OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-stable/] [gdb-7.2/] [bfd/] [elf32-arm.c] - Blame information for rev 865

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 330 jeremybenn
/* 32-bit ELF support for ARM
2
   Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
3
   2008, 2009, 2010  Free Software Foundation, Inc.
4
 
5
   This file is part of BFD, the Binary File Descriptor library.
6
 
7
   This program is free software; you can redistribute it and/or modify
8
   it under the terms of the GNU General Public License as published by
9
   the Free Software Foundation; either version 3 of the License, or
10
   (at your option) any later version.
11
 
12
   This program is distributed in the hope that it will be useful,
13
   but WITHOUT ANY WARRANTY; without even the implied warranty of
14
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15
   GNU General Public License for more details.
16
 
17
   You should have received a copy of the GNU General Public License
18
   along with this program; if not, write to the Free Software
19
   Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20
   MA 02110-1301, USA.  */
21
 
22
#include "sysdep.h"
23
#include <limits.h>
24
 
25
#include "bfd.h"
26
#include "libiberty.h"
27
#include "libbfd.h"
28
#include "elf-bfd.h"
29
#include "elf-vxworks.h"
30
#include "elf/arm.h"
31
 
32
/* Return the relocation section associated with NAME.  HTAB is the
33
   bfd's elf32_arm_link_hash_entry.  */
34
#define RELOC_SECTION(HTAB, NAME) \
35
  ((HTAB)->use_rel ? ".rel" NAME : ".rela" NAME)
36
 
37
/* Return size of a relocation entry.  HTAB is the bfd's
38
   elf32_arm_link_hash_entry.  */
39
#define RELOC_SIZE(HTAB) \
40
  ((HTAB)->use_rel \
41
   ? sizeof (Elf32_External_Rel) \
42
   : sizeof (Elf32_External_Rela))
43
 
44
/* Return function to swap relocations in.  HTAB is the bfd's
45
   elf32_arm_link_hash_entry.  */
46
#define SWAP_RELOC_IN(HTAB) \
47
  ((HTAB)->use_rel \
48
   ? bfd_elf32_swap_reloc_in \
49
   : bfd_elf32_swap_reloca_in)
50
 
51
/* Return function to swap relocations out.  HTAB is the bfd's
52
   elf32_arm_link_hash_entry.  */
53
#define SWAP_RELOC_OUT(HTAB) \
54
  ((HTAB)->use_rel \
55
   ? bfd_elf32_swap_reloc_out \
56
   : bfd_elf32_swap_reloca_out)
57
 
58
#define elf_info_to_howto               0
59
#define elf_info_to_howto_rel           elf32_arm_info_to_howto
60
 
61
#define ARM_ELF_ABI_VERSION             0
62
#define ARM_ELF_OS_ABI_VERSION          ELFOSABI_ARM
63
 
64
static bfd_boolean elf32_arm_write_section (bfd *output_bfd,
65
                                            struct bfd_link_info *link_info,
66
                                            asection *sec,
67
                                            bfd_byte *contents);
68
 
69
/* Note: code such as elf32_arm_reloc_type_lookup expect to use e.g.
70
   R_ARM_PC24 as an index into this, and find the R_ARM_PC24 HOWTO
71
   in that slot.  */
72
 
73
static reloc_howto_type elf32_arm_howto_table_1[] =
74
{
75
  /* No relocation.  */
76
  HOWTO (R_ARM_NONE,            /* type */
77
         0,                      /* rightshift */
78
         0,                      /* size (0 = byte, 1 = short, 2 = long) */
79
         0,                      /* bitsize */
80
         FALSE,                 /* pc_relative */
81
         0,                      /* bitpos */
82
         complain_overflow_dont,/* complain_on_overflow */
83
         bfd_elf_generic_reloc, /* special_function */
84
         "R_ARM_NONE",          /* name */
85
         FALSE,                 /* partial_inplace */
86
         0,                      /* src_mask */
87
         0,                      /* dst_mask */
88
         FALSE),                /* pcrel_offset */
89
 
90
  HOWTO (R_ARM_PC24,            /* type */
91
         2,                     /* rightshift */
92
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
93
         24,                    /* bitsize */
94
         TRUE,                  /* pc_relative */
95
         0,                      /* bitpos */
96
         complain_overflow_signed,/* complain_on_overflow */
97
         bfd_elf_generic_reloc, /* special_function */
98
         "R_ARM_PC24",          /* name */
99
         FALSE,                 /* partial_inplace */
100
         0x00ffffff,            /* src_mask */
101
         0x00ffffff,            /* dst_mask */
102
         TRUE),                 /* pcrel_offset */
103
 
104
  /* 32 bit absolute */
105
  HOWTO (R_ARM_ABS32,           /* type */
106
         0,                      /* rightshift */
107
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
108
         32,                    /* bitsize */
109
         FALSE,                 /* pc_relative */
110
         0,                      /* bitpos */
111
         complain_overflow_bitfield,/* complain_on_overflow */
112
         bfd_elf_generic_reloc, /* special_function */
113
         "R_ARM_ABS32",         /* name */
114
         FALSE,                 /* partial_inplace */
115
         0xffffffff,            /* src_mask */
116
         0xffffffff,            /* dst_mask */
117
         FALSE),                /* pcrel_offset */
118
 
119
  /* standard 32bit pc-relative reloc */
120
  HOWTO (R_ARM_REL32,           /* type */
121
         0,                      /* rightshift */
122
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
123
         32,                    /* bitsize */
124
         TRUE,                  /* pc_relative */
125
         0,                      /* bitpos */
126
         complain_overflow_bitfield,/* complain_on_overflow */
127
         bfd_elf_generic_reloc, /* special_function */
128
         "R_ARM_REL32",         /* name */
129
         FALSE,                 /* partial_inplace */
130
         0xffffffff,            /* src_mask */
131
         0xffffffff,            /* dst_mask */
132
         TRUE),                 /* pcrel_offset */
133
 
134
  /* 8 bit absolute - R_ARM_LDR_PC_G0 in AAELF */
135
  HOWTO (R_ARM_LDR_PC_G0,       /* type */
136
         0,                      /* rightshift */
137
         0,                      /* size (0 = byte, 1 = short, 2 = long) */
138
         32,                    /* bitsize */
139
         TRUE,                  /* pc_relative */
140
         0,                      /* bitpos */
141
         complain_overflow_dont,/* complain_on_overflow */
142
         bfd_elf_generic_reloc, /* special_function */
143
         "R_ARM_LDR_PC_G0",     /* name */
144
         FALSE,                 /* partial_inplace */
145
         0xffffffff,            /* src_mask */
146
         0xffffffff,            /* dst_mask */
147
         TRUE),                 /* pcrel_offset */
148
 
