1 |
272 |
jeremybenn |
/* Copyright (C) 2007, 2009 Free Software Foundation, Inc.
|
2 |
|
|
|
3 |
|
|
This file is part of GCC.
|
4 |
|
|
|
5 |
|
|
GCC is free software; you can redistribute it and/or modify it under
|
6 |
|
|
the terms of the GNU General Public License as published by the Free
|
7 |
|
|
Software Foundation; either version 3, or (at your option) any later
|
8 |
|
|
version.
|
9 |
|
|
|
10 |
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
11 |
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
12 |
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
13 |
|
|
for more details.
|
14 |
|
|
|
15 |
|
|
Under Section 7 of GPL version 3, you are granted additional
|
16 |
|
|
permissions described in the GCC Runtime Library Exception, version
|
17 |
|
|
3.1, as published by the Free Software Foundation.
|
18 |
|
|
|
19 |
|
|
You should have received a copy of the GNU General Public License and
|
20 |
|
|
a copy of the GCC Runtime Library Exception along with this program;
|
21 |
|
|
see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
|
22 |
|
|
<http://www.gnu.org/licenses/>. */
|
23 |
|
|
|
24 |
|
|
/*****************************************************************************
|
25 |
|
|
*
|
26 |
|
|
* Helper add functions (for fma)
|
27 |
|
|
*
|
28 |
|
|
* __BID_INLINE__ UINT64 get_add64(
|
29 |
|
|
* UINT64 sign_x, int exponent_x, UINT64 coefficient_x,
|
30 |
|
|
* UINT64 sign_y, int exponent_y, UINT64 coefficient_y,
|
31 |
|
|
* int rounding_mode)
|
32 |
|
|
*
|
33 |
|
|
* __BID_INLINE__ UINT64 get_add128(
|
34 |
|
|
* UINT64 sign_x, int exponent_x, UINT64 coefficient_x,
|
35 |
|
|
* UINT64 sign_y, int final_exponent_y, UINT128 CY,
|
36 |
|
|
* int extra_digits, int rounding_mode)
|
37 |
|
|
*
|
38 |
|
|
*****************************************************************************
|
39 |
|
|
*
|
40 |
|
|
* Algorithm description:
|
41 |
|
|
*
|
42 |
|
|
* get_add64: same as BID64 add, but arguments are unpacked and there
|
43 |
|
|
* are no special case checks
|
44 |
|
|
*
|
45 |
|
|
* get_add128: add 64-bit coefficient to 128-bit product (which contains
|
46 |
|
|
* 16+extra_digits decimal digits),
|
47 |
|
|
* return BID64 result
|
48 |
|
|
* - the exponents are compared and the two coefficients are
|
49 |
|
|
* properly aligned for addition/subtraction
|
50 |
|
|
* - multiple paths are needed
|
51 |
|
|
* - final result exponent is calculated and the lower term is
|
52 |
|
|
* rounded first if necessary, to avoid manipulating
|
53 |
|
|
* coefficients longer than 128 bits
|
54 |
|
|
*
|
55 |
|
|
****************************************************************************/
|
56 |
|
|
|
57 |
|
|
#ifndef _INLINE_BID_ADD_H_
|
58 |
|
|
#define _INLINE_BID_ADD_H_
|
59 |
|
|
|
60 |
|
|
#include "bid_internal.h"
|
61 |
|
|
|
62 |
|
|
#define MAX_FORMAT_DIGITS 16
|
63 |
|
|
#define DECIMAL_EXPONENT_BIAS 398
|
64 |
|
|
#define MASK_BINARY_EXPONENT 0x7ff0000000000000ull
|
65 |
|
|
#define BINARY_EXPONENT_BIAS 0x3ff
|
66 |
|
|
#define UPPER_EXPON_LIMIT 51
|
67 |
|
|
|
68 |
|
|
///////////////////////////////////////////////////////////////////////
|
69 |
|
|
//
|
70 |
|
|
// get_add64() is essentially the same as bid_add(), except that
|
71 |
|
|
// the arguments are unpacked
|
72 |
|
|
//
|
73 |
|
|
//////////////////////////////////////////////////////////////////////
|
74 |
|
|
__BID_INLINE__ UINT64
|
75 |
|
|
get_add64 (UINT64 sign_x, int exponent_x, UINT64 coefficient_x,
|
76 |
|
|
UINT64 sign_y, int exponent_y, UINT64 coefficient_y,
|
77 |
|
|
int rounding_mode, unsigned *fpsc) {
|
78 |
|
|
UINT128 CA, CT, CT_new;
|
79 |
|
|
UINT64 sign_a, sign_b, coefficient_a, coefficient_b, sign_s, sign_ab,
|
80 |
|
|
rem_a;
|
81 |
|
|
UINT64 saved_ca, saved_cb, C0_64, C64, remainder_h, T1, carry, tmp,
|
82 |
|
|
C64_new;
|
83 |
|
|
int_double tempx;
|
84 |
|
|
int exponent_a, exponent_b, diff_dec_expon;
|
85 |
|
|
int bin_expon_ca, extra_digits, amount, scale_k, scale_ca;
|
86 |
|
|
unsigned rmode, status;
|
87 |
|
|
|
88 |
|
|
// sort arguments by exponent
|
89 |
|
|
if (exponent_x <= exponent_y) {
|
90 |
|
|
sign_a = sign_y;
|
91 |
|
|
exponent_a = exponent_y;
|
92 |
|
|
coefficient_a = coefficient_y;
|
93 |
|
|
sign_b = sign_x;
|
94 |
|
|
exponent_b = exponent_x;
|
95 |
|
|
coefficient_b = coefficient_x;
|
96 |
|
|
} else {
|
97 |
|
|
sign_a = sign_x;
|
98 |
|
|
exponent_a = exponent_x;
|
99 |
|
|
coefficient_a = coefficient_x;
|
100 |
|
|
sign_b = sign_y;
|
101 |
|
|
exponent_b = exponent_y;
|
102 |
|
|
coefficient_b = coefficient_y;
|
103 |
|
|
}
|
104 |
|
|
|
105 |
|
|
// exponent difference
|
106 |
|
|
diff_dec_expon = exponent_a - exponent_b;
|
107 |
|
|
|
108 |
|
|
/* get binary coefficients of x and y */
|
109 |
|
|
|
110 |
|
|
//--- get number of bits in the coefficients of x and y ---
|
111 |
|
|
|
112 |
|
|
tempx.d = (double) coefficient_a;
|
113 |
|
|
bin_expon_ca = ((tempx.i & MASK_BINARY_EXPONENT) >> 52) - 0x3ff;
|
114 |
|
|
|
115 |
|
|
if (!coefficient_a) {
|
116 |
|
|
return get_BID64 (sign_b, exponent_b, coefficient_b, rounding_mode,
|
117 |
|
|
fpsc);
|
118 |
|
|
}
|
119 |
|
|
if (diff_dec_expon > MAX_FORMAT_DIGITS) {
|
120 |
|
|
// normalize a to a 16-digit coefficient
|
121 |
|
|
|
122 |
|
|
scale_ca = estimate_decimal_digits[bin_expon_ca];
|
123 |
|
|
if (coefficient_a >= power10_table_128[scale_ca].w[0])
|
124 |
|
|
scale_ca++;
|
125 |
|
|
|
126 |
|
|
scale_k = 16 - scale_ca;
|
127 |
|
|
|
128 |
|
|
coefficient_a *= power10_table_128[scale_k].w[0];
|
129 |
|
|
|
130 |
|
|
diff_dec_expon -= scale_k;
|
131 |
|
|
exponent_a -= scale_k;
|
132 |
|
|
|
133 |
|
|
/* get binary coefficients of x and y */
|
134 |
|
|
|
135 |
|
|
//--- get number of bits in the coefficients of x and y ---
|
136 |
|
|
tempx.d = (double) coefficient_a;
|
137 |
|
|
bin_expon_ca = ((tempx.i & MASK_BINARY_EXPONENT) >> 52) - 0x3ff;
|
138 |
|
|
|
139 |
|
|
if (diff_dec_expon > MAX_FORMAT_DIGITS) {
