OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-stable/] [gcc-4.5.1/] [libstdc++-v3/] [include/] [bits/] [stl_multimap.h] - Blame information for rev 847

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 424 jeremybenn
// Multimap implementation -*- C++ -*-
2
 
3
// Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4
// Free Software Foundation, Inc.
5
//
6
// This file is part of the GNU ISO C++ Library.  This library is free
7
// software; you can redistribute it and/or modify it under the
8
// terms of the GNU General Public License as published by the
9
// Free Software Foundation; either version 3, or (at your option)
10
// any later version.
11
 
12
// This library is distributed in the hope that it will be useful,
13
// but WITHOUT ANY WARRANTY; without even the implied warranty of
14
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15
// GNU General Public License for more details.
16
 
17
// Under Section 7 of GPL version 3, you are granted additional
18
// permissions described in the GCC Runtime Library Exception, version
19
// 3.1, as published by the Free Software Foundation.
20
 
21
// You should have received a copy of the GNU General Public License and
22
// a copy of the GCC Runtime Library Exception along with this program;
23
// see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
24
// <http://www.gnu.org/licenses/>.
25
 
26
/*
27
 *
28
 * Copyright (c) 1994
29
 * Hewlett-Packard Company
30
 *
31
 * Permission to use, copy, modify, distribute and sell this software
32
 * and its documentation for any purpose is hereby granted without fee,
33
 * provided that the above copyright notice appear in all copies and
34
 * that both that copyright notice and this permission notice appear
35
 * in supporting documentation.  Hewlett-Packard Company makes no
36
 * representations about the suitability of this software for any
37
 * purpose.  It is provided "as is" without express or implied warranty.
38
 *
39
 *
40
 * Copyright (c) 1996,1997
41
 * Silicon Graphics Computer Systems, Inc.
42
 *
43
 * Permission to use, copy, modify, distribute and sell this software
44
 * and its documentation for any purpose is hereby granted without fee,
45
 * provided that the above copyright notice appear in all copies and
46
 * that both that copyright notice and this permission notice appear
47
 * in supporting documentation.  Silicon Graphics makes no
48
 * representations about the suitability of this software for any
49
 * purpose.  It is provided "as is" without express or implied warranty.
50
 */
51
 
52
/** @file stl_multimap.h
53
 *  This is an internal header file, included by other library headers.
54
 *  You should not attempt to use it directly.
55
 */
56
 
57
#ifndef _STL_MULTIMAP_H
58
#define _STL_MULTIMAP_H 1
59
 
60
#include <bits/concept_check.h>
61
#include <initializer_list>
62
 
63
_GLIBCXX_BEGIN_NESTED_NAMESPACE(std, _GLIBCXX_STD_D)
64
 
65
  /**
66
   *  @brief A standard container made up of (key,value) pairs, which can be
67
   *  retrieved based on a key, in logarithmic time.
68
   *
69
   *  @ingroup associative_containers
70
   *
71
   *  Meets the requirements of a <a href="tables.html#65">container</a>, a
72
   *  <a href="tables.html#66">reversible container</a>, and an
73
   *  <a href="tables.html#69">associative container</a> (using equivalent
74
   *  keys).  For a @c multimap<Key,T> the key_type is Key, the mapped_type
75
   *  is T, and the value_type is std::pair<const Key,T>.
76
   *
77
   *  Multimaps support bidirectional iterators.
78
   *
79
   *  The private tree data is declared exactly the same way for map and
80
   *  multimap; the distinction is made entirely in how the tree functions are
81
   *  called (*_unique versus *_equal, same as the standard).
82
  */
83
  template <typename _Key, typename _Tp,
84
            typename _Compare = std::less<_Key>,
85
            typename _Alloc = std::allocator<std::pair<const _Key, _Tp> > >
86
    class multimap
87
    {
88
    public:
89
      typedef _Key                                          key_type;
90
      typedef _Tp                                           mapped_type;
91
      typedef std::pair<const _Key, _Tp>                    value_type;
92
      typedef _Compare                                      key_compare;
93
      typedef _Alloc                                        allocator_type;
94
 
