1 |
424 |
jeremybenn |
// random number generation (out of line) -*- C++ -*-
|
2 |
|
|
|
3 |
|
|
// Copyright (C) 2009, 2010 Free Software Foundation, Inc.
|
4 |
|
|
//
|
5 |
|
|
// This file is part of the GNU ISO C++ Library. This library is free
|
6 |
|
|
// software; you can redistribute it and/or modify it under the
|
7 |
|
|
// terms of the GNU General Public License as published by the
|
8 |
|
|
// Free Software Foundation; either version 3, or (at your option)
|
9 |
|
|
// any later version.
|
10 |
|
|
|
11 |
|
|
// This library is distributed in the hope that it will be useful,
|
12 |
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
13 |
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
14 |
|
|
// GNU General Public License for more details.
|
15 |
|
|
|
16 |
|
|
// Under Section 7 of GPL version 3, you are granted additional
|
17 |
|
|
// permissions described in the GCC Runtime Library Exception, version
|
18 |
|
|
// 3.1, as published by the Free Software Foundation.
|
19 |
|
|
|
20 |
|
|
// You should have received a copy of the GNU General Public License and
|
21 |
|
|
// a copy of the GCC Runtime Library Exception along with this program;
|
22 |
|
|
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
|
23 |
|
|
// .
|
24 |
|
|
|
25 |
|
|
/** @file bits/random.tcc
|
26 |
|
|
* This is an internal header file, included by other library headers.
|
27 |
|
|
* You should not attempt to use it directly.
|
28 |
|
|
*/
|
29 |
|
|
|
30 |
|
|
#include // std::accumulate and std::partial_sum
|
31 |
|
|
|
32 |
|
|
namespace std
|
33 |
|
|
{
|
34 |
|
|
/*
|
35 |
|
|
* (Further) implementation-space details.
|
36 |
|
|
*/
|
37 |
|
|
namespace __detail
|
38 |
|
|
{
|
39 |
|
|
// General case for x = (ax + c) mod m -- use Schrage's algorithm to
|
40 |
|
|
// avoid integer overflow.
|
41 |
|
|
//
|
42 |
|
|
// Because a and c are compile-time integral constants the compiler
|
43 |
|
|
// kindly elides any unreachable paths.
|
44 |
|
|
//
|
45 |
|
|
// Preconditions: a > 0, m > 0.
|
46 |
|
|
//
|
47 |
|
|
template
|
48 |
|
|
struct _Mod
|
49 |
|
|
{
|
50 |
|
|
static _Tp
|
51 |
|
|
__calc(_Tp __x)
|
52 |
|
|
{
|
53 |
|
|
if (__a == 1)
|
54 |
|
|
__x %= __m;
|
55 |
|
|
else
|
56 |
|
|
{
|
57 |
|
|
static const _Tp __q = __m / __a;
|
58 |
|
|
static const _Tp __r = __m % __a;
|
59 |
|
|
|
60 |
|
|
_Tp __t1 = __a * (__x % __q);
|
61 |
|
|
_Tp __t2 = __r * (__x / __q);
|
62 |
|
|
if (__t1 >= __t2)
|
63 |
|
|
__x = __t1 - __t2;
|
64 |
|
|
else
|
65 |
|
|
__x = __m - __t2 + __t1;
|
66 |
|
|
}
|
67 |
|
|
|
68 |
|
|
if (__c != 0)
|
69 |
|
|
{
|
70 |
|
|
const _Tp __d = __m - __x;
|
71 |
|
|
if (__d > __c)
|
72 |
|
|
__x += __c;
|
73 |
|
|
else
|
74 |
|
|
__x = __c - __d;
|
75 |
|
|
}
|
76 |
|
|
return __x;
|
77 |
|
|
}
|
78 |
|
|
};
|
79 |
|
|
|
80 |
|
|
// Special case for m == 0 -- use unsigned integer overflow as modulo
|
81 |
|
|
// operator.
|
82 |
|
|
template
|
83 |
|
|
struct _Mod<_Tp, __m, __a, __c, true>
|
84 |
|
|
{
|
85 |
|
|
static _Tp
|
86 |
|
|
__calc(_Tp __x)
|
87 |
|
|
{ return __a * __x + __c; }
|
88 |
|
|
};
|
89 |
|
|
|
90 |
|
|
template
|
91 |
|
|
typename _UnaryOperation>
|
92 |
|
|
_OutputIterator
|
93 |
|
|
__transform(_InputIterator __first, _InputIterator __last,
|
94 |
|
|
_OutputIterator __result, _UnaryOperation __unary_op)
|
95 |
|
|
{
|
96 |
|
|
for (; __first != __last; ++__first, ++__result)
|
97 |
|
|
*__result = __unary_op(*__first);
|
98 |
|
|
return __result;
|
99 |
|
|
}
|
100 |
|
|
} // namespace __detail
|
101 |
|
|
|
102 |
|
|
|
103 |
|
|
template
|
104 |
|
|
const _UIntType
|
105 |
|
|
linear_congruential_engine<_UIntType, __a, __c, __m>::multiplier;
|
106 |
|
|
|
107 |
|
|
template
|
108 |
|
|
const _UIntType
|
109 |
|
|
linear_congruential_engine<_UIntType, __a, __c, __m>::increment;
|
110 |
|
|
|
111 |
|
|
template
|
112 |
|
|
const _UIntType
|
113 |
|
|
linear_congruential_engine<_UIntType, __a, __c, __m>::modulus;
|
114 |
|
|
|
115 |
|
|
template
|
116 |
|
|
const _UIntType
|
117 |
|
|
linear_congruential_engine<_UIntType, __a, __c, __m>::default_seed;
|
118 |
|
|
|
119 |
|
|
/**
|
120 |
|
|
* Seeds the LCR with integral value @p __s, adjusted so that the
|
121 |
|
|
* ring identity is never a member of the convergence set.
|
122 |
|
|
*/
|
123 |
|
|
template
|
124 |
|
|
void
|
125 |
|
|
linear_congruential_engine<_UIntType, __a, __c, __m>::
|
126 |
|
|
seed(result_type __s)
|
127 |
|
|
{
|
128 |
|
|
if ((__detail::__mod<_UIntType, __m>(__c) == 0)
|
129 |
|
|
&& (__detail::__mod<_UIntType, __m>(__s) == 0))
|
130 |
|
|
_M_x = 1;
|
131 |
|
|
else
|
132 |
|
|
_M_x = __detail::__mod<_UIntType, __m>(__s);
|
133 |
|
|
}
|
134 |
|
|
|
135 |
|
|
/**
|
136 |
|
|
* Seeds the LCR engine with a value generated by @p __q.
|
137 |
|
|
*/
|
138 |
|
|
template
|
139 |
|
|
template
|
140 |
|
|
typename std::enable_if::value>::type
|
141 |
|
|
linear_congruential_engine<_UIntType, __a, __c, __m>::
|
142 |
|
|
seed(_Sseq& __q)
|
143 |
|
|
{
|
144 |
|
|
const _UIntType __k0 = __m == 0 ? std::numeric_limits<_UIntType>::digits
|
145 |
|
|
: std::__lg(__m);
|
146 |
|
|
const _UIntType __k = (__k0 + 31) / 32;
|
147 |
|
|
uint_least32_t __arr[__k + 3];
|
148 |
|
|
__q.generate(__arr + 0, __arr + __k + 3);
|
149 |
|
|
_UIntType __factor = 1u;
|
150 |
|
|
_UIntType __sum = 0u;
|
151 |
|
|
for (size_t __j = 0; __j < __k; ++__j)
|
152 |
|
|
{
|
153 |
|
|
__sum += __arr[__j + 3] * __factor;
|
154 |
|
|
__factor *= __detail::_Shift<_UIntType, 32>::__value;
|
155 |
|
|
}
|
156 |
|
|
seed(__sum);
|
157 |
|
|
}
|
158 |
|
|
|
159 |
|
|
template
|
160 |
|
|
typename _CharT, typename _Traits>
|
161 |
|
|
std::basic_ostream<_CharT, _Traits>&
|
162 |
|
|
operator<<(std::basic_ostream<_CharT, _Traits>& __os,
|
163 |
|
|
const linear_congruential_engine<_UIntType,
|
164 |
|
|
__a, __c, __m>& __lcr)
|
165 |
|
|
{
|
166 |
|
|
typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
|
167 |
|
|
typedef typename __ostream_type::ios_base __ios_base;
|
168 |
|
|
|
169 |
|
|
const typename __ios_base::fmtflags __flags = __os.flags();
|
170 |
|
|
const _CharT __fill = __os.fill();
|
171 |
|
|
__os.flags(__ios_base::dec | __ios_base::fixed | __ios_base::left);
|
172 |
|
|
__os.fill(__os.widen(' '));
|
173 |
|
|
|
174 |
|
|
__os << __lcr._M_x;
|
175 |
|
|
|
176 |
|
|
__os.flags(__flags);
|
177 |
|
|
__os.fill(__fill);
|
178 |
|
|
return __os;
|
179 |
|
|
}
|
180 |
|
|
|
181 |
|
|
template
|
182 |
|
|
typename _CharT, typename _Traits>
|
183 |
|
|
std::basic_istream<_CharT, _Traits>&
|
184 |
|
|
operator>>(std::basic_istream<_CharT, _Traits>& __is,
|
185 |
|
|
linear_congruential_engine<_UIntType, __a, __c, __m>& __lcr)
|
186 |
|
|
{
|
187 |
|
|
typedef std::basic_istream<_CharT, _Traits> __istream_type;
|
188 |
|
|
typedef typename __istream_type::ios_base __ios_base;
|
189 |
|
|
|
190 |
|
|
const typename __ios_base::fmtflags __flags = __is.flags();
|
191 |
|
|
__is.flags(__ios_base::dec);
|
192 |
|
|
|
193 |
|
|
__is >> __lcr._M_x;
|
194 |
|
|
|
195 |
|
|
__is.flags(__flags);
|
196 |
|
|
return __is;
|
197 |
|
|
}
|
198 |
|
|
|
199 |
|
|
|
200 |
|
|
template
|
201 |
|
|
size_t __w, size_t __n, size_t __m, size_t __r,
|
202 |
|
|
_UIntType __a, size_t __u, _UIntType __d, size_t __s,
|
203 |
|
|
_UIntType __b, size_t __t, _UIntType __c, size_t __l,
|
204 |
|
|
_UIntType __f>
|
205 |
|
|
const size_t
|
206 |
|
|
mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
|
207 |
|
|
__s, __b, __t, __c, __l, __f>::word_size;
|
208 |
|
|
|
209 |
|
|
template
|
210 |
|
|
size_t __w, size_t __n, size_t __m, size_t __r,
|
211 |
|
|
_UIntType __a, size_t __u, _UIntType __d, size_t __s,
|
212 |
|
|
_UIntType __b, size_t __t, _UIntType __c, size_t __l,
|
213 |
|
|
_UIntType __f>
|
214 |
|
|
const size_t
|
215 |
|
|
mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
|
216 |
|
|
__s, __b, __t, __c, __l, __f>::state_size;
|
217 |
|
|
|
218 |
|
|
template
|
219 |
|
|
size_t __w, size_t __n, size_t __m, size_t __r,
|
220 |
|
|
_UIntType __a, size_t __u, _UIntType __d, size_t __s,
|
221 |
|
|
_UIntType __b, size_t __t, _UIntType __c, size_t __l,
|
222 |
|
|
_UIntType __f>
|
223 |
|
|
const size_t
|
224 |
|
|
mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
|
225 |
|
|
__s, __b, __t, __c, __l, __f>::shift_size;
|
226 |
|
|
|
227 |
|
|
template
|
228 |
|
|
size_t __w, size_t __n, size_t __m, size_t __r,
|
229 |
|
|
_UIntType __a, size_t __u, _UIntType __d, size_t __s,
|
230 |
|
|
_UIntType __b, size_t __t, _UIntType __c, size_t __l,
|
231 |
|
|
_UIntType __f>
|
232 |
|
|
const size_t
|
233 |
|
|
mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
|
234 |
|
|
__s, __b, __t, __c, __l, __f>::mask_bits;
|
235 |
|
|
|
236 |
|
|
template
|
237 |
|
|
size_t __w, size_t __n, size_t __m, size_t __r,
|
238 |
|
|
_UIntType __a, size_t __u, _UIntType __d, size_t __s,
|
239 |
|
|
_UIntType __b, size_t __t, _UIntType __c, size_t __l,
|
240 |
|
|
_UIntType __f>
|
241 |
|
|
const _UIntType
|
242 |
|
|
mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
|
243 |
|
|
__s, __b, __t, __c, __l, __f>::xor_mask;
|
244 |
|
|
|
245 |
|
|
template
|
246 |
|
|
size_t __w, size_t __n, size_t __m, size_t __r,
|
247 |
|
|
_UIntType __a, size_t __u, _UIntType __d, size_t __s,
|
248 |
|
|
_UIntType __b, size_t __t, _UIntType __c, size_t __l,
|
249 |
|
|
_UIntType __f>
|
250 |
|
|
const size_t
|
251 |
|
|
mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
|
252 |
|
|
__s, __b, __t, __c, __l, __f>::tempering_u;
|
253 |
|
|
|
254 |
|
|
template
|
255 |
|
|
size_t __w, size_t __n, size_t __m, size_t __r,
|
256 |
|
|
_UIntType __a, size_t __u, _UIntType __d, size_t __s,
|
257 |
|
|
_UIntType __b, size_t __t, _UIntType __c, size_t __l,
|
258 |
|
|
_UIntType __f>
|
259 |
|
|
const _UIntType
|
260 |
|
|
mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
|
261 |
|
|
__s, __b, __t, __c, __l, __f>::tempering_d;
|
262 |
|
|
|
263 |
|
|
template
|
264 |
|
|
size_t __w, size_t __n, size_t __m, size_t __r,
|
265 |
|
|
_UIntType __a, size_t __u, _UIntType __d, size_t __s,
|
266 |
|
|
_UIntType __b, size_t __t, _UIntType __c, size_t __l,
|
267 |
|
|
_UIntType __f>
|
268 |
|
|
const size_t
|
269 |
|
|
mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
|
270 |
|
|
__s, __b, __t, __c, __l, __f>::tempering_s;
|
271 |
|
|
|
272 |
|
|
template
|
273 |
|
|
size_t __w, size_t __n, size_t __m, size_t __r,
|
274 |
|
|
_UIntType __a, size_t __u, _UIntType __d, size_t __s,
|
275 |
|
|
_UIntType __b, size_t __t, _UIntType __c, size_t __l,
|
276 |
|
|
_UIntType __f>
|
277 |
|
|
const _UIntType
|
278 |
|
|
mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
|
279 |
|
|
__s, __b, __t, __c, __l, __f>::tempering_b;
|
280 |
|
|
|
281 |
|
|
template
|
282 |
|
|
size_t __w, size_t __n, size_t __m, size_t __r,
|
283 |
|
|
_UIntType __a, size_t __u, _UIntType __d, size_t __s,
|
284 |
|
|
_UIntType __b, size_t __t, _UIntType __c, size_t __l,
|
285 |
|
|
_UIntType __f>
|
286 |
|
|
const size_t
|
287 |
|
|
mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
|
288 |
|
|
__s, __b, __t, __c, __l, __f>::tempering_t;
|
289 |
|
|
|
290 |
|
|
template
|
291 |
|
|
size_t __w, size_t __n, size_t __m, size_t __r,
|
292 |
|
|
_UIntType __a, size_t __u, _UIntType __d, size_t __s,
|
293 |
|
|
_UIntType __b, size_t __t, _UIntType __c, size_t __l,
|
294 |
|
|
_UIntType __f>
|
295 |
|
|
const _UIntType
|
296 |
|
|
mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
|
297 |
|
|
__s, __b, __t, __c, __l, __f>::tempering_c;
|
298 |
|
|
|
299 |
|
|
template
|
300 |
|
|
size_t __w, size_t __n, size_t __m, size_t __r,
|
301 |
|
|
_UIntType __a, size_t __u, _UIntType __d, size_t __s,
|
302 |
|
|
_UIntType __b, size_t __t, _UIntType __c, size_t __l,
|
303 |
|
|
_UIntType __f>
|
304 |
|
|
const size_t
|
305 |
|
|
mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
|
306 |
|
|
__s, __b, __t, __c, __l, __f>::tempering_l;
|
307 |
|
|
|
308 |
|
|
template
|
309 |
|
|
size_t __w, size_t __n, size_t __m, size_t __r,
|
310 |
|
|
_UIntType __a, size_t __u, _UIntType __d, size_t __s,
|
311 |
|
|
_UIntType __b, size_t __t, _UIntType __c, size_t __l,
|
312 |
|
|
_UIntType __f>
|
313 |
|
|
const _UIntType
|
314 |
|
|
mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
|
315 |
|
|
__s, __b, __t, __c, __l, __f>::
|
316 |
|
|
initialization_multiplier;
|
317 |
|
|
|
318 |
|
|
template
|
319 |
|
|
size_t __w, size_t __n, size_t __m, size_t __r,
|
320 |
|
|
_UIntType __a, size_t __u, _UIntType __d, size_t __s,
|
321 |
|
|
_UIntType __b, size_t __t, _UIntType __c, size_t __l,
|
322 |
|
|
_UIntType __f>
|
323 |
|
|
const _UIntType
|
324 |
|
|
mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
|
325 |
|
|
__s, __b, __t, __c, __l, __f>::default_seed;
|
326 |
|
|
|
327 |
|
|
template
|
328 |
|
|
size_t __w, size_t __n, size_t __m, size_t __r,
|
329 |
|
|
_UIntType __a, size_t __u, _UIntType __d, size_t __s,
|
330 |
|
|
_UIntType __b, size_t __t, _UIntType __c, size_t __l,
|
331 |
|
|
_UIntType __f>
|
332 |
|
|
void
|
333 |
|
|
mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
|
334 |
|
|
__s, __b, __t, __c, __l, __f>::
|
335 |
|
|
seed(result_type __sd)
|
336 |
|
|
{
|
337 |
|
|
_M_x[0] = __detail::__mod<_UIntType,
|
338 |
|
|
__detail::_Shift<_UIntType, __w>::__value>(__sd);
|
339 |
|
|
|
340 |
|
|
for (size_t __i = 1; __i < state_size; ++__i)
|
341 |
|
|
{
|
342 |
|
|
_UIntType __x = _M_x[__i - 1];
|
343 |
|
|
__x ^= __x >> (__w - 2);
|
344 |
|
|
__x *= __f;
|
345 |
|
|
__x += __detail::__mod<_UIntType, __n>(__i);
|
346 |
|
|
_M_x[__i] = __detail::__mod<_UIntType,
|
347 |
|
|
__detail::_Shift<_UIntType, __w>::__value>(__x);
|
348 |
|
|
}
|
349 |
|
|
_M_p = state_size;
|
350 |
|
|
}
|
351 |
|
|
|
352 |
|
|
template
|
353 |
|
|
size_t __w, size_t __n, size_t __m, size_t __r,
|
354 |
|
|
_UIntType __a, size_t __u, _UIntType __d, size_t __s,
|
355 |
|
|
_UIntType __b, size_t __t, _UIntType __c, size_t __l,
|
356 |
|
|
_UIntType __f>
|
357 |
|
|
template
|
358 |
|
|
typename std::enable_if::value>::type
|
359 |
|
|
mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
|
360 |
|
|
__s, __b, __t, __c, __l, __f>::
|
361 |
|
|
seed(_Sseq& __q)
|
362 |
|
|
{
|
363 |
|
|
const _UIntType __upper_mask = (~_UIntType()) << __r;
|
364 |
|
|
const size_t __k = (__w + 31) / 32;
|
365 |
|
|
uint_least32_t __arr[__n * __k];
|
366 |
|
|
__q.generate(__arr + 0, __arr + __n * __k);
|
367 |
|
|
|
368 |
|
|
bool __zero = true;
|
369 |
|
|
for (size_t __i = 0; __i < state_size; ++__i)
|
370 |
|
|
{
|
371 |
|
|
_UIntType __factor = 1u;
|
372 |
|
|
_UIntType __sum = 0u;
|
373 |
|
|
for (size_t __j = 0; __j < __k; ++__j)
|
374 |
|
|
{
|
375 |
|
|
__sum += __arr[__k * __i + __j] * __factor;
|
376 |
|
|
__factor *= __detail::_Shift<_UIntType, 32>::__value;
|
377 |
|
|
}
|
378 |
|
|
_M_x[__i] = __detail::__mod<_UIntType,
|
379 |
|
|
__detail::_Shift<_UIntType, __w>::__value>(__sum);
|
380 |
|
|
|
381 |
|
|
if (__zero)
|
382 |
|
|
{
|
383 |
|
|
if (__i == 0)
|
384 |
|
|
{
|
385 |
|
|
if ((_M_x[0] & __upper_mask) != 0u)
|
386 |
|
|
__zero = false;
|
387 |
|
|
}
|
388 |
|
|
else if (_M_x[__i] != 0u)
|
389 |
|
|
__zero = false;
|
390 |
|
|
}
|
391 |
|
|
}
|
392 |
|
|
if (__zero)
|
393 |
|
|
_M_x[0] = __detail::_Shift<_UIntType, __w - 1>::__value;
|
394 |
|
|
}
|
395 |
|
|
|
396 |
|
|
template
|
397 |
|
|
size_t __n, size_t __m, size_t __r,
|
398 |
|
|
_UIntType __a, size_t __u, _UIntType __d, size_t __s,
|
399 |
|
|
_UIntType __b, size_t __t, _UIntType __c, size_t __l,
|
400 |
|
|
_UIntType __f>
|
401 |
|
|
typename
|
402 |
|
|
mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
|
403 |
|
|
__s, __b, __t, __c, __l, __f>::result_type
|
404 |
|
|
mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
|
405 |
|
|
__s, __b, __t, __c, __l, __f>::
|
406 |
|
|
operator()()
|
407 |
|
|
{
|
408 |
|
|
// Reload the vector - cost is O(n) amortized over n calls.
