OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-stable/] [gcc-4.5.1/] [libstdc++-v3/] [include/] [bits/] [stl_function.h] - Blame information for rev 816

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 424 jeremybenn
// Functor implementations -*- C++ -*-
2
 
3
// Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2009, 2010
4
// Free Software Foundation, Inc.
5
//
6
// This file is part of the GNU ISO C++ Library.  This library is free
7
// software; you can redistribute it and/or modify it under the
8
// terms of the GNU General Public License as published by the
9
// Free Software Foundation; either version 3, or (at your option)
10
// any later version.
11
 
12
// This library is distributed in the hope that it will be useful,
13
// but WITHOUT ANY WARRANTY; without even the implied warranty of
14
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15
// GNU General Public License for more details.
16
 
17
// Under Section 7 of GPL version 3, you are granted additional
18
// permissions described in the GCC Runtime Library Exception, version
19
// 3.1, as published by the Free Software Foundation.
20
 
21
// You should have received a copy of the GNU General Public License and
22
// a copy of the GCC Runtime Library Exception along with this program;
23
// see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
24
// <http://www.gnu.org/licenses/>.
25
 
26
/*
27
 *
28
 * Copyright (c) 1994
29
 * Hewlett-Packard Company
30
 *
31
 * Permission to use, copy, modify, distribute and sell this software
32
 * and its documentation for any purpose is hereby granted without fee,
33
 * provided that the above copyright notice appear in all copies and
34
 * that both that copyright notice and this permission notice appear
35
 * in supporting documentation.  Hewlett-Packard Company makes no
36
 * representations about the suitability of this software for any
37
 * purpose.  It is provided "as is" without express or implied warranty.
38
 *
39
 *
40
 * Copyright (c) 1996-1998
41
 * Silicon Graphics Computer Systems, Inc.
42
 *
43
 * Permission to use, copy, modify, distribute and sell this software
44
 * and its documentation for any purpose is hereby granted without fee,
45
 * provided that the above copyright notice appear in all copies and
46
 * that both that copyright notice and this permission notice appear
47
 * in supporting documentation.  Silicon Graphics makes no
48
 * representations about the suitability of this software for any
49
 * purpose.  It is provided "as is" without express or implied warranty.
50
 */
51
 
52
/** @file stl_function.h
53
 *  This is an internal header file, included by other library headers.
54
 *  You should not attempt to use it directly.
55
 */
56
 
57
#ifndef _STL_FUNCTION_H
58
#define _STL_FUNCTION_H 1
59
 
60
_GLIBCXX_BEGIN_NAMESPACE(std)
61
 
62
  // 20.3.1 base classes
63
  /** @defgroup functors Function Objects
64
   * @ingroup utilities
65
   *
66
   *  Function objects, or @e functors, are objects with an @c operator()
67
   *  defined and accessible.  They can be passed as arguments to algorithm
68
   *  templates and used in place of a function pointer.  Not only is the
69
   *  resulting expressiveness of the library increased, but the generated
70
   *  code can be more efficient than what you might write by hand.  When we
71
   *  refer to @a functors, then, generally we include function pointers in
72
   *  the description as well.
73
   *
74
   *  Often, functors are only created as temporaries passed to algorithm
75
   *  calls, rather than being created as named variables.
76
   *
77
   *  Two examples taken from the standard itself follow.  To perform a
78
   *  by-element addition of two vectors @c a and @c b containing @c double,
79
   *  and put the result in @c a, use
80
   *  \code
81
   *  transform (a.begin(), a.end(), b.begin(), a.begin(), plus<double>());
82
   *  \endcode
83
   *  To negate every element in @c a, use
84
   *  \code
85
   *  transform(a.begin(), a.end(), a.begin(), negate<double>());
86
   *  \endcode
87
   *  The addition and negation functions will be inlined directly.
88
   *
89
   *  The standard functors are derived from structs named @c unary_function
90
   *  and @c binary_function.  These two classes contain nothing but typedefs,
91
   *  to aid in generic (template) programming.  If you write your own
92
   *  functors, you might consider doing the same.
93
   *
94
   *  @{
95
   */
96
  /**
97
   *  This is one of the @link functors functor base classes@endlink.
98
   */
99
  template<typename _Arg, typename _Result>
100
    struct unary_function
101
    {
102
      typedef _Arg argument_type;   ///< @c argument_type is the type of the
103
                                    ///     argument (no surprises here)
104
 
