OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-stable/] [gcc-4.5.1/] [libgcc/] [config/] [libbid/] [bid128_2_str_tables.c] - Blame information for rev 272

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 272 jeremybenn
/* Copyright (C) 2007, 2009  Free Software Foundation, Inc.
2
 
3
This file is part of GCC.
4
 
5
GCC is free software; you can redistribute it and/or modify it under
6
the terms of the GNU General Public License as published by the Free
7
Software Foundation; either version 3, or (at your option) any later
8
version.
9
 
10
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
11
WARRANTY; without even the implied warranty of MERCHANTABILITY or
12
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
13
for more details.
14
 
15
Under Section 7 of GPL version 3, you are granted additional
16
permissions described in the GCC Runtime Library Exception, version
17
3.1, as published by the Free Software Foundation.
18
 
19
You should have received a copy of the GNU General Public License and
20
a copy of the GCC Runtime Library Exception along with this program;
21
see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
22
<http://www.gnu.org/licenses/>.  */
23
 
24
#include "bid_internal.h"
25
 
26
UINT64 Twoto60_m_10to18 = 152921504606846976LL;
27
UINT64 Twoto60 = 0x1000000000000000LL;
28
UINT64 Inv_Tento9 = 2305843009LL;       /* floor(2^61/10^9) */
29
UINT32 Twoto30_m_10to9 = 73741824;
30
UINT32 Tento9 = 1000000000;
31
UINT32 Tento6 = 1000000;
32
UINT32 Tento3 = 1000;
33
 