|
409 |
|
|
if (_M_p >= state_size)
|
410 |
|
|
{
|
411 |
|
|
const _UIntType __upper_mask = (~_UIntType()) << __r;
|
412 |
|
|
const _UIntType __lower_mask = ~__upper_mask;
|
413 |
|
|
|
414 |
|
|
for (size_t __k = 0; __k < (__n - __m); ++__k)
|
415 |
|
|
{
|
416 |
|
|
_UIntType __y = ((_M_x[__k] & __upper_mask)
|
417 |
|
|
| (_M_x[__k + 1] & __lower_mask));
|
418 |
|
|
_M_x[__k] = (_M_x[__k + __m] ^ (__y >> 1)
|
419 |
|
|
^ ((__y & 0x01) ? __a : 0));
|
420 |
|
|
}
|
421 |
|
|
|
422 |
|
|
for (size_t __k = (__n - __m); __k < (__n - 1); ++__k)
|
423 |
|
|
{
|
424 |
|
|
_UIntType __y = ((_M_x[__k] & __upper_mask)
|
425 |
|
|
| (_M_x[__k + 1] & __lower_mask));
|
426 |
|
|
_M_x[__k] = (_M_x[__k + (__m - __n)] ^ (__y >> 1)
|
427 |
|
|
^ ((__y & 0x01) ? __a : 0));
|
428 |
|
|
}
|
429 |
|
|
|
430 |
|
|
_UIntType __y = ((_M_x[__n - 1] & __upper_mask)
|
431 |
|
|
| (_M_x[0] & __lower_mask));
|
432 |
|
|
_M_x[__n - 1] = (_M_x[__m - 1] ^ (__y >> 1)
|
433 |
|
|
^ ((__y & 0x01) ? __a : 0));
|
434 |
|
|
_M_p = 0;
|
435 |
|
|
}
|
436 |
|
|
|
437 |
|
|
// Calculate o(x(i)).
|
438 |
|
|
result_type __z = _M_x[_M_p++];
|
439 |
|
|
__z ^= (__z >> __u) & __d;
|
440 |
|
|
__z ^= (__z << __s) & __b;
|
441 |
|
|
__z ^= (__z << __t) & __c;
|
442 |
|
|
__z ^= (__z >> __l);
|
443 |
|
|
|
444 |
|
|
return __z;
|
445 |
|
|
}
|
446 |
|
|
|
447 |
|
|
template
|
448 |
|
|
size_t __n, size_t __m, size_t __r,
|
449 |
|
|
_UIntType __a, size_t __u, _UIntType __d, size_t __s,
|
450 |
|
|
_UIntType __b, size_t __t, _UIntType __c, size_t __l,
|
451 |
|
|
_UIntType __f, typename _CharT, typename _Traits>
|
452 |
|
|
std::basic_ostream<_CharT, _Traits>&
|
453 |
|
|
operator<<(std::basic_ostream<_CharT, _Traits>& __os,
|
454 |
|
|
const mersenne_twister_engine<_UIntType, __w, __n, __m,
|
455 |
|
|
__r, __a, __u, __d, __s, __b, __t, __c, __l, __f>& __x)
|
456 |
|
|
{
|
457 |
|
|
typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
|
458 |
|
|
typedef typename __ostream_type::ios_base __ios_base;
|
459 |
|
|
|
460 |
|
|
const typename __ios_base::fmtflags __flags = __os.flags();
|
461 |
|
|
const _CharT __fill = __os.fill();
|
462 |
|
|
const _CharT __space = __os.widen(' ');
|
463 |
|
|
__os.flags(__ios_base::dec | __ios_base::fixed | __ios_base::left);
|
464 |
|
|
__os.fill(__space);
|
465 |
|
|
|
466 |
|
|
for (size_t __i = 0; __i < __n - 1; ++__i)
|
467 |
|
|
__os << __x._M_x[__i] << __space;
|
468 |
|
|
__os << __x._M_x[__n - 1];
|
469 |
|
|
|
470 |
|
|
__os.flags(__flags);
|
471 |
|
|
__os.fill(__fill);
|
472 |
|
|
return __os;
|
473 |
|
|
}
|
474 |
|
|
|
475 |
|
|
template
|
476 |
|
|
size_t __n, size_t __m, size_t __r,
|
477 |
|
|
_UIntType __a, size_t __u, _UIntType __d, size_t __s,
|
478 |
|
|
_UIntType __b, size_t __t, _UIntType __c, size_t __l,
|
479 |
|
|
_UIntType __f, typename _CharT, typename _Traits>
|
480 |
|
|
std::basic_istream<_CharT, _Traits>&
|
481 |
|
|
operator>>(std::basic_istream<_CharT, _Traits>& __is,
|
482 |
|
|
mersenne_twister_engine<_UIntType, __w, __n, __m,
|
483 |
|
|
__r, __a, __u, __d, __s, __b, __t, __c, __l, __f>& __x)
|
484 |
|
|
{
|
485 |
|
|
typedef std::basic_istream<_CharT, _Traits> __istream_type;
|
486 |
|
|
typedef typename __istream_type::ios_base __ios_base;
|
487 |
|
|
|
488 |
|
|
const typename __ios_base::fmtflags __flags = __is.flags();
|
489 |
|
|
__is.flags(__ios_base::dec | __ios_base::skipws);
|
490 |
|
|
|
491 |
|
|
for (size_t __i = 0; __i < __n; ++__i)
|
492 |
|
|
__is >> __x._M_x[__i];
|
493 |
|
|
|
494 |
|
|
__is.flags(__flags);
|
495 |
|
|
return __is;
|
496 |
|
|
}
|
497 |
|
|
|
498 |
|
|
|
499 |
|
|
template
|
500 |
|
|
const size_t
|
501 |
|
|
subtract_with_carry_engine<_UIntType, __w, __s, __r>::word_size;
|
502 |
|
|
|
503 |
|
|
template
|
504 |
|
|
const size_t
|
505 |
|
|
subtract_with_carry_engine<_UIntType, __w, __s, __r>::short_lag;
|
506 |
|
|
|
507 |
|
|
template
|
508 |
|
|
const size_t
|
509 |
|
|
subtract_with_carry_engine<_UIntType, __w, __s, __r>::long_lag;
|
510 |
|
|
|
511 |
|
|
template
|
512 |
|
|
const _UIntType
|
513 |
|
|
subtract_with_carry_engine<_UIntType, __w, __s, __r>::default_seed;
|
514 |
|
|
|
515 |
|
|
template
|
516 |
|
|
void
|
517 |
|
|
subtract_with_carry_engine<_UIntType, __w, __s, __r>::
|
518 |
|
|
seed(result_type __value)
|
519 |
|
|
{
|
520 |
|
|
std::linear_congruential_engine
|
521 |
|
|
__lcg(__value == 0u ? default_seed : __value);
|
522 |
|
|
|
523 |
|
|
const size_t __n = (__w + 31) / 32;
|
524 |
|
|
|
525 |
|
|
for (size_t __i = 0; __i < long_lag; ++__i)
|
526 |
|
|
{
|
527 |
|
|
_UIntType __sum = 0u;
|
528 |
|
|
_UIntType __factor = 1u;
|
529 |
|
|
for (size_t __j = 0; __j < __n; ++__j)
|
530 |
|
|
{
|
531 |
|
|
__sum += __detail::__mod
|
532 |
|
|
__detail::_Shift::__value>
|
533 |
|
|
(__lcg()) * __factor;
|
534 |
|
|
__factor *= __detail::_Shift<_UIntType, 32>::__value;
|
535 |
|
|
}
|
536 |
|
|
_M_x[__i] = __detail::__mod<_UIntType,
|
537 |
|
|
__detail::_Shift<_UIntType, __w>::__value>(__sum);
|
538 |
|
|
}
|
539 |
|
|
_M_carry = (_M_x[long_lag - 1] == 0) ? 1 : 0;
|
540 |
|
|
_M_p = 0;
|
541 |
|
|
}
|
542 |
|
|
|
543 |
|
|
template
|
544 |
|
|
template
|
545 |
|
|
typename std::enable_if::value>::type
|
546 |
|
|
subtract_with_carry_engine<_UIntType, __w, __s, __r>::
|
547 |
|
|
seed(_Sseq& __q)
|
548 |
|
|
{
|
549 |
|
|
const size_t __k = (__w + 31) / 32;
|
550 |
|
|
uint_least32_t __arr[__r * __k];
|
551 |
|
|
__q.generate(__arr + 0, __arr + __r * __k);
|
552 |
|
|
|
553 |
|
|
for (size_t __i = 0; __i < long_lag; ++__i)
|
554 |
|
|
{
|
555 |
|
|
_UIntType __sum = 0u;
|
556 |
|
|
_UIntType __factor = 1u;
|
557 |
|
|
for (size_t __j = 0; __j < __k; ++__j)
|
558 |
|
|
{
|
559 |
|
|
__sum += __arr[__k * __i + __j] * __factor;
|
560 |
|
|
__factor *= __detail::_Shift<_UIntType, 32>::__value;
|
561 |
|
|
}
|
562 |
|
|
_M_x[__i] = __detail::__mod<_UIntType,
|
563 |
|
|
__detail::_Shift<_UIntType, __w>::__value>(__sum);
|
564 |
|
|
}
|
565 |
|
|
_M_carry = (_M_x[long_lag - 1] == 0) ? 1 : 0;
|
566 |
|
|
_M_p = 0;
|
567 |
|
|
}
|
568 |
|
|
|
569 |
|
|
template
|
570 |
|
|
typename subtract_with_carry_engine<_UIntType, __w, __s, __r>::
|
571 |
|
|
result_type
|
572 |
|
|
subtract_with_carry_engine<_UIntType, __w, __s, __r>::
|
573 |
|
|
operator()()
|
574 |
|
|
{
|
575 |
|
|
// Derive short lag index from current index.
|
576 |
|
|
long __ps = _M_p - short_lag;
|
577 |
|
|
if (__ps < 0)
|
578 |
|
|
__ps += long_lag;
|
579 |
|
|
|
580 |
|
|
// Calculate new x(i) without overflow or division.
|
581 |
|
|
// NB: Thanks to the requirements for _UIntType, _M_x[_M_p] + _M_carry
|
582 |
|
|
// cannot overflow.
|
583 |
|
|
_UIntType __xi;
|
584 |
|
|
if (_M_x[__ps] >= _M_x[_M_p] + _M_carry)
|
585 |
|
|
{
|
586 |
|
|
__xi = _M_x[__ps] - _M_x[_M_p] - _M_carry;
|
587 |
|
|
_M_carry = 0;
|
588 |
|
|
}
|
589 |
|
|
else
|
590 |
|
|
{
|
591 |
|
|
__xi = (__detail::_Shift<_UIntType, __w>::__value
|
592 |
|
|
- _M_x[_M_p] - _M_carry + _M_x[__ps]);
|
593 |
|
|
_M_carry = 1;
|
594 |
|
|
}
|
595 |
|
|
_M_x[_M_p] = __xi;
|
596 |
|
|
|
597 |
|
|
// Adjust current index to loop around in ring buffer.
|
598 |
|
|
if (++_M_p >= long_lag)
|
599 |
|
|
_M_p = 0;
|
600 |
|
|
|
601 |
|
|
return __xi;
|
602 |
|
|
}
|
603 |
|
|
|
604 |
|
|
template
|
605 |
|
|
typename _CharT, typename _Traits>
|
606 |
|
|
std::basic_ostream<_CharT, _Traits>&
|
607 |
|
|
operator<<(std::basic_ostream<_CharT, _Traits>& __os,
|
608 |
|
|
const subtract_with_carry_engine<_UIntType,
|
609 |
|
|
__w, __s, __r>& __x)
|
610 |
|
|
{
|
611 |
|
|
typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
|
612 |
|
|
typedef typename __ostream_type::ios_base __ios_base;
|
613 |
|
|
|
614 |
|
|
const typename __ios_base::fmtflags __flags = __os.flags();
|
615 |
|
|
const _CharT __fill = __os.fill();
|
616 |
|
|
const _CharT __space = __os.widen(' ');
|
617 |
|
|
__os.flags(__ios_base::dec | __ios_base::fixed | __ios_base::left);
|
618 |
|
|
__os.fill(__space);
|
619 |
|
|
|
620 |
|
|
for (size_t __i = 0; __i < __r; ++__i)
|
621 |
|
|
__os << __x._M_x[__i] << __space;
|
622 |
|
|
__os << __x._M_carry;
|
623 |
|
|
|
624 |
|
|
__os.flags(__flags);
|
625 |
|
|
__os.fill(__fill);
|
626 |
|
|
return __os;
|
627 |
|
|
}
|
628 |
|
|
|
629 |
|
|
template
|
630 |
|
|
typename _CharT, typename _Traits>
|
631 |
|
|
std::basic_istream<_CharT, _Traits>&
|
632 |
|
|
operator>>(std::basic_istream<_CharT, _Traits>& __is,
|
633 |
|
|
subtract_with_carry_engine<_UIntType, __w, __s, __r>& __x)
|
634 |
|
|
{
|
635 |
|
|
typedef std::basic_ostream<_CharT, _Traits> __istream_type;
|
636 |
|
|
typedef typename __istream_type::ios_base __ios_base;
|
637 |
|
|
|
638 |
|
|
const typename __ios_base::fmtflags __flags = __is.flags();
|
639 |
|
|
__is.flags(__ios_base::dec | __ios_base::skipws);
|
640 |
|
|
|
641 |
|
|
for (size_t __i = 0; __i < __r; ++__i)
|
642 |
|
|
__is >> __x._M_x[__i];
|
643 |
|
|
__is >> __x._M_carry;
|
644 |
|
|
|
645 |
|
|
__is.flags(__flags);
|
646 |
|
|
return __is;
|
647 |
|
|
}
|
648 |
|
|
|
649 |
|
|
|
650 |
|
|
template
|
651 |
|
|
const size_t
|
652 |
|
|
discard_block_engine<_RandomNumberEngine, __p, __r>::block_size;
|
653 |
|
|
|
654 |
|
|
template
|
655 |
|
|
const size_t
|
656 |
|
|
discard_block_engine<_RandomNumberEngine, __p, __r>::used_block;
|
657 |
|
|
|
658 |
|
|
template
|
659 |
|
|
typename discard_block_engine<_RandomNumberEngine,
|
660 |
|
|
__p, __r>::result_type
|
661 |
|
|
discard_block_engine<_RandomNumberEngine, __p, __r>::
|
662 |
|
|
operator()()
|
663 |
|
|
{
|
664 |
|
|
if (_M_n >= used_block)
|
665 |
|
|
{
|
666 |
|
|
_M_b.discard(block_size - _M_n);
|
667 |
|
|
_M_n = 0;
|
668 |
|
|
}
|
669 |
|
|
++_M_n;
|
670 |
|
|
return _M_b();
|
671 |
|
|
}
|
672 |
|
|
|
673 |
|
|
template
|
674 |
|
|
typename _CharT, typename _Traits>
|
675 |
|
|
std::basic_ostream<_CharT, _Traits>&
|
676 |
|
|
operator<<(std::basic_ostream<_CharT, _Traits>& __os,
|
677 |
|
|
const discard_block_engine<_RandomNumberEngine,
|
678 |
|
|
__p, __r>& __x)
|
679 |
|
|
{
|
680 |
|
|
typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
|
681 |
|
|
typedef typename __ostream_type::ios_base __ios_base;
|
682 |
|
|
|
683 |
|
|
const typename __ios_base::fmtflags __flags = __os.flags();
|
684 |
|
|
const _CharT __fill = __os.fill();
|
685 |
|
|
const _CharT __space = __os.widen(' ');
|
686 |
|
|
__os.flags(__ios_base::dec | __ios_base::fixed | __ios_base::left);
|
687 |
|
|
__os.fill(__space);
|
688 |
|
|
|
689 |
|
|
__os << __x.base() << __space << __x._M_n;
|
690 |
|
|
|
691 |
|
|
__os.flags(__flags);
|
692 |
|
|
__os.fill(__fill);
|
693 |
|
|
return __os;
|
694 |
|
|
}
|
695 |
|
|
|
696 |
|
|
template
|
697 |
|
|
typename _CharT, typename _Traits>
|
698 |
|
|
std::basic_istream<_CharT, _Traits>&
|
699 |
|
|
operator>>(std::basic_istream<_CharT, _Traits>& __is,
|
700 |
|
|
discard_block_engine<_RandomNumberEngine, __p, __r>& __x)
|
701 |
|
|
{
|
702 |
|
|
typedef std::basic_istream<_CharT, _Traits> __istream_type;
|
703 |
|
|
typedef typename __istream_type::ios_base __ios_base;
|
704 |
|
|
|
705 |
|
|
const typename __ios_base::fmtflags __flags = __is.flags();
|
706 |
|
|
__is.flags(__ios_base::dec | __ios_base::skipws);
|
707 |
|
|
|
708 |
|
|
__is >> __x._M_b >> __x._M_n;
|
709 |
|
|
|
710 |
|
|
__is.flags(__flags);
|
711 |
|
|
return __is;
|
712 |
|
|
}
|
713 |
|
|
|
714 |
|
|
|
715 |
|
|
template
|
716 |
|
|
typename independent_bits_engine<_RandomNumberEngine, __w, _UIntType>::
|
717 |
|
|
result_type
|
718 |
|
|
independent_bits_engine<_RandomNumberEngine, __w, _UIntType>::
|
719 |
|
|
operator()()
|
720 |
|
|
{
|
721 |
|
|
const long double __r = static_cast(_M_b.max())
|
722 |
|
|
- static_cast(_M_b.min()) + 1.0L;
|
723 |
|
|
const result_type __m = std::log(__r) / std::log(2.0L);
|
724 |
|
|
result_type __n, __n0, __y0, __y1, __s0, __s1;
|
725 |
|
|
for (size_t __i = 0; __i < 2; ++__i)
|
726 |
|
|
{
|
727 |
|
|
__n = (__w + __m - 1) / __m + __i;
|
728 |
|
|
__n0 = __n - __w % __n;
|
729 |
|
|
const result_type __w0 = __w / __n;
|
730 |
|
|
const result_type __w1 = __w0 + 1;
|
731 |
|
|
__s0 = result_type(1) << __w0;
|