105
      typedef _Result result_type;  ///< @c result_type is the return type
106
    };
107
 
108
  /**
109
   *  This is one of the @link functors functor base classes@endlink.
110
   */
111
  template<typename _Arg1, typename _Arg2, typename _Result>
112
    struct binary_function
113
    {
114
      typedef _Arg1 first_argument_type;   ///< the type of the first argument
115
                                           ///  (no surprises here)
116
 
117
      typedef _Arg2 second_argument_type;  ///< the type of the second argument
118
      typedef _Result result_type;         ///< type of the return type
119
    };
120
  /** @}  */
121
 
122
  // 20.3.2 arithmetic
123
  /** @defgroup arithmetic_functors Arithmetic Classes
124
   * @ingroup functors
125
   *
126
   *  Because basic math often needs to be done during an algorithm,
127
   *  the library provides functors for those operations.  See the
128
   *  documentation for @link functors the base classes@endlink
129
   *  for examples of their use.
130
   *
131
   *  @{
132
   */
133
  /// One of the @link arithmetic_functors math functors@endlink.
134
  template<typename _Tp>
135
    struct plus : public binary_function<_Tp, _Tp, _Tp>
136
    {
137
      _Tp
138
      operator()(const _Tp& __x, const _Tp& __y) const
139
      { return __x + __y; }
140
    };
141
 
142
  /// One of the @link arithmetic_functors math functors@endlink.
143
  template<typename _Tp>
144
    struct minus : public binary_function<_Tp, _Tp, _Tp>
145
    {
146
      _Tp
147
      operator()(const _Tp& __x, const _Tp& __y) const
148
      { return __x - __y; }
149
    };
150
 
151
  /// One of the @link arithmetic_functors math functors@endlink.
152
  template<typename _Tp>
153
    struct multiplies : public binary_function<_Tp, _Tp, _Tp>
154
    {
155
      _Tp
156
      operator()(const _Tp& __x, const _Tp& __y) const
157
      { return __x * __y; }
158
    };
159
 
160
  /// One of the @link arithmetic_functors math functors@endlink.
161
  template<typename _Tp>
162
    struct divides : public binary_function<_Tp, _Tp, _Tp>
163
    {
164
      _Tp
165
      operator()(const _Tp& __x, const _Tp& __y) const
166
      { return __x / __y; }
167
    };
168
 
169
  /// One of the @link arithmetic_functors math functors@endlink.
170
  template<typename _Tp>
171
    struct modulus : public binary_function<_Tp, _Tp, _Tp>
172
    {
173
      _Tp
174
      operator()(const _Tp& __x, const _Tp& __y) const
175
      { return __x % __y; }
176
    };
177
 
178
  /// One of the @link arithmetic_functors math functors@endlink.
179
  template<typename _Tp>
180
    struct negate : public unary_function<_Tp, _Tp>
181
    {
182
      _Tp
183
      operator()(const _Tp& __x) const
184
      { return -__x; }
185
    };
186
  /** @}  */
187
 
188
  // 20.3.3 comparisons
189
  /** @defgroup comparison_functors Comparison Classes
190
   * @ingroup functors
191
   *
192
   *  The library provides six wrapper functors for all the basic comparisons
193
   *  in C++, like @c <.
194
   *
195
   *  @{
196
   */
197
  /// One of the @link comparison_functors comparison functors@endlink.
198
  template<typename _Tp>
199
    struct equal_to : public binary_function<_Tp, _Tp, bool>
200
    {
201
      bool
202
      operator()(const _Tp& __x, const _Tp& __y) const
203
      { return __x == __y; }
204
    };
205
 
