1075 |
|
|
Given 'vx0' we obtain the stmt that defines it ('VS1.0'); from the
|
1076 |
|
|
STMT_VINFO_RELATED_STMT field of 'VS1.0' we obtain the next copy - 'VS1.1',
|
1077 |
|
|
and return its def ('vx.1').
|
1078 |
|
|
Overall, to create the above sequence this function will be called 3 times:
|
1079 |
|
|
vx.1 = vect_get_vec_def_for_stmt_copy (dt, vx.0);
|
1080 |
|
|
vx.2 = vect_get_vec_def_for_stmt_copy (dt, vx.1);
|
1081 |
|
|
vx.3 = vect_get_vec_def_for_stmt_copy (dt, vx.2); */
|
1082 |
|
|
|
1083 |
|
|
tree
|
1084 |
|
|
vect_get_vec_def_for_stmt_copy (enum vect_def_type dt, tree vec_oprnd)
|
1085 |
|
|
{
|
1086 |
|
|
gimple vec_stmt_for_operand;
|
1087 |
|
|
stmt_vec_info def_stmt_info;
|
1088 |
|
|
|
1089 |
|
|
/* Do nothing; can reuse same def. */
|
1090 |
|
|
if (dt == vect_external_def || dt == vect_constant_def )
|
1091 |
|
|
return vec_oprnd;
|
1092 |
|
|
|
1093 |
|
|
vec_stmt_for_operand = SSA_NAME_DEF_STMT (vec_oprnd);
|
1094 |
|
|
def_stmt_info = vinfo_for_stmt (vec_stmt_for_operand);
|
1095 |
|
|
gcc_assert (def_stmt_info);
|
1096 |
|
|
vec_stmt_for_operand = STMT_VINFO_RELATED_STMT (def_stmt_info);
|
1097 |
|
|
gcc_assert (vec_stmt_for_operand);
|
1098 |
|
|
vec_oprnd = gimple_get_lhs (vec_stmt_for_operand);
|
1099 |
|
|
if (gimple_code (vec_stmt_for_operand) == GIMPLE_PHI)
|
1100 |
|
|
vec_oprnd = PHI_RESULT (vec_stmt_for_operand);
|
1101 |
|
|
else
|
1102 |
|
|
vec_oprnd = gimple_get_lhs (vec_stmt_for_operand);
|
1103 |
|
|
return vec_oprnd;
|
1104 |
|
|
}
|
1105 |
|
|
|
1106 |
|
|
|
1107 |
|
|
/* Get vectorized definitions for the operands to create a copy of an original
|
1108 |
|
|
stmt. See vect_get_vec_def_for_stmt_copy() for details. */
|
1109 |
|
|
|
1110 |
|
|
static void
|
1111 |
|
|
vect_get_vec_defs_for_stmt_copy (enum vect_def_type *dt,
|
1112 |
|
|
VEC(tree,heap) **vec_oprnds0,
|
1113 |
|
|
VEC(tree,heap) **vec_oprnds1)
|
1114 |
|
|
{
|
1115 |
|
|
tree vec_oprnd = VEC_pop (tree, *vec_oprnds0);
|
1116 |
|
|
|
1117 |
|
|
vec_oprnd = vect_get_vec_def_for_stmt_copy (dt[0], vec_oprnd);
|
1118 |
|
|
VEC_quick_push (tree, *vec_oprnds0, vec_oprnd);
|
1119 |
|
|
|
1120 |
|
|
if (vec_oprnds1 && *vec_oprnds1)
|
1121 |
|
|
{
|
1122 |
|
|
vec_oprnd = VEC_pop (tree, *vec_oprnds1);
|
1123 |
|
|
vec_oprnd = vect_get_vec_def_for_stmt_copy (dt[1], vec_oprnd);
|
1124 |
|
|
VEC_quick_push (tree, *vec_oprnds1, vec_oprnd);
|
1125 |
|
|
}
|
1126 |
|
|
}
|
1127 |
|
|
|
1128 |
|
|
|
1129 |
|
|
/* Get vectorized definitions for OP0 and OP1, or SLP_NODE if it is not NULL. */
|
1130 |
|
|
|
1131 |
|
|
static void
|
1132 |
|
|
vect_get_vec_defs (tree op0, tree op1, gimple stmt,
|
1133 |
|
|
VEC(tree,heap) **vec_oprnds0, VEC(tree,heap) **vec_oprnds1,
|
1134 |
|
|
slp_tree slp_node)
|
1135 |
|
|
{
|
1136 |
|
|
if (slp_node)
|
1137 |
|
|
vect_get_slp_defs (slp_node, vec_oprnds0, vec_oprnds1);
|
1138 |
|
|
else
|
1139 |
|
|
{
|
1140 |
|
|
tree vec_oprnd;
|
1141 |
|
|
|
1142 |
|
|
*vec_oprnds0 = VEC_alloc (tree, heap, 1);
|
1143 |
|
|
vec_oprnd = vect_get_vec_def_for_operand (op0, stmt, NULL);
|
1144 |
|
|
VEC_quick_push (tree, *vec_oprnds0, vec_oprnd);
|
1145 |
|
|
|
1146 |
|
|
if (op1)
|
1147 |
|
|
{
|
1148 |
|
|
*vec_oprnds1 = VEC_alloc (tree, heap, 1);
|
1149 |
|
|
vec_oprnd = vect_get_vec_def_for_operand (op1, stmt, NULL);
|
1150 |
|
|
VEC_quick_push (tree, *vec_oprnds1, vec_oprnd);
|
1151 |
|
|
}
|
1152 |
|
|
}
|
1153 |
|
|
}
|
1154 |
|
|
|
1155 |
|
|
|
1156 |
|
|
/* Function vect_finish_stmt_generation.
|
1157 |
|
|
|
1158 |
|
|
Insert a new stmt. */
|
1159 |
|
|
|
1160 |
|
|
void
|
1161 |
|
|
vect_finish_stmt_generation (gimple stmt, gimple vec_stmt,
|
1162 |
|
|
gimple_stmt_iterator *gsi)
|
1163 |
|
|
{
|
1164 |
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
|
1165 |
|
|
loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
|
1166 |
|
|
bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
|
1167 |
|
|
|
1168 |
|
|
gcc_assert (gimple_code (stmt) != GIMPLE_LABEL);
|
1169 |
|
|
|
1170 |
|
|
gsi_insert_before (gsi, vec_stmt, GSI_SAME_STMT);
|
1171 |
|
|
|
1172 |
|
|
set_vinfo_for_stmt (vec_stmt, new_stmt_vec_info (vec_stmt, loop_vinfo,
|
1173 |
|
|
bb_vinfo));
|
1174 |
|
|
|
1175 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
1176 |
|
|
{
|
1177 |
|
|
fprintf (vect_dump, "add new stmt: ");
|
1178 |
|
|
print_gimple_stmt (vect_dump, vec_stmt, 0, TDF_SLIM);
|
1179 |
|
|
}
|
1180 |
|
|
|
1181 |
|
|
gimple_set_location (vec_stmt, gimple_location (gsi_stmt (*gsi)));
|
1182 |
|
|
}
|
1183 |
|
|
|
1184 |
|
|
/* Checks if CALL can be vectorized in type VECTYPE. Returns
|
1185 |
|
|
a function declaration if the target has a vectorized version
|
1186 |
|
|
of the function, or NULL_TREE if the function cannot be vectorized. */
|
1187 |
|
|
|
1188 |
|
|
tree
|
1189 |
|
|
vectorizable_function (gimple call, tree vectype_out, tree vectype_in)
|
1190 |
|
|
{
|
1191 |
|
|
tree fndecl = gimple_call_fndecl (call);
|
1192 |
|
|
|
1193 |
|
|
/* We only handle functions that do not read or clobber memory -- i.e.
|
1194 |
|
|
const or novops ones. */
|
1195 |
|
|
if (!(gimple_call_flags (call) & (ECF_CONST | ECF_NOVOPS)))
|
1196 |
|
|
return NULL_TREE;
|
1197 |
|
|
|
1198 |
|
|
if (!fndecl
|
1199 |
|
|
|| TREE_CODE (fndecl) != FUNCTION_DECL
|
1200 |
|
|
|| !DECL_BUILT_IN (fndecl))
|
1201 |
|
|
return NULL_TREE;
|
1202 |
|
|
|
1203 |
|
|
return targetm.vectorize.builtin_vectorized_function (fndecl, vectype_out,
|
1204 |
|
|
vectype_in);
|
1205 |
|
|
}
|
1206 |
|
|
|
1207 |
|
|
/* Function vectorizable_call.
|
1208 |
|
|
|
1209 |
|
|
Check if STMT performs a function call that can be vectorized.
|
1210 |
|
|
If VEC_STMT is also passed, vectorize the STMT: create a vectorized
|
1211 |
|
|
stmt to replace it, put it in VEC_STMT, and insert it at BSI.
|
1212 |
|
|
Return FALSE if not a vectorizable STMT, TRUE otherwise. */
|
1213 |
|
|
|
1214 |
|
|
static bool
|
1215 |
|
|
vectorizable_call (gimple stmt, gimple_stmt_iterator *gsi, gimple *vec_stmt)
|
1216 |
|
|
{
|
1217 |
|
|
tree vec_dest;
|
1218 |
|
|
tree scalar_dest;
|
1219 |
|
|
tree op, type;
|
1220 |
|
|
tree vec_oprnd0 = NULL_TREE, vec_oprnd1 = NULL_TREE;
|
1221 |
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (stmt), prev_stmt_info;
|
1222 |
|
|
tree vectype_out, vectype_in;
|
1223 |
|
|
int nunits_in;
|
1224 |
|
|
int nunits_out;
|
1225 |
|
|
loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
|
1226 |
|
|
tree fndecl, new_temp, def, rhs_type, lhs_type;
|
1227 |
|
|
gimple def_stmt;
|
1228 |
|
|
enum vect_def_type dt[2] = {vect_unknown_def_type, vect_unknown_def_type};
|
1229 |
|
|
gimple new_stmt = NULL;
|
1230 |
|
|
int ncopies, j;
|
1231 |
|
|
VEC(tree, heap) *vargs = NULL;
|
1232 |
|
|
enum { NARROW, NONE, WIDEN } modifier;
|
1233 |
|
|
size_t i, nargs;
|
1234 |
|
|
|
1235 |
|
|
/* FORNOW: unsupported in basic block SLP. */
|
1236 |
|
|
gcc_assert (loop_vinfo);
|
1237 |
|
|
|
1238 |
|
|
if (!STMT_VINFO_RELEVANT_P (stmt_info))
|
1239 |
|
|
return false;
|
1240 |
|
|
|
1241 |
|
|
if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_internal_def)
|
1242 |
|
|
return false;
|
1243 |
|
|
|
1244 |
|
|
/* FORNOW: SLP not supported. */
|
1245 |
|
|
if (STMT_SLP_TYPE (stmt_info))
|
1246 |
|
|
return false;
|
1247 |
|
|
|
1248 |
|
|
/* Is STMT a vectorizable call? */
|
1249 |
|
|
if (!is_gimple_call (stmt))
|
1250 |
|
|
return false;
|
1251 |
|
|
|
1252 |
|
|
if (TREE_CODE (gimple_call_lhs (stmt)) != SSA_NAME)
|
1253 |
|
|
return false;
|
1254 |
|
|
|
1255 |
|
|
/* Process function arguments. */
|
1256 |
|
|
rhs_type = NULL_TREE;
|
1257 |
|
|
nargs = gimple_call_num_args (stmt);
|
1258 |
|
|
|
1259 |
|
|
/* Bail out if the function has more than two arguments, we
|
1260 |
|
|
do not have interesting builtin functions to vectorize with
|
1261 |
|
|
more than two arguments. No arguments is also not good. */
|
1262 |
|
|
if (nargs == 0 || nargs > 2)
|
1263 |
|
|
return false;
|
1264 |
|
|
|
1265 |
|
|
for (i = 0; i < nargs; i++)
|
1266 |
|
|
{
|
1267 |
|
|
op = gimple_call_arg (stmt, i);
|
1268 |
|
|
|
1269 |
|
|
/* We can only handle calls with arguments of the same type. */
|
1270 |
|
|
if (rhs_type
|
1271 |
|
|
&& !types_compatible_p (rhs_type, TREE_TYPE (op)))
|
1272 |
|
|
{
|
1273 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
1274 |
|
|
fprintf (vect_dump, "argument types differ.");
|
1275 |
|
|
return false;
|
1276 |
|
|
}
|
1277 |
|
|
rhs_type = TREE_TYPE (op);
|
1278 |
|
|
|
1279 |
|
|
if (!vect_is_simple_use (op, loop_vinfo, NULL, &def_stmt, &def, &dt[i]))
|
1280 |
|
|
{
|
1281 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
1282 |
|
|
fprintf (vect_dump, "use not simple.");
|
1283 |
|
|
return false;
|
1284 |
|
|
}
|
1285 |
|
|
}
|
1286 |
|
|
|
1287 |
|
|
vectype_in = get_vectype_for_scalar_type (rhs_type);
|
1288 |
|
|
if (!vectype_in)
|
1289 |
|
|
return false;
|
1290 |
|
|
nunits_in = TYPE_VECTOR_SUBPARTS (vectype_in);
|
1291 |
|
|
|
1292 |
|
|
lhs_type = TREE_TYPE (gimple_call_lhs (stmt));
|
1293 |
|
|
vectype_out = get_vectype_for_scalar_type (lhs_type);
|
1294 |
|
|
if (!vectype_out)
|
1295 |
|
|
return false;
|
1296 |
|
|
nunits_out = TYPE_VECTOR_SUBPARTS (vectype_out);
|
1297 |
|
|
|
1298 |
|
|
/* FORNOW */
|
1299 |
|
|
if (nunits_in == nunits_out / 2)
|
1300 |
|
|
modifier = NARROW;
|
1301 |
|
|
else if (nunits_out == nunits_in)
|
1302 |
|
|
modifier = NONE;
|
1303 |
|
|
else if (nunits_out == nunits_in / 2)
|
1304 |
|
|
modifier = WIDEN;
|
1305 |
|
|
else
|
1306 |
|
|
return false;
|
1307 |
|
|
|
1308 |
|
|
/* For now, we only vectorize functions if a target specific builtin
|
1309 |
|
|
is available. TODO -- in some cases, it might be profitable to
|
1310 |
|
|
insert the calls for pieces of the vector, in order to be able
|
1311 |
|
|
to vectorize other operations in the loop. */
|
1312 |
|
|
fndecl = vectorizable_function (stmt, vectype_out, vectype_in);
|
1313 |
|
|
if (fndecl == NULL_TREE)
|
1314 |
|
|
{
|
1315 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
1316 |
|
|
fprintf (vect_dump, "function is not vectorizable.");
|
1317 |
|
|
|
1318 |
|
|
return false;
|
1319 |
|
|
}
|
1320 |
|
|
|
1321 |
|
|
gcc_assert (!gimple_vuse (stmt));
|
1322 |
|
|
|
1323 |
|
|
if (modifier == NARROW)
|
1324 |
|
|
ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits_out;
|
1325 |
|
|
else
|
1326 |
|
|
ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits_in;
|
1327 |
|
|
|
1328 |
|
|
/* Sanity check: make sure that at least one copy of the vectorized stmt
|
1329 |
|
|
needs to be generated. */
|
1330 |
|
|
gcc_assert (ncopies >= 1);
|
1331 |
|
|
|
1332 |
|
|
if (!vec_stmt) /* transformation not required. */
|
1333 |
|
|
{
|
1334 |
|
|
STMT_VINFO_TYPE (stmt_info) = call_vec_info_type;
|
1335 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
1336 |
|
|
fprintf (vect_dump, "=== vectorizable_call ===");
|
1337 |
|
|
vect_model_simple_cost (stmt_info, ncopies, dt, NULL);
|
1338 |
|
|
return true;
|
1339 |
|
|
}
|
1340 |
|
|
|
1341 |
|
|
/** Transform. **/
|
1342 |
|
|
|
1343 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
1344 |
|
|
fprintf (vect_dump, "transform operation.");
|
1345 |
|
|
|
1346 |
|
|
/* Handle def. */
|
1347 |
|
|
scalar_dest = gimple_call_lhs (stmt);
|
1348 |
|
|
vec_dest = vect_create_destination_var (scalar_dest, vectype_out);
|
1349 |
|
|
|
1350 |
|
|
prev_stmt_info = NULL;
|
1351 |
|
|
switch (modifier)
|
1352 |
|
|
{
|
1353 |
|
|
case NONE:
|
1354 |
|
|
for (j = 0; j < ncopies; ++j)
|
1355 |
|
|
{
|
1356 |
|
|
/* Build argument list for the vectorized call. */
|
1357 |
|
|
if (j == 0)
|
1358 |
|
|
vargs = VEC_alloc (tree, heap, nargs);
|
1359 |
|
|
else
|
1360 |
|
|
VEC_truncate (tree, vargs, 0);
|
1361 |
|
|
|
1362 |
|
|
for (i = 0; i < nargs; i++)
|
1363 |
|
|
{
|
1364 |
|
|
op = gimple_call_arg (stmt, i);
|
1365 |
|
|
if (j == 0)
|
1366 |
|
|
vec_oprnd0
|
1367 |
|
|
= vect_get_vec_def_for_operand (op, stmt, NULL);
|
1368 |
|
|
else
|
1369 |
|
|
{
|
1370 |
|
|
vec_oprnd0 = gimple_call_arg (new_stmt, i);
|
1371 |
|
|
vec_oprnd0
|
1372 |
|
|
= vect_get_vec_def_for_stmt_copy (dt[i], vec_oprnd0);
|
1373 |
|
|
}
|
1374 |
|
|
|
1375 |
|
|
VEC_quick_push (tree, vargs, vec_oprnd0);
|
1376 |
|
|
}
|
1377 |
|
|
|
1378 |
|
|
new_stmt = gimple_build_call_vec (fndecl, vargs);
|
1379 |
|
|
new_temp = make_ssa_name (vec_dest, new_stmt);
|
1380 |
|
|
gimple_call_set_lhs (new_stmt, new_temp);
|
1381 |
|
|
|
1382 |
|
|
vect_finish_stmt_generation (stmt, new_stmt, gsi);
|
1383 |
|
|
mark_symbols_for_renaming (new_stmt);
|
1384 |
|
|
|
1385 |
|
|
if (j == 0)
|
1386 |
|
|
STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
|
1387 |
|
|
else
|
1388 |
|
|
STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
|
1389 |
|
|
|
1390 |
|
|
prev_stmt_info = vinfo_for_stmt (new_stmt);
|
1391 |
|
|
}
|
1392 |
|
|
|
1393 |
|
|
break;
|
1394 |
|
|
|
1395 |
|
|
case NARROW:
|
1396 |
|
|
for (j = 0; j < ncopies; ++j)
|
1397 |
|
|
{
|
1398 |
|
|
/* Build argument list for the vectorized call. */
|
1399 |
|
|
if (j == 0)
|
1400 |
|
|
vargs = VEC_alloc (tree, heap, nargs * 2);
|
1401 |
|
|
else
|
1402 |
|
|
VEC_truncate (tree, vargs, 0);
|
1403 |
|
|
|
1404 |
|
|
for (i = 0; i < nargs; i++)
|
1405 |
|
|
{
|
1406 |
|
|
op = gimple_call_arg (stmt, i);
|
1407 |
|
|
if (j == 0)
|
1408 |
|
|
{
|
1409 |
|
|
vec_oprnd0
|
1410 |
|
|
= vect_get_vec_def_for_operand (op, stmt, NULL);
|
1411 |
|
|
vec_oprnd1
|
1412 |
|
|
= vect_get_vec_def_for_stmt_copy (dt[i], vec_oprnd0);
|
1413 |
|
|
}
|
1414 |
|
|
else
|
1415 |
|
|
{
|
1416 |
|
|
vec_oprnd1 = gimple_call_arg (new_stmt, 2*i);
|
1417 |
|
|
vec_oprnd0
|
1418 |
|
|
= vect_get_vec_def_for_stmt_copy (dt[i], vec_oprnd1);
|
1419 |
|
|
vec_oprnd1
|
1420 |
|
|
= vect_get_vec_def_for_stmt_copy (dt[i], vec_oprnd0);
|
1421 |
|
|
}
|
1422 |
|
|
|
1423 |
|
|
VEC_quick_push (tree, vargs, vec_oprnd0);
|
1424 |
|
|
VEC_quick_push (tree, vargs, vec_oprnd1);
|
1425 |
|
|
}
|
1426 |
|
|
|
1427 |
|
|
new_stmt = gimple_build_call_vec (fndecl, vargs);
|
1428 |
|
|
new_temp = make_ssa_name (vec_dest, new_stmt);
|
1429 |
|
|
gimple_call_set_lhs (new_stmt, new_temp);
|
1430 |
|
|
|
1431 |
|
|
vect_finish_stmt_generation (stmt, new_stmt, gsi);
|
1432 |
|
|
mark_symbols_for_renaming (new_stmt);
|
1433 |
|
|
|
1434 |
|
|
if (j == 0)
|
1435 |
|
|
STMT_VINFO_VEC_STMT (stmt_info) = new_stmt;
|
1436 |
|
|
else
|
1437 |
|
|
STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
|
1438 |
|
|
|
1439 |
|
|
prev_stmt_info = vinfo_for_stmt (new_stmt);
|
1440 |
|
|
}
|
1441 |
|
|
|
1442 |
|
|
*vec_stmt = STMT_VINFO_VEC_STMT (stmt_info);
|
1443 |
|
|
|
1444 |
|
|
break;
|
1445 |
|
|
|
1446 |
|
|
case WIDEN:
|
1447 |
|
|
/* No current target implements this case. */
|
1448 |
|
|
return false;
|
1449 |
|
|
}
|
1450 |
|
|
|
1451 |
|
|
VEC_free (tree, heap, vargs);
|
1452 |
|
|
|
1453 |
|
|
/* Update the exception handling table with the vector stmt if necessary. */
|
1454 |
|
|
if (maybe_clean_or_replace_eh_stmt (stmt, *vec_stmt))
|
1455 |
|
|
gimple_purge_dead_eh_edges (gimple_bb (stmt));
|
1456 |
|
|
|
1457 |
|
|
/* The call in STMT might prevent it from being removed in dce.
|
1458 |
|
|
We however cannot remove it here, due to the way the ssa name
|
1459 |
|
|
it defines is mapped to the new definition. So just replace
|
1460 |
|
|
rhs of the statement with something harmless. */
|
1461 |
|
|
|
1462 |
|
|
type = TREE_TYPE (scalar_dest);
|
1463 |
|
|
new_stmt = gimple_build_assign (gimple_call_lhs (stmt),
|
1464 |
|
|
fold_convert (type, integer_zero_node));
|
1465 |
|
|
set_vinfo_for_stmt (new_stmt, stmt_info);
|
1466 |
|
|
set_vinfo_for_stmt (stmt, NULL);
|
1467 |
|
|
STMT_VINFO_STMT (stmt_info) = new_stmt;
|
1468 |
|
|
gsi_replace (gsi, new_stmt, false);
|
1469 |
|
|
SSA_NAME_DEF_STMT (gimple_assign_lhs (new_stmt)) = new_stmt;
|
1470 |
|
|
|
1471 |
|
|
return true;
|
1472 |
|
|
}
|
1473 |
|
|
|
1474 |
|
|
|
1475 |
|
|
/* Function vect_gen_widened_results_half
|
1476 |
|
|
|
1477 |
|
|
Create a vector stmt whose code, type, number of arguments, and result
|
1478 |
|
|
variable are CODE, OP_TYPE, and VEC_DEST, and its arguments are
|
1479 |
|
|
VEC_OPRND0 and VEC_OPRND1. The new vector stmt is to be inserted at BSI.
|
1480 |
|
|
In the case that CODE is a CALL_EXPR, this means that a call to DECL
|
1481 |
|
|
needs to be created (DECL is a function-decl of a target-builtin).
|
1482 |
|
|
STMT is the original scalar stmt that we are vectorizing. */
|
1483 |
|
|
|
1484 |
|
|
static gimple
|
1485 |
|
|
vect_gen_widened_results_half (enum tree_code code,
|
1486 |
|
|
tree decl,
|
1487 |
|
|
tree vec_oprnd0, tree vec_oprnd1, int op_type,
|
1488 |
|
|
tree vec_dest, gimple_stmt_iterator *gsi,
|
1489 |
|
|
gimple stmt)
|
1490 |
|
|
{
|
1491 |
|
|
gimple new_stmt;
|
1492 |
|
|
tree new_temp;
|
1493 |
|
|
|
1494 |
|
|
/* Generate half of the widened result: */
|
1495 |
|
|
if (code == CALL_EXPR)
|
1496 |
|
|
{
|
1497 |
|
|
/* Target specific support */
|
1498 |
|
|
if (op_type == binary_op)
|
1499 |
|
|
new_stmt = gimple_build_call (decl, 2, vec_oprnd0, vec_oprnd1);
|
1500 |
|
|
else
|
1501 |
|
|
new_stmt = gimple_build_call (decl, 1, vec_oprnd0);
|
1502 |
|
|
new_temp = make_ssa_name (vec_dest, new_stmt);
|
1503 |
|
|
gimple_call_set_lhs (new_stmt, new_temp);
|
1504 |
|
|
}
|
1505 |
|
|
else
|
1506 |
|
|
{
|
1507 |
|
|
/* Generic support */
|
1508 |
|
|
gcc_assert (op_type == TREE_CODE_LENGTH (code));
|
1509 |
|
|
if (op_type != binary_op)
|
1510 |
|
|
vec_oprnd1 = NULL;
|
1511 |
|
|
new_stmt = gimple_build_assign_with_ops (code, vec_dest, vec_oprnd0,
|
1512 |
|
|
vec_oprnd1);
|
1513 |
|
|
new_temp = make_ssa_name (vec_dest, new_stmt);
|
1514 |
|
|
gimple_assign_set_lhs (new_stmt, new_temp);
|
1515 |
|
|
}
|
1516 |
|
|
vect_finish_stmt_generation (stmt, new_stmt, gsi);
|
1517 |
|
|
|
1518 |
|
|
return new_stmt;
|
1519 |
|
|
}
|
1520 |
|
|
|
1521 |
|
|
|
1522 |
|
|
/* Check if STMT performs a conversion operation, that can be vectorized.
|
1523 |
|
|
If VEC_STMT is also passed, vectorize the STMT: create a vectorized
|
1524 |
|
|
stmt to replace it, put it in VEC_STMT, and insert it at BSI.