732 |
|
|
__s1 = result_type(1) << __w1;
|
733 |
|
|
__y0 = __s0 * (__r / __s0);
|
734 |
|
|
__y1 = __s1 * (__r / __s1);
|
735 |
|
|
if (__r - __y0 <= __y0 / __n)
|
736 |
|
|
break;
|
737 |
|
|
}
|
738 |
|
|
|
739 |
|
|
result_type __sum = 0;
|
740 |
|
|
for (size_t __k = 0; __k < __n0; ++__k)
|
741 |
|
|
{
|
742 |
|
|
result_type __u;
|
743 |
|
|
do
|
744 |
|
|
__u = _M_b() - _M_b.min();
|
745 |
|
|
while (__u >= __y0);
|
746 |
|
|
__sum = __s0 * __sum + __u % __s0;
|
747 |
|
|
}
|
748 |
|
|
for (size_t __k = __n0; __k < __n; ++__k)
|
749 |
|
|
{
|
750 |
|
|
result_type __u;
|
751 |
|
|
do
|
752 |
|
|
__u = _M_b() - _M_b.min();
|
753 |
|
|
while (__u >= __y1);
|
754 |
|
|
__sum = __s1 * __sum + __u % __s1;
|
755 |
|
|
}
|
756 |
|
|
return __sum;
|
757 |
|
|
}
|
758 |
|
|
|
759 |
|
|
|
760 |
|
|
template
|
761 |
|
|
const size_t
|
762 |
|
|
shuffle_order_engine<_RandomNumberEngine, __k>::table_size;
|
763 |
|
|
|
764 |
|
|
template
|
765 |
|
|
typename shuffle_order_engine<_RandomNumberEngine, __k>::result_type
|
766 |
|
|
shuffle_order_engine<_RandomNumberEngine, __k>::
|
767 |
|
|
operator()()
|
768 |
|
|
{
|
769 |
|
|
size_t __j = __k * ((_M_y - _M_b.min())
|
770 |
|
|
/ (_M_b.max() - _M_b.min() + 1.0L));
|
771 |
|
|
_M_y = _M_v[__j];
|
772 |
|
|
_M_v[__j] = _M_b();
|
773 |
|
|
|
774 |
|
|
return _M_y;
|
775 |
|
|
}
|
776 |
|
|
|
777 |
|
|
template
|
778 |
|
|
typename _CharT, typename _Traits>
|
779 |
|
|
std::basic_ostream<_CharT, _Traits>&
|
780 |
|
|
operator<<(std::basic_ostream<_CharT, _Traits>& __os,
|
781 |
|
|
const shuffle_order_engine<_RandomNumberEngine, __k>& __x)
|
782 |
|
|
{
|
783 |
|
|
typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
|
784 |
|
|
typedef typename __ostream_type::ios_base __ios_base;
|
785 |
|
|
|
786 |
|
|
const typename __ios_base::fmtflags __flags = __os.flags();
|
787 |
|
|
const _CharT __fill = __os.fill();
|
788 |
|
|
const _CharT __space = __os.widen(' ');
|
789 |
|
|
__os.flags(__ios_base::dec | __ios_base::fixed | __ios_base::left);
|
790 |
|
|
__os.fill(__space);
|
791 |
|
|
|
792 |
|
|
__os << __x.base();
|
793 |
|
|
for (size_t __i = 0; __i < __k; ++__i)
|
794 |
|
|
__os << __space << __x._M_v[__i];
|
795 |
|
|
__os << __space << __x._M_y;
|
796 |
|
|
|
797 |
|
|
__os.flags(__flags);
|
798 |
|
|
__os.fill(__fill);
|
799 |
|
|
return __os;
|
800 |
|
|
}
|
801 |
|
|
|
802 |
|
|
template
|
803 |
|
|
typename _CharT, typename _Traits>
|
804 |
|
|
std::basic_istream<_CharT, _Traits>&
|
805 |
|
|
operator>>(std::basic_istream<_CharT, _Traits>& __is,
|
806 |
|
|
shuffle_order_engine<_RandomNumberEngine, __k>& __x)
|
807 |
|
|
{
|
808 |
|
|
typedef std::basic_istream<_CharT, _Traits> __istream_type;
|
809 |
|
|
typedef typename __istream_type::ios_base __ios_base;
|
810 |
|
|
|
811 |
|
|
const typename __ios_base::fmtflags __flags = __is.flags();
|
812 |
|
|
__is.flags(__ios_base::dec | __ios_base::skipws);
|
813 |
|
|
|
814 |
|
|
__is >> __x._M_b;
|
815 |
|
|
for (size_t __i = 0; __i < __k; ++__i)
|
816 |
|
|
__is >> __x._M_v[__i];
|
817 |
|
|
__is >> __x._M_y;
|
818 |
|
|
|
819 |
|
|
__is.flags(__flags);
|
820 |
|
|
return __is;
|
821 |
|
|
}
|
822 |
|
|
|
823 |
|
|
|
824 |
|
|
template
|
825 |
|
|
template
|
826 |
|
|
typename uniform_int_distribution<_IntType>::result_type
|
827 |
|
|
uniform_int_distribution<_IntType>::
|
828 |
|
|
operator()(_UniformRandomNumberGenerator& __urng,
|
829 |
|
|
const param_type& __param)
|
830 |
|
|
{
|
831 |
|
|
// XXX Must be fixed to work well for *arbitrary* __urng.max(),
|
832 |
|
|
// __urng.min(), __param.b(), __param.a(). Currently works fine only
|
833 |
|
|
// in the most common case __urng.max() - __urng.min() >=
|
834 |
|
|
// __param.b() - __param.a(), with __urng.max() > __urng.min() >= 0.
|
835 |
|
|
typedef typename std::make_unsigned
|
836 |
|
|
_UniformRandomNumberGenerator::result_type>::type __urntype;
|
837 |
|
|
typedef typename std::make_unsigned::type __utype;
|
838 |
|
|
typedef typename std::conditional<(sizeof(__urntype) > sizeof(__utype)),
|
839 |
|
|
__urntype, __utype>::type __uctype;
|
840 |
|
|
|
841 |
|
|
result_type __ret;
|
842 |
|
|
|
843 |
|
|
const __urntype __urnmin = __urng.min();
|
844 |
|
|
const __urntype __urnmax = __urng.max();
|
845 |
|
|
const __urntype __urnrange = __urnmax - __urnmin;
|
846 |
|
|
const __uctype __urange = __param.b() - __param.a();
|
847 |
|
|
const __uctype __udenom = (__urnrange <= __urange
|
848 |
|
|
? 1 : __urnrange / (__urange + 1));
|
849 |
|
|
do
|
850 |
|
|
__ret = (__urntype(__urng()) - __urnmin) / __udenom;
|
851 |
|
|
while (__ret > __param.b() - __param.a());
|
852 |
|
|
|
853 |
|
|
return __ret + __param.a();
|
854 |
|
|
}
|
855 |
|
|
|
856 |
|
|
template
|
857 |
|
|
std::basic_ostream<_CharT, _Traits>&
|
858 |
|
|
operator<<(std::basic_ostream<_CharT, _Traits>& __os,
|
859 |
|
|
const uniform_int_distribution<_IntType>& __x)
|
860 |
|
|
{
|
861 |
|
|
typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
|
862 |
|
|
typedef typename __ostream_type::ios_base __ios_base;
|
863 |
|
|
|
864 |
|
|
const typename __ios_base::fmtflags __flags = __os.flags();
|
865 |
|
|
const _CharT __fill = __os.fill();
|
866 |
|
|
const _CharT __space = __os.widen(' ');
|
867 |
|
|
__os.flags(__ios_base::scientific | __ios_base::left);
|
868 |
|
|
__os.fill(__space);
|
869 |
|
|
|
870 |
|
|
__os << __x.a() << __space << __x.b();
|
871 |
|
|
|
872 |
|
|
__os.flags(__flags);
|
873 |
|
|
__os.fill(__fill);
|
874 |
|
|
return __os;
|
875 |
|
|
}
|
876 |
|
|
|
877 |
|
|
template
|
878 |
|
|
std::basic_istream<_CharT, _Traits>&
|
879 |
|
|
operator>>(std::basic_istream<_CharT, _Traits>& __is,
|
880 |
|
|
uniform_int_distribution<_IntType>& __x)
|
881 |
|
|
{
|
882 |
|
|
typedef std::basic_istream<_CharT, _Traits> __istream_type;
|
883 |
|
|
typedef typename __istream_type::ios_base __ios_base;
|
884 |
|
|
|
885 |
|
|
const typename __ios_base::fmtflags __flags = __is.flags();
|
886 |
|
|
__is.flags(__ios_base::dec | __ios_base::skipws);
|
887 |
|
|
|
888 |
|
|
_IntType __a, __b;
|
889 |
|
|
__is >> __a >> __b;
|
890 |
|
|
__x.param(typename uniform_int_distribution<_IntType>::
|
891 |
|
|
param_type(__a, __b));
|
892 |
|
|
|
893 |
|
|
__is.flags(__flags);
|
894 |
|
|
return __is;
|
895 |
|
|
}
|
896 |
|
|
|
897 |
|
|
|
898 |
|
|
template
|
899 |
|
|
std::basic_ostream<_CharT, _Traits>&
|
900 |
|
|
operator<<(std::basic_ostream<_CharT, _Traits>& __os,
|
901 |
|
|
const uniform_real_distribution<_RealType>& __x)
|
902 |
|
|
{
|
903 |
|
|
typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
|
904 |
|
|
typedef typename __ostream_type::ios_base __ios_base;
|
905 |
|
|
|
906 |
|
|
const typename __ios_base::fmtflags __flags = __os.flags();
|
907 |
|
|
const _CharT __fill = __os.fill();
|
908 |
|
|
const std::streamsize __precision = __os.precision();
|
909 |
|
|
const _CharT __space = __os.widen(' ');
|
910 |
|
|
__os.flags(__ios_base::scientific | __ios_base::left);
|
911 |
|
|
__os.fill(__space);
|
912 |
|
|
__os.precision(std::numeric_limits<_RealType>::max_digits10);
|
913 |
|
|
|
914 |
|
|
__os << __x.a() << __space << __x.b();
|
915 |
|
|
|
916 |
|
|
__os.flags(__flags);
|
917 |
|
|
__os.fill(__fill);
|
918 |
|
|
__os.precision(__precision);
|
919 |
|
|
return __os;
|
920 |
|
|
}
|
921 |
|
|
|
922 |
|
|
template
|
923 |
|
|
std::basic_istream<_CharT, _Traits>&
|
924 |
|
|
operator>>(std::basic_istream<_CharT, _Traits>& __is,
|
925 |
|
|
uniform_real_distribution<_RealType>& __x)
|
926 |
|
|
{
|
927 |
|
|
typedef std::basic_istream<_CharT, _Traits> __istream_type;
|
928 |
|
|
typedef typename __istream_type::ios_base __ios_base;
|
929 |
|
|
|
930 |
|
|
const typename __ios_base::fmtflags __flags = __is.flags();
|
931 |
|
|
__is.flags(__ios_base::skipws);
|
932 |
|
|
|
933 |
|
|
_RealType __a, __b;
|
934 |
|
|
__is >> __a >> __b;
|
935 |
|
|
__x.param(typename uniform_real_distribution<_RealType>::
|
936 |
|
|
param_type(__a, __b));
|
937 |
|
|
|
938 |
|
|
__is.flags(__flags);
|
939 |
|
|
return __is;
|
940 |
|
|
}
|
941 |
|
|
|
942 |
|
|
|
943 |
|
|
template
|
944 |
|
|
std::basic_ostream<_CharT, _Traits>&
|
945 |
|
|
operator<<(std::basic_ostream<_CharT, _Traits>& __os,
|
946 |
|
|
const bernoulli_distribution& __x)
|
947 |
|
|
{
|
948 |
|
|
typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
|
949 |
|
|
typedef typename __ostream_type::ios_base __ios_base;
|
950 |
|
|
|
951 |
|
|
const typename __ios_base::fmtflags __flags = __os.flags();
|
952 |
|
|
const _CharT __fill = __os.fill();
|
953 |
|
|
const std::streamsize __precision = __os.precision();
|
954 |
|
|
__os.flags(__ios_base::scientific | __ios_base::left);
|
955 |
|
|
__os.fill(__os.widen(' '));
|
956 |
|
|
__os.precision(std::numeric_limits::max_digits10);
|
957 |
|
|
|
958 |
|
|
__os << __x.p();
|
959 |
|
|
|
960 |
|
|
__os.flags(__flags);
|
961 |
|
|
__os.fill(__fill);
|
962 |
|
|
__os.precision(__precision);
|
963 |
|
|
return __os;
|
964 |
|
|
}
|
965 |
|
|
|
966 |
|
|
|
967 |
|
|
template
|
968 |
|
|
template
|
969 |
|
|
typename geometric_distribution<_IntType>::result_type
|
970 |
|
|
geometric_distribution<_IntType>::
|
971 |
|
|
operator()(_UniformRandomNumberGenerator& __urng,
|
972 |
|
|
const param_type& __param)
|
973 |
|
|
{
|
974 |
|
|
// About the epsilon thing see this thread:
|
975 |
|
|
// http://gcc.gnu.org/ml/gcc-patches/2006-10/msg00971.html
|
976 |
|
|
const double __naf =
|
977 |
|
|
(1 - std::numeric_limits::epsilon()) / 2;
|
978 |
|
|
// The largest _RealType convertible to _IntType.
|
979 |
|
|
const double __thr =
|
980 |
|
|
std::numeric_limits<_IntType>::max() + __naf;
|
981 |
|
|
__detail::_Adaptor<_UniformRandomNumberGenerator, double>
|
982 |
|
|
__aurng(__urng);
|
983 |
|
|
|
984 |
|
|
double __cand;
|
985 |
|
|
do
|
986 |
|
|
__cand = std::ceil(std::log(__aurng()) / __param._M_log_p);
|
987 |
|
|
while (__cand >= __thr);
|
988 |
|
|
|
989 |
|
|
return result_type(__cand + __naf);
|
990 |
|
|
}
|
991 |
|
|
|
992 |
|
|
template
|
993 |
|
|
typename _CharT, typename _Traits>
|
994 |
|
|
std::basic_ostream<_CharT, _Traits>&
|
995 |
|
|
operator<<(std::basic_ostream<_CharT, _Traits>& __os,
|
996 |
|
|
const geometric_distribution<_IntType>& __x)
|
997 |
|
|
{
|
998 |
|
|
typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
|
999 |
|
|
typedef typename __ostream_type::ios_base __ios_base;
|
1000 |
|
|
|
1001 |
|
|
const typename __ios_base::fmtflags __flags = __os.flags();
|
1002 |
|
|
const _CharT __fill = __os.fill();
|
1003 |
|
|
const std::streamsize __precision = __os.precision();
|
1004 |
|
|
__os.flags(__ios_base::scientific | __ios_base::left);
|
1005 |
|
|
__os.fill(__os.widen(' '));
|
1006 |
|
|
__os.precision(std::numeric_limits::max_digits10);
|
1007 |
|
|
|
1008 |
|
|
__os << __x.p();
|
1009 |
|
|
|
1010 |
|
|
__os.flags(__flags);
|
1011 |
|
|
__os.fill(__fill);
|
1012 |
|
|
__os.precision(__precision);
|
1013 |
|
|
return __os;
|
1014 |
|
|
}
|
1015 |
|
|
|
1016 |
|
|
template
|
1017 |
|
|
typename _CharT, typename _Traits>
|
1018 |
|
|
std::basic_istream<_CharT, _Traits>&
|
1019 |
|
|
operator>>(std::basic_istream<_CharT, _Traits>& __is,
|
1020 |
|
|
geometric_distribution<_IntType>& __x)
|
1021 |
|
|
{
|
1022 |
|
|
typedef std::basic_istream<_CharT, _Traits> __istream_type;
|
1023 |
|
|
typedef typename __istream_type::ios_base __ios_base;
|
1024 |
|
|
|
1025 |
|
|
const typename __ios_base::fmtflags __flags = __is.flags();
|
1026 |
|
|
__is.flags(__ios_base::skipws);
|
1027 |
|
|
|
1028 |
|
|
double __p;
|
1029 |
|
|
__is >> __p;
|
1030 |
|
|
__x.param(typename geometric_distribution<_IntType>::param_type(__p));
|
1031 |
|
|
|
1032 |
|
|
__is.flags(__flags);
|
1033 |
|
|
return __is;
|
1034 |
|
|
}
|
1035 |
|
|
|
1036 |
|
|
|
1037 |
|
|
template
|
1038 |
|
|
template
|
1039 |
|
|
typename negative_binomial_distribution<_IntType>::result_type
|
1040 |
|
|
negative_binomial_distribution<_IntType>::
|
1041 |
|
|
operator()(_UniformRandomNumberGenerator& __urng)
|
1042 |
|
|
{
|
1043 |
|
|
const double __y = _M_gd(__urng);
|
1044 |
|
|
|
1045 |
|
|
// XXX Is the constructor too slow?