206
  /// One of the @link comparison_functors comparison functors@endlink.
207
  template<typename _Tp>
208
    struct not_equal_to : public binary_function<_Tp, _Tp, bool>
209
    {
210
      bool
211
      operator()(const _Tp& __x, const _Tp& __y) const
212
      { return __x != __y; }
213
    };
214
 
215
  /// One of the @link comparison_functors comparison functors@endlink.
216
  template<typename _Tp>
217
    struct greater : public binary_function<_Tp, _Tp, bool>
218
    {
219
      bool
220
      operator()(const _Tp& __x, const _Tp& __y) const
221
      { return __x > __y; }
222
    };
223
 
224
  /// One of the @link comparison_functors comparison functors@endlink.
225
  template<typename _Tp>
226
    struct less : public binary_function<_Tp, _Tp, bool>
227
    {
228
      bool
229
      operator()(const _Tp& __x, const _Tp& __y) const
230
      { return __x < __y; }
231
    };
232
 
233
  /// One of the @link comparison_functors comparison functors@endlink.
234
  template<typename _Tp>
235
    struct greater_equal : public binary_function<_Tp, _Tp, bool>
236
    {
237
      bool
238
      operator()(const _Tp& __x, const _Tp& __y) const
239
      { return __x >= __y; }
240
    };
241
 
242
  /// One of the @link comparison_functors comparison functors@endlink.
243
  template<typename _Tp>
244
    struct less_equal : public binary_function<_Tp, _Tp, bool>
245
    {
246
      bool
247
      operator()(const _Tp& __x, const _Tp& __y) const
248
      { return __x <= __y; }
249
    };
250
  /** @}  */
251
 
252
  // 20.3.4 logical operations
253
  /** @defgroup logical_functors Boolean Operations Classes
254
   * @ingroup functors
255
   *
256
   *  Here are wrapper functors for Boolean operations: @c &&, @c ||,
257
   *  and @c !.
258
   *
259
   *  @{
260
   */
261
  /// One of the @link logical_functors Boolean operations functors@endlink.
262
  template<typename _Tp>
263
    struct logical_and : public binary_function<_Tp, _Tp, bool>
264
    {
265
      bool
266
      operator()(const _Tp& __x, const _Tp& __y) const
267
      { return __x && __y; }
268
    };
269
 
270
  /// One of the @link logical_functors Boolean operations functors@endlink.
271
  template<typename _Tp>
272
    struct logical_or : public binary_function<_Tp, _Tp, bool>
273
    {
274
      bool
275
      operator()(const _Tp& __x, const _Tp& __y) const
276
      { return __x || __y; }
277
    };
278
 
279
  /// One of the @link logical_functors Boolean operations functors@endlink.
280
  template<typename _Tp>
281
    struct logical_not : public unary_function<_Tp, bool>
282
    {
283
      bool
284
      operator()(const _Tp& __x) const
285
      { return !__x; }
286
    };
287
  /** @}  */
288
 
289
  // _GLIBCXX_RESOLVE_LIB_DEFECTS
290
  // DR 660. Missing Bitwise Operations.
291
  template<typename _Tp>
292
    struct bit_and : public binary_function<_Tp, _Tp, _Tp>
293
    {
294
      _Tp
295
      operator()(const _Tp& __x, const _Tp& __y) const
296
      { return __x & __y; }
297
    };
298
 
299
  template<typename _Tp>
300
    struct bit_or : public binary_function<_Tp, _Tp, _Tp>
301
    {
302
      _Tp
303
      operator()(const _Tp& __x, const _Tp& __y) const
304
      { return __x | __y; }
305
    };
306
 
307
  template<typename _Tp>
308
    struct bit_xor : public binary_function<_Tp, _Tp, _Tp>
309
    {
310
      _Tp
311
      operator()(const _Tp& __x, const _Tp& __y) const
312
      { return __x ^ __y; }
313
    };
314
 