34
const char midi_tbl[1000][3] = {
35
  "000", "001", "002", "003", "004", "005", "006", "007", "008", "009",
36
  "010", "011", "012", "013", "014", "015", "016", "017", "018", "019",
37
  "020", "021", "022", "023", "024", "025", "026", "027", "028", "029",
38
  "030", "031", "032", "033", "034", "035", "036", "037", "038", "039",
39
  "040", "041", "042", "043", "044", "045", "046", "047", "048", "049",
40
  "050", "051", "052", "053", "054", "055", "056", "057", "058", "059",
41
  "060", "061", "062", "063", "064", "065", "066", "067", "068", "069",
42
  "070", "071", "072", "073", "074", "075", "076", "077", "078", "079",
43
  "080", "081", "082", "083", "084", "085", "086", "087", "088", "089",
44
  "090", "091", "092", "093", "094", "095", "096", "097", "098", "099",
45
  "100", "101", "102", "103", "104", "105", "106", "107", "108", "109",
46
  "110", "111", "112", "113", "114", "115", "116", "117", "118", "119",
47
  "120", "121", "122", "123", "124", "125", "126", "127", "128", "129",
48
  "130", "131", "132", "133", "134", "135", "136", "137", "138", "139",
49
  "140", "141", "142", "143", "144", "145", "146", "147", "148", "149",
50
  "150", "151", "152", "153", "154", "155", "156", "157", "158", "159",
51
  "160", "161", "162", "163", "164", "165", "166", "167", "168", "169",
52
  "170", "171", "172", "173", "174", "175", "176", "177", "178", "179",
53
  "180", "181", "182", "183", "184", "185", "186", "187", "188", "189",
54
  "190", "191", "192", "193", "194", "195", "196", "197", "198", "199",
55
  "200", "201", "202", "203", "204", "205", "206", "207", "208", "209",
56
  "210", "211", "212", "213", "214", "215", "216", "217", "218", "219",
57
  "220", "221", "222", "223", "224", "225", "226", "227", "228", "229",
58
  "230", "231", "232", "233", "234", "235", "236", "237", "238", "239",
59
  "240", "241", "242", "243", "244", "245", "246", "247", "248", "249",
60
  "250", "251", "252", "253", "254", "255", "256", "257", "258", "259",
61
  "260", "261", "262", "263", "264", "265", "266", "267", "268", "269",
62
  "270", "271", "272", "273", "274", "275", "276", "277", "278", "279",
63
  "280", "281", "282", "283", "284", "285", "286", "287", "288", "289",
64
  "290", "291", "292", "293", "294", "295", "296", "297", "298", "299",
65
  "300", "301", "302", "303", "304", "305", "306", "307", "308", "309",
66
  "310", "311", "312", "313", "314", "315", "316", "317", "318", "319",
67
  "320", "321", "322", "323", "324", "325", "326", "327", "328", "329",
68
  "330", "331", "332", "333", "334", "335", "336", "337", "338", "339",
69
  "340", "341", "342", "343", "344", "345", "346", "347", "348", "349",
70
  "350", "351", "352", "353", "354", "355", "356", "357", "358", "359",
71
  "360", "361", "362", "363", "364", "365", "366", "367", "368", "369",
72
  "370", "371", "372", "373", "374", "375", "376", "377", "378", "379",
73
  "380", "381", "382", "383", "384", "385", "386", "387", "388", "389",
74
  "390", "391", "392", "393", "394", "395", "396", "397", "398", "399",
75
  "400", "401", "402", "403", "404", "405", "406", "407", "408", "409",
76
  "410", "411", "412", "413", "414", "415", "416", "417", "418", "419",
77
  "420", "421", "422", "423", "424", "425", "426", "427", "428", "429",
78
  "430", "431", "432", "433", "434", "435", "436", "437", "438", "439",
79
  "440", "441", "442", "443", "444", "445", "446", "447", "448", "449",
80
  "450", "451", "452", "453", "454", "455", "456", "457", "458", "459",
81
  "460", "461", "462", "463", "464", "465", "466", "467", "468", "469",
82
  "470", "471", "472", "473", "474", "475", "476", "477", "478", "479",
83
  "480", "481", "482", "483", "484", "485", "486", "487", "488", "489",
84
  "490", "491", "492", "493", "494", "495", "496", "497", "498", "499",
85
  "500", "501", "502", "503", "504", "505", "506", "507", "508", "509",
86
  "510", "511", "512", "513", "514", "515", "516", "517", "518", "519",
87
  "520", "521", "522", "523", "524", "525", "526", "527", "528", "529",
88
  "530", "531", "532", "533", "534", "535", "536", "537", "538", "539",
89
  "540", "541", "542", "543", "544", "545", "546", "547", "548", "549",
90
  "550", "551", "552", "553", "554", "555", "556", "557", "558", "559",
91
  "560", "561", "562", "563", "564", "565", "566", "567", "568", "569",
92
  "570", "571", "572", "573", "574", "575", "576", "577", "578", "579",
93
  "580", "581", "582", "583", "584", "585", "586", "587", "588", "589",
94
  "590", "591", "592", "593", "594", "595", "596", "597", "598", "599",
95
  "600", "601", "602", "603", "604", "605", "606", "607", "608", "609",
96
  "610", "611", "612", "613", "614", "615", "616", "617", "618", "619",
97
  "620", "621", "622", "623", "624", "625", "626", "627", "628", "629",
98
  "630", "631", "632", "633", "634", "635", "636", "637", "638", "639",
99
  "640", "641", "642", "643", "644", "645", "646", "647", "648", "649",
100
  "650", "651", "652", "653", "654", "655", "656", "657", "658", "659",
101
  "660", "661", "662", "663", "664", "665", "666", "667", "668", "669",
102
  "670", "671", "672", "673", "674", "675", "676", "677", "678", "679",
103
  "680", "681", "682", "683", "684", "685", "686", "687", "688", "689",
104
  "690", "691", "692", "693", "694", "695", "696", "697", "698", "699",
105
  "700", "701", "702", "703", "704", "705", "706", "707", "708", "709",
106
  "710", "711", "712", "713", "714", "715", "716", "717", "718", "719",
107
  "720", "721", "722", "723", "724", "725", "726", "727", "728", "729",
108
  "730", "731", "732", "733", "734", "735", "736", "737", "738", "739",
109
  "740", "741", "742", "743", "744", "745", "746", "747", "748", "749",
110
  "750", "751", "752", "753", "754", "755", "756", "757", "758", "759",
111
  "760", "761", "762", "763", "764", "765", "766", "767", "768", "769",
112
  "770", "771", "772", "773", "774", "775", "776", "777", "778", "779",
113
  "780", "781", "782", "783", "784", "785", "786", "787", "788", "789",
114
  "790", "791", "792", "793", "794", "795", "796", "797", "798", "799",
115
  "800", "801", "802", "803", "804", "805", "806", "807", "808", "809",
116
  "810", "811", "812", "813", "814", "815", "816", "817", "818", "819",
117
  "820", "821", "822", "823", "824", "825", "826", "827", "828", "829",
118
  "830", "831", "832", "833", "834", "835", "836", "837", "838", "839",
119
  "840", "841", "842", "843", "844", "845", "846", "847", "848", "849",
120
  "850", "851", "852", "853", "854", "855", "856", "857", "858", "859",
121
  "860", "861", "862", "863", "864", "865", "866", "867", "868", "869",
122
  "870", "871", "872", "873", "874", "875", "876", "877", "878", "879",
123
  "880", "881", "882", "883", "884", "885", "886", "887", "888", "889",
124
  "890", "891", "892", "893", "894", "895", "896", "897", "898", "899",
125
  "900", "901", "902", "903", "904", "905", "906", "907", "908", "909",
126
  "910", "911", "912", "913", "914", "915", "916", "917", "918", "919",
127
  "920", "921", "922", "923", "924", "925", "926", "927", "928", "929",
128
  "930", "931", "932", "933", "934", "935", "936", "937", "938", "939",
129
  "940", "941", "942", "943", "944", "945", "946", "947", "948", "949",
130
  "950", "951", "952", "953", "954", "955", "956", "957", "958", "959",
131
  "960", "961", "962", "963", "964", "965", "966", "967", "968", "969",
132
  "970", "971", "972", "973", "974", "975", "976", "977", "978", "979",
133
  "980", "981", "982", "983", "984", "985", "986", "987", "988", "989",
134
  "990", "991", "992", "993", "994", "995", "996", "997", "998", "999"
135
};
136
 
137
const UINT64 mod10_18_tbl[9][128] = {
138
  // 2^59 = 576460752303423488, A and B breakdown, where data = A*10^18 + B 
139
 