|
1046 |
|
|
std::poisson_distribution __poisson(__y);
|
1047 |
|
|
return __poisson(__urng);
|
1048 |
|
|
}
|
1049 |
|
|
|
1050 |
|
|
template
|
1051 |
|
|
template
|
1052 |
|
|
typename negative_binomial_distribution<_IntType>::result_type
|
1053 |
|
|
negative_binomial_distribution<_IntType>::
|
1054 |
|
|
operator()(_UniformRandomNumberGenerator& __urng,
|
1055 |
|
|
const param_type& __p)
|
1056 |
|
|
{
|
1057 |
|
|
typedef typename std::gamma_distribution::param_type
|
1058 |
|
|
param_type;
|
1059 |
|
|
|
1060 |
|
|
const double __y =
|
1061 |
|
|
_M_gd(__urng, param_type(__p.k(), __p.p() / (1.0 - __p.p())));
|
1062 |
|
|
|
1063 |
|
|
std::poisson_distribution __poisson(__y);
|
1064 |
|
|
return __poisson(__urng);
|
1065 |
|
|
}
|
1066 |
|
|
|
1067 |
|
|
template
|
1068 |
|
|
std::basic_ostream<_CharT, _Traits>&
|
1069 |
|
|
operator<<(std::basic_ostream<_CharT, _Traits>& __os,
|
1070 |
|
|
const negative_binomial_distribution<_IntType>& __x)
|
1071 |
|
|
{
|
1072 |
|
|
typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
|
1073 |
|
|
typedef typename __ostream_type::ios_base __ios_base;
|
1074 |
|
|
|
1075 |
|
|
const typename __ios_base::fmtflags __flags = __os.flags();
|
1076 |
|
|
const _CharT __fill = __os.fill();
|
1077 |
|
|
const std::streamsize __precision = __os.precision();
|
1078 |
|
|
const _CharT __space = __os.widen(' ');
|
1079 |
|
|
__os.flags(__ios_base::scientific | __ios_base::left);
|
1080 |
|
|
__os.fill(__os.widen(' '));
|
1081 |
|
|
__os.precision(std::numeric_limits::max_digits10);
|
1082 |
|
|
|
1083 |
|
|
__os << __x.k() << __space << __x.p()
|
1084 |
|
|
<< __space << __x._M_gd;
|
1085 |
|
|
|
1086 |
|
|
__os.flags(__flags);
|
1087 |
|
|
__os.fill(__fill);
|
1088 |
|
|
__os.precision(__precision);
|
1089 |
|
|
return __os;
|
1090 |
|
|
}
|
1091 |
|
|
|
1092 |
|
|
template
|
1093 |
|
|
std::basic_istream<_CharT, _Traits>&
|
1094 |
|
|
operator>>(std::basic_istream<_CharT, _Traits>& __is,
|
1095 |
|
|
negative_binomial_distribution<_IntType>& __x)
|
1096 |
|
|
{
|
1097 |
|
|
typedef std::basic_istream<_CharT, _Traits> __istream_type;
|
1098 |
|
|
typedef typename __istream_type::ios_base __ios_base;
|
1099 |
|
|
|
1100 |
|
|
const typename __ios_base::fmtflags __flags = __is.flags();
|
1101 |
|
|
__is.flags(__ios_base::skipws);
|
1102 |
|
|
|
1103 |
|
|
_IntType __k;
|
1104 |
|
|
double __p;
|
1105 |
|
|
__is >> __k >> __p >> __x._M_gd;
|
1106 |
|
|
__x.param(typename negative_binomial_distribution<_IntType>::
|
1107 |
|
|
param_type(__k, __p));
|
1108 |
|
|
|
1109 |
|
|
__is.flags(__flags);
|
1110 |
|
|
return __is;
|
1111 |
|
|
}
|
1112 |
|
|
|
1113 |
|
|
|
1114 |
|
|
template
|
1115 |
|
|
void
|
1116 |
|
|
poisson_distribution<_IntType>::param_type::
|
1117 |
|
|
_M_initialize()
|
1118 |
|
|
{
|
1119 |
|
|
#if _GLIBCXX_USE_C99_MATH_TR1
|
1120 |
|
|
if (_M_mean >= 12)
|
1121 |
|
|
{
|
1122 |
|
|
const double __m = std::floor(_M_mean);
|
1123 |
|
|
_M_lm_thr = std::log(_M_mean);
|
1124 |
|
|
_M_lfm = std::lgamma(__m + 1);
|
1125 |
|
|
_M_sm = std::sqrt(__m);
|
1126 |
|
|
|
1127 |
|
|
const double __pi_4 = 0.7853981633974483096156608458198757L;
|
1128 |
|
|
const double __dx = std::sqrt(2 * __m * std::log(32 * __m
|
1129 |
|
|
/ __pi_4));
|
1130 |
|
|
_M_d = std::round(std::max(6.0, std::min(__m, __dx)));
|
1131 |
|
|
const double __cx = 2 * __m + _M_d;
|
1132 |
|
|
_M_scx = std::sqrt(__cx / 2);
|
1133 |
|
|
_M_1cx = 1 / __cx;
|
1134 |
|
|
|
1135 |
|
|
_M_c2b = std::sqrt(__pi_4 * __cx) * std::exp(_M_1cx);
|
1136 |
|
|
_M_cb = 2 * __cx * std::exp(-_M_d * _M_1cx * (1 + _M_d / 2))
|
1137 |
|
|
/ _M_d;
|
1138 |
|
|
}
|
1139 |
|
|
else
|
1140 |
|
|
#endif
|
1141 |
|
|
_M_lm_thr = std::exp(-_M_mean);
|
1142 |
|
|
}
|
1143 |
|
|
|
1144 |
|
|
/**
|
1145 |
|
|
* A rejection algorithm when mean >= 12 and a simple method based
|
1146 |
|
|
* upon the multiplication of uniform random variates otherwise.
|
1147 |
|
|
* NB: The former is available only if _GLIBCXX_USE_C99_MATH_TR1
|
1148 |
|
|
* is defined.
|
1149 |
|
|
*
|
1150 |
|
|
* Reference:
|
1151 |
|
|
* Devroye, L. Non-Uniform Random Variates Generation. Springer-Verlag,
|
1152 |
|
|
* New York, 1986, Ch. X, Sects. 3.3 & 3.4 (+ Errata!).
|
1153 |
|
|
*/
|
1154 |
|
|
template
|
1155 |
|
|
template
|
1156 |
|
|
typename poisson_distribution<_IntType>::result_type
|
1157 |
|
|
poisson_distribution<_IntType>::
|
1158 |
|
|
operator()(_UniformRandomNumberGenerator& __urng,
|
1159 |
|
|
const param_type& __param)
|
1160 |
|
|
{
|
1161 |
|
|
__detail::_Adaptor<_UniformRandomNumberGenerator, double>
|
1162 |
|
|
__aurng(__urng);
|
1163 |
|
|
#if _GLIBCXX_USE_C99_MATH_TR1
|
1164 |
|
|
if (__param.mean() >= 12)
|
1165 |
|
|
{
|
1166 |
|
|
double __x;
|
1167 |
|
|
|
1168 |
|
|
// See comments above...
|
1169 |
|
|
const double __naf =
|
1170 |
|
|
(1 - std::numeric_limits::epsilon()) / 2;
|
1171 |
|
|
const double __thr =
|
1172 |
|
|
std::numeric_limits<_IntType>::max() + __naf;
|
1173 |
|
|
|
1174 |
|
|
const double __m = std::floor(__param.mean());
|
1175 |
|
|
// sqrt(pi / 2)
|
1176 |
|
|
const double __spi_2 = 1.2533141373155002512078826424055226L;
|
1177 |
|
|
const double __c1 = __param._M_sm * __spi_2;
|
1178 |
|
|
const double __c2 = __param._M_c2b + __c1;
|
1179 |
|
|
const double __c3 = __c2 + 1;
|
1180 |
|
|
const double __c4 = __c3 + 1;
|
1181 |
|
|
// e^(1 / 78)
|
1182 |
|
|
const double __e178 = 1.0129030479320018583185514777512983L;
|
1183 |
|
|
const double __c5 = __c4 + __e178;
|
1184 |
|
|
const double __c = __param._M_cb + __c5;
|
1185 |
|
|
const double __2cx = 2 * (2 * __m + __param._M_d);
|
1186 |
|
|
|
1187 |
|
|
bool __reject = true;
|
1188 |
|
|
do
|
1189 |
|
|
{
|
1190 |
|
|
const double __u = __c * __aurng();
|
1191 |
|
|
const double __e = -std::log(__aurng());
|
1192 |
|
|
|
1193 |
|
|
double __w = 0.0;
|
1194 |
|
|
|
1195 |
|
|
if (__u <= __c1)
|
1196 |
|
|
{
|
1197 |
|
|
const double __n = _M_nd(__urng);
|
1198 |
|
|
const double __y = -std::abs(__n) * __param._M_sm - 1;
|
1199 |
|
|
__x = std::floor(__y);
|
1200 |
|
|
__w = -__n * __n / 2;
|
1201 |
|
|
if (__x < -__m)
|
1202 |
|
|
continue;
|
1203 |
|
|
}
|
1204 |
|
|
else if (__u <= __c2)
|
1205 |
|
|
{
|
1206 |
|
|
const double __n = _M_nd(__urng);
|
1207 |
|
|
const double __y = 1 + std::abs(__n) * __param._M_scx;
|
1208 |
|
|
__x = std::ceil(__y);
|
1209 |
|
|
__w = __y * (2 - __y) * __param._M_1cx;
|
1210 |
|
|
if (__x > __param._M_d)
|
1211 |
|
|
continue;
|
1212 |
|
|
}
|
1213 |
|
|
else if (__u <= __c3)
|
1214 |
|
|
// NB: This case not in the book, nor in the Errata,
|
1215 |
|
|
// but should be ok...
|
1216 |
|
|
__x = -1;
|
1217 |
|
|
else if (__u <= __c4)
|
1218 |
|
|
__x = 0;
|
1219 |
|
|
else if (__u <= __c5)
|
1220 |
|
|
__x = 1;
|
1221 |
|
|
else
|
1222 |
|
|
{
|
1223 |
|
|
const double __v = -std::log(__aurng());
|
1224 |
|
|
const double __y = __param._M_d
|
1225 |
|
|
+ __v * __2cx / __param._M_d;
|
1226 |
|
|
__x = std::ceil(__y);
|
1227 |
|
|
__w = -__param._M_d * __param._M_1cx * (1 + __y / 2);
|
1228 |
|
|
}
|
1229 |
|
|
|
1230 |
|
|
__reject = (__w - __e - __x * __param._M_lm_thr
|
1231 |
|
|
> __param._M_lfm - std::lgamma(__x + __m + 1));
|
1232 |
|
|
|
1233 |
|
|
__reject |= __x + __m >= __thr;
|
1234 |
|
|
|
1235 |
|
|
} while (__reject);
|
1236 |
|
|
|
1237 |
|
|
return result_type(__x + __m + __naf);
|
1238 |
|
|
}
|
1239 |
|
|
else
|
1240 |
|
|
#endif
|
1241 |
|
|
{
|
1242 |
|
|
_IntType __x = 0;
|
1243 |
|
|
double __prod = 1.0;
|
1244 |
|
|
|
1245 |
|
|
do
|
1246 |
|
|
{
|
1247 |
|
|
__prod *= __aurng();
|
1248 |
|
|
__x += 1;
|
1249 |
|
|
}
|
1250 |
|
|
while (__prod > __param._M_lm_thr);
|
1251 |
|
|
|
1252 |
|
|
return __x - 1;
|
1253 |
|
|
}
|
1254 |
|
|
}
|
1255 |
|
|
|
1256 |
|
|
template
|
1257 |
|
|
typename _CharT, typename _Traits>
|
1258 |
|
|
std::basic_ostream<_CharT, _Traits>&
|
1259 |
|
|
operator<<(std::basic_ostream<_CharT, _Traits>& __os,
|
1260 |
|
|
const poisson_distribution<_IntType>& __x)
|
1261 |
|
|
{
|
1262 |
|
|
typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
|
1263 |
|
|
typedef typename __ostream_type::ios_base __ios_base;
|
1264 |
|
|
|
1265 |
|
|
const typename __ios_base::fmtflags __flags = __os.flags();
|
1266 |
|
|
const _CharT __fill = __os.fill();
|
1267 |
|
|
const std::streamsize __precision = __os.precision();
|
1268 |
|
|
const _CharT __space = __os.widen(' ');
|
1269 |
|
|
__os.flags(__ios_base::scientific | __ios_base::left);
|
1270 |
|
|
__os.fill(__space);
|
1271 |
|
|
__os.precision(std::numeric_limits::max_digits10);
|
1272 |
|
|
|
1273 |
|
|
__os << __x.mean() << __space << __x._M_nd;
|
1274 |
|
|
|
1275 |
|
|
__os.flags(__flags);
|
1276 |
|
|
__os.fill(__fill);
|
1277 |
|
|
__os.precision(__precision);
|
1278 |
|
|
return __os;
|
1279 |
|
|
}
|
1280 |
|
|
|
1281 |
|
|
template
|
1282 |
|
|
typename _CharT, typename _Traits>
|
1283 |
|
|
std::basic_istream<_CharT, _Traits>&
|
1284 |
|
|
operator>>(std::basic_istream<_CharT, _Traits>& __is,
|
1285 |
|
|
poisson_distribution<_IntType>& __x)
|
1286 |
|
|
{
|
1287 |
|
|
typedef std::basic_istream<_CharT, _Traits> __istream_type;
|
1288 |
|
|
typedef typename __istream_type::ios_base __ios_base;
|
1289 |
|
|
|
1290 |
|
|
const typename __ios_base::fmtflags __flags = __is.flags();
|
1291 |
|
|
__is.flags(__ios_base::skipws);
|
1292 |
|
|
|
1293 |
|
|
double __mean;
|
1294 |
|
|
__is >> __mean >> __x._M_nd;
|
1295 |
|
|
__x.param(typename poisson_distribution<_IntType>::param_type(__mean));
|
1296 |
|
|
|
1297 |
|
|
__is.flags(__flags);
|
1298 |
|
|
return __is;
|
1299 |
|
|
}
|
1300 |
|
|
|
1301 |
|
|
|
1302 |
|
|
template
|
1303 |
|
|
void
|
1304 |
|
|
binomial_distribution<_IntType>::param_type::
|
1305 |
|
|
_M_initialize()
|
1306 |
|
|
{
|
1307 |
|
|
const double __p12 = _M_p <= 0.5 ? _M_p : 1.0 - _M_p;
|
1308 |
|
|
|
1309 |
|
|
_M_easy = true;
|
1310 |
|
|
|
1311 |
|
|
#if _GLIBCXX_USE_C99_MATH_TR1
|
1312 |
|
|
if (_M_t * __p12 >= 8)
|
1313 |
|
|
{
|
1314 |
|
|
_M_easy = false;
|
1315 |
|
|
const double __np = std::floor(_M_t * __p12);
|
1316 |
|
|
const double __pa = __np / _M_t;
|
1317 |
|
|
const double __1p = 1 - __pa;
|
1318 |
|
|
|
1319 |
|
|
const double __pi_4 = 0.7853981633974483096156608458198757L;
|
1320 |
|
|
const double __d1x =
|
1321 |
|
|
std::sqrt(__np * __1p * std::log(32 * __np
|
1322 |
|
|
/ (81 * __pi_4 * __1p)));
|
1323 |
|
|
_M_d1 = std::round(std::max(1.0, __d1x));
|
1324 |
|
|
const double __d2x =
|
1325 |
|
|
std::sqrt(__np * __1p * std::log(32 * _M_t * __1p
|
1326 |
|
|
/ (__pi_4 * __pa)));
|
1327 |
|
|
_M_d2 = std::round(std::max(1.0, __d2x));
|
1328 |
|
|
|
1329 |
|
|
// sqrt(pi / 2)
|
1330 |
|
|
const double __spi_2 = 1.2533141373155002512078826424055226L;
|
1331 |
|
|
_M_s1 = std::sqrt(__np * __1p) * (1 + _M_d1 / (4 * __np));
|
1332 |
|
|
_M_s2 = std::sqrt(__np * __1p) * (1 + _M_d2 / (4 * _M_t * __1p));
|
1333 |
|
|
_M_c = 2 * _M_d1 / __np;
|
1334 |
|
|
_M_a1 = std::exp(_M_c) * _M_s1 * __spi_2;
|
1335 |
|
|
const double __a12 = _M_a1 + _M_s2 * __spi_2;
|
1336 |
|
|
const double __s1s = _M_s1 * _M_s1;
|
1337 |
|
|
_M_a123 = __a12 + (std::exp(_M_d1 / (_M_t * __1p))
|
1338 |
|
|
* 2 * __s1s / _M_d1
|
1339 |
|
|
* std::exp(-_M_d1 * _M_d1 / (2 * __s1s)));
|
1340 |
|
|
const double __s2s = _M_s2 * _M_s2;
|
1341 |
|
|
_M_s = (_M_a123 + 2 * __s2s / _M_d2
|
1342 |
|
|
* std::exp(-_M_d2 * _M_d2 / (2 * __s2s)));
|
1343 |
|
|
_M_lf = (std::lgamma(__np + 1)
|
1344 |
|
|
+ std::lgamma(_M_t - __np + 1));
|
1345 |
|
|
_M_lp1p = std::log(__pa / __1p);
|
1346 |
|
|
|
1347 |
|
|
_M_q = -std::log(1 - (__p12 - __pa) / __1p);
|
1348 |
|
|
}
|
1349 |
|
|
else
|
1350 |
|
|
#endif
|
1351 |
|
|
_M_q = -std::log(1 - __p12);
|
1352 |
|
|
}
|
1353 |
|
|
|
1354 |
|
|
template
|
1355 |
|
|
template
|
1356 |
|
|
typename binomial_distribution<_IntType>::result_type
|
1357 |
|
|
binomial_distribution<_IntType>::
|
1358 |
|
|
_M_waiting(_UniformRandomNumberGenerator& __urng, _IntType __t)
|
1359 |
|
|
{
|
1360 |
|
|
_IntType __x = 0;
|
1361 |
|
|
double __sum = 0.0;
|
1362 |
|
|
__detail::_Adaptor<_UniformRandomNumberGenerator, double>
|
1363 |
|
|
__aurng(__urng);
|
1364 |
|
|
|
1365 |
|
|
do
|
1366 |
|
|
{
|
1367 |
|
|
const double __e = -std::log(__aurng());
|
1368 |
|
|
__sum += __e / (__t - __x);
|
1369 |
|
|
__x += 1;
|
1370 |
|
|
}
|
1371 |
|
|
while (__sum <= _M_param._M_q);
|
1372 |
|
|
|
1373 |
|
|
return __x - 1;
|
1374 |
|
|
}
|
1375 |
|
|
|
1376 |
|
|
/**
|
1377 |
|
|
* A rejection algorithm when t * p >= 8 and a simple waiting time
|
1378 |
|
|
* method - the second in the referenced book - otherwise.
|
1379 |
|
|
* NB: The former is available only if _GLIBCXX_USE_C99_MATH_TR1
|
1380 |
|
|
* is defined.
|
1381 |
|
|
*
|
1382 |
|
|
* Reference:
|
1383 |
|
|
* Devroye, L. Non-Uniform Random Variates Generation. Springer-Verlag,
|
1384 |
|
|
* New York, 1986, Ch. X, Sect. 4 (+ Errata!).
|
1385 |
|
|
*/
|
1386 |
|
|
template
|
1387 |
|
|
template
|
1388 |
|
|
typename binomial_distribution<_IntType>::result_type
|
1389 |
|
|
binomial_distribution<_IntType>::
|
1390 |
|
|
operator()(_UniformRandomNumberGenerator& __urng,
|
1391 |
|
|
const param_type& __param)
|
1392 |
|
|
{
|
1393 |
|
|
result_type __ret;
|
1394 |
|
|
const _IntType __t = __param.t();
|
1395 |
|
|
const _IntType __p = __param.p();
|
1396 |
|
|
const double __p12 = __p <= 0.5 ? __p : 1.0 - __p;
|
1397 |
|
|
__detail::_Adaptor<_UniformRandomNumberGenerator, double>
|
1398 |
|
|
__aurng(__urng);
|
1399 |
|
|
|
1400 |
|
|
#if _GLIBCXX_USE_C99_MATH_TR1
|
1401 |
|
|
if (!__param._M_easy)
|
1402 |
|
|
{
|
1403 |
|
|
double __x;
|
1404 |
|
|
|
1405 |
|
|
// See comments above...