95
    private:
96
      // concept requirements
97
      typedef typename _Alloc::value_type                   _Alloc_value_type;
98
      __glibcxx_class_requires(_Tp, _SGIAssignableConcept)
99
      __glibcxx_class_requires4(_Compare, bool, _Key, _Key,
100
                                _BinaryFunctionConcept)
101
      __glibcxx_class_requires2(value_type, _Alloc_value_type, _SameTypeConcept)
102
 
103
    public:
104
      class value_compare
105
      : public std::binary_function<value_type, value_type, bool>
106
      {
107
        friend class multimap<_Key, _Tp, _Compare, _Alloc>;
108
      protected:
109
        _Compare comp;
110
 
111
        value_compare(_Compare __c)
112
        : comp(__c) { }
113
 
114
      public:
115
        bool operator()(const value_type& __x, const value_type& __y) const
116
        { return comp(__x.first, __y.first); }
117
      };
118
 
119
    private:
120
      /// This turns a red-black tree into a [multi]map.
121
      typedef typename _Alloc::template rebind<value_type>::other
122
        _Pair_alloc_type;
123
 
124
      typedef _Rb_tree<key_type, value_type, _Select1st<value_type>,
125
                       key_compare, _Pair_alloc_type> _Rep_type;
126
      /// The actual tree structure.
127
      _Rep_type _M_t;
128
 
129
    public:
130
      // many of these are specified differently in ISO, but the following are
131
      // "functionally equivalent"
132
      typedef typename _Pair_alloc_type::pointer         pointer;
133
      typedef typename _Pair_alloc_type::const_pointer   const_pointer;
134
      typedef typename _Pair_alloc_type::reference       reference;
135
      typedef typename _Pair_alloc_type::const_reference const_reference;
136
      typedef typename _Rep_type::iterator               iterator;
137
      typedef typename _Rep_type::const_iterator         const_iterator;
138
      typedef typename _Rep_type::size_type              size_type;
139
      typedef typename _Rep_type::difference_type        difference_type;
140
      typedef typename _Rep_type::reverse_iterator       reverse_iterator;
141
      typedef typename _Rep_type::const_reverse_iterator const_reverse_iterator;
142
 
143
      // [23.3.2] construct/copy/destroy
144
      // (get_allocator() is also listed in this section)
145
      /**
146
       *  @brief  Default constructor creates no elements.
147
       */
148
      multimap()
149
      : _M_t() { }
150
 
151
      /**
152
       *  @brief  Creates a %multimap with no elements.
153
       *  @param  comp  A comparison object.
154
       *  @param  a  An allocator object.
155
       */
156
      explicit
157
      multimap(const _Compare& __comp,
158
               const allocator_type& __a = allocator_type())
159
      : _M_t(__comp, __a) { }
160
 
161
      /**
162
       *  @brief  %Multimap copy constructor.
163
       *  @param  x  A %multimap of identical element and allocator types.
164
       *
165
       *  The newly-created %multimap uses a copy of the allocation object
166
       *  used by @a x.
167
       */
168
      multimap(const multimap& __x)
169
      : _M_t(__x._M_t) { }
170
 
171
#ifdef __GXX_EXPERIMENTAL_CXX0X__
172
      /**
173
       *  @brief  %Multimap move constructor.
174
       *  @param   x  A %multimap of identical element and allocator types.
175
       *
176
       *  The newly-created %multimap contains the exact contents of @a x.
177
       *  The contents of @a x are a valid, but unspecified %multimap.
178
       */
179
      multimap(multimap&& __x)
180
      : _M_t(std::forward<_Rep_type>(__x._M_t)) { }
181
 
182
      /**
183
       *  @brief  Builds a %multimap from an initializer_list.
184
       *  @param  l  An initializer_list.
185
       *  @param  comp  A comparison functor.
186
       *  @param  a  An allocator object.
187
       *
188
       *  Create a %multimap consisting of copies of the elements from
189
       *  the initializer_list.  This is linear in N if the list is already
190
       *  sorted, and NlogN otherwise (where N is @a __l.size()).
191
       */
192
      multimap(initializer_list<value_type> __l,
193
               const _Compare& __comp = _Compare(),
194
               const allocator_type& __a = allocator_type())
195
      : _M_t(__comp, __a)
196
      { _M_t._M_insert_equal(__l.begin(), __l.end()); }
197
#endif
198
 