140
  {
141
   0LL, 0LL, 0LL, 576460752303423488LL,
142
   //  0*2^59,  1*2^59
143
   1LL, 152921504606846976LL, 1LL, 729382256910270464LL,
144
   //  2*2^59,  3*2^59
145
   2LL, 305843009213693952LL, 2LL, 882303761517117440LL,
146
   //  4*2^59,  5*2^59
147
   3LL, 458764513820540928LL, 4LL, 35225266123964416LL,
148
   //  6*2^59,  7*2^59
149
   4LL, 611686018427387904LL, 5LL, 188146770730811392LL,
150
   //  8*2^59,  9*2^59
151
   5LL, 764607523034234880LL, 6LL, 341068275337658368LL,
152
   // 10*2^59, 11*2^59
153
   6LL, 917529027641081856LL, 7LL, 493989779944505344LL,
154
   // 12*2^59, 13*2^59
155
   8LL, 70450532247928832LL, 8LL, 646911284551352320LL,
156
   // 14*2^59, 15*2^59
157
   9LL, 223372036854775808LL, 9LL, 799832789158199296LL,
158
   // 16*2^59, 17*2^59
159
   10LL, 376293541461622784LL, 10LL, 952754293765046272LL,
160
   // 18*2^59, 19*2^59
161
   11LL, 529215046068469760LL, 12LL, 105675798371893248LL,
162
   // 20*2^59, 21*2^59
163
   12LL, 682136550675316736LL, 13LL, 258597302978740224LL,
164
   // 22*2^59, 23*2^59
165
   13LL, 835058055282163712LL, 14LL, 411518807585587200LL,
166
   // 24*2^59, 25*2^59
167
   14LL, 987979559889010688LL, 15LL, 564440312192434176LL,
168
   // 26*2^59, 27*2^59
169
   16LL, 140901064495857664LL, 16LL, 717361816799281152LL,
170
   // 28*2^59, 29*2^59
171
   17LL, 293822569102704640LL, 17LL, 870283321406128128LL,
172
   // 30*2^59, 31*2^59
173
   18LL, 446744073709551616LL, 19LL, 23204826012975104LL,
174
   // 32*2^59, 33*2^59
175
   19LL, 599665578316398592LL, 20LL, 176126330619822080LL,
176
   // 34*2^59, 35*2^59
177
   20LL, 752587082923245568LL, 21LL, 329047835226669056LL,
178
   // 36*2^59, 37*2^59
179
   21LL, 905508587530092544LL, 22LL, 481969339833516032LL,
180
   // 38*2^59, 39*2^59
181
   23LL, 58430092136939520LL, 23LL, 634890844440363008LL,
182
   // 40*2^59, 41*2^59
183
   24LL, 211351596743786496LL, 24LL, 787812349047209984LL,
184
   // 42*2^59, 43*2^59
185
   25LL, 364273101350633472LL, 25LL, 940733853654056960LL,
186
   // 44*2^59, 45*2^59
187
   26LL, 517194605957480448LL, 27LL, 93655358260903936LL,
188
   // 46*2^59, 47*2^59
189
   27LL, 670116110564327424LL, 28LL, 246576862867750912LL,
190
   // 48*2^59, 49*2^59
191
   28LL, 823037615171174400LL, 29LL, 399498367474597888LL,
192
   // 50*2^59, 51*2^59
193
   29LL, 975959119778021376LL, 30LL, 552419872081444864LL,
194
   // 52*2^59, 53*2^59
195
   31LL, 128880624384868352LL, 31LL, 705341376688291840LL,
196
   // 54*2^59, 55*2^59
197
   32LL, 281802128991715328LL, 32LL, 858262881295138816LL,
198
   // 56*2^59, 57*2^59
199
   33LL, 434723633598562304LL, 34LL, 11184385901985792LL,
200
   // 58*2^59, 59*2^59
201
   34LL, 587645138205409280LL, 35LL, 164105890508832768LL,
202
   // 60*2^59, 61*2^59
203
   35LL, 740566642812256256LL, 36LL, 317027395115679744LL,
204
   // 62*2^59, 63*2^59
205
   },
206
 
