OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-stable/] [gcc-4.5.1/] [libstdc++-v3/] [include/] [bits/] [stl_set.h] - Blame information for rev 424

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 424 jeremybenn
// Set implementation -*- C++ -*-
2
 
3
// Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4
// Free Software Foundation, Inc.
5
//
6
// This file is part of the GNU ISO C++ Library.  This library is free
7
// software; you can redistribute it and/or modify it under the
8
// terms of the GNU General Public License as published by the
9
// Free Software Foundation; either version 3, or (at your option)
10
// any later version.
11
 
12
// This library is distributed in the hope that it will be useful,
13
// but WITHOUT ANY WARRANTY; without even the implied warranty of
14
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15
// GNU General Public License for more details.
16
 
17
// Under Section 7 of GPL version 3, you are granted additional
18
// permissions described in the GCC Runtime Library Exception, version
19
// 3.1, as published by the Free Software Foundation.
20
 
21
// You should have received a copy of the GNU General Public License and
22
// a copy of the GCC Runtime Library Exception along with this program;
23
// see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
24
// <http://www.gnu.org/licenses/>.
25
 
26
/*
27
 *
28
 * Copyright (c) 1994
29
 * Hewlett-Packard Company
30
 *
31
 * Permission to use, copy, modify, distribute and sell this software
32
 * and its documentation for any purpose is hereby granted without fee,
33
 * provided that the above copyright notice appear in all copies and
34
 * that both that copyright notice and this permission notice appear
35
 * in supporting documentation.  Hewlett-Packard Company makes no
36
 * representations about the suitability of this software for any
37
 * purpose.  It is provided "as is" without express or implied warranty.
38
 *
39
 *
40
 * Copyright (c) 1996,1997
41
 * Silicon Graphics Computer Systems, Inc.
42
 *
43
 * Permission to use, copy, modify, distribute and sell this software
44
 * and its documentation for any purpose is hereby granted without fee,
45
 * provided that the above copyright notice appear in all copies and
46
 * that both that copyright notice and this permission notice appear
47
 * in supporting documentation.  Silicon Graphics makes no
48
 * representations about the suitability of this software for any
49
 * purpose.  It is provided "as is" without express or implied warranty.
50
 */
51
 
52
/** @file stl_set.h
53
 *  This is an internal header file, included by other library headers.
54
 *  You should not attempt to use it directly.
55
 */
56
 
57
#ifndef _STL_SET_H
58
#define _STL_SET_H 1
59
 
60
#include <bits/concept_check.h>
61
#include <initializer_list>
62
 
63
_GLIBCXX_BEGIN_NESTED_NAMESPACE(std, _GLIBCXX_STD_D)
64
 
65
  /**
66
   *  @brief A standard container made up of unique keys, which can be
67
   *  retrieved in logarithmic time.
68
   *
69
   *  @ingroup associative_containers
70
   *
71
   *  Meets the requirements of a <a href="tables.html#65">container</a>, a
72
   *  <a href="tables.html#66">reversible container</a>, and an
73
   *  <a href="tables.html#69">associative container</a> (using unique keys).
74
   *
75
   *  Sets support bidirectional iterators.
76
   *
77
   *  @param  Key  Type of key objects.
78
   *  @param  Compare  Comparison function object type, defaults to less<Key>.
79
   *  @param  Alloc  Allocator type, defaults to allocator<Key>.
80
   *
81
   *  The private tree data is declared exactly the same way for set and
82
   *  multiset; the distinction is made entirely in how the tree functions are
83
   *  called (*_unique versus *_equal, same as the standard).
84
  */
85
  template<typename _Key, typename _Compare = std::less<_Key>,
86
           typename _Alloc = std::allocator<_Key> >
87
    class set
88
    {
89
      // concept requirements
90
      typedef typename _Alloc::value_type                   _Alloc_value_type;
91
      __glibcxx_class_requires(_Key, _SGIAssignableConcept)
92
      __glibcxx_class_requires4(_Compare, bool, _Key, _Key,
93
                                _BinaryFunctionConcept)
94
      __glibcxx_class_requires2(_Key, _Alloc_value_type, _SameTypeConcept)
95
 