199
      /**
200
       *  @brief  Builds a %multimap from a range.
201
       *  @param  first  An input iterator.
202
       *  @param  last  An input iterator.
203
       *
204
       *  Create a %multimap consisting of copies of the elements from
205
       *  [first,last).  This is linear in N if the range is already sorted,
206
       *  and NlogN otherwise (where N is distance(first,last)).
207
       */
208
      template<typename _InputIterator>
209
        multimap(_InputIterator __first, _InputIterator __last)
210
        : _M_t()
211
        { _M_t._M_insert_equal(__first, __last); }
212
 
213
      /**
214
       *  @brief  Builds a %multimap from a range.
215
       *  @param  first  An input iterator.
216
       *  @param  last  An input iterator.
217
       *  @param  comp  A comparison functor.
218
       *  @param  a  An allocator object.
219
       *
220
       *  Create a %multimap consisting of copies of the elements from
221
       *  [first,last).  This is linear in N if the range is already sorted,
222
       *  and NlogN otherwise (where N is distance(first,last)).
223
       */
224
      template<typename _InputIterator>
225
        multimap(_InputIterator __first, _InputIterator __last,
226
                 const _Compare& __comp,
227
                 const allocator_type& __a = allocator_type())
228
        : _M_t(__comp, __a)
229
        { _M_t._M_insert_equal(__first, __last); }
230
 
231
      // FIXME There is no dtor declared, but we should have something generated
232
      // by Doxygen.  I don't know what tags to add to this paragraph to make
233
      // that happen:
234
      /**
235
       *  The dtor only erases the elements, and note that if the elements
236
       *  themselves are pointers, the pointed-to memory is not touched in any
237
       *  way.  Managing the pointer is the user's responsibility.
238
       */
239
 
240
      /**
241
       *  @brief  %Multimap assignment operator.
242
       *  @param  x  A %multimap of identical element and allocator types.
243
       *
244
       *  All the elements of @a x are copied, but unlike the copy constructor,
245
       *  the allocator object is not copied.
246
       */
247
      multimap&
248
      operator=(const multimap& __x)
249
      {
250
        _M_t = __x._M_t;
251
        return *this;
252
      }
253
 
254
#ifdef __GXX_EXPERIMENTAL_CXX0X__
255
      /**
256
       *  @brief  %Multimap move assignment operator.
257
       *  @param  x  A %multimap of identical element and allocator types.
258
       *
259
       *  The contents of @a x are moved into this multimap (without copying).
260
       *  @a x is a valid, but unspecified multimap.
261
       */
262
      multimap&
263
      operator=(multimap&& __x)
264
      {
265
        // NB: DR 1204.
266
        // NB: DR 675.
267
        this->clear();
268
        this->swap(__x);
269
        return *this;
270
      }
271
 
272
      /**
273
       *  @brief  %Multimap list assignment operator.
274
       *  @param  l  An initializer_list.
275
       *
276
       *  This function fills a %multimap with copies of the elements
277
       *  in the initializer list @a l.
278
       *
279
       *  Note that the assignment completely changes the %multimap and
280
       *  that the resulting %multimap's size is the same as the number
281
       *  of elements assigned.  Old data may be lost.
282
       */
283
      multimap&
284
      operator=(initializer_list<value_type> __l)
285
      {
286
        this->clear();
287
        this->insert(__l.begin(), __l.end());
288
        return *this;
289
      }
290
#endif
291
 
292
      /// Get a copy of the memory allocation object.
293
      allocator_type
294
      get_allocator() const
295
      { return _M_t.get_allocator(); }
296
 
297
      // iterators
298
      /**
299
       *  Returns a read/write iterator that points to the first pair in the
300
       *  %multimap.  Iteration is done in ascending order according to the
301
       *  keys.
302
       */
303
      iterator
304
      begin()
305
      { return _M_t.begin(); }
306
 