|
140 |
|
|
#ifdef SET_STATUS_FLAGS
|
141 |
|
|
if (coefficient_b) {
|
142 |
|
|
__set_status_flags (fpsc, INEXACT_EXCEPTION);
|
143 |
|
|
}
|
144 |
|
|
#endif
|
145 |
|
|
|
146 |
|
|
#ifndef IEEE_ROUND_NEAREST_TIES_AWAY
|
147 |
|
|
#ifndef IEEE_ROUND_NEAREST
|
148 |
|
|
if (((rounding_mode) & 3) && coefficient_b) // not ROUNDING_TO_NEAREST
|
149 |
|
|
{
|
150 |
|
|
switch (rounding_mode) {
|
151 |
|
|
case ROUNDING_DOWN:
|
152 |
|
|
if (sign_b) {
|
153 |
|
|
coefficient_a -= ((((SINT64) sign_a) >> 63) | 1);
|
154 |
|
|
if (coefficient_a < 1000000000000000ull) {
|
155 |
|
|
exponent_a--;
|
156 |
|
|
coefficient_a = 9999999999999999ull;
|
157 |
|
|
} else if (coefficient_a >= 10000000000000000ull) {
|
158 |
|
|
exponent_a++;
|
159 |
|
|
coefficient_a = 1000000000000000ull;
|
160 |
|
|
}
|
161 |
|
|
}
|
162 |
|
|
break;
|
163 |
|
|
case ROUNDING_UP:
|
164 |
|
|
if (!sign_b) {
|
165 |
|
|
coefficient_a += ((((SINT64) sign_a) >> 63) | 1);
|
166 |
|
|
if (coefficient_a < 1000000000000000ull) {
|
167 |
|
|
exponent_a--;
|
168 |
|
|
coefficient_a = 9999999999999999ull;
|
169 |
|
|
} else if (coefficient_a >= 10000000000000000ull) {
|
170 |
|
|
exponent_a++;
|
171 |
|
|
coefficient_a = 1000000000000000ull;
|
172 |
|
|
}
|
173 |
|
|
}
|
174 |
|
|
break;
|
175 |
|
|
default: // RZ
|
176 |
|
|
if (sign_a != sign_b) {
|
177 |
|
|
coefficient_a--;
|
178 |
|
|
if (coefficient_a < 1000000000000000ull) {
|
179 |
|
|
exponent_a--;
|
180 |
|
|
coefficient_a = 9999999999999999ull;
|
181 |
|
|
}
|
182 |
|
|
}
|
183 |
|
|
break;
|
184 |
|
|
}
|
185 |
|
|
} else
|
186 |
|
|
#endif
|
187 |
|
|
#endif
|
188 |
|
|
// check special case here
|
189 |
|
|
if ((coefficient_a == 1000000000000000ull)
|
190 |
|
|
&& (diff_dec_expon == MAX_FORMAT_DIGITS + 1)
|
191 |
|
|
&& (sign_a ^ sign_b)
|
192 |
|
|
&& (coefficient_b > 5000000000000000ull)) {
|
193 |
|
|
coefficient_a = 9999999999999999ull;
|
194 |
|
|
exponent_a--;
|
195 |
|
|
}
|
196 |
|
|
|
197 |
|
|
return get_BID64 (sign_a, exponent_a, coefficient_a,
|
198 |
|
|
rounding_mode, fpsc);
|
199 |
|
|
}
|
200 |
|
|
}
|
201 |
|
|
// test whether coefficient_a*10^(exponent_a-exponent_b) may exceed 2^62
|
202 |
|
|
if (bin_expon_ca + estimate_bin_expon[diff_dec_expon] < 60) {
|
203 |
|
|
// coefficient_a*10^(exponent_a-exponent_b)<2^63
|
204 |
|
|
|
205 |
|
|
// multiply by 10^(exponent_a-exponent_b)
|
206 |
|
|
coefficient_a *= power10_table_128[diff_dec_expon].w[0];
|
207 |
|
|
|
208 |
|
|
// sign mask
|
209 |
|
|
sign_b = ((SINT64) sign_b) >> 63;
|
210 |
|
|
// apply sign to coeff. of b
|
211 |
|
|
coefficient_b = (coefficient_b + sign_b) ^ sign_b;
|
212 |
|
|
|
213 |
|
|
// apply sign to coefficient a
|
214 |
|
|
sign_a = ((SINT64) sign_a) >> 63;
|
215 |
|
|
coefficient_a = (coefficient_a + sign_a) ^ sign_a;
|
216 |
|
|
|
217 |
|
|
coefficient_a += coefficient_b;
|
218 |
|
|
// get sign
|
219 |
|
|
sign_s = ((SINT64) coefficient_a) >> 63;
|
220 |
|
|
coefficient_a = (coefficient_a + sign_s) ^ sign_s;
|
221 |
|
|
sign_s &= 0x8000000000000000ull;
|
222 |
|
|
|
223 |
|
|
// coefficient_a < 10^16 ?
|
224 |
|
|
if (coefficient_a < power10_table_128[MAX_FORMAT_DIGITS].w[0]) {
|
225 |
|
|
#ifndef IEEE_ROUND_NEAREST_TIES_AWAY
|
226 |
|
|
#ifndef IEEE_ROUND_NEAREST
|
227 |
|
|
if (rounding_mode == ROUNDING_DOWN && (!coefficient_a)
|
228 |
|
|
&& sign_a != sign_b)
|
229 |
|
|
sign_s = 0x8000000000000000ull;
|
230 |
|
|
#endif
|
231 |
|
|
#endif
|
232 |
|
|
return get_BID64 (sign_s, exponent_b, coefficient_a,
|
233 |
|
|
rounding_mode, fpsc);
|
234 |
|
|
}
|
235 |
|
|
// otherwise rounding is necessary
|
236 |
|
|
|
237 |
|
|
// already know coefficient_a<10^19
|
238 |
|
|
// coefficient_a < 10^17 ?
|
239 |
|
|
if (coefficient_a < power10_table_128[17].w[0])
|
240 |
|
|
extra_digits = 1;
|
241 |
|
|
else if (coefficient_a < power10_table_128[18].w[0])
|
242 |
|
|
extra_digits = 2;
|
243 |
|
|
else
|
244 |
|
|
extra_digits = 3;
|
245 |
|
|
|
246 |
|
|
#ifndef IEEE_ROUND_NEAREST_TIES_AWAY
|
247 |
|
|
#ifndef IEEE_ROUND_NEAREST
|
248 |
|
|
rmode = rounding_mode;
|
249 |
|
|
if (sign_s && (unsigned) (rmode - 1) < 2)
|
250 |
|
|
rmode = 3 - rmode;
|
251 |
|
|
#else
|
252 |
|
|
rmode = 0;
|
253 |
|
|
#endif
|
254 |
|
|
#else
|
255 |
|
|
rmode = 0;
|
256 |
|
|
#endif
|
257 |
|
|
coefficient_a += round_const_table[rmode][extra_digits];
|
258 |
|
|
|
259 |
|
|
// get P*(2^M[extra_digits])/10^extra_digits
|
260 |
|
|
__mul_64x64_to_128 (CT, coefficient_a,
|
261 |
|
|
reciprocals10_64[extra_digits]);
|
262 |
|
|
|
263 |
|
|
// now get P/10^extra_digits: shift C64 right by M[extra_digits]-128
|
264 |
|
|
amount = short_recip_scale[extra_digits];
|
265 |
|
|
C64 = CT.w[1] >> amount;
|
266 |
|
|
|
267 |
|
|
} else {
|
268 |
|
|
// coefficient_a*10^(exponent_a-exponent_b) is large
|
269 |
|
|
sign_s = sign_a;
|
270 |
|
|
|
271 |
|
|
#ifndef IEEE_ROUND_NEAREST_TIES_AWAY
|
272 |
|
|
#ifndef IEEE_ROUND_NEAREST
|
273 |
|
|
rmode = rounding_mode;
|
274 |
|
|
if (sign_s && (unsigned) (rmode - 1) < 2)
|
275 |
|
|
rmode = 3 - rmode;
|
276 |
|
|
#else
|
277 |
|
|
rmode = 0;
|
278 |
|
|
#endif
|
279 |
|
|
#else
|
280 |
|
|
rmode = 0;
|
281 |
|
|
#endif
|
282 |
|
|
|
283 |
|
|
// check whether we can take faster path
|
284 |
|
|
scale_ca = estimate_decimal_digits[bin_expon_ca];
|
285 |
|
|
|
286 |
|
|
sign_ab = sign_a ^ sign_b;
|
287 |
|
|
sign_ab = ((SINT64) sign_ab) >> 63;
|
288 |
|
|
|
289 |
|
|
// T1 = 10^(16-diff_dec_expon)
|
290 |
|
|
T1 = power10_table_128[16 - diff_dec_expon].w[0];
|
291 |
|
|
|
292 |
|
|
// get number of digits in coefficient_a
|
293 |
|
|
//P_ca = power10_table_128[scale_ca].w[0];
|
294 |
|
|
//P_ca_m1 = power10_table_128[scale_ca-1].w[0];
|
295 |
|
|
if (coefficient_a >= power10_table_128[scale_ca].w[0]) {
|
296 |
|
|
scale_ca++;
|
297 |
|
|
//P_ca_m1 = P_ca;
|
298 |
|
|
//P_ca = power10_table_128[scale_ca].w[0];
|
299 |
|
|
}
|
300 |
|
|
|
301 |
|
|
scale_k = 16 - scale_ca;
|