|
1525 |
|
|
Return FALSE if not a vectorizable STMT, TRUE otherwise. */
|
1526 |
|
|
|
1527 |
|
|
static bool
|
1528 |
|
|
vectorizable_conversion (gimple stmt, gimple_stmt_iterator *gsi,
|
1529 |
|
|
gimple *vec_stmt, slp_tree slp_node)
|
1530 |
|
|
{
|
1531 |
|
|
tree vec_dest;
|
1532 |
|
|
tree scalar_dest;
|
1533 |
|
|
tree op0;
|
1534 |
|
|
tree vec_oprnd0 = NULL_TREE, vec_oprnd1 = NULL_TREE;
|
1535 |
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
|
1536 |
|
|
loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
|
1537 |
|
|
enum tree_code code, code1 = ERROR_MARK, code2 = ERROR_MARK;
|
1538 |
|
|
tree decl1 = NULL_TREE, decl2 = NULL_TREE;
|
1539 |
|
|
tree new_temp;
|
1540 |
|
|
tree def;
|
1541 |
|
|
gimple def_stmt;
|
1542 |
|
|
enum vect_def_type dt[2] = {vect_unknown_def_type, vect_unknown_def_type};
|
1543 |
|
|
gimple new_stmt = NULL;
|
1544 |
|
|
stmt_vec_info prev_stmt_info;
|
1545 |
|
|
int nunits_in;
|
1546 |
|
|
int nunits_out;
|
1547 |
|
|
tree vectype_out, vectype_in;
|
1548 |
|
|
int ncopies, j;
|
1549 |
|
|
tree rhs_type, lhs_type;
|
1550 |
|
|
tree builtin_decl;
|
1551 |
|
|
enum { NARROW, NONE, WIDEN } modifier;
|
1552 |
|
|
int i;
|
1553 |
|
|
VEC(tree,heap) *vec_oprnds0 = NULL;
|
1554 |
|
|
tree vop0;
|
1555 |
|
|
tree integral_type;
|
1556 |
|
|
VEC(tree,heap) *dummy = NULL;
|
1557 |
|
|
int dummy_int;
|
1558 |
|
|
|
1559 |
|
|
/* Is STMT a vectorizable conversion? */
|
1560 |
|
|
|
1561 |
|
|
/* FORNOW: unsupported in basic block SLP. */
|
1562 |
|
|
gcc_assert (loop_vinfo);
|
1563 |
|
|
|
1564 |
|
|
if (!STMT_VINFO_RELEVANT_P (stmt_info))
|
1565 |
|
|
return false;
|
1566 |
|
|
|
1567 |
|
|
if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_internal_def)
|
1568 |
|
|
return false;
|
1569 |
|
|
|
1570 |
|
|
if (!is_gimple_assign (stmt))
|
1571 |
|
|
return false;
|
1572 |
|
|
|
1573 |
|
|
if (TREE_CODE (gimple_assign_lhs (stmt)) != SSA_NAME)
|
1574 |
|
|
return false;
|
1575 |
|
|
|
1576 |
|
|
code = gimple_assign_rhs_code (stmt);
|
1577 |
|
|
if (code != FIX_TRUNC_EXPR && code != FLOAT_EXPR)
|
1578 |
|
|
return false;
|
1579 |
|
|
|
1580 |
|
|
/* Check types of lhs and rhs. */
|
1581 |
|
|
op0 = gimple_assign_rhs1 (stmt);
|
1582 |
|
|
rhs_type = TREE_TYPE (op0);
|
1583 |
|
|
vectype_in = get_vectype_for_scalar_type (rhs_type);
|
1584 |
|
|
if (!vectype_in)
|
1585 |
|
|
return false;
|
1586 |
|
|
nunits_in = TYPE_VECTOR_SUBPARTS (vectype_in);
|
1587 |
|
|
|
1588 |
|
|
scalar_dest = gimple_assign_lhs (stmt);
|
1589 |
|
|
lhs_type = TREE_TYPE (scalar_dest);
|
1590 |
|
|
vectype_out = get_vectype_for_scalar_type (lhs_type);
|
1591 |
|
|
if (!vectype_out)
|
1592 |
|
|
return false;
|
1593 |
|
|
nunits_out = TYPE_VECTOR_SUBPARTS (vectype_out);
|
1594 |
|
|
|
1595 |
|
|
/* FORNOW */
|
1596 |
|
|
if (nunits_in == nunits_out / 2)
|
1597 |
|
|
modifier = NARROW;
|
1598 |
|
|
else if (nunits_out == nunits_in)
|
1599 |
|
|
modifier = NONE;
|
1600 |
|
|
else if (nunits_out == nunits_in / 2)
|
1601 |
|
|
modifier = WIDEN;
|
1602 |
|
|
else
|
1603 |
|
|
return false;
|
1604 |
|
|
|
1605 |
|
|
if (modifier == NONE)
|
1606 |
|
|
gcc_assert (STMT_VINFO_VECTYPE (stmt_info) == vectype_out);
|
1607 |
|
|
|
1608 |
|
|
/* Bail out if the types are both integral or non-integral. */
|
1609 |
|
|
if ((INTEGRAL_TYPE_P (rhs_type) && INTEGRAL_TYPE_P (lhs_type))
|
1610 |
|
|
|| (!INTEGRAL_TYPE_P (rhs_type) && !INTEGRAL_TYPE_P (lhs_type)))
|
1611 |
|
|
return false;
|
1612 |
|
|
|
1613 |
|
|
integral_type = INTEGRAL_TYPE_P (rhs_type) ? vectype_in : vectype_out;
|
1614 |
|
|
|
1615 |
|
|
if (modifier == NARROW)
|
1616 |
|
|
ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits_out;
|
1617 |
|
|
else
|
1618 |
|
|
ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits_in;
|
1619 |
|
|
|
1620 |
|
|
/* FORNOW: SLP with multiple types is not supported. The SLP analysis verifies
|
1621 |
|
|
this, so we can safely override NCOPIES with 1 here. */
|
1622 |
|
|
if (slp_node)
|
1623 |
|
|
ncopies = 1;
|
1624 |
|
|
|
1625 |
|
|
/* Sanity check: make sure that at least one copy of the vectorized stmt
|
1626 |
|
|
needs to be generated. */
|
1627 |
|
|
gcc_assert (ncopies >= 1);
|
1628 |
|
|
|
1629 |
|
|
/* Check the operands of the operation. */
|
1630 |
|
|
if (!vect_is_simple_use (op0, loop_vinfo, NULL, &def_stmt, &def, &dt[0]))
|
1631 |
|
|
{
|
1632 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
1633 |
|
|
fprintf (vect_dump, "use not simple.");
|
1634 |
|
|
return false;
|
1635 |
|
|
}
|
1636 |
|
|
|
1637 |
|
|
/* Supportable by target? */
|
1638 |
|
|
if ((modifier == NONE
|
1639 |
|
|
&& !targetm.vectorize.builtin_conversion (code, integral_type))
|
1640 |
|
|
|| (modifier == WIDEN
|
1641 |
|
|
&& !supportable_widening_operation (code, stmt, vectype_in,
|
1642 |
|
|
&decl1, &decl2,
|
1643 |
|
|
&code1, &code2,
|
1644 |
|
|
&dummy_int, &dummy))
|
1645 |
|
|
|| (modifier == NARROW
|
1646 |
|
|
&& !supportable_narrowing_operation (code, stmt, vectype_in,
|
1647 |
|
|
&code1, &dummy_int, &dummy)))
|
1648 |
|
|
{
|
1649 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
1650 |
|
|
fprintf (vect_dump, "conversion not supported by target.");
|
1651 |
|
|
return false;
|
1652 |
|
|
}
|
1653 |
|
|
|
1654 |
|
|
if (modifier != NONE)
|
1655 |
|
|
{
|
1656 |
|
|
STMT_VINFO_VECTYPE (stmt_info) = vectype_in;
|
1657 |
|
|
/* FORNOW: SLP not supported. */
|
1658 |
|
|
if (STMT_SLP_TYPE (stmt_info))
|
1659 |
|
|
return false;
|
1660 |
|
|
}
|
1661 |
|
|
|
1662 |
|
|
if (!vec_stmt) /* transformation not required. */
|
1663 |
|
|
{
|
1664 |
|
|
STMT_VINFO_TYPE (stmt_info) = type_conversion_vec_info_type;
|
1665 |
|
|
return true;
|
1666 |
|
|
}
|
1667 |
|
|
|
1668 |
|
|
/** Transform. **/
|
1669 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
1670 |
|
|
fprintf (vect_dump, "transform conversion.");
|
1671 |
|
|
|
1672 |
|
|
/* Handle def. */
|
1673 |
|
|
vec_dest = vect_create_destination_var (scalar_dest, vectype_out);
|
1674 |
|
|
|
1675 |
|
|
if (modifier == NONE && !slp_node)
|
1676 |
|
|
vec_oprnds0 = VEC_alloc (tree, heap, 1);
|
1677 |
|
|
|
1678 |
|
|
prev_stmt_info = NULL;
|
1679 |
|
|
switch (modifier)
|
1680 |
|
|
{
|
1681 |
|
|
case NONE:
|
1682 |
|
|
for (j = 0; j < ncopies; j++)
|
1683 |
|
|
{
|
1684 |
|
|
if (j == 0)
|
1685 |
|
|
vect_get_vec_defs (op0, NULL, stmt, &vec_oprnds0, NULL, slp_node);
|
1686 |
|
|
else
|
1687 |
|
|
vect_get_vec_defs_for_stmt_copy (dt, &vec_oprnds0, NULL);
|
1688 |
|
|
|
1689 |
|
|
builtin_decl =
|
1690 |
|
|
targetm.vectorize.builtin_conversion (code, integral_type);
|
1691 |
|
|
for (i = 0; VEC_iterate (tree, vec_oprnds0, i, vop0); i++)
|
1692 |
|
|
{
|
1693 |
|
|
/* Arguments are ready. create the new vector stmt. */
|
1694 |
|
|
new_stmt = gimple_build_call (builtin_decl, 1, vop0);
|
1695 |
|
|
new_temp = make_ssa_name (vec_dest, new_stmt);
|
1696 |
|
|
gimple_call_set_lhs (new_stmt, new_temp);
|
1697 |
|
|
vect_finish_stmt_generation (stmt, new_stmt, gsi);
|
1698 |
|
|
if (slp_node)
|
1699 |
|
|
VEC_quick_push (gimple, SLP_TREE_VEC_STMTS (slp_node), new_stmt);
|
1700 |
|
|
}
|
1701 |
|
|
|
1702 |
|
|
if (j == 0)
|
1703 |
|
|
STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
|
1704 |
|
|
else
|
1705 |
|
|
STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
|
1706 |
|
|
prev_stmt_info = vinfo_for_stmt (new_stmt);
|
1707 |
|
|
}
|
1708 |
|
|
break;
|
1709 |
|
|
|
1710 |
|
|
case WIDEN:
|
1711 |
|
|
/* In case the vectorization factor (VF) is bigger than the number
|
1712 |
|
|
of elements that we can fit in a vectype (nunits), we have to
|
1713 |
|
|
generate more than one vector stmt - i.e - we need to "unroll"
|
1714 |
|
|
the vector stmt by a factor VF/nunits. */
|
1715 |
|
|
for (j = 0; j < ncopies; j++)
|
1716 |
|
|
{
|
1717 |
|
|
if (j == 0)
|
1718 |
|
|
vec_oprnd0 = vect_get_vec_def_for_operand (op0, stmt, NULL);
|
1719 |
|
|
else
|
1720 |
|
|
vec_oprnd0 = vect_get_vec_def_for_stmt_copy (dt[0], vec_oprnd0);
|
1721 |
|
|
|
1722 |
|
|
STMT_VINFO_VECTYPE (stmt_info) = vectype_in;
|
1723 |
|
|
|
1724 |
|
|
/* Generate first half of the widened result: */
|
1725 |
|
|
new_stmt
|
1726 |
|
|
= vect_gen_widened_results_half (code1, decl1,
|
1727 |
|
|
vec_oprnd0, vec_oprnd1,
|
1728 |
|
|
unary_op, vec_dest, gsi, stmt);
|
1729 |
|
|
if (j == 0)
|
1730 |
|
|
STMT_VINFO_VEC_STMT (stmt_info) = new_stmt;
|
1731 |
|
|
else
|
1732 |
|
|
STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
|
1733 |
|
|
prev_stmt_info = vinfo_for_stmt (new_stmt);
|
1734 |
|
|
|
1735 |
|
|
/* Generate second half of the widened result: */
|
1736 |
|
|
new_stmt
|
1737 |
|
|
= vect_gen_widened_results_half (code2, decl2,
|
1738 |
|
|
vec_oprnd0, vec_oprnd1,
|
1739 |
|
|
unary_op, vec_dest, gsi, stmt);
|
1740 |
|
|
STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
|
1741 |
|
|
prev_stmt_info = vinfo_for_stmt (new_stmt);
|
1742 |
|
|
}
|
1743 |
|
|
break;
|
1744 |
|
|
|
1745 |
|
|
case NARROW:
|
1746 |
|
|
/* In case the vectorization factor (VF) is bigger than the number
|
1747 |
|
|
of elements that we can fit in a vectype (nunits), we have to
|
1748 |
|
|
generate more than one vector stmt - i.e - we need to "unroll"
|
1749 |
|
|
the vector stmt by a factor VF/nunits. */
|
1750 |
|
|
for (j = 0; j < ncopies; j++)
|
1751 |
|
|
{
|
1752 |
|
|
/* Handle uses. */
|
1753 |
|
|
if (j == 0)
|
1754 |
|
|
{
|
1755 |
|
|
vec_oprnd0 = vect_get_vec_def_for_operand (op0, stmt, NULL);
|
1756 |
|
|
vec_oprnd1 = vect_get_vec_def_for_stmt_copy (dt[0], vec_oprnd0);
|
1757 |
|
|
}
|
1758 |
|
|
else
|
1759 |
|
|
{
|
1760 |
|
|
vec_oprnd0 = vect_get_vec_def_for_stmt_copy (dt[0], vec_oprnd1);
|
1761 |
|
|
vec_oprnd1 = vect_get_vec_def_for_stmt_copy (dt[0], vec_oprnd0);
|
1762 |
|
|
}
|
1763 |
|
|
|
1764 |
|
|
/* Arguments are ready. Create the new vector stmt. */
|
1765 |
|
|
new_stmt = gimple_build_assign_with_ops (code1, vec_dest, vec_oprnd0,
|
1766 |
|
|
vec_oprnd1);
|
1767 |
|
|
new_temp = make_ssa_name (vec_dest, new_stmt);
|
1768 |
|
|
gimple_assign_set_lhs (new_stmt, new_temp);
|
1769 |
|
|
vect_finish_stmt_generation (stmt, new_stmt, gsi);
|
1770 |
|
|
|
1771 |
|
|
if (j == 0)
|
1772 |
|
|
STMT_VINFO_VEC_STMT (stmt_info) = new_stmt;
|
1773 |
|
|
else
|
1774 |
|
|
STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
|
1775 |
|
|
|
1776 |
|
|
prev_stmt_info = vinfo_for_stmt (new_stmt);
|
1777 |
|
|
}
|
1778 |
|
|
|
1779 |
|
|
*vec_stmt = STMT_VINFO_VEC_STMT (stmt_info);
|
1780 |
|
|
}
|
1781 |
|
|
|
1782 |
|
|
if (vec_oprnds0)
|
1783 |
|
|
VEC_free (tree, heap, vec_oprnds0);
|
1784 |
|
|
|
1785 |
|
|
return true;
|
1786 |
|
|
}
|
1787 |
|
|
/* Function vectorizable_assignment.
|
1788 |
|
|
|
1789 |
|
|
Check if STMT performs an assignment (copy) that can be vectorized.
|
1790 |
|
|
If VEC_STMT is also passed, vectorize the STMT: create a vectorized
|
1791 |
|
|
stmt to replace it, put it in VEC_STMT, and insert it at BSI.
|
1792 |
|
|
Return FALSE if not a vectorizable STMT, TRUE otherwise. */
|
1793 |
|
|
|
1794 |
|
|
static bool
|
1795 |
|
|
vectorizable_assignment (gimple stmt, gimple_stmt_iterator *gsi,
|
1796 |
|
|
gimple *vec_stmt, slp_tree slp_node)
|
1797 |
|
|
{
|
1798 |
|
|
tree vec_dest;
|
1799 |
|
|
tree scalar_dest;
|
1800 |
|
|
tree op;
|
1801 |
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
|
1802 |
|
|
tree vectype = STMT_VINFO_VECTYPE (stmt_info);
|
1803 |
|
|
loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
|
1804 |
|
|
tree new_temp;
|
1805 |
|
|
tree def;
|
1806 |
|
|
gimple def_stmt;
|
1807 |
|
|
enum vect_def_type dt[2] = {vect_unknown_def_type, vect_unknown_def_type};
|
1808 |
|
|
unsigned int nunits = TYPE_VECTOR_SUBPARTS (vectype);
|
1809 |
|
|
int ncopies;
|
1810 |
|
|
int i, j;
|
1811 |
|
|
VEC(tree,heap) *vec_oprnds = NULL;
|
1812 |
|
|
tree vop;
|
1813 |
|
|
bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
|
1814 |
|
|
gimple new_stmt = NULL;
|
1815 |
|
|
stmt_vec_info prev_stmt_info = NULL;
|
1816 |
|
|
enum tree_code code;
|
1817 |
|
|
tree vectype_in, vectype_out;
|
1818 |
|
|
|
1819 |
|
|
/* Multiple types in SLP are handled by creating the appropriate number of
|
1820 |
|
|
vectorized stmts for each SLP node. Hence, NCOPIES is always 1 in
|
1821 |
|
|
case of SLP. */
|
1822 |
|
|
if (slp_node)
|
1823 |
|
|
ncopies = 1;
|
1824 |
|
|
else
|
1825 |
|
|
ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits;
|
1826 |
|
|
|
1827 |
|
|
gcc_assert (ncopies >= 1);
|
1828 |
|
|
|
1829 |
|
|
if (!STMT_VINFO_RELEVANT_P (stmt_info) && !bb_vinfo)
|
1830 |
|
|
return false;
|
1831 |
|
|
|
1832 |
|
|
if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_internal_def)
|
1833 |
|
|
return false;
|
1834 |
|
|
|
1835 |
|
|
/* Is vectorizable assignment? */
|
1836 |
|
|
if (!is_gimple_assign (stmt))
|
1837 |
|
|
return false;
|
1838 |
|
|
|
1839 |
|
|
scalar_dest = gimple_assign_lhs (stmt);
|
1840 |
|
|
if (TREE_CODE (scalar_dest) != SSA_NAME)
|
1841 |
|
|
return false;
|
1842 |
|
|
|
1843 |
|
|
code = gimple_assign_rhs_code (stmt);
|
1844 |
|
|
if (gimple_assign_single_p (stmt)
|
1845 |
|
|
|| code == PAREN_EXPR
|
1846 |
|
|
|| CONVERT_EXPR_CODE_P (code))
|
1847 |
|
|
op = gimple_assign_rhs1 (stmt);
|
1848 |
|
|
else
|
1849 |
|
|
return false;
|
1850 |
|
|
|
1851 |
|
|
if (!vect_is_simple_use (op, loop_vinfo, bb_vinfo, &def_stmt, &def, &dt[0]))
|
1852 |
|
|
{
|
1853 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
1854 |
|
|
fprintf (vect_dump, "use not simple.");
|
1855 |
|
|
return false;
|
1856 |
|
|
}
|
1857 |
|
|
|
1858 |
|
|
/* We can handle NOP_EXPR conversions that do not change the number
|
1859 |
|
|
of elements or the vector size. */
|
1860 |
|
|
vectype_in = get_vectype_for_scalar_type (TREE_TYPE (op));
|
1861 |
|
|
vectype_out
|
1862 |
|
|
= get_vectype_for_scalar_type (TREE_TYPE (gimple_assign_lhs (stmt)));
|
1863 |
|
|
if (CONVERT_EXPR_CODE_P (code)
|
1864 |
|
|
&& (!vectype_in
|
1865 |
|
|
|| !vectype_out
|
1866 |
|
|
|| (TYPE_VECTOR_SUBPARTS (vectype_out)
|
1867 |
|
|
!= TYPE_VECTOR_SUBPARTS (vectype_in))
|
1868 |
|
|
|| (GET_MODE_SIZE (TYPE_MODE (vectype_out))
|
1869 |
|
|
!= GET_MODE_SIZE (TYPE_MODE (vectype_in)))))
|
1870 |
|
|
return false;
|
1871 |
|
|
|
1872 |
|
|
if (!vec_stmt) /* transformation not required. */
|
1873 |
|
|
{
|
1874 |
|
|
STMT_VINFO_TYPE (stmt_info) = assignment_vec_info_type;
|
1875 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
1876 |
|
|
fprintf (vect_dump, "=== vectorizable_assignment ===");
|
1877 |
|
|
vect_model_simple_cost (stmt_info, ncopies, dt, NULL);
|
1878 |
|
|
return true;
|
1879 |
|
|
}
|
1880 |
|
|
|
1881 |
|
|
/** Transform. **/
|
1882 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
1883 |
|
|
fprintf (vect_dump, "transform assignment.");
|
1884 |
|
|
|
1885 |
|
|
/* Handle def. */
|
1886 |
|
|
vec_dest = vect_create_destination_var (scalar_dest, vectype);
|
1887 |
|
|
|
1888 |
|
|
/* Handle use. */
|
1889 |
|
|
for (j = 0; j < ncopies; j++)
|
1890 |
|
|
{
|
1891 |
|
|
/* Handle uses. */
|
1892 |
|
|
if (j == 0)
|
1893 |
|
|
vect_get_vec_defs (op, NULL, stmt, &vec_oprnds, NULL, slp_node);
|
1894 |
|
|
else
|
1895 |
|
|
vect_get_vec_defs_for_stmt_copy (dt, &vec_oprnds, NULL);
|
1896 |
|
|
|
1897 |
|
|
/* Arguments are ready. create the new vector stmt. */
|
1898 |
|
|
for (i = 0; VEC_iterate (tree, vec_oprnds, i, vop); i++)
|
1899 |
|
|
{
|
1900 |
|
|
if (CONVERT_EXPR_CODE_P (code))
|
1901 |
|
|
vop = build1 (VIEW_CONVERT_EXPR, vectype_out, vop);
|
1902 |
|
|
new_stmt = gimple_build_assign (vec_dest, vop);
|
1903 |
|
|
new_temp = make_ssa_name (vec_dest, new_stmt);
|
1904 |
|
|
gimple_assign_set_lhs (new_stmt, new_temp);
|
1905 |
|
|
vect_finish_stmt_generation (stmt, new_stmt, gsi);
|
1906 |
|
|
if (slp_node)
|
1907 |
|
|
VEC_quick_push (gimple, SLP_TREE_VEC_STMTS (slp_node), new_stmt);
|
1908 |
|
|
}
|
1909 |
|
|
|
1910 |
|
|
if (slp_node)
|
1911 |
|
|
continue;
|
1912 |
|
|
|
1913 |
|
|
if (j == 0)
|
1914 |
|
|
STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
|
1915 |
|
|
else
|
1916 |
|
|
STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
|
1917 |
|
|
|
1918 |
|
|
prev_stmt_info = vinfo_for_stmt (new_stmt);
|
1919 |
|
|
}
|
1920 |
|
|
|
1921 |
|
|
VEC_free (tree, heap, vec_oprnds);
|
1922 |
|
|
return true;
|
1923 |
|
|
}
|
1924 |
|
|
|
1925 |
|
|
/* Function vectorizable_operation.
|
1926 |
|
|
|
1927 |
|
|
Check if STMT performs a binary or unary operation that can be vectorized.
|
1928 |
|
|
If VEC_STMT is also passed, vectorize the STMT: create a vectorized
|
1929 |
|
|
stmt to replace it, put it in VEC_STMT, and insert it at BSI.
|
1930 |
|
|
Return FALSE if not a vectorizable STMT, TRUE otherwise. */
|
1931 |
|
|
|
1932 |
|
|
static bool
|
1933 |
|
|
vectorizable_operation (gimple stmt, gimple_stmt_iterator *gsi,
|
1934 |
|
|
gimple *vec_stmt, slp_tree slp_node)
|
1935 |
|
|
{
|
1936 |
|
|
tree vec_dest;
|
1937 |
|
|
tree scalar_dest;
|
1938 |
|
|
tree op0, op1 = NULL;
|
1939 |
|
|
tree vec_oprnd1 = NULL_TREE;
|
1940 |
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
|
1941 |
|
|
tree vectype = STMT_VINFO_VECTYPE (stmt_info);
|
1942 |
|
|
loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
|
1943 |
|
|
enum tree_code code;
|
1944 |
|
|
enum machine_mode vec_mode;
|
1945 |
|
|
tree new_temp;
|
1946 |
|
|
int op_type;
|
1947 |
|
|
optab optab;
|
1948 |
|
|
int icode;
|
1949 |
|
|
enum machine_mode optab_op2_mode;
|
1950 |
|
|
tree def;
|
1951 |
|
|
gimple def_stmt;
|
1952 |
|
|
enum vect_def_type dt[2] = {vect_unknown_def_type, vect_unknown_def_type};
|
1953 |
|
|
gimple new_stmt = NULL;
|
1954 |
|
|
stmt_vec_info prev_stmt_info;
|
1955 |
|
|
int nunits_in = TYPE_VECTOR_SUBPARTS (vectype);
|
1956 |
|
|
int nunits_out;
|
1957 |
|
|
tree vectype_out;
|
1958 |
|
|
int ncopies;
|
1959 |
|
|
int j, i;
|
1960 |
|
|
VEC(tree,heap) *vec_oprnds0 = NULL, *vec_oprnds1 = NULL;
|
1961 |
|
|
tree vop0, vop1;
|
1962 |
|
|
unsigned int k;
|
1963 |
|
|
bool scalar_shift_arg = false;
|
1964 |
|
|
bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
|
1965 |
|
|
int vf;
|
1966 |
|
|
|
1967 |
|
|
if (loop_vinfo)
|
1968 |
|
|
vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
|
1969 |
|
|
else
|
1970 |
|
|
vf = 1;
|
1971 |
|
|
|
1972 |
|
|
/* Multiple types in SLP are handled by creating the appropriate number of
|
1973 |
|
|
vectorized stmts for each SLP node. Hence, NCOPIES is always 1 in
|
1974 |
|
|
case of SLP. */
|
1975 |
|
|
if (slp_node)
|
1976 |
|
|
ncopies = 1;
|
1977 |
|
|
else
|
1978 |
|
|
ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits_in;
|
1979 |
|
|
|
1980 |
|
|
gcc_assert (ncopies >= 1);
|
1981 |
|
|
|
1982 |
|
|
if (!STMT_VINFO_RELEVANT_P (stmt_info) && !bb_vinfo)
|
1983 |
|
|
return false;
|
1984 |
|
|
|
1985 |
|
|
if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_internal_def)
|
1986 |
|
|
return false;
|
1987 |
|
|
|
1988 |
|
|
/* Is STMT a vectorizable binary/unary operation? */
|
1989 |
|
|
if (!is_gimple_assign (stmt))
|
1990 |
|
|
return false;
|
1991 |
|
|
|
1992 |
|
|
if (TREE_CODE (gimple_assign_lhs (stmt)) != SSA_NAME)
|
1993 |
|
|
return false;
|
1994 |
|
|
|
1995 |
|
|
scalar_dest = gimple_assign_lhs (stmt);
|
1996 |
|
|
vectype_out = get_vectype_for_scalar_type (TREE_TYPE (scalar_dest));
|
1997 |
|
|
if (!vectype_out)
|
1998 |
|
|
return false;
|
1999 |
|
|
nunits_out = TYPE_VECTOR_SUBPARTS (vectype_out);
|
2000 |
|
|
if (nunits_out != nunits_in)
|
2001 |
|
|
return false;
|
2002 |
|
|
|
2003 |
|
|
code = gimple_assign_rhs_code (stmt);
|
2004 |
|
|
|
2005 |
|
|
/* For pointer addition, we should use the normal plus for
|
2006 |
|
|
the vector addition. */
|
2007 |
|
|
if (code == POINTER_PLUS_EXPR)
|
2008 |
|
|
code = PLUS_EXPR;
|
2009 |
|
|
|
2010 |
|
|
/* Support only unary or binary operations. */
|
2011 |
|
|
op_type = TREE_CODE_LENGTH (code);
|
2012 |
|
|
if (op_type != unary_op && op_type != binary_op)
|
2013 |
|
|
{
|
2014 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
2015 |
|
|
fprintf (vect_dump, "num. args = %d (not unary/binary op).", op_type);
|
2016 |
|
|
return false;
|
2017 |
|
|
}
|
2018 |
|
|
|
2019 |
|
|
op0 = gimple_assign_rhs1 (stmt);
|
2020 |
|
|
if (!vect_is_simple_use (op0, loop_vinfo, bb_vinfo, &def_stmt, &def, &dt[0]))
|
2021 |
|
|
{
|
2022 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
2023 |
|
|
fprintf (vect_dump, "use not simple.");
|
2024 |
|
|
return false;
|
2025 |
|
|
}
|
2026 |
|
|
|
2027 |
|
|
if (op_type == binary_op)
|
2028 |
|
|
{
|
2029 |
|
|
op1 = gimple_assign_rhs2 (stmt);
|
2030 |
|
|
if (!vect_is_simple_use (op1, loop_vinfo, bb_vinfo, &def_stmt, &def,
|
2031 |
|
|
&dt[1]))
|
2032 |
|
|
{
|
2033 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
2034 |
|
|
fprintf (vect_dump, "use not simple.");
|
2035 |
|
|
return false;
|
2036 |
|
|
}
|
2037 |
|
|
}
|
2038 |
|
|
|
2039 |
|
|
/* If this is a shift/rotate, determine whether the shift amount is a vector,
|
2040 |
|
|
or scalar. If the shift/rotate amount is a vector, use the vector/vector
|
2041 |
|
|
shift optabs. */
|
2042 |
|
|
if (code == LSHIFT_EXPR || code == RSHIFT_EXPR || code == LROTATE_EXPR
|
2043 |
|
|
|| code == RROTATE_EXPR)
|
2044 |
|
|
{
|
2045 |
|
|
/* vector shifted by vector */
|
2046 |
|
|
if (dt[1] == vect_internal_def)
|
2047 |
|
|
{
|
2048 |
|
|
optab = optab_for_tree_code (code, vectype, optab_vector);
|
2049 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
2050 |
|
|
fprintf (vect_dump, "vector/vector shift/rotate found.");
|
2051 |
|
|
}
|
2052 |
|
|
|
2053 |
|
|
/* See if the machine has a vector shifted by scalar insn and if not
|
2054 |
|
|
then see if it has a vector shifted by vector insn */
|
2055 |
|
|
else if (dt[1] == vect_constant_def || dt[1] == vect_external_def)
|
2056 |
|
|
{
|
2057 |
|
|
optab = optab_for_tree_code (code, vectype, optab_scalar);
|
2058 |
|
|
if (optab
|
2059 |
|
|
&& (optab_handler (optab, TYPE_MODE (vectype))->insn_code
|
2060 |
|
|
!= CODE_FOR_nothing))
|
2061 |
|
|
{
|
2062 |
|
|
scalar_shift_arg = true;
|
2063 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
2064 |
|
|
fprintf (vect_dump, "vector/scalar shift/rotate found.");
|
2065 |
|
|
}
|
2066 |
|
|
else
|
2067 |
|
|
{
|
2068 |
|
|
optab = optab_for_tree_code (code, vectype, optab_vector);
|
2069 |
|
|
if (optab
|
2070 |
|
|
&& (optab_handler (optab, TYPE_MODE (vectype))->insn_code
|
2071 |
|
|
!= CODE_FOR_nothing))
|
2072 |
|
|
{
|
2073 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
2074 |
|
|
fprintf (vect_dump, "vector/vector shift/rotate found.");
|
2075 |
|
|
|
2076 |
|
|
/* Unlike the other binary operators, shifts/rotates have
|
2077 |
|
|
the rhs being int, instead of the same type as the lhs,
|
2078 |
|
|
so make sure the scalar is the right type if we are
|
2079 |
|
|
dealing with vectors of short/char. */
|
2080 |
|
|
if (dt[1] == vect_constant_def)
|
2081 |
|
|
op1 = fold_convert (TREE_TYPE (vectype), op1);
|
2082 |
|
|
}
|
2083 |
|
|
}
|
2084 |
|
|
}
|
2085 |
|
|
|
2086 |
|
|
else
|
2087 |
|
|
{
|
2088 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
2089 |
|
|
fprintf (vect_dump, "operand mode requires invariant argument.");
|
2090 |
|
|
return false;
|
2091 |
|
|
}
|
2092 |
|
|
}
|
2093 |
|
|
else
|
2094 |
|
|
optab = optab_for_tree_code (code, vectype, optab_default);
|
2095 |
|
|
|
2096 |
|
|
/* Supportable by target? */
|
2097 |
|
|
if (!optab)
|
2098 |
|
|
{
|
2099 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
2100 |
|
|
fprintf (vect_dump, "no optab.");
|
2101 |
|
|
return false;
|
2102 |
|
|
}
|
2103 |
|
|
vec_mode = TYPE_MODE (vectype);
|
2104 |
|
|
icode = (int) optab_handler (optab, vec_mode)->insn_code;
|
2105 |
|
|
if (icode == CODE_FOR_nothing)
|
2106 |
|
|
{
|
2107 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
2108 |
|
|
fprintf (vect_dump, "op not supported by target.");
|
2109 |
|
|
/* Check only during analysis. */
|
2110 |
|
|
if (GET_MODE_SIZE (vec_mode) != UNITS_PER_WORD
|
2111 |
|
|
|| (vf < vect_min_worthwhile_factor (code)
|
2112 |
|
|
&& !vec_stmt))
|
2113 |
|
|
return false;
|
2114 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
2115 |
|
|
fprintf (vect_dump, "proceeding using word mode.");
|
2116 |
|
|
}
|
2117 |
|
|
|
2118 |
|
|
/* Worthwhile without SIMD support? Check only during analysis. */
|
2119 |
|
|
if (!VECTOR_MODE_P (TYPE_MODE (vectype))
|
2120 |
|
|
&& vf < vect_min_worthwhile_factor (code)
|
2121 |
|
|
&& !vec_stmt)
|
2122 |
|
|
{
|
2123 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
2124 |
|
|
fprintf (vect_dump, "not worthwhile without SIMD support.");
|
2125 |
|
|
return false;
|
2126 |
|
|
}
|
2127 |
|
|
|
2128 |
|
|
if (!vec_stmt) /* transformation not required. */
|
2129 |
|
|
{
|
2130 |
|
|
STMT_VINFO_TYPE (stmt_info) = op_vec_info_type;
|
2131 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
2132 |
|
|
fprintf (vect_dump, "=== vectorizable_operation ===");
|
2133 |
|
|
vect_model_simple_cost (stmt_info, ncopies, dt, NULL);
|
2134 |
|
|
return true;
|
2135 |
|
|
}
|
2136 |
|
|
|
2137 |
|
|
/** Transform. **/
|
2138 |
|
|
|
2139 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
2140 |
|
|
fprintf (vect_dump, "transform binary/unary operation.");
|
2141 |
|
|
|
2142 |
|
|
/* Handle def. */
|
2143 |
|
|
vec_dest = vect_create_destination_var (scalar_dest, vectype);
|
2144 |
|
|
|
2145 |
|
|
/* Allocate VECs for vector operands. In case of SLP, vector operands are
|
2146 |
|
|
created in the previous stages of the recursion, so no allocation is
|
2147 |
|
|
needed, except for the case of shift with scalar shift argument. In that
|
2148 |
|
|
case we store the scalar operand in VEC_OPRNDS1 for every vector stmt to
|
2149 |
|
|
be created to vectorize the SLP group, i.e., SLP_NODE->VEC_STMTS_SIZE.