307
      /**
308
       *  Returns a read-only (constant) iterator that points to the first pair
309
       *  in the %multimap.  Iteration is done in ascending order according to
310
       *  the keys.
311
       */
312
      const_iterator
313
      begin() const
314
      { return _M_t.begin(); }
315
 
316
      /**
317
       *  Returns a read/write iterator that points one past the last pair in
318
       *  the %multimap.  Iteration is done in ascending order according to the
319
       *  keys.
320
       */
321
      iterator
322
      end()
323
      { return _M_t.end(); }
324
 
325
      /**
326
       *  Returns a read-only (constant) iterator that points one past the last
327
       *  pair in the %multimap.  Iteration is done in ascending order according
328
       *  to the keys.
329
       */
330
      const_iterator
331
      end() const
332
      { return _M_t.end(); }
333
 
334
      /**
335
       *  Returns a read/write reverse iterator that points to the last pair in
336
       *  the %multimap.  Iteration is done in descending order according to the
337
       *  keys.
338
       */
339
      reverse_iterator
340
      rbegin()
341
      { return _M_t.rbegin(); }
342
 
343
      /**
344
       *  Returns a read-only (constant) reverse iterator that points to the
345
       *  last pair in the %multimap.  Iteration is done in descending order
346
       *  according to the keys.
347
       */
348
      const_reverse_iterator
349
      rbegin() const
350
      { return _M_t.rbegin(); }
351
 
352
      /**
353
       *  Returns a read/write reverse iterator that points to one before the
354
       *  first pair in the %multimap.  Iteration is done in descending order
355
       *  according to the keys.
356
       */
357
      reverse_iterator
358
      rend()
359
      { return _M_t.rend(); }
360
 
361
      /**
362
       *  Returns a read-only (constant) reverse iterator that points to one
363
       *  before the first pair in the %multimap.  Iteration is done in
364
       *  descending order according to the keys.
365
       */
366
      const_reverse_iterator
367
      rend() const
368
      { return _M_t.rend(); }
369
 
370
#ifdef __GXX_EXPERIMENTAL_CXX0X__
371
      /**
372
       *  Returns a read-only (constant) iterator that points to the first pair
373
       *  in the %multimap.  Iteration is done in ascending order according to
374
       *  the keys.
375
       */
376
      const_iterator
377
      cbegin() const
378
      { return _M_t.begin(); }
379
 
380
      /**
381
       *  Returns a read-only (constant) iterator that points one past the last
382
       *  pair in the %multimap.  Iteration is done in ascending order according
383
       *  to the keys.
384
       */
385
      const_iterator
386
      cend() const
387
      { return _M_t.end(); }
388
 
389
      /**
390
       *  Returns a read-only (constant) reverse iterator that points to the
391
       *  last pair in the %multimap.  Iteration is done in descending order
392
       *  according to the keys.
393
       */
394
      const_reverse_iterator
395
      crbegin() const
396
      { return _M_t.rbegin(); }
397
 
398
      /**
399
       *  Returns a read-only (constant) reverse iterator that points to one
400
       *  before the first pair in the %multimap.  Iteration is done in
401
       *  descending order according to the keys.
402
       */
403
      const_reverse_iterator
404
      crend() const
405
      { return _M_t.rend(); }
406
#endif
407
 
408
      // capacity
409
      /** Returns true if the %multimap is empty.  */
410
      bool
411
      empty() const
412
      { return _M_t.empty(); }
413
 
414
      /** Returns the size of the %multimap.  */
415
      size_type
416
      size() const
417
      { return _M_t.size(); }
418
 
419
      /** Returns the maximum size of the %multimap.  */
420
      size_type
421
      max_size() const
422
      { return _M_t.max_size(); }
423
 