|
1406 |
|
|
const double __naf =
|
1407 |
|
|
(1 - std::numeric_limits::epsilon()) / 2;
|
1408 |
|
|
const double __thr =
|
1409 |
|
|
std::numeric_limits<_IntType>::max() + __naf;
|
1410 |
|
|
|
1411 |
|
|
const double __np = std::floor(__t * __p12);
|
1412 |
|
|
|
1413 |
|
|
// sqrt(pi / 2)
|
1414 |
|
|
const double __spi_2 = 1.2533141373155002512078826424055226L;
|
1415 |
|
|
const double __a1 = __param._M_a1;
|
1416 |
|
|
const double __a12 = __a1 + __param._M_s2 * __spi_2;
|
1417 |
|
|
const double __a123 = __param._M_a123;
|
1418 |
|
|
const double __s1s = __param._M_s1 * __param._M_s1;
|
1419 |
|
|
const double __s2s = __param._M_s2 * __param._M_s2;
|
1420 |
|
|
|
1421 |
|
|
bool __reject;
|
1422 |
|
|
do
|
1423 |
|
|
{
|
1424 |
|
|
const double __u = __param._M_s * __aurng();
|
1425 |
|
|
|
1426 |
|
|
double __v;
|
1427 |
|
|
|
1428 |
|
|
if (__u <= __a1)
|
1429 |
|
|
{
|
1430 |
|
|
const double __n = _M_nd(__urng);
|
1431 |
|
|
const double __y = __param._M_s1 * std::abs(__n);
|
1432 |
|
|
__reject = __y >= __param._M_d1;
|
1433 |
|
|
if (!__reject)
|
1434 |
|
|
{
|
1435 |
|
|
const double __e = -std::log(__aurng());
|
1436 |
|
|
__x = std::floor(__y);
|
1437 |
|
|
__v = -__e - __n * __n / 2 + __param._M_c;
|
1438 |
|
|
}
|
1439 |
|
|
}
|
1440 |
|
|
else if (__u <= __a12)
|
1441 |
|
|
{
|
1442 |
|
|
const double __n = _M_nd(__urng);
|
1443 |
|
|
const double __y = __param._M_s2 * std::abs(__n);
|
1444 |
|
|
__reject = __y >= __param._M_d2;
|
1445 |
|
|
if (!__reject)
|
1446 |
|
|
{
|
1447 |
|
|
const double __e = -std::log(__aurng());
|
1448 |
|
|
__x = std::floor(-__y);
|
1449 |
|
|
__v = -__e - __n * __n / 2;
|
1450 |
|
|
}
|
1451 |
|
|
}
|
1452 |
|
|
else if (__u <= __a123)
|
1453 |
|
|
{
|
1454 |
|
|
const double __e1 = -std::log(__aurng());
|
1455 |
|
|
const double __e2 = -std::log(__aurng());
|
1456 |
|
|
|
1457 |
|
|
const double __y = __param._M_d1
|
1458 |
|
|
+ 2 * __s1s * __e1 / __param._M_d1;
|
1459 |
|
|
__x = std::floor(__y);
|
1460 |
|
|
__v = (-__e2 + __param._M_d1 * (1 / (__t - __np)
|
1461 |
|
|
-__y / (2 * __s1s)));
|
1462 |
|
|
__reject = false;
|
1463 |
|
|
}
|
1464 |
|
|
else
|
1465 |
|
|
{
|
1466 |
|
|
const double __e1 = -std::log(__aurng());
|
1467 |
|
|
const double __e2 = -std::log(__aurng());
|
1468 |
|
|
|
1469 |
|
|
const double __y = __param._M_d2
|
1470 |
|
|
+ 2 * __s2s * __e1 / __param._M_d2;
|
1471 |
|
|
__x = std::floor(-__y);
|
1472 |
|
|
__v = -__e2 - __param._M_d2 * __y / (2 * __s2s);
|
1473 |
|
|
__reject = false;
|
1474 |
|
|
}
|
1475 |
|
|
|
1476 |
|
|
__reject = __reject || __x < -__np || __x > __t - __np;
|
1477 |
|
|
if (!__reject)
|
1478 |
|
|
{
|
1479 |
|
|
const double __lfx =
|
1480 |
|
|
std::lgamma(__np + __x + 1)
|
1481 |
|
|
+ std::lgamma(__t - (__np + __x) + 1);
|
1482 |
|
|
__reject = __v > __param._M_lf - __lfx
|
1483 |
|
|
+ __x * __param._M_lp1p;
|
1484 |
|
|
}
|
1485 |
|
|
|
1486 |
|
|
__reject |= __x + __np >= __thr;
|
1487 |
|
|
}
|
1488 |
|
|
while (__reject);
|
1489 |
|
|
|
1490 |
|
|
__x += __np + __naf;
|
1491 |
|
|
|
1492 |
|
|
const _IntType __z = _M_waiting(__urng, __t - _IntType(__x));
|
1493 |
|
|
__ret = _IntType(__x) + __z;
|
1494 |
|
|
}
|
1495 |
|
|
else
|
1496 |
|
|
#endif
|
1497 |
|
|
__ret = _M_waiting(__urng, __t);
|
1498 |
|
|
|
1499 |
|
|
if (__p12 != __p)
|
1500 |
|
|
__ret = __t - __ret;
|
1501 |
|
|
return __ret;
|
1502 |
|
|
}
|
1503 |
|
|
|
1504 |
|
|
template
|
1505 |
|
|
typename _CharT, typename _Traits>
|
1506 |
|
|
std::basic_ostream<_CharT, _Traits>&
|
1507 |
|
|
operator<<(std::basic_ostream<_CharT, _Traits>& __os,
|
1508 |
|
|
const binomial_distribution<_IntType>& __x)
|
1509 |
|
|
{
|
1510 |
|
|
typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
|
1511 |
|
|
typedef typename __ostream_type::ios_base __ios_base;
|
1512 |
|
|
|
1513 |
|
|
const typename __ios_base::fmtflags __flags = __os.flags();
|
1514 |
|
|
const _CharT __fill = __os.fill();
|
1515 |
|
|
const std::streamsize __precision = __os.precision();
|
1516 |
|
|
const _CharT __space = __os.widen(' ');
|
1517 |
|
|
__os.flags(__ios_base::scientific | __ios_base::left);
|
1518 |
|
|
__os.fill(__space);
|
1519 |
|
|
__os.precision(std::numeric_limits::max_digits10);
|
1520 |
|
|
|
1521 |
|
|
__os << __x.t() << __space << __x.p()
|
1522 |
|
|
<< __space << __x._M_nd;
|
1523 |
|
|
|
1524 |
|
|
__os.flags(__flags);
|
1525 |
|
|
__os.fill(__fill);
|
1526 |
|
|
__os.precision(__precision);
|
1527 |
|
|
return __os;
|
1528 |
|
|
}
|
1529 |
|
|
|
1530 |
|
|
template
|
1531 |
|
|
typename _CharT, typename _Traits>
|
1532 |
|
|
std::basic_istream<_CharT, _Traits>&
|
1533 |
|
|
operator>>(std::basic_istream<_CharT, _Traits>& __is,
|
1534 |
|
|
binomial_distribution<_IntType>& __x)
|
1535 |
|
|
{
|
1536 |
|
|
typedef std::basic_istream<_CharT, _Traits> __istream_type;
|
1537 |
|
|
typedef typename __istream_type::ios_base __ios_base;
|
1538 |
|
|
|
1539 |
|
|
const typename __ios_base::fmtflags __flags = __is.flags();
|
1540 |
|
|
__is.flags(__ios_base::dec | __ios_base::skipws);
|
1541 |
|
|
|
1542 |
|
|
_IntType __t;
|
1543 |
|
|
double __p;
|
1544 |
|
|
__is >> __t >> __p >> __x._M_nd;
|
1545 |
|
|
__x.param(typename binomial_distribution<_IntType>::
|
1546 |
|
|
param_type(__t, __p));
|
1547 |
|
|
|
1548 |
|
|
__is.flags(__flags);
|
1549 |
|
|
return __is;
|
1550 |
|
|
}
|
1551 |
|
|
|
1552 |
|
|
|
1553 |
|
|
template
|
1554 |
|
|
std::basic_ostream<_CharT, _Traits>&
|
1555 |
|
|
operator<<(std::basic_ostream<_CharT, _Traits>& __os,
|
1556 |
|
|
const exponential_distribution<_RealType>& __x)
|
1557 |
|
|
{
|
1558 |
|
|
typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
|
1559 |
|
|
typedef typename __ostream_type::ios_base __ios_base;
|
1560 |
|
|
|
1561 |
|
|
const typename __ios_base::fmtflags __flags = __os.flags();
|
1562 |
|
|
const _CharT __fill = __os.fill();
|
1563 |
|
|
const std::streamsize __precision = __os.precision();
|
1564 |
|
|
__os.flags(__ios_base::scientific | __ios_base::left);
|
1565 |
|
|
__os.fill(__os.widen(' '));
|
1566 |
|
|
__os.precision(std::numeric_limits<_RealType>::max_digits10);
|
1567 |
|
|
|
1568 |
|
|
__os << __x.lambda();
|
1569 |
|
|
|
1570 |
|
|
__os.flags(__flags);
|
1571 |
|
|
__os.fill(__fill);
|
1572 |
|
|
__os.precision(__precision);
|
1573 |
|
|
return __os;
|
1574 |
|
|
}
|
1575 |
|
|
|
1576 |
|
|
template
|
1577 |
|
|
std::basic_istream<_CharT, _Traits>&
|
1578 |
|
|
operator>>(std::basic_istream<_CharT, _Traits>& __is,
|
1579 |
|
|
exponential_distribution<_RealType>& __x)
|
1580 |
|
|
{
|
1581 |
|
|
typedef std::basic_istream<_CharT, _Traits> __istream_type;
|
1582 |
|
|
typedef typename __istream_type::ios_base __ios_base;
|
1583 |
|
|
|
1584 |
|
|
const typename __ios_base::fmtflags __flags = __is.flags();
|
1585 |
|
|
__is.flags(__ios_base::dec | __ios_base::skipws);
|
1586 |
|
|
|
1587 |
|
|
_RealType __lambda;
|
1588 |
|
|
__is >> __lambda;
|
1589 |
|
|
__x.param(typename exponential_distribution<_RealType>::
|
1590 |
|
|
param_type(__lambda));
|
1591 |
|
|
|
1592 |
|
|
__is.flags(__flags);
|
1593 |
|
|
return __is;
|
1594 |
|
|
}
|
1595 |
|
|
|
1596 |
|
|
|
1597 |
|
|
/**
|
1598 |
|
|
* Polar method due to Marsaglia.
|
1599 |
|
|
*
|
1600 |
|
|
* Devroye, L. Non-Uniform Random Variates Generation. Springer-Verlag,
|
1601 |
|
|
* New York, 1986, Ch. V, Sect. 4.4.
|
1602 |
|
|
*/
|
1603 |
|
|
template
|
1604 |
|
|
template
|
1605 |
|
|
typename normal_distribution<_RealType>::result_type
|
1606 |
|
|
normal_distribution<_RealType>::
|
1607 |
|
|
operator()(_UniformRandomNumberGenerator& __urng,
|
1608 |
|
|
const param_type& __param)
|
1609 |
|
|
{
|
1610 |
|
|
result_type __ret;
|
1611 |
|
|
__detail::_Adaptor<_UniformRandomNumberGenerator, result_type>
|
1612 |
|
|
__aurng(__urng);
|
1613 |
|
|
|
1614 |
|
|
if (_M_saved_available)
|
1615 |
|
|
{
|
1616 |
|
|
_M_saved_available = false;
|
1617 |
|
|
__ret = _M_saved;
|
1618 |
|
|
}
|
1619 |
|
|
else
|
1620 |
|
|
{
|
1621 |
|
|
result_type __x, __y, __r2;
|
1622 |
|
|
do
|
1623 |
|
|
{
|
1624 |
|
|
__x = result_type(2.0) * __aurng() - 1.0;
|
1625 |
|
|
__y = result_type(2.0) * __aurng() - 1.0;
|
1626 |
|
|
__r2 = __x * __x + __y * __y;
|
1627 |
|
|
}
|
1628 |
|
|
while (__r2 > 1.0 || __r2 == 0.0);
|
1629 |
|
|
|
1630 |
|
|
const result_type __mult = std::sqrt(-2 * std::log(__r2) / __r2);
|
1631 |
|
|
_M_saved = __x * __mult;
|
1632 |
|
|
_M_saved_available = true;
|
1633 |
|
|
__ret = __y * __mult;
|
1634 |
|
|
}
|
1635 |
|
|
|
1636 |
|
|
__ret = __ret * __param.stddev() + __param.mean();
|
1637 |
|
|
return __ret;
|
1638 |
|
|
}
|
1639 |
|
|
|
1640 |
|
|
template
|
1641 |
|
|
bool
|
1642 |
|
|
operator==(const std::normal_distribution<_RealType>& __d1,
|
1643 |
|
|
const std::normal_distribution<_RealType>& __d2)
|
1644 |
|
|
{
|
1645 |
|
|
if (__d1._M_param == __d2._M_param
|
1646 |
|
|
&& __d1._M_saved_available == __d2._M_saved_available)
|
1647 |
|
|
{
|
1648 |
|
|
if (__d1._M_saved_available
|
1649 |
|
|
&& __d1._M_saved == __d2._M_saved)
|
1650 |
|
|
return true;
|
1651 |
|
|
else if(!__d1._M_saved_available)
|
1652 |
|
|
return true;
|
1653 |
|
|
else
|
1654 |
|
|
return false;
|
1655 |
|
|
}
|
1656 |
|
|
else
|
1657 |
|
|
return false;
|
1658 |
|
|
}
|
1659 |
|
|
|
1660 |
|
|
template
|
1661 |
|
|
std::basic_ostream<_CharT, _Traits>&
|
1662 |
|
|
operator<<(std::basic_ostream<_CharT, _Traits>& __os,
|
1663 |
|
|
const normal_distribution<_RealType>& __x)
|
1664 |
|
|
{
|
1665 |
|
|
typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
|
1666 |
|
|
typedef typename __ostream_type::ios_base __ios_base;
|
1667 |
|
|
|
1668 |
|
|
const typename __ios_base::fmtflags __flags = __os.flags();
|
1669 |
|
|
const _CharT __fill = __os.fill();
|
1670 |
|
|
const std::streamsize __precision = __os.precision();
|
1671 |
|
|
const _CharT __space = __os.widen(' ');
|
1672 |
|
|
__os.flags(__ios_base::scientific | __ios_base::left);
|
1673 |
|
|
__os.fill(__space);
|
1674 |
|
|
__os.precision(std::numeric_limits<_RealType>::max_digits10);
|
1675 |
|
|
|
1676 |
|
|
__os << __x.mean() << __space << __x.stddev()
|
1677 |
|
|
<< __space << __x._M_saved_available;
|
1678 |
|
|
if (__x._M_saved_available)
|
1679 |
|
|
__os << __space << __x._M_saved;
|
1680 |
|
|
|
1681 |
|
|
__os.flags(__flags);
|
1682 |
|
|
__os.fill(__fill);
|
1683 |
|
|
__os.precision(__precision);
|
1684 |
|
|
return __os;
|
1685 |
|
|
}
|
1686 |
|
|
|
1687 |
|
|
template
|
1688 |
|
|
std::basic_istream<_CharT, _Traits>&
|
1689 |
|
|
operator>>(std::basic_istream<_CharT, _Traits>& __is,
|
1690 |
|
|
normal_distribution<_RealType>& __x)
|
1691 |
|
|
{
|
1692 |
|
|
typedef std::basic_istream<_CharT, _Traits> __istream_type;
|
1693 |
|
|
typedef typename __istream_type::ios_base __ios_base;
|
1694 |
|
|
|
1695 |
|
|
const typename __ios_base::fmtflags __flags = __is.flags();
|
1696 |
|
|
__is.flags(__ios_base::dec | __ios_base::skipws);
|
1697 |
|
|
|
1698 |
|
|
double __mean, __stddev;
|
1699 |
|
|
__is >> __mean >> __stddev
|
1700 |
|
|
>> __x._M_saved_available;
|
1701 |
|
|
if (__x._M_saved_available)
|
1702 |
|
|
__is >> __x._M_saved;
|
1703 |
|
|
__x.param(typename normal_distribution<_RealType>::
|
1704 |
|
|
param_type(__mean, __stddev));
|
1705 |
|
|
|
1706 |
|
|
__is.flags(__flags);
|
1707 |
|
|
return __is;
|
1708 |
|
|
}
|
1709 |
|
|
|
1710 |
|
|
|
1711 |
|
|
template
|
1712 |
|
|
std::basic_ostream<_CharT, _Traits>&
|
1713 |
|
|
operator<<(std::basic_ostream<_CharT, _Traits>& __os,
|
1714 |
|
|
const lognormal_distribution<_RealType>& __x)
|
1715 |
|
|
{
|
1716 |
|
|
typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
|
1717 |
|
|
typedef typename __ostream_type::ios_base __ios_base;
|
1718 |
|
|
|
1719 |
|
|
const typename __ios_base::fmtflags __flags = __os.flags();
|
1720 |
|
|
const _CharT __fill = __os.fill();
|
1721 |
|
|
const std::streamsize __precision = __os.precision();
|
1722 |
|
|
const _CharT __space = __os.widen(' ');
|
1723 |
|
|
__os.flags(__ios_base::scientific | __ios_base::left);
|
1724 |
|
|
__os.fill(__space);
|
1725 |
|
|
__os.precision(std::numeric_limits<_RealType>::max_digits10);
|
1726 |
|
|
|
1727 |
|
|
__os << __x.m() << __space << __x.s()
|
1728 |
|
|
<< __space << __x._M_nd;
|
1729 |
|
|
|
1730 |
|
|
__os.flags(__flags);
|
1731 |
|
|
__os.fill(__fill);
|
1732 |
|
|
__os.precision(__precision);
|
1733 |
|
|
return __os;
|
1734 |
|
|
}
|
1735 |
|
|
|
1736 |
|
|
template
|
1737 |
|
|
std::basic_istream<_CharT, _Traits>&
|
1738 |
|
|
operator>>(std::basic_istream<_CharT, _Traits>& __is,
|
1739 |
|
|
lognormal_distribution<_RealType>& __x)
|
1740 |
|
|
{
|
1741 |
|
|
typedef std::basic_istream<_CharT, _Traits> __istream_type;
|
1742 |
|
|
typedef typename __istream_type::ios_base __ios_base;
|
1743 |
|
|
|
1744 |
|
|
const typename __ios_base::fmtflags __flags = __is.flags();
|
1745 |
|
|
__is.flags(__ios_base::dec | __ios_base::skipws);
|
1746 |
|
|
|
1747 |
|
|
_RealType __m, __s;
|
1748 |
|
|
__is >> __m >> __s >> __x._M_nd;
|
1749 |
|
|
__x.param(typename lognormal_distribution<_RealType>::
|
1750 |
|
|
param_type(__m, __s));
|
1751 |
|
|
|
1752 |
|
|
__is.flags(__flags);
|
1753 |
|
|
return __is;
|
1754 |
|
|
}
|
1755 |
|
|
|
1756 |
|
|
|
1757 |
|
|
template
|
1758 |
|
|
std::basic_ostream<_CharT, _Traits>&
|
1759 |
|
|
operator<<(std::basic_ostream<_CharT, _Traits>& __os,
|
1760 |
|
|
const chi_squared_distribution<_RealType>& __x)
|
1761 |
|
|
{
|
1762 |
|
|
typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
|
1763 |
|
|
typedef typename __ostream_type::ios_base __ios_base;
|
1764 |
|
|
|
1765 |
|
|
const typename __ios_base::fmtflags __flags = __os.flags();
|
1766 |
|
|
const _CharT __fill = __os.fill();
|
1767 |
|
|
const std::streamsize __precision = __os.precision();
|
1768 |
|
|
const _CharT __space = __os.widen(' ');
|
1769 |
|
|
__os.flags(__ios_base::scientific | __ios_base::left);
|
1770 |
|
|
__os.fill(__space);
|
1771 |
|
|
__os.precision(std::numeric_limits<_RealType>::max_digits10);
|
1772 |
|
|
|
1773 |
|
|
__os << __x.n() << __space << __x._M_gd;
|
1774 |
|
|
|
1775 |
|
|
__os.flags(__flags);
|
1776 |
|
|
__os.fill(__fill);
|
1777 |
|
|
__os.precision(__precision);
|
1778 |
|
|
return __os;
|
1779 |
|
|
}
|
1780 |
|
|
|
1781 |
|
|
template
|
1782 |
|
|
std::basic_istream<_CharT, _Traits>&
|
1783 |
|
|
operator>>(std::basic_istream<_CharT, _Traits>& __is,
|
1784 |
|
|
chi_squared_distribution<_RealType>& __x)
|
1785 |
|
|
{
|
1786 |
|
|
typedef std::basic_istream<_CharT, _Traits> __istream_type;
|
1787 |
|
|
typedef typename __istream_type::ios_base __ios_base;
|
1788 |
|
|
|
1789 |
|
|
const typename __ios_base::fmtflags __flags = __is.flags();
|
1790 |
|
|
__is.flags(__ios_base::dec | __ios_base::skipws);
|
1791 |
|
|
|
1792 |
|
|
_RealType __n;
|
1793 |
|
|
__is >> __n >> __x._M_gd;
|
1794 |
|
|
__x.param(typename chi_squared_distribution<_RealType>::
|
1795 |
|
|
param_type(__n));
|
1796 |
|
|
|
1797 |
|
|
__is.flags(__flags);
|
1798 |
|
|
return __is;
|
1799 |
|
|
}
|
1800 |
|
|
|
1801 |
|
|
|
1802 |
|
|
template
|
1803 |
|
|
template
|
1804 |
|
|
typename cauchy_distribution<_RealType>::result_type
|
1805 |
|
|