302 |
|
|
|
303 |
|
|
// apply sign
|
304 |
|
|
//Ts = (T1 + sign_ab) ^ sign_ab;
|
305 |
|
|
|
306 |
|
|
// test range of ca
|
307 |
|
|
//X = coefficient_a + Ts - P_ca_m1;
|
308 |
|
|
|
309 |
|
|
// addition
|
310 |
|
|
saved_ca = coefficient_a - T1;
|
311 |
|
|
coefficient_a =
|
312 |
|
|
(SINT64) saved_ca *(SINT64) power10_table_128[scale_k].w[0];
|
313 |
|
|
extra_digits = diff_dec_expon - scale_k;
|
314 |
|
|
|
315 |
|
|
// apply sign
|
316 |
|
|
saved_cb = (coefficient_b + sign_ab) ^ sign_ab;
|
317 |
|
|
// add 10^16 and rounding constant
|
318 |
|
|
coefficient_b =
|
319 |
|
|
saved_cb + 10000000000000000ull +
|
320 |
|
|
round_const_table[rmode][extra_digits];
|
321 |
|
|
|
322 |
|
|
// get P*(2^M[extra_digits])/10^extra_digits
|
323 |
|
|
__mul_64x64_to_128 (CT, coefficient_b,
|
324 |
|
|
reciprocals10_64[extra_digits]);
|
325 |
|
|
|
326 |
|
|
// now get P/10^extra_digits: shift C64 right by M[extra_digits]-128
|
327 |
|
|
amount = short_recip_scale[extra_digits];
|
328 |
|
|
C0_64 = CT.w[1] >> amount;
|
329 |
|
|
|
330 |
|
|
// result coefficient
|
331 |
|
|
C64 = C0_64 + coefficient_a;
|
332 |
|
|
// filter out difficult (corner) cases
|
333 |
|
|
// the following test is equivalent to
|
334 |
|
|
// ( (initial_coefficient_a + Ts) < P_ca &&
|
335 |
|
|
// (initial_coefficient_a + Ts) > P_ca_m1 ),
|
336 |
|
|
// which ensures the number of digits in coefficient_a does not change
|
337 |
|
|
// after adding (the appropriately scaled and rounded) coefficient_b
|
338 |
|
|
if ((UINT64) (C64 - 1000000000000000ull - 1) >
|
339 |
|
|
9000000000000000ull - 2) {
|
340 |
|
|
if (C64 >= 10000000000000000ull) {
|
341 |
|
|
// result has more than 16 digits
|
342 |
|
|
if (!scale_k) {
|
343 |
|
|
// must divide coeff_a by 10
|
344 |
|
|
saved_ca = saved_ca + T1;
|
345 |
|
|
__mul_64x64_to_128 (CA, saved_ca, 0x3333333333333334ull);
|
346 |
|
|
//reciprocals10_64[1]);
|
347 |
|
|
coefficient_a = CA.w[1] >> 1;
|
348 |
|
|
rem_a =
|
349 |
|
|
saved_ca - (coefficient_a << 3) - (coefficient_a << 1);
|
350 |
|
|
coefficient_a = coefficient_a - T1;
|
351 |
|
|
|
352 |
|
|
saved_cb +=
|
353 |
|
|
/*90000000000000000 */ +rem_a *
|
354 |
|
|
power10_table_128[diff_dec_expon].w[0];
|
355 |
|
|
} else
|
356 |
|
|
coefficient_a =
|
357 |
|
|
(SINT64) (saved_ca - T1 -
|
358 |
|
|
(T1 << 3)) * (SINT64) power10_table_128[scale_k -
|
359 |
|
|
1].w[0];
|
360 |
|
|
|
361 |
|
|
extra_digits++;
|
362 |
|
|
coefficient_b =
|
363 |
|
|
saved_cb + 100000000000000000ull +
|
364 |
|
|
round_const_table[rmode][extra_digits];
|
365 |
|
|
|
366 |
|
|
// get P*(2^M[extra_digits])/10^extra_digits
|
367 |
|
|
__mul_64x64_to_128 (CT, coefficient_b,
|
368 |
|
|
reciprocals10_64[extra_digits]);
|
369 |
|
|
|
370 |
|
|
// now get P/10^extra_digits: shift C64 right by M[extra_digits]-128
|
371 |
|
|
amount = short_recip_scale[extra_digits];
|
372 |
|
|
C0_64 = CT.w[1] >> amount;
|
373 |
|
|
|
374 |
|
|
// result coefficient
|
375 |
|
|
C64 = C0_64 + coefficient_a;
|
376 |
|
|
} else if (C64 <= 1000000000000000ull) {
|
377 |
|
|
// less than 16 digits in result
|
378 |
|
|
coefficient_a =
|
379 |
|
|
(SINT64) saved_ca *(SINT64) power10_table_128[scale_k +
|
380 |
|
|
1].w[0];
|
381 |
|
|
//extra_digits --;
|
382 |
|
|
exponent_b--;
|
383 |
|
|
coefficient_b =
|
384 |
|
|
(saved_cb << 3) + (saved_cb << 1) + 100000000000000000ull +
|
385 |
|
|
round_const_table[rmode][extra_digits];
|
386 |
|
|
|
387 |
|
|
// get P*(2^M[extra_digits])/10^extra_digits
|
388 |
|
|
__mul_64x64_to_128 (CT_new, coefficient_b,
|
389 |
|
|
reciprocals10_64[extra_digits]);
|
390 |
|
|
|
391 |
|
|
// now get P/10^extra_digits: shift C64 right by M[extra_digits]-128
|
392 |
|
|
amount = short_recip_scale[extra_digits];
|
393 |
|
|
C0_64 = CT_new.w[1] >> amount;
|
394 |
|
|
|
395 |
|
|
// result coefficient
|
396 |
|
|
C64_new = C0_64 + coefficient_a;
|
397 |
|
|
if (C64_new < 10000000000000000ull) {
|
398 |
|
|
C64 = C64_new;
|
399 |
|
|
#ifdef SET_STATUS_FLAGS
|
400 |
|
|
CT = CT_new;
|
401 |
|
|
#endif
|
402 |
|
|
} else
|
403 |
|
|
exponent_b++;
|
404 |
|
|
}
|
405 |
|
|
|
406 |
|
|
}
|
407 |
|
|
|
408 |
|
|
}
|
409 |
|
|
|
410 |
|
|
#ifndef IEEE_ROUND_NEAREST_TIES_AWAY
|
411 |
|
|
#ifndef IEEE_ROUND_NEAREST
|
412 |
|
|
if (rmode == 0) //ROUNDING_TO_NEAREST
|
413 |
|
|
#endif
|
414 |
|
|
if (C64 & 1) {
|
415 |
|
|
// check whether fractional part of initial_P/10^extra_digits
|
416 |
|
|
// is exactly .5
|
417 |
|
|
// this is the same as fractional part of
|
418 |
|
|
// (initial_P + 0.5*10^extra_digits)/10^extra_digits is exactly zero
|
419 |
|
|
|
420 |
|
|
// get remainder
|
421 |
|
|
remainder_h = CT.w[1] << (64 - amount);
|
422 |
|
|
|
423 |
|
|
// test whether fractional part is 0
|
424 |
|
|
if (!remainder_h && (CT.w[0] < reciprocals10_64[extra_digits])) {
|
425 |
|
|
C64--;
|
426 |
|
|
}
|
427 |
|
|
}
|
428 |
|
|
#endif
|
429 |
|
|
|
430 |
|
|
#ifdef SET_STATUS_FLAGS
|
431 |
|
|
status = INEXACT_EXCEPTION;
|
432 |
|
|
|
433 |
|
|
// get remainder
|
434 |
|
|
remainder_h = CT.w[1] << (64 - amount);
|
435 |
|
|
|
436 |
|
|
switch (rmode) {
|
437 |
|
|
case ROUNDING_TO_NEAREST:
|
438 |
|
|
case ROUNDING_TIES_AWAY:
|
439 |
|
|
// test whether fractional part is 0
|
440 |
|
|
if ((remainder_h == 0x8000000000000000ull)
|
441 |
|
|
&& (CT.w[0] < reciprocals10_64[extra_digits]))
|
442 |
|
|
status = EXACT_STATUS;
|
443 |
|
|
break;
|
444 |
|
|
case ROUNDING_DOWN:
|
445 |
|
|
case ROUNDING_TO_ZERO:
|
446 |
|
|
if (!remainder_h && (CT.w[0] < reciprocals10_64[extra_digits]))
|
447 |
|
|
status = EXACT_STATUS;
|
448 |
|
|
break;
|
449 |
|
|
default:
|
450 |
|
|
// round up
|
451 |
|
|
__add_carry_out (tmp, carry, CT.w[0],
|
452 |
|
|
reciprocals10_64[extra_digits]);
|
453 |
|
|
if ((remainder_h >> (64 - amount)) + carry >=
|
454 |
|
|
(((UINT64) 1) << amount))
|
455 |
|
|
status = EXACT_STATUS;
|
456 |
|
|
break;
|
457 |
|
|
}
|
458 |
|
|
__set_status_flags (fpsc, status);
|