207
  {
208
   // 2^65 = 36*10^18 + 893488147419103232
209
   0LL, 0LL, 36LL, 893488147419103232LL,
210
   //  0*2^65,  1*2^65
211
   73LL, 786976294838206464LL, 110LL, 680464442257309696LL,
212
   //  2*2^65,  3*2^65
213
   147LL, 573952589676412928LL, 184LL, 467440737095516160LL,
214
   //  4*2^65,  5*2^65
215
   221LL, 360928884514619392LL, 258LL, 254417031933722624LL,
216
   //  6*2^65,  7*2^65
217
   295LL, 147905179352825856LL, 332LL, 41393326771929088LL,
218
   //  8*2^65,  9*2^65
219
   368LL, 934881474191032320LL, 405LL, 828369621610135552LL,
220
   //  0*2^65,  1*2^65
221
   442LL, 721857769029238784LL, 479LL, 615345916448342016LL,
222
   //  2*2^65,  3*2^65
223
   516LL, 508834063867445248LL, 553LL, 402322211286548480LL,
224
   //  4*2^65,  5*2^65
225
   590LL, 295810358705651712LL, 627LL, 189298506124754944LL,
226
   //  6*2^65,  7*2^65
227
   664LL, 82786653543858176LL, 700LL, 976274800962961408LL,
228
   //  8*2^65,  9*2^65
229
   737LL, 869762948382064640LL, 774LL, 763251095801167872LL,
230
   //  0*2^65,  1*2^65
231
   811LL, 656739243220271104LL, 848LL, 550227390639374336LL,
232
   //  2*2^65,  3*2^65
233
   885LL, 443715538058477568LL, 922LL, 337203685477580800LL,
234
   //  4*2^65,  5*2^65
235
   959LL, 230691832896684032LL, 996LL, 124179980315787264LL,
236
   //  6*2^65,  7*2^65
237
   1033LL, 17668127734890496LL, 1069LL, 911156275153993728LL,
238
   //  8*2^65,  9*2^65
239
   1106LL, 804644422573096960LL, 1143LL, 698132569992200192LL,
240
   //  0*2^65,  1*2^65
241
   1180LL, 591620717411303424LL, 1217LL, 485108864830406656LL,
242
   //  2*2^65,  3*2^65
243
   1254LL, 378597012249509888LL, 1291LL, 272085159668613120LL,
244
   //  4*2^65,  5*2^65
245
   1328LL, 165573307087716352LL, 1365LL, 59061454506819584LL,
246
   //  6*2^65,  7*2^65
247
   1401LL, 952549601925922816LL, 1438LL, 846037749345026048LL,
248
   //  8*2^65,  9*2^65
249
   1475LL, 739525896764129280LL, 1512LL, 633014044183232512LL,
250
   //  0*2^65,  1*2^65
251
   1549LL, 526502191602335744LL, 1586LL, 419990339021438976LL,
252
   //  2*2^65,  3*2^65
253
   1623LL, 313478486440542208LL, 1660LL, 206966633859645440LL,
254
   //  4*2^65,  5*2^65
255
   1697LL, 100454781278748672LL, 1733LL, 993942928697851904LL,
256
   //  6*2^65,  7*2^65
257
   1770LL, 887431076116955136LL, 1807LL, 780919223536058368LL,
258
   //  8*2^65,  9*2^65
259
   1844LL, 674407370955161600LL, 1881LL, 567895518374264832LL,
260
   //  0*2^65,  1*2^65
261
   1918LL, 461383665793368064LL, 1955LL, 354871813212471296LL,
262
   //  2*2^65,  3*2^65
263
   1992LL, 248359960631574528LL, 2029LL, 141848108050677760LL,
264
   //  4*2^65,  5*2^65
265
   2066LL, 35336255469780992LL, 2102LL, 928824402888884224LL,
266
   //  6*2^65,  7*2^65
267
   2139LL, 822312550307987456LL, 2176LL, 715800697727090688LL,
268
   //  8*2^65,  9*2^65
269
   2213LL, 609288845146193920LL, 2250LL, 502776992565297152LL,
270
   //  0*2^65,  1*2^65
271
   2287LL, 396265139984400384LL, 2324LL, 289753287403503616LL,
272
   //  2*2^65,  3*2^65
273
   },
274
 
275
  {
276
   0LL, 0LL, 2361LL, 183241434822606848LL,
277
   4722LL, 366482869645213696LL, 7083LL, 549724304467820544LL,
278
   9444LL, 732965739290427392LL, 11805LL, 916207174113034240LL,
279
   14167LL, 99448608935641088LL, 16528LL, 282690043758247936LL,
280
   18889LL, 465931478580854784LL, 21250LL, 649172913403461632LL,
281
   23611LL, 832414348226068480LL, 25973LL, 15655783048675328LL,
282
   28334LL, 198897217871282176LL, 30695LL, 382138652693889024LL,
283
   33056LL, 565380087516495872LL, 35417LL, 748621522339102720LL,
284
   37778LL, 931862957161709568LL, 40140LL, 115104391984316416LL,
285
   42501LL, 298345826806923264LL, 44862LL, 481587261629530112LL,
286
   47223LL, 664828696452136960LL, 49584LL, 848070131274743808LL,
287
   51946LL, 31311566097350656LL, 54307LL, 214553000919957504LL,
288
   56668LL, 397794435742564352LL, 59029LL, 581035870565171200LL,
289
   61390LL, 764277305387778048LL, 63751LL, 947518740210384896LL,
290
   66113LL, 130760175032991744LL, 68474LL, 314001609855598592LL,
291
   70835LL, 497243044678205440LL, 73196LL, 680484479500812288LL,
292
   75557LL, 863725914323419136LL, 77919LL, 46967349146025984LL,
293
   80280LL, 230208783968632832LL, 82641LL, 413450218791239680LL,
294
   85002LL, 596691653613846528LL, 87363LL, 779933088436453376LL,
295
   89724LL, 963174523259060224LL, 92086LL, 146415958081667072LL,
296
   94447LL, 329657392904273920LL, 96808LL, 512898827726880768LL,
297
   99169LL, 696140262549487616LL, 101530LL, 879381697372094464LL,
298
   103892LL, 62623132194701312LL, 106253LL, 245864567017308160LL,
299
   108614LL, 429106001839915008LL, 110975LL, 612347436662521856LL,
300
   113336LL, 795588871485128704LL, 115697LL, 978830306307735552LL,
301
   118059LL, 162071741130342400LL, 120420LL, 345313175952949248LL,
302
   122781LL, 528554610775556096LL, 125142LL, 711796045598162944LL,
303
   127503LL, 895037480420769792LL, 129865LL, 78278915243376640LL,
304
   132226LL, 261520350065983488LL, 134587LL, 444761784888590336LL,
305
   136948LL, 628003219711197184LL, 139309LL, 811244654533804032LL,
306
   141670LL, 994486089356410880LL, 144032LL, 177727524179017728LL,
307
   146393LL, 360968959001624576LL, 148754LL, 544210393824231424LL,
308
   },
309
 