cauchy_distribution<_RealType>::
|
1806 |
|
|
operator()(_UniformRandomNumberGenerator& __urng,
|
1807 |
|
|
const param_type& __p)
|
1808 |
|
|
{
|
1809 |
|
|
__detail::_Adaptor<_UniformRandomNumberGenerator, result_type>
|
1810 |
|
|
__aurng(__urng);
|
1811 |
|
|
_RealType __u;
|
1812 |
|
|
do
|
1813 |
|
|
__u = __aurng();
|
1814 |
|
|
while (__u == 0.5);
|
1815 |
|
|
|
1816 |
|
|
const _RealType __pi = 3.1415926535897932384626433832795029L;
|
1817 |
|
|
return __p.a() + __p.b() * std::tan(__pi * __u);
|
1818 |
|
|
}
|
1819 |
|
|
|
1820 |
|
|
template
|
1821 |
|
|
std::basic_ostream<_CharT, _Traits>&
|
1822 |
|
|
operator<<(std::basic_ostream<_CharT, _Traits>& __os,
|
1823 |
|
|
const cauchy_distribution<_RealType>& __x)
|
1824 |
|
|
{
|
1825 |
|
|
typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
|
1826 |
|
|
typedef typename __ostream_type::ios_base __ios_base;
|
1827 |
|
|
|
1828 |
|
|
const typename __ios_base::fmtflags __flags = __os.flags();
|
1829 |
|
|
const _CharT __fill = __os.fill();
|
1830 |
|
|
const std::streamsize __precision = __os.precision();
|
1831 |
|
|
const _CharT __space = __os.widen(' ');
|
1832 |
|
|
__os.flags(__ios_base::scientific | __ios_base::left);
|
1833 |
|
|
__os.fill(__space);
|
1834 |
|
|
__os.precision(std::numeric_limits<_RealType>::max_digits10);
|
1835 |
|
|
|
1836 |
|
|
__os << __x.a() << __space << __x.b();
|
1837 |
|
|
|
1838 |
|
|
__os.flags(__flags);
|
1839 |
|
|
__os.fill(__fill);
|
1840 |
|
|
__os.precision(__precision);
|
1841 |
|
|
return __os;
|
1842 |
|
|
}
|
1843 |
|
|
|
1844 |
|
|
template
|
1845 |
|
|
std::basic_istream<_CharT, _Traits>&
|
1846 |
|
|
operator>>(std::basic_istream<_CharT, _Traits>& __is,
|
1847 |
|
|
cauchy_distribution<_RealType>& __x)
|
1848 |
|
|
{
|
1849 |
|
|
typedef std::basic_istream<_CharT, _Traits> __istream_type;
|
1850 |
|
|
typedef typename __istream_type::ios_base __ios_base;
|
1851 |
|
|
|
1852 |
|
|
const typename __ios_base::fmtflags __flags = __is.flags();
|
1853 |
|
|
__is.flags(__ios_base::dec | __ios_base::skipws);
|
1854 |
|
|
|
1855 |
|
|
_RealType __a, __b;
|
1856 |
|
|
__is >> __a >> __b;
|
1857 |
|
|
__x.param(typename cauchy_distribution<_RealType>::
|
1858 |
|
|
param_type(__a, __b));
|
1859 |
|
|
|
1860 |
|
|
__is.flags(__flags);
|
1861 |
|
|
return __is;
|
1862 |
|
|
}
|
1863 |
|
|
|
1864 |
|
|
|
1865 |
|
|
template
|
1866 |
|
|
std::basic_ostream<_CharT, _Traits>&
|
1867 |
|
|
operator<<(std::basic_ostream<_CharT, _Traits>& __os,
|
1868 |
|
|
const fisher_f_distribution<_RealType>& __x)
|
1869 |
|
|
{
|
1870 |
|
|
typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
|
1871 |
|
|
typedef typename __ostream_type::ios_base __ios_base;
|
1872 |
|
|
|
1873 |
|
|
const typename __ios_base::fmtflags __flags = __os.flags();
|
1874 |
|
|
const _CharT __fill = __os.fill();
|
1875 |
|
|
const std::streamsize __precision = __os.precision();
|
1876 |
|
|
const _CharT __space = __os.widen(' ');
|
1877 |
|
|
__os.flags(__ios_base::scientific | __ios_base::left);
|
1878 |
|
|
__os.fill(__space);
|
1879 |
|
|
__os.precision(std::numeric_limits<_RealType>::max_digits10);
|
1880 |
|
|
|
1881 |
|
|
__os << __x.m() << __space << __x.n()
|
1882 |
|
|
<< __space << __x._M_gd_x << __space << __x._M_gd_y;
|
1883 |
|
|
|
1884 |
|
|
__os.flags(__flags);
|
1885 |
|
|
__os.fill(__fill);
|
1886 |
|
|
__os.precision(__precision);
|
1887 |
|
|
return __os;
|
1888 |
|
|
}
|
1889 |
|
|
|
1890 |
|
|
template
|
1891 |
|
|
std::basic_istream<_CharT, _Traits>&
|
1892 |
|
|
operator>>(std::basic_istream<_CharT, _Traits>& __is,
|
1893 |
|
|
fisher_f_distribution<_RealType>& __x)
|
1894 |
|
|
{
|
1895 |
|
|
typedef std::basic_istream<_CharT, _Traits> __istream_type;
|
1896 |
|
|
typedef typename __istream_type::ios_base __ios_base;
|
1897 |
|
|
|
1898 |
|
|
const typename __ios_base::fmtflags __flags = __is.flags();
|
1899 |
|
|
__is.flags(__ios_base::dec | __ios_base::skipws);
|
1900 |
|
|
|
1901 |
|
|
_RealType __m, __n;
|
1902 |
|
|
__is >> __m >> __n >> __x._M_gd_x >> __x._M_gd_y;
|
1903 |
|
|
__x.param(typename fisher_f_distribution<_RealType>::
|
1904 |
|
|
param_type(__m, __n));
|
1905 |
|
|
|
1906 |
|
|
__is.flags(__flags);
|
1907 |
|
|
return __is;
|
1908 |
|
|
}
|
1909 |
|
|
|
1910 |
|
|
|
1911 |
|
|
template
|
1912 |
|
|
std::basic_ostream<_CharT, _Traits>&
|
1913 |
|
|
operator<<(std::basic_ostream<_CharT, _Traits>& __os,
|
1914 |
|
|
const student_t_distribution<_RealType>& __x)
|
1915 |
|
|
{
|
1916 |
|
|
typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
|
1917 |
|
|
typedef typename __ostream_type::ios_base __ios_base;
|
1918 |
|
|
|
1919 |
|
|
const typename __ios_base::fmtflags __flags = __os.flags();
|
1920 |
|
|
const _CharT __fill = __os.fill();
|
1921 |
|
|
const std::streamsize __precision = __os.precision();
|
1922 |
|
|
const _CharT __space = __os.widen(' ');
|
1923 |
|
|
__os.flags(__ios_base::scientific | __ios_base::left);
|
1924 |
|
|
__os.fill(__space);
|
1925 |
|
|
__os.precision(std::numeric_limits<_RealType>::max_digits10);
|
1926 |
|
|
|
1927 |
|
|
__os << __x.n() << __space << __x._M_nd << __space << __x._M_gd;
|
1928 |
|
|
|
1929 |
|
|
__os.flags(__flags);
|
1930 |
|
|
__os.fill(__fill);
|
1931 |
|
|
__os.precision(__precision);
|
1932 |
|
|
return __os;
|
1933 |
|
|
}
|
1934 |
|
|
|
1935 |
|
|
template
|
1936 |
|
|
std::basic_istream<_CharT, _Traits>&
|
1937 |
|
|
operator>>(std::basic_istream<_CharT, _Traits>& __is,
|
1938 |
|
|
student_t_distribution<_RealType>& __x)
|
1939 |
|
|
{
|
1940 |
|
|
typedef std::basic_istream<_CharT, _Traits> __istream_type;
|
1941 |
|
|
typedef typename __istream_type::ios_base __ios_base;
|
1942 |
|
|
|
1943 |
|
|
const typename __ios_base::fmtflags __flags = __is.flags();
|
1944 |
|
|
__is.flags(__ios_base::dec | __ios_base::skipws);
|
1945 |
|
|
|
1946 |
|
|
_RealType __n;
|
1947 |
|
|
__is >> __n >> __x._M_nd >> __x._M_gd;
|
1948 |
|
|
__x.param(typename student_t_distribution<_RealType>::param_type(__n));
|
1949 |
|
|
|
1950 |
|
|
__is.flags(__flags);
|
1951 |
|
|
return __is;
|
1952 |
|
|
}
|
1953 |
|
|
|
1954 |
|
|
|
1955 |
|
|
template
|
1956 |
|
|
void
|
1957 |
|
|
gamma_distribution<_RealType>::param_type::
|
1958 |
|
|
_M_initialize()
|
1959 |
|
|
{
|
1960 |
|
|
_M_malpha = _M_alpha < 1.0 ? _M_alpha + _RealType(1.0) : _M_alpha;
|
1961 |
|
|
|
1962 |
|
|
const _RealType __a1 = _M_malpha - _RealType(1.0) / _RealType(3.0);
|
1963 |
|
|
_M_a2 = _RealType(1.0) / std::sqrt(_RealType(9.0) * __a1);
|
1964 |
|
|
}
|
1965 |
|
|
|
1966 |
|
|
/**
|
1967 |
|
|
* Marsaglia, G. and Tsang, W. W.
|
1968 |
|
|
* "A Simple Method for Generating Gamma Variables"
|
1969 |
|
|
* ACM Transactions on Mathematical Software, 26, 3, 363-372, 2000.
|
1970 |
|
|
*/
|
1971 |
|
|
template
|
1972 |
|
|
template
|
1973 |
|
|
typename gamma_distribution<_RealType>::result_type
|
1974 |
|
|
gamma_distribution<_RealType>::
|
1975 |
|
|
operator()(_UniformRandomNumberGenerator& __urng,
|
1976 |
|
|
const param_type& __param)
|
1977 |
|
|
{
|
1978 |
|
|
__detail::_Adaptor<_UniformRandomNumberGenerator, result_type>
|
1979 |
|
|
__aurng(__urng);
|
1980 |
|
|
|
1981 |
|
|
result_type __u, __v, __n;
|
1982 |
|
|
const result_type __a1 = (__param._M_malpha
|
1983 |
|
|
- _RealType(1.0) / _RealType(3.0));
|
1984 |
|
|
|
1985 |
|
|
do
|
1986 |
|
|
{
|
1987 |
|
|
do
|
1988 |
|
|
{
|
1989 |
|
|
__n = _M_nd(__urng);
|
1990 |
|
|
__v = result_type(1.0) + __param._M_a2 * __n;
|
1991 |
|
|
}
|
1992 |
|
|
while (__v <= 0.0);
|
1993 |
|
|
|
1994 |
|
|
__v = __v * __v * __v;
|
1995 |
|
|
__u = __aurng();
|
1996 |
|
|
}
|
1997 |
|
|
while (__u > result_type(1.0) - 0.331 * __n * __n * __n * __n
|
1998 |
|
|
&& (std::log(__u) > (0.5 * __n * __n + __a1
|
1999 |
|
|
* (1.0 - __v + std::log(__v)))));
|
2000 |
|
|
|
2001 |
|
|
if (__param.alpha() == __param._M_malpha)
|
2002 |
|
|
return __a1 * __v * __param.beta();
|
2003 |
|
|
else
|
2004 |
|
|
{
|
2005 |
|
|
do
|
2006 |
|
|
__u = __aurng();
|
2007 |
|
|
while (__u == 0.0);
|
2008 |
|
|
|
2009 |
|
|
return (std::pow(__u, result_type(1.0) / __param.alpha())
|
2010 |
|
|
* __a1 * __v * __param.beta());
|
2011 |
|
|
}
|
2012 |
|
|
}
|
2013 |
|
|
|
2014 |
|
|
template
|
2015 |
|
|
std::basic_ostream<_CharT, _Traits>&
|
2016 |
|
|
operator<<(std::basic_ostream<_CharT, _Traits>& __os,
|
2017 |
|
|
const gamma_distribution<_RealType>& __x)
|
2018 |
|
|
{
|
2019 |
|
|
typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
|
2020 |
|
|
typedef typename __ostream_type::ios_base __ios_base;
|
2021 |
|
|
|
2022 |
|
|
const typename __ios_base::fmtflags __flags = __os.flags();
|
2023 |
|
|
const _CharT __fill = __os.fill();
|
2024 |
|
|
const std::streamsize __precision = __os.precision();
|
2025 |
|
|
const _CharT __space = __os.widen(' ');
|
2026 |
|
|
__os.flags(__ios_base::scientific | __ios_base::left);
|
2027 |
|
|
__os.fill(__space);
|
2028 |
|
|
__os.precision(std::numeric_limits<_RealType>::max_digits10);
|
2029 |
|
|
|
2030 |
|
|
__os << __x.alpha() << __space << __x.beta()
|
2031 |
|
|
<< __space << __x._M_nd;
|
2032 |
|
|
|
2033 |
|
|
__os.flags(__flags);
|
2034 |
|
|
__os.fill(__fill);
|
2035 |
|
|
__os.precision(__precision);
|
2036 |
|
|
return __os;
|
2037 |
|
|
}
|
2038 |
|
|
|
2039 |
|
|
template
|
2040 |
|
|
std::basic_istream<_CharT, _Traits>&
|
2041 |
|
|
operator>>(std::basic_istream<_CharT, _Traits>& __is,
|
2042 |
|
|
gamma_distribution<_RealType>& __x)
|
2043 |
|
|
{
|
2044 |
|
|
typedef std::basic_istream<_CharT, _Traits> __istream_type;
|
2045 |
|
|
typedef typename __istream_type::ios_base __ios_base;
|
2046 |
|
|
|
2047 |
|
|
const typename __ios_base::fmtflags __flags = __is.flags();
|
2048 |
|
|
__is.flags(__ios_base::dec | __ios_base::skipws);
|
2049 |
|
|
|
2050 |
|
|
_RealType __alpha_val, __beta_val;
|
2051 |
|
|
__is >> __alpha_val >> __beta_val >> __x._M_nd;
|
2052 |
|
|
__x.param(typename gamma_distribution<_RealType>::
|
2053 |
|
|
param_type(__alpha_val, __beta_val));
|
2054 |
|
|
|
2055 |
|
|
__is.flags(__flags);
|
2056 |
|
|
return __is;
|
2057 |
|
|
}
|
2058 |
|
|
|
2059 |
|
|
|
2060 |
|
|
template
|
2061 |
|
|
template
|
2062 |
|
|
typename weibull_distribution<_RealType>::result_type
|
2063 |
|
|
weibull_distribution<_RealType>::
|
2064 |
|
|
operator()(_UniformRandomNumberGenerator& __urng,
|
2065 |
|
|
const param_type& __p)
|
2066 |
|
|
{
|
2067 |
|
|
__detail::_Adaptor<_UniformRandomNumberGenerator, result_type>
|
2068 |
|
|
__aurng(__urng);
|
2069 |
|
|
return __p.b() * std::pow(-std::log(__aurng()),
|
2070 |
|
|
result_type(1) / __p.a());
|
2071 |
|
|
}
|
2072 |
|
|
|
2073 |
|
|
template
|
2074 |
|
|
std::basic_ostream<_CharT, _Traits>&
|
2075 |
|
|
operator<<(std::basic_ostream<_CharT, _Traits>& __os,
|
2076 |
|
|
const weibull_distribution<_RealType>& __x)
|
2077 |
|
|
{
|
2078 |
|
|
typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
|
2079 |
|
|
typedef typename __ostream_type::ios_base __ios_base;
|
2080 |
|
|
|
2081 |
|
|
const typename __ios_base::fmtflags __flags = __os.flags();
|
2082 |
|
|
const _CharT __fill = __os.fill();
|
2083 |
|
|
const std::streamsize __precision = __os.precision();
|
2084 |
|
|
const _CharT __space = __os.widen(' ');
|
2085 |
|
|
__os.flags(__ios_base::scientific | __ios_base::left);
|
2086 |
|
|
__os.fill(__space);
|
2087 |
|
|
__os.precision(std::numeric_limits<_RealType>::max_digits10);
|
2088 |
|
|
|
2089 |
|
|
__os << __x.a() << __space << __x.b();
|
2090 |
|
|
|
2091 |
|
|
__os.flags(__flags);
|
2092 |
|
|
__os.fill(__fill);
|
2093 |
|
|
__os.precision(__precision);
|
2094 |
|
|
return __os;
|
2095 |
|
|
}
|
2096 |
|
|
|
2097 |
|
|
template
|
2098 |
|
|
std::basic_istream<_CharT, _Traits>&
|
2099 |
|
|
operator>>(std::basic_istream<_CharT, _Traits>& __is,
|
2100 |
|
|
weibull_distribution<_RealType>& __x)
|
2101 |
|
|
{
|
2102 |
|
|
typedef std::basic_istream<_CharT, _Traits> __istream_type;
|
2103 |
|
|
typedef typename __istream_type::ios_base __ios_base;
|
2104 |
|
|
|
2105 |
|
|
const typename __ios_base::fmtflags __flags = __is.flags();
|
2106 |
|
|
__is.flags(__ios_base::dec | __ios_base::skipws);
|
2107 |
|
|
|
2108 |
|
|
_RealType __a, __b;
|
2109 |
|
|
__is >> __a >> __b;
|
2110 |
|
|
__x.param(typename weibull_distribution<_RealType>::
|
2111 |
|
|
param_type(__a, __b));
|
2112 |
|
|
|
2113 |
|
|
__is.flags(__flags);
|
2114 |
|
|
return __is;
|
2115 |
|
|
}
|
2116 |
|
|
|
2117 |
|
|
|
2118 |
|
|
template
|
2119 |
|
|
template
|
2120 |
|
|
typename extreme_value_distribution<_RealType>::result_type
|
2121 |
|
|
extreme_value_distribution<_RealType>::
|
2122 |
|
|
operator()(_UniformRandomNumberGenerator& __urng,
|
2123 |
|
|
const param_type& __p)
|
2124 |
|
|
{
|
2125 |
|
|
__detail::_Adaptor<_UniformRandomNumberGenerator, result_type>
|
2126 |
|
|
__aurng(__urng);
|
2127 |
|
|
return __p.a() - __p.b() * std::log(-std::log(__aurng()));
|
2128 |
|
|
}
|
2129 |
|
|
|
2130 |
|
|
template
|
2131 |
|
|
std::basic_ostream<_CharT, _Traits>&
|
2132 |
|
|
operator<<(std::basic_ostream<_CharT, _Traits>& __os,
|
2133 |
|
|
const extreme_value_distribution<_RealType>& __x)
|
2134 |
|
|
{
|
2135 |
|
|
typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
|
2136 |
|
|
typedef typename __ostream_type::ios_base __ios_base;
|
2137 |
|
|
|
2138 |
|
|
const typename __ios_base::fmtflags __flags = __os.flags();
|
2139 |
|
|
const _CharT __fill = __os.fill();
|
2140 |
|
|
const std::streamsize __precision = __os.precision();
|
2141 |
|
|
const _CharT __space = __os.widen(' ');
|
2142 |
|
|
__os.flags(__ios_base::scientific | __ios_base::left);
|
2143 |
|
|
__os.fill(__space);
|
2144 |
|
|
__os.precision(std::numeric_limits<_RealType>::max_digits10);
|
2145 |
|
|
|
2146 |
|
|
__os << __x.a() << __space << __x.b();
|
2147 |
|
|
|
2148 |
|
|
__os.flags(__flags);
|
2149 |
|
|
__os.fill(__fill);
|
2150 |
|
|
__os.precision(__precision);
|
2151 |
|
|
return __os;
|
2152 |
|
|
}
|
2153 |
|
|
|
2154 |
|
|
template
|
2155 |
|
|
std::basic_istream<_CharT, _Traits>&
|
2156 |
|
|
operator>>(std::basic_istream<_CharT, _Traits>& __is,
|
2157 |
|
|
extreme_value_distribution<_RealType>& __x)
|
2158 |
|
|
{
|
2159 |
|
|
typedef std::basic_istream<_CharT, _Traits> __istream_type;
|
2160 |
|
|
typedef typename __istream_type::ios_base __ios_base;
|
2161 |
|
|
|
2162 |
|
|
const typename __ios_base::fmtflags __flags = __is.flags();
|
2163 |
|
|
__is.flags(__ios_base::dec | __ios_base::skipws);
|
2164 |
|
|
|
2165 |
|
|
_RealType __a, __b;
|
2166 |
|
|
__is >> __a >> __b;
|
2167 |
|
|
__x.param(typename extreme_value_distribution<_RealType>::
|
2168 |
|
|
param_type(__a, __b));
|
2169 |
|
|
|
2170 |
|
|
__is.flags(__flags);
|
2171 |
|
|
return __is;
|
2172 |
|
|
}
|
2173 |
|
|
|
2174 |
|
|
|
2175 |
|
|
template
|
2176 |
|
|
void
|
2177 |
|
|
discrete_distribution<_IntType>::param_type::
|
2178 |
|
|
_M_initialize()
|
2179 |
|
|
{
|
2180 |
|
|
if (_M_prob.size() < 2)
|
2181 |
|
|
{
|
2182 |
|
|
_M_prob.clear();
|
2183 |
|
|
_M_prob.push_back(1.0);
|
2184 |
|
|
return;
|
2185 |
|
|
}
|
2186 |
|
|
|
2187 |
|
|
const double __sum = std::accumulate(_M_prob.begin(),
|
2188 |
|
|
_M_prob.end(), 0.0);
|
2189 |
|
|
// Now normalize the probabilites.