459 |
|
|
|
460 |
|
|
#endif
|
461 |
|
|
|
462 |
|
|
return get_BID64 (sign_s, exponent_b + extra_digits, C64,
|
463 |
|
|
rounding_mode, fpsc);
|
464 |
|
|
}
|
465 |
|
|
|
466 |
|
|
|
467 |
|
|
///////////////////////////////////////////////////////////////////
|
468 |
|
|
// round 128-bit coefficient and return result in BID64 format
|
469 |
|
|
// do not worry about midpoint cases
|
470 |
|
|
//////////////////////////////////////////////////////////////////
|
471 |
|
|
static UINT64
|
472 |
|
|
__bid_simple_round64_sticky (UINT64 sign, int exponent, UINT128 P,
|
473 |
|
|
int extra_digits, int rounding_mode,
|
474 |
|
|
unsigned *fpsc) {
|
475 |
|
|
UINT128 Q_high, Q_low, C128;
|
476 |
|
|
UINT64 C64;
|
477 |
|
|
int amount, rmode;
|
478 |
|
|
|
479 |
|
|
rmode = rounding_mode;
|
480 |
|
|
#ifndef IEEE_ROUND_NEAREST_TIES_AWAY
|
481 |
|
|
#ifndef IEEE_ROUND_NEAREST
|
482 |
|
|
if (sign && (unsigned) (rmode - 1) < 2)
|
483 |
|
|
rmode = 3 - rmode;
|
484 |
|
|
#endif
|
485 |
|
|
#endif
|
486 |
|
|
__add_128_64 (P, P, round_const_table[rmode][extra_digits]);
|
487 |
|
|
|
488 |
|
|
// get P*(2^M[extra_digits])/10^extra_digits
|
489 |
|
|
__mul_128x128_full (Q_high, Q_low, P,
|
490 |
|
|
reciprocals10_128[extra_digits]);
|
491 |
|
|
|
492 |
|
|
// now get P/10^extra_digits: shift Q_high right by M[extra_digits]-128
|
493 |
|
|
amount = recip_scale[extra_digits];
|
494 |
|
|
__shr_128 (C128, Q_high, amount);
|
495 |
|
|
|
496 |
|
|
C64 = __low_64 (C128);
|
497 |
|
|
|
498 |
|
|
#ifdef SET_STATUS_FLAGS
|
499 |
|
|
|
500 |
|
|
__set_status_flags (fpsc, INEXACT_EXCEPTION);
|
501 |
|
|
|
502 |
|
|
#endif
|
503 |
|
|
|
504 |
|
|
return get_BID64 (sign, exponent, C64, rounding_mode, fpsc);
|
505 |
|
|
}
|
506 |
|
|
|
507 |
|
|
///////////////////////////////////////////////////////////////////
|
508 |
|
|
// round 128-bit coefficient and return result in BID64 format
|
509 |
|
|
///////////////////////////////////////////////////////////////////
|
510 |
|
|
static UINT64
|
511 |
|
|
__bid_full_round64 (UINT64 sign, int exponent, UINT128 P,
|
512 |
|
|
int extra_digits, int rounding_mode,
|
513 |
|
|
unsigned *fpsc) {
|
514 |
|
|
UINT128 Q_high, Q_low, C128, Stemp, PU;
|
515 |
|
|
UINT64 remainder_h, C64, carry, CY;
|
516 |
|
|
int amount, amount2, rmode, status = 0;
|
517 |
|
|
|
518 |
|
|
if (exponent < 0) {
|
519 |
|
|
if (exponent >= -16 && (extra_digits + exponent < 0)) {
|
520 |
|
|
extra_digits = -exponent;
|
521 |
|
|
#ifdef SET_STATUS_FLAGS
|
522 |
|
|
if (extra_digits > 0) {
|
523 |
|
|
rmode = rounding_mode;
|
524 |
|
|
if (sign && (unsigned) (rmode - 1) < 2)
|
525 |
|
|
rmode = 3 - rmode;
|
526 |
|
|
__add_128_128 (PU, P,
|
527 |
|
|
round_const_table_128[rmode][extra_digits]);
|
528 |
|
|
if (__unsigned_compare_gt_128
|
529 |
|
|
(power10_table_128[extra_digits + 15], PU))
|
530 |
|
|
status = UNDERFLOW_EXCEPTION;
|
531 |
|
|
}
|
532 |
|
|
#endif
|
533 |
|
|
}
|
534 |
|
|
}
|
535 |
|
|
|
536 |
|
|
if (extra_digits > 0) {
|
537 |
|
|
exponent += extra_digits;
|
538 |
|
|
rmode = rounding_mode;
|
539 |
|
|
if (sign && (unsigned) (rmode - 1) < 2)
|
540 |
|
|
rmode = 3 - rmode;
|
541 |
|
|
__add_128_128 (P, P, round_const_table_128[rmode][extra_digits]);
|
542 |
|
|
|
543 |
|
|
// get P*(2^M[extra_digits])/10^extra_digits
|
544 |
|
|
__mul_128x128_full (Q_high, Q_low, P,
|
545 |
|
|
reciprocals10_128[extra_digits]);
|
546 |
|
|
|
547 |
|
|
// now get P/10^extra_digits: shift Q_high right by M[extra_digits]-128
|
548 |
|
|
amount = recip_scale[extra_digits];
|
549 |
|
|
__shr_128_long (C128, Q_high, amount);
|
550 |
|
|
|
551 |
|
|
C64 = __low_64 (C128);
|
552 |
|
|
|
553 |
|
|
#ifndef IEEE_ROUND_NEAREST_TIES_AWAY
|
554 |
|
|
#ifndef IEEE_ROUND_NEAREST
|
555 |
|
|
if (rmode == 0) //ROUNDING_TO_NEAREST
|
556 |
|
|
#endif
|
557 |
|
|
if (C64 & 1) {
|
558 |
|
|
// check whether fractional part of initial_P/10^extra_digits
|
559 |
|
|
// is exactly .5
|
560 |
|
|
|
561 |
|
|
// get remainder
|
562 |
|
|
amount2 = 64 - amount;
|
563 |
|
|
remainder_h = 0;
|
564 |
|
|
remainder_h--;
|
565 |
|
|
remainder_h >>= amount2;
|
566 |
|
|
remainder_h = remainder_h & Q_high.w[0];
|
567 |
|
|
|
568 |
|
|
if (!remainder_h
|
569 |
|
|
&& (Q_low.w[1] < reciprocals10_128[extra_digits].w[1]
|
570 |
|
|
|| (Q_low.w[1] == reciprocals10_128[extra_digits].w[1]
|
571 |
|
|
&& Q_low.w[0] <
|
572 |
|
|
reciprocals10_128[extra_digits].w[0]))) {
|
573 |
|
|
C64--;
|
574 |
|
|
}
|
575 |
|
|
}
|
576 |
|
|
#endif
|
577 |
|
|
|
578 |
|
|
#ifdef SET_STATUS_FLAGS
|
579 |
|
|
status |= INEXACT_EXCEPTION;
|
580 |
|
|
|
581 |
|
|
// get remainder
|
582 |
|
|
remainder_h = Q_high.w[0] << (64 - amount);
|
583 |
|
|
|
584 |
|
|
switch (rmode) {
|
585 |
|
|
case ROUNDING_TO_NEAREST:
|
586 |
|
|
case ROUNDING_TIES_AWAY:
|
587 |
|
|
// test whether fractional part is 0
|
588 |
|
|
if (remainder_h == 0x8000000000000000ull
|
589 |
|
|
&& (Q_low.w[1] < reciprocals10_128[extra_digits].w[1]
|
590 |
|
|
|| (Q_low.w[1] == reciprocals10_128[extra_digits].w[1]
|
591 |
|
|
&& Q_low.w[0] <
|
592 |
|
|
reciprocals10_128[extra_digits].w[0])))
|
593 |
|
|
status = EXACT_STATUS;
|
594 |
|
|
break;
|
595 |
|
|
case ROUNDING_DOWN:
|
596 |
|
|
case ROUNDING_TO_ZERO:
|
597 |
|
|
if (!remainder_h
|
598 |
|
|
&& (Q_low.w[1] < reciprocals10_128[extra_digits].w[1]
|
599 |
|
|
|| (Q_low.w[1] == reciprocals10_128[extra_digits].w[1]
|
600 |
|
|
&& Q_low.w[0] <
|
601 |
|
|
reciprocals10_128[extra_digits].w[0])))
|
602 |
|
|
status = EXACT_STATUS;
|
603 |
|
|
break;
|
604 |
|
|
default:
|
605 |
|
|
// round up
|
606 |
|
|
__add_carry_out (Stemp.w[0], CY, Q_low.w[0],
|
607 |
|
|
reciprocals10_128[extra_digits].w[0]);
|
608 |
|
|
__add_carry_in_out (Stemp.w[1], carry, Q_low.w[1],
|
609 |
|
|
reciprocals10_128[extra_digits].w[1], CY);
|
610 |
|
|
if ((remainder_h >> (64 - amount)) + carry >=
|
611 |
|
|
(((UINT64) 1) << amount))
|
612 |
|
|
status = EXACT_STATUS;