310
  {
311
   0LL, 0LL, 151115LL, 727451828646838272LL,
312
   302231LL, 454903657293676544LL, 453347LL, 182355485940514816LL,
313
   604462LL, 909807314587353088LL, 755578LL, 637259143234191360LL,
314
   906694LL, 364710971881029632LL, 1057810LL, 92162800527867904LL,
315
   1208925LL, 819614629174706176LL, 1360041LL, 547066457821544448LL,
316
   1511157LL, 274518286468382720LL, 1662273LL, 1970115115220992LL,
317
   1813388LL, 729421943762059264LL, 1964504LL, 456873772408897536LL,
318
   2115620LL, 184325601055735808LL, 2266735LL, 911777429702574080LL,
319
   2417851LL, 639229258349412352LL, 2568967LL, 366681086996250624LL,
320
   2720083LL, 94132915643088896LL, 2871198LL, 821584744289927168LL,
321
   3022314LL, 549036572936765440LL, 3173430LL, 276488401583603712LL,
322
   3324546LL, 3940230230441984LL, 3475661LL, 731392058877280256LL,
323
   3626777LL, 458843887524118528LL, 3777893LL, 186295716170956800LL,
324
   3929008LL, 913747544817795072LL, 4080124LL, 641199373464633344LL,
325
   4231240LL, 368651202111471616LL, 4382356LL, 96103030758309888LL,
326
   4533471LL, 823554859405148160LL, 4684587LL, 551006688051986432LL,
327
   4835703LL, 278458516698824704LL, 4986819LL, 5910345345662976LL,
328
   5137934LL, 733362173992501248LL, 5289050LL, 460814002639339520LL,
329
   5440166LL, 188265831286177792LL, 5591281LL, 915717659933016064LL,
330
   5742397LL, 643169488579854336LL, 5893513LL, 370621317226692608LL,
331
   6044629LL, 98073145873530880LL, 6195744LL, 825524974520369152LL,
332
   6346860LL, 552976803167207424LL, 6497976LL, 280428631814045696LL,
333
   6649092LL, 7880460460883968LL, 6800207LL, 735332289107722240LL,
334
   6951323LL, 462784117754560512LL, 7102439LL, 190235946401398784LL,
335
   7253554LL, 917687775048237056LL, 7404670LL, 645139603695075328LL,
336
   7555786LL, 372591432341913600LL, 7706902LL, 100043260988751872LL,
337
   7858017LL, 827495089635590144LL, 8009133LL, 554946918282428416LL,
338
   8160249LL, 282398746929266688LL, 8311365LL, 9850575576104960LL,
339
   8462480LL, 737302404222943232LL, 8613596LL, 464754232869781504LL,
340
   8764712LL, 192206061516619776LL, 8915827LL, 919657890163458048LL,
341
   9066943LL, 647109718810296320LL, 9218059LL, 374561547457134592LL,
342
   9369175LL, 102013376103972864LL, 9520290LL, 829465204750811136LL,
343
   },
344
 