|
2150 |
|
|
In case of loop-based vectorization we allocate VECs of size 1. We
|
2151 |
|
|
allocate VEC_OPRNDS1 only in case of binary operation. */
|
2152 |
|
|
if (!slp_node)
|
2153 |
|
|
{
|
2154 |
|
|
vec_oprnds0 = VEC_alloc (tree, heap, 1);
|
2155 |
|
|
if (op_type == binary_op)
|
2156 |
|
|
vec_oprnds1 = VEC_alloc (tree, heap, 1);
|
2157 |
|
|
}
|
2158 |
|
|
else if (scalar_shift_arg)
|
2159 |
|
|
vec_oprnds1 = VEC_alloc (tree, heap, slp_node->vec_stmts_size);
|
2160 |
|
|
|
2161 |
|
|
/* In case the vectorization factor (VF) is bigger than the number
|
2162 |
|
|
of elements that we can fit in a vectype (nunits), we have to generate
|
2163 |
|
|
more than one vector stmt - i.e - we need to "unroll" the
|
2164 |
|
|
vector stmt by a factor VF/nunits. In doing so, we record a pointer
|
2165 |
|
|
from one copy of the vector stmt to the next, in the field
|
2166 |
|
|
STMT_VINFO_RELATED_STMT. This is necessary in order to allow following
|
2167 |
|
|
stages to find the correct vector defs to be used when vectorizing
|
2168 |
|
|
stmts that use the defs of the current stmt. The example below illustrates
|
2169 |
|
|
the vectorization process when VF=16 and nunits=4 (i.e - we need to create
|
2170 |
|
|
4 vectorized stmts):
|
2171 |
|
|
|
2172 |
|
|
before vectorization:
|
2173 |
|
|
RELATED_STMT VEC_STMT
|
2174 |
|
|
S1: x = memref - -
|
2175 |
|
|
S2: z = x + 1 - -
|
2176 |
|
|
|
2177 |
|
|
step 1: vectorize stmt S1 (done in vectorizable_load. See more details
|
2178 |
|
|
there):
|
2179 |
|
|
RELATED_STMT VEC_STMT
|
2180 |
|
|
VS1_0: vx0 = memref0 VS1_1 -
|
2181 |
|
|
VS1_1: vx1 = memref1 VS1_2 -
|
2182 |
|
|
VS1_2: vx2 = memref2 VS1_3 -
|
2183 |
|
|
VS1_3: vx3 = memref3 - -
|
2184 |
|
|
S1: x = load - VS1_0
|
2185 |
|
|
S2: z = x + 1 - -
|
2186 |
|
|
|
2187 |
|
|
step2: vectorize stmt S2 (done here):
|
2188 |
|
|
To vectorize stmt S2 we first need to find the relevant vector
|
2189 |
|
|
def for the first operand 'x'. This is, as usual, obtained from
|
2190 |
|
|
the vector stmt recorded in the STMT_VINFO_VEC_STMT of the stmt
|
2191 |
|
|
that defines 'x' (S1). This way we find the stmt VS1_0, and the
|
2192 |
|
|
relevant vector def 'vx0'. Having found 'vx0' we can generate
|
2193 |
|
|
the vector stmt VS2_0, and as usual, record it in the
|
2194 |
|
|
STMT_VINFO_VEC_STMT of stmt S2.
|
2195 |
|
|
When creating the second copy (VS2_1), we obtain the relevant vector
|
2196 |
|
|
def from the vector stmt recorded in the STMT_VINFO_RELATED_STMT of
|
2197 |
|
|
stmt VS1_0. This way we find the stmt VS1_1 and the relevant
|
2198 |
|
|
vector def 'vx1'. Using 'vx1' we create stmt VS2_1 and record a
|
2199 |
|
|
pointer to it in the STMT_VINFO_RELATED_STMT of the vector stmt VS2_0.
|
2200 |
|
|
Similarly when creating stmts VS2_2 and VS2_3. This is the resulting
|
2201 |
|
|
chain of stmts and pointers:
|
2202 |
|
|
RELATED_STMT VEC_STMT
|
2203 |
|
|
VS1_0: vx0 = memref0 VS1_1 -
|
2204 |
|
|
VS1_1: vx1 = memref1 VS1_2 -
|
2205 |
|
|
VS1_2: vx2 = memref2 VS1_3 -
|
2206 |
|
|
VS1_3: vx3 = memref3 - -
|
2207 |
|
|
S1: x = load - VS1_0
|
2208 |
|
|
VS2_0: vz0 = vx0 + v1 VS2_1 -
|
2209 |
|
|
VS2_1: vz1 = vx1 + v1 VS2_2 -
|
2210 |
|
|
VS2_2: vz2 = vx2 + v1 VS2_3 -
|
2211 |
|
|
VS2_3: vz3 = vx3 + v1 - -
|
2212 |
|
|
S2: z = x + 1 - VS2_0 */
|
2213 |
|
|
|
2214 |
|
|
prev_stmt_info = NULL;
|
2215 |
|
|
for (j = 0; j < ncopies; j++)
|
2216 |
|
|
{
|
2217 |
|
|
/* Handle uses. */
|
2218 |
|
|
if (j == 0)
|
2219 |
|
|
{
|
2220 |
|
|
if (op_type == binary_op && scalar_shift_arg)
|
2221 |
|
|
{
|
2222 |
|
|
/* Vector shl and shr insn patterns can be defined with scalar
|
2223 |
|
|
operand 2 (shift operand). In this case, use constant or loop
|
2224 |
|
|
invariant op1 directly, without extending it to vector mode
|
2225 |
|
|
first. */
|
2226 |
|
|
optab_op2_mode = insn_data[icode].operand[2].mode;
|
2227 |
|
|
if (!VECTOR_MODE_P (optab_op2_mode))
|
2228 |
|
|
{
|
2229 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
2230 |
|
|
fprintf (vect_dump, "operand 1 using scalar mode.");
|
2231 |
|
|
vec_oprnd1 = op1;
|
2232 |
|
|
VEC_quick_push (tree, vec_oprnds1, vec_oprnd1);
|
2233 |
|
|
if (slp_node)
|
2234 |
|
|
{
|
2235 |
|
|
/* Store vec_oprnd1 for every vector stmt to be created
|
2236 |
|
|
for SLP_NODE. We check during the analysis that all the
|
2237 |
|
|
shift arguments are the same.
|
2238 |
|
|
TODO: Allow different constants for different vector
|
2239 |
|
|
stmts generated for an SLP instance. */
|
2240 |
|
|
for (k = 0; k < slp_node->vec_stmts_size - 1; k++)
|
2241 |
|
|
VEC_quick_push (tree, vec_oprnds1, vec_oprnd1);
|
2242 |
|
|
}
|
2243 |
|
|
}
|
2244 |
|
|
}
|
2245 |
|
|
|
2246 |
|
|
/* vec_oprnd1 is available if operand 1 should be of a scalar-type
|
2247 |
|
|
(a special case for certain kind of vector shifts); otherwise,
|
2248 |
|
|
operand 1 should be of a vector type (the usual case). */
|
2249 |
|
|
if (op_type == binary_op && !vec_oprnd1)
|
2250 |
|
|
vect_get_vec_defs (op0, op1, stmt, &vec_oprnds0, &vec_oprnds1,
|
2251 |
|
|
slp_node);
|
2252 |
|
|
else
|
2253 |
|
|
vect_get_vec_defs (op0, NULL_TREE, stmt, &vec_oprnds0, NULL,
|
2254 |
|
|
slp_node);
|
2255 |
|
|
}
|
2256 |
|
|
else
|
2257 |
|
|
vect_get_vec_defs_for_stmt_copy (dt, &vec_oprnds0, &vec_oprnds1);
|
2258 |
|
|
|
2259 |
|
|
/* Arguments are ready. Create the new vector stmt. */
|
2260 |
|
|
for (i = 0; VEC_iterate (tree, vec_oprnds0, i, vop0); i++)
|
2261 |
|
|
{
|
2262 |
|
|
vop1 = ((op_type == binary_op)
|
2263 |
|
|
? VEC_index (tree, vec_oprnds1, i) : NULL);
|
2264 |
|
|
new_stmt = gimple_build_assign_with_ops (code, vec_dest, vop0, vop1);
|
2265 |
|
|
new_temp = make_ssa_name (vec_dest, new_stmt);
|
2266 |
|
|
gimple_assign_set_lhs (new_stmt, new_temp);
|
2267 |
|
|
vect_finish_stmt_generation (stmt, new_stmt, gsi);
|
2268 |
|
|
if (slp_node)
|
2269 |
|
|
VEC_quick_push (gimple, SLP_TREE_VEC_STMTS (slp_node), new_stmt);
|
2270 |
|
|
}
|
2271 |
|
|
|
2272 |
|
|
if (slp_node)
|
2273 |
|
|
continue;
|
2274 |
|
|
|
2275 |
|
|
if (j == 0)
|
2276 |
|
|
STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
|
2277 |
|
|
else
|
2278 |
|
|
STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
|
2279 |
|
|
prev_stmt_info = vinfo_for_stmt (new_stmt);
|
2280 |
|
|
}
|
2281 |
|
|
|
2282 |
|
|
VEC_free (tree, heap, vec_oprnds0);
|
2283 |
|
|
if (vec_oprnds1)
|
2284 |
|
|
VEC_free (tree, heap, vec_oprnds1);
|
2285 |
|
|
|
2286 |
|
|
return true;
|
2287 |
|
|
}
|
2288 |
|
|
|
2289 |
|
|
|
2290 |
|
|
/* Get vectorized definitions for loop-based vectorization. For the first
|
2291 |
|
|
operand we call vect_get_vec_def_for_operand() (with OPRND containing
|
2292 |
|
|
scalar operand), and for the rest we get a copy with
|
2293 |
|
|
vect_get_vec_def_for_stmt_copy() using the previous vector definition
|
2294 |
|
|
(stored in OPRND). See vect_get_vec_def_for_stmt_copy() for details.
|
2295 |
|
|
The vectors are collected into VEC_OPRNDS. */
|
2296 |
|
|
|
2297 |
|
|
static void
|
2298 |
|
|
vect_get_loop_based_defs (tree *oprnd, gimple stmt, enum vect_def_type dt,
|
2299 |
|
|
VEC (tree, heap) **vec_oprnds, int multi_step_cvt)
|
2300 |
|
|
{
|
2301 |
|
|
tree vec_oprnd;
|
2302 |
|
|
|
2303 |
|
|
/* Get first vector operand. */
|
2304 |
|
|
/* All the vector operands except the very first one (that is scalar oprnd)
|
2305 |
|
|
are stmt copies. */
|
2306 |
|
|
if (TREE_CODE (TREE_TYPE (*oprnd)) != VECTOR_TYPE)
|
2307 |
|
|
vec_oprnd = vect_get_vec_def_for_operand (*oprnd, stmt, NULL);
|
2308 |
|
|
else
|
2309 |
|
|
vec_oprnd = vect_get_vec_def_for_stmt_copy (dt, *oprnd);
|
2310 |
|
|
|
2311 |
|
|
VEC_quick_push (tree, *vec_oprnds, vec_oprnd);
|
2312 |
|
|
|
2313 |
|
|
/* Get second vector operand. */
|
2314 |
|
|
vec_oprnd = vect_get_vec_def_for_stmt_copy (dt, vec_oprnd);
|
2315 |
|
|
VEC_quick_push (tree, *vec_oprnds, vec_oprnd);
|
2316 |
|
|
|
2317 |
|
|
*oprnd = vec_oprnd;
|
2318 |
|
|
|
2319 |
|
|
/* For conversion in multiple steps, continue to get operands
|
2320 |
|
|
recursively. */
|
2321 |
|
|
if (multi_step_cvt)
|
2322 |
|
|
vect_get_loop_based_defs (oprnd, stmt, dt, vec_oprnds, multi_step_cvt - 1);
|
2323 |
|
|
}
|
2324 |
|
|
|
2325 |
|
|
|
2326 |
|
|
/* Create vectorized demotion statements for vector operands from VEC_OPRNDS.
|
2327 |
|
|
For multi-step conversions store the resulting vectors and call the function
|
2328 |
|
|
recursively. */
|
2329 |
|
|
|
2330 |
|
|
static void
|
2331 |
|
|
vect_create_vectorized_demotion_stmts (VEC (tree, heap) **vec_oprnds,
|
2332 |
|
|
int multi_step_cvt, gimple stmt,
|
2333 |
|
|
VEC (tree, heap) *vec_dsts,
|
2334 |
|
|
gimple_stmt_iterator *gsi,
|
2335 |
|
|
slp_tree slp_node, enum tree_code code,
|
2336 |
|
|
stmt_vec_info *prev_stmt_info)
|
2337 |
|
|
{
|
2338 |
|
|
unsigned int i;
|
2339 |
|
|
tree vop0, vop1, new_tmp, vec_dest;
|
2340 |
|
|
gimple new_stmt;
|
2341 |
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
|
2342 |
|
|
|
2343 |
|
|
vec_dest = VEC_pop (tree, vec_dsts);
|
2344 |
|
|
|
2345 |
|
|
for (i = 0; i < VEC_length (tree, *vec_oprnds); i += 2)
|
2346 |
|
|
{
|
2347 |
|
|
/* Create demotion operation. */
|
2348 |
|
|
vop0 = VEC_index (tree, *vec_oprnds, i);
|
2349 |
|
|
vop1 = VEC_index (tree, *vec_oprnds, i + 1);
|
2350 |
|
|
new_stmt = gimple_build_assign_with_ops (code, vec_dest, vop0, vop1);
|
2351 |
|
|
new_tmp = make_ssa_name (vec_dest, new_stmt);
|
2352 |
|
|
gimple_assign_set_lhs (new_stmt, new_tmp);
|
2353 |
|
|
vect_finish_stmt_generation (stmt, new_stmt, gsi);
|
2354 |
|
|
|
2355 |
|
|
if (multi_step_cvt)
|
2356 |
|
|
/* Store the resulting vector for next recursive call. */
|
2357 |
|
|
VEC_replace (tree, *vec_oprnds, i/2, new_tmp);
|
2358 |
|
|
else
|
2359 |
|
|
{
|
2360 |
|
|
/* This is the last step of the conversion sequence. Store the
|
2361 |
|
|
vectors in SLP_NODE or in vector info of the scalar statement
|
2362 |
|
|
(or in STMT_VINFO_RELATED_STMT chain). */
|
2363 |
|
|
if (slp_node)
|
2364 |
|
|
VEC_quick_push (gimple, SLP_TREE_VEC_STMTS (slp_node), new_stmt);
|
2365 |
|
|
else
|
2366 |
|
|
{
|
2367 |
|
|
if (!*prev_stmt_info)
|
2368 |
|
|
STMT_VINFO_VEC_STMT (stmt_info) = new_stmt;
|
2369 |
|
|
else
|
2370 |
|
|
STMT_VINFO_RELATED_STMT (*prev_stmt_info) = new_stmt;
|
2371 |
|
|
|
2372 |
|
|
*prev_stmt_info = vinfo_for_stmt (new_stmt);
|
2373 |
|
|
}
|
2374 |
|
|
}
|
2375 |
|
|
}
|
2376 |
|
|
|
2377 |
|
|
/* For multi-step demotion operations we first generate demotion operations
|
2378 |
|
|
from the source type to the intermediate types, and then combine the
|
2379 |
|
|
results (stored in VEC_OPRNDS) in demotion operation to the destination
|
2380 |
|
|
type. */
|
2381 |
|
|
if (multi_step_cvt)
|
2382 |
|
|
{
|
2383 |
|
|
/* At each level of recursion we have have of the operands we had at the
|
2384 |
|
|
previous level. */
|
2385 |
|
|
VEC_truncate (tree, *vec_oprnds, (i+1)/2);
|
2386 |
|
|
vect_create_vectorized_demotion_stmts (vec_oprnds, multi_step_cvt - 1,
|
2387 |
|
|
stmt, vec_dsts, gsi, slp_node,
|
2388 |
|
|
code, prev_stmt_info);
|
2389 |
|
|
}
|
2390 |
|
|
}
|
2391 |
|
|
|
2392 |
|
|
|
2393 |
|
|
/* Function vectorizable_type_demotion
|
2394 |
|
|
|
2395 |
|
|
Check if STMT performs a binary or unary operation that involves
|
2396 |
|
|
type demotion, and if it can be vectorized.
|
2397 |
|
|
If VEC_STMT is also passed, vectorize the STMT: create a vectorized
|
2398 |
|
|
stmt to replace it, put it in VEC_STMT, and insert it at BSI.
|
2399 |
|
|
Return FALSE if not a vectorizable STMT, TRUE otherwise. */
|
2400 |
|
|
|
2401 |
|
|
static bool
|
2402 |
|
|
vectorizable_type_demotion (gimple stmt, gimple_stmt_iterator *gsi,
|
2403 |
|
|
gimple *vec_stmt, slp_tree slp_node)
|
2404 |
|
|
{
|
2405 |
|
|
tree vec_dest;
|
2406 |
|
|
tree scalar_dest;
|
2407 |
|
|
tree op0;
|
2408 |
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
|
2409 |
|
|
loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
|
2410 |
|
|
enum tree_code code, code1 = ERROR_MARK;
|
2411 |
|
|
tree def;
|
2412 |
|
|
gimple def_stmt;
|
2413 |
|
|
enum vect_def_type dt[2] = {vect_unknown_def_type, vect_unknown_def_type};
|
2414 |
|
|
stmt_vec_info prev_stmt_info;
|
2415 |
|
|
int nunits_in;
|
2416 |
|
|
int nunits_out;
|
2417 |
|
|
tree vectype_out;
|
2418 |
|
|
int ncopies;
|
2419 |
|
|
int j, i;
|
2420 |
|
|
tree vectype_in;
|
2421 |
|
|
int multi_step_cvt = 0;
|
2422 |
|
|
VEC (tree, heap) *vec_oprnds0 = NULL;
|
2423 |
|
|
VEC (tree, heap) *vec_dsts = NULL, *interm_types = NULL, *tmp_vec_dsts = NULL;
|
2424 |
|
|
tree last_oprnd, intermediate_type;
|
2425 |
|
|
|
2426 |
|
|
/* FORNOW: not supported by basic block SLP vectorization. */
|
2427 |
|
|
gcc_assert (loop_vinfo);
|
2428 |
|
|
|
2429 |
|
|
if (!STMT_VINFO_RELEVANT_P (stmt_info))
|
2430 |
|
|
return false;
|
2431 |
|
|
|
2432 |
|
|
if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_internal_def)
|
2433 |
|
|
return false;
|
2434 |
|
|
|
2435 |
|
|
/* Is STMT a vectorizable type-demotion operation? */
|
2436 |
|
|
if (!is_gimple_assign (stmt))
|
2437 |
|
|
return false;
|
2438 |
|
|
|
2439 |
|
|
if (TREE_CODE (gimple_assign_lhs (stmt)) != SSA_NAME)
|
2440 |
|
|
return false;
|
2441 |
|
|
|
2442 |
|
|
code = gimple_assign_rhs_code (stmt);
|
2443 |
|
|
if (!CONVERT_EXPR_CODE_P (code))
|
2444 |
|
|
return false;
|
2445 |
|
|
|
2446 |
|
|
op0 = gimple_assign_rhs1 (stmt);
|
2447 |
|
|
vectype_in = get_vectype_for_scalar_type (TREE_TYPE (op0));
|
2448 |
|
|
if (!vectype_in)
|
2449 |
|
|
return false;
|
2450 |
|
|
nunits_in = TYPE_VECTOR_SUBPARTS (vectype_in);
|
2451 |
|
|
|
2452 |
|
|
scalar_dest = gimple_assign_lhs (stmt);
|
2453 |
|
|
vectype_out = get_vectype_for_scalar_type (TREE_TYPE (scalar_dest));
|
2454 |
|
|
if (!vectype_out)
|
2455 |
|
|
return false;
|
2456 |
|
|
nunits_out = TYPE_VECTOR_SUBPARTS (vectype_out);
|
2457 |
|
|
if (nunits_in >= nunits_out)
|
2458 |
|
|
return false;
|
2459 |
|
|
|
2460 |
|
|
/* Multiple types in SLP are handled by creating the appropriate number of
|
2461 |
|
|
vectorized stmts for each SLP node. Hence, NCOPIES is always 1 in
|
2462 |
|
|
case of SLP. */
|
2463 |
|
|
if (slp_node)
|
2464 |
|
|
ncopies = 1;
|
2465 |
|
|
else
|
2466 |
|
|
ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits_out;
|
2467 |
|
|
gcc_assert (ncopies >= 1);
|
2468 |
|
|
|
2469 |
|
|
if (! ((INTEGRAL_TYPE_P (TREE_TYPE (scalar_dest))
|
2470 |
|
|
&& INTEGRAL_TYPE_P (TREE_TYPE (op0)))
|
2471 |
|
|
|| (SCALAR_FLOAT_TYPE_P (TREE_TYPE (scalar_dest))
|
2472 |
|
|
&& SCALAR_FLOAT_TYPE_P (TREE_TYPE (op0))
|
2473 |
|
|
&& CONVERT_EXPR_CODE_P (code))))
|
2474 |
|
|
return false;
|
2475 |
|
|
|
2476 |
|
|
/* Check the operands of the operation. */
|
2477 |
|
|
if (!vect_is_simple_use (op0, loop_vinfo, NULL, &def_stmt, &def, &dt[0]))
|
2478 |
|
|
{
|
2479 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
2480 |
|
|
fprintf (vect_dump, "use not simple.");
|
2481 |
|
|
return false;
|
2482 |
|
|
}
|
2483 |
|
|
|
2484 |
|
|
/* Supportable by target? */
|
2485 |
|
|
if (!supportable_narrowing_operation (code, stmt, vectype_in, &code1,
|
2486 |
|
|
&multi_step_cvt, &interm_types))
|
2487 |
|
|
return false;
|
2488 |
|
|
|
2489 |
|
|
STMT_VINFO_VECTYPE (stmt_info) = vectype_in;
|
2490 |
|
|
|
2491 |
|
|
if (!vec_stmt) /* transformation not required. */
|
2492 |
|
|
{
|
2493 |
|
|
STMT_VINFO_TYPE (stmt_info) = type_demotion_vec_info_type;
|
2494 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
2495 |
|
|
fprintf (vect_dump, "=== vectorizable_demotion ===");
|
2496 |
|
|
vect_model_simple_cost (stmt_info, ncopies, dt, NULL);
|
2497 |
|
|
return true;
|
2498 |
|
|
}
|
2499 |
|
|
|
2500 |
|
|
/** Transform. **/
|
2501 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
2502 |
|
|
fprintf (vect_dump, "transform type demotion operation. ncopies = %d.",
|
2503 |
|
|
ncopies);
|
2504 |
|
|
|
2505 |
|
|
/* In case of multi-step demotion, we first generate demotion operations to
|
2506 |
|
|
the intermediate types, and then from that types to the final one.