96
    public:
97
      // typedefs:
98
      //@{
99
      /// Public typedefs.
100
      typedef _Key     key_type;
101
      typedef _Key     value_type;
102
      typedef _Compare key_compare;
103
      typedef _Compare value_compare;
104
      typedef _Alloc   allocator_type;
105
      //@}
106
 
107
    private:
108
      typedef typename _Alloc::template rebind<_Key>::other _Key_alloc_type;
109
 
110
      typedef _Rb_tree<key_type, value_type, _Identity<value_type>,
111
                       key_compare, _Key_alloc_type> _Rep_type;
112
      _Rep_type _M_t;  // Red-black tree representing set.
113
 
114
    public:
115
      //@{
116
      ///  Iterator-related typedefs.
117
      typedef typename _Key_alloc_type::pointer             pointer;
118
      typedef typename _Key_alloc_type::const_pointer       const_pointer;
119
      typedef typename _Key_alloc_type::reference           reference;
120
      typedef typename _Key_alloc_type::const_reference     const_reference;
121
      // _GLIBCXX_RESOLVE_LIB_DEFECTS
122
      // DR 103. set::iterator is required to be modifiable,
123
      // but this allows modification of keys.
124
      typedef typename _Rep_type::const_iterator            iterator;
125
      typedef typename _Rep_type::const_iterator            const_iterator;
126
      typedef typename _Rep_type::const_reverse_iterator    reverse_iterator;
127
      typedef typename _Rep_type::const_reverse_iterator    const_reverse_iterator;
128
      typedef typename _Rep_type::size_type                 size_type;
129
      typedef typename _Rep_type::difference_type           difference_type;
130
      //@}
131
 
132
      // allocation/deallocation
133
      /**
134
       *  @brief  Default constructor creates no elements.
135
       */
136
      set()
137
      : _M_t() { }
138
 
139
      /**
140
       *  @brief  Creates a %set with no elements.
141
       *  @param  comp  Comparator to use.
142
       *  @param  a  An allocator object.
143
       */
144
      explicit
145
      set(const _Compare& __comp,
146
          const allocator_type& __a = allocator_type())
147
      : _M_t(__comp, __a) { }
148
 
149
      /**
150
       *  @brief  Builds a %set from a range.
151
       *  @param  first  An input iterator.
152
       *  @param  last  An input iterator.
153
       *
154
       *  Create a %set consisting of copies of the elements from [first,last).
155
       *  This is linear in N if the range is already sorted, and NlogN
156
       *  otherwise (where N is distance(first,last)).
157
       */
158
      template<typename _InputIterator>
159
        set(_InputIterator __first, _InputIterator __last)
160
        : _M_t()
161
        { _M_t._M_insert_unique(__first, __last); }
162
 
163
      /**
164
       *  @brief  Builds a %set from a range.
165
       *  @param  first  An input iterator.
166
       *  @param  last  An input iterator.
167
       *  @param  comp  A comparison functor.
168
       *  @param  a  An allocator object.
169
       *
170
       *  Create a %set consisting of copies of the elements from [first,last).
171
       *  This is linear in N if the range is already sorted, and NlogN
172
       *  otherwise (where N is distance(first,last)).
173
       */
174
      template<typename _InputIterator>
175
        set(_InputIterator __first, _InputIterator __last,
176
            const _Compare& __comp,
177
            const allocator_type& __a = allocator_type())
178
        : _M_t(__comp, __a)
179
        { _M_t._M_insert_unique(__first, __last); }
180
 
181
      /**
182
       *  @brief  %Set copy constructor.
183
       *  @param  x  A %set of identical element and allocator types.
184
       *
185
       *  The newly-created %set uses a copy of the allocation object used
186
       *  by @a x.
187
       */
188
      set(const set& __x)
189
      : _M_t(__x._M_t) { }
190
 