|
613 |
|
|
}
|
614 |
|
|
|
615 |
|
|
__set_status_flags (fpsc, status);
|
616 |
|
|
|
617 |
|
|
#endif
|
618 |
|
|
} else {
|
619 |
|
|
C64 = P.w[0];
|
620 |
|
|
if (!C64) {
|
621 |
|
|
sign = 0;
|
622 |
|
|
if (rounding_mode == ROUNDING_DOWN)
|
623 |
|
|
sign = 0x8000000000000000ull;
|
624 |
|
|
}
|
625 |
|
|
}
|
626 |
|
|
return get_BID64 (sign, exponent, C64, rounding_mode, fpsc);
|
627 |
|
|
}
|
628 |
|
|
|
629 |
|
|
/////////////////////////////////////////////////////////////////////////////////
|
630 |
|
|
// round 192-bit coefficient (P, remainder_P) and return result in BID64 format
|
631 |
|
|
// the lowest 64 bits (remainder_P) are used for midpoint checking only
|
632 |
|
|
////////////////////////////////////////////////////////////////////////////////
|
633 |
|
|
static UINT64
|
634 |
|
|
__bid_full_round64_remainder (UINT64 sign, int exponent, UINT128 P,
|
635 |
|
|
int extra_digits, UINT64 remainder_P,
|
636 |
|
|
int rounding_mode, unsigned *fpsc,
|
637 |
|
|
unsigned uf_status) {
|
638 |
|
|
UINT128 Q_high, Q_low, C128, Stemp;
|
639 |
|
|
UINT64 remainder_h, C64, carry, CY;
|
640 |
|
|
int amount, amount2, rmode, status = uf_status;
|
641 |
|
|
|
642 |
|
|
rmode = rounding_mode;
|
643 |
|
|
if (sign && (unsigned) (rmode - 1) < 2)
|
644 |
|
|
rmode = 3 - rmode;
|
645 |
|
|
if (rmode == ROUNDING_UP && remainder_P) {
|
646 |
|
|
P.w[0]++;
|
647 |
|
|
if (!P.w[0])
|
648 |
|
|
P.w[1]++;
|
649 |
|
|
}
|
650 |
|
|
|
651 |
|
|
if (extra_digits) {
|
652 |
|
|
__add_128_64 (P, P, round_const_table[rmode][extra_digits]);
|
653 |
|
|
|
654 |
|
|
// get P*(2^M[extra_digits])/10^extra_digits
|
655 |
|
|
__mul_128x128_full (Q_high, Q_low, P,
|
656 |
|
|
reciprocals10_128[extra_digits]);
|
657 |
|
|
|
658 |
|
|
// now get P/10^extra_digits: shift Q_high right by M[extra_digits]-128
|
659 |
|
|
amount = recip_scale[extra_digits];
|
660 |
|
|
__shr_128 (C128, Q_high, amount);
|
661 |
|
|
|
662 |
|
|
C64 = __low_64 (C128);
|
663 |
|
|
|
664 |
|
|
#ifndef IEEE_ROUND_NEAREST_TIES_AWAY
|
665 |
|
|
#ifndef IEEE_ROUND_NEAREST
|
666 |
|
|
if (rmode == 0) //ROUNDING_TO_NEAREST
|
667 |
|
|
#endif
|
668 |
|
|
if (!remainder_P && (C64 & 1)) {
|
669 |
|
|
// check whether fractional part of initial_P/10^extra_digits
|
670 |
|
|
// is exactly .5
|
671 |
|
|
|
672 |
|
|
// get remainder
|
673 |
|
|
amount2 = 64 - amount;
|
674 |
|
|
remainder_h = 0;
|
675 |
|
|
remainder_h--;
|
676 |
|
|
remainder_h >>= amount2;
|
677 |
|
|
remainder_h = remainder_h & Q_high.w[0];
|
678 |
|
|
|
679 |
|
|
if (!remainder_h
|
680 |
|
|
&& (Q_low.w[1] < reciprocals10_128[extra_digits].w[1]
|
681 |
|
|
|| (Q_low.w[1] == reciprocals10_128[extra_digits].w[1]
|
682 |
|
|
&& Q_low.w[0] <
|
683 |
|
|
reciprocals10_128[extra_digits].w[0]))) {
|
684 |
|
|
C64--;
|
685 |
|
|
}
|
686 |
|
|
}
|
687 |
|
|
#endif
|
688 |
|
|
|
689 |
|
|
#ifdef SET_STATUS_FLAGS
|
690 |
|
|
status |= INEXACT_EXCEPTION;
|
691 |
|
|
|
692 |
|
|
if (!remainder_P) {
|
693 |
|
|
// get remainder
|
694 |
|
|
remainder_h = Q_high.w[0] << (64 - amount);
|
695 |
|
|
|
696 |
|
|
switch (rmode) {
|
697 |
|
|
case ROUNDING_TO_NEAREST:
|
698 |
|
|
case ROUNDING_TIES_AWAY:
|
699 |
|
|
// test whether fractional part is 0
|
700 |
|
|
if (remainder_h == 0x8000000000000000ull
|
701 |
|
|
&& (Q_low.w[1] < reciprocals10_128[extra_digits].w[1]
|
702 |
|
|
|| (Q_low.w[1] == reciprocals10_128[extra_digits].w[1]
|
703 |
|
|
&& Q_low.w[0] <
|
704 |
|
|
reciprocals10_128[extra_digits].w[0])))
|
705 |
|
|
status = EXACT_STATUS;
|
706 |
|
|
break;
|
707 |
|
|
case ROUNDING_DOWN:
|
708 |
|
|
case ROUNDING_TO_ZERO:
|
709 |
|
|
if (!remainder_h
|
710 |
|
|
&& (Q_low.w[1] < reciprocals10_128[extra_digits].w[1]
|
711 |
|
|
|| (Q_low.w[1] == reciprocals10_128[extra_digits].w[1]
|
712 |
|
|
&& Q_low.w[0] <
|
713 |
|
|
reciprocals10_128[extra_digits].w[0])))
|
714 |
|
|
status = EXACT_STATUS;
|
715 |
|
|
break;
|
716 |
|
|
default:
|
717 |
|
|
// round up
|
718 |
|
|
__add_carry_out (Stemp.w[0], CY, Q_low.w[0],
|
719 |
|
|
reciprocals10_128[extra_digits].w[0]);
|
720 |
|
|
__add_carry_in_out (Stemp.w[1], carry, Q_low.w[1],
|
721 |
|
|
reciprocals10_128[extra_digits].w[1], CY);
|
722 |
|
|
if ((remainder_h >> (64 - amount)) + carry >=
|
723 |
|
|
(((UINT64) 1) << amount))
|
724 |
|
|
status = EXACT_STATUS;
|
725 |
|
|
}
|
726 |
|
|
}
|
727 |
|
|
__set_status_flags (fpsc, status);
|
728 |
|
|
|
729 |
|
|
#endif
|
730 |
|
|
} else {
|
731 |
|
|
C64 = P.w[0];
|
732 |
|
|
#ifdef SET_STATUS_FLAGS
|
733 |
|
|
if (remainder_P) {
|
734 |
|
|
__set_status_flags (fpsc, uf_status | INEXACT_EXCEPTION);
|
735 |
|
|
}
|
736 |
|
|
#endif
|
737 |
|
|
}
|
738 |
|
|
|
739 |
|
|
return get_BID64 (sign, exponent + extra_digits, C64, rounding_mode,
|
740 |
|
|
fpsc);
|
741 |
|
|
}
|
742 |
|
|
|
743 |
|
|
|
744 |
|
|
///////////////////////////////////////////////////////////////////
|
745 |
|
|
// get P/10^extra_digits
|
746 |
|
|
// result fits in 64 bits
|
747 |
|
|
///////////////////////////////////////////////////////////////////
|
748 |
|
|
__BID_INLINE__ UINT64
|
749 |
|
|
__truncate (UINT128 P, int extra_digits)
|
750 |
|
|
// extra_digits <= 16
|
751 |
|
|
{
|
752 |
|
|
UINT128 Q_high, Q_low, C128;
|
753 |
|
|
UINT64 C64;
|
754 |
|
|
int amount;
|
755 |
|
|
|
756 |
|
|
// get P*(2^M[extra_digits])/10^extra_digits
|
757 |
|
|
__mul_128x128_full (Q_high, Q_low, P,
|
758 |
|
|
reciprocals10_128[extra_digits]);
|
759 |
|
|
|
760 |
|
|
// now get P/10^extra_digits: shift Q_high right by M[extra_digits]-128
|
761 |
|
|
amount = recip_scale[extra_digits];
|
762 |
|
|
__shr_128 (C128, Q_high, amount);
|
763 |
|
|
|
764 |
|
|
C64 = __low_64 (C128);
|
765 |
|
|
|
766 |
|
|
return C64;
|
767 |
|
|
}
|
768 |
|
|
|
769 |
|
|
|
770 |
|
|
///////////////////////////////////////////////////////////////////
|
771 |
|
|
// return number of decimal digits in 128-bit value X
|
772 |
|
|