424
      // modifiers
425
      /**
426
       *  @brief Inserts a std::pair into the %multimap.
427
       *  @param  x  Pair to be inserted (see std::make_pair for easy creation
428
       *             of pairs).
429
       *  @return An iterator that points to the inserted (key,value) pair.
430
       *
431
       *  This function inserts a (key, value) pair into the %multimap.
432
       *  Contrary to a std::map the %multimap does not rely on unique keys and
433
       *  thus multiple pairs with the same key can be inserted.
434
       *
435
       *  Insertion requires logarithmic time.
436
       */
437
      iterator
438
      insert(const value_type& __x)
439
      { return _M_t._M_insert_equal(__x); }
440
 
441
      /**
442
       *  @brief Inserts a std::pair into the %multimap.
443
       *  @param  position  An iterator that serves as a hint as to where the
444
       *                    pair should be inserted.
445
       *  @param  x  Pair to be inserted (see std::make_pair for easy creation
446
       *             of pairs).
447
       *  @return An iterator that points to the inserted (key,value) pair.
448
       *
449
       *  This function inserts a (key, value) pair into the %multimap.
450
       *  Contrary to a std::map the %multimap does not rely on unique keys and
451
       *  thus multiple pairs with the same key can be inserted.
452
       *  Note that the first parameter is only a hint and can potentially
453
       *  improve the performance of the insertion process.  A bad hint would
454
       *  cause no gains in efficiency.
455
       *
456
       *  For more on @a hinting, see:
457
       *  http://gcc.gnu.org/onlinedocs/libstdc++/manual/bk01pt07ch17.html
458
       *
459
       *  Insertion requires logarithmic time (if the hint is not taken).
460
       */
461
      iterator
462
      insert(iterator __position, const value_type& __x)
463
      { return _M_t._M_insert_equal_(__position, __x); }
464
 
465
      /**
466
       *  @brief A template function that attempts to insert a range
467
       *  of elements.
468
       *  @param  first  Iterator pointing to the start of the range to be
469
       *                 inserted.
470
       *  @param  last  Iterator pointing to the end of the range.
471
       *
472
       *  Complexity similar to that of the range constructor.
473
       */
474
      template<typename _InputIterator>
475
        void
476
        insert(_InputIterator __first, _InputIterator __last)
477
        { _M_t._M_insert_equal(__first, __last); }
478
 
479
#ifdef __GXX_EXPERIMENTAL_CXX0X__
480
      /**
481
       *  @brief Attempts to insert a list of std::pairs into the %multimap.
482
       *  @param  list  A std::initializer_list<value_type> of pairs to be
483
       *                inserted.
484
       *
485
       *  Complexity similar to that of the range constructor.
486
       */
487
      void
488
      insert(initializer_list<value_type> __l)
489
      { this->insert(__l.begin(), __l.end()); }
490
#endif
491
 
492
#ifdef __GXX_EXPERIMENTAL_CXX0X__
493
      // _GLIBCXX_RESOLVE_LIB_DEFECTS
494
      // DR 130. Associative erase should return an iterator.
495
      /**
496
       *  @brief Erases an element from a %multimap.
497
       *  @param  position  An iterator pointing to the element to be erased.
498
       *  @return An iterator pointing to the element immediately following
499
       *          @a position prior to the element being erased. If no such
500
       *          element exists, end() is returned.
501
       *
502
       *  This function erases an element, pointed to by the given iterator,
503
       *  from a %multimap.  Note that this function only erases the element,
504
       *  and that if the element is itself a pointer, the pointed-to memory is
505
       *  not touched in any way.  Managing the pointer is the user's
506
       *  responsibility.
507
       */
508
      iterator
509
      erase(iterator __position)
510
      { return _M_t.erase(__position); }
511
#else
512
      /**
513
       *  @brief Erases an element from a %multimap.
514
       *  @param  position  An iterator pointing to the element to be erased.
515
       *
516
       *  This function erases an element, pointed to by the given iterator,
517
       *  from a %multimap.  Note that this function only erases the element,
518
       *  and that if the element is itself a pointer, the pointed-to memory is
519
       *  not touched in any way.  Managing the pointer is the user's
520
       *  responsibility.
521
       */
522
      void
523
      erase(iterator __position)
524
      { _M_t.erase(__position); }
525
#endif
526
 