|
2190 |
|
|
__detail::__transform(_M_prob.begin(), _M_prob.end(), _M_prob.begin(),
|
2191 |
|
|
std::bind2nd(std::divides(), __sum));
|
2192 |
|
|
// Accumulate partial sums.
|
2193 |
|
|
_M_cp.reserve(_M_prob.size());
|
2194 |
|
|
std::partial_sum(_M_prob.begin(), _M_prob.end(),
|
2195 |
|
|
std::back_inserter(_M_cp));
|
2196 |
|
|
// Make sure the last cumulative probability is one.
|
2197 |
|
|
_M_cp[_M_cp.size() - 1] = 1.0;
|
2198 |
|
|
}
|
2199 |
|
|
|
2200 |
|
|
template
|
2201 |
|
|
template
|
2202 |
|
|
discrete_distribution<_IntType>::param_type::
|
2203 |
|
|
param_type(size_t __nw, double __xmin, double __xmax, _Func __fw)
|
2204 |
|
|
: _M_prob(), _M_cp()
|
2205 |
|
|
{
|
2206 |
|
|
const size_t __n = __nw == 0 ? 1 : __nw;
|
2207 |
|
|
const double __delta = (__xmax - __xmin) / __n;
|
2208 |
|
|
|
2209 |
|
|
_M_prob.reserve(__n);
|
2210 |
|
|
for (size_t __k = 0; __k < __nw; ++__k)
|
2211 |
|
|
_M_prob.push_back(__fw(__xmin + __k * __delta + 0.5 * __delta));
|
2212 |
|
|
|
2213 |
|
|
_M_initialize();
|
2214 |
|
|
}
|
2215 |
|
|
|
2216 |
|
|
template
|
2217 |
|
|
template
|
2218 |
|
|
typename discrete_distribution<_IntType>::result_type
|
2219 |
|
|
discrete_distribution<_IntType>::
|
2220 |
|
|
operator()(_UniformRandomNumberGenerator& __urng,
|
2221 |
|
|
const param_type& __param)
|
2222 |
|
|
{
|
2223 |
|
|
__detail::_Adaptor<_UniformRandomNumberGenerator, double>
|
2224 |
|
|
__aurng(__urng);
|
2225 |
|
|
|
2226 |
|
|
const double __p = __aurng();
|
2227 |
|
|
auto __pos = std::lower_bound(__param._M_cp.begin(),
|
2228 |
|
|
__param._M_cp.end(), __p);
|
2229 |
|
|
|
2230 |
|
|
return __pos - __param._M_cp.begin();
|
2231 |
|
|
}
|
2232 |
|
|
|
2233 |
|
|
template
|
2234 |
|
|
std::basic_ostream<_CharT, _Traits>&
|
2235 |
|
|
operator<<(std::basic_ostream<_CharT, _Traits>& __os,
|
2236 |
|
|
const discrete_distribution<_IntType>& __x)
|
2237 |
|
|
{
|
2238 |
|
|
typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
|
2239 |
|
|
typedef typename __ostream_type::ios_base __ios_base;
|
2240 |
|
|
|
2241 |
|
|
const typename __ios_base::fmtflags __flags = __os.flags();
|
2242 |
|
|
const _CharT __fill = __os.fill();
|
2243 |
|
|
const std::streamsize __precision = __os.precision();
|
2244 |
|
|
const _CharT __space = __os.widen(' ');
|
2245 |
|
|
__os.flags(__ios_base::scientific | __ios_base::left);
|
2246 |
|
|
__os.fill(__space);
|
2247 |
|
|
__os.precision(std::numeric_limits::max_digits10);
|
2248 |
|
|
|
2249 |
|
|
std::vector __prob = __x.probabilities();
|
2250 |
|
|
__os << __prob.size();
|
2251 |
|
|
for (auto __dit = __prob.begin(); __dit != __prob.end(); ++__dit)
|
2252 |
|
|
__os << __space << *__dit;
|
2253 |
|
|
|
2254 |
|
|
__os.flags(__flags);
|
2255 |
|
|
__os.fill(__fill);
|
2256 |
|
|
__os.precision(__precision);
|
2257 |
|
|
return __os;
|
2258 |
|
|
}
|
2259 |
|
|
|
2260 |
|
|
template
|
2261 |
|
|
std::basic_istream<_CharT, _Traits>&
|
2262 |
|
|
operator>>(std::basic_istream<_CharT, _Traits>& __is,
|
2263 |
|
|
discrete_distribution<_IntType>& __x)
|
2264 |
|
|
{
|
2265 |
|
|
typedef std::basic_istream<_CharT, _Traits> __istream_type;
|
2266 |
|
|
typedef typename __istream_type::ios_base __ios_base;
|
2267 |
|
|
|
2268 |
|
|
const typename __ios_base::fmtflags __flags = __is.flags();
|
2269 |
|
|
__is.flags(__ios_base::dec | __ios_base::skipws);
|
2270 |
|
|
|
2271 |
|
|
size_t __n;
|
2272 |
|
|
__is >> __n;
|
2273 |
|
|
|
2274 |
|
|
std::vector __prob_vec;
|
2275 |
|
|
__prob_vec.reserve(__n);
|
2276 |
|
|
for (; __n != 0; --__n)
|
2277 |
|
|
{
|
2278 |
|
|
double __prob;
|
2279 |
|
|
__is >> __prob;
|
2280 |
|
|
__prob_vec.push_back(__prob);
|
2281 |
|
|
}
|
2282 |
|
|
|
2283 |
|
|
__x.param(typename discrete_distribution<_IntType>::
|
2284 |
|
|
param_type(__prob_vec.begin(), __prob_vec.end()));
|
2285 |
|
|
|
2286 |
|
|
__is.flags(__flags);
|
2287 |
|
|
return __is;
|
2288 |
|
|
}
|
2289 |
|
|
|
2290 |
|
|
|
2291 |
|
|
template
|
2292 |
|
|
void
|
2293 |
|
|
piecewise_constant_distribution<_RealType>::param_type::
|
2294 |
|
|
_M_initialize()
|
2295 |
|
|
{
|
2296 |
|
|
if (_M_int.size() < 2)
|
2297 |
|
|
{
|
2298 |
|
|
_M_int.clear();
|
2299 |
|
|
_M_int.reserve(2);
|
2300 |
|
|
_M_int.push_back(_RealType(0));
|
2301 |
|
|
_M_int.push_back(_RealType(1));
|
2302 |
|
|
|
2303 |
|
|
_M_den.clear();
|
2304 |
|
|
_M_den.push_back(1.0);
|
2305 |
|
|
|
2306 |
|
|
return;
|
2307 |
|
|
}
|
2308 |
|
|
|
2309 |
|
|
const double __sum = std::accumulate(_M_den.begin(),
|
2310 |
|
|
_M_den.end(), 0.0);
|
2311 |
|
|
|
2312 |
|
|
__detail::__transform(_M_den.begin(), _M_den.end(), _M_den.begin(),
|
2313 |
|
|
std::bind2nd(std::divides(), __sum));
|
2314 |
|
|
|
2315 |
|
|
_M_cp.reserve(_M_den.size());
|
2316 |
|
|
std::partial_sum(_M_den.begin(), _M_den.end(),
|
2317 |
|
|
std::back_inserter(_M_cp));
|
2318 |
|
|
|
2319 |
|
|
// Make sure the last cumulative probability is one.
|
2320 |
|
|
_M_cp[_M_cp.size() - 1] = 1.0;
|
2321 |
|
|
|
2322 |
|
|
for (size_t __k = 0; __k < _M_den.size(); ++__k)
|
2323 |
|
|
_M_den[__k] /= _M_int[__k + 1] - _M_int[__k];
|
2324 |
|
|
}
|
2325 |
|
|
|
2326 |
|
|
template
|
2327 |
|
|
template
|
2328 |
|
|
piecewise_constant_distribution<_RealType>::param_type::
|
2329 |
|
|
param_type(_InputIteratorB __bbegin,
|
2330 |
|
|
_InputIteratorB __bend,
|
2331 |
|
|
_InputIteratorW __wbegin)
|
2332 |
|
|
: _M_int(), _M_den(), _M_cp()
|
2333 |
|
|
{
|
2334 |
|
|
if (__bbegin != __bend)
|
2335 |
|
|
{
|
2336 |
|
|
for (;;)
|
2337 |
|
|
{
|
2338 |
|
|
_M_int.push_back(*__bbegin);
|
2339 |
|
|
++__bbegin;
|
2340 |
|
|
if (__bbegin == __bend)
|
2341 |
|
|
break;
|
2342 |
|
|
|
2343 |
|
|
_M_den.push_back(*__wbegin);
|
2344 |
|
|
++__wbegin;
|
2345 |
|
|
}
|
2346 |
|
|
}
|
2347 |
|
|
|
2348 |
|
|
_M_initialize();
|
2349 |
|
|
}
|
2350 |
|
|
|
2351 |
|
|
template
|
2352 |
|
|
template
|
2353 |
|
|
piecewise_constant_distribution<_RealType>::param_type::
|
2354 |
|
|
param_type(initializer_list<_RealType> __bl, _Func __fw)
|
2355 |
|
|
: _M_int(), _M_den(), _M_cp()
|
2356 |
|
|
{
|
2357 |
|
|
_M_int.reserve(__bl.size());
|
2358 |
|
|
for (auto __biter = __bl.begin(); __biter != __bl.end(); ++__biter)
|
2359 |
|
|
_M_int.push_back(*__biter);
|
2360 |
|
|
|
2361 |
|
|
_M_den.reserve(_M_int.size() - 1);
|
2362 |
|
|
for (size_t __k = 0; __k < _M_int.size() - 1; ++__k)
|
2363 |
|
|
_M_den.push_back(__fw(0.5 * (_M_int[__k + 1] + _M_int[__k])));
|
2364 |
|
|
|
2365 |
|
|
_M_initialize();
|
2366 |
|
|
}
|
2367 |
|
|
|
2368 |
|
|
template
|
2369 |
|
|
template
|
2370 |
|
|
piecewise_constant_distribution<_RealType>::param_type::
|
2371 |
|
|
param_type(size_t __nw, _RealType __xmin, _RealType __xmax, _Func __fw)
|
2372 |
|
|
: _M_int(), _M_den(), _M_cp()
|
2373 |
|
|
{
|
2374 |
|
|
const size_t __n = __nw == 0 ? 1 : __nw;
|
2375 |
|
|
const _RealType __delta = (__xmax - __xmin) / __n;
|
2376 |
|
|
|
2377 |
|
|
_M_int.reserve(__n + 1);
|
2378 |
|
|
for (size_t __k = 0; __k <= __nw; ++__k)
|
2379 |
|
|
_M_int.push_back(__xmin + __k * __delta);
|
2380 |
|
|
|
2381 |
|
|
_M_den.reserve(__n);
|
2382 |
|
|
for (size_t __k = 0; __k < __nw; ++__k)
|
2383 |
|
|
_M_den.push_back(__fw(_M_int[__k] + 0.5 * __delta));
|
2384 |
|
|
|
2385 |
|
|
_M_initialize();
|
2386 |
|
|
}
|
2387 |
|
|
|
2388 |
|
|
template
|
2389 |
|
|
template
|
2390 |
|
|
typename piecewise_constant_distribution<_RealType>::result_type
|
2391 |
|
|
piecewise_constant_distribution<_RealType>::
|
2392 |
|
|
operator()(_UniformRandomNumberGenerator& __urng,
|
2393 |
|
|
const param_type& __param)
|
2394 |
|
|
{
|
2395 |
|
|
__detail::_Adaptor<_UniformRandomNumberGenerator, double>
|
2396 |
|
|
__aurng(__urng);
|
2397 |
|
|
|
2398 |
|
|
const double __p = __aurng();
|
2399 |
|
|
auto __pos = std::lower_bound(__param._M_cp.begin(),
|
2400 |
|
|
__param._M_cp.end(), __p);
|
2401 |
|
|
const size_t __i = __pos - __param._M_cp.begin();
|
2402 |
|
|
|
2403 |
|
|
const double __pref = __i > 0 ? __param._M_cp[__i - 1] : 0.0;
|
2404 |
|
|
|
2405 |
|
|
return __param._M_int[__i] + (__p - __pref) / __param._M_den[__i];
|
2406 |
|
|
}
|
2407 |
|
|
|
2408 |
|
|
template
|
2409 |
|
|
std::basic_ostream<_CharT, _Traits>&
|
2410 |
|
|
operator<<(std::basic_ostream<_CharT, _Traits>& __os,
|
2411 |
|
|
const piecewise_constant_distribution<_RealType>& __x)
|
2412 |
|
|
{
|
2413 |
|
|
typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
|
2414 |
|
|
typedef typename __ostream_type::ios_base __ios_base;
|
2415 |
|
|
|
2416 |
|
|
const typename __ios_base::fmtflags __flags = __os.flags();
|
2417 |
|
|
const _CharT __fill = __os.fill();
|
2418 |
|
|
const std::streamsize __precision = __os.precision();
|
2419 |
|
|
const _CharT __space = __os.widen(' ');
|
2420 |
|
|
__os.flags(__ios_base::scientific | __ios_base::left);
|
2421 |
|
|
__os.fill(__space);
|
2422 |
|
|
__os.precision(std::numeric_limits<_RealType>::max_digits10);
|
2423 |
|
|
|
2424 |
|
|
std::vector<_RealType> __int = __x.intervals();
|
2425 |
|
|
__os << __int.size() - 1;
|
2426 |
|
|
|
2427 |
|
|
for (auto __xit = __int.begin(); __xit != __int.end(); ++__xit)
|
2428 |
|
|
__os << __space << *__xit;
|
2429 |
|
|
|
2430 |
|
|
std::vector __den = __x.densities();
|
2431 |
|
|
for (auto __dit = __den.begin(); __dit != __den.end(); ++__dit)
|
2432 |
|
|
__os << __space << *__dit;
|
2433 |
|
|
|
2434 |
|
|
__os.flags(__flags);
|
2435 |
|
|
__os.fill(__fill);
|
2436 |
|
|
__os.precision(__precision);
|
2437 |
|
|
return __os;
|
2438 |
|
|
}
|
2439 |
|
|
|
2440 |
|
|
template
|
2441 |
|
|
std::basic_istream<_CharT, _Traits>&
|
2442 |
|
|
operator>>(std::basic_istream<_CharT, _Traits>& __is,
|
2443 |
|
|
piecewise_constant_distribution<_RealType>& __x)
|
2444 |
|
|
{
|
2445 |
|
|
typedef std::basic_istream<_CharT, _Traits> __istream_type;
|
2446 |
|
|
typedef typename __istream_type::ios_base __ios_base;
|
2447 |
|
|
|
2448 |
|
|
const typename __ios_base::fmtflags __flags = __is.flags();
|
2449 |
|
|
__is.flags(__ios_base::dec | __ios_base::skipws);
|
2450 |
|
|
|
2451 |
|
|
size_t __n;
|
2452 |
|
|
__is >> __n;
|
2453 |
|
|
|
2454 |
|
|
std::vector<_RealType> __int_vec;
|
2455 |
|
|
__int_vec.reserve(__n + 1);
|
2456 |
|
|
for (size_t __i = 0; __i <= __n; ++__i)
|
2457 |
|
|
{
|
2458 |
|
|
_RealType __int;
|
2459 |
|
|
__is >> __int;
|
2460 |
|
|
__int_vec.push_back(__int);
|
2461 |
|
|
}
|
2462 |
|
|
|
2463 |
|
|
std::vector __den_vec;
|
2464 |
|
|
__den_vec.reserve(__n);
|
2465 |
|
|
for (size_t __i = 0; __i < __n; ++__i)
|
2466 |
|
|
{
|
2467 |
|
|
double __den;
|
2468 |
|
|
__is >> __den;
|
2469 |
|
|
__den_vec.push_back(__den);
|
2470 |
|
|
}
|
2471 |
|
|
|
2472 |
|
|
__x.param(typename piecewise_constant_distribution<_RealType>::
|
2473 |
|
|
param_type(__int_vec.begin(), __int_vec.end(), __den_vec.begin()));
|
2474 |
|
|
|
2475 |
|
|
__is.flags(__flags);
|
2476 |
|
|
return __is;
|
2477 |
|
|
}
|
2478 |
|
|
|
2479 |
|
|
|
2480 |
|
|
template
|
2481 |
|
|
void
|
2482 |
|
|
piecewise_linear_distribution<_RealType>::param_type::
|
2483 |
|
|
_M_initialize()
|
2484 |
|
|
{
|
2485 |
|
|
if (_M_int.size() < 2)
|
2486 |
|
|
{
|
2487 |
|
|
_M_int.clear();
|
2488 |
|
|
_M_int.reserve(2);
|
2489 |
|
|
_M_int.push_back(_RealType(0));
|
2490 |
|
|
_M_int.push_back(_RealType(1));
|
2491 |
|
|
|
2492 |
|
|
_M_den.clear();
|
2493 |
|
|
_M_den.reserve(2);
|
2494 |
|
|
_M_den.push_back(1.0);
|
2495 |
|
|
_M_den.push_back(1.0);
|
2496 |
|
|
|
2497 |
|
|
return;
|
2498 |
|
|
}
|
2499 |
|
|
|
2500 |
|
|
double __sum = 0.0;
|
2501 |
|
|
_M_cp.reserve(_M_int.size() - 1);
|
2502 |
|
|
_M_m.reserve(_M_int.size() - 1);
|
2503 |
|
|
for (size_t __k = 0; __k < _M_int.size() - 1; ++__k)
|
2504 |
|
|
{
|
2505 |
|
|
const _RealType __delta = _M_int[__k + 1] - _M_int[__k];
|
2506 |
|
|
__sum += 0.5 * (_M_den[__k + 1] + _M_den[__k]) * __delta;
|
2507 |
|
|
_M_cp.push_back(__sum);
|
2508 |
|
|
_M_m.push_back((_M_den[__k + 1] - _M_den[__k]) / __delta);
|
2509 |
|
|
}
|
2510 |
|
|
|
2511 |
|
|
// Now normalize the densities...