149
   /* 16 bit absolute */
150
  HOWTO (R_ARM_ABS16,           /* type */
151
         0,                      /* rightshift */
152
         1,                     /* size (0 = byte, 1 = short, 2 = long) */
153
         16,                    /* bitsize */
154
         FALSE,                 /* pc_relative */
155
         0,                      /* bitpos */
156
         complain_overflow_bitfield,/* complain_on_overflow */
157
         bfd_elf_generic_reloc, /* special_function */
158
         "R_ARM_ABS16",         /* name */
159
         FALSE,                 /* partial_inplace */
160
         0x0000ffff,            /* src_mask */
161
         0x0000ffff,            /* dst_mask */
162
         FALSE),                /* pcrel_offset */
163
 
164
  /* 12 bit absolute */
165
  HOWTO (R_ARM_ABS12,           /* type */
166
         0,                      /* rightshift */
167
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
168
         12,                    /* bitsize */
169
         FALSE,                 /* pc_relative */
170
         0,                      /* bitpos */
171
         complain_overflow_bitfield,/* complain_on_overflow */
172
         bfd_elf_generic_reloc, /* special_function */
173
         "R_ARM_ABS12",         /* name */
174
         FALSE,                 /* partial_inplace */
175
         0x00000fff,            /* src_mask */
176
         0x00000fff,            /* dst_mask */
177
         FALSE),                /* pcrel_offset */
178
 
179
  HOWTO (R_ARM_THM_ABS5,        /* type */
180
         6,                     /* rightshift */
181
         1,                     /* size (0 = byte, 1 = short, 2 = long) */
182
         5,                     /* bitsize */
183
         FALSE,                 /* pc_relative */
184
         0,                      /* bitpos */
185
         complain_overflow_bitfield,/* complain_on_overflow */
186
         bfd_elf_generic_reloc, /* special_function */
187
         "R_ARM_THM_ABS5",      /* name */
188
         FALSE,                 /* partial_inplace */
189
         0x000007e0,            /* src_mask */
190
         0x000007e0,            /* dst_mask */
191
         FALSE),                /* pcrel_offset */
192
 
193
  /* 8 bit absolute */
194
  HOWTO (R_ARM_ABS8,            /* type */
195
         0,                      /* rightshift */
196
         0,                      /* size (0 = byte, 1 = short, 2 = long) */
197
         8,                     /* bitsize */
198
         FALSE,                 /* pc_relative */
199
         0,                      /* bitpos */
200
         complain_overflow_bitfield,/* complain_on_overflow */
201
         bfd_elf_generic_reloc, /* special_function */
202
         "R_ARM_ABS8",          /* name */
203
         FALSE,                 /* partial_inplace */
204
         0x000000ff,            /* src_mask */
205
         0x000000ff,            /* dst_mask */
206
         FALSE),                /* pcrel_offset */
207
 
208
  HOWTO (R_ARM_SBREL32,         /* type */
209
         0,                      /* rightshift */
210
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
211
         32,                    /* bitsize */
212
         FALSE,                 /* pc_relative */
213
         0,                      /* bitpos */
214
         complain_overflow_dont,/* complain_on_overflow */
215
         bfd_elf_generic_reloc, /* special_function */
216
         "R_ARM_SBREL32",       /* name */
217
         FALSE,                 /* partial_inplace */
218
         0xffffffff,            /* src_mask */
219
         0xffffffff,            /* dst_mask */
220
         FALSE),                /* pcrel_offset */
221
 
222
  HOWTO (R_ARM_THM_CALL,        /* type */
223
         1,                     /* rightshift */
224
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
225
         24,                    /* bitsize */
226
         TRUE,                  /* pc_relative */
227
         0,                      /* bitpos */
228
         complain_overflow_signed,/* complain_on_overflow */
229
         bfd_elf_generic_reloc, /* special_function */
230
         "R_ARM_THM_CALL",      /* name */
231
         FALSE,                 /* partial_inplace */
232
         0x07ff07ff,            /* src_mask */
233
         0x07ff07ff,            /* dst_mask */
234
         TRUE),                 /* pcrel_offset */
235
 
236
  HOWTO (R_ARM_THM_PC8,         /* type */
237
         1,                     /* rightshift */
238
         1,                     /* size (0 = byte, 1 = short, 2 = long) */
239
         8,                     /* bitsize */
240
         TRUE,                  /* pc_relative */
241
         0,                      /* bitpos */
242
         complain_overflow_signed,/* complain_on_overflow */
243
         bfd_elf_generic_reloc, /* special_function */
244
         "R_ARM_THM_PC8",       /* name */
245
         FALSE,                 /* partial_inplace */
246
         0x000000ff,            /* src_mask */
247
         0x000000ff,            /* dst_mask */
248
         TRUE),                 /* pcrel_offset */
249
 
250
  HOWTO (R_ARM_BREL_ADJ,        /* type */
251
         1,                     /* rightshift */
252
         1,                     /* size (0 = byte, 1 = short, 2 = long) */
253
         32,                    /* bitsize */
254
         FALSE,                 /* pc_relative */
255
         0,                      /* bitpos */
256
         complain_overflow_signed,/* complain_on_overflow */
257
         bfd_elf_generic_reloc, /* special_function */
258
         "R_ARM_BREL_ADJ",      /* name */
259
         FALSE,                 /* partial_inplace */
260
         0xffffffff,            /* src_mask */
261
         0xffffffff,            /* dst_mask */
262
         FALSE),                /* pcrel_offset */
263
 
264
  HOWTO (R_ARM_SWI24,           /* type */
265
         0,                      /* rightshift */
266
         0,                      /* size (0 = byte, 1 = short, 2 = long) */
267
         0,                      /* bitsize */
268
         FALSE,                 /* pc_relative */
269
         0,                      /* bitpos */
270
         complain_overflow_signed,/* complain_on_overflow */
271
         bfd_elf_generic_reloc, /* special_function */
272
         "R_ARM_SWI24",         /* name */
273
         FALSE,                 /* partial_inplace */
274
         0x00000000,            /* src_mask */
275
         0x00000000,            /* dst_mask */
276
         FALSE),                /* pcrel_offset */
277
 
278
  HOWTO (R_ARM_THM_SWI8,        /* type */
279
         0,                      /* rightshift */
280
         0,                      /* size (0 = byte, 1 = short, 2 = long) */
281
         0,                      /* bitsize */
282
         FALSE,                 /* pc_relative */
283
         0,                      /* bitpos */
284
         complain_overflow_signed,/* complain_on_overflow */
285
         bfd_elf_generic_reloc, /* special_function */
286
         "R_ARM_SWI8",          /* name */
287
         FALSE,                 /* partial_inplace */
288
         0x00000000,            /* src_mask */
289
         0x00000000,            /* dst_mask */
290
         FALSE),                /* pcrel_offset */
291
 