315
  // 20.3.5 negators
316
  /** @defgroup negators Negators
317
   * @ingroup functors
318
   *
319
   *  The functions @c not1 and @c not2 each take a predicate functor
320
   *  and return an instance of @c unary_negate or
321
   *  @c binary_negate, respectively.  These classes are functors whose
322
   *  @c operator() performs the stored predicate function and then returns
323
   *  the negation of the result.
324
   *
325
   *  For example, given a vector of integers and a trivial predicate,
326
   *  \code
327
   *  struct IntGreaterThanThree
328
   *    : public std::unary_function<int, bool>
329
   *  {
330
   *      bool operator() (int x) { return x > 3; }
331
   *  };
332
   *
333
   *  std::find_if (v.begin(), v.end(), not1(IntGreaterThanThree()));
334
   *  \endcode
335
   *  The call to @c find_if will locate the first index (i) of @c v for which
336
   *  <code>!(v[i] > 3)</code> is true.
337
   *
338
   *  The not1/unary_negate combination works on predicates taking a single
339
   *  argument.  The not2/binary_negate combination works on predicates which
340
   *  take two arguments.
341
   *
342
   *  @{
343
   */
344
  /// One of the @link negators negation functors@endlink.
345
  template<typename _Predicate>
346
    class unary_negate
347
    : public unary_function<typename _Predicate::argument_type, bool>
348
    {
349
    protected:
350
      _Predicate _M_pred;
351
 
352
    public:
353
      explicit
354
      unary_negate(const _Predicate& __x) : _M_pred(__x) { }
355
 
356
      bool
357
      operator()(const typename _Predicate::argument_type& __x) const
358
      { return !_M_pred(__x); }
359
    };
360
 
361
  /// One of the @link negators negation functors@endlink.
362
  template<typename _Predicate>
363
    inline unary_negate<_Predicate>
364
    not1(const _Predicate& __pred)
365
    { return unary_negate<_Predicate>(__pred); }
366
 
367
  /// One of the @link negators negation functors@endlink.
368
  template<typename _Predicate>
369
    class binary_negate
370
    : public binary_function<typename _Predicate::first_argument_type,
371
                             typename _Predicate::second_argument_type, bool>
372
    {
373
    protected:
374
      _Predicate _M_pred;
375
 
376
    public:
377
      explicit
378
      binary_negate(const _Predicate& __x) : _M_pred(__x) { }
379
 
380
      bool
381
      operator()(const typename _Predicate::first_argument_type& __x,
382
                 const typename _Predicate::second_argument_type& __y) const
383
      { return !_M_pred(__x, __y); }
384
    };
385
 
386
  /// One of the @link negators negation functors@endlink.
387
  template<typename _Predicate>
388
    inline binary_negate<_Predicate>
389
    not2(const _Predicate& __pred)
390
    { return binary_negate<_Predicate>(__pred); }
391
  /** @}  */
392
 
393
  // 20.3.7 adaptors pointers functions
394
  /** @defgroup pointer_adaptors Adaptors for pointers to functions
395
   * @ingroup functors
396
   *
397
   *  The advantage of function objects over pointers to functions is that
398
   *  the objects in the standard library declare nested typedefs describing
399
   *  their argument and result types with uniform names (e.g., @c result_type
400
   *  from the base classes @c unary_function and @c binary_function).
401
   *  Sometimes those typedefs are required, not just optional.
402
   *
403
   *  Adaptors are provided to turn pointers to unary (single-argument) and
404
   *  binary (double-argument) functions into function objects.  The
405
   *  long-winded functor @c pointer_to_unary_function is constructed with a
406
   *  function pointer @c f, and its @c operator() called with argument @c x
407
   *  returns @c f(x).  The functor @c pointer_to_binary_function does the same
408
   *  thing, but with a double-argument @c f and @c operator().
409
   *
410
   *  The function @c ptr_fun takes a pointer-to-function @c f and constructs
411
   *  an instance of the appropriate functor.
412
   *
413
   *  @{
414
   */
415
  /// One of the @link pointer_adaptors adaptors for function pointers@endlink.
416
  template<typename _Arg, typename _Result>
417
    class pointer_to_unary_function : public unary_function<_Arg, _Result>
418
    {
419
    protected:
420
      _Result (*_M_ptr)(_Arg);
421
 