|
2512 |
|
|
__detail::__transform(_M_den.begin(), _M_den.end(), _M_den.begin(),
|
2513 |
|
|
std::bind2nd(std::divides(), __sum));
|
2514 |
|
|
// ... and partial sums...
|
2515 |
|
|
__detail::__transform(_M_cp.begin(), _M_cp.end(), _M_cp.begin(),
|
2516 |
|
|
std::bind2nd(std::divides(), __sum));
|
2517 |
|
|
// ... and slopes.
|
2518 |
|
|
__detail::__transform(_M_m.begin(), _M_m.end(), _M_m.begin(),
|
2519 |
|
|
std::bind2nd(std::divides(), __sum));
|
2520 |
|
|
// Make sure the last cumulative probablility is one.
|
2521 |
|
|
_M_cp[_M_cp.size() - 1] = 1.0;
|
2522 |
|
|
}
|
2523 |
|
|
|
2524 |
|
|
template
|
2525 |
|
|
template
|
2526 |
|
|
piecewise_linear_distribution<_RealType>::param_type::
|
2527 |
|
|
param_type(_InputIteratorB __bbegin,
|
2528 |
|
|
_InputIteratorB __bend,
|
2529 |
|
|
_InputIteratorW __wbegin)
|
2530 |
|
|
: _M_int(), _M_den(), _M_cp(), _M_m()
|
2531 |
|
|
{
|
2532 |
|
|
for (; __bbegin != __bend; ++__bbegin, ++__wbegin)
|
2533 |
|
|
{
|
2534 |
|
|
_M_int.push_back(*__bbegin);
|
2535 |
|
|
_M_den.push_back(*__wbegin);
|
2536 |
|
|
}
|
2537 |
|
|
|
2538 |
|
|
_M_initialize();
|
2539 |
|
|
}
|
2540 |
|
|
|
2541 |
|
|
template
|
2542 |
|
|
template
|
2543 |
|
|
piecewise_linear_distribution<_RealType>::param_type::
|
2544 |
|
|
param_type(initializer_list<_RealType> __bl, _Func __fw)
|
2545 |
|
|
: _M_int(), _M_den(), _M_cp(), _M_m()
|
2546 |
|
|
{
|
2547 |
|
|
_M_int.reserve(__bl.size());
|
2548 |
|
|
_M_den.reserve(__bl.size());
|
2549 |
|
|
for (auto __biter = __bl.begin(); __biter != __bl.end(); ++__biter)
|
2550 |
|
|
{
|
2551 |
|
|
_M_int.push_back(*__biter);
|
2552 |
|
|
_M_den.push_back(__fw(*__biter));
|
2553 |
|
|
}
|
2554 |
|
|
|
2555 |
|
|
_M_initialize();
|
2556 |
|
|
}
|
2557 |
|
|
|
2558 |
|
|
template
|
2559 |
|
|
template
|
2560 |
|
|
piecewise_linear_distribution<_RealType>::param_type::
|
2561 |
|
|
param_type(size_t __nw, _RealType __xmin, _RealType __xmax, _Func __fw)
|
2562 |
|
|
: _M_int(), _M_den(), _M_cp(), _M_m()
|
2563 |
|
|
{
|
2564 |
|
|
const size_t __n = __nw == 0 ? 1 : __nw;
|
2565 |
|
|
const _RealType __delta = (__xmax - __xmin) / __n;
|
2566 |
|
|
|
2567 |
|
|
_M_int.reserve(__n + 1);
|
2568 |
|
|
_M_den.reserve(__n + 1);
|
2569 |
|
|
for (size_t __k = 0; __k <= __nw; ++__k)
|
2570 |
|
|
{
|
2571 |
|
|
_M_int.push_back(__xmin + __k * __delta);
|
2572 |
|
|
_M_den.push_back(__fw(_M_int[__k] + __delta));
|
2573 |
|
|
}
|
2574 |
|
|
|
2575 |
|
|
_M_initialize();
|
2576 |
|
|
}
|
2577 |
|
|
|
2578 |
|
|
template
|
2579 |
|
|
template
|
2580 |
|
|
typename piecewise_linear_distribution<_RealType>::result_type
|
2581 |
|
|
piecewise_linear_distribution<_RealType>::
|
2582 |
|
|
operator()(_UniformRandomNumberGenerator& __urng,
|
2583 |
|
|
const param_type& __param)
|
2584 |
|
|
{
|
2585 |
|
|
__detail::_Adaptor<_UniformRandomNumberGenerator, double>
|
2586 |
|
|
__aurng(__urng);
|
2587 |
|
|
|
2588 |
|
|
const double __p = __aurng();
|
2589 |
|
|
auto __pos = std::lower_bound(__param._M_cp.begin(),
|
2590 |
|
|
__param._M_cp.end(), __p);
|
2591 |
|
|
const size_t __i = __pos - __param._M_cp.begin();
|
2592 |
|
|
|
2593 |
|
|
const double __pref = __i > 0 ? __param._M_cp[__i - 1] : 0.0;
|
2594 |
|
|
|
2595 |
|
|
const double __a = 0.5 * __param._M_m[__i];
|
2596 |
|
|
const double __b = __param._M_den[__i];
|
2597 |
|
|
const double __cm = __p - __pref;
|
2598 |
|
|
|
2599 |
|
|
_RealType __x = __param._M_int[__i];
|
2600 |
|
|
if (__a == 0)
|
2601 |
|
|
__x += __cm / __b;
|
2602 |
|
|
else
|
2603 |
|
|
{
|
2604 |
|
|
const double __d = __b * __b + 4.0 * __a * __cm;
|
2605 |
|
|
__x += 0.5 * (std::sqrt(__d) - __b) / __a;
|
2606 |
|
|
}
|
2607 |
|
|
|
2608 |
|
|
return __x;
|
2609 |
|
|
}
|
2610 |
|
|
|
2611 |
|
|
template
|
2612 |
|
|
std::basic_ostream<_CharT, _Traits>&
|
2613 |
|
|
operator<<(std::basic_ostream<_CharT, _Traits>& __os,
|
2614 |
|
|
const piecewise_linear_distribution<_RealType>& __x)
|
2615 |
|
|
{
|
2616 |
|
|
typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
|
2617 |
|
|
typedef typename __ostream_type::ios_base __ios_base;
|
2618 |
|
|
|
2619 |
|
|
const typename __ios_base::fmtflags __flags = __os.flags();
|
2620 |
|
|
const _CharT __fill = __os.fill();
|
2621 |
|
|
const std::streamsize __precision = __os.precision();
|
2622 |
|
|
const _CharT __space = __os.widen(' ');
|
2623 |
|
|
__os.flags(__ios_base::scientific | __ios_base::left);
|
2624 |
|
|
__os.fill(__space);
|
2625 |
|
|
__os.precision(std::numeric_limits<_RealType>::max_digits10);
|
2626 |
|
|
|
2627 |
|
|
std::vector<_RealType> __int = __x.intervals();
|
2628 |
|
|
__os << __int.size() - 1;
|
2629 |
|
|
|
2630 |
|
|
for (auto __xit = __int.begin(); __xit != __int.end(); ++__xit)
|
2631 |
|
|
__os << __space << *__xit;
|
2632 |
|
|
|
2633 |
|
|
std::vector __den = __x.densities();
|
2634 |
|
|
for (auto __dit = __den.begin(); __dit != __den.end(); ++__dit)
|
2635 |
|
|
__os << __space << *__dit;
|
2636 |
|
|
|
2637 |
|
|
__os.flags(__flags);
|
2638 |
|
|
__os.fill(__fill);
|
2639 |
|
|
__os.precision(__precision);
|
2640 |
|
|
return __os;
|
2641 |
|
|
}
|
2642 |
|
|
|
2643 |
|
|
template
|
2644 |
|
|
std::basic_istream<_CharT, _Traits>&
|
2645 |
|
|
operator>>(std::basic_istream<_CharT, _Traits>& __is,
|
2646 |
|
|
piecewise_linear_distribution<_RealType>& __x)
|
2647 |
|
|
{
|
2648 |
|
|
typedef std::basic_istream<_CharT, _Traits> __istream_type;
|
2649 |
|
|
typedef typename __istream_type::ios_base __ios_base;
|
2650 |
|
|
|
2651 |
|
|
const typename __ios_base::fmtflags __flags = __is.flags();
|
2652 |
|
|
__is.flags(__ios_base::dec | __ios_base::skipws);
|
2653 |
|
|
|
2654 |
|
|
size_t __n;
|
2655 |
|
|
__is >> __n;
|
2656 |
|
|
|
2657 |
|
|
std::vector<_RealType> __int_vec;
|
2658 |
|
|
__int_vec.reserve(__n + 1);
|
2659 |
|
|
for (size_t __i = 0; __i <= __n; ++__i)
|
2660 |
|
|
{
|
2661 |
|
|
_RealType __int;
|
2662 |
|
|
__is >> __int;
|
2663 |
|
|
__int_vec.push_back(__int);
|
2664 |
|
|
}
|
2665 |
|
|
|
2666 |
|
|
std::vector __den_vec;
|
2667 |
|
|
__den_vec.reserve(__n + 1);
|
2668 |
|
|
for (size_t __i = 0; __i <= __n; ++__i)
|
2669 |
|
|
{
|
2670 |
|
|
double __den;
|
2671 |
|
|
__is >> __den;
|
2672 |
|
|
__den_vec.push_back(__den);
|
2673 |
|
|
}
|
2674 |
|
|
|
2675 |
|
|
__x.param(typename piecewise_linear_distribution<_RealType>::
|
2676 |
|
|
param_type(__int_vec.begin(), __int_vec.end(), __den_vec.begin()));
|
2677 |
|
|
|
2678 |
|
|
__is.flags(__flags);
|
2679 |
|
|
return __is;
|
2680 |
|
|
}
|
2681 |
|
|
|
2682 |
|
|
|
2683 |
|
|
template
|
2684 |
|
|
seed_seq::seed_seq(std::initializer_list<_IntType> __il)
|
2685 |
|
|
{
|
2686 |
|
|
for (auto __iter = __il.begin(); __iter != __il.end(); ++__iter)
|
2687 |
|
|
_M_v.push_back(__detail::__mod
|
2688 |
|
|
__detail::_Shift::__value>(*__iter));
|
2689 |
|
|
}
|
2690 |
|
|
|
2691 |
|
|
template
|
2692 |
|
|
seed_seq::seed_seq(_InputIterator __begin, _InputIterator __end)
|
2693 |
|
|
{
|
2694 |
|
|
for (_InputIterator __iter = __begin; __iter != __end; ++__iter)
|
2695 |
|
|
_M_v.push_back(__detail::__mod
|
2696 |
|
|
__detail::_Shift::__value>(*__iter));
|
2697 |
|
|
}
|
2698 |
|
|
|
2699 |
|
|
template
|
2700 |
|
|
void
|
2701 |
|
|
seed_seq::generate(_RandomAccessIterator __begin,
|
2702 |
|
|
_RandomAccessIterator __end)
|
2703 |
|
|
{
|
2704 |
|
|
typedef typename iterator_traits<_RandomAccessIterator>::value_type
|
2705 |
|
|
_Type;
|
2706 |
|
|
|
2707 |
|
|
if (__begin == __end)
|
2708 |
|
|
return;
|
2709 |
|
|
|
2710 |
|
|
std::fill(__begin, __end, _Type(0x8b8b8b8bu));
|
2711 |
|
|
|
2712 |
|
|
const size_t __n = __end - __begin;
|
2713 |
|
|
const size_t __s = _M_v.size();
|
2714 |
|
|
const size_t __t = (__n >= 623) ? 11
|
2715 |
|
|
: (__n >= 68) ? 7
|
2716 |
|
|
: (__n >= 39) ? 5
|
2717 |
|
|
: (__n >= 7) ? 3
|
2718 |
|
|
: (__n - 1) / 2;
|
2719 |
|
|
const size_t __p = (__n - __t) / 2;
|
2720 |
|
|
const size_t __q = __p + __t;
|
2721 |
|
|
const size_t __m = std::max(__s + 1, __n);
|
2722 |
|
|
|
2723 |
|
|
for (size_t __k = 0; __k < __m; ++__k)
|
2724 |
|
|
{
|
2725 |
|
|
_Type __arg = (__begin[__k % __n]
|
2726 |
|
|
^ __begin[(__k + __p) % __n]
|
2727 |
|
|
^ __begin[(__k - 1) % __n]);
|
2728 |
|
|
_Type __r1 = __arg ^ (__arg << 27);
|
2729 |
|
|
__r1 = __detail::__mod<_Type, __detail::_Shift<_Type, 32>::__value,
|
2730 |
|
|
1664525u, 0u>(__r1);
|
2731 |
|
|
_Type __r2 = __r1;
|
2732 |
|
|
if (__k == 0)
|
2733 |
|
|
__r2 += __s;
|
2734 |
|
|
else if (__k <= __s)
|
2735 |
|
|
__r2 += __k % __n + _M_v[__k - 1];
|
2736 |
|
|
else
|
2737 |
|
|
__r2 += __k % __n;
|
2738 |
|
|
__r2 = __detail::__mod<_Type,
|
2739 |
|
|
__detail::_Shift<_Type, 32>::__value>(__r2);
|
2740 |
|
|
__begin[(__k + __p) % __n] += __r1;
|
2741 |
|
|
__begin[(__k + __q) % __n] += __r2;
|
2742 |
|
|
__begin[__k % __n] = __r2;
|
2743 |
|
|
}
|
2744 |
|
|
|
2745 |
|
|
for (size_t __k = __m; __k < __m + __n; ++__k)
|
2746 |
|
|
{
|
2747 |
|
|
_Type __arg = (__begin[__k % __n]
|
2748 |
|
|
+ __begin[(__k + __p) % __n]
|
2749 |
|
|
+ __begin[(__k - 1) % __n]);
|
2750 |
|
|
_Type __r3 = __arg ^ (__arg << 27);
|
2751 |
|
|
__r3 = __detail::__mod<_Type, __detail::_Shift<_Type, 32>::__value,
|
2752 |
|
|
1566083941u, 0u>(__r3);
|
2753 |
|
|
_Type __r4 = __r3 - __k % __n;
|
2754 |
|
|
__r4 = __detail::__mod<_Type,
|
2755 |
|
|
__detail::_Shift<_Type, 32>::__value>(__r4);
|
2756 |
|
|
__begin[(__k + __p) % __n] ^= __r4;
|
2757 |
|
|
__begin[(__k + __q) % __n] ^= __r3;
|
2758 |
|
|
__begin[__k % __n] = __r4;
|
2759 |
|
|
}
|
2760 |
|
|
}
|
2761 |
|
|
|
2762 |
|
|
template
|
2763 |
|
|
typename _UniformRandomNumberGenerator>
|
2764 |
|
|
_RealType
|
2765 |
|
|
generate_canonical(_UniformRandomNumberGenerator& __urng)
|
2766 |
|
|
{
|
2767 |
|
|
const size_t __b
|
2768 |
|
|
= std::min(static_cast(std::numeric_limits<_RealType>::digits),
|
2769 |
|
|
__bits);
|
2770 |
|
|
const long double __r = static_cast(__urng.max())
|
2771 |
|
|
- static_cast(__urng.min()) + 1.0L;
|
2772 |
|
|
const size_t __log2r = std::log(__r) / std::log(2.0L);
|
2773 |
|
|
size_t __k = std::max(1UL, (__b + __log2r - 1UL) / __log2r);
|
2774 |
|
|
_RealType __sum = _RealType(0);
|
2775 |
|
|
_RealType __tmp = _RealType(1);
|
2776 |
|
|
for (; __k != 0; --__k)
|
2777 |
|
|
{
|
2778 |
|
|
__sum += _RealType(__urng() - __urng.min()) * __tmp;
|
2779 |
|
|
__tmp *= __r;
|
2780 |
|
|
}
|
2781 |
|
|
return __sum / __tmp;
|
2782 |
|
|
}
|
2783 |
|
|
}
|