292
  /* BLX instruction for the ARM.  */
293
  HOWTO (R_ARM_XPC25,           /* type */
294
         2,                     /* rightshift */
295
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
296
         25,                    /* bitsize */
297
         TRUE,                  /* pc_relative */
298
         0,                      /* bitpos */
299
         complain_overflow_signed,/* complain_on_overflow */
300
         bfd_elf_generic_reloc, /* special_function */
301
         "R_ARM_XPC25",         /* name */
302
         FALSE,                 /* partial_inplace */
303
         0x00ffffff,            /* src_mask */
304
         0x00ffffff,            /* dst_mask */
305
         TRUE),                 /* pcrel_offset */
306
 
307
  /* BLX instruction for the Thumb.  */
308
  HOWTO (R_ARM_THM_XPC22,       /* type */
309
         2,                     /* rightshift */
310
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
311
         22,                    /* bitsize */
312
         TRUE,                  /* pc_relative */
313
         0,                      /* bitpos */
314
         complain_overflow_signed,/* complain_on_overflow */
315
         bfd_elf_generic_reloc, /* special_function */
316
         "R_ARM_THM_XPC22",     /* name */
317
         FALSE,                 /* partial_inplace */
318
         0x07ff07ff,            /* src_mask */
319
         0x07ff07ff,            /* dst_mask */
320
         TRUE),                 /* pcrel_offset */
321
 
322
  /* Dynamic TLS relocations.  */
323
 
324
  HOWTO (R_ARM_TLS_DTPMOD32,    /* type */
325
         0,                     /* rightshift */
326
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
327
         32,                    /* bitsize */
328
         FALSE,                 /* pc_relative */
329
         0,                     /* bitpos */
330
         complain_overflow_bitfield,/* complain_on_overflow */
331
         bfd_elf_generic_reloc, /* special_function */
332
         "R_ARM_TLS_DTPMOD32",  /* name */
333
         TRUE,                  /* partial_inplace */
334
         0xffffffff,            /* src_mask */
335
         0xffffffff,            /* dst_mask */
336
         FALSE),                /* pcrel_offset */
337
 
338
  HOWTO (R_ARM_TLS_DTPOFF32,    /* type */
339
         0,                     /* rightshift */
340
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
341
         32,                    /* bitsize */
342
         FALSE,                 /* pc_relative */
343
         0,                     /* bitpos */
344
         complain_overflow_bitfield,/* complain_on_overflow */
345
         bfd_elf_generic_reloc, /* special_function */
346
         "R_ARM_TLS_DTPOFF32",  /* name */
347
         TRUE,                  /* partial_inplace */
348
         0xffffffff,            /* src_mask */
349
         0xffffffff,            /* dst_mask */
350
         FALSE),                /* pcrel_offset */
351
 
352
  HOWTO (R_ARM_TLS_TPOFF32,     /* type */
353
         0,                     /* rightshift */
354
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
355
         32,                    /* bitsize */
356
         FALSE,                 /* pc_relative */
357
         0,                     /* bitpos */
358
         complain_overflow_bitfield,/* complain_on_overflow */
359
         bfd_elf_generic_reloc, /* special_function */
360
         "R_ARM_TLS_TPOFF32",   /* name */
361
         TRUE,                  /* partial_inplace */
362
         0xffffffff,            /* src_mask */
363
         0xffffffff,            /* dst_mask */
364
         FALSE),                /* pcrel_offset */
365
 
366
  /* Relocs used in ARM Linux */
367
 
368
  HOWTO (R_ARM_COPY,            /* type */
369
         0,                     /* rightshift */
370
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
371
         32,                    /* bitsize */
372
         FALSE,                 /* pc_relative */
373
         0,                     /* bitpos */
374
         complain_overflow_bitfield,/* complain_on_overflow */
375
         bfd_elf_generic_reloc, /* special_function */
376
         "R_ARM_COPY",          /* name */
377
         TRUE,                  /* partial_inplace */
378
         0xffffffff,            /* src_mask */
379
         0xffffffff,            /* dst_mask */
380
         FALSE),                /* pcrel_offset */
381
 
382
  HOWTO (R_ARM_GLOB_DAT,        /* type */
383
         0,                     /* rightshift */
384
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
385
         32,                    /* bitsize */
386
         FALSE,                 /* pc_relative */
387
         0,                     /* bitpos */
388
         complain_overflow_bitfield,/* complain_on_overflow */
389
         bfd_elf_generic_reloc, /* special_function */
390
         "R_ARM_GLOB_DAT",      /* name */
391
         TRUE,                  /* partial_inplace */
392
         0xffffffff,            /* src_mask */
393
         0xffffffff,            /* dst_mask */
394
         FALSE),                /* pcrel_offset */
395
 
396
  HOWTO (R_ARM_JUMP_SLOT,       /* type */
397
         0,                     /* rightshift */
398
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
399
         32,                    /* bitsize */
400
         FALSE,                 /* pc_relative */
401
         0,                     /* bitpos */
402
         complain_overflow_bitfield,/* complain_on_overflow */
403
         bfd_elf_generic_reloc, /* special_function */
404
         "R_ARM_JUMP_SLOT",     /* name */
405
         TRUE,                  /* partial_inplace */
406
         0xffffffff,            /* src_mask */
407
         0xffffffff,            /* dst_mask */
408
         FALSE),                /* pcrel_offset */
409
 
410
  HOWTO (R_ARM_RELATIVE,        /* type */
411
         0,                     /* rightshift */
412
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
413
         32,                    /* bitsize */
414
         FALSE,                 /* pc_relative */
415
         0,                     /* bitpos */
416
         complain_overflow_bitfield,/* complain_on_overflow */
417
         bfd_elf_generic_reloc, /* special_function */
418
         "R_ARM_RELATIVE",      /* name */
419
         TRUE,                  /* partial_inplace */
420
         0xffffffff,            /* src_mask */
421
         0xffffffff,            /* dst_mask */
422
         FALSE),                /* pcrel_offset */
423
 
424
  HOWTO (R_ARM_GOTOFF32,        /* type */
425
         0,                     /* rightshift */
426
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
427
         32,                    /* bitsize */
428
         FALSE,                 /* pc_relative */
429
         0,                     /* bitpos */
430
         complain_overflow_bitfield,/* complain_on_overflow */
431
         bfd_elf_generic_reloc, /* special_function */
432
         "R_ARM_GOTOFF32",      /* name */
433
         TRUE,                  /* partial_inplace */
434
         0xffffffff,            /* src_mask */
435
         0xffffffff,            /* dst_mask */
436
         FALSE),                /* pcrel_offset */
437
 