422
    public:
423
      pointer_to_unary_function() { }
424
 
425
      explicit
426
      pointer_to_unary_function(_Result (*__x)(_Arg))
427
      : _M_ptr(__x) { }
428
 
429
      _Result
430
      operator()(_Arg __x) const
431
      { return _M_ptr(__x); }
432
    };
433
 
434
  /// One of the @link pointer_adaptors adaptors for function pointers@endlink.
435
  template<typename _Arg, typename _Result>
436
    inline pointer_to_unary_function<_Arg, _Result>
437
    ptr_fun(_Result (*__x)(_Arg))
438
    { return pointer_to_unary_function<_Arg, _Result>(__x); }
439
 
440
  /// One of the @link pointer_adaptors adaptors for function pointers@endlink.
441
  template<typename _Arg1, typename _Arg2, typename _Result>
442
    class pointer_to_binary_function
443
    : public binary_function<_Arg1, _Arg2, _Result>
444
    {
445
    protected:
446
      _Result (*_M_ptr)(_Arg1, _Arg2);
447
 
448
    public:
449
      pointer_to_binary_function() { }
450
 
451
      explicit
452
      pointer_to_binary_function(_Result (*__x)(_Arg1, _Arg2))
453
      : _M_ptr(__x) { }
454
 
455
      _Result
456
      operator()(_Arg1 __x, _Arg2 __y) const
457
      { return _M_ptr(__x, __y); }
458
    };
459
 
460
  /// One of the @link pointer_adaptors adaptors for function pointers@endlink.
461
  template<typename _Arg1, typename _Arg2, typename _Result>
462
    inline pointer_to_binary_function<_Arg1, _Arg2, _Result>
463
    ptr_fun(_Result (*__x)(_Arg1, _Arg2))
464
    { return pointer_to_binary_function<_Arg1, _Arg2, _Result>(__x); }
465
  /** @}  */
466
 
467
  template<typename _Tp>
468
    struct _Identity : public unary_function<_Tp,_Tp>
469
    {
470
      _Tp&
471
      operator()(_Tp& __x) const
472
      { return __x; }
473
 
474
      const _Tp&
475
      operator()(const _Tp& __x) const
476
      { return __x; }
477
    };
478
 
479
  template<typename _Pair>
480
    struct _Select1st : public unary_function<_Pair,
481
                                              typename _Pair::first_type>
482
    {
483
      typename _Pair::first_type&
484
      operator()(_Pair& __x) const
485
      { return __x.first; }
486
 
487
      const typename _Pair::first_type&
488
      operator()(const _Pair& __x) const
489
      { return __x.first; }
490
    };
491
 
492
  template<typename _Pair>
493
    struct _Select2nd : public unary_function<_Pair,
494
                                              typename _Pair::second_type>
495
    {
496
      typename _Pair::second_type&
497
      operator()(_Pair& __x) const
498
      { return __x.second; }
499
 
500
      const typename _Pair::second_type&
501
      operator()(const _Pair& __x) const
502
      { return __x.second; }
503
    };
504
 
505
  // 20.3.8 adaptors pointers members
506
  /** @defgroup memory_adaptors Adaptors for pointers to members
507
   * @ingroup functors
508
   *
509
   *  There are a total of 8 = 2^3 function objects in this family.
510
   *   (1) Member functions taking no arguments vs member functions taking
511
   *        one argument.
512
   *   (2) Call through pointer vs call through reference.
513
   *   (3) Const vs non-const member function.
514
   *
515
   *  All of this complexity is in the function objects themselves.  You can
516
   *   ignore it by using the helper function mem_fun and mem_fun_ref,
517
   *   which create whichever type of adaptor is appropriate.
518
   *
519
   *  @{
520
   */
521
  /// One of the @link memory_adaptors adaptors for member
522
  /// pointers@endlink.
523
  template<typename _Ret, typename _Tp>
524
    class mem_fun_t : public unary_function<_Tp*, _Ret>
525
    {
526
    public:
527
      explicit
528
      mem_fun_t(_Ret (_Tp::*__pf)())
529
      : _M_f(__pf) { }
530
 