|
2507 |
|
|
We create vector destinations for the intermediate type (TYPES) received
|
2508 |
|
|
from supportable_narrowing_operation, and store them in the correct order
|
2509 |
|
|
for future use in vect_create_vectorized_demotion_stmts(). */
|
2510 |
|
|
if (multi_step_cvt)
|
2511 |
|
|
vec_dsts = VEC_alloc (tree, heap, multi_step_cvt + 1);
|
2512 |
|
|
else
|
2513 |
|
|
vec_dsts = VEC_alloc (tree, heap, 1);
|
2514 |
|
|
|
2515 |
|
|
vec_dest = vect_create_destination_var (scalar_dest, vectype_out);
|
2516 |
|
|
VEC_quick_push (tree, vec_dsts, vec_dest);
|
2517 |
|
|
|
2518 |
|
|
if (multi_step_cvt)
|
2519 |
|
|
{
|
2520 |
|
|
for (i = VEC_length (tree, interm_types) - 1;
|
2521 |
|
|
VEC_iterate (tree, interm_types, i, intermediate_type); i--)
|
2522 |
|
|
{
|
2523 |
|
|
vec_dest = vect_create_destination_var (scalar_dest,
|
2524 |
|
|
intermediate_type);
|
2525 |
|
|
VEC_quick_push (tree, vec_dsts, vec_dest);
|
2526 |
|
|
}
|
2527 |
|
|
}
|
2528 |
|
|
|
2529 |
|
|
/* In case the vectorization factor (VF) is bigger than the number
|
2530 |
|
|
of elements that we can fit in a vectype (nunits), we have to generate
|
2531 |
|
|
more than one vector stmt - i.e - we need to "unroll" the
|
2532 |
|
|
vector stmt by a factor VF/nunits. */
|
2533 |
|
|
last_oprnd = op0;
|
2534 |
|
|
prev_stmt_info = NULL;
|
2535 |
|
|
for (j = 0; j < ncopies; j++)
|
2536 |
|
|
{
|
2537 |
|
|
/* Handle uses. */
|
2538 |
|
|
if (slp_node)
|
2539 |
|
|
vect_get_slp_defs (slp_node, &vec_oprnds0, NULL);
|
2540 |
|
|
else
|
2541 |
|
|
{
|
2542 |
|
|
VEC_free (tree, heap, vec_oprnds0);
|
2543 |
|
|
vec_oprnds0 = VEC_alloc (tree, heap,
|
2544 |
|
|
(multi_step_cvt ? vect_pow2 (multi_step_cvt) * 2 : 2));
|
2545 |
|
|
vect_get_loop_based_defs (&last_oprnd, stmt, dt[0], &vec_oprnds0,
|
2546 |
|
|
vect_pow2 (multi_step_cvt) - 1);
|
2547 |
|
|
}
|
2548 |
|
|
|
2549 |
|
|
/* Arguments are ready. Create the new vector stmts. */
|
2550 |
|
|
tmp_vec_dsts = VEC_copy (tree, heap, vec_dsts);
|
2551 |
|
|
vect_create_vectorized_demotion_stmts (&vec_oprnds0,
|
2552 |
|
|
multi_step_cvt, stmt, tmp_vec_dsts,
|
2553 |
|
|
gsi, slp_node, code1,
|
2554 |
|
|
&prev_stmt_info);
|
2555 |
|
|
}
|
2556 |
|
|
|
2557 |
|
|
VEC_free (tree, heap, vec_oprnds0);
|
2558 |
|
|
VEC_free (tree, heap, vec_dsts);
|
2559 |
|
|
VEC_free (tree, heap, tmp_vec_dsts);
|
2560 |
|
|
VEC_free (tree, heap, interm_types);
|
2561 |
|
|
|
2562 |
|
|
*vec_stmt = STMT_VINFO_VEC_STMT (stmt_info);
|
2563 |
|
|
return true;
|
2564 |
|
|
}
|
2565 |
|
|
|
2566 |
|
|
|
2567 |
|
|
/* Create vectorized promotion statements for vector operands from VEC_OPRNDS0
|
2568 |
|
|
and VEC_OPRNDS1 (for binary operations). For multi-step conversions store
|
2569 |
|
|
the resulting vectors and call the function recursively. */
|
2570 |
|
|
|
2571 |
|
|
static void
|
2572 |
|
|
vect_create_vectorized_promotion_stmts (VEC (tree, heap) **vec_oprnds0,
|
2573 |
|
|
VEC (tree, heap) **vec_oprnds1,
|
2574 |
|
|
int multi_step_cvt, gimple stmt,
|
2575 |
|
|
VEC (tree, heap) *vec_dsts,
|
2576 |
|
|
gimple_stmt_iterator *gsi,
|
2577 |
|
|
slp_tree slp_node, enum tree_code code1,
|
2578 |
|
|
enum tree_code code2, tree decl1,
|
2579 |
|
|
tree decl2, int op_type,
|
2580 |
|
|
stmt_vec_info *prev_stmt_info)
|
2581 |
|
|
{
|
2582 |
|
|
int i;
|
2583 |
|
|
tree vop0, vop1, new_tmp1, new_tmp2, vec_dest;
|
2584 |
|
|
gimple new_stmt1, new_stmt2;
|
2585 |
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
|
2586 |
|
|
VEC (tree, heap) *vec_tmp;
|
2587 |
|
|
|
2588 |
|
|
vec_dest = VEC_pop (tree, vec_dsts);
|
2589 |
|
|
vec_tmp = VEC_alloc (tree, heap, VEC_length (tree, *vec_oprnds0) * 2);
|
2590 |
|
|
|
2591 |
|
|
for (i = 0; VEC_iterate (tree, *vec_oprnds0, i, vop0); i++)
|
2592 |
|
|
{
|
2593 |
|
|
if (op_type == binary_op)
|
2594 |
|
|
vop1 = VEC_index (tree, *vec_oprnds1, i);
|
2595 |
|
|
else
|
2596 |
|
|
vop1 = NULL_TREE;
|
2597 |
|
|
|
2598 |
|
|
/* Generate the two halves of promotion operation. */
|
2599 |
|
|
new_stmt1 = vect_gen_widened_results_half (code1, decl1, vop0, vop1,
|
2600 |
|
|
op_type, vec_dest, gsi, stmt);
|
2601 |
|
|
new_stmt2 = vect_gen_widened_results_half (code2, decl2, vop0, vop1,
|
2602 |
|
|
op_type, vec_dest, gsi, stmt);
|
2603 |
|
|
if (is_gimple_call (new_stmt1))
|
2604 |
|
|
{
|
2605 |
|
|
new_tmp1 = gimple_call_lhs (new_stmt1);
|
2606 |
|
|
new_tmp2 = gimple_call_lhs (new_stmt2);
|
2607 |
|
|
}
|
2608 |
|
|
else
|
2609 |
|
|
{
|
2610 |
|
|
new_tmp1 = gimple_assign_lhs (new_stmt1);
|
2611 |
|
|
new_tmp2 = gimple_assign_lhs (new_stmt2);
|
2612 |
|
|
}
|
2613 |
|
|
|
2614 |
|
|
if (multi_step_cvt)
|
2615 |
|
|
{
|
2616 |
|
|
/* Store the results for the recursive call. */
|
2617 |
|
|
VEC_quick_push (tree, vec_tmp, new_tmp1);
|
2618 |
|
|
VEC_quick_push (tree, vec_tmp, new_tmp2);
|
2619 |
|
|
}
|
2620 |
|
|
else
|
2621 |
|
|
{
|
2622 |
|
|
/* Last step of promotion sequience - store the results. */
|
2623 |
|
|
if (slp_node)
|
2624 |
|
|
{
|
2625 |
|
|
VEC_quick_push (gimple, SLP_TREE_VEC_STMTS (slp_node), new_stmt1);
|
2626 |
|
|
VEC_quick_push (gimple, SLP_TREE_VEC_STMTS (slp_node), new_stmt2);
|
2627 |
|
|
}
|
2628 |
|
|
else
|
2629 |
|
|
{
|
2630 |
|
|
if (!*prev_stmt_info)
|
2631 |
|
|
STMT_VINFO_VEC_STMT (stmt_info) = new_stmt1;
|
2632 |
|
|
else
|
2633 |
|
|
STMT_VINFO_RELATED_STMT (*prev_stmt_info) = new_stmt1;
|
2634 |
|
|
|
2635 |
|
|
*prev_stmt_info = vinfo_for_stmt (new_stmt1);
|
2636 |
|
|
STMT_VINFO_RELATED_STMT (*prev_stmt_info) = new_stmt2;
|
2637 |
|
|
*prev_stmt_info = vinfo_for_stmt (new_stmt2);
|
2638 |
|
|
}
|
2639 |
|
|
}
|
2640 |
|
|
}
|
2641 |
|
|
|
2642 |
|
|
if (multi_step_cvt)
|
2643 |
|
|
{
|
2644 |
|
|
/* For multi-step promotion operation we first generate we call the
|
2645 |
|
|
function recurcively for every stage. We start from the input type,
|
2646 |
|
|
create promotion operations to the intermediate types, and then
|
2647 |
|
|
create promotions to the output type. */
|
2648 |
|
|
*vec_oprnds0 = VEC_copy (tree, heap, vec_tmp);
|
2649 |
|
|
VEC_free (tree, heap, vec_tmp);
|
2650 |
|
|
vect_create_vectorized_promotion_stmts (vec_oprnds0, vec_oprnds1,
|
2651 |
|
|
multi_step_cvt - 1, stmt,
|
2652 |
|
|
vec_dsts, gsi, slp_node, code1,
|
2653 |
|
|
code2, decl2, decl2, op_type,
|
2654 |
|
|
prev_stmt_info);
|
2655 |
|
|
}
|
2656 |
|
|
}
|
2657 |
|
|
|
2658 |
|
|
|
2659 |
|
|
/* Function vectorizable_type_promotion
|
2660 |
|
|
|
2661 |
|
|
Check if STMT performs a binary or unary operation that involves
|
2662 |
|
|
type promotion, and if it can be vectorized.
|
2663 |
|
|
If VEC_STMT is also passed, vectorize the STMT: create a vectorized
|
2664 |
|
|
stmt to replace it, put it in VEC_STMT, and insert it at BSI.
|
2665 |
|
|
Return FALSE if not a vectorizable STMT, TRUE otherwise. */
|
2666 |
|
|
|
2667 |
|
|
static bool
|
2668 |
|
|
vectorizable_type_promotion (gimple stmt, gimple_stmt_iterator *gsi,
|
2669 |
|
|
gimple *vec_stmt, slp_tree slp_node)
|
2670 |
|
|
{
|
2671 |
|
|
tree vec_dest;
|
2672 |
|
|
tree scalar_dest;
|
2673 |
|
|
tree op0, op1 = NULL;
|
2674 |
|
|
tree vec_oprnd0=NULL, vec_oprnd1=NULL;
|
2675 |
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
|
2676 |
|
|
loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
|
2677 |
|
|
enum tree_code code, code1 = ERROR_MARK, code2 = ERROR_MARK;
|
2678 |
|
|
tree decl1 = NULL_TREE, decl2 = NULL_TREE;
|
2679 |
|
|
int op_type;
|
2680 |
|
|
tree def;
|
2681 |
|
|
gimple def_stmt;
|
2682 |
|
|
enum vect_def_type dt[2] = {vect_unknown_def_type, vect_unknown_def_type};
|
2683 |
|
|
stmt_vec_info prev_stmt_info;
|
2684 |
|
|
int nunits_in;
|
2685 |
|
|
int nunits_out;
|
2686 |
|
|
tree vectype_out;
|
2687 |
|
|
int ncopies;
|
2688 |
|
|
int j, i;
|
2689 |
|
|
tree vectype_in;
|
2690 |
|
|
tree intermediate_type = NULL_TREE;
|
2691 |
|
|
int multi_step_cvt = 0;
|
2692 |
|
|
VEC (tree, heap) *vec_oprnds0 = NULL, *vec_oprnds1 = NULL;
|
2693 |
|
|
VEC (tree, heap) *vec_dsts = NULL, *interm_types = NULL, *tmp_vec_dsts = NULL;
|
2694 |
|
|
|
2695 |
|
|
/* FORNOW: not supported by basic block SLP vectorization. */
|
2696 |
|
|
gcc_assert (loop_vinfo);
|
2697 |
|
|
|
2698 |
|
|
if (!STMT_VINFO_RELEVANT_P (stmt_info))
|
2699 |
|
|
return false;
|
2700 |
|
|
|
2701 |
|
|
if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_internal_def)
|
2702 |
|
|
return false;
|
2703 |
|
|
|
2704 |
|
|
/* Is STMT a vectorizable type-promotion operation? */
|
2705 |
|
|
if (!is_gimple_assign (stmt))
|
2706 |
|
|
return false;
|
2707 |
|
|
|
2708 |
|
|
if (TREE_CODE (gimple_assign_lhs (stmt)) != SSA_NAME)
|
2709 |
|
|
return false;
|
2710 |
|
|
|
2711 |
|
|
code = gimple_assign_rhs_code (stmt);
|
2712 |
|
|
if (!CONVERT_EXPR_CODE_P (code)
|
2713 |
|
|
&& code != WIDEN_MULT_EXPR)
|
2714 |
|
|
return false;
|
2715 |
|
|
|
2716 |
|
|
op0 = gimple_assign_rhs1 (stmt);
|
2717 |
|
|
vectype_in = get_vectype_for_scalar_type (TREE_TYPE (op0));
|
2718 |
|
|
if (!vectype_in)
|
2719 |
|
|
return false;
|
2720 |
|
|
nunits_in = TYPE_VECTOR_SUBPARTS (vectype_in);
|
2721 |
|
|
|
2722 |
|
|
scalar_dest = gimple_assign_lhs (stmt);
|
2723 |
|
|
vectype_out = get_vectype_for_scalar_type (TREE_TYPE (scalar_dest));
|
2724 |
|
|
if (!vectype_out)
|
2725 |
|
|
return false;
|
2726 |
|
|
nunits_out = TYPE_VECTOR_SUBPARTS (vectype_out);
|
2727 |
|
|
if (nunits_in <= nunits_out)
|
2728 |
|
|
return false;
|
2729 |
|
|
|
2730 |
|
|
/* Multiple types in SLP are handled by creating the appropriate number of
|
2731 |
|
|
vectorized stmts for each SLP node. Hence, NCOPIES is always 1 in
|
2732 |
|
|
case of SLP. */
|
2733 |
|
|
if (slp_node)
|
2734 |
|
|
ncopies = 1;
|
2735 |
|
|
else
|
2736 |
|
|
ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits_in;
|
2737 |
|
|
|
2738 |
|
|
gcc_assert (ncopies >= 1);
|
2739 |
|
|
|
2740 |
|
|
if (! ((INTEGRAL_TYPE_P (TREE_TYPE (scalar_dest))
|
2741 |
|
|
&& INTEGRAL_TYPE_P (TREE_TYPE (op0)))
|
2742 |
|
|
|| (SCALAR_FLOAT_TYPE_P (TREE_TYPE (scalar_dest))
|
2743 |
|
|
&& SCALAR_FLOAT_TYPE_P (TREE_TYPE (op0))
|
2744 |
|
|
&& CONVERT_EXPR_CODE_P (code))))
|
2745 |
|
|
return false;
|
2746 |
|
|
|
2747 |
|
|
/* Check the operands of the operation. */
|
2748 |
|
|
if (!vect_is_simple_use (op0, loop_vinfo, NULL, &def_stmt, &def, &dt[0]))
|
2749 |
|
|
{
|
2750 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
2751 |
|
|
fprintf (vect_dump, "use not simple.");
|
2752 |
|
|
return false;
|
2753 |
|
|
}
|
2754 |
|
|
|
2755 |
|
|
op_type = TREE_CODE_LENGTH (code);
|
2756 |
|
|
if (op_type == binary_op)
|
2757 |
|
|
{
|
2758 |
|
|
op1 = gimple_assign_rhs2 (stmt);
|
2759 |
|
|
if (!vect_is_simple_use (op1, loop_vinfo, NULL, &def_stmt, &def, &dt[1]))
|
2760 |
|
|
{
|
2761 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
2762 |
|
|
fprintf (vect_dump, "use not simple.");
|
2763 |
|
|
return false;
|
2764 |
|
|
}
|
2765 |
|
|
}
|
2766 |
|
|
|
2767 |
|
|
/* Supportable by target? */
|
2768 |
|
|
if (!supportable_widening_operation (code, stmt, vectype_in,
|
2769 |
|
|
&decl1, &decl2, &code1, &code2,
|
2770 |
|
|
&multi_step_cvt, &interm_types))
|
2771 |
|
|
return false;
|
2772 |
|
|
|
2773 |
|
|
/* Binary widening operation can only be supported directly by the
|
2774 |
|
|
architecture. */
|
2775 |
|
|
gcc_assert (!(multi_step_cvt && op_type == binary_op));
|
2776 |
|
|
|
2777 |
|
|
STMT_VINFO_VECTYPE (stmt_info) = vectype_in;
|
2778 |
|
|
|
2779 |
|
|
if (!vec_stmt) /* transformation not required. */
|
2780 |
|
|
{
|
2781 |
|
|
STMT_VINFO_TYPE (stmt_info) = type_promotion_vec_info_type;
|
2782 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
2783 |
|
|
fprintf (vect_dump, "=== vectorizable_promotion ===");
|
2784 |
|
|
vect_model_simple_cost (stmt_info, 2*ncopies, dt, NULL);
|
2785 |
|
|
return true;
|
2786 |
|
|
}
|
2787 |
|
|
|
2788 |
|
|
/** Transform. **/
|
2789 |
|
|
|
2790 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
2791 |
|
|
fprintf (vect_dump, "transform type promotion operation. ncopies = %d.",
|
2792 |
|
|
ncopies);
|
2793 |
|
|
|
2794 |
|
|
/* Handle def. */
|
2795 |
|
|
/* In case of multi-step promotion, we first generate promotion operations
|
2796 |
|
|
to the intermediate types, and then from that types to the final one.
|
2797 |
|
|
We store vector destination in VEC_DSTS in the correct order for
|
2798 |
|
|
recursive creation of promotion operations in
|
2799 |
|
|
vect_create_vectorized_promotion_stmts(). Vector destinations are created
|
2800 |
|
|
according to TYPES recieved from supportable_widening_operation(). */
|
2801 |
|
|
if (multi_step_cvt)
|
2802 |
|
|
vec_dsts = VEC_alloc (tree, heap, multi_step_cvt + 1);
|
2803 |
|
|
else
|
2804 |
|
|
vec_dsts = VEC_alloc (tree, heap, 1);
|
2805 |
|
|
|
2806 |
|
|
vec_dest = vect_create_destination_var (scalar_dest, vectype_out);
|
2807 |
|
|
VEC_quick_push (tree, vec_dsts, vec_dest);
|
2808 |
|
|
|
2809 |
|
|
if (multi_step_cvt)
|
2810 |
|
|
{
|
2811 |
|
|
for (i = VEC_length (tree, interm_types) - 1;
|
2812 |
|
|
VEC_iterate (tree, interm_types, i, intermediate_type); i--)
|
2813 |
|
|
{
|
2814 |
|
|
vec_dest = vect_create_destination_var (scalar_dest,
|
2815 |
|
|
intermediate_type);
|
2816 |
|
|
VEC_quick_push (tree, vec_dsts, vec_dest);
|
2817 |
|
|
}
|
2818 |
|
|
}
|
2819 |
|
|
|
2820 |
|
|
if (!slp_node)
|
2821 |
|
|
{
|
2822 |
|
|
vec_oprnds0 = VEC_alloc (tree, heap,
|
2823 |
|
|
(multi_step_cvt ? vect_pow2 (multi_step_cvt) : 1));
|
2824 |
|
|
if (op_type == binary_op)
|
2825 |
|
|
vec_oprnds1 = VEC_alloc (tree, heap, 1);
|
2826 |
|
|
}
|
2827 |
|
|
|
2828 |
|
|
/* In case the vectorization factor (VF) is bigger than the number
|
2829 |
|
|
of elements that we can fit in a vectype (nunits), we have to generate
|
2830 |
|
|
more than one vector stmt - i.e - we need to "unroll" the
|
2831 |
|
|
vector stmt by a factor VF/nunits. */
|
2832 |
|
|
|
2833 |
|
|
prev_stmt_info = NULL;
|
2834 |
|
|
for (j = 0; j < ncopies; j++)
|
2835 |
|
|
{
|
2836 |
|
|
/* Handle uses. */
|
2837 |
|
|
if (j == 0)
|
2838 |
|
|
{
|
2839 |
|
|
if (slp_node)
|
2840 |
|
|
vect_get_slp_defs (slp_node, &vec_oprnds0, &vec_oprnds1);
|
2841 |
|
|
else
|
2842 |
|
|
{
|
2843 |
|
|
vec_oprnd0 = vect_get_vec_def_for_operand (op0, stmt, NULL);
|
2844 |
|
|
VEC_quick_push (tree, vec_oprnds0, vec_oprnd0);
|
2845 |
|
|
if (op_type == binary_op)
|
2846 |
|
|
{
|
2847 |
|
|
vec_oprnd1 = vect_get_vec_def_for_operand (op1, stmt, NULL);
|
2848 |
|
|
VEC_quick_push (tree, vec_oprnds1, vec_oprnd1);
|
2849 |
|
|
}
|
2850 |
|
|
}
|
2851 |
|
|
}
|
2852 |
|
|
else
|
2853 |
|
|
{
|
2854 |
|
|
vec_oprnd0 = vect_get_vec_def_for_stmt_copy (dt[0], vec_oprnd0);
|
2855 |
|
|
VEC_replace (tree, vec_oprnds0, 0, vec_oprnd0);
|
2856 |
|
|
if (op_type == binary_op)
|
2857 |
|
|
{
|
2858 |
|
|
vec_oprnd1 = vect_get_vec_def_for_stmt_copy (dt[1], vec_oprnd1);
|
2859 |
|
|
VEC_replace (tree, vec_oprnds1, 0, vec_oprnd1);
|
2860 |
|
|
}
|
2861 |
|
|
}
|
2862 |
|
|
|
2863 |
|
|
/* Arguments are ready. Create the new vector stmts. */
|
2864 |
|
|
tmp_vec_dsts = VEC_copy (tree, heap, vec_dsts);
|
2865 |
|
|
vect_create_vectorized_promotion_stmts (&vec_oprnds0, &vec_oprnds1,
|
2866 |
|
|
multi_step_cvt, stmt,
|
2867 |
|
|
tmp_vec_dsts,
|
2868 |
|
|
gsi, slp_node, code1, code2,
|
2869 |
|
|
decl1, decl2, op_type,
|
2870 |
|
|
&prev_stmt_info);
|
2871 |
|
|
}
|
2872 |
|
|
|
2873 |
|
|
VEC_free (tree, heap, vec_dsts);
|
2874 |
|
|
VEC_free (tree, heap, tmp_vec_dsts);
|
2875 |
|
|
VEC_free (tree, heap, interm_types);
|
2876 |
|
|
VEC_free (tree, heap, vec_oprnds0);
|
2877 |
|
|
VEC_free (tree, heap, vec_oprnds1);
|
2878 |
|
|
|
2879 |
|
|
*vec_stmt = STMT_VINFO_VEC_STMT (stmt_info);
|
2880 |
|
|
return true;
|
2881 |
|
|
}
|
2882 |
|
|
|
2883 |
|
|
|
2884 |
|
|
/* Function vectorizable_store.
|
2885 |
|
|
|
2886 |
|
|
Check if STMT defines a non scalar data-ref (array/pointer/structure) that
|
2887 |
|
|
can be vectorized.
|
2888 |
|
|
If VEC_STMT is also passed, vectorize the STMT: create a vectorized
|
2889 |
|
|
stmt to replace it, put it in VEC_STMT, and insert it at BSI.