///////////////////////////////////////////////////////////////////
|
773 |
|
|
__BID_INLINE__ int
|
774 |
|
|
__get_dec_digits64 (UINT128 X) {
|
775 |
|
|
int_double tempx;
|
776 |
|
|
int digits_x, bin_expon_cx;
|
777 |
|
|
|
778 |
|
|
if (!X.w[1]) {
|
779 |
|
|
//--- get number of bits in the coefficients of x and y ---
|
780 |
|
|
tempx.d = (double) X.w[0];
|
781 |
|
|
bin_expon_cx = ((tempx.i & MASK_BINARY_EXPONENT) >> 52) - 0x3ff;
|
782 |
|
|
// get number of decimal digits in the coeff_x
|
783 |
|
|
digits_x = estimate_decimal_digits[bin_expon_cx];
|
784 |
|
|
if (X.w[0] >= power10_table_128[digits_x].w[0])
|
785 |
|
|
digits_x++;
|
786 |
|
|
return digits_x;
|
787 |
|
|
}
|
788 |
|
|
tempx.d = (double) X.w[1];
|
789 |
|
|
bin_expon_cx = ((tempx.i & MASK_BINARY_EXPONENT) >> 52) - 0x3ff;
|
790 |
|
|
// get number of decimal digits in the coeff_x
|
791 |
|
|
digits_x = estimate_decimal_digits[bin_expon_cx + 64];
|
792 |
|
|
if (__unsigned_compare_ge_128 (X, power10_table_128[digits_x]))
|
793 |
|
|
digits_x++;
|
794 |
|
|
|
795 |
|
|
return digits_x;
|
796 |
|
|
}
|
797 |
|
|
|
798 |
|
|
|
799 |
|
|
////////////////////////////////////////////////////////////////////////////////
|
800 |
|
|
//
|
801 |
|
|
// add 64-bit coefficient to 128-bit coefficient, return result in BID64 format
|
802 |
|
|
//
|
803 |
|
|
////////////////////////////////////////////////////////////////////////////////
|
804 |
|
|
__BID_INLINE__ UINT64
|
805 |
|
|
get_add128 (UINT64 sign_x, int exponent_x, UINT64 coefficient_x,
|
806 |
|
|
UINT64 sign_y, int final_exponent_y, UINT128 CY,
|
807 |
|
|
int extra_digits, int rounding_mode, unsigned *fpsc) {
|
808 |
|
|
UINT128 CY_L, CX, FS, F, CT, ST, T2;
|
809 |
|
|
UINT64 CYh, CY0L, T, S, coefficient_y, remainder_y;
|
810 |
|
|
SINT64 D = 0;
|
811 |
|
|
int_double tempx;
|
812 |
|
|
int diff_dec_expon, extra_digits2, exponent_y, status;
|
813 |
|
|
int extra_dx, diff_dec2, bin_expon_cx, digits_x, rmode;
|
814 |
|
|
|
815 |
|
|
// CY has more than 16 decimal digits
|
816 |
|
|
|
817 |
|
|
exponent_y = final_exponent_y - extra_digits;
|
818 |
|
|
|
819 |
|
|
#ifdef IEEE_ROUND_NEAREST_TIES_AWAY
|
820 |
|
|
rounding_mode = 0;
|
821 |
|
|
#endif
|
822 |
|
|
#ifdef IEEE_ROUND_NEAREST
|
823 |
|
|
rounding_mode = 0;
|
824 |
|
|
#endif
|
825 |
|
|
|
826 |
|
|
if (exponent_x > exponent_y) {
|
827 |
|
|
// normalize x
|
828 |
|
|
//--- get number of bits in the coefficients of x and y ---
|
829 |
|
|
tempx.d = (double) coefficient_x;
|
830 |
|
|
bin_expon_cx = ((tempx.i & MASK_BINARY_EXPONENT) >> 52) - 0x3ff;
|
831 |
|
|
// get number of decimal digits in the coeff_x
|
832 |
|
|
digits_x = estimate_decimal_digits[bin_expon_cx];
|
833 |
|
|
if (coefficient_x >= power10_table_128[digits_x].w[0])
|
834 |
|
|
digits_x++;
|
835 |
|
|
|
836 |
|
|
extra_dx = 16 - digits_x;
|
837 |
|
|
coefficient_x *= power10_table_128[extra_dx].w[0];
|
838 |
|
|
if ((sign_x ^ sign_y) && (coefficient_x == 1000000000000000ull)) {
|
839 |
|
|
extra_dx++;
|
840 |
|
|
coefficient_x = 10000000000000000ull;
|
841 |
|
|
}
|
842 |
|
|
exponent_x -= extra_dx;
|
843 |
|
|
|
844 |
|
|
if (exponent_x > exponent_y) {
|
845 |
|
|
|
846 |
|
|
// exponent_x > exponent_y
|
847 |
|
|
diff_dec_expon = exponent_x - exponent_y;
|
848 |
|
|
|
849 |
|
|
if (exponent_x <= final_exponent_y + 1) {
|
850 |
|
|
__mul_64x64_to_128 (CX, coefficient_x,
|
851 |
|
|
power10_table_128[diff_dec_expon].w[0]);
|
852 |
|
|
|
853 |
|
|
if (sign_x == sign_y) {
|
854 |
|
|
__add_128_128 (CT, CY, CX);
|
855 |
|
|
if ((exponent_x >
|
856 |
|
|
final_exponent_y) /*&& (final_exponent_y>0) */ )
|
857 |
|
|
extra_digits++;
|
858 |
|
|
if (__unsigned_compare_ge_128
|
859 |
|
|
(CT, power10_table_128[16 + extra_digits]))
|
860 |
|
|
extra_digits++;
|
861 |
|
|
} else {
|
862 |
|
|
__sub_128_128 (CT, CY, CX);
|
863 |
|
|
if (((SINT64) CT.w[1]) < 0) {
|
864 |
|
|
CT.w[0] = 0 - CT.w[0];
|
865 |
|
|
CT.w[1] = 0 - CT.w[1];
|
866 |
|
|
if (CT.w[0])
|
867 |
|
|
CT.w[1]--;
|
868 |
|
|
sign_y = sign_x;
|
869 |
|
|
} else if (!(CT.w[1] | CT.w[0])) {
|
870 |
|
|
sign_y =
|
871 |
|
|
(rounding_mode !=
|
872 |
|
|
ROUNDING_DOWN) ? 0 : 0x8000000000000000ull;
|
873 |
|
|
}
|
874 |
|
|
if ((exponent_x + 1 >=
|
875 |
|
|
final_exponent_y) /*&& (final_exponent_y>=0) */ ) {
|
876 |
|
|
extra_digits = __get_dec_digits64 (CT) - 16;
|
877 |
|
|
if (extra_digits <= 0) {
|
878 |
|
|
if (!CT.w[0] && rounding_mode == ROUNDING_DOWN)
|
879 |
|
|
sign_y = 0x8000000000000000ull;
|
880 |
|
|
return get_BID64 (sign_y, exponent_y, CT.w[0],
|
881 |
|
|
rounding_mode, fpsc);
|
882 |
|
|
}
|
883 |
|
|
} else
|
884 |
|
|
if (__unsigned_compare_gt_128
|
885 |
|
|
(power10_table_128[15 + extra_digits], CT))
|
886 |
|
|
extra_digits--;
|
887 |
|
|
}
|
888 |
|
|
|
889 |
|
|
return __bid_full_round64 (sign_y, exponent_y, CT, extra_digits,
|
890 |
|
|
rounding_mode, fpsc);
|
891 |
|
|
}
|
892 |
|
|
// diff_dec2+extra_digits is the number of digits to eliminate from
|
893 |
|
|
// argument CY
|
894 |
|
|
diff_dec2 = exponent_x - final_exponent_y;
|
895 |
|
|
|
896 |
|
|
if (diff_dec2 >= 17) {
|
897 |
|
|
#ifndef IEEE_ROUND_NEAREST
|
898 |
|
|
#ifndef IEEE_ROUND_NEAREST_TIES_AWAY
|
899 |
|
|
if ((rounding_mode) & 3) {
|
900 |
|
|
switch (rounding_mode) {
|
901 |
|
|
case ROUNDING_UP:
|
902 |
|
|
if (!sign_y) {
|
903 |
|
|
D = ((SINT64) (sign_x ^ sign_y)) >> 63;
|
904 |
|
|
D = D + D + 1;
|
905 |
|
|
coefficient_x += D;
|
906 |
|
|
}
|
907 |
|
|
break;
|
908 |
|
|
case ROUNDING_DOWN:
|
909 |
|
|
if (sign_y) {
|
910 |
|
|
D = ((SINT64) (sign_x ^ sign_y)) >> 63;
|
911 |
|
|
D = D + D + 1;
|
912 |
|
|
coefficient_x += D;
|
913 |
|
|
}
|
914 |
|
|
break;
|
915 |
|
|
case ROUNDING_TO_ZERO:
|
916 |
|
|
if (sign_y != sign_x) {
|
917 |
|
|
D = 0 - 1;
|
918 |
|
|
coefficient_x += D;
|
919 |
|
|
}
|
920 |
|
|
break;
|
921 |
|
|
}
|
922 |
|
|
if (coefficient_x < 1000000000000000ull) {
|
923 |
|
|
coefficient_x -= D;
|
924 |
|
|
coefficient_x =