531
      _Ret
532
      operator()(_Tp* __p) const
533
      { return (__p->*_M_f)(); }
534
 
535
    private:
536
      _Ret (_Tp::*_M_f)();
537
    };
538
 
539
  /// One of the @link memory_adaptors adaptors for member
540
  /// pointers@endlink.
541
  template<typename _Ret, typename _Tp>
542
    class const_mem_fun_t : public unary_function<const _Tp*, _Ret>
543
    {
544
    public:
545
      explicit
546
      const_mem_fun_t(_Ret (_Tp::*__pf)() const)
547
      : _M_f(__pf) { }
548
 
549
      _Ret
550
      operator()(const _Tp* __p) const
551
      { return (__p->*_M_f)(); }
552
 
553
    private:
554
      _Ret (_Tp::*_M_f)() const;
555
    };
556
 
557
  /// One of the @link memory_adaptors adaptors for member
558
  /// pointers@endlink.
559
  template<typename _Ret, typename _Tp>
560
    class mem_fun_ref_t : public unary_function<_Tp, _Ret>
561
    {
562
    public:
563
      explicit
564
      mem_fun_ref_t(_Ret (_Tp::*__pf)())
565
      : _M_f(__pf) { }
566
 
567
      _Ret
568
      operator()(_Tp& __r) const
569
      { return (__r.*_M_f)(); }
570
 
571
    private:
572
      _Ret (_Tp::*_M_f)();
573
  };
574
 
575
  /// One of the @link memory_adaptors adaptors for member
576
  /// pointers@endlink.
577
  template<typename _Ret, typename _Tp>
578
    class const_mem_fun_ref_t : public unary_function<_Tp, _Ret>
579
    {
580
    public:
581
      explicit
582
      const_mem_fun_ref_t(_Ret (_Tp::*__pf)() const)
583
      : _M_f(__pf) { }
584
 
585
      _Ret
586
      operator()(const _Tp& __r) const
587
      { return (__r.*_M_f)(); }
588
 
589
    private:
590
      _Ret (_Tp::*_M_f)() const;
591
    };
592
 
593
  /// One of the @link memory_adaptors adaptors for member
594
  /// pointers@endlink.
595
  template<typename _Ret, typename _Tp, typename _Arg>
596
    class mem_fun1_t : public binary_function<_Tp*, _Arg, _Ret>
597
    {
598
    public:
599
      explicit
600
      mem_fun1_t(_Ret (_Tp::*__pf)(_Arg))
601
      : _M_f(__pf) { }
602
 
603
      _Ret
604
      operator()(_Tp* __p, _Arg __x) const
605
      { return (__p->*_M_f)(__x); }
606
 
607
    private:
608
      _Ret (_Tp::*_M_f)(_Arg);
609
    };
610
 
611
  /// One of the @link memory_adaptors adaptors for member
612
  /// pointers@endlink.
613
  template<typename _Ret, typename _Tp, typename _Arg>
614
    class const_mem_fun1_t : public binary_function<const _Tp*, _Arg, _Ret>
615
    {
616
    public:
617
      explicit
618
      const_mem_fun1_t(_Ret (_Tp::*__pf)(_Arg) const)
619
      : _M_f(__pf) { }
620
 
621
      _Ret
622
      operator()(const _Tp* __p, _Arg __x) const
623
      { return (__p->*_M_f)(__x); }
624
 
625
    private:
626
      _Ret (_Tp::*_M_f)(_Arg) const;
627
    };
628
 
629
  /// One of the @link memory_adaptors adaptors for member
630
  /// pointers@endlink.
631
  template<typename _Ret, typename _Tp, typename _Arg>
632
    class mem_fun1_ref_t : public binary_function<_Tp, _Arg, _Ret>
633
    {
634
    public:
635
      explicit
636
      mem_fun1_ref_t(_Ret (_Tp::*__pf)(_Arg))
637
      : _M_f(__pf) { }
638
 