527
      /**
528
       *  @brief Erases elements according to the provided key.
529
       *  @param  x  Key of element to be erased.
530
       *  @return  The number of elements erased.
531
       *
532
       *  This function erases all elements located by the given key from a
533
       *  %multimap.
534
       *  Note that this function only erases the element, and that if
535
       *  the element is itself a pointer, the pointed-to memory is not touched
536
       *  in any way.  Managing the pointer is the user's responsibility.
537
       */
538
      size_type
539
      erase(const key_type& __x)
540
      { return _M_t.erase(__x); }
541
 
542
#ifdef __GXX_EXPERIMENTAL_CXX0X__
543
      // _GLIBCXX_RESOLVE_LIB_DEFECTS
544
      // DR 130. Associative erase should return an iterator.
545
      /**
546
       *  @brief Erases a [first,last) range of elements from a %multimap.
547
       *  @param  first  Iterator pointing to the start of the range to be
548
       *                 erased.
549
       *  @param  last  Iterator pointing to the end of the range to be erased.
550
       *  @return The iterator @a last.
551
       *
552
       *  This function erases a sequence of elements from a %multimap.
553
       *  Note that this function only erases the elements, and that if
554
       *  the elements themselves are pointers, the pointed-to memory is not
555
       *  touched in any way.  Managing the pointer is the user's responsibility.
556
       */
557
      iterator
558
      erase(iterator __first, iterator __last)
559
      { return _M_t.erase(__first, __last); }
560
#else
561
      // _GLIBCXX_RESOLVE_LIB_DEFECTS
562
      // DR 130. Associative erase should return an iterator.
563
      /**
564
       *  @brief Erases a [first,last) range of elements from a %multimap.
565
       *  @param  first  Iterator pointing to the start of the range to be
566
       *                 erased.
567
       *  @param  last  Iterator pointing to the end of the range to be erased.
568
       *
569
       *  This function erases a sequence of elements from a %multimap.
570
       *  Note that this function only erases the elements, and that if
571
       *  the elements themselves are pointers, the pointed-to memory is not
572
       *  touched in any way.  Managing the pointer is the user's responsibility.
573
       */
574
      void
575
      erase(iterator __first, iterator __last)
576
      { _M_t.erase(__first, __last); }
577
#endif
578
 
579
      /**
580
       *  @brief  Swaps data with another %multimap.
581
       *  @param  x  A %multimap of the same element and allocator types.
582
       *
583
       *  This exchanges the elements between two multimaps in constant time.
584
       *  (It is only swapping a pointer, an integer, and an instance of
585
       *  the @c Compare type (which itself is often stateless and empty), so it
586
       *  should be quite fast.)
587
       *  Note that the global std::swap() function is specialized such that
588
       *  std::swap(m1,m2) will feed to this function.
589
       */
590
      void
591
      swap(multimap& __x)
592
      { _M_t.swap(__x._M_t); }
593
 
594
      /**
595
       *  Erases all elements in a %multimap.  Note that this function only
596
       *  erases the elements, and that if the elements themselves are pointers,
597
       *  the pointed-to memory is not touched in any way.  Managing the pointer
598
       *  is the user's responsibility.
599
       */
600
      void
601
      clear()
602
      { _M_t.clear(); }
603
 
604
      // observers
605
      /**
606
       *  Returns the key comparison object out of which the %multimap
607
       *  was constructed.
608
       */
609
      key_compare
610
      key_comp() const
611
      { return _M_t.key_comp(); }
612
 
613
      /**
614
       *  Returns a value comparison object, built from the key comparison
615
       *  object out of which the %multimap was constructed.
616
       */
617
      value_compare
618
      value_comp() const
619
      { return value_compare(_M_t.key_comp()); }
620
 