438
  HOWTO (R_ARM_GOTPC,           /* type */
439
         0,                     /* rightshift */
440
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
441
         32,                    /* bitsize */
442
         TRUE,                  /* pc_relative */
443
         0,                     /* bitpos */
444
         complain_overflow_bitfield,/* complain_on_overflow */
445
         bfd_elf_generic_reloc, /* special_function */
446
         "R_ARM_GOTPC",         /* name */
447
         TRUE,                  /* partial_inplace */
448
         0xffffffff,            /* src_mask */
449
         0xffffffff,            /* dst_mask */
450
         TRUE),                 /* pcrel_offset */
451
 
452
  HOWTO (R_ARM_GOT32,           /* type */
453
         0,                     /* rightshift */
454
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
455
         32,                    /* bitsize */
456
         FALSE,                 /* pc_relative */
457
         0,                     /* bitpos */
458
         complain_overflow_bitfield,/* complain_on_overflow */
459
         bfd_elf_generic_reloc, /* special_function */
460
         "R_ARM_GOT32",         /* name */
461
         TRUE,                  /* partial_inplace */
462
         0xffffffff,            /* src_mask */
463
         0xffffffff,            /* dst_mask */
464
         FALSE),                /* pcrel_offset */
465
 
466
  HOWTO (R_ARM_PLT32,           /* type */
467
         2,                     /* rightshift */
468
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
469
         24,                    /* bitsize */
470
         TRUE,                  /* pc_relative */
471
         0,                     /* bitpos */
472
         complain_overflow_bitfield,/* complain_on_overflow */
473
         bfd_elf_generic_reloc, /* special_function */
474
         "R_ARM_PLT32",         /* name */
475
         FALSE,                 /* partial_inplace */
476
         0x00ffffff,            /* src_mask */
477
         0x00ffffff,            /* dst_mask */
478
         TRUE),                 /* pcrel_offset */
479
 
480
  HOWTO (R_ARM_CALL,            /* type */
481
         2,                     /* rightshift */
482
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
483
         24,                    /* bitsize */
484
         TRUE,                  /* pc_relative */
485
         0,                      /* bitpos */
486
         complain_overflow_signed,/* complain_on_overflow */
487
         bfd_elf_generic_reloc, /* special_function */
488
         "R_ARM_CALL",          /* name */
489
         FALSE,                 /* partial_inplace */
490
         0x00ffffff,            /* src_mask */
491
         0x00ffffff,            /* dst_mask */
492
         TRUE),                 /* pcrel_offset */
493
 
494
  HOWTO (R_ARM_JUMP24,          /* type */
495
         2,                     /* rightshift */
496
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
497
         24,                    /* bitsize */
498
         TRUE,                  /* pc_relative */
499
         0,                      /* bitpos */
500
         complain_overflow_signed,/* complain_on_overflow */
501
         bfd_elf_generic_reloc, /* special_function */
502
         "R_ARM_JUMP24",        /* name */
503
         FALSE,                 /* partial_inplace */
504
         0x00ffffff,            /* src_mask */
505
         0x00ffffff,            /* dst_mask */
506
         TRUE),                 /* pcrel_offset */
507
 
508
  HOWTO (R_ARM_THM_JUMP24,      /* type */
509
         1,                     /* rightshift */
510
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
511
         24,                    /* bitsize */
512
         TRUE,                  /* pc_relative */
513
         0,                      /* bitpos */
514
         complain_overflow_signed,/* complain_on_overflow */
515
         bfd_elf_generic_reloc, /* special_function */
516
         "R_ARM_THM_JUMP24",    /* name */
517
         FALSE,                 /* partial_inplace */
518
         0x07ff2fff,            /* src_mask */
519
         0x07ff2fff,            /* dst_mask */
520
         TRUE),                 /* pcrel_offset */
521
 
522
  HOWTO (R_ARM_BASE_ABS,        /* type */
523
         0,                      /* rightshift */
524
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
525
         32,                    /* bitsize */
526
         FALSE,                 /* pc_relative */
527
         0,                      /* bitpos */
528
         complain_overflow_dont,/* complain_on_overflow */
529
         bfd_elf_generic_reloc, /* special_function */
530
         "R_ARM_BASE_ABS",      /* name */
531
         FALSE,                 /* partial_inplace */
532
         0xffffffff,            /* src_mask */
533
         0xffffffff,            /* dst_mask */
534
         FALSE),                /* pcrel_offset */
535
 
536
  HOWTO (R_ARM_ALU_PCREL7_0,    /* type */
537
         0,                      /* rightshift */
538
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
539
         12,                    /* bitsize */
540
         TRUE,                  /* pc_relative */
541
         0,                      /* bitpos */
542
         complain_overflow_dont,/* complain_on_overflow */
543
         bfd_elf_generic_reloc, /* special_function */
544
         "R_ARM_ALU_PCREL_7_0", /* name */
545
         FALSE,                 /* partial_inplace */
546
         0x00000fff,            /* src_mask */
547
         0x00000fff,            /* dst_mask */
548
         TRUE),                 /* pcrel_offset */
549
 
550
  HOWTO (R_ARM_ALU_PCREL15_8,   /* type */
551
         0,                      /* rightshift */
552
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
553
         12,                    /* bitsize */
554
         TRUE,                  /* pc_relative */
555
         8,                     /* bitpos */
556
         complain_overflow_dont,/* complain_on_overflow */
557
         bfd_elf_generic_reloc, /* special_function */
558
         "R_ARM_ALU_PCREL_15_8",/* name */
559
         FALSE,                 /* partial_inplace */
560
         0x00000fff,            /* src_mask */
561
         0x00000fff,            /* dst_mask */
562
         TRUE),                 /* pcrel_offset */
563
 
564
  HOWTO (R_ARM_ALU_PCREL23_15,  /* type */
565
         0,                      /* rightshift */
566
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
567
         12,                    /* bitsize */
568
         TRUE,                  /* pc_relative */
569
         16,                    /* bitpos */
570
         complain_overflow_dont,/* complain_on_overflow */
571
         bfd_elf_generic_reloc, /* special_function */
572
         "R_ARM_ALU_PCREL_23_15",/* name */
573
         FALSE,                 /* partial_inplace */
574
         0x00000fff,            /* src_mask */
575
         0x00000fff,            /* dst_mask */
576
         TRUE),                 /* pcrel_offset */
577
 
578
  HOWTO (R_ARM_LDR_SBREL_11_0,  /* type */
579
         0,                      /* rightshift */
580
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
581
         12,                    /* bitsize */
582
         FALSE,                 /* pc_relative */
583
         0,                      /* bitpos */
584
         complain_overflow_dont,/* complain_on_overflow */
585
         bfd_elf_generic_reloc, /* special_function */
586
         "R_ARM_LDR_SBREL_11_0",/* name */
587
         FALSE,                 /* partial_inplace */
588
         0x00000fff,            /* src_mask */
589
         0x00000fff,            /* dst_mask */
590
         FALSE),                /* pcrel_offset */
591
 