|
925 |
|
|
D + (coefficient_x << 1) + (coefficient_x << 3);
|
926 |
|
|
exponent_x--;
|
927 |
|
|
}
|
928 |
|
|
}
|
929 |
|
|
#endif
|
930 |
|
|
#endif
|
931 |
|
|
#ifdef SET_STATUS_FLAGS
|
932 |
|
|
if (CY.w[1] | CY.w[0])
|
933 |
|
|
__set_status_flags (fpsc, INEXACT_EXCEPTION);
|
934 |
|
|
#endif
|
935 |
|
|
return get_BID64 (sign_x, exponent_x, coefficient_x,
|
936 |
|
|
rounding_mode, fpsc);
|
937 |
|
|
}
|
938 |
|
|
// here exponent_x <= 16+final_exponent_y
|
939 |
|
|
|
940 |
|
|
// truncate CY to 16 dec. digits
|
941 |
|
|
CYh = __truncate (CY, extra_digits);
|
942 |
|
|
|
943 |
|
|
// get remainder
|
944 |
|
|
T = power10_table_128[extra_digits].w[0];
|
945 |
|
|
__mul_64x64_to_64 (CY0L, CYh, T);
|
946 |
|
|
|
947 |
|
|
remainder_y = CY.w[0] - CY0L;
|
948 |
|
|
|
949 |
|
|
// align coeff_x, CYh
|
950 |
|
|
__mul_64x64_to_128 (CX, coefficient_x,
|
951 |
|
|
power10_table_128[diff_dec2].w[0]);
|
952 |
|
|
|
953 |
|
|
if (sign_x == sign_y) {
|
954 |
|
|
__add_128_64 (CT, CX, CYh);
|
955 |
|
|
if (__unsigned_compare_ge_128
|
956 |
|
|
(CT, power10_table_128[16 + diff_dec2]))
|
957 |
|
|
diff_dec2++;
|
958 |
|
|
} else {
|
959 |
|
|
if (remainder_y)
|
960 |
|
|
CYh++;
|
961 |
|
|
__sub_128_64 (CT, CX, CYh);
|
962 |
|
|
if (__unsigned_compare_gt_128
|
963 |
|
|
(power10_table_128[15 + diff_dec2], CT))
|
964 |
|
|
diff_dec2--;
|
965 |
|
|
}
|
966 |
|
|
|
967 |
|
|
return __bid_full_round64_remainder (sign_x, final_exponent_y, CT,
|
968 |
|
|
diff_dec2, remainder_y,
|
969 |
|
|
rounding_mode, fpsc, 0);
|
970 |
|
|
}
|
971 |
|
|
}
|
972 |
|
|
// Here (exponent_x <= exponent_y)
|
973 |
|
|
{
|
974 |
|
|
diff_dec_expon = exponent_y - exponent_x;
|
975 |
|
|
|
976 |
|
|
if (diff_dec_expon > MAX_FORMAT_DIGITS) {
|
977 |
|
|
rmode = rounding_mode;
|
978 |
|
|
|
979 |
|
|
if ((sign_x ^ sign_y)) {
|
980 |
|
|
if (!CY.w[0])
|
981 |
|
|
CY.w[1]--;
|
982 |
|
|
CY.w[0]--;
|
983 |
|
|
if (__unsigned_compare_gt_128
|
984 |
|
|
(power10_table_128[15 + extra_digits], CY)) {
|
985 |
|
|
if (rmode & 3) {
|
986 |
|
|
extra_digits--;
|
987 |
|
|
final_exponent_y--;
|
988 |
|
|
} else {
|
989 |
|
|
CY.w[0] = 1000000000000000ull;
|
990 |
|
|
CY.w[1] = 0;
|
991 |
|
|
extra_digits = 0;
|
992 |
|
|
}
|
993 |
|
|
}
|
994 |
|
|
}
|
995 |
|
|
__scale128_10 (CY, CY);
|
996 |
|
|
extra_digits++;
|
997 |
|
|
CY.w[0] |= 1;
|
998 |
|
|
|
999 |
|
|
return __bid_simple_round64_sticky (sign_y, final_exponent_y, CY,
|
1000 |
|
|
extra_digits, rmode, fpsc);
|
1001 |
|
|
}
|
1002 |
|
|
// apply sign to coeff_x
|
1003 |
|
|
sign_x ^= sign_y;
|
1004 |
|
|
sign_x = ((SINT64) sign_x) >> 63;
|
1005 |
|
|
CX.w[0] = (coefficient_x + sign_x) ^ sign_x;
|
1006 |
|
|
CX.w[1] = sign_x;
|
1007 |
|
|
|
1008 |
|
|
// check whether CY (rounded to 16 digits) and CX have
|
1009 |
|
|
// any digits in the same position
|
1010 |
|
|
diff_dec2 = final_exponent_y - exponent_x;
|
1011 |
|
|
|
1012 |
|
|
if (diff_dec2 <= 17) {
|
1013 |
|
|
// align CY to 10^ex
|
1014 |
|
|
S = power10_table_128[diff_dec_expon].w[0];
|
1015 |
|
|
__mul_64x128_short (CY_L, S, CY);
|
1016 |
|
|
|
1017 |
|
|
__add_128_128 (ST, CY_L, CX);
|
1018 |
|
|
extra_digits2 = __get_dec_digits64 (ST) - 16;
|
1019 |
|
|
return __bid_full_round64 (sign_y, exponent_x, ST, extra_digits2,
|
1020 |
|
|
rounding_mode, fpsc);
|
1021 |
|
|
}
|
1022 |
|
|
// truncate CY to 16 dec. digits
|
1023 |
|
|
CYh = __truncate (CY, extra_digits);
|
1024 |
|
|
|
1025 |
|
|
// get remainder
|
1026 |
|
|
T = power10_table_128[extra_digits].w[0];
|
1027 |
|
|
__mul_64x64_to_64 (CY0L, CYh, T);
|
1028 |
|
|
|
1029 |
|
|
coefficient_y = CY.w[0] - CY0L;
|
1030 |
|
|
// add rounding constant
|
1031 |
|
|
rmode = rounding_mode;
|
1032 |
|
|
if (sign_y && (unsigned) (rmode - 1) < 2)
|
1033 |
|
|
rmode = 3 - rmode;
|
1034 |
|
|
#ifndef IEEE_ROUND_NEAREST_TIES_AWAY
|
1035 |
|
|
#ifndef IEEE_ROUND_NEAREST
|
1036 |
|
|
if (!(rmode & 3)) //ROUNDING_TO_NEAREST
|
1037 |
|
|
#endif
|
1038 |
|
|
#endif
|
1039 |
|
|
{
|
1040 |
|
|
coefficient_y += round_const_table[rmode][extra_digits];
|
1041 |
|
|
}
|
1042 |
|
|
// align coefficient_y, coefficient_x
|
1043 |
|
|
S = power10_table_128[diff_dec_expon].w[0];
|
1044 |
|
|
__mul_64x64_to_128 (F, coefficient_y, S);
|
1045 |
|
|
|
1046 |
|
|
// fraction
|
1047 |
|
|
__add_128_128 (FS, F, CX);
|
1048 |
|
|
|
1049 |
|
|
#ifndef IEEE_ROUND_NEAREST_TIES_AWAY
|
1050 |
|
|
#ifndef IEEE_ROUND_NEAREST
|
1051 |
|
|
if (rmode == 0) //ROUNDING_TO_NEAREST
|
1052 |
|
|
#endif
|
1053 |
|
|
{
|
1054 |
|
|
// rounding code, here RN_EVEN
|
1055 |
|
|
// 10^(extra_digits+diff_dec_expon)
|
1056 |
|
|
T2 = power10_table_128[diff_dec_expon + extra_digits];
|
1057 |
|
|
if (__unsigned_compare_gt_128 (FS, T2)
|
1058 |
|
|
|| ((CYh & 1) && __test_equal_128 (FS, T2))) {
|
1059 |
|
|
CYh++;
|
1060 |
|
|
__sub_128_128 (FS, FS, T2);
|
1061 |
|
|
}
|
1062 |
|
|
}
|
1063 |
|
|
#endif
|
1064 |
|
|
#ifndef IEEE_ROUND_NEAREST
|
1065 |
|
|
#ifndef IEEE_ROUND_NEAREST_TIES_AWAY
|
1066 |
|
|
if (rmode == 4) //ROUNDING_TO_NEAREST
|
1067 |
|
|
#endif
|
1068 |
|
|
{
|
1069 |
|
|
// rounding code, here RN_AWAY
|
1070 |
|
|
// 10^(extra_digits+diff_dec_expon)
|
1071 |
|
|
T2 = power10_table_128[diff_dec_expon + extra_digits];
|
1072 |
|
|
if (__unsigned_compare_ge_128 (FS, T2)) {
|
1073 |
|
|
CYh++;
|
1074 |
|
|
__sub_128_128 (FS, FS, T2);
|
1075 |
|
|
}
|
1076 |
|
|
}
|
1077 |
|
|
#endif
|
1078 |
|
|
#ifndef IEEE_ROUND_NEAREST
|
1079 |
|
|
#ifndef IEEE_ROUND_NEAREST_TIES_AWAY
|
1080 |
|
|
switch (rmode) {
|
1081 |
|
|
case ROUNDING_DOWN:
|
1082 |
|
|
case ROUNDING_TO_ZERO:
|
1083 |
|
|
if ((SINT64) FS.w[1] < 0) {
|
1084 |
|
|
CYh--;
|
1085 |
|
|
if (CYh < 1000000000000000ull) {
|
1086 |
|
|
CYh = 9999999999999999ull;
|
1087 |
|
|
final_exponent_y--;
|
1088 |
|
|
}
|
1089 |
|
|
} else {
|
1090 |
|
|
T2 = power10_table_128[diff_dec_expon + extra_digits];
|
1091 |
|
|
if (__unsigned_compare_ge_128 (FS, T2)) {
|
1092 |
|
|