345
  {
346
   0LL, 0LL, 9671406LL, 556917033397649408LL,
347
   19342813LL, 113834066795298816LL, 29014219LL, 670751100192948224LL,
348
   38685626LL, 227668133590597632LL, 48357032LL, 784585166988247040LL,
349
   58028439LL, 341502200385896448LL, 67699845LL, 898419233783545856LL,
350
   77371252LL, 455336267181195264LL, 87042659LL, 12253300578844672LL,
351
   96714065LL, 569170333976494080LL, 106385472LL, 126087367374143488LL,
352
   116056878LL, 683004400771792896LL, 125728285LL, 239921434169442304LL,
353
   135399691LL, 796838467567091712LL, 145071098LL, 353755500964741120LL,
354
   154742504LL, 910672534362390528LL, 164413911LL, 467589567760039936LL,
355
   174085318LL, 24506601157689344LL, 183756724LL, 581423634555338752LL,
356
   193428131LL, 138340667952988160LL, 203099537LL, 695257701350637568LL,
357
   212770944LL, 252174734748286976LL, 222442350LL, 809091768145936384LL,
358
   232113757LL, 366008801543585792LL, 241785163LL, 922925834941235200LL,
359
   251456570LL, 479842868338884608LL, 261127977LL, 36759901736534016LL,
360
   270799383LL, 593676935134183424LL, 280470790LL, 150593968531832832LL,
361
   290142196LL, 707511001929482240LL, 299813603LL, 264428035327131648LL,
362
   309485009LL, 821345068724781056LL, 319156416LL, 378262102122430464LL,
363
   328827822LL, 935179135520079872LL, 338499229LL, 492096168917729280LL,
364
   348170636LL, 49013202315378688LL, 357842042LL, 605930235713028096LL,
365
   367513449LL, 162847269110677504LL, 377184855LL, 719764302508326912LL,
366
   386856262LL, 276681335905976320LL, 396527668LL, 833598369303625728LL,
367
   406199075LL, 390515402701275136LL, 415870481LL, 947432436098924544LL,
368
   425541888LL, 504349469496573952LL, 435213295LL, 61266502894223360LL,
369
   444884701LL, 618183536291872768LL, 454556108LL, 175100569689522176LL,
370
   464227514LL, 732017603087171584LL, 473898921LL, 288934636484820992LL,
371
   483570327LL, 845851669882470400LL, 493241734LL, 402768703280119808LL,
372
   502913140LL, 959685736677769216LL, 512584547LL, 516602770075418624LL,
373
   522255954LL, 73519803473068032LL, 531927360LL, 630436836870717440LL,
374
   541598767LL, 187353870268366848LL, 551270173LL, 744270903666016256LL,
375
   560941580LL, 301187937063665664LL, 570612986LL, 858104970461315072LL,
376
   580284393LL, 415022003858964480LL, 589955799LL, 971939037256613888LL,
377
   599627206LL, 528856070654263296LL, 609298613LL, 85773104051912704LL,
378
   },
379
 
380
  {
381
   0LL, 0LL, 618970019LL, 642690137449562112LL,
382
   1237940039LL, 285380274899124224LL, 1856910058LL,
383
   928070412348686336LL,
384
   2475880078LL, 570760549798248448LL, 3094850098LL,
385
   213450687247810560LL,
386
   3713820117LL, 856140824697372672LL, 4332790137LL,
387
   498830962146934784LL,
388
   4951760157LL, 141521099596496896LL, 5570730176LL,
389
   784211237046059008LL,
390
   6189700196LL, 426901374495621120LL, 6808670216LL,
391
   69591511945183232LL,
392
   7427640235LL, 712281649394745344LL, 8046610255LL,
393
   354971786844307456LL,
394
   8665580274LL, 997661924293869568LL, 9284550294LL,
395
   640352061743431680LL,
396
   9903520314LL, 283042199192993792LL, 10522490333LL,
397
   925732336642555904LL,
398
   11141460353LL, 568422474092118016LL, 11760430373LL,
399
   211112611541680128LL,
400
   12379400392LL, 853802748991242240LL, 12998370412LL,
401
   496492886440804352LL,
402
   13617340432LL, 139183023890366464LL, 14236310451LL,
403
   781873161339928576LL,
404
   14855280471LL, 424563298789490688LL, 15474250491LL,
405
   67253436239052800LL,
406
   16093220510LL, 709943573688614912LL, 16712190530LL,
407
   352633711138177024LL,
408
   17331160549LL, 995323848587739136LL, 17950130569LL,
409
   638013986037301248LL,
410
   18569100589LL, 280704123486863360LL, 19188070608LL,
411
   923394260936425472LL,
412
   19807040628LL, 566084398385987584LL, 20426010648LL,
413
   208774535835549696LL,
414
   21044980667LL, 851464673285111808LL, 21663950687LL,
415
   494154810734673920LL,
416
   22282920707LL, 136844948184236032LL, 22901890726LL,
417
   779535085633798144LL,
418
   23520860746LL, 422225223083360256LL, 24139830766LL,
419
   64915360532922368LL,
420
   24758800785LL, 707605497982484480LL, 25377770805LL,
421
   350295635432046592LL,
422
   25996740824LL, 992985772881608704LL, 26615710844LL,
423
   635675910331170816LL,
424
   27234680864LL, 278366047780732928LL, 27853650883LL,
425
   921056185230295040LL,
426
   28472620903LL, 563746322679857152LL, 29091590923LL,
427
   206436460129419264LL,
428
   29710560942LL, 849126597578981376LL, 30329530962LL,
429
   491816735028543488LL,
430
   30948500982LL, 134506872478105600LL, 31567471001LL,
431
   777197009927667712LL,
432
   32186441021LL, 419887147377229824LL, 32805411041LL,
433
   62577284826791936LL,
434
   33424381060LL, 705267422276354048LL, 34043351080LL,
435
   347957559725916160LL,
436
   34662321099LL, 990647697175478272LL, 35281291119LL,
437
   633337834625040384LL,
438
   35900261139LL, 276027972074602496LL, 36519231158LL,
439
   918718109524164608LL,
440
   37138201178LL, 561408246973726720LL, 37757171198LL,
441
   204098384423288832LL,
442
   38376141217LL, 846788521872850944LL, 38995111237LL,
443
   489478659322413056LL,
444
   },
445
 