191
#ifdef __GXX_EXPERIMENTAL_CXX0X__
192
     /**
193
       *  @brief %Set move constructor
194
       *  @param x  A %set of identical element and allocator types.
195
       *
196
       *  The newly-created %set contains the exact contents of @a x.
197
       *  The contents of @a x are a valid, but unspecified %set.
198
       */
199
      set(set&& __x)
200
      : _M_t(std::forward<_Rep_type>(__x._M_t)) { }
201
 
202
      /**
203
       *  @brief  Builds a %set from an initializer_list.
204
       *  @param  l  An initializer_list.
205
       *  @param  comp  A comparison functor.
206
       *  @param  a  An allocator object.
207
       *
208
       *  Create a %set consisting of copies of the elements in the list.
209
       *  This is linear in N if the list is already sorted, and NlogN
210
       *  otherwise (where N is @a l.size()).
211
       */
212
      set(initializer_list<value_type> __l,
213
          const _Compare& __comp = _Compare(),
214
          const allocator_type& __a = allocator_type())
215
      : _M_t(__comp, __a)
216
      { _M_t._M_insert_unique(__l.begin(), __l.end()); }
217
#endif
218
 
219
      /**
220
       *  @brief  %Set assignment operator.
221
       *  @param  x  A %set of identical element and allocator types.
222
       *
223
       *  All the elements of @a x are copied, but unlike the copy constructor,
224
       *  the allocator object is not copied.
225
       */
226
      set&
227
      operator=(const set& __x)
228
      {
229
        _M_t = __x._M_t;
230
        return *this;
231
      }
232
 
233
#ifdef __GXX_EXPERIMENTAL_CXX0X__
234
      /**
235
       *  @brief %Set move assignment operator.
236
       *  @param x  A %set of identical element and allocator types.
237
       *
238
       *  The contents of @a x are moved into this %set (without copying).
239
       *  @a x is a valid, but unspecified %set.
240
       */
241
      set&
242
      operator=(set&& __x)
243
      {
244
        // NB: DR 1204.
245
        // NB: DR 675.
246
        this->clear();
247
        this->swap(__x);
248
        return *this;
249
      }
250
 
251
      /**
252
       *  @brief  %Set list assignment operator.
253
       *  @param  l  An initializer_list.
254
       *
255
       *  This function fills a %set with copies of the elements in the
256
       *  initializer list @a l.
257
       *
258
       *  Note that the assignment completely changes the %set and
259
       *  that the resulting %set's size is the same as the number
260
       *  of elements assigned.  Old data may be lost.
261
       */
262
      set&
263
      operator=(initializer_list<value_type> __l)
264
      {
265
        this->clear();
266
        this->insert(__l.begin(), __l.end());
267
        return *this;
268
      }
269
#endif
270
 
271
      // accessors:
272
 
273
      ///  Returns the comparison object with which the %set was constructed.
274
      key_compare
275
      key_comp() const
276
      { return _M_t.key_comp(); }
277
      ///  Returns the comparison object with which the %set was constructed.
278
      value_compare
279
      value_comp() const
280
      { return _M_t.key_comp(); }
281
      ///  Returns the allocator object with which the %set was constructed.
282
      allocator_type
283
      get_allocator() const
284
      { return _M_t.get_allocator(); }
285
 
286
      /**
287
       *  Returns a read-only (constant) iterator that points to the first
288
       *  element in the %set.  Iteration is done in ascending order according
289
       *  to the keys.
290
       */
291
      iterator
292
      begin() const
293
      { return _M_t.begin(); }
294
 
295
      /**
296
       *  Returns a read-only (constant) iterator that points one past the last
297
       *  element in the %set.  Iteration is done in ascending order according
298
       *  to the keys.
299
       */
300
      iterator
301
      end() const
302
      { return _M_t.end(); }
303
 
304
      /**
305
       *  Returns a read-only (constant) iterator that points to the last
306
       *  element in the %set.  Iteration is done in descending order according
307
       *  to the keys.
308
       */
309
      reverse_iterator
310
      rbegin() const
311
      { return _M_t.rbegin(); }
312
 