639
      _Ret
640
      operator()(_Tp& __r, _Arg __x) const
641
      { return (__r.*_M_f)(__x); }
642
 
643
    private:
644
      _Ret (_Tp::*_M_f)(_Arg);
645
    };
646
 
647
  /// One of the @link memory_adaptors adaptors for member
648
  /// pointers@endlink.
649
  template<typename _Ret, typename _Tp, typename _Arg>
650
    class const_mem_fun1_ref_t : public binary_function<_Tp, _Arg, _Ret>
651
    {
652
    public:
653
      explicit
654
      const_mem_fun1_ref_t(_Ret (_Tp::*__pf)(_Arg) const)
655
      : _M_f(__pf) { }
656
 
657
      _Ret
658
      operator()(const _Tp& __r, _Arg __x) const
659
      { return (__r.*_M_f)(__x); }
660
 
661
    private:
662
      _Ret (_Tp::*_M_f)(_Arg) const;
663
    };
664
 
665
  // Mem_fun adaptor helper functions.  There are only two:
666
  // mem_fun and mem_fun_ref.
667
  template<typename _Ret, typename _Tp>
668
    inline mem_fun_t<_Ret, _Tp>
669
    mem_fun(_Ret (_Tp::*__f)())
670
    { return mem_fun_t<_Ret, _Tp>(__f); }
671
 
672
  template<typename _Ret, typename _Tp>
673
    inline const_mem_fun_t<_Ret, _Tp>
674
    mem_fun(_Ret (_Tp::*__f)() const)
675
    { return const_mem_fun_t<_Ret, _Tp>(__f); }
676
 
677
  template<typename _Ret, typename _Tp>
678
    inline mem_fun_ref_t<_Ret, _Tp>
679
    mem_fun_ref(_Ret (_Tp::*__f)())
680
    { return mem_fun_ref_t<_Ret, _Tp>(__f); }
681
 
682
  template<typename _Ret, typename _Tp>
683
    inline const_mem_fun_ref_t<_Ret, _Tp>
684
    mem_fun_ref(_Ret (_Tp::*__f)() const)
685
    { return const_mem_fun_ref_t<_Ret, _Tp>(__f); }
686
 
687
  template<typename _Ret, typename _Tp, typename _Arg>
688
    inline mem_fun1_t<_Ret, _Tp, _Arg>
689
    mem_fun(_Ret (_Tp::*__f)(_Arg))
690
    { return mem_fun1_t<_Ret, _Tp, _Arg>(__f); }
691
 
692
  template<typename _Ret, typename _Tp, typename _Arg>
693
    inline const_mem_fun1_t<_Ret, _Tp, _Arg>
694
    mem_fun(_Ret (_Tp::*__f)(_Arg) const)
695
    { return const_mem_fun1_t<_Ret, _Tp, _Arg>(__f); }
696
 
697
  template<typename _Ret, typename _Tp, typename _Arg>
698
    inline mem_fun1_ref_t<_Ret, _Tp, _Arg>
699
    mem_fun_ref(_Ret (_Tp::*__f)(_Arg))
700
    { return mem_fun1_ref_t<_Ret, _Tp, _Arg>(__f); }
701
 
702
  template<typename _Ret, typename _Tp, typename _Arg>
703
    inline const_mem_fun1_ref_t<_Ret, _Tp, _Arg>
704
    mem_fun_ref(_Ret (_Tp::*__f)(_Arg) const)
705
    { return const_mem_fun1_ref_t<_Ret, _Tp, _Arg>(__f); }
706
 
707
  /** @}  */
708
 
709
_GLIBCXX_END_NAMESPACE
710
 
711
#if !defined(__GXX_EXPERIMENTAL_CXX0X__) || _GLIBCXX_DEPRECATED
712
# include <backward/binders.h>
713
#endif
714
 
715
#endif /* _STL_FUNCTION_H */

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.