592
  HOWTO (R_ARM_ALU_SBREL_19_12, /* type */
593
         0,                      /* rightshift */
594
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
595
         8,                     /* bitsize */
596
         FALSE,                 /* pc_relative */
597
         12,                    /* bitpos */
598
         complain_overflow_dont,/* complain_on_overflow */
599
         bfd_elf_generic_reloc, /* special_function */
600
         "R_ARM_ALU_SBREL_19_12",/* name */
601
         FALSE,                 /* partial_inplace */
602
         0x000ff000,            /* src_mask */
603
         0x000ff000,            /* dst_mask */
604
         FALSE),                /* pcrel_offset */
605
 
606
  HOWTO (R_ARM_ALU_SBREL_27_20, /* type */
607
         0,                      /* rightshift */
608
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
609
         8,                     /* bitsize */
610
         FALSE,                 /* pc_relative */
611
         20,                    /* bitpos */
612
         complain_overflow_dont,/* complain_on_overflow */
613
         bfd_elf_generic_reloc, /* special_function */
614
         "R_ARM_ALU_SBREL_27_20",/* name */
615
         FALSE,                 /* partial_inplace */
616
         0x0ff00000,            /* src_mask */
617
         0x0ff00000,            /* dst_mask */
618
         FALSE),                /* pcrel_offset */
619
 
620
  HOWTO (R_ARM_TARGET1,         /* type */
621
         0,                      /* rightshift */
622
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
623
         32,                    /* bitsize */
624
         FALSE,                 /* pc_relative */
625
         0,                      /* bitpos */
626
         complain_overflow_dont,/* complain_on_overflow */
627
         bfd_elf_generic_reloc, /* special_function */
628
         "R_ARM_TARGET1",       /* name */
629
         FALSE,                 /* partial_inplace */
630
         0xffffffff,            /* src_mask */
631
         0xffffffff,            /* dst_mask */
632
         FALSE),                /* pcrel_offset */
633
 
634
  HOWTO (R_ARM_ROSEGREL32,      /* type */
635
         0,                      /* rightshift */
636
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
637
         32,                    /* bitsize */
638
         FALSE,                 /* pc_relative */
639
         0,                      /* bitpos */
640
         complain_overflow_dont,/* complain_on_overflow */
641
         bfd_elf_generic_reloc, /* special_function */
642
         "R_ARM_ROSEGREL32",    /* name */
643
         FALSE,                 /* partial_inplace */
644
         0xffffffff,            /* src_mask */
645
         0xffffffff,            /* dst_mask */
646
         FALSE),                /* pcrel_offset */
647
 
648
  HOWTO (R_ARM_V4BX,            /* type */
649
         0,                      /* rightshift */
650
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
651
         32,                    /* bitsize */
652
         FALSE,                 /* pc_relative */
653
         0,                      /* bitpos */
654
         complain_overflow_dont,/* complain_on_overflow */
655
         bfd_elf_generic_reloc, /* special_function */
656
         "R_ARM_V4BX",          /* name */
657
         FALSE,                 /* partial_inplace */
658
         0xffffffff,            /* src_mask */
659
         0xffffffff,            /* dst_mask */
660
         FALSE),                /* pcrel_offset */
661
 
662
  HOWTO (R_ARM_TARGET2,         /* type */
663
         0,                      /* rightshift */
664
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
665
         32,                    /* bitsize */
666
         FALSE,                 /* pc_relative */
667
         0,                      /* bitpos */
668
         complain_overflow_signed,/* complain_on_overflow */
669
         bfd_elf_generic_reloc, /* special_function */
670
         "R_ARM_TARGET2",       /* name */
671
         FALSE,                 /* partial_inplace */
672
         0xffffffff,            /* src_mask */
673
         0xffffffff,            /* dst_mask */
674
         TRUE),                 /* pcrel_offset */
675
 
676
  HOWTO (R_ARM_PREL31,          /* type */
677
         0,                      /* rightshift */
678
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
679
         31,                    /* bitsize */
680
         TRUE,                  /* pc_relative */
681
         0,                      /* bitpos */
682
         complain_overflow_signed,/* complain_on_overflow */
683
         bfd_elf_generic_reloc, /* special_function */
684
         "R_ARM_PREL31",        /* name */
685
         FALSE,                 /* partial_inplace */
686
         0x7fffffff,            /* src_mask */
687
         0x7fffffff,            /* dst_mask */
688
         TRUE),                 /* pcrel_offset */
689
 
690
  HOWTO (R_ARM_MOVW_ABS_NC,     /* type */
691
         0,                      /* rightshift */
692
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
693
         16,                    /* bitsize */
694
         FALSE,                 /* pc_relative */
695
         0,                      /* bitpos */
696
         complain_overflow_dont,/* complain_on_overflow */
697
         bfd_elf_generic_reloc, /* special_function */
698
         "R_ARM_MOVW_ABS_NC",   /* name */
699
         FALSE,                 /* partial_inplace */
700
         0x000f0fff,            /* src_mask */
701
         0x000f0fff,            /* dst_mask */
702
         FALSE),                /* pcrel_offset */
703
 
704
  HOWTO (R_ARM_MOVT_ABS,        /* type */
705
         0,                      /* rightshift */
706
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
707
         16,                    /* bitsize */
708
         FALSE,                 /* pc_relative */
709
         0,                      /* bitpos */
710
         complain_overflow_bitfield,/* complain_on_overflow */
711
         bfd_elf_generic_reloc, /* special_function */
712
         "R_ARM_MOVT_ABS",      /* name */
713
         FALSE,                 /* partial_inplace */
714
         0x000f0fff,            /* src_mask */
715
         0x000f0fff,            /* dst_mask */
716
         FALSE),                /* pcrel_offset */
717
 
718
  HOWTO (R_ARM_MOVW_PREL_NC,    /* type */
719
         0,                      /* rightshift */
720
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
721
         16,                    /* bitsize */
722
         TRUE,                  /* pc_relative */
723
         0,                      /* bitpos */
724
         complain_overflow_dont,/* complain_on_overflow */
725
         bfd_elf_generic_reloc, /* special_function */
726
         "R_ARM_MOVW_PREL_NC",  /* name */
727
         FALSE,                 /* partial_inplace */
728
         0x000f0fff,            /* src_mask */
729
         0x000f0fff,            /* dst_mask */
730
         TRUE),                 /* pcrel_offset */
731
 
732
  HOWTO (R_ARM_MOVT_PREL,       /* type */
733
         0,                      /* rightshift */
734
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
735
         16,                    /* bitsize */
736
         TRUE,                  /* pc_relative */
737
         0,                      /* bitpos */
738
         complain_overflow_bitfield,/* complain_on_overflow */
739
         bfd_elf_generic_reloc, /* special_function */
740
         "R_ARM_MOVT_PREL",     /* name */
741
         FALSE,                 /* partial_inplace */
742
         0x000f0fff,            /* src_mask */
743
         0x000f0fff,            /* dst_mask */
744
         TRUE),                 /* pcrel_offset */
745
 