|
2890 |
|
|
Return FALSE if not a vectorizable STMT, TRUE otherwise. */
|
2891 |
|
|
|
2892 |
|
|
static bool
|
2893 |
|
|
vectorizable_store (gimple stmt, gimple_stmt_iterator *gsi, gimple *vec_stmt,
|
2894 |
|
|
slp_tree slp_node)
|
2895 |
|
|
{
|
2896 |
|
|
tree scalar_dest;
|
2897 |
|
|
tree data_ref;
|
2898 |
|
|
tree op;
|
2899 |
|
|
tree vec_oprnd = NULL_TREE;
|
2900 |
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
|
2901 |
|
|
struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info), *first_dr = NULL;
|
2902 |
|
|
tree vectype = STMT_VINFO_VECTYPE (stmt_info);
|
2903 |
|
|
loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
|
2904 |
|
|
struct loop *loop = NULL;
|
2905 |
|
|
enum machine_mode vec_mode;
|
2906 |
|
|
tree dummy;
|
2907 |
|
|
enum dr_alignment_support alignment_support_scheme;
|
2908 |
|
|
tree def;
|
2909 |
|
|
gimple def_stmt;
|
2910 |
|
|
enum vect_def_type dt;
|
2911 |
|
|
stmt_vec_info prev_stmt_info = NULL;
|
2912 |
|
|
tree dataref_ptr = NULL_TREE;
|
2913 |
|
|
int nunits = TYPE_VECTOR_SUBPARTS (vectype);
|
2914 |
|
|
int ncopies;
|
2915 |
|
|
int j;
|
2916 |
|
|
gimple next_stmt, first_stmt = NULL;
|
2917 |
|
|
bool strided_store = false;
|
2918 |
|
|
unsigned int group_size, i;
|
2919 |
|
|
VEC(tree,heap) *dr_chain = NULL, *oprnds = NULL, *result_chain = NULL;
|
2920 |
|
|
bool inv_p;
|
2921 |
|
|
VEC(tree,heap) *vec_oprnds = NULL;
|
2922 |
|
|
bool slp = (slp_node != NULL);
|
2923 |
|
|
unsigned int vec_num;
|
2924 |
|
|
bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
|
2925 |
|
|
|
2926 |
|
|
if (loop_vinfo)
|
2927 |
|
|
loop = LOOP_VINFO_LOOP (loop_vinfo);
|
2928 |
|
|
|
2929 |
|
|
/* Multiple types in SLP are handled by creating the appropriate number of
|
2930 |
|
|
vectorized stmts for each SLP node. Hence, NCOPIES is always 1 in
|
2931 |
|
|
case of SLP. */
|
2932 |
|
|
if (slp)
|
2933 |
|
|
ncopies = 1;
|
2934 |
|
|
else
|
2935 |
|
|
ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits;
|
2936 |
|
|
|
2937 |
|
|
gcc_assert (ncopies >= 1);
|
2938 |
|
|
|
2939 |
|
|
/* FORNOW. This restriction should be relaxed. */
|
2940 |
|
|
if (loop && nested_in_vect_loop_p (loop, stmt) && ncopies > 1)
|
2941 |
|
|
{
|
2942 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
2943 |
|
|
fprintf (vect_dump, "multiple types in nested loop.");
|
2944 |
|
|
return false;
|
2945 |
|
|
}
|
2946 |
|
|
|
2947 |
|
|
if (!STMT_VINFO_RELEVANT_P (stmt_info) && !bb_vinfo)
|
2948 |
|
|
return false;
|
2949 |
|
|
|
2950 |
|
|
if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_internal_def)
|
2951 |
|
|
return false;
|
2952 |
|
|
|
2953 |
|
|
/* Is vectorizable store? */
|
2954 |
|
|
|
2955 |
|
|
if (!is_gimple_assign (stmt))
|
2956 |
|
|
return false;
|
2957 |
|
|
|
2958 |
|
|
scalar_dest = gimple_assign_lhs (stmt);
|
2959 |
|
|
if (TREE_CODE (scalar_dest) != ARRAY_REF
|
2960 |
|
|
&& TREE_CODE (scalar_dest) != INDIRECT_REF
|
2961 |
|
|
&& TREE_CODE (scalar_dest) != COMPONENT_REF
|
2962 |
|
|
&& TREE_CODE (scalar_dest) != IMAGPART_EXPR
|
2963 |
|
|
&& TREE_CODE (scalar_dest) != REALPART_EXPR)
|
2964 |
|
|
return false;
|
2965 |
|
|
|
2966 |
|
|
gcc_assert (gimple_assign_single_p (stmt));
|
2967 |
|
|
op = gimple_assign_rhs1 (stmt);
|
2968 |
|
|
if (!vect_is_simple_use (op, loop_vinfo, bb_vinfo, &def_stmt, &def, &dt))
|
2969 |
|
|
{
|
2970 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
2971 |
|
|
fprintf (vect_dump, "use not simple.");
|
2972 |
|
|
return false;
|
2973 |
|
|
}
|
2974 |
|
|
|
2975 |
|
|
/* The scalar rhs type needs to be trivially convertible to the vector
|
2976 |
|
|
component type. This should always be the case. */
|
2977 |
|
|
if (!useless_type_conversion_p (TREE_TYPE (vectype), TREE_TYPE (op)))
|
2978 |
|
|
{
|
2979 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
2980 |
|
|
fprintf (vect_dump, "??? operands of different types");
|
2981 |
|
|
return false;
|
2982 |
|
|
}
|
2983 |
|
|
|
2984 |
|
|
vec_mode = TYPE_MODE (vectype);
|
2985 |
|
|
/* FORNOW. In some cases can vectorize even if data-type not supported
|
2986 |
|
|
(e.g. - array initialization with 0). */
|
2987 |
|
|
if (optab_handler (mov_optab, (int)vec_mode)->insn_code == CODE_FOR_nothing)
|
2988 |
|
|
return false;
|
2989 |
|
|
|
2990 |
|
|
if (!STMT_VINFO_DATA_REF (stmt_info))
|
2991 |
|
|
return false;
|
2992 |
|
|
|
2993 |
|
|
if (STMT_VINFO_STRIDED_ACCESS (stmt_info))
|
2994 |
|
|
{
|
2995 |
|
|
strided_store = true;
|
2996 |
|
|
first_stmt = DR_GROUP_FIRST_DR (stmt_info);
|
2997 |
|
|
if (!vect_strided_store_supported (vectype)
|
2998 |
|
|
&& !PURE_SLP_STMT (stmt_info) && !slp)
|
2999 |
|
|
return false;
|
3000 |
|
|
|
3001 |
|
|
if (first_stmt == stmt)
|
3002 |
|
|
{
|
3003 |
|
|
/* STMT is the leader of the group. Check the operands of all the
|
3004 |
|
|
stmts of the group. */
|
3005 |
|
|
next_stmt = DR_GROUP_NEXT_DR (stmt_info);
|
3006 |
|
|
while (next_stmt)
|
3007 |
|
|
{
|
3008 |
|
|
gcc_assert (gimple_assign_single_p (next_stmt));
|
3009 |
|
|
op = gimple_assign_rhs1 (next_stmt);
|
3010 |
|
|
if (!vect_is_simple_use (op, loop_vinfo, bb_vinfo, &def_stmt,
|
3011 |
|
|
&def, &dt))
|
3012 |
|
|
{
|
3013 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
3014 |
|
|
fprintf (vect_dump, "use not simple.");
|
3015 |
|
|
return false;
|
3016 |
|
|
}
|
3017 |
|
|
next_stmt = DR_GROUP_NEXT_DR (vinfo_for_stmt (next_stmt));
|
3018 |
|
|
}
|
3019 |
|
|
}
|
3020 |
|
|
}
|
3021 |
|
|
|
3022 |
|
|
if (!vec_stmt) /* transformation not required. */
|
3023 |
|
|
{
|
3024 |
|
|
STMT_VINFO_TYPE (stmt_info) = store_vec_info_type;
|
3025 |
|
|
vect_model_store_cost (stmt_info, ncopies, dt, NULL);
|
3026 |
|
|
return true;
|
3027 |
|
|
}
|
3028 |
|
|
|
3029 |
|
|
/** Transform. **/
|
3030 |
|
|
|
3031 |
|
|
if (strided_store)
|
3032 |
|
|
{
|
3033 |
|
|
first_dr = STMT_VINFO_DATA_REF (vinfo_for_stmt (first_stmt));
|
3034 |
|
|
group_size = DR_GROUP_SIZE (vinfo_for_stmt (first_stmt));
|
3035 |
|
|
|
3036 |
|
|
DR_GROUP_STORE_COUNT (vinfo_for_stmt (first_stmt))++;
|
3037 |
|
|
|
3038 |
|
|
/* FORNOW */
|
3039 |
|
|
gcc_assert (!loop || !nested_in_vect_loop_p (loop, stmt));
|
3040 |
|
|
|
3041 |
|
|
/* We vectorize all the stmts of the interleaving group when we
|
3042 |
|
|
reach the last stmt in the group. */
|
3043 |
|
|
if (DR_GROUP_STORE_COUNT (vinfo_for_stmt (first_stmt))
|
3044 |
|
|
< DR_GROUP_SIZE (vinfo_for_stmt (first_stmt))
|
3045 |
|
|
&& !slp)
|
3046 |
|
|
{
|
3047 |
|
|
*vec_stmt = NULL;
|
3048 |
|
|
return true;
|
3049 |
|
|
}
|
3050 |
|
|
|
3051 |
|
|
if (slp)
|
3052 |
|
|
strided_store = false;
|
3053 |
|
|
|
3054 |
|
|
/* VEC_NUM is the number of vect stmts to be created for this group. */
|
3055 |
|
|
if (slp)
|
3056 |
|
|
vec_num = SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node);
|
3057 |
|
|
else
|
3058 |
|
|
vec_num = group_size;
|
3059 |
|
|
}
|
3060 |
|
|
else
|
3061 |
|
|
{
|
3062 |
|
|
first_stmt = stmt;
|
3063 |
|
|
first_dr = dr;
|
3064 |
|
|
group_size = vec_num = 1;
|
3065 |
|
|
}
|
3066 |
|
|
|
3067 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
3068 |
|
|
fprintf (vect_dump, "transform store. ncopies = %d",ncopies);
|
3069 |
|
|
|
3070 |
|
|
dr_chain = VEC_alloc (tree, heap, group_size);
|
3071 |
|
|
oprnds = VEC_alloc (tree, heap, group_size);
|
3072 |
|
|
|
3073 |
|
|
alignment_support_scheme = vect_supportable_dr_alignment (first_dr);
|
3074 |
|
|
gcc_assert (alignment_support_scheme);
|
3075 |
|
|
|
3076 |
|
|
/* In case the vectorization factor (VF) is bigger than the number
|
3077 |
|
|
of elements that we can fit in a vectype (nunits), we have to generate
|
3078 |
|
|
more than one vector stmt - i.e - we need to "unroll" the
|
3079 |
|
|
vector stmt by a factor VF/nunits. For more details see documentation in
|
3080 |
|
|
vect_get_vec_def_for_copy_stmt. */
|
3081 |
|
|
|
3082 |
|
|
/* In case of interleaving (non-unit strided access):
|
3083 |
|
|
|
3084 |
|
|
S1: &base + 2 = x2
|
3085 |
|
|
S2: &base = x0
|
3086 |
|
|
S3: &base + 1 = x1
|
3087 |
|
|
S4: &base + 3 = x3
|
3088 |
|
|
|
3089 |
|
|
We create vectorized stores starting from base address (the access of the
|
3090 |
|
|
first stmt in the chain (S2 in the above example), when the last store stmt
|
3091 |
|
|
of the chain (S4) is reached:
|
3092 |
|
|
|
3093 |
|
|
VS1: &base = vx2
|
3094 |
|
|
VS2: &base + vec_size*1 = vx0
|
3095 |
|
|
VS3: &base + vec_size*2 = vx1
|
3096 |
|
|
VS4: &base + vec_size*3 = vx3
|
3097 |
|
|
|
3098 |
|
|
Then permutation statements are generated:
|
3099 |
|
|
|
3100 |
|
|
VS5: vx5 = VEC_INTERLEAVE_HIGH_EXPR < vx0, vx3 >
|
3101 |
|
|
VS6: vx6 = VEC_INTERLEAVE_LOW_EXPR < vx0, vx3 >
|
3102 |
|
|
...
|
3103 |
|
|
|
3104 |
|
|
And they are put in STMT_VINFO_VEC_STMT of the corresponding scalar stmts
|
3105 |
|
|
(the order of the data-refs in the output of vect_permute_store_chain
|
3106 |
|
|
corresponds to the order of scalar stmts in the interleaving chain - see
|
3107 |
|
|
the documentation of vect_permute_store_chain()).
|
3108 |
|
|
|
3109 |
|
|
In case of both multiple types and interleaving, above vector stores and
|
3110 |
|
|
permutation stmts are created for every copy. The result vector stmts are
|
3111 |
|
|
put in STMT_VINFO_VEC_STMT for the first copy and in the corresponding
|
3112 |
|
|
STMT_VINFO_RELATED_STMT for the next copies.
|
3113 |
|
|
*/
|
3114 |
|
|
|
3115 |
|
|
prev_stmt_info = NULL;
|
3116 |
|
|
for (j = 0; j < ncopies; j++)
|
3117 |
|
|
{
|
3118 |
|
|
gimple new_stmt;
|
3119 |
|
|
gimple ptr_incr;
|
3120 |
|
|
|
3121 |
|
|
if (j == 0)
|
3122 |
|
|
{
|
3123 |
|
|
if (slp)
|
3124 |
|
|
{
|
3125 |
|
|
/* Get vectorized arguments for SLP_NODE. */
|
3126 |
|
|
vect_get_slp_defs (slp_node, &vec_oprnds, NULL);
|
3127 |
|
|
|
3128 |
|
|
vec_oprnd = VEC_index (tree, vec_oprnds, 0);
|
3129 |
|
|
}
|
3130 |
|
|
else
|
3131 |
|
|
{
|
3132 |
|
|
/* For interleaved stores we collect vectorized defs for all the
|
3133 |
|
|
stores in the group in DR_CHAIN and OPRNDS. DR_CHAIN is then
|
3134 |
|
|
used as an input to vect_permute_store_chain(), and OPRNDS as
|
3135 |
|
|
an input to vect_get_vec_def_for_stmt_copy() for the next copy.
|
3136 |
|
|
|
3137 |
|
|
If the store is not strided, GROUP_SIZE is 1, and DR_CHAIN and
|
3138 |
|
|
OPRNDS are of size 1. */
|
3139 |
|
|
next_stmt = first_stmt;
|
3140 |
|
|
for (i = 0; i < group_size; i++)
|
3141 |
|
|
{
|
3142 |
|
|
/* Since gaps are not supported for interleaved stores,
|
3143 |
|
|
GROUP_SIZE is the exact number of stmts in the chain.
|
3144 |
|
|
Therefore, NEXT_STMT can't be NULL_TREE. In case that
|
3145 |
|
|
there is no interleaving, GROUP_SIZE is 1, and only one
|
3146 |
|
|
iteration of the loop will be executed. */
|
3147 |
|
|
gcc_assert (next_stmt
|
3148 |
|
|
&& gimple_assign_single_p (next_stmt));
|
3149 |
|
|
op = gimple_assign_rhs1 (next_stmt);
|
3150 |
|
|
|
3151 |
|
|
vec_oprnd = vect_get_vec_def_for_operand (op, next_stmt,
|
3152 |
|
|
NULL);
|
3153 |
|
|
VEC_quick_push(tree, dr_chain, vec_oprnd);
|
3154 |
|
|
VEC_quick_push(tree, oprnds, vec_oprnd);
|
3155 |
|
|
next_stmt = DR_GROUP_NEXT_DR (vinfo_for_stmt (next_stmt));
|
3156 |
|
|
}
|
3157 |
|
|
}
|
3158 |
|
|
|
3159 |
|
|
/* We should have catched mismatched types earlier. */
|
3160 |
|
|
gcc_assert (useless_type_conversion_p (vectype,
|
3161 |
|
|
TREE_TYPE (vec_oprnd)));
|
3162 |
|
|
dataref_ptr = vect_create_data_ref_ptr (first_stmt, NULL, NULL_TREE,
|
3163 |
|
|
&dummy, &ptr_incr, false,
|
3164 |
|
|
&inv_p);
|
3165 |
|
|
gcc_assert (bb_vinfo || !inv_p);
|
3166 |
|
|
}
|
3167 |
|
|
else
|
3168 |
|
|
{
|
3169 |
|
|
/* For interleaved stores we created vectorized defs for all the
|
3170 |
|
|
defs stored in OPRNDS in the previous iteration (previous copy).
|
3171 |
|
|
DR_CHAIN is then used as an input to vect_permute_store_chain(),
|
3172 |
|
|
and OPRNDS as an input to vect_get_vec_def_for_stmt_copy() for the
|
3173 |
|
|
next copy.
|
3174 |
|
|
If the store is not strided, GROUP_SIZE is 1, and DR_CHAIN and
|
3175 |
|
|
OPRNDS are of size 1. */
|
3176 |
|
|
for (i = 0; i < group_size; i++)
|
3177 |
|
|
{
|
3178 |
|
|
op = VEC_index (tree, oprnds, i);
|
3179 |
|
|
vect_is_simple_use (op, loop_vinfo, bb_vinfo, &def_stmt, &def,
|
3180 |
|
|
&dt);
|
3181 |
|
|
vec_oprnd = vect_get_vec_def_for_stmt_copy (dt, op);
|
3182 |
|
|
VEC_replace(tree, dr_chain, i, vec_oprnd);
|
3183 |
|
|
VEC_replace(tree, oprnds, i, vec_oprnd);
|
3184 |
|
|
}
|
3185 |
|
|
dataref_ptr =
|
3186 |
|
|
bump_vector_ptr (dataref_ptr, ptr_incr, gsi, stmt, NULL_TREE);
|
3187 |
|
|
}
|
3188 |
|
|
|
3189 |
|
|
if (strided_store)
|
3190 |
|
|
{
|
3191 |
|
|
result_chain = VEC_alloc (tree, heap, group_size);
|
3192 |
|
|
/* Permute. */
|
3193 |
|
|
if (!vect_permute_store_chain (dr_chain, group_size, stmt, gsi,
|
3194 |
|
|
&result_chain))
|
3195 |
|
|
return false;
|
3196 |
|
|
}
|
3197 |
|
|
|
3198 |
|
|
next_stmt = first_stmt;
|
3199 |
|
|
for (i = 0; i < vec_num; i++)
|
3200 |
|
|
{
|
3201 |
|
|
if (i > 0)
|
3202 |
|
|
/* Bump the vector pointer. */
|
3203 |
|
|
dataref_ptr = bump_vector_ptr (dataref_ptr, ptr_incr, gsi, stmt,
|
3204 |
|
|
NULL_TREE);
|
3205 |
|
|
|
3206 |
|
|
if (slp)
|
3207 |
|
|
vec_oprnd = VEC_index (tree, vec_oprnds, i);
|
3208 |
|
|
else if (strided_store)
|
3209 |
|
|
/* For strided stores vectorized defs are interleaved in
|
3210 |
|
|
vect_permute_store_chain(). */
|
3211 |
|
|
vec_oprnd = VEC_index (tree, result_chain, i);
|
3212 |
|
|
|
3213 |
|
|
if (aligned_access_p (first_dr))
|
3214 |
|
|
data_ref = build_fold_indirect_ref (dataref_ptr);
|
3215 |
|
|
else
|
3216 |
|
|
{
|
3217 |
|
|
int mis = DR_MISALIGNMENT (first_dr);
|
3218 |
|
|
tree tmis = (mis == -1 ? size_zero_node : size_int (mis));
|
3219 |
|
|
tmis = size_binop (MULT_EXPR, tmis, size_int (BITS_PER_UNIT));
|
3220 |
|
|
data_ref = build2 (MISALIGNED_INDIRECT_REF, vectype, dataref_ptr, tmis);
|
3221 |
|
|
}
|
3222 |
|
|
|
3223 |
|
|
/* If accesses through a pointer to vectype do not alias the original
|
3224 |
|
|
memory reference we have a problem. This should never happen. */
|
3225 |
|
|
gcc_assert (alias_sets_conflict_p (get_alias_set (data_ref),
|
3226 |
|
|
get_alias_set (gimple_assign_lhs (stmt))));
|
3227 |
|
|
|
3228 |
|
|
/* Arguments are ready. Create the new vector stmt. */
|
3229 |
|
|
new_stmt = gimple_build_assign (data_ref, vec_oprnd);
|
3230 |
|
|
vect_finish_stmt_generation (stmt, new_stmt, gsi);
|
3231 |
|
|
mark_symbols_for_renaming (new_stmt);
|
3232 |
|
|
|
3233 |
|
|
if (slp)
|
3234 |
|
|
continue;
|
3235 |
|
|
|
3236 |
|
|
if (j == 0)
|
3237 |
|
|
STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
|
3238 |
|
|
else
|
3239 |
|
|
STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
|
3240 |
|
|
|
3241 |
|
|
prev_stmt_info = vinfo_for_stmt (new_stmt);
|
3242 |
|
|
next_stmt = DR_GROUP_NEXT_DR (vinfo_for_stmt (next_stmt));
|
3243 |
|
|
if (!next_stmt)
|
3244 |
|
|
break;
|
3245 |
|
|
}
|
3246 |
|
|
}
|
3247 |
|
|
|
3248 |
|
|
VEC_free (tree, heap, dr_chain);
|
3249 |
|
|
VEC_free (tree, heap, oprnds);
|
3250 |
|
|
if (result_chain)
|
3251 |
|
|
VEC_free (tree, heap, result_chain);
|
3252 |
|
|
|
3253 |
|
|
return true;
|
3254 |
|
|
}
|
3255 |
|
|
|
3256 |
|
|
/* vectorizable_load.
|
3257 |
|
|
|
3258 |
|
|
Check if STMT reads a non scalar data-ref (array/pointer/structure) that
|
3259 |
|
|
can be vectorized.
|
3260 |
|
|
If VEC_STMT is also passed, vectorize the STMT: create a vectorized
|
3261 |
|
|
stmt to replace it, put it in VEC_STMT, and insert it at BSI.
|
3262 |
|
|
Return FALSE if not a vectorizable STMT, TRUE otherwise. */
|
3263 |
|
|
|
3264 |
|
|
static bool
|
3265 |
|
|
vectorizable_load (gimple stmt, gimple_stmt_iterator *gsi, gimple *vec_stmt,
|
3266 |
|
|
slp_tree slp_node, slp_instance slp_node_instance)
|
3267 |
|
|
{
|
3268 |
|
|
tree scalar_dest;
|
3269 |
|
|
tree vec_dest = NULL;
|
3270 |
|
|
tree data_ref = NULL;
|
3271 |
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
|
3272 |
|
|
stmt_vec_info prev_stmt_info;
|
3273 |
|
|
loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
|
3274 |
|
|
struct loop *loop = NULL;
|
3275 |
|
|
struct loop *containing_loop = (gimple_bb (stmt))->loop_father;
|
3276 |
|
|
bool nested_in_vect_loop = false;
|
3277 |
|
|
struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info), *first_dr;
|
3278 |
|
|
tree vectype = STMT_VINFO_VECTYPE (stmt_info);
|
3279 |
|
|
tree new_temp;
|
3280 |
|
|
int mode;
|
3281 |
|
|
gimple new_stmt = NULL;
|
3282 |
|
|
tree dummy;
|
3283 |
|
|
enum dr_alignment_support alignment_support_scheme;
|
3284 |
|
|
tree dataref_ptr = NULL_TREE;
|
3285 |
|
|
gimple ptr_incr;
|
3286 |
|
|
int nunits = TYPE_VECTOR_SUBPARTS (vectype);
|
3287 |
|
|
int ncopies;
|
3288 |
|
|
int i, j, group_size;
|
3289 |
|
|
tree msq = NULL_TREE, lsq;
|
3290 |
|
|
tree offset = NULL_TREE;
|
3291 |
|
|
tree realignment_token = NULL_TREE;
|
3292 |
|
|
gimple phi = NULL;
|
3293 |
|
|
VEC(tree,heap) *dr_chain = NULL;
|
3294 |
|
|
bool strided_load = false;
|
3295 |
|
|
gimple first_stmt;
|
3296 |
|
|
tree scalar_type;
|
3297 |
|
|
bool inv_p;
|
3298 |
|
|
bool compute_in_loop = false;
|
3299 |
|
|
struct loop *at_loop;
|
3300 |
|
|
int vec_num;
|
3301 |
|
|
bool slp = (slp_node != NULL);
|
3302 |
|
|
bool slp_perm = false;
|
3303 |
|
|
enum tree_code code;
|
3304 |
|
|
bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
|
3305 |
|
|
int vf;
|
3306 |
|
|
|
3307 |
|
|
if (loop_vinfo)
|
3308 |
|
|
{
|
3309 |
|
|
loop = LOOP_VINFO_LOOP (loop_vinfo);
|
3310 |
|
|
nested_in_vect_loop = nested_in_vect_loop_p (loop, stmt);
|
3311 |
|
|
vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
|
3312 |
|
|
}
|
3313 |
|
|
else
|
3314 |
|
|
vf = 1;
|
3315 |
|
|
|
3316 |
|
|
/* Multiple types in SLP are handled by creating the appropriate number of
|
3317 |
|
|
vectorized stmts for each SLP node. Hence, NCOPIES is always 1 in
|
3318 |
|
|
case of SLP. */
|
3319 |
|
|
if (slp)
|
3320 |
|
|
ncopies = 1;
|
3321 |
|
|
else
|
3322 |
|
|
ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits;
|
3323 |
|
|
|
3324 |
|
|
gcc_assert (ncopies >= 1);
|
3325 |
|
|
|
3326 |
|
|
/* FORNOW. This restriction should be relaxed. */
|
3327 |
|
|
if (nested_in_vect_loop && ncopies > 1)
|
3328 |
|
|
{
|
3329 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
3330 |
|
|
fprintf (vect_dump, "multiple types in nested loop.");
|
3331 |
|
|
return false;
|
3332 |
|
|
}
|
3333 |
|
|
|
3334 |
|
|
if (!STMT_VINFO_RELEVANT_P (stmt_info) && !bb_vinfo)
|
3335 |
|
|
return false;
|
3336 |
|
|
|
3337 |
|
|
if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_internal_def)
|
3338 |
|
|
return false;
|
3339 |
|
|
|
3340 |
|
|
/* Is vectorizable load? */
|
3341 |
|
|
if (!is_gimple_assign (stmt))
|
3342 |
|
|
return false;
|
3343 |
|
|
|
3344 |
|
|
scalar_dest = gimple_assign_lhs (stmt);
|
3345 |
|
|
if (TREE_CODE (scalar_dest) != SSA_NAME)
|
3346 |
|
|
return false;
|
3347 |
|
|
|
3348 |
|
|
code = gimple_assign_rhs_code (stmt);
|
3349 |
|
|
if (code != ARRAY_REF
|
3350 |
|
|
&& code != INDIRECT_REF
|
3351 |
|
|
&& code != COMPONENT_REF
|
3352 |
|
|
&& code != IMAGPART_EXPR
|
3353 |
|
|
&& code != REALPART_EXPR)
|
3354 |
|
|
return false;
|
3355 |
|
|
|
3356 |
|
|
if (!STMT_VINFO_DATA_REF (stmt_info))
|
3357 |
|
|
return false;
|
3358 |
|
|
|
3359 |
|
|
scalar_type = TREE_TYPE (DR_REF (dr));
|
3360 |
|
|
mode = (int) TYPE_MODE (vectype);
|
3361 |
|
|
|
3362 |
|
|
/* FORNOW. In some cases can vectorize even if data-type not supported
|
3363 |
|
|
(e.g. - data copies). */
|
3364 |
|
|
if (optab_handler (mov_optab, mode)->insn_code == CODE_FOR_nothing)
|
3365 |
|
|
{
|
3366 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
3367 |
|
|
fprintf (vect_dump, "Aligned load, but unsupported type.");
|
3368 |
|
|
return false;
|
3369 |
|
|
}
|
3370 |
|
|
|
3371 |
|
|
/* The vector component type needs to be trivially convertible to the
|
3372 |
|
|
scalar lhs. This should always be the case. */
|
3373 |
|
|
if (!useless_type_conversion_p (TREE_TYPE (scalar_dest), TREE_TYPE (vectype)))
|
3374 |
|
|
{
|
3375 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
3376 |
|
|
fprintf (vect_dump, "??? operands of different types");
|
3377 |
|
|
return false;
|
3378 |
|
|
}
|
3379 |
|
|
|
3380 |
|
|
/* Check if the load is a part of an interleaving chain. */
|
3381 |
|
|
if (STMT_VINFO_STRIDED_ACCESS (stmt_info))
|
3382 |
|
|
{
|
3383 |
|
|
strided_load = true;
|
3384 |
|
|
/* FORNOW */
|
3385 |
|
|
gcc_assert (! nested_in_vect_loop);
|
3386 |
|
|
|
3387 |
|
|
/* Check if interleaving is supported. */
|
3388 |
|
|
if (!vect_strided_load_supported (vectype)
|
3389 |
|
|
&& !PURE_SLP_STMT (stmt_info) && !slp)
|
3390 |
|
|
return false;
|
3391 |
|
|
}
|
3392 |
|
|
|
3393 |
|
|
if (!vec_stmt) /* transformation not required. */
|
3394 |
|
|
{
|
3395 |
|
|
STMT_VINFO_TYPE (stmt_info) = load_vec_info_type;
|
3396 |
|
|
vect_model_load_cost (stmt_info, ncopies, NULL);
|
3397 |
|
|
return true;
|
3398 |
|
|
}
|
3399 |
|
|
|
3400 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
3401 |
|
|
fprintf (vect_dump, "transform load.");
|
3402 |
|
|
|
3403 |
|
|
/** Transform. **/
|
3404 |
|
|
|
3405 |
|
|
if (strided_load)
|
3406 |
|
|
{
|
3407 |
|
|
first_stmt = DR_GROUP_FIRST_DR (stmt_info);
|
3408 |
|
|
/* Check if the chain of loads is already vectorized. */
|
3409 |
|
|
if (STMT_VINFO_VEC_STMT (vinfo_for_stmt (first_stmt)))
|
3410 |
|
|
{
|
3411 |
|
|
*vec_stmt = STMT_VINFO_VEC_STMT (stmt_info);
|
3412 |
|
|
return true;
|
3413 |
|
|
}
|
3414 |
|
|
first_dr = STMT_VINFO_DATA_REF (vinfo_for_stmt (first_stmt));
|
3415 |
|
|
group_size = DR_GROUP_SIZE (vinfo_for_stmt (first_stmt));
|
3416 |
|
|
|
3417 |
|
|
/* VEC_NUM is the number of vect stmts to be created for this group. */
|
3418 |
|
|
if (slp)
|
3419 |
|
|
{
|
3420 |
|
|
strided_load = false;
|
3421 |
|
|
vec_num = SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node);
|
3422 |
|
|
if (SLP_INSTANCE_LOAD_PERMUTATION (slp_node_instance))
|
3423 |
|
|
slp_perm = true;
|
3424 |
|
|
}
|
3425 |
|
|
else
|
3426 |
|
|
vec_num = group_size;
|
3427 |
|
|
|
3428 |
|
|
dr_chain = VEC_alloc (tree, heap, vec_num);
|
3429 |
|
|
}
|
3430 |
|
|
else
|
3431 |
|
|
{
|
3432 |
|
|
first_stmt = stmt;
|
3433 |
|
|
first_dr = dr;
|
3434 |
|
|
group_size = vec_num = 1;
|
3435 |
|
|
}
|
3436 |
|
|
|
3437 |
|
|
alignment_support_scheme = vect_supportable_dr_alignment (first_dr);
|
3438 |
|
|
gcc_assert (alignment_support_scheme);
|
3439 |
|
|
|
3440 |
|
|
/* In case the vectorization factor (VF) is bigger than the number
|
3441 |
|
|
of elements that we can fit in a vectype (nunits), we have to generate
|
3442 |
|
|
more than one vector stmt - i.e - we need to "unroll" the
|
3443 |
|
|
vector stmt by a factor VF/nunits. In doing so, we record a pointer
|
3444 |
|
|
from one copy of the vector stmt to the next, in the field
|
3445 |
|
|
STMT_VINFO_RELATED_STMT. This is necessary in order to allow following
|
3446 |
|
|
stages to find the correct vector defs to be used when vectorizing
|
3447 |
|
|
stmts that use the defs of the current stmt. The example below illustrates
|
3448 |
|
|
the vectorization process when VF=16 and nunits=4 (i.e - we need to create
|
3449 |
|
|
4 vectorized stmts):
|
3450 |
|
|
|
3451 |
|
|
before vectorization:
|
3452 |
|
|
RELATED_STMT VEC_STMT
|
3453 |
|
|
S1: x = memref - -
|
3454 |
|
|
S2: z = x + 1 - -
|
3455 |
|
|
|
3456 |
|
|
step 1: vectorize stmt S1:
|
3457 |
|
|
We first create the vector stmt VS1_0, and, as usual, record a
|
3458 |
|
|
pointer to it in the STMT_VINFO_VEC_STMT of the scalar stmt S1.
|
3459 |
|
|
Next, we create the vector stmt VS1_1, and record a pointer to
|
3460 |
|
|
it in the STMT_VINFO_RELATED_STMT of the vector stmt VS1_0.
|
3461 |
|
|
Similarly, for VS1_2 and VS1_3. This is the resulting chain of
|
3462 |
|
|
stmts and pointers:
|
3463 |
|
|
RELATED_STMT VEC_STMT
|
3464 |
|
|
VS1_0: vx0 = memref0 VS1_1 -
|
3465 |
|
|
VS1_1: vx1 = memref1 VS1_2 -
|
3466 |
|
|
VS1_2: vx2 = memref2 VS1_3 -
|
3467 |
|
|
VS1_3: vx3 = memref3 - -
|
3468 |
|
|
S1: x = load - VS1_0
|
3469 |
|
|
S2: z = x + 1 - -
|
3470 |
|
|
|
3471 |
|
|
See in documentation in vect_get_vec_def_for_stmt_copy for how the
|
3472 |
|
|
information we recorded in RELATED_STMT field is used to vectorize
|
3473 |
|
|
stmt S2. */
|
3474 |
|
|
|
3475 |
|
|
/* In case of interleaving (non-unit strided access):
|
3476 |
|
|
|
3477 |
|
|
S1: x2 = &base + 2
|
3478 |
|
|
S2: x0 = &base
|
3479 |
|
|
S3: x1 = &base + 1
|
3480 |
|
|
S4: x3 = &base + 3
|
3481 |
|
|
|
3482 |
|
|
Vectorized loads are created in the order of memory accesses
|
3483 |
|
|
starting from the access of the first stmt of the chain:
|
3484 |
|
|
|
3485 |
|
|
VS1: vx0 = &base
|
3486 |
|
|
VS2: vx1 = &base + vec_size*1
|
3487 |
|
|
VS3: vx3 = &base + vec_size*2
|
3488 |
|
|
VS4: vx4 = &base + vec_size*3
|
3489 |
|
|
|
3490 |
|
|
Then permutation statements are generated:
|
3491 |
|
|
|
3492 |
|
|
VS5: vx5 = VEC_EXTRACT_EVEN_EXPR < vx0, vx1 >
|
3493 |
|
|
VS6: vx6 = VEC_EXTRACT_ODD_EXPR < vx0, vx1 >
|
3494 |
|
|
...