621
      // multimap operations
622
      /**
623
       *  @brief Tries to locate an element in a %multimap.
624
       *  @param  x  Key of (key, value) pair to be located.
625
       *  @return  Iterator pointing to sought-after element,
626
       *           or end() if not found.
627
       *
628
       *  This function takes a key and tries to locate the element with which
629
       *  the key matches.  If successful the function returns an iterator
630
       *  pointing to the sought after %pair.  If unsuccessful it returns the
631
       *  past-the-end ( @c end() ) iterator.
632
       */
633
      iterator
634
      find(const key_type& __x)
635
      { return _M_t.find(__x); }
636
 
637
      /**
638
       *  @brief Tries to locate an element in a %multimap.
639
       *  @param  x  Key of (key, value) pair to be located.
640
       *  @return  Read-only (constant) iterator pointing to sought-after
641
       *           element, or end() if not found.
642
       *
643
       *  This function takes a key and tries to locate the element with which
644
       *  the key matches.  If successful the function returns a constant
645
       *  iterator pointing to the sought after %pair.  If unsuccessful it
646
       *  returns the past-the-end ( @c end() ) iterator.
647
       */
648
      const_iterator
649
      find(const key_type& __x) const
650
      { return _M_t.find(__x); }
651
 
652
      /**
653
       *  @brief Finds the number of elements with given key.
654
       *  @param  x  Key of (key, value) pairs to be located.
655
       *  @return Number of elements with specified key.
656
       */
657
      size_type
658
      count(const key_type& __x) const
659
      { return _M_t.count(__x); }
660
 
661
      /**
662
       *  @brief Finds the beginning of a subsequence matching given key.
663
       *  @param  x  Key of (key, value) pair to be located.
664
       *  @return  Iterator pointing to first element equal to or greater
665
       *           than key, or end().
666
       *
667
       *  This function returns the first element of a subsequence of elements
668
       *  that matches the given key.  If unsuccessful it returns an iterator
669
       *  pointing to the first element that has a greater value than given key
670
       *  or end() if no such element exists.
671
       */
672
      iterator
673
      lower_bound(const key_type& __x)
674
      { return _M_t.lower_bound(__x); }
675
 
676
      /**
677
       *  @brief Finds the beginning of a subsequence matching given key.
678
       *  @param  x  Key of (key, value) pair to be located.
679
       *  @return  Read-only (constant) iterator pointing to first element
680
       *           equal to or greater than key, or end().
681
       *
682
       *  This function returns the first element of a subsequence of elements
683
       *  that matches the given key.  If unsuccessful the iterator will point
684
       *  to the next greatest element or, if no such greater element exists, to
685
       *  end().
686
       */
687
      const_iterator
688
      lower_bound(const key_type& __x) const
689
      { return _M_t.lower_bound(__x); }
690
 
691
      /**
692
       *  @brief Finds the end of a subsequence matching given key.
693
       *  @param  x  Key of (key, value) pair to be located.
694
       *  @return Iterator pointing to the first element
695
       *          greater than key, or end().
696
       */
697
      iterator
698
      upper_bound(const key_type& __x)
699
      { return _M_t.upper_bound(__x); }
700
 
701
      /**
702
       *  @brief Finds the end of a subsequence matching given key.
703
       *  @param  x  Key of (key, value) pair to be located.
704
       *  @return  Read-only (constant) iterator pointing to first iterator
705
       *           greater than key, or end().
706
       */
707
      const_iterator
708
      upper_bound(const key_type& __x) const
709
      { return _M_t.upper_bound(__x); }
710
 
711
      /**
712
       *  @brief Finds a subsequence matching given key.
713
       *  @param  x  Key of (key, value) pairs to be located.
714
       *  @return  Pair of iterators that possibly points to the subsequence
715
       *           matching given key.
716
       *
717
       *  This function is equivalent to
718
       *  @code
719
       *    std::make_pair(c.lower_bound(val),
720
       *                   c.upper_bound(val))
721
       *  @endcode
722
       *  (but is faster than making the calls separately).
723
       */
724
      std::pair<iterator, iterator>
725
      equal_range(const key_type& __x)
726
      { return _M_t.equal_range(__x); }
727
 