746
  HOWTO (R_ARM_THM_MOVW_ABS_NC, /* type */
747
         0,                      /* rightshift */
748
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
749
         16,                    /* bitsize */
750
         FALSE,                 /* pc_relative */
751
         0,                      /* bitpos */
752
         complain_overflow_dont,/* complain_on_overflow */
753
         bfd_elf_generic_reloc, /* special_function */
754
         "R_ARM_THM_MOVW_ABS_NC",/* name */
755
         FALSE,                 /* partial_inplace */
756
         0x040f70ff,            /* src_mask */
757
         0x040f70ff,            /* dst_mask */
758
         FALSE),                /* pcrel_offset */
759
 
760
  HOWTO (R_ARM_THM_MOVT_ABS,    /* type */
761
         0,                      /* rightshift */
762
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
763
         16,                    /* bitsize */
764
         FALSE,                 /* pc_relative */
765
         0,                      /* bitpos */
766
         complain_overflow_bitfield,/* complain_on_overflow */
767
         bfd_elf_generic_reloc, /* special_function */
768
         "R_ARM_THM_MOVT_ABS",  /* name */
769
         FALSE,                 /* partial_inplace */
770
         0x040f70ff,            /* src_mask */
771
         0x040f70ff,            /* dst_mask */
772
         FALSE),                /* pcrel_offset */
773
 
774
  HOWTO (R_ARM_THM_MOVW_PREL_NC,/* type */
775
         0,                      /* rightshift */
776
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
777
         16,                    /* bitsize */
778
         TRUE,                  /* pc_relative */
779
         0,                      /* bitpos */
780
         complain_overflow_dont,/* complain_on_overflow */
781
         bfd_elf_generic_reloc, /* special_function */
782
         "R_ARM_THM_MOVW_PREL_NC",/* name */
783
         FALSE,                 /* partial_inplace */
784
         0x040f70ff,            /* src_mask */
785
         0x040f70ff,            /* dst_mask */
786
         TRUE),                 /* pcrel_offset */
787
 
788
  HOWTO (R_ARM_THM_MOVT_PREL,   /* type */
789
         0,                      /* rightshift */
790
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
791
         16,                    /* bitsize */
792
         TRUE,                  /* pc_relative */
793
         0,                      /* bitpos */
794
         complain_overflow_bitfield,/* complain_on_overflow */
795
         bfd_elf_generic_reloc, /* special_function */
796
         "R_ARM_THM_MOVT_PREL", /* name */
797
         FALSE,                 /* partial_inplace */
798
         0x040f70ff,            /* src_mask */
799
         0x040f70ff,            /* dst_mask */
800
         TRUE),                 /* pcrel_offset */
801
 
802
  HOWTO (R_ARM_THM_JUMP19,      /* type */
803
         1,                     /* rightshift */
804
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
805
         19,                    /* bitsize */
806
         TRUE,                  /* pc_relative */
807
         0,                      /* bitpos */
808
         complain_overflow_signed,/* complain_on_overflow */
809
         bfd_elf_generic_reloc, /* special_function */
810
         "R_ARM_THM_JUMP19",    /* name */
811
         FALSE,                 /* partial_inplace */
812
         0x043f2fff,            /* src_mask */
813
         0x043f2fff,            /* dst_mask */
814
         TRUE),                 /* pcrel_offset */
815
 
816
  HOWTO (R_ARM_THM_JUMP6,       /* type */
817
         1,                     /* rightshift */
818
         1,                     /* size (0 = byte, 1 = short, 2 = long) */
819
         6,                     /* bitsize */
820
         TRUE,                  /* pc_relative */
821
         0,                      /* bitpos */
822
         complain_overflow_unsigned,/* complain_on_overflow */
823
         bfd_elf_generic_reloc, /* special_function */
824
         "R_ARM_THM_JUMP6",     /* name */
825
         FALSE,                 /* partial_inplace */
826
         0x02f8,                /* src_mask */
827
         0x02f8,                /* dst_mask */
828
         TRUE),                 /* pcrel_offset */
829
 
830
  /* These are declared as 13-bit signed relocations because we can
831
     address -4095 .. 4095(base) by altering ADDW to SUBW or vice
832
     versa.  */
833
  HOWTO (R_ARM_THM_ALU_PREL_11_0,/* type */
834
         0,                      /* rightshift */
835
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
836
         13,                    /* bitsize */
837
         TRUE,                  /* pc_relative */
838
         0,                      /* bitpos */
839
         complain_overflow_dont,/* complain_on_overflow */
840
         bfd_elf_generic_reloc, /* special_function */
841
         "R_ARM_THM_ALU_PREL_11_0",/* name */
842
         FALSE,                 /* partial_inplace */
843
         0xffffffff,            /* src_mask */
844
         0xffffffff,            /* dst_mask */
845
         TRUE),                 /* pcrel_offset */
846
 
847
  HOWTO (R_ARM_THM_PC12,        /* type */
848
         0,                      /* rightshift */
849
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
850
         13,                    /* bitsize */
851
         TRUE,                  /* pc_relative */
852
         0,                      /* bitpos */
853
         complain_overflow_dont,/* complain_on_overflow */
854
         bfd_elf_generic_reloc, /* special_function */
855
         "R_ARM_THM_PC12",      /* name */
856
         FALSE,                 /* partial_inplace */
857
         0xffffffff,            /* src_mask */
858
         0xffffffff,            /* dst_mask */
859
         TRUE),                 /* pcrel_offset */
860
 
861
  HOWTO (R_ARM_ABS32_NOI,       /* type */
862
         0,                      /* rightshift */
863
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
864
         32,                    /* bitsize */
865
         FALSE,                 /* pc_relative */
866
         0,                      /* bitpos */
867
         complain_overflow_dont,/* complain_on_overflow */
868
         bfd_elf_generic_reloc, /* special_function */
869
         "R_ARM_ABS32_NOI",     /* name */
870
         FALSE,                 /* partial_inplace */
871
         0xffffffff,            /* src_mask */
872
         0xffffffff,            /* dst_mask */
873
         FALSE),                /* pcrel_offset */
874
 
875
  HOWTO (R_ARM_REL32_NOI,       /* type */
876
         0,                      /* rightshift */
877
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
878
         32,                    /* bitsize */
879
         TRUE,                  /* pc_relative */
880
         0,                      /* bitpos */
881
         complain_overflow_dont,/* complain_on_overflow */
882
         bfd_elf_generic_reloc, /* special_function */
883
         "R_ARM_REL32_NOI",     /* name */
884
         FALSE,                 /* partial_inplace */
885
         0xffffffff,            /* src_mask */
886
         0xffffffff,            /* dst_mask */
887
         FALSE),                /* pcrel_offset */
888
 