|
3495 |
|
|
|
3496 |
|
|
And they are put in STMT_VINFO_VEC_STMT of the corresponding scalar stmts
|
3497 |
|
|
(the order of the data-refs in the output of vect_permute_load_chain
|
3498 |
|
|
corresponds to the order of scalar stmts in the interleaving chain - see
|
3499 |
|
|
the documentation of vect_permute_load_chain()).
|
3500 |
|
|
The generation of permutation stmts and recording them in
|
3501 |
|
|
STMT_VINFO_VEC_STMT is done in vect_transform_strided_load().
|
3502 |
|
|
|
3503 |
|
|
In case of both multiple types and interleaving, the vector loads and
|
3504 |
|
|
permutation stmts above are created for every copy. The result vector stmts
|
3505 |
|
|
are put in STMT_VINFO_VEC_STMT for the first copy and in the corresponding
|
3506 |
|
|
STMT_VINFO_RELATED_STMT for the next copies. */
|
3507 |
|
|
|
3508 |
|
|
/* If the data reference is aligned (dr_aligned) or potentially unaligned
|
3509 |
|
|
on a target that supports unaligned accesses (dr_unaligned_supported)
|
3510 |
|
|
we generate the following code:
|
3511 |
|
|
p = initial_addr;
|
3512 |
|
|
indx = 0;
|
3513 |
|
|
loop {
|
3514 |
|
|
p = p + indx * vectype_size;
|
3515 |
|
|
vec_dest = *(p);
|
3516 |
|
|
indx = indx + 1;
|
3517 |
|
|
}
|
3518 |
|
|
|
3519 |
|
|
Otherwise, the data reference is potentially unaligned on a target that
|
3520 |
|
|
does not support unaligned accesses (dr_explicit_realign_optimized) -
|
3521 |
|
|
then generate the following code, in which the data in each iteration is
|
3522 |
|
|
obtained by two vector loads, one from the previous iteration, and one
|
3523 |
|
|
from the current iteration:
|
3524 |
|
|
p1 = initial_addr;
|
3525 |
|
|
msq_init = *(floor(p1))
|
3526 |
|
|
p2 = initial_addr + VS - 1;
|
3527 |
|
|
realignment_token = call target_builtin;
|
3528 |
|
|
indx = 0;
|
3529 |
|
|
loop {
|
3530 |
|
|
p2 = p2 + indx * vectype_size
|
3531 |
|
|
lsq = *(floor(p2))
|
3532 |
|
|
vec_dest = realign_load (msq, lsq, realignment_token)
|
3533 |
|
|
indx = indx + 1;
|
3534 |
|
|
msq = lsq;
|
3535 |
|
|
} */
|
3536 |
|
|
|
3537 |
|
|
/* If the misalignment remains the same throughout the execution of the
|
3538 |
|
|
loop, we can create the init_addr and permutation mask at the loop
|
3539 |
|
|
preheader. Otherwise, it needs to be created inside the loop.
|
3540 |
|
|
This can only occur when vectorizing memory accesses in the inner-loop
|
3541 |
|
|
nested within an outer-loop that is being vectorized. */
|
3542 |
|
|
|
3543 |
|
|
if (loop && nested_in_vect_loop_p (loop, stmt)
|
3544 |
|
|
&& (TREE_INT_CST_LOW (DR_STEP (dr))
|
3545 |
|
|
% GET_MODE_SIZE (TYPE_MODE (vectype)) != 0))
|
3546 |
|
|
{
|
3547 |
|
|
gcc_assert (alignment_support_scheme != dr_explicit_realign_optimized);
|
3548 |
|
|
compute_in_loop = true;
|
3549 |
|
|
}
|
3550 |
|
|
|
3551 |
|
|
if ((alignment_support_scheme == dr_explicit_realign_optimized
|
3552 |
|
|
|| alignment_support_scheme == dr_explicit_realign)
|
3553 |
|
|
&& !compute_in_loop)
|
3554 |
|
|
{
|
3555 |
|
|
msq = vect_setup_realignment (first_stmt, gsi, &realignment_token,
|
3556 |
|
|
alignment_support_scheme, NULL_TREE,
|
3557 |
|
|
&at_loop);
|
3558 |
|
|
if (alignment_support_scheme == dr_explicit_realign_optimized)
|
3559 |
|
|
{
|
3560 |
|
|
phi = SSA_NAME_DEF_STMT (msq);
|
3561 |
|
|
offset = size_int (TYPE_VECTOR_SUBPARTS (vectype) - 1);
|
3562 |
|
|
}
|
3563 |
|
|
}
|
3564 |
|
|
else
|
3565 |
|
|
at_loop = loop;
|
3566 |
|
|
|
3567 |
|
|
prev_stmt_info = NULL;
|
3568 |
|
|
for (j = 0; j < ncopies; j++)
|
3569 |
|
|
{
|
3570 |
|
|
/* 1. Create the vector pointer update chain. */
|
3571 |
|
|
if (j == 0)
|
3572 |
|
|
dataref_ptr = vect_create_data_ref_ptr (first_stmt,
|
3573 |
|
|
at_loop, offset,
|
3574 |
|
|
&dummy, &ptr_incr, false,
|
3575 |
|
|
&inv_p);
|
3576 |
|
|
else
|
3577 |
|
|
dataref_ptr =
|
3578 |
|
|
bump_vector_ptr (dataref_ptr, ptr_incr, gsi, stmt, NULL_TREE);
|
3579 |
|
|
|
3580 |
|
|
for (i = 0; i < vec_num; i++)
|
3581 |
|
|
{
|
3582 |
|
|
if (i > 0)
|
3583 |
|
|
dataref_ptr = bump_vector_ptr (dataref_ptr, ptr_incr, gsi, stmt,
|
3584 |
|
|
NULL_TREE);
|
3585 |
|
|
|
3586 |
|
|
/* 2. Create the vector-load in the loop. */
|
3587 |
|
|
switch (alignment_support_scheme)
|
3588 |
|
|
{
|
3589 |
|
|
case dr_aligned:
|
3590 |
|
|
gcc_assert (aligned_access_p (first_dr));
|
3591 |
|
|
data_ref = build_fold_indirect_ref (dataref_ptr);
|
3592 |
|
|
break;
|
3593 |
|
|
case dr_unaligned_supported:
|
3594 |
|
|
{
|
3595 |
|
|
int mis = DR_MISALIGNMENT (first_dr);
|
3596 |
|
|
tree tmis = (mis == -1 ? size_zero_node : size_int (mis));
|
3597 |
|
|
|
3598 |
|
|
tmis = size_binop (MULT_EXPR, tmis, size_int(BITS_PER_UNIT));
|
3599 |
|
|
data_ref =
|
3600 |
|
|
build2 (MISALIGNED_INDIRECT_REF, vectype, dataref_ptr, tmis);
|
3601 |
|
|
break;
|
3602 |
|
|
}
|
3603 |
|
|
case dr_explicit_realign:
|
3604 |
|
|
{
|
3605 |
|
|
tree ptr, bump;
|
3606 |
|
|
tree vs_minus_1 = size_int (TYPE_VECTOR_SUBPARTS (vectype) - 1);
|
3607 |
|
|
|
3608 |
|
|
if (compute_in_loop)
|
3609 |
|
|
msq = vect_setup_realignment (first_stmt, gsi,
|
3610 |
|
|
&realignment_token,
|
3611 |
|
|
dr_explicit_realign,
|
3612 |
|
|
dataref_ptr, NULL);
|
3613 |
|
|
|
3614 |
|
|
data_ref = build1 (ALIGN_INDIRECT_REF, vectype, dataref_ptr);
|
3615 |
|
|
vec_dest = vect_create_destination_var (scalar_dest, vectype);
|
3616 |
|
|
new_stmt = gimple_build_assign (vec_dest, data_ref);
|
3617 |
|
|
new_temp = make_ssa_name (vec_dest, new_stmt);
|
3618 |
|
|
gimple_assign_set_lhs (new_stmt, new_temp);
|
3619 |
|
|
gimple_set_vdef (new_stmt, gimple_vdef (stmt));
|
3620 |
|
|
gimple_set_vuse (new_stmt, gimple_vuse (stmt));
|
3621 |
|
|
vect_finish_stmt_generation (stmt, new_stmt, gsi);
|
3622 |
|
|
msq = new_temp;
|
3623 |
|
|
|
3624 |
|
|
bump = size_binop (MULT_EXPR, vs_minus_1,
|
3625 |
|
|
TYPE_SIZE_UNIT (scalar_type));
|
3626 |
|
|
ptr = bump_vector_ptr (dataref_ptr, NULL, gsi, stmt, bump);
|
3627 |
|
|
data_ref = build1 (ALIGN_INDIRECT_REF, vectype, ptr);
|
3628 |
|
|
break;
|
3629 |
|
|
}
|
3630 |
|
|
case dr_explicit_realign_optimized:
|
3631 |
|
|
data_ref = build1 (ALIGN_INDIRECT_REF, vectype, dataref_ptr);
|
3632 |
|
|
break;
|
3633 |
|
|
default:
|
3634 |
|
|
gcc_unreachable ();
|
3635 |
|
|
}
|
3636 |
|
|
/* If accesses through a pointer to vectype do not alias the original
|
3637 |
|
|
memory reference we have a problem. This should never happen. */
|
3638 |
|
|
gcc_assert (alias_sets_conflict_p (get_alias_set (data_ref),
|
3639 |
|
|
get_alias_set (gimple_assign_rhs1 (stmt))));
|
3640 |
|
|
vec_dest = vect_create_destination_var (scalar_dest, vectype);
|
3641 |
|
|
new_stmt = gimple_build_assign (vec_dest, data_ref);
|
3642 |
|
|
new_temp = make_ssa_name (vec_dest, new_stmt);
|
3643 |
|
|
gimple_assign_set_lhs (new_stmt, new_temp);
|
3644 |
|
|
vect_finish_stmt_generation (stmt, new_stmt, gsi);
|
3645 |
|
|
mark_symbols_for_renaming (new_stmt);
|
3646 |
|
|
|
3647 |
|
|
/* 3. Handle explicit realignment if necessary/supported. Create in
|
3648 |
|
|
loop: vec_dest = realign_load (msq, lsq, realignment_token) */
|
3649 |
|
|
if (alignment_support_scheme == dr_explicit_realign_optimized
|
3650 |
|
|
|| alignment_support_scheme == dr_explicit_realign)
|
3651 |
|
|
{
|
3652 |
|
|
tree tmp;
|
3653 |
|
|
|
3654 |
|
|
lsq = gimple_assign_lhs (new_stmt);
|
3655 |
|
|
if (!realignment_token)
|
3656 |
|
|
realignment_token = dataref_ptr;
|
3657 |
|
|
vec_dest = vect_create_destination_var (scalar_dest, vectype);
|
3658 |
|
|
tmp = build3 (REALIGN_LOAD_EXPR, vectype, msq, lsq,
|
3659 |
|
|
realignment_token);
|
3660 |
|
|
new_stmt = gimple_build_assign (vec_dest, tmp);
|
3661 |
|
|
new_temp = make_ssa_name (vec_dest, new_stmt);
|
3662 |
|
|
gimple_assign_set_lhs (new_stmt, new_temp);
|
3663 |
|
|
vect_finish_stmt_generation (stmt, new_stmt, gsi);
|
3664 |
|
|
|
3665 |
|
|
if (alignment_support_scheme == dr_explicit_realign_optimized)
|
3666 |
|
|
{
|
3667 |
|
|
gcc_assert (phi);
|
3668 |
|
|
if (i == vec_num - 1 && j == ncopies - 1)
|
3669 |
|
|
add_phi_arg (phi, lsq, loop_latch_edge (containing_loop),
|
3670 |
|
|
UNKNOWN_LOCATION);
|
3671 |
|
|
msq = lsq;
|
3672 |
|
|
}
|
3673 |
|
|
}
|
3674 |
|
|
|
3675 |
|
|
/* 4. Handle invariant-load. */
|
3676 |
|
|
if (inv_p && !bb_vinfo)
|
3677 |
|
|
{
|
3678 |
|
|
gcc_assert (!strided_load);
|
3679 |
|
|
gcc_assert (nested_in_vect_loop_p (loop, stmt));
|
3680 |
|
|
if (j == 0)
|
3681 |
|
|
{
|
3682 |
|
|
int k;
|
3683 |
|
|
tree t = NULL_TREE;
|
3684 |
|
|
tree vec_inv, bitpos, bitsize = TYPE_SIZE (scalar_type);
|
3685 |
|
|
|
3686 |
|
|
/* CHECKME: bitpos depends on endianess? */
|
3687 |
|
|
bitpos = bitsize_zero_node;
|
3688 |
|
|
vec_inv = build3 (BIT_FIELD_REF, scalar_type, new_temp,
|
3689 |
|
|
bitsize, bitpos);
|
3690 |
|
|
vec_dest =
|
3691 |
|
|
vect_create_destination_var (scalar_dest, NULL_TREE);
|
3692 |
|
|
new_stmt = gimple_build_assign (vec_dest, vec_inv);
|
3693 |
|
|
new_temp = make_ssa_name (vec_dest, new_stmt);
|
3694 |
|
|
gimple_assign_set_lhs (new_stmt, new_temp);
|
3695 |
|
|
vect_finish_stmt_generation (stmt, new_stmt, gsi);
|
3696 |
|
|
|
3697 |
|
|
for (k = nunits - 1; k >= 0; --k)
|
3698 |
|
|
t = tree_cons (NULL_TREE, new_temp, t);
|
3699 |
|
|
/* FIXME: use build_constructor directly. */
|
3700 |
|
|
vec_inv = build_constructor_from_list (vectype, t);
|
3701 |
|
|
new_temp = vect_init_vector (stmt, vec_inv, vectype, gsi);
|
3702 |
|
|
new_stmt = SSA_NAME_DEF_STMT (new_temp);
|
3703 |
|
|
}
|
3704 |
|
|
else
|
3705 |
|
|
gcc_unreachable (); /* FORNOW. */
|
3706 |
|
|
}
|
3707 |
|
|
|
3708 |
|
|
/* Collect vector loads and later create their permutation in
|
3709 |
|
|
vect_transform_strided_load (). */
|
3710 |
|
|
if (strided_load || slp_perm)
|
3711 |
|
|
VEC_quick_push (tree, dr_chain, new_temp);
|
3712 |
|
|
|
3713 |
|
|
/* Store vector loads in the corresponding SLP_NODE. */
|
3714 |
|
|
if (slp && !slp_perm)
|
3715 |
|
|
VEC_quick_push (gimple, SLP_TREE_VEC_STMTS (slp_node), new_stmt);
|
3716 |
|
|
}
|
3717 |
|
|
|
3718 |
|
|
if (slp && !slp_perm)
|
3719 |
|
|
continue;
|
3720 |
|
|
|
3721 |
|
|
if (slp_perm)
|
3722 |
|
|
{
|
3723 |
|
|
if (!vect_transform_slp_perm_load (stmt, dr_chain, gsi, vf,
|
3724 |
|
|
slp_node_instance, false))
|
3725 |
|
|
{
|
3726 |
|
|
VEC_free (tree, heap, dr_chain);
|
3727 |
|
|
return false;
|
3728 |
|
|
}
|
3729 |
|
|
}
|
3730 |
|
|
else
|
3731 |
|
|
{
|
3732 |
|
|
if (strided_load)
|
3733 |
|
|
{
|
3734 |
|
|
if (!vect_transform_strided_load (stmt, dr_chain, group_size, gsi))
|
3735 |
|
|
return false;
|
3736 |
|
|
|
3737 |
|
|
*vec_stmt = STMT_VINFO_VEC_STMT (stmt_info);
|
3738 |
|
|
VEC_free (tree, heap, dr_chain);
|
3739 |
|
|
dr_chain = VEC_alloc (tree, heap, group_size);
|
3740 |
|
|
}
|
3741 |
|
|
else
|
3742 |
|
|
{
|
3743 |
|
|
if (j == 0)
|
3744 |
|
|
STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
|
3745 |
|
|
else
|
3746 |
|
|
STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
|
3747 |
|
|
prev_stmt_info = vinfo_for_stmt (new_stmt);
|
3748 |
|
|
}
|
3749 |
|
|
}
|
3750 |
|
|
}
|
3751 |
|
|
|
3752 |
|
|
if (dr_chain)
|
3753 |
|
|
VEC_free (tree, heap, dr_chain);
|
3754 |
|
|
|
3755 |
|
|
return true;
|
3756 |
|
|
}
|
3757 |
|
|
|
3758 |
|
|
/* Function vect_is_simple_cond.
|
3759 |
|
|
|
3760 |
|
|
Input:
|
3761 |
|
|
LOOP - the loop that is being vectorized.
|
3762 |
|
|
COND - Condition that is checked for simple use.
|
3763 |
|
|
|
3764 |
|
|
Returns whether a COND can be vectorized. Checks whether
|
3765 |
|
|
condition operands are supportable using vec_is_simple_use. */
|
3766 |
|
|
|
3767 |
|
|
static bool
|
3768 |
|
|
vect_is_simple_cond (tree cond, loop_vec_info loop_vinfo)
|
3769 |
|
|
{
|
3770 |
|
|
tree lhs, rhs;
|
3771 |
|
|
tree def;
|
3772 |
|
|
enum vect_def_type dt;
|
3773 |
|
|
|
3774 |
|
|
if (!COMPARISON_CLASS_P (cond))
|
3775 |
|
|
return false;
|
3776 |
|
|
|
3777 |
|
|
lhs = TREE_OPERAND (cond, 0);
|
3778 |
|
|
rhs = TREE_OPERAND (cond, 1);
|
3779 |
|
|
|
3780 |
|
|
if (TREE_CODE (lhs) == SSA_NAME)
|
3781 |
|
|
{
|
3782 |
|
|
gimple lhs_def_stmt = SSA_NAME_DEF_STMT (lhs);
|
3783 |
|
|
if (!vect_is_simple_use (lhs, loop_vinfo, NULL, &lhs_def_stmt, &def,
|
3784 |
|
|
&dt))
|
3785 |
|
|
return false;
|
3786 |
|
|
}
|
3787 |
|
|
else if (TREE_CODE (lhs) != INTEGER_CST && TREE_CODE (lhs) != REAL_CST
|
3788 |
|
|
&& TREE_CODE (lhs) != FIXED_CST)
|
3789 |
|
|
return false;
|
3790 |
|
|
|
3791 |
|
|
if (TREE_CODE (rhs) == SSA_NAME)
|
3792 |
|
|
{
|
3793 |
|
|
gimple rhs_def_stmt = SSA_NAME_DEF_STMT (rhs);
|
3794 |
|
|
if (!vect_is_simple_use (rhs, loop_vinfo, NULL, &rhs_def_stmt, &def,
|
3795 |
|
|
&dt))
|
3796 |
|
|
return false;
|
3797 |
|
|
}
|
3798 |
|
|
else if (TREE_CODE (rhs) != INTEGER_CST && TREE_CODE (rhs) != REAL_CST
|
3799 |
|
|
&& TREE_CODE (rhs) != FIXED_CST)
|
3800 |
|
|
return false;
|
3801 |
|
|
|
3802 |
|
|
return true;
|
3803 |
|
|
}
|
3804 |
|
|
|
3805 |
|
|
/* vectorizable_condition.
|
3806 |
|
|
|
3807 |
|
|
Check if STMT is conditional modify expression that can be vectorized.
|
3808 |
|
|
If VEC_STMT is also passed, vectorize the STMT: create a vectorized
|
3809 |
|
|
stmt using VEC_COND_EXPR to replace it, put it in VEC_STMT, and insert it
|
3810 |
|
|
at GSI.
|
3811 |
|
|
|
3812 |
|
|
When STMT is vectorized as nested cycle, REDUC_DEF is the vector variable
|
3813 |
|
|
to be used at REDUC_INDEX (in then clause if REDUC_INDEX is 1, and in
|
3814 |
|
|
else caluse if it is 2).
|
3815 |
|
|
|
3816 |
|
|
Return FALSE if not a vectorizable STMT, TRUE otherwise. */
|
3817 |
|
|
|
3818 |
|
|
bool
|
3819 |
|
|
vectorizable_condition (gimple stmt, gimple_stmt_iterator *gsi,
|
3820 |
|
|
gimple *vec_stmt, tree reduc_def, int reduc_index)
|
3821 |
|
|
{
|
3822 |
|
|
tree scalar_dest = NULL_TREE;
|
3823 |
|
|
tree vec_dest = NULL_TREE;
|
3824 |
|
|
tree op = NULL_TREE;
|
3825 |
|
|
tree cond_expr, then_clause, else_clause;
|
3826 |
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
|
3827 |
|
|
tree vectype = STMT_VINFO_VECTYPE (stmt_info);
|
3828 |
|
|
tree vec_cond_lhs, vec_cond_rhs, vec_then_clause, vec_else_clause;
|
3829 |
|
|
tree vec_compare, vec_cond_expr;
|
3830 |
|
|
tree new_temp;
|
3831 |
|
|
loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
|
3832 |
|
|
enum machine_mode vec_mode;
|
3833 |
|
|
tree def;
|
3834 |
|
|
enum vect_def_type dt;
|
3835 |
|
|
int nunits = TYPE_VECTOR_SUBPARTS (vectype);
|
3836 |
|
|
int ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits;
|
3837 |
|
|
enum tree_code code;
|
3838 |
|
|
|
3839 |
|
|
/* FORNOW: unsupported in basic block SLP. */
|
3840 |
|
|
gcc_assert (loop_vinfo);
|
3841 |
|
|
|
3842 |
|
|
gcc_assert (ncopies >= 1);
|
3843 |
|
|
if (ncopies > 1)
|
3844 |
|
|
return false; /* FORNOW */
|
3845 |
|
|
|
3846 |
|
|
if (!STMT_VINFO_RELEVANT_P (stmt_info))
|
3847 |
|
|
return false;
|
3848 |
|
|
|
3849 |
|
|
if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_internal_def
|
3850 |
|
|
&& !(STMT_VINFO_DEF_TYPE (stmt_info) == vect_nested_cycle
|
3851 |
|
|
&& reduc_def))
|
3852 |
|
|
return false;
|
3853 |
|
|
|
3854 |
|
|
/* FORNOW: SLP not supported. */
|
3855 |
|
|
if (STMT_SLP_TYPE (stmt_info))
|
3856 |
|
|
return false;
|
3857 |
|
|
|
3858 |
|
|
/* FORNOW: not yet supported. */
|
3859 |
|
|
if (STMT_VINFO_LIVE_P (stmt_info))
|
3860 |
|
|
{
|
3861 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
3862 |
|
|
fprintf (vect_dump, "value used after loop.");
|
3863 |
|
|
return false;
|
3864 |
|
|
}
|
3865 |
|
|
|
3866 |
|
|
/* Is vectorizable conditional operation? */
|
3867 |
|
|
if (!is_gimple_assign (stmt))
|
3868 |
|
|
return false;
|
3869 |
|
|
|
3870 |
|
|
code = gimple_assign_rhs_code (stmt);
|
3871 |
|
|
|
3872 |
|
|
if (code != COND_EXPR)
|
3873 |
|
|
return false;
|
3874 |
|
|
|
3875 |
|
|
gcc_assert (gimple_assign_single_p (stmt));
|
3876 |
|
|
op = gimple_assign_rhs1 (stmt);
|
3877 |
|
|
cond_expr = TREE_OPERAND (op, 0);
|
3878 |
|
|
then_clause = TREE_OPERAND (op, 1);
|
3879 |
|
|
else_clause = TREE_OPERAND (op, 2);
|
3880 |
|
|
|
3881 |
|
|
if (!vect_is_simple_cond (cond_expr, loop_vinfo))
|
3882 |
|
|
return false;
|
3883 |
|
|
|
3884 |
|
|
/* We do not handle two different vector types for the condition
|
3885 |
|
|
and the values. */
|
3886 |
|
|
if (!types_compatible_p (TREE_TYPE (TREE_OPERAND (cond_expr, 0)),
|
3887 |
|
|
TREE_TYPE (vectype)))
|
3888 |
|
|
return false;
|
3889 |
|
|
|
3890 |
|
|
if (TREE_CODE (then_clause) == SSA_NAME)
|
3891 |
|
|
{
|
3892 |
|
|
gimple then_def_stmt = SSA_NAME_DEF_STMT (then_clause);
|
3893 |
|
|
if (!vect_is_simple_use (then_clause, loop_vinfo, NULL,
|
3894 |
|
|
&then_def_stmt, &def, &dt))
|
3895 |
|
|
return false;
|
3896 |
|
|
}
|
3897 |
|
|
else if (TREE_CODE (then_clause) != INTEGER_CST
|
3898 |
|
|
&& TREE_CODE (then_clause) != REAL_CST
|
3899 |
|
|
&& TREE_CODE (then_clause) != FIXED_CST)
|
3900 |
|
|
return false;
|
3901 |
|
|
|
3902 |
|
|
if (TREE_CODE (else_clause) == SSA_NAME)
|
3903 |
|
|
{
|
3904 |
|
|
gimple else_def_stmt = SSA_NAME_DEF_STMT (else_clause);
|
3905 |
|
|
if (!vect_is_simple_use (else_clause, loop_vinfo, NULL,
|
3906 |
|
|
&else_def_stmt, &def, &dt))
|
3907 |
|
|
return false;
|
3908 |
|
|
}
|
3909 |
|
|
else if (TREE_CODE (else_clause) != INTEGER_CST
|
3910 |
|
|
&& TREE_CODE (else_clause) != REAL_CST
|
3911 |
|
|
&& TREE_CODE (else_clause) != FIXED_CST)
|
3912 |
|
|
return false;
|
3913 |
|
|
|
3914 |
|
|
|
3915 |
|
|
vec_mode = TYPE_MODE (vectype);
|
3916 |
|
|
|
3917 |
|
|
if (!vec_stmt)
|
3918 |
|
|
{
|
3919 |
|
|
STMT_VINFO_TYPE (stmt_info) = condition_vec_info_type;
|
3920 |
|
|
return expand_vec_cond_expr_p (TREE_TYPE (op), vec_mode);
|
3921 |
|
|
}
|
3922 |
|
|
|
3923 |
|
|
/* Transform */
|
3924 |
|
|
|
3925 |
|
|
/* Handle def. */
|
3926 |
|
|
scalar_dest = gimple_assign_lhs (stmt);
|
3927 |
|
|
vec_dest = vect_create_destination_var (scalar_dest, vectype);
|
3928 |
|
|
|
3929 |
|
|
/* Handle cond expr. */
|
3930 |
|
|
vec_cond_lhs =
|
3931 |
|
|
vect_get_vec_def_for_operand (TREE_OPERAND (cond_expr, 0), stmt, NULL);
|
3932 |
|
|
vec_cond_rhs =
|
3933 |
|
|
vect_get_vec_def_for_operand (TREE_OPERAND (cond_expr, 1), stmt, NULL);
|
3934 |
|
|
if (reduc_index == 1)
|
3935 |
|
|
vec_then_clause = reduc_def;
|
3936 |
|
|
else
|
3937 |
|
|
vec_then_clause = vect_get_vec_def_for_operand (then_clause, stmt, NULL);
|
3938 |
|
|
if (reduc_index == 2)
|
3939 |
|
|
vec_else_clause = reduc_def;
|
3940 |
|
|
else
|
3941 |
|
|
vec_else_clause = vect_get_vec_def_for_operand (else_clause, stmt, NULL);
|
3942 |
|
|
|
3943 |
|
|
/* Arguments are ready. Create the new vector stmt. */
|
3944 |
|
|
vec_compare = build2 (TREE_CODE (cond_expr), vectype,
|
3945 |
|
|
vec_cond_lhs, vec_cond_rhs);
|
3946 |
|
|
vec_cond_expr = build3 (VEC_COND_EXPR, vectype,
|
3947 |
|
|
vec_compare, vec_then_clause, vec_else_clause);
|
3948 |
|
|
|
3949 |
|
|
*vec_stmt = gimple_build_assign (vec_dest, vec_cond_expr);
|
3950 |
|
|
new_temp = make_ssa_name (vec_dest, *vec_stmt);
|
3951 |
|
|
gimple_assign_set_lhs (*vec_stmt, new_temp);
|
3952 |
|
|
vect_finish_stmt_generation (stmt, *vec_stmt, gsi);
|
3953 |
|
|
|
3954 |
|
|
return true;
|
3955 |
|
|
}
|
3956 |
|
|
|
3957 |
|
|
|
3958 |
|
|
/* Make sure the statement is vectorizable. */
|
3959 |
|
|
|
3960 |
|
|
bool
|
3961 |
|
|
vect_analyze_stmt (gimple stmt, bool *need_to_vectorize, slp_tree node)
|
3962 |
|
|
{
|
3963 |
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
|
3964 |
|
|
bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
|
3965 |
|
|
enum vect_relevant relevance = STMT_VINFO_RELEVANT (stmt_info);
|
3966 |
|
|
bool ok;
|
3967 |
|
|
HOST_WIDE_INT dummy;
|
3968 |
|
|
tree scalar_type, vectype;
|
3969 |
|
|
|
3970 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
3971 |
|
|
{
|
3972 |
|
|
fprintf (vect_dump, "==> examining statement: ");
|
3973 |
|
|
print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
|
3974 |
|
|
}
|
3975 |
|
|
|
3976 |
|
|
if (gimple_has_volatile_ops (stmt))
|
3977 |
|
|
{
|
3978 |
|
|
if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
|
3979 |
|
|
fprintf (vect_dump, "not vectorized: stmt has volatile operands");
|
3980 |
|
|
|
3981 |
|
|
return false;
|
3982 |
|
|
}
|
3983 |
|
|
|
3984 |
|
|
/* Skip stmts that do not need to be vectorized. In loops this is expected
|
3985 |
|
|
to include:
|
3986 |
|
|
- the COND_EXPR which is the loop exit condition
|
3987 |
|
|
- any LABEL_EXPRs in the loop
|
3988 |
|
|
- computations that are used only for array indexing or loop control.