CYh++;
|
1093 |
|
|
__sub_128_128 (FS, FS, T2);
|
1094 |
|
|
}
|
1095 |
|
|
}
|
1096 |
|
|
break;
|
1097 |
|
|
case ROUNDING_UP:
|
1098 |
|
|
if ((SINT64) FS.w[1] < 0)
|
1099 |
|
|
break;
|
1100 |
|
|
T2 = power10_table_128[diff_dec_expon + extra_digits];
|
1101 |
|
|
if (__unsigned_compare_gt_128 (FS, T2)) {
|
1102 |
|
|
CYh += 2;
|
1103 |
|
|
__sub_128_128 (FS, FS, T2);
|
1104 |
|
|
} else if ((FS.w[1] == T2.w[1]) && (FS.w[0] == T2.w[0])) {
|
1105 |
|
|
CYh++;
|
1106 |
|
|
FS.w[1] = FS.w[0] = 0;
|
1107 |
|
|
} else if (FS.w[1] | FS.w[0])
|
1108 |
|
|
CYh++;
|
1109 |
|
|
break;
|
1110 |
|
|
}
|
1111 |
|
|
#endif
|
1112 |
|
|
#endif
|
1113 |
|
|
|
1114 |
|
|
#ifdef SET_STATUS_FLAGS
|
1115 |
|
|
status = INEXACT_EXCEPTION;
|
1116 |
|
|
#ifndef IEEE_ROUND_NEAREST
|
1117 |
|
|
#ifndef IEEE_ROUND_NEAREST_TIES_AWAY
|
1118 |
|
|
if (!(rmode & 3))
|
1119 |
|
|
#endif
|
1120 |
|
|
#endif
|
1121 |
|
|
{
|
1122 |
|
|
// RN modes
|
1123 |
|
|
if ((FS.w[1] ==
|
1124 |
|
|
round_const_table_128[0][diff_dec_expon + extra_digits].w[1])
|
1125 |
|
|
&& (FS.w[0] ==
|
1126 |
|
|
round_const_table_128[0][diff_dec_expon +
|
1127 |
|
|
extra_digits].w[0]))
|
1128 |
|
|
status = EXACT_STATUS;
|
1129 |
|
|
}
|
1130 |
|
|
#ifndef IEEE_ROUND_NEAREST
|
1131 |
|
|
#ifndef IEEE_ROUND_NEAREST_TIES_AWAY
|
1132 |
|
|
else if (!FS.w[1] && !FS.w[0])
|
1133 |
|
|
status = EXACT_STATUS;
|
1134 |
|
|
#endif
|
1135 |
|
|
#endif
|
1136 |
|
|
|
1137 |
|
|
__set_status_flags (fpsc, status);
|
1138 |
|
|
#endif
|
1139 |
|
|
|
1140 |
|
|
return get_BID64 (sign_y, final_exponent_y, CYh, rounding_mode,
|
1141 |
|
|
fpsc);
|
1142 |
|
|
}
|
1143 |
|
|
|
1144 |
|
|
}
|
1145 |
|
|
|
1146 |
|
|
//////////////////////////////////////////////////////////////////////////
|
1147 |
|
|
//
|
1148 |
|
|
// If coefficient_z is less than 16 digits long, normalize to 16 digits
|
1149 |
|
|
//
|
1150 |
|
|
/////////////////////////////////////////////////////////////////////////
|
1151 |
|
|
static UINT64
|
1152 |
|
|
BID_normalize (UINT64 sign_z, int exponent_z,
|
1153 |
|
|
UINT64 coefficient_z, UINT64 round_dir, int round_flag,
|
1154 |
|
|
int rounding_mode, unsigned *fpsc) {
|
1155 |
|
|
SINT64 D;
|
1156 |
|
|
int_double tempx;
|
1157 |
|
|
int digits_z, bin_expon, scale, rmode;
|
1158 |
|
|
|
1159 |
|
|
#ifndef IEEE_ROUND_NEAREST_TIES_AWAY
|
1160 |
|
|
#ifndef IEEE_ROUND_NEAREST
|
1161 |
|
|
rmode = rounding_mode;
|
1162 |
|
|
if (sign_z && (unsigned) (rmode - 1) < 2)
|
1163 |
|
|
rmode = 3 - rmode;
|
1164 |
|
|
#else
|
1165 |
|
|
if (coefficient_z >= power10_table_128[15].w[0])
|
1166 |
|
|
return z;
|
1167 |
|
|
#endif
|
1168 |
|
|
#endif
|
1169 |
|
|
|
1170 |
|
|
//--- get number of bits in the coefficients of x and y ---
|
1171 |
|
|
tempx.d = (double) coefficient_z;
|
1172 |
|
|
bin_expon = ((tempx.i & MASK_BINARY_EXPONENT) >> 52) - 0x3ff;
|
1173 |
|
|
// get number of decimal digits in the coeff_x
|
1174 |
|
|
digits_z = estimate_decimal_digits[bin_expon];
|
1175 |
|
|
if (coefficient_z >= power10_table_128[digits_z].w[0])
|
1176 |
|
|
digits_z++;
|
1177 |
|
|
|
1178 |
|
|
scale = 16 - digits_z;
|
1179 |
|
|
exponent_z -= scale;
|
1180 |
|
|
if (exponent_z < 0) {
|
1181 |
|
|
scale += exponent_z;
|
1182 |
|
|
exponent_z = 0;
|
1183 |
|
|
}
|
1184 |
|
|
coefficient_z *= power10_table_128[scale].w[0];
|
1185 |
|
|
|
1186 |
|
|
#ifdef SET_STATUS_FLAGS
|
1187 |
|
|
if (round_flag) {
|
1188 |
|
|
__set_status_flags (fpsc, INEXACT_EXCEPTION);
|
1189 |
|
|
if (coefficient_z < 1000000000000000ull)
|
1190 |
|
|
__set_status_flags (fpsc, UNDERFLOW_EXCEPTION);
|
1191 |
|
|
else if ((coefficient_z == 1000000000000000ull) && !exponent_z
|
1192 |
|
|
&& ((SINT64) (round_dir ^ sign_z) < 0) && round_flag
|
1193 |
|
|
&& (rmode == ROUNDING_DOWN || rmode == ROUNDING_TO_ZERO))
|
1194 |
|
|
__set_status_flags (fpsc, UNDERFLOW_EXCEPTION);
|
1195 |
|
|
}
|
1196 |
|
|
#endif
|
1197 |
|
|
|
1198 |
|
|
#ifndef IEEE_ROUND_NEAREST_TIES_AWAY
|
1199 |
|
|
#ifndef IEEE_ROUND_NEAREST
|
1200 |
|
|
if (round_flag && (rmode & 3)) {
|
1201 |
|
|
D = round_dir ^ sign_z;
|
1202 |
|
|
|
1203 |
|
|
if (rmode == ROUNDING_UP) {
|
1204 |
|
|
if (D >= 0)
|
1205 |
|
|
coefficient_z++;
|
1206 |
|
|
} else {
|
1207 |
|
|
if (D < 0)
|
1208 |
|
|
coefficient_z--;
|
1209 |
|
|
if (coefficient_z < 1000000000000000ull && exponent_z) {
|
1210 |
|
|
coefficient_z = 9999999999999999ull;
|
1211 |
|
|
exponent_z--;
|
1212 |
|
|
}
|
1213 |
|
|
}
|
1214 |
|
|
}
|
1215 |
|
|
#endif
|
1216 |
|
|
#endif
|
1217 |
|
|
|
1218 |
|
|
return get_BID64 (sign_z, exponent_z, coefficient_z, rounding_mode,
|
1219 |
|
|
fpsc);
|
1220 |
|
|
}
|
1221 |
|
|
|
1222 |
|
|
|
1223 |
|
|
//////////////////////////////////////////////////////////////////////////
|
1224 |
|
|
//
|
1225 |
|
|
// 0*10^ey + cz*10^ez, ey<ez
|
1226 |
|
|
//
|
1227 |
|
|
//////////////////////////////////////////////////////////////////////////
|
1228 |
|
|
|
1229 |
|
|
__BID_INLINE__ UINT64
|
1230 |
|
|
add_zero64 (int exponent_y, UINT64 sign_z, int exponent_z,
|
1231 |
|
|
UINT64 coefficient_z, unsigned *prounding_mode,
|
1232 |
|
|
unsigned *fpsc) {
|
1233 |
|
|
int_double tempx;
|
1234 |
|
|
int bin_expon, scale_k, scale_cz;
|
1235 |
|
|
int diff_expon;
|
1236 |
|
|
|
1237 |
|
|
diff_expon = exponent_z - exponent_y;
|
1238 |
|
|
|
1239 |
|
|
tempx.d = (double) coefficient_z;
|
1240 |
|
|
bin_expon = ((tempx.i & MASK_BINARY_EXPONENT) >> 52) - 0x3ff;
|
1241 |
|
|
scale_cz = estimate_decimal_digits[bin_expon];
|
1242 |
|
|
if (coefficient_z >= power10_table_128[scale_cz].w[0])
|
1243 |
|
|
scale_cz++;
|
1244 |
|
|
|
1245 |
|
|
scale_k = 16 - scale_cz;
|
1246 |
|
|
if (diff_expon < scale_k)
|
1247 |
|
|
scale_k = diff_expon;
|
1248 |
|
|
coefficient_z *= power10_table_128[scale_k].w[0];
|
1249 |
|
|
|
1250 |
|
|
return get_BID64 (sign_z, exponent_z - scale_k, coefficient_z,
|
1251 |
|
|
*prounding_mode, fpsc);
|
1252 |
|
|
}
|
1253 |
|
|
#endif
|