313
      /**
314
       *  Returns a read-only (constant) reverse iterator that points to the
315
       *  last pair in the %set.  Iteration is done in descending order
316
       *  according to the keys.
317
       */
318
      reverse_iterator
319
      rend() const
320
      { return _M_t.rend(); }
321
 
322
#ifdef __GXX_EXPERIMENTAL_CXX0X__
323
      /**
324
       *  Returns a read-only (constant) iterator that points to the first
325
       *  element in the %set.  Iteration is done in ascending order according
326
       *  to the keys.
327
       */
328
      iterator
329
      cbegin() const
330
      { return _M_t.begin(); }
331
 
332
      /**
333
       *  Returns a read-only (constant) iterator that points one past the last
334
       *  element in the %set.  Iteration is done in ascending order according
335
       *  to the keys.
336
       */
337
      iterator
338
      cend() const
339
      { return _M_t.end(); }
340
 
341
      /**
342
       *  Returns a read-only (constant) iterator that points to the last
343
       *  element in the %set.  Iteration is done in descending order according
344
       *  to the keys.
345
       */
346
      reverse_iterator
347
      crbegin() const
348
      { return _M_t.rbegin(); }
349
 
350
      /**
351
       *  Returns a read-only (constant) reverse iterator that points to the
352
       *  last pair in the %set.  Iteration is done in descending order
353
       *  according to the keys.
354
       */
355
      reverse_iterator
356
      crend() const
357
      { return _M_t.rend(); }
358
#endif
359
 
360
      ///  Returns true if the %set is empty.
361
      bool
362
      empty() const
363
      { return _M_t.empty(); }
364
 
365
      ///  Returns the size of the %set.
366
      size_type
367
      size() const
368
      { return _M_t.size(); }
369
 
370
      ///  Returns the maximum size of the %set.
371
      size_type
372
      max_size() const
373
      { return _M_t.max_size(); }
374
 
375
      /**
376
       *  @brief  Swaps data with another %set.
377
       *  @param  x  A %set of the same element and allocator types.
378
       *
379
       *  This exchanges the elements between two sets in constant time.
380
       *  (It is only swapping a pointer, an integer, and an instance of
381
       *  the @c Compare type (which itself is often stateless and empty), so it
382
       *  should be quite fast.)
383
       *  Note that the global std::swap() function is specialized such that
384
       *  std::swap(s1,s2) will feed to this function.
385
       */
386
      void
387
      swap(set& __x)
388
      { _M_t.swap(__x._M_t); }
389
 
390
      // insert/erase
391
      /**
392
       *  @brief Attempts to insert an element into the %set.
393
       *  @param  x  Element to be inserted.
394
       *  @return  A pair, of which the first element is an iterator that points
395
       *           to the possibly inserted element, and the second is a bool
396
       *           that is true if the element was actually inserted.
397
       *
398
       *  This function attempts to insert an element into the %set.  A %set
399
       *  relies on unique keys and thus an element is only inserted if it is
400
       *  not already present in the %set.
401
       *
402
       *  Insertion requires logarithmic time.
403
       */
404
      std::pair<iterator, bool>
405
      insert(const value_type& __x)
406
      {
407
        std::pair<typename _Rep_type::iterator, bool> __p =
408
          _M_t._M_insert_unique(__x);
409
        return std::pair<iterator, bool>(__p.first, __p.second);
410
      }
411
 
412
      /**
413
       *  @brief Attempts to insert an element into the %set.
414
       *  @param  position  An iterator that serves as a hint as to where the
415
       *                    element should be inserted.
416
       *  @param  x  Element to be inserted.
417
       *  @return  An iterator that points to the element with key of @a x (may
418
       *           or may not be the element passed in).
419
       *
420
       *  This function is not concerned about whether the insertion took place,
421
       *  and thus does not return a boolean like the single-argument insert()
422
       *  does.  Note that the first parameter is only a hint and can
423
       *  potentially improve the performance of the insertion process.  A bad
424
       *  hint would cause no gains in efficiency.
425
       *
426
       *  For more on @a hinting, see:
427
       *  http://gcc.gnu.org/onlinedocs/libstdc++/manual/bk01pt07ch17.html
428
       *
429
       *  Insertion requires logarithmic time (if the hint is not taken).
430
       */
431
      iterator
432
      insert(iterator __position, const value_type& __x)
433
      { return _M_t._M_insert_unique_(__position, __x); }
434
 