889
  /* Group relocations.  */
890
 
891
  HOWTO (R_ARM_ALU_PC_G0_NC,    /* type */
892
         0,                      /* rightshift */
893
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
894
         32,                    /* bitsize */
895
         TRUE,                  /* pc_relative */
896
         0,                      /* bitpos */
897
         complain_overflow_dont,/* complain_on_overflow */
898
         bfd_elf_generic_reloc, /* special_function */
899
         "R_ARM_ALU_PC_G0_NC",  /* name */
900
         FALSE,                 /* partial_inplace */
901
         0xffffffff,            /* src_mask */
902
         0xffffffff,            /* dst_mask */
903
         TRUE),                 /* pcrel_offset */
904
 
905
  HOWTO (R_ARM_ALU_PC_G0,       /* type */
906
         0,                      /* rightshift */
907
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
908
         32,                    /* bitsize */
909
         TRUE,                  /* pc_relative */
910
         0,                      /* bitpos */
911
         complain_overflow_dont,/* complain_on_overflow */
912
         bfd_elf_generic_reloc, /* special_function */
913
         "R_ARM_ALU_PC_G0",     /* name */
914
         FALSE,                 /* partial_inplace */
915
         0xffffffff,            /* src_mask */
916
         0xffffffff,            /* dst_mask */
917
         TRUE),                 /* pcrel_offset */
918
 
919
  HOWTO (R_ARM_ALU_PC_G1_NC,    /* type */
920
         0,                      /* rightshift */
921
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
922
         32,                    /* bitsize */
923
         TRUE,                  /* pc_relative */
924
         0,                      /* bitpos */
925
         complain_overflow_dont,/* complain_on_overflow */
926
         bfd_elf_generic_reloc, /* special_function */
927
         "R_ARM_ALU_PC_G1_NC",  /* name */
928
         FALSE,                 /* partial_inplace */
929
         0xffffffff,            /* src_mask */
930
         0xffffffff,            /* dst_mask */
931
         TRUE),                 /* pcrel_offset */
932
 
933
  HOWTO (R_ARM_ALU_PC_G1,       /* type */
934
         0,                      /* rightshift */
935
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
936
         32,                    /* bitsize */
937
         TRUE,                  /* pc_relative */
938
         0,                      /* bitpos */
939
         complain_overflow_dont,/* complain_on_overflow */
940
         bfd_elf_generic_reloc, /* special_function */
941
         "R_ARM_ALU_PC_G1",     /* name */
942
         FALSE,                 /* partial_inplace */
943
         0xffffffff,            /* src_mask */
944
         0xffffffff,            /* dst_mask */
945
         TRUE),                 /* pcrel_offset */
946
 
947
  HOWTO (R_ARM_ALU_PC_G2,       /* type */
948
         0,                      /* rightshift */
949
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
950
         32,                    /* bitsize */
951
         TRUE,                  /* pc_relative */
952
         0,                      /* bitpos */
953
         complain_overflow_dont,/* complain_on_overflow */
954
         bfd_elf_generic_reloc, /* special_function */
955
         "R_ARM_ALU_PC_G2",     /* name */
956
         FALSE,                 /* partial_inplace */
957
         0xffffffff,            /* src_mask */
958
         0xffffffff,            /* dst_mask */
959
         TRUE),                 /* pcrel_offset */
960
 
961
  HOWTO (R_ARM_LDR_PC_G1,       /* type */
962
         0,                      /* rightshift */
963
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
964
         32,                    /* bitsize */
965
         TRUE,                  /* pc_relative */
966
         0,                      /* bitpos */
967
         complain_overflow_dont,/* complain_on_overflow */
968
         bfd_elf_generic_reloc, /* special_function */
969
         "R_ARM_LDR_PC_G1",     /* name */
970
         FALSE,                 /* partial_inplace */
971
         0xffffffff,            /* src_mask */
972
         0xffffffff,            /* dst_mask */
973
         TRUE),                 /* pcrel_offset */
974
 
975
  HOWTO (R_ARM_LDR_PC_G2,       /* type */
976
         0,                      /* rightshift */
977
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
978
         32,                    /* bitsize */
979
         TRUE,                  /* pc_relative */
980
         0,                      /* bitpos */
981
         complain_overflow_dont,/* complain_on_overflow */
982
         bfd_elf_generic_reloc, /* special_function */
983
         "R_ARM_LDR_PC_G2",     /* name */
984
         FALSE,                 /* partial_inplace */
985
         0xffffffff,            /* src_mask */
986
         0xffffffff,            /* dst_mask */
987
         TRUE),                 /* pcrel_offset */
988
 
989
  HOWTO (R_ARM_LDRS_PC_G0,      /* type */
990
         0,                      /* rightshift */
991
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
992
         32,                    /* bitsize */
993
         TRUE,                  /* pc_relative */
994
         0,                      /* bitpos */
995
         complain_overflow_dont,/* complain_on_overflow */
996
         bfd_elf_generic_reloc, /* special_function */
997
         "R_ARM_LDRS_PC_G0",    /* name */
998
         FALSE,                 /* partial_inplace */
999
         0xffffffff,            /* src_mask */
1000
         0xffffffff,            /* dst_mask */
1001
         TRUE),                 /* pcrel_offset */
1002
 
1003
  HOWTO (R_ARM_LDRS_PC_G1,      /* type */
1004
         0,                      /* rightshift */
1005
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1006
         32,                    /* bitsize */
1007
         TRUE,                  /* pc_relative */
1008
         0,                      /* bitpos */
1009
         complain_overflow_dont,/* complain_on_overflow */
1010
         bfd_elf_generic_reloc, /* special_function */
1011
         "R_ARM_LDRS_PC_G1",    /* name */
1012
         FALSE,                 /* partial_inplace */
1013
         0xffffffff,            /* src_mask */
1014
         0xffffffff,            /* dst_mask */
1015
         TRUE),                 /* pcrel_offset */
1016
 
1017
  HOWTO (R_ARM_LDRS_PC_G2,      /* type */
1018
         0,                      /* rightshift */
1019
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1020
         32,                    /* bitsize */
1021
         TRUE,                  /* pc_relative */
1022
         0,                      /* bitpos */
1023
         complain_overflow_dont,/* complain_on_overflow */
1024
         bfd_elf_generic_reloc, /* special_function */
1025
         "R_ARM_LDRS_PC_G2",    /* name */
1026
         FALSE,                 /* partial_inplace */
1027
         0xffffffff,            /* src_mask */
1028
         0xffffffff,            /* dst_mask */
1029
         TRUE),                 /* pcrel_offset */
1030
 