446
  {
447
   0LL, 0LL, 39614081257LL, 132168796771975168LL,
448
   79228162514LL, 264337593543950336LL, 118842243771LL,
449
   396506390315925504LL,
450
   158456325028LL, 528675187087900672LL, 198070406285LL,
451
   660843983859875840LL,
452
   237684487542LL, 793012780631851008LL, 277298568799LL,
453
   925181577403826176LL,
454
   316912650057LL, 57350374175801344LL, 356526731314LL,
455
   189519170947776512LL,
456
   396140812571LL, 321687967719751680LL, 435754893828LL,
457
   453856764491726848LL,
458
   475368975085LL, 586025561263702016LL, 514983056342LL,
459
   718194358035677184LL,
460
   554597137599LL, 850363154807652352LL, 594211218856LL,
461
   982531951579627520LL,
462
   633825300114LL, 114700748351602688LL, 673439381371LL,
463
   246869545123577856LL,
464
   713053462628LL, 379038341895553024LL, 752667543885LL,
465
   511207138667528192LL,
466
   792281625142LL, 643375935439503360LL, 831895706399LL,
467
   775544732211478528LL,
468
   871509787656LL, 907713528983453696LL, 911123868914LL,
469
   39882325755428864LL,
470
   950737950171LL, 172051122527404032LL, 990352031428LL,
471
   304219919299379200LL,
472
   1029966112685LL, 436388716071354368LL, 1069580193942LL,
473
   568557512843329536LL,
474
   1109194275199LL, 700726309615304704LL, 1148808356456LL,
475
   832895106387279872LL,
476
   1188422437713LL, 965063903159255040LL, 1228036518971LL,
477
   97232699931230208LL,
478
   1267650600228LL, 229401496703205376LL, 1307264681485LL,
479
   361570293475180544LL,
480
   1346878762742LL, 493739090247155712LL, 1386492843999LL,
481
   625907887019130880LL,
482
   1426106925256LL, 758076683791106048LL, 1465721006513LL,
483
   890245480563081216LL,
484
   1505335087771LL, 22414277335056384LL, 1544949169028LL,
485
   154583074107031552LL,
486
   1584563250285LL, 286751870879006720LL, 1624177331542LL,
487
   418920667650981888LL,
488
   1663791412799LL, 551089464422957056LL, 1703405494056LL,
489
   683258261194932224LL,
490
   1743019575313LL, 815427057966907392LL, 1782633656570LL,
491
   947595854738882560LL,
492
   1822247737828LL, 79764651510857728LL, 1861861819085LL,
493
   211933448282832896LL,
494
   1901475900342LL, 344102245054808064LL, 1941089981599LL,
495
   476271041826783232LL,
496
   1980704062856LL, 608439838598758400LL, 2020318144113LL,
497
   740608635370733568LL,
498
   2059932225370LL, 872777432142708736LL, 2099546306628LL,
499
   4946228914683904LL,
500
   2139160387885LL, 137115025686659072LL, 2178774469142LL,
501
   269283822458634240LL,
502
   2218388550399LL, 401452619230609408LL, 2258002631656LL,
503
   533621416002584576LL,
504
   2297616712913LL, 665790212774559744LL, 2337230794170LL,
505
   797959009546534912LL,
506
   2376844875427LL, 930127806318510080LL, 2416458956685LL,
507
   62296603090485248LL,
508
   2456073037942LL, 194465399862460416LL, 2495687119199LL,
509
   326634196634435584LL,
510
   },
511
 
512
  {
513
   0LL, 0LL, 2535301200456LL, 458802993406410752LL,
514
   5070602400912LL, 917605986812821504LL, 7605903601369LL,
515
   376408980219232256LL,
516
   10141204801825LL, 835211973625643008LL, 12676506002282LL,
517
   294014967032053760LL,
518
   15211807202738LL, 752817960438464512LL, 17747108403195LL,
519
   211620953844875264LL,
520
   20282409603651LL, 670423947251286016LL, 22817710804108LL,
521
   129226940657696768LL,
522
   25353012004564LL, 588029934064107520LL, 27888313205021LL,
523
   46832927470518272LL,
524
   30423614405477LL, 505635920876929024LL, 32958915605933LL,
525
   964438914283339776LL,
526
   35494216806390LL, 423241907689750528LL, 38029518006846LL,
527
   882044901096161280LL,
528
   40564819207303LL, 340847894502572032LL, 43100120407759LL,
529
   799650887908982784LL,
530
   45635421608216LL, 258453881315393536LL, 48170722808672LL,
531
   717256874721804288LL,
532
   50706024009129LL, 176059868128215040LL, 53241325209585LL,
533
   634862861534625792LL,
534
   55776626410042LL, 93665854941036544LL, 58311927610498LL,
535
   552468848347447296LL,
536
   60847228810955LL, 11271841753858048LL, 63382530011411LL,
537
   470074835160268800LL,
538
   65917831211867LL, 928877828566679552LL, 68453132412324LL,
539
   387680821973090304LL,
540
   70988433612780LL, 846483815379501056LL, 73523734813237LL,
541
   305286808785911808LL,
542
   76059036013693LL, 764089802192322560LL, 78594337214150LL,
543
   222892795598733312LL,
544
   81129638414606LL, 681695789005144064LL, 83664939615063LL,
545
   140498782411554816LL,
546
   86200240815519LL, 599301775817965568LL, 88735542015976LL,
547
   58104769224376320LL,
548
   91270843216432LL, 516907762630787072LL, 93806144416888LL,
549
   975710756037197824LL,
550
   96341445617345LL, 434513749443608576LL, 98876746817801LL,
551
   893316742850019328LL,
552
   101412048018258LL, 352119736256430080LL, 103947349218714LL,
553
   810922729662840832LL,
554
   106482650419171LL, 269725723069251584LL, 109017951619627LL,
555
   728528716475662336LL,
556
   111553252820084LL, 187331709882073088LL, 114088554020540LL,
557
   646134703288483840LL,
558
   116623855220997LL, 104937696694894592LL, 119159156421453LL,
559
   563740690101305344LL,
560
   121694457621910LL, 22543683507716096LL, 124229758822366LL,
561
   481346676914126848LL,
562
   126765060022822LL, 940149670320537600LL, 129300361223279LL,
563
   398952663726948352LL,
564
   131835662423735LL, 857755657133359104LL, 134370963624192LL,
565
   316558650539769856LL,
566
   136906264824648LL, 775361643946180608LL, 139441566025105LL,
567
   234164637352591360LL,
568
   141976867225561LL, 692967630759002112LL, 144512168426018LL,
569
   151770624165412864LL,
570
   147047469626474LL, 610573617571823616LL, 149582770826931LL,
571
   69376610978234368LL,
572
   152118072027387LL, 528179604384645120LL, 154653373227843LL,
573
   986982597791055872LL,
574
   157188674428300LL, 445785591197466624LL, 159723975628756LL,
575
   904588584603877376LL,
576
   },
577
 