435
      /**
436
       *  @brief A template function that attempts to insert a range
437
       *  of elements.
438
       *  @param  first  Iterator pointing to the start of the range to be
439
       *                 inserted.
440
       *  @param  last  Iterator pointing to the end of the range.
441
       *
442
       *  Complexity similar to that of the range constructor.
443
       */
444
      template<typename _InputIterator>
445
        void
446
        insert(_InputIterator __first, _InputIterator __last)
447
        { _M_t._M_insert_unique(__first, __last); }
448
 
449
#ifdef __GXX_EXPERIMENTAL_CXX0X__
450
      /**
451
       *  @brief Attempts to insert a list of elements into the %set.
452
       *  @param  list  A std::initializer_list<value_type> of elements
453
       *                to be inserted.
454
       *
455
       *  Complexity similar to that of the range constructor.
456
       */
457
      void
458
      insert(initializer_list<value_type> __l)
459
      { this->insert(__l.begin(), __l.end()); }
460
#endif
461
 
462
#ifdef __GXX_EXPERIMENTAL_CXX0X__
463
      // _GLIBCXX_RESOLVE_LIB_DEFECTS
464
      // DR 130. Associative erase should return an iterator.
465
      /**
466
       *  @brief Erases an element from a %set.
467
       *  @param  position  An iterator pointing to the element to be erased.
468
       *  @return An iterator pointing to the element immediately following
469
       *          @a position prior to the element being erased. If no such
470
       *          element exists, end() is returned.
471
       *
472
       *  This function erases an element, pointed to by the given iterator,
473
       *  from a %set.  Note that this function only erases the element, and
474
       *  that if the element is itself a pointer, the pointed-to memory is not
475
       *  touched in any way.  Managing the pointer is the user's responsibility.
476
       */
477
      iterator
478
      erase(iterator __position)
479
      { return _M_t.erase(__position); }
480
#else
481
      /**
482
       *  @brief Erases an element from a %set.
483
       *  @param  position  An iterator pointing to the element to be erased.
484
       *
485
       *  This function erases an element, pointed to by the given iterator,
486
       *  from a %set.  Note that this function only erases the element, and
487
       *  that if the element is itself a pointer, the pointed-to memory is not
488
       *  touched in any way.  Managing the pointer is the user's responsibility.
489
       */
490
      void
491
      erase(iterator __position)
492
      { _M_t.erase(__position); }
493
#endif
494
 
495
      /**
496
       *  @brief Erases elements according to the provided key.
497
       *  @param  x  Key of element to be erased.
498
       *  @return  The number of elements erased.
499
       *
500
       *  This function erases all the elements located by the given key from
501
       *  a %set.
502
       *  Note that this function only erases the element, and that if
503
       *  the element is itself a pointer, the pointed-to memory is not touched
504
       *  in any way.  Managing the pointer is the user's responsibility.
505
       */
506
      size_type
507
      erase(const key_type& __x)
508
      { return _M_t.erase(__x); }
509
 
510
#ifdef __GXX_EXPERIMENTAL_CXX0X__
511
      // _GLIBCXX_RESOLVE_LIB_DEFECTS
512
      // DR 130. Associative erase should return an iterator.
513
      /**
514
       *  @brief Erases a [first,last) range of elements from a %set.
515
       *  @param  first  Iterator pointing to the start of the range to be
516
       *                 erased.
517
       *  @param  last  Iterator pointing to the end of the range to be erased.
518
       *  @return The iterator @a last.
519
       *
520
       *  This function erases a sequence of elements from a %set.
521
       *  Note that this function only erases the element, and that if
522
       *  the element is itself a pointer, the pointed-to memory is not touched
523
       *  in any way.  Managing the pointer is the user's responsibility.
524
       */
525
      iterator
526
      erase(iterator __first, iterator __last)
527
      { return _M_t.erase(__first, __last); }
528
#else
529
      /**
530
       *  @brief Erases a [first,last) range of elements from a %set.
531
       *  @param  first  Iterator pointing to the start of the range to be
532
       *                 erased.
533
       *  @param  last  Iterator pointing to the end of the range to be erased.
534
       *
535
       *  This function erases a sequence of elements from a %set.
536
       *  Note that this function only erases the element, and that if
537
       *  the element is itself a pointer, the pointed-to memory is not touched
538
       *  in any way.  Managing the pointer is the user's responsibility.
539
       */
540
      void
541
      erase(iterator __first, iterator __last)
542
      { _M_t.erase(__first, __last); }
543
#endif
544
 