|
3989 |
|
|
In basic blocks we only analyze statements that are a part of some SLP
|
3990 |
|
|
instance, therefore, all the statements are relevant. */
|
3991 |
|
|
|
3992 |
|
|
if (!STMT_VINFO_RELEVANT_P (stmt_info)
|
3993 |
|
|
&& !STMT_VINFO_LIVE_P (stmt_info))
|
3994 |
|
|
{
|
3995 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
3996 |
|
|
fprintf (vect_dump, "irrelevant.");
|
3997 |
|
|
|
3998 |
|
|
return true;
|
3999 |
|
|
}
|
4000 |
|
|
|
4001 |
|
|
switch (STMT_VINFO_DEF_TYPE (stmt_info))
|
4002 |
|
|
{
|
4003 |
|
|
case vect_internal_def:
|
4004 |
|
|
break;
|
4005 |
|
|
|
4006 |
|
|
case vect_reduction_def:
|
4007 |
|
|
case vect_nested_cycle:
|
4008 |
|
|
gcc_assert (!bb_vinfo && (relevance == vect_used_in_outer
|
4009 |
|
|
|| relevance == vect_used_in_outer_by_reduction
|
4010 |
|
|
|| relevance == vect_unused_in_scope));
|
4011 |
|
|
break;
|
4012 |
|
|
|
4013 |
|
|
case vect_induction_def:
|
4014 |
|
|
case vect_constant_def:
|
4015 |
|
|
case vect_external_def:
|
4016 |
|
|
case vect_unknown_def_type:
|
4017 |
|
|
default:
|
4018 |
|
|
gcc_unreachable ();
|
4019 |
|
|
}
|
4020 |
|
|
|
4021 |
|
|
if (bb_vinfo)
|
4022 |
|
|
{
|
4023 |
|
|
gcc_assert (PURE_SLP_STMT (stmt_info));
|
4024 |
|
|
|
4025 |
|
|
scalar_type = vect_get_smallest_scalar_type (stmt, &dummy, &dummy);
|
4026 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
4027 |
|
|
{
|
4028 |
|
|
fprintf (vect_dump, "get vectype for scalar type: ");
|
4029 |
|
|
print_generic_expr (vect_dump, scalar_type, TDF_SLIM);
|
4030 |
|
|
}
|
4031 |
|
|
|
4032 |
|
|
vectype = get_vectype_for_scalar_type (scalar_type);
|
4033 |
|
|
if (!vectype)
|
4034 |
|
|
{
|
4035 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
4036 |
|
|
{
|
4037 |
|
|
fprintf (vect_dump, "not SLPed: unsupported data-type ");
|
4038 |
|
|
print_generic_expr (vect_dump, scalar_type, TDF_SLIM);
|
4039 |
|
|
}
|
4040 |
|
|
return false;
|
4041 |
|
|
}
|
4042 |
|
|
|
4043 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
4044 |
|
|
{
|
4045 |
|
|
fprintf (vect_dump, "vectype: ");
|
4046 |
|
|
print_generic_expr (vect_dump, vectype, TDF_SLIM);
|
4047 |
|
|
}
|
4048 |
|
|
|
4049 |
|
|
STMT_VINFO_VECTYPE (stmt_info) = vectype;
|
4050 |
|
|
}
|
4051 |
|
|
|
4052 |
|
|
if (STMT_VINFO_RELEVANT_P (stmt_info))
|
4053 |
|
|
{
|
4054 |
|
|
gcc_assert (!VECTOR_MODE_P (TYPE_MODE (gimple_expr_type (stmt))));
|
4055 |
|
|
gcc_assert (STMT_VINFO_VECTYPE (stmt_info));
|
4056 |
|
|
*need_to_vectorize = true;
|
4057 |
|
|
}
|
4058 |
|
|
|
4059 |
|
|
ok = true;
|
4060 |
|
|
if (!bb_vinfo
|
4061 |
|
|
&& (STMT_VINFO_RELEVANT_P (stmt_info)
|
4062 |
|
|
|| STMT_VINFO_DEF_TYPE (stmt_info) == vect_reduction_def))
|
4063 |
|
|
ok = (vectorizable_type_promotion (stmt, NULL, NULL, NULL)
|
4064 |
|
|
|| vectorizable_type_demotion (stmt, NULL, NULL, NULL)
|
4065 |
|
|
|| vectorizable_conversion (stmt, NULL, NULL, NULL)
|
4066 |
|
|
|| vectorizable_operation (stmt, NULL, NULL, NULL)
|
4067 |
|
|
|| vectorizable_assignment (stmt, NULL, NULL, NULL)
|
4068 |
|
|
|| vectorizable_load (stmt, NULL, NULL, NULL, NULL)
|
4069 |
|
|
|| vectorizable_call (stmt, NULL, NULL)
|
4070 |
|
|
|| vectorizable_store (stmt, NULL, NULL, NULL)
|
4071 |
|
|
|| vectorizable_reduction (stmt, NULL, NULL)
|
4072 |
|
|
|| vectorizable_condition (stmt, NULL, NULL, NULL, 0));
|
4073 |
|
|
else
|
4074 |
|
|
{
|
4075 |
|
|
if (bb_vinfo)
|
4076 |
|
|
ok = (vectorizable_operation (stmt, NULL, NULL, node)
|
4077 |
|
|
|| vectorizable_assignment (stmt, NULL, NULL, node)
|
4078 |
|
|
|| vectorizable_load (stmt, NULL, NULL, node, NULL)
|
4079 |
|
|
|| vectorizable_store (stmt, NULL, NULL, node));
|
4080 |
|
|
}
|
4081 |
|
|
|
4082 |
|
|
if (!ok)
|
4083 |
|
|
{
|
4084 |
|
|
if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
|
4085 |
|
|
{
|
4086 |
|
|
fprintf (vect_dump, "not vectorized: relevant stmt not ");
|
4087 |
|
|
fprintf (vect_dump, "supported: ");
|
4088 |
|
|
print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
|
4089 |
|
|
}
|
4090 |
|
|
|
4091 |
|
|
return false;
|
4092 |
|
|
}
|
4093 |
|
|
|
4094 |
|
|
if (bb_vinfo)
|
4095 |
|
|
return true;
|
4096 |
|
|
|
4097 |
|
|
/* Stmts that are (also) "live" (i.e. - that are used out of the loop)
|
4098 |
|
|
need extra handling, except for vectorizable reductions. */
|
4099 |
|
|
if (STMT_VINFO_LIVE_P (stmt_info)
|
4100 |
|
|
&& STMT_VINFO_TYPE (stmt_info) != reduc_vec_info_type)
|
4101 |
|
|
ok = vectorizable_live_operation (stmt, NULL, NULL);
|
4102 |
|
|
|
4103 |
|
|
if (!ok)
|
4104 |
|
|
{
|
4105 |
|
|
if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
|
4106 |
|
|
{
|
4107 |
|
|
fprintf (vect_dump, "not vectorized: live stmt not ");
|
4108 |
|
|
fprintf (vect_dump, "supported: ");
|
4109 |
|
|
print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
|
4110 |
|
|
}
|
4111 |
|
|
|
4112 |
|
|
return false;
|
4113 |
|
|
}
|
4114 |
|
|
|
4115 |
|
|
if (!PURE_SLP_STMT (stmt_info))
|
4116 |
|
|
{
|
4117 |
|
|
/* Groups of strided accesses whose size is not a power of 2 are not
|
4118 |
|
|
vectorizable yet using loop-vectorization. Therefore, if this stmt
|
4119 |
|
|
feeds non-SLP-able stmts (i.e., this stmt has to be both SLPed and
|
4120 |
|
|
loop-based vectorized), the loop cannot be vectorized. */
|
4121 |
|
|
if (STMT_VINFO_STRIDED_ACCESS (stmt_info)
|
4122 |
|
|
&& exact_log2 (DR_GROUP_SIZE (vinfo_for_stmt (
|
4123 |
|
|
DR_GROUP_FIRST_DR (stmt_info)))) == -1)
|
4124 |
|
|
{
|
4125 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
4126 |
|
|
{
|
4127 |
|
|
fprintf (vect_dump, "not vectorized: the size of group "
|
4128 |
|
|
"of strided accesses is not a power of 2");
|
4129 |
|
|
print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
|
4130 |
|
|
}
|
4131 |
|
|
|
4132 |
|
|
return false;
|
4133 |
|
|
}
|
4134 |
|
|
}
|
4135 |
|
|
|
4136 |
|
|
return true;
|
4137 |
|
|
}
|
4138 |
|
|
|
4139 |
|
|
|
4140 |
|
|
/* Function vect_transform_stmt.
|
4141 |
|
|
|
4142 |
|
|
Create a vectorized stmt to replace STMT, and insert it at BSI. */
|
4143 |
|
|
|
4144 |
|
|
bool
|
4145 |
|
|
vect_transform_stmt (gimple stmt, gimple_stmt_iterator *gsi,
|
4146 |
|
|
bool *strided_store, slp_tree slp_node,
|
4147 |
|
|
slp_instance slp_node_instance)
|
4148 |
|
|
{
|
4149 |
|
|
bool is_store = false;
|
4150 |
|
|
gimple vec_stmt = NULL;
|
4151 |
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
|
4152 |
|
|
gimple orig_stmt_in_pattern;
|
4153 |
|
|
bool done;
|
4154 |
|
|
|
4155 |
|
|
switch (STMT_VINFO_TYPE (stmt_info))
|
4156 |
|
|
{
|
4157 |
|
|
case type_demotion_vec_info_type:
|
4158 |
|
|
done = vectorizable_type_demotion (stmt, gsi, &vec_stmt, slp_node);
|
4159 |
|
|
gcc_assert (done);
|
4160 |
|
|
break;
|
4161 |
|
|
|
4162 |
|
|
case type_promotion_vec_info_type:
|
4163 |
|
|
done = vectorizable_type_promotion (stmt, gsi, &vec_stmt, slp_node);
|
4164 |
|
|
gcc_assert (done);
|
4165 |
|
|
break;
|
4166 |
|
|
|
4167 |
|
|
case type_conversion_vec_info_type:
|
4168 |
|
|
done = vectorizable_conversion (stmt, gsi, &vec_stmt, slp_node);
|
4169 |
|
|
gcc_assert (done);
|
4170 |
|
|
break;
|
4171 |
|
|
|
4172 |
|
|
case induc_vec_info_type:
|
4173 |
|
|
gcc_assert (!slp_node);
|
4174 |
|
|
done = vectorizable_induction (stmt, gsi, &vec_stmt);
|
4175 |
|
|
gcc_assert (done);
|
4176 |
|
|
break;
|
4177 |
|
|
|
4178 |
|
|
case op_vec_info_type:
|
4179 |
|
|
done = vectorizable_operation (stmt, gsi, &vec_stmt, slp_node);
|
4180 |
|
|
gcc_assert (done);
|
4181 |
|
|
break;
|
4182 |
|
|
|
4183 |
|
|
case assignment_vec_info_type:
|
4184 |
|
|
done = vectorizable_assignment (stmt, gsi, &vec_stmt, slp_node);
|
4185 |
|
|
gcc_assert (done);
|
4186 |
|
|
break;
|
4187 |
|
|
|
4188 |
|
|
case load_vec_info_type:
|
4189 |
|
|
done = vectorizable_load (stmt, gsi, &vec_stmt, slp_node,
|
4190 |
|
|
slp_node_instance);
|
4191 |
|
|
gcc_assert (done);
|
4192 |
|
|
break;
|
4193 |
|
|
|
4194 |
|
|
case store_vec_info_type:
|
4195 |
|
|
done = vectorizable_store (stmt, gsi, &vec_stmt, slp_node);
|
4196 |
|
|
gcc_assert (done);
|
4197 |
|
|
if (STMT_VINFO_STRIDED_ACCESS (stmt_info) && !slp_node)
|
4198 |
|
|
{
|
4199 |
|
|
/* In case of interleaving, the whole chain is vectorized when the
|
4200 |
|
|
last store in the chain is reached. Store stmts before the last
|
4201 |
|
|
one are skipped, and there vec_stmt_info shouldn't be freed
|
4202 |
|
|
meanwhile. */
|
4203 |
|
|
*strided_store = true;
|
4204 |
|
|
if (STMT_VINFO_VEC_STMT (stmt_info))
|
4205 |
|
|
is_store = true;
|
4206 |
|
|
}
|
4207 |
|
|
else
|
4208 |
|
|
is_store = true;
|
4209 |
|
|
break;
|
4210 |
|
|
|
4211 |
|
|
case condition_vec_info_type:
|
4212 |
|
|
gcc_assert (!slp_node);
|
4213 |
|
|
done = vectorizable_condition (stmt, gsi, &vec_stmt, NULL, 0);
|
4214 |
|
|
gcc_assert (done);
|
4215 |
|
|
break;
|
4216 |
|
|
|
4217 |
|
|
case call_vec_info_type:
|
4218 |
|
|
gcc_assert (!slp_node);
|
4219 |
|
|
done = vectorizable_call (stmt, gsi, &vec_stmt);
|
4220 |
|
|
break;
|
4221 |
|
|
|
4222 |
|
|
case reduc_vec_info_type:
|
4223 |
|
|
gcc_assert (!slp_node);
|
4224 |
|
|
done = vectorizable_reduction (stmt, gsi, &vec_stmt);
|
4225 |
|
|
gcc_assert (done);
|
4226 |
|
|
break;
|
4227 |
|
|
|
4228 |
|
|
default:
|
4229 |
|
|
if (!STMT_VINFO_LIVE_P (stmt_info))
|
4230 |
|
|
{
|
4231 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
4232 |
|
|
fprintf (vect_dump, "stmt not supported.");
|
4233 |
|
|
gcc_unreachable ();
|
4234 |
|
|
}
|
4235 |
|
|
}
|
4236 |
|
|
|
4237 |
|
|
/* Handle inner-loop stmts whose DEF is used in the loop-nest that
|
4238 |
|
|
is being vectorized, but outside the immediately enclosing loop. */
|
4239 |
|
|
if (vec_stmt
|
4240 |
|
|
&& STMT_VINFO_LOOP_VINFO (stmt_info)
|
4241 |
|
|
&& nested_in_vect_loop_p (LOOP_VINFO_LOOP (
|
4242 |
|
|
STMT_VINFO_LOOP_VINFO (stmt_info)), stmt)
|
4243 |
|
|
&& STMT_VINFO_TYPE (stmt_info) != reduc_vec_info_type
|
4244 |
|
|
&& (STMT_VINFO_RELEVANT (stmt_info) == vect_used_in_outer
|
4245 |
|
|
|| STMT_VINFO_RELEVANT (stmt_info) ==
|
4246 |
|
|
vect_used_in_outer_by_reduction))
|
4247 |
|
|
{
|
4248 |
|
|
struct loop *innerloop = LOOP_VINFO_LOOP (
|
4249 |
|
|
STMT_VINFO_LOOP_VINFO (stmt_info))->inner;
|
4250 |
|
|
imm_use_iterator imm_iter;
|
4251 |
|
|
use_operand_p use_p;
|
4252 |
|
|
tree scalar_dest;
|
4253 |
|
|
gimple exit_phi;
|
4254 |
|
|
|
4255 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
4256 |
|
|
fprintf (vect_dump, "Record the vdef for outer-loop vectorization.");
|
4257 |
|
|
|
4258 |
|
|
/* Find the relevant loop-exit phi-node, and reord the vec_stmt there
|
4259 |
|
|
(to be used when vectorizing outer-loop stmts that use the DEF of
|
4260 |
|
|
STMT). */
|
4261 |
|
|
if (gimple_code (stmt) == GIMPLE_PHI)
|
4262 |
|
|
scalar_dest = PHI_RESULT (stmt);
|
4263 |
|
|
else
|
4264 |
|
|
scalar_dest = gimple_assign_lhs (stmt);
|
4265 |
|
|
|
4266 |
|
|
FOR_EACH_IMM_USE_FAST (use_p, imm_iter, scalar_dest)
|
4267 |
|
|
{
|
4268 |
|
|
if (!flow_bb_inside_loop_p (innerloop, gimple_bb (USE_STMT (use_p))))
|
4269 |
|
|
{
|
4270 |
|
|
exit_phi = USE_STMT (use_p);
|
4271 |
|
|
STMT_VINFO_VEC_STMT (vinfo_for_stmt (exit_phi)) = vec_stmt;
|
4272 |
|
|
}
|
4273 |
|
|
}
|
4274 |
|
|
}
|
4275 |
|
|
|
4276 |
|
|
/* Handle stmts whose DEF is used outside the loop-nest that is
|
4277 |
|
|
being vectorized. */
|
4278 |
|
|
if (STMT_VINFO_LIVE_P (stmt_info)
|
4279 |
|
|
&& STMT_VINFO_TYPE (stmt_info) != reduc_vec_info_type)
|
4280 |
|
|
{
|
4281 |
|
|
done = vectorizable_live_operation (stmt, gsi, &vec_stmt);
|
4282 |
|
|
gcc_assert (done);
|
4283 |
|
|
}
|
4284 |
|
|
|
4285 |
|
|
if (vec_stmt)
|
4286 |
|
|
{
|
4287 |
|
|
STMT_VINFO_VEC_STMT (stmt_info) = vec_stmt;
|
4288 |
|
|
orig_stmt_in_pattern = STMT_VINFO_RELATED_STMT (stmt_info);
|
4289 |
|
|
if (orig_stmt_in_pattern)
|
4290 |
|
|
{
|
4291 |
|
|
stmt_vec_info stmt_vinfo = vinfo_for_stmt (orig_stmt_in_pattern);
|
4292 |
|
|
/* STMT was inserted by the vectorizer to replace a computation idiom.
|
4293 |
|
|
ORIG_STMT_IN_PATTERN is a stmt in the original sequence that
|
4294 |
|
|
computed this idiom. We need to record a pointer to VEC_STMT in
|
4295 |
|
|
the stmt_info of ORIG_STMT_IN_PATTERN. See more details in the
|
4296 |
|
|
documentation of vect_pattern_recog. */
|
4297 |
|
|
if (STMT_VINFO_IN_PATTERN_P (stmt_vinfo))
|
4298 |
|
|
{
|
4299 |
|
|
gcc_assert (STMT_VINFO_RELATED_STMT (stmt_vinfo) == stmt);
|
4300 |
|
|
STMT_VINFO_VEC_STMT (stmt_vinfo) = vec_stmt;
|
4301 |
|
|
}
|
4302 |
|
|
}
|
4303 |
|
|
}
|
4304 |
|
|
|
4305 |
|
|
return is_store;
|
4306 |
|
|
}
|
4307 |
|
|
|
4308 |
|
|
|
4309 |
|
|
/* Remove a group of stores (for SLP or interleaving), free their
|
4310 |
|
|
stmt_vec_info. */
|
4311 |
|
|
|
4312 |
|
|
void
|
4313 |
|
|
vect_remove_stores (gimple first_stmt)
|
4314 |
|
|
{
|
4315 |
|
|
gimple next = first_stmt;
|
4316 |
|
|
gimple tmp;
|
4317 |
|
|
gimple_stmt_iterator next_si;
|
4318 |
|
|
|
4319 |
|
|
while (next)
|
4320 |
|
|
{
|
4321 |
|
|
/* Free the attached stmt_vec_info and remove the stmt. */
|
4322 |
|
|
next_si = gsi_for_stmt (next);
|
4323 |
|
|
gsi_remove (&next_si, true);
|
4324 |
|
|
tmp = DR_GROUP_NEXT_DR (vinfo_for_stmt (next));
|
4325 |
|
|
free_stmt_vec_info (next);
|
4326 |
|
|
next = tmp;
|
4327 |
|
|
}
|
4328 |
|
|
}
|
4329 |
|
|
|
4330 |
|
|
|
4331 |
|
|
/* Function new_stmt_vec_info.
|
4332 |
|
|
|
4333 |
|
|
Create and initialize a new stmt_vec_info struct for STMT. */
|
4334 |
|
|
|
4335 |
|
|
stmt_vec_info
|
4336 |
|
|
new_stmt_vec_info (gimple stmt, loop_vec_info loop_vinfo,
|
4337 |
|
|
bb_vec_info bb_vinfo)
|
4338 |
|
|
{
|
4339 |
|
|
stmt_vec_info res;
|
4340 |
|
|
res = (stmt_vec_info) xcalloc (1, sizeof (struct _stmt_vec_info));
|
4341 |
|
|
|
4342 |
|
|
STMT_VINFO_TYPE (res) = undef_vec_info_type;
|
4343 |
|
|
STMT_VINFO_STMT (res) = stmt;
|
4344 |
|
|
STMT_VINFO_LOOP_VINFO (res) = loop_vinfo;
|
4345 |
|
|
STMT_VINFO_BB_VINFO (res) = bb_vinfo;
|
4346 |
|
|
STMT_VINFO_RELEVANT (res) = vect_unused_in_scope;
|
4347 |
|
|
STMT_VINFO_LIVE_P (res) = false;
|
4348 |
|
|
STMT_VINFO_VECTYPE (res) = NULL;
|
4349 |
|
|
STMT_VINFO_VEC_STMT (res) = NULL;
|
4350 |
|
|
STMT_VINFO_IN_PATTERN_P (res) = false;
|
4351 |
|
|
STMT_VINFO_RELATED_STMT (res) = NULL;
|
4352 |
|
|
STMT_VINFO_DATA_REF (res) = NULL;
|
4353 |
|
|
|
4354 |
|
|
STMT_VINFO_DR_BASE_ADDRESS (res) = NULL;
|
4355 |
|
|
STMT_VINFO_DR_OFFSET (res) = NULL;
|
4356 |
|
|
STMT_VINFO_DR_INIT (res) = NULL;
|
4357 |
|
|
STMT_VINFO_DR_STEP (res) = NULL;
|
4358 |
|
|
STMT_VINFO_DR_ALIGNED_TO (res) = NULL;
|
4359 |
|
|
|
4360 |
|
|
if (gimple_code (stmt) == GIMPLE_PHI
|
4361 |
|
|
&& is_loop_header_bb_p (gimple_bb (stmt)))
|
4362 |
|
|
STMT_VINFO_DEF_TYPE (res) = vect_unknown_def_type;
|
4363 |
|
|
else
|
4364 |
|
|
STMT_VINFO_DEF_TYPE (res) = vect_internal_def;
|
4365 |
|
|
|
4366 |
|
|
STMT_VINFO_SAME_ALIGN_REFS (res) = VEC_alloc (dr_p, heap, 5);
|
4367 |
|
|
STMT_VINFO_INSIDE_OF_LOOP_COST (res) = 0;
|
4368 |
|
|
STMT_VINFO_OUTSIDE_OF_LOOP_COST (res) = 0;
|
4369 |
|
|
STMT_SLP_TYPE (res) = loop_vect;
|
4370 |
|
|
DR_GROUP_FIRST_DR (res) = NULL;
|
4371 |
|
|
DR_GROUP_NEXT_DR (res) = NULL;
|
4372 |
|
|
DR_GROUP_SIZE (res) = 0;
|
4373 |
|
|
DR_GROUP_STORE_COUNT (res) = 0;
|
4374 |
|
|
DR_GROUP_GAP (res) = 0;
|
4375 |
|
|
DR_GROUP_SAME_DR_STMT (res) = NULL;
|
4376 |
|
|
DR_GROUP_READ_WRITE_DEPENDENCE (res) = false;
|
4377 |
|
|
|
4378 |
|
|
return res;
|
4379 |
|
|
}
|
4380 |
|
|
|
4381 |
|
|
|
4382 |
|
|
/* Create a hash table for stmt_vec_info. */
|
4383 |
|
|
|
4384 |
|
|
void
|
4385 |
|
|
init_stmt_vec_info_vec (void)
|
4386 |
|
|
{
|
4387 |
|
|
gcc_assert (!stmt_vec_info_vec);
|
4388 |
|
|
stmt_vec_info_vec = VEC_alloc (vec_void_p, heap, 50);
|
4389 |
|
|
}
|
4390 |
|
|
|
4391 |
|
|
|
4392 |
|
|
/* Free hash table for stmt_vec_info. */
|
4393 |
|
|
|
4394 |
|
|
void
|
4395 |
|
|
free_stmt_vec_info_vec (void)
|
4396 |
|
|
{
|
4397 |
|
|
gcc_assert (stmt_vec_info_vec);
|
4398 |
|
|
VEC_free (vec_void_p, heap, stmt_vec_info_vec);
|
4399 |
|
|
}
|
4400 |
|
|
|
4401 |
|
|
|
4402 |
|
|
/* Free stmt vectorization related info. */
|
4403 |
|
|
|
4404 |
|
|
void
|
4405 |
|
|
free_stmt_vec_info (gimple stmt)
|
4406 |
|
|
{
|
4407 |
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
|
4408 |
|
|
|
4409 |
|
|
if (!stmt_info)
|
4410 |
|
|
return;
|
4411 |
|
|
|
4412 |
|
|
VEC_free (dr_p, heap, STMT_VINFO_SAME_ALIGN_REFS (stmt_info));
|
4413 |
|
|
set_vinfo_for_stmt (stmt, NULL);
|
4414 |
|
|
free (stmt_info);
|
4415 |
|
|
}
|
4416 |
|
|
|
4417 |
|
|
|
4418 |
|
|
/* Function get_vectype_for_scalar_type.