728
      /**
729
       *  @brief Finds a subsequence matching given key.
730
       *  @param  x  Key of (key, value) pairs to be located.
731
       *  @return  Pair of read-only (constant) iterators that possibly points
732
       *           to the subsequence matching given key.
733
       *
734
       *  This function is equivalent to
735
       *  @code
736
       *    std::make_pair(c.lower_bound(val),
737
       *                   c.upper_bound(val))
738
       *  @endcode
739
       *  (but is faster than making the calls separately).
740
       */
741
      std::pair<const_iterator, const_iterator>
742
      equal_range(const key_type& __x) const
743
      { return _M_t.equal_range(__x); }
744
 
745
      template<typename _K1, typename _T1, typename _C1, typename _A1>
746
        friend bool
747
        operator==(const multimap<_K1, _T1, _C1, _A1>&,
748
                   const multimap<_K1, _T1, _C1, _A1>&);
749
 
750
      template<typename _K1, typename _T1, typename _C1, typename _A1>
751
        friend bool
752
        operator<(const multimap<_K1, _T1, _C1, _A1>&,
753
                  const multimap<_K1, _T1, _C1, _A1>&);
754
  };
755
 
756
  /**
757
   *  @brief  Multimap equality comparison.
758
   *  @param  x  A %multimap.
759
   *  @param  y  A %multimap of the same type as @a x.
760
   *  @return  True iff the size and elements of the maps are equal.
761
   *
762
   *  This is an equivalence relation.  It is linear in the size of the
763
   *  multimaps.  Multimaps are considered equivalent if their sizes are equal,
764
   *  and if corresponding elements compare equal.
765
  */
766
  template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
767
    inline bool
768
    operator==(const multimap<_Key, _Tp, _Compare, _Alloc>& __x,
769
               const multimap<_Key, _Tp, _Compare, _Alloc>& __y)
770
    { return __x._M_t == __y._M_t; }
771
 
772
  /**
773
   *  @brief  Multimap ordering relation.
774
   *  @param  x  A %multimap.
775
   *  @param  y  A %multimap of the same type as @a x.
776
   *  @return  True iff @a x is lexicographically less than @a y.
777
   *
778
   *  This is a total ordering relation.  It is linear in the size of the
779
   *  multimaps.  The elements must be comparable with @c <.
780
   *
781
   *  See std::lexicographical_compare() for how the determination is made.
782
  */
783
  template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
784
    inline bool
785
    operator<(const multimap<_Key, _Tp, _Compare, _Alloc>& __x,
786
              const multimap<_Key, _Tp, _Compare, _Alloc>& __y)
787
    { return __x._M_t < __y._M_t; }
788
 
789
  /// Based on operator==
790
  template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
791
    inline bool
792
    operator!=(const multimap<_Key, _Tp, _Compare, _Alloc>& __x,
793
               const multimap<_Key, _Tp, _Compare, _Alloc>& __y)
794
    { return !(__x == __y); }
795
 
796
  /// Based on operator<
797
  template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
798
    inline bool
799
    operator>(const multimap<_Key, _Tp, _Compare, _Alloc>& __x,
800
              const multimap<_Key, _Tp, _Compare, _Alloc>& __y)
801
    { return __y < __x; }
802
 
803
  /// Based on operator<
804
  template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
805
    inline bool
806
    operator<=(const multimap<_Key, _Tp, _Compare, _Alloc>& __x,
807
               const multimap<_Key, _Tp, _Compare, _Alloc>& __y)
808
    { return !(__y < __x); }
809
 
810
  /// Based on operator<
811
  template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
812
    inline bool
813
    operator>=(const multimap<_Key, _Tp, _Compare, _Alloc>& __x,
814
               const multimap<_Key, _Tp, _Compare, _Alloc>& __y)
815
    { return !(__x < __y); }
816
 
817
  /// See std::multimap::swap().
818
  template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
819
    inline void
820
    swap(multimap<_Key, _Tp, _Compare, _Alloc>& __x,
821
         multimap<_Key, _Tp, _Compare, _Alloc>& __y)
822
    { __x.swap(__y); }
823
 
824
_GLIBCXX_END_NESTED_NAMESPACE
825
 
826
#endif /* _STL_MULTIMAP_H */

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.