545
      /**
546
       *  Erases all elements in a %set.  Note that this function only erases
547
       *  the elements, and that if the elements themselves are pointers, the
548
       *  pointed-to memory is not touched in any way.  Managing the pointer is
549
       *  the user's responsibility.
550
       */
551
      void
552
      clear()
553
      { _M_t.clear(); }
554
 
555
      // set operations:
556
 
557
      /**
558
       *  @brief  Finds the number of elements.
559
       *  @param  x  Element to located.
560
       *  @return  Number of elements with specified key.
561
       *
562
       *  This function only makes sense for multisets; for set the result will
563
       *  either be 0 (not present) or 1 (present).
564
       */
565
      size_type
566
      count(const key_type& __x) const
567
      { return _M_t.find(__x) == _M_t.end() ? 0 : 1; }
568
 
569
      // _GLIBCXX_RESOLVE_LIB_DEFECTS
570
      // 214.  set::find() missing const overload
571
      //@{
572
      /**
573
       *  @brief Tries to locate an element in a %set.
574
       *  @param  x  Element to be located.
575
       *  @return  Iterator pointing to sought-after element, or end() if not
576
       *           found.
577
       *
578
       *  This function takes a key and tries to locate the element with which
579
       *  the key matches.  If successful the function returns an iterator
580
       *  pointing to the sought after element.  If unsuccessful it returns the
581
       *  past-the-end ( @c end() ) iterator.
582
       */
583
      iterator
584
      find(const key_type& __x)
585
      { return _M_t.find(__x); }
586
 
587
      const_iterator
588
      find(const key_type& __x) const
589
      { return _M_t.find(__x); }
590
      //@}
591
 
592
      //@{
593
      /**
594
       *  @brief Finds the beginning of a subsequence matching given key.
595
       *  @param  x  Key to be located.
596
       *  @return  Iterator pointing to first element equal to or greater
597
       *           than key, or end().
598
       *
599
       *  This function returns the first element of a subsequence of elements
600
       *  that matches the given key.  If unsuccessful it returns an iterator
601
       *  pointing to the first element that has a greater value than given key
602
       *  or end() if no such element exists.
603
       */
604
      iterator
605
      lower_bound(const key_type& __x)
606
      { return _M_t.lower_bound(__x); }
607
 
608
      const_iterator
609
      lower_bound(const key_type& __x) const
610
      { return _M_t.lower_bound(__x); }
611
      //@}
612
 
613
      //@{
614
      /**
615
       *  @brief Finds the end of a subsequence matching given key.
616
       *  @param  x  Key to be located.
617
       *  @return Iterator pointing to the first element
618
       *          greater than key, or end().
619
       */
620
      iterator
621
      upper_bound(const key_type& __x)
622
      { return _M_t.upper_bound(__x); }
623
 
624
      const_iterator
625
      upper_bound(const key_type& __x) const
626
      { return _M_t.upper_bound(__x); }
627
      //@}
628
 
629
      //@{
630
      /**
631
       *  @brief Finds a subsequence matching given key.
632
       *  @param  x  Key to be located.
633
       *  @return  Pair of iterators that possibly points to the subsequence
634
       *           matching given key.
635
       *
636
       *  This function is equivalent to
637
       *  @code
638
       *    std::make_pair(c.lower_bound(val),
639
       *                   c.upper_bound(val))
640
       *  @endcode
641
       *  (but is faster than making the calls separately).
642
       *
643
       *  This function probably only makes sense for multisets.
644
       */
645
      std::pair<iterator, iterator>
646
      equal_range(const key_type& __x)
647
      { return _M_t.equal_range(__x); }
648
 