|
4419 |
|
|
|
4420 |
|
|
Returns the vector type corresponding to SCALAR_TYPE as supported
|
4421 |
|
|
by the target. */
|
4422 |
|
|
|
4423 |
|
|
tree
|
4424 |
|
|
get_vectype_for_scalar_type (tree scalar_type)
|
4425 |
|
|
{
|
4426 |
|
|
enum machine_mode inner_mode = TYPE_MODE (scalar_type);
|
4427 |
|
|
unsigned int nbytes = GET_MODE_SIZE (inner_mode);
|
4428 |
|
|
int nunits;
|
4429 |
|
|
tree vectype;
|
4430 |
|
|
|
4431 |
|
|
if (nbytes == 0 || nbytes >= UNITS_PER_SIMD_WORD (inner_mode))
|
4432 |
|
|
return NULL_TREE;
|
4433 |
|
|
|
4434 |
|
|
/* We can't build a vector type of elements with alignment bigger than
|
4435 |
|
|
their size. */
|
4436 |
|
|
if (nbytes < TYPE_ALIGN_UNIT (scalar_type))
|
4437 |
|
|
return NULL_TREE;
|
4438 |
|
|
|
4439 |
|
|
/* If we'd build a vector type of elements whose mode precision doesn't
|
4440 |
|
|
match their types precision we'll get mismatched types on vector
|
4441 |
|
|
extracts via BIT_FIELD_REFs. This effectively means we disable
|
4442 |
|
|
vectorization of bool and/or enum types in some languages. */
|
4443 |
|
|
if (INTEGRAL_TYPE_P (scalar_type)
|
4444 |
|
|
&& GET_MODE_BITSIZE (inner_mode) != TYPE_PRECISION (scalar_type))
|
4445 |
|
|
return NULL_TREE;
|
4446 |
|
|
|
4447 |
|
|
/* FORNOW: Only a single vector size per mode (UNITS_PER_SIMD_WORD)
|
4448 |
|
|
is expected. */
|
4449 |
|
|
nunits = UNITS_PER_SIMD_WORD (inner_mode) / nbytes;
|
4450 |
|
|
|
4451 |
|
|
vectype = build_vector_type (scalar_type, nunits);
|
4452 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
4453 |
|
|
{
|
4454 |
|
|
fprintf (vect_dump, "get vectype with %d units of type ", nunits);
|
4455 |
|
|
print_generic_expr (vect_dump, scalar_type, TDF_SLIM);
|
4456 |
|
|
}
|
4457 |
|
|
|
4458 |
|
|
if (!vectype)
|
4459 |
|
|
return NULL_TREE;
|
4460 |
|
|
|
4461 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
4462 |
|
|
{
|
4463 |
|
|
fprintf (vect_dump, "vectype: ");
|
4464 |
|
|
print_generic_expr (vect_dump, vectype, TDF_SLIM);
|
4465 |
|
|
}
|
4466 |
|
|
|
4467 |
|
|
if (!VECTOR_MODE_P (TYPE_MODE (vectype))
|
4468 |
|
|
&& !INTEGRAL_MODE_P (TYPE_MODE (vectype)))
|
4469 |
|
|
{
|
4470 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
4471 |
|
|
fprintf (vect_dump, "mode not supported by target.");
|
4472 |
|
|
return NULL_TREE;
|
4473 |
|
|
}
|
4474 |
|
|
|
4475 |
|
|
return vectype;
|
4476 |
|
|
}
|
4477 |
|
|
|
4478 |
|
|
/* Function vect_is_simple_use.
|
4479 |
|
|
|
4480 |
|
|
Input:
|
4481 |
|
|
LOOP_VINFO - the vect info of the loop that is being vectorized.
|
4482 |
|
|
BB_VINFO - the vect info of the basic block that is being vectorized.
|
4483 |
|
|
OPERAND - operand of a stmt in the loop or bb.
|
4484 |
|
|
DEF - the defining stmt in case OPERAND is an SSA_NAME.
|
4485 |
|
|
|
4486 |
|
|
Returns whether a stmt with OPERAND can be vectorized.
|
4487 |
|
|
For loops, supportable operands are constants, loop invariants, and operands
|
4488 |
|
|
that are defined by the current iteration of the loop. Unsupportable
|
4489 |
|
|
operands are those that are defined by a previous iteration of the loop (as
|
4490 |
|
|
is the case in reduction/induction computations).
|
4491 |
|
|
For basic blocks, supportable operands are constants and bb invariants.
|
4492 |
|
|
For now, operands defined outside the basic block are not supported. */
|
4493 |
|
|
|
4494 |
|
|
bool
|
4495 |
|
|
vect_is_simple_use (tree operand, loop_vec_info loop_vinfo,
|
4496 |
|
|
bb_vec_info bb_vinfo, gimple *def_stmt,
|
4497 |
|
|
tree *def, enum vect_def_type *dt)
|
4498 |
|
|
{
|
4499 |
|
|
basic_block bb;
|
4500 |
|
|
stmt_vec_info stmt_vinfo;
|
4501 |
|
|
struct loop *loop = NULL;
|
4502 |
|
|
|
4503 |
|
|
if (loop_vinfo)
|
4504 |
|
|
loop = LOOP_VINFO_LOOP (loop_vinfo);
|
4505 |
|
|
|
4506 |
|
|
*def_stmt = NULL;
|
4507 |
|
|
*def = NULL_TREE;
|
4508 |
|
|
|
4509 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
4510 |
|
|
{
|
4511 |
|
|
fprintf (vect_dump, "vect_is_simple_use: operand ");
|
4512 |
|
|
print_generic_expr (vect_dump, operand, TDF_SLIM);
|
4513 |
|
|
}
|
4514 |
|
|
|
4515 |
|
|
if (TREE_CODE (operand) == INTEGER_CST || TREE_CODE (operand) == REAL_CST)
|
4516 |
|
|
{
|
4517 |
|
|
*dt = vect_constant_def;
|
4518 |
|
|
return true;
|
4519 |
|
|
}
|
4520 |
|
|
|
4521 |
|
|
if (is_gimple_min_invariant (operand))
|
4522 |
|
|
{
|
4523 |
|
|
*def = operand;
|
4524 |
|
|
*dt = vect_external_def;
|
4525 |
|
|
return true;
|
4526 |
|
|
}
|
4527 |
|
|
|
4528 |
|
|
if (TREE_CODE (operand) == PAREN_EXPR)
|
4529 |
|
|
{
|
4530 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
4531 |
|
|
fprintf (vect_dump, "non-associatable copy.");
|
4532 |
|
|
operand = TREE_OPERAND (operand, 0);
|
4533 |
|
|
}
|
4534 |
|
|
|
4535 |
|
|
if (TREE_CODE (operand) != SSA_NAME)
|
4536 |
|
|
{
|
4537 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
4538 |
|
|
fprintf (vect_dump, "not ssa-name.");
|
4539 |
|
|
return false;
|
4540 |
|
|
}
|
4541 |
|
|
|
4542 |
|
|
*def_stmt = SSA_NAME_DEF_STMT (operand);
|
4543 |
|
|
if (*def_stmt == NULL)
|
4544 |
|
|
{
|
4545 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
4546 |
|
|
fprintf (vect_dump, "no def_stmt.");
|
4547 |
|
|
return false;
|
4548 |
|
|
}
|
4549 |
|
|
|
4550 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
4551 |
|
|
{
|
4552 |
|
|
fprintf (vect_dump, "def_stmt: ");
|
4553 |
|
|
print_gimple_stmt (vect_dump, *def_stmt, 0, TDF_SLIM);
|
4554 |
|
|
}
|
4555 |
|
|
|
4556 |
|
|
/* Empty stmt is expected only in case of a function argument.
|
4557 |
|
|
(Otherwise - we expect a phi_node or a GIMPLE_ASSIGN). */
|
4558 |
|
|
if (gimple_nop_p (*def_stmt))
|
4559 |
|
|
{
|
4560 |
|
|
*def = operand;
|
4561 |
|
|
*dt = vect_external_def;
|
4562 |
|
|
return true;
|
4563 |
|
|
}
|
4564 |
|
|
|
4565 |
|
|
bb = gimple_bb (*def_stmt);
|
4566 |
|
|
|
4567 |
|
|
if ((loop && !flow_bb_inside_loop_p (loop, bb))
|
4568 |
|
|
|| (!loop && bb != BB_VINFO_BB (bb_vinfo))
|
4569 |
|
|
|| (!loop && gimple_code (*def_stmt) == GIMPLE_PHI))
|
4570 |
|
|
*dt = vect_external_def;
|
4571 |
|
|
else
|
4572 |
|
|
{
|
4573 |
|
|
stmt_vinfo = vinfo_for_stmt (*def_stmt);
|
4574 |
|
|
*dt = STMT_VINFO_DEF_TYPE (stmt_vinfo);
|
4575 |
|
|
}
|
4576 |
|
|
|
4577 |
|
|
if (*dt == vect_unknown_def_type)
|
4578 |
|
|
{
|
4579 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
4580 |
|
|
fprintf (vect_dump, "Unsupported pattern.");
|
4581 |
|
|
return false;
|
4582 |
|
|
}
|
4583 |
|
|
|
4584 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
4585 |
|
|
fprintf (vect_dump, "type of def: %d.",*dt);
|
4586 |
|
|
|
4587 |
|
|
switch (gimple_code (*def_stmt))
|
4588 |
|
|
{
|
4589 |
|
|
case GIMPLE_PHI:
|
4590 |
|
|
*def = gimple_phi_result (*def_stmt);
|
4591 |
|
|
break;
|
4592 |
|
|
|
4593 |
|
|
case GIMPLE_ASSIGN:
|
4594 |
|
|
*def = gimple_assign_lhs (*def_stmt);
|
4595 |
|
|
break;
|
4596 |
|
|
|
4597 |
|
|
case GIMPLE_CALL:
|
4598 |
|
|
*def = gimple_call_lhs (*def_stmt);
|
4599 |
|
|
if (*def != NULL)
|
4600 |
|
|
break;
|
4601 |
|
|
/* FALLTHRU */
|
4602 |
|
|
default:
|
4603 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
4604 |
|
|
fprintf (vect_dump, "unsupported defining stmt: ");
|
4605 |
|
|
return false;
|
4606 |
|
|
}
|
4607 |
|
|
|
4608 |
|
|
return true;
|
4609 |
|
|
}
|
4610 |
|
|
|
4611 |
|
|
|
4612 |
|
|
/* Function supportable_widening_operation
|
4613 |
|
|
|
4614 |
|
|
Check whether an operation represented by the code CODE is a
|
4615 |
|
|
widening operation that is supported by the target platform in
|
4616 |
|
|
vector form (i.e., when operating on arguments of type VECTYPE).
|
4617 |
|
|
|
4618 |
|
|
Widening operations we currently support are NOP (CONVERT), FLOAT
|
4619 |
|
|
and WIDEN_MULT. This function checks if these operations are supported
|
4620 |
|
|
by the target platform either directly (via vector tree-codes), or via
|
4621 |
|
|
target builtins.
|
4622 |
|
|
|
4623 |
|
|
Output:
|
4624 |
|
|
- CODE1 and CODE2 are codes of vector operations to be used when
|
4625 |
|
|
vectorizing the operation, if available.
|
4626 |
|
|
- DECL1 and DECL2 are decls of target builtin functions to be used
|
4627 |
|
|
when vectorizing the operation, if available. In this case,
|
4628 |
|
|
CODE1 and CODE2 are CALL_EXPR.
|
4629 |
|
|
- MULTI_STEP_CVT determines the number of required intermediate steps in
|
4630 |
|
|
case of multi-step conversion (like char->short->int - in that case
|
4631 |
|
|
MULTI_STEP_CVT will be 1).
|
4632 |
|
|
- INTERM_TYPES contains the intermediate type required to perform the
|
4633 |
|
|
widening operation (short in the above example). */
|
4634 |
|
|
|
4635 |
|
|
bool
|
4636 |
|
|
supportable_widening_operation (enum tree_code code, gimple stmt, tree vectype,
|
4637 |
|
|
tree *decl1, tree *decl2,
|
4638 |
|
|
enum tree_code *code1, enum tree_code *code2,
|
4639 |
|
|
int *multi_step_cvt,
|
4640 |
|
|
VEC (tree, heap) **interm_types)
|
4641 |
|
|
{
|
4642 |
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
|
4643 |
|
|
loop_vec_info loop_info = STMT_VINFO_LOOP_VINFO (stmt_info);
|
4644 |
|
|
struct loop *vect_loop = LOOP_VINFO_LOOP (loop_info);
|
4645 |
|
|
bool ordered_p;
|
4646 |
|
|
enum machine_mode vec_mode;
|
4647 |
|
|
enum insn_code icode1, icode2;
|
4648 |
|
|
optab optab1, optab2;
|
4649 |
|
|
tree type = gimple_expr_type (stmt);
|
4650 |
|
|
tree wide_vectype = get_vectype_for_scalar_type (type);
|
4651 |
|
|
enum tree_code c1, c2;
|
4652 |
|
|
|
4653 |
|
|
/* The result of a vectorized widening operation usually requires two vectors
|
4654 |
|
|
(because the widened results do not fit int one vector). The generated
|
4655 |
|
|
vector results would normally be expected to be generated in the same
|
4656 |
|
|
order as in the original scalar computation, i.e. if 8 results are
|
4657 |
|
|
generated in each vector iteration, they are to be organized as follows:
|
4658 |
|
|
vect1: [res1,res2,res3,res4], vect2: [res5,res6,res7,res8].
|
4659 |
|
|
|
4660 |
|
|
However, in the special case that the result of the widening operation is
|
4661 |
|
|
used in a reduction computation only, the order doesn't matter (because
|
4662 |
|
|
when vectorizing a reduction we change the order of the computation).
|
4663 |
|
|
Some targets can take advantage of this and generate more efficient code.
|
4664 |
|
|
For example, targets like Altivec, that support widen_mult using a sequence
|
4665 |
|
|
of {mult_even,mult_odd} generate the following vectors:
|
4666 |
|
|
vect1: [res1,res3,res5,res7], vect2: [res2,res4,res6,res8].
|
4667 |
|
|
|
4668 |
|
|
When vectorizing outer-loops, we execute the inner-loop sequentially
|
4669 |
|
|
(each vectorized inner-loop iteration contributes to VF outer-loop
|
4670 |
|
|
iterations in parallel). We therefore don't allow to change the order
|
4671 |
|
|
of the computation in the inner-loop during outer-loop vectorization. */
|
4672 |
|
|
|
4673 |
|
|
if (STMT_VINFO_RELEVANT (stmt_info) == vect_used_by_reduction
|
4674 |
|
|
&& !nested_in_vect_loop_p (vect_loop, stmt))
|
4675 |
|
|
ordered_p = false;
|
4676 |
|
|
else
|
4677 |
|
|
ordered_p = true;
|
4678 |
|
|
|
4679 |
|
|
if (!ordered_p
|
4680 |
|
|
&& code == WIDEN_MULT_EXPR
|
4681 |
|
|
&& targetm.vectorize.builtin_mul_widen_even
|
4682 |
|
|
&& targetm.vectorize.builtin_mul_widen_even (vectype)
|
4683 |
|
|
&& targetm.vectorize.builtin_mul_widen_odd
|
4684 |
|
|
&& targetm.vectorize.builtin_mul_widen_odd (vectype))
|
4685 |
|
|
{
|
4686 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
4687 |
|
|
fprintf (vect_dump, "Unordered widening operation detected.");
|
4688 |
|
|
|
4689 |
|
|
*code1 = *code2 = CALL_EXPR;
|
4690 |
|
|
*decl1 = targetm.vectorize.builtin_mul_widen_even (vectype);
|
4691 |
|
|
*decl2 = targetm.vectorize.builtin_mul_widen_odd (vectype);
|
4692 |
|
|
return true;
|
4693 |
|
|
}
|
4694 |
|
|
|
4695 |
|
|
switch (code)
|
4696 |
|
|
{
|
4697 |
|
|
case WIDEN_MULT_EXPR:
|
4698 |
|
|
if (BYTES_BIG_ENDIAN)
|
4699 |
|
|
{
|
4700 |
|
|
c1 = VEC_WIDEN_MULT_HI_EXPR;
|
4701 |
|
|
c2 = VEC_WIDEN_MULT_LO_EXPR;
|
4702 |
|
|
}
|
4703 |
|
|
else
|
4704 |
|
|
{
|
4705 |
|
|
c2 = VEC_WIDEN_MULT_HI_EXPR;
|
4706 |
|
|
c1 = VEC_WIDEN_MULT_LO_EXPR;
|
4707 |
|
|
}
|
4708 |
|
|
break;
|
4709 |
|
|
|
4710 |
|
|
CASE_CONVERT:
|
4711 |
|
|
if (BYTES_BIG_ENDIAN)
|
4712 |
|
|
{
|
4713 |
|
|
c1 = VEC_UNPACK_HI_EXPR;
|
4714 |
|
|
c2 = VEC_UNPACK_LO_EXPR;
|
4715 |
|
|
}
|
4716 |
|
|
else
|
4717 |
|
|
{
|
4718 |
|
|
c2 = VEC_UNPACK_HI_EXPR;
|
4719 |
|
|
c1 = VEC_UNPACK_LO_EXPR;
|
4720 |
|
|
}
|
4721 |
|
|
break;
|
4722 |
|
|
|
4723 |
|
|
case FLOAT_EXPR:
|
4724 |
|
|
if (BYTES_BIG_ENDIAN)
|
4725 |
|
|
{
|
4726 |
|
|
c1 = VEC_UNPACK_FLOAT_HI_EXPR;
|
4727 |
|
|
c2 = VEC_UNPACK_FLOAT_LO_EXPR;
|
4728 |
|
|
}
|
4729 |
|
|
else
|
4730 |
|
|
{
|
4731 |
|
|
c2 = VEC_UNPACK_FLOAT_HI_EXPR;
|
4732 |
|
|
c1 = VEC_UNPACK_FLOAT_LO_EXPR;
|
4733 |
|
|
}
|
4734 |
|
|
break;
|
4735 |
|
|
|
4736 |
|
|
case FIX_TRUNC_EXPR:
|
4737 |
|
|
/* ??? Not yet implemented due to missing VEC_UNPACK_FIX_TRUNC_HI_EXPR/
|
4738 |
|
|
VEC_UNPACK_FIX_TRUNC_LO_EXPR tree codes and optabs used for
|
4739 |
|
|
computing the operation. */
|
4740 |
|
|
return false;
|
4741 |
|
|
|
4742 |
|
|
default:
|
4743 |
|
|
gcc_unreachable ();
|
4744 |
|
|
}
|
4745 |
|
|
|
4746 |
|
|
if (code == FIX_TRUNC_EXPR)
|
4747 |
|
|
{
|
4748 |
|
|
/* The signedness is determined from output operand. */
|
4749 |
|
|
optab1 = optab_for_tree_code (c1, type, optab_default);
|
4750 |
|
|
optab2 = optab_for_tree_code (c2, type, optab_default);
|
4751 |
|
|
}
|
4752 |
|
|
else
|
4753 |
|
|
{
|
4754 |
|
|
optab1 = optab_for_tree_code (c1, vectype, optab_default);
|
4755 |
|
|
optab2 = optab_for_tree_code (c2, vectype, optab_default);
|
4756 |
|
|
}
|
4757 |
|
|
|
4758 |
|
|
if (!optab1 || !optab2)
|
4759 |
|
|
return false;
|
4760 |
|
|
|
4761 |
|
|
vec_mode = TYPE_MODE (vectype);
|
4762 |
|
|
if ((icode1 = optab_handler (optab1, vec_mode)->insn_code) == CODE_FOR_nothing
|
4763 |
|
|
|| (icode2 = optab_handler (optab2, vec_mode)->insn_code)
|
4764 |
|
|
== CODE_FOR_nothing)
|
4765 |
|
|
return false;
|
4766 |
|
|
|
4767 |
|
|
/* Check if it's a multi-step conversion that can be done using intermediate
|
4768 |
|
|
types. */
|
4769 |
|
|
if (insn_data[icode1].operand[0].mode != TYPE_MODE (wide_vectype)
|
4770 |
|
|
|| insn_data[icode2].operand[0].mode != TYPE_MODE (wide_vectype))
|
4771 |
|
|
{
|
4772 |
|
|
int i;
|
4773 |
|
|
tree prev_type = vectype, intermediate_type;
|
4774 |
|
|
enum machine_mode intermediate_mode, prev_mode = vec_mode;
|
4775 |
|
|
optab optab3, optab4;
|
4776 |
|
|
|
4777 |
|
|
if (!CONVERT_EXPR_CODE_P (code))
|
4778 |
|
|
return false;
|
4779 |
|
|
|
4780 |
|
|
*code1 = c1;
|
4781 |
|
|
*code2 = c2;
|
4782 |
|
|
|
4783 |
|
|
/* We assume here that there will not be more than MAX_INTERM_CVT_STEPS
|
4784 |
|
|
intermediate steps in promotion sequence. We try MAX_INTERM_CVT_STEPS
|
4785 |
|
|
to get to NARROW_VECTYPE, and fail if we do not. */
|
4786 |
|
|
*interm_types = VEC_alloc (tree, heap, MAX_INTERM_CVT_STEPS);
|
4787 |
|
|
for (i = 0; i < 3; i++)
|
4788 |
|
|
{
|
4789 |
|
|
intermediate_mode = insn_data[icode1].operand[0].mode;
|
4790 |
|
|
intermediate_type = lang_hooks.types.type_for_mode (intermediate_mode,
|
4791 |
|
|
TYPE_UNSIGNED (prev_type));
|
4792 |
|
|
optab3 = optab_for_tree_code (c1, intermediate_type, optab_default);
|
4793 |
|
|
optab4 = optab_for_tree_code (c2, intermediate_type, optab_default);
|
4794 |
|
|
|
4795 |
|
|
if (!optab3 || !optab4
|
4796 |
|
|
|| (icode1 = optab1->handlers[(int) prev_mode].insn_code)
|
4797 |
|
|
== CODE_FOR_nothing
|
4798 |
|
|
|| insn_data[icode1].operand[0].mode != intermediate_mode
|
4799 |
|
|
|| (icode2 = optab2->handlers[(int) prev_mode].insn_code)
|
4800 |
|
|
== CODE_FOR_nothing
|
4801 |
|
|
|| insn_data[icode2].operand[0].mode != intermediate_mode
|
4802 |
|
|
|| (icode1 = optab3->handlers[(int) intermediate_mode].insn_code)
|
4803 |
|
|
== CODE_FOR_nothing
|
4804 |
|
|
|| (icode2 = optab4->handlers[(int) intermediate_mode].insn_code)
|
4805 |
|
|
== CODE_FOR_nothing)
|
4806 |
|
|
return false;
|
4807 |
|
|
|
4808 |
|
|
VEC_quick_push (tree, *interm_types, intermediate_type);
|
4809 |
|
|
(*multi_step_cvt)++;
|
4810 |
|
|
|
4811 |
|
|
if (insn_data[icode1].operand[0].mode == TYPE_MODE (wide_vectype)
|
4812 |
|
|
&& insn_data[icode2].operand[0].mode == TYPE_MODE (wide_vectype))
|
4813 |
|
|
return true;
|
4814 |
|
|
|
4815 |
|
|
prev_type = intermediate_type;
|
4816 |
|
|
prev_mode = intermediate_mode;
|
4817 |
|
|
}
|
4818 |
|
|
|
4819 |
|
|
return false;
|
4820 |
|
|
}
|
4821 |
|
|
|
4822 |
|
|
*code1 = c1;
|
4823 |
|
|
*code2 = c2;
|
4824 |
|
|
return true;
|
4825 |
|
|
}
|
4826 |
|
|
|
4827 |
|
|
|
4828 |
|
|
/* Function supportable_narrowing_operation
|
4829 |
|
|
|
4830 |
|
|
Check whether an operation represented by the code CODE is a
|
4831 |
|
|
narrowing operation that is supported by the target platform in
|
4832 |
|
|
vector form (i.e., when operating on arguments of type VECTYPE).
|
4833 |
|
|
|
4834 |
|
|
Narrowing operations we currently support are NOP (CONVERT) and
|
4835 |
|
|
FIX_TRUNC. This function checks if these operations are supported by
|
4836 |
|
|
the target platform directly via vector tree-codes.
|
4837 |
|
|
|
4838 |
|
|
Output:
|
4839 |
|
|
- CODE1 is the code of a vector operation to be used when
|
4840 |
|
|
vectorizing the operation, if available.
|
4841 |
|
|
- MULTI_STEP_CVT determines the number of required intermediate steps in
|
4842 |
|
|
case of multi-step conversion (like int->short->char - in that case
|
4843 |
|
|
MULTI_STEP_CVT will be 1).
|
4844 |
|
|
- INTERM_TYPES contains the intermediate type required to perform the
|
4845 |
|
|
narrowing operation (short in the above example). */
|
4846 |
|
|
|
4847 |
|
|
bool
|
4848 |
|
|
supportable_narrowing_operation (enum tree_code code,
|
4849 |
|
|
const_gimple stmt, tree vectype,
|
4850 |
|
|
enum tree_code *code1, int *multi_step_cvt,
|
4851 |
|
|
VEC (tree, heap) **interm_types)
|
4852 |
|
|
{
|
4853 |
|
|
enum machine_mode vec_mode;
|
4854 |
|
|
enum insn_code icode1;
|
4855 |
|
|
optab optab1, interm_optab;
|
4856 |
|
|
tree type = gimple_expr_type (stmt);
|
4857 |
|
|
tree narrow_vectype = get_vectype_for_scalar_type (type);
|
4858 |
|
|
enum tree_code c1;
|
4859 |
|
|
tree intermediate_type, prev_type;
|
4860 |
|
|
int i;
|
4861 |
|
|
|
4862 |
|
|
switch (code)
|
4863 |
|
|
{
|
4864 |
|
|
CASE_CONVERT:
|
4865 |
|
|
c1 = VEC_PACK_TRUNC_EXPR;
|
4866 |
|
|
break;
|
4867 |
|
|
|
4868 |
|
|
case FIX_TRUNC_EXPR:
|
4869 |
|
|
c1 = VEC_PACK_FIX_TRUNC_EXPR;
|
4870 |
|
|
break;
|
4871 |
|
|
|
4872 |
|
|
case FLOAT_EXPR:
|
4873 |
|
|
/* ??? Not yet implemented due to missing VEC_PACK_FLOAT_EXPR
|
4874 |
|
|
tree code and optabs used for computing the operation. */
|
4875 |
|
|
return false;
|
4876 |
|
|
|
4877 |
|
|
default:
|
4878 |
|
|
gcc_unreachable ();
|
4879 |
|
|
}
|
4880 |
|
|
|
4881 |
|
|
if (code == FIX_TRUNC_EXPR)
|
4882 |
|
|
/* The signedness is determined from output operand. */
|
4883 |
|
|
optab1 = optab_for_tree_code (c1, type, optab_default);
|
4884 |
|
|
else
|
4885 |
|
|
optab1 = optab_for_tree_code (c1, vectype, optab_default);
|
4886 |
|
|
|
4887 |
|
|
if (!optab1)
|
4888 |
|
|
return false;
|
4889 |
|
|
|
4890 |
|
|
vec_mode = TYPE_MODE (vectype);
|
4891 |
|
|
if ((icode1 = optab_handler (optab1, vec_mode)->insn_code)
|
4892 |
|
|
== CODE_FOR_nothing)
|
4893 |
|
|
return false;
|
4894 |
|
|
|
4895 |
|
|
/* Check if it's a multi-step conversion that can be done using intermediate
|
4896 |
|
|
types. */
|
4897 |
|
|
if (insn_data[icode1].operand[0].mode != TYPE_MODE (narrow_vectype))
|
4898 |
|
|
{
|
4899 |
|
|
enum machine_mode intermediate_mode, prev_mode = vec_mode;
|
4900 |
|
|
|
4901 |
|
|
*code1 = c1;
|
4902 |
|
|
prev_type = vectype;
|
4903 |
|
|
/* We assume here that there will not be more than MAX_INTERM_CVT_STEPS
|
4904 |
|
|
intermediate steps in promotion sequence. We try MAX_INTERM_CVT_STEPS
|
4905 |
|
|
to get to NARROW_VECTYPE, and fail if we do not. */
|
4906 |
|
|
*interm_types = VEC_alloc (tree, heap, MAX_INTERM_CVT_STEPS);
|
4907 |
|
|
for (i = 0; i < 3; i++)
|
4908 |
|
|
{
|
4909 |
|
|
intermediate_mode = insn_data[icode1].operand[0].mode;
|
4910 |
|
|
intermediate_type = lang_hooks.types.type_for_mode (intermediate_mode,
|
4911 |
|
|
TYPE_UNSIGNED (prev_type));
|
4912 |
|
|
interm_optab = optab_for_tree_code (c1, intermediate_type,
|
4913 |
|
|
optab_default);
|
4914 |
|
|
if (!interm_optab
|
4915 |
|
|
|| (icode1 = optab1->handlers[(int) prev_mode].insn_code)
|
4916 |
|
|
== CODE_FOR_nothing
|
4917 |
|
|
|| insn_data[icode1].operand[0].mode != intermediate_mode
|
4918 |
|
|
|| (icode1
|
4919 |
|
|
= interm_optab->handlers[(int) intermediate_mode].insn_code)
|
4920 |
|
|
== CODE_FOR_nothing)
|
4921 |
|
|
return false;
|
4922 |
|
|
|
4923 |
|
|
VEC_quick_push (tree, *interm_types, intermediate_type);
|
4924 |
|
|
(*multi_step_cvt)++;
|
4925 |
|
|
|
4926 |
|
|
if (insn_data[icode1].operand[0].mode == TYPE_MODE (narrow_vectype))
|
4927 |
|
|
return true;
|
4928 |
|
|
|
4929 |
|
|
prev_type = intermediate_type;
|
4930 |
|
|
prev_mode = intermediate_mode;
|
4931 |
|
|
}
|
4932 |
|
|
|
4933 |
|
|
return false;
|
4934 |
|
|
}
|
4935 |
|
|
|
4936 |
|
|
*code1 = c1;
|
4937 |
|
|
return true;
|
4938 |
|
|
}
|