578
  {
579
   0LL, 0LL, 162259276829213LL, 363391578010288128LL,
580
   324518553658426LL, 726783156020576256LL, 486777830487640LL,
581
   90174734030864384LL,
582
   649037107316853LL, 453566312041152512LL, 811296384146066LL,
583
   816957890051440640LL,
584
   973555660975280LL, 180349468061728768LL, 1135814937804493LL,
585
   543741046072016896LL,
586
   1298074214633706LL, 907132624082305024LL, 1460333491462920LL,
587
   270524202092593152LL,
588
   1622592768292133LL, 633915780102881280LL, 1784852045121346LL,
589
   997307358113169408LL,
590
   1947111321950560LL, 360698936123457536LL, 2109370598779773LL,
591
   724090514133745664LL,
592
   2271629875608987LL, 87482092144033792LL, 2433889152438200LL,
593
   450873670154321920LL,
594
   2596148429267413LL, 814265248164610048LL, 2758407706096627LL,
595
   177656826174898176LL,
596
   2920666982925840LL, 541048404185186304LL, 3082926259755053LL,
597
   904439982195474432LL,
598
   3245185536584267LL, 267831560205762560LL, 3407444813413480LL,
599
   631223138216050688LL,
600
   3569704090242693LL, 994614716226338816LL, 3731963367071907LL,
601
   358006294236626944LL,
602
   3894222643901120LL, 721397872246915072LL, 4056481920730334LL,
603
   84789450257203200LL,
604
   4218741197559547LL, 448181028267491328LL, 4381000474388760LL,
605
   811572606277779456LL,
606
   4543259751217974LL, 174964184288067584LL, 4705519028047187LL,
607
   538355762298355712LL,
608
   4867778304876400LL, 901747340308643840LL, 5030037581705614LL,
609
   265138918318931968LL,
610
   5192296858534827LL, 628530496329220096LL, 5354556135364040LL,
611
   991922074339508224LL,
612
   5516815412193254LL, 355313652349796352LL, 5679074689022467LL,
613
   718705230360084480LL,
614
   5841333965851681LL, 82096808370372608LL, 6003593242680894LL,
615
   445488386380660736LL,
616
   6165852519510107LL, 808879964390948864LL, 6328111796339321LL,
617
   172271542401236992LL,
618
   6490371073168534LL, 535663120411525120LL, 6652630349997747LL,
619
   899054698421813248LL,
620
   6814889626826961LL, 262446276432101376LL, 6977148903656174LL,
621
   625837854442389504LL,
622
   7139408180485387LL, 989229432452677632LL, 7301667457314601LL,
623
   352621010462965760LL,
624
   7463926734143814LL, 716012588473253888LL, 7626186010973028LL,
625
   79404166483542016LL,
626
   7788445287802241LL, 442795744493830144LL, 7950704564631454LL,
627
   806187322504118272LL,
628
   8112963841460668LL, 169578900514406400LL, 8275223118289881LL,
629
   532970478524694528LL,
630
   8437482395119094LL, 896362056534982656LL, 8599741671948308LL,
631
   259753634545270784LL,
632
   8762000948777521LL, 623145212555558912LL, 8924260225606734LL,
633
   986536790565847040LL,
634
   9086519502435948LL, 349928368576135168LL, 9248778779265161LL,
635
   713319946586423296LL,
636
   9411038056094375LL, 76711524596711424LL, 9573297332923588LL,
637
   440103102606999552LL,
638
   9735556609752801LL, 803494680617287680LL, 9897815886582015LL,
639
   166886258627575808LL,
640
   10060075163411228LL, 530277836637863936LL, 10222334440240441LL,
641
   893669414648152064LL}
642
};

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.