649
      std::pair<const_iterator, const_iterator>
650
      equal_range(const key_type& __x) const
651
      { return _M_t.equal_range(__x); }
652
      //@}
653
 
654
      template<typename _K1, typename _C1, typename _A1>
655
        friend bool
656
        operator==(const set<_K1, _C1, _A1>&, const set<_K1, _C1, _A1>&);
657
 
658
      template<typename _K1, typename _C1, typename _A1>
659
        friend bool
660
        operator<(const set<_K1, _C1, _A1>&, const set<_K1, _C1, _A1>&);
661
    };
662
 
663
 
664
  /**
665
   *  @brief  Set equality comparison.
666
   *  @param  x  A %set.
667
   *  @param  y  A %set of the same type as @a x.
668
   *  @return  True iff the size and elements of the sets are equal.
669
   *
670
   *  This is an equivalence relation.  It is linear in the size of the sets.
671
   *  Sets are considered equivalent if their sizes are equal, and if
672
   *  corresponding elements compare equal.
673
  */
674
  template<typename _Key, typename _Compare, typename _Alloc>
675
    inline bool
676
    operator==(const set<_Key, _Compare, _Alloc>& __x,
677
               const set<_Key, _Compare, _Alloc>& __y)
678
    { return __x._M_t == __y._M_t; }
679
 
680
  /**
681
   *  @brief  Set ordering relation.
682
   *  @param  x  A %set.
683
   *  @param  y  A %set of the same type as @a x.
684
   *  @return  True iff @a x is lexicographically less than @a y.
685
   *
686
   *  This is a total ordering relation.  It is linear in the size of the
687
   *  maps.  The elements must be comparable with @c <.
688
   *
689
   *  See std::lexicographical_compare() for how the determination is made.
690
  */
691
  template<typename _Key, typename _Compare, typename _Alloc>
692
    inline bool
693
    operator<(const set<_Key, _Compare, _Alloc>& __x,
694
              const set<_Key, _Compare, _Alloc>& __y)
695
    { return __x._M_t < __y._M_t; }
696
 
697
  ///  Returns !(x == y).
698
  template<typename _Key, typename _Compare, typename _Alloc>
699
    inline bool
700
    operator!=(const set<_Key, _Compare, _Alloc>& __x,
701
               const set<_Key, _Compare, _Alloc>& __y)
702
    { return !(__x == __y); }
703
 
704
  ///  Returns y < x.
705
  template<typename _Key, typename _Compare, typename _Alloc>
706
    inline bool
707
    operator>(const set<_Key, _Compare, _Alloc>& __x,
708
              const set<_Key, _Compare, _Alloc>& __y)
709
    { return __y < __x; }
710
 
711
  ///  Returns !(y < x)
712
  template<typename _Key, typename _Compare, typename _Alloc>
713
    inline bool
714
    operator<=(const set<_Key, _Compare, _Alloc>& __x,
715
               const set<_Key, _Compare, _Alloc>& __y)
716
    { return !(__y < __x); }
717
 
718
  ///  Returns !(x < y)
719
  template<typename _Key, typename _Compare, typename _Alloc>
720
    inline bool
721
    operator>=(const set<_Key, _Compare, _Alloc>& __x,
722
               const set<_Key, _Compare, _Alloc>& __y)
723
    { return !(__x < __y); }
724
 
725
  /// See std::set::swap().
726
  template<typename _Key, typename _Compare, typename _Alloc>
727
    inline void
728
    swap(set<_Key, _Compare, _Alloc>& __x, set<_Key, _Compare, _Alloc>& __y)
729
    { __x.swap(__y); }
730
 
731
_GLIBCXX_END_NESTED_NAMESPACE
732
 
733
#endif /* _STL_SET_H */

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.