1031
  HOWTO (R_ARM_LDC_PC_G0,       /* type */
1032
         0,                      /* rightshift */
1033
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1034
         32,                    /* bitsize */
1035
         TRUE,                  /* pc_relative */
1036
         0,                      /* bitpos */
1037
         complain_overflow_dont,/* complain_on_overflow */
1038
         bfd_elf_generic_reloc, /* special_function */
1039
         "R_ARM_LDC_PC_G0",     /* name */
1040
         FALSE,                 /* partial_inplace */
1041
         0xffffffff,            /* src_mask */
1042
         0xffffffff,            /* dst_mask */
1043
         TRUE),                 /* pcrel_offset */
1044
 
1045
  HOWTO (R_ARM_LDC_PC_G1,       /* type */
1046
         0,                      /* rightshift */
1047
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1048
         32,                    /* bitsize */
1049
         TRUE,                  /* pc_relative */
1050
         0,                      /* bitpos */
1051
         complain_overflow_dont,/* complain_on_overflow */
1052
         bfd_elf_generic_reloc, /* special_function */
1053
         "R_ARM_LDC_PC_G1",     /* name */
1054
         FALSE,                 /* partial_inplace */
1055
         0xffffffff,            /* src_mask */
1056
         0xffffffff,            /* dst_mask */
1057
         TRUE),                 /* pcrel_offset */
1058
 
1059
  HOWTO (R_ARM_LDC_PC_G2,       /* type */
1060
         0,                      /* rightshift */
1061
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1062
         32,                    /* bitsize */
1063
         TRUE,                  /* pc_relative */
1064
         0,                      /* bitpos */
1065
         complain_overflow_dont,/* complain_on_overflow */
1066
         bfd_elf_generic_reloc, /* special_function */
1067
         "R_ARM_LDC_PC_G2",     /* name */
1068
         FALSE,                 /* partial_inplace */
1069
         0xffffffff,            /* src_mask */
1070
         0xffffffff,            /* dst_mask */
1071
         TRUE),                 /* pcrel_offset */
1072
 
1073
  HOWTO (R_ARM_ALU_SB_G0_NC,    /* type */
1074
         0,                      /* rightshift */
1075
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1076
         32,                    /* bitsize */
1077
         TRUE,                  /* pc_relative */
1078
         0,                      /* bitpos */
1079
         complain_overflow_dont,/* complain_on_overflow */
1080
         bfd_elf_generic_reloc, /* special_function */
1081
         "R_ARM_ALU_SB_G0_NC",  /* name */
1082
         FALSE,                 /* partial_inplace */
1083
         0xffffffff,            /* src_mask */
1084
         0xffffffff,            /* dst_mask */
1085
         TRUE),                 /* pcrel_offset */
1086
 
1087
  HOWTO (R_ARM_ALU_SB_G0,       /* type */
1088
         0,                      /* rightshift */
1089
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1090
         32,                    /* bitsize */
1091
         TRUE,                  /* pc_relative */
1092
         0,                      /* bitpos */
1093
         complain_overflow_dont,/* complain_on_overflow */
1094
         bfd_elf_generic_reloc, /* special_function */
1095
         "R_ARM_ALU_SB_G0",     /* name */
1096
         FALSE,                 /* partial_inplace */
1097
         0xffffffff,            /* src_mask */
1098
         0xffffffff,            /* dst_mask */
1099
         TRUE),                 /* pcrel_offset */
1100
 
1101
  HOWTO (R_ARM_ALU_SB_G1_NC,    /* type */
1102
         0,                      /* rightshift */
1103
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1104
         32,                    /* bitsize */
1105
         TRUE,                  /* pc_relative */
1106
         0,                      /* bitpos */
1107
         complain_overflow_dont,/* complain_on_overflow */
1108
         bfd_elf_generic_reloc, /* special_function */
1109
         "R_ARM_ALU_SB_G1_NC",  /* name */
1110
         FALSE,                 /* partial_inplace */
1111
         0xffffffff,            /* src_mask */
1112
         0xffffffff,            /* dst_mask */
1113
         TRUE),                 /* pcrel_offset */
1114
 
1115
  HOWTO (R_ARM_ALU_SB_G1,       /* type */
1116
         0,                      /* rightshift */
1117
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1118
         32,                    /* bitsize */
1119
         TRUE,                  /* pc_relative */
1120
         0,                      /* bitpos */
1121
         complain_overflow_dont,/* complain_on_overflow */
1122
         bfd_elf_generic_reloc, /* special_function */
1123
         "R_ARM_ALU_SB_G1",     /* name */
1124
         FALSE,                 /* partial_inplace */
1125
         0xffffffff,            /* src_mask */
1126
         0xffffffff,            /* dst_mask */
1127
         TRUE),                 /* pcrel_offset */
1128
 
1129
  HOWTO (R_ARM_ALU_SB_G2,       /* type */
1130
         0,                      /* rightshift */
1131
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1132
         32,                    /* bitsize */
1133
         TRUE,                  /* pc_relative */
1134
         0,                      /* bitpos */
1135
         complain_overflow_dont,/* complain_on_overflow */
1136
         bfd_elf_generic_reloc, /* special_function */
1137
         "R_ARM_ALU_SB_G2",     /* name */
1138
         FALSE,                 /* partial_inplace */
1139
         0xffffffff,            /* src_mask */
1140
         0xffffffff,            /* dst_mask */
1141
         TRUE),                 /* pcrel_offset */
1142
 
1143
  HOWTO (R_ARM_LDR_SB_G0,       /* type */
1144
         0,                      /* rightshift */
1145
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1146
         32,                    /* bitsize */
1147
         TRUE,                  /* pc_relative */
1148
         0,                      /* bitpos */
1149
         complain_overflow_dont,/* complain_on_overflow */
1150
         bfd_elf_generic_reloc, /* special_function */
1151
         "R_ARM_LDR_SB_G0",     /* name */
1152
         FALSE,                 /* partial_inplace */
1153
         0xffffffff,            /* src_mask */
1154
         0xffffffff,            /* dst_mask */
1155
         TRUE),                 /* pcrel_offset */
1156
 
1157
  HOWTO (R_ARM_LDR_SB_G1,       /* type */
1158
         0,                      /* rightshift */
1159
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1160
         32,                    /* bitsize */
1161
         TRUE,                  /* pc_relative */
1162
         0,                      /* bitpos */
1163
         complain_overflow_dont,/* complain_on_overflow */
1164
         bfd_elf_generic_reloc, /* special_function */
1165
         "R_ARM_LDR_SB_G1",     /* name */
1166
         FALSE,                 /* partial_inplace */
1167
         0xffffffff,            /* src_mask */
1168
         0xffffffff,            /* dst_mask */
1169
         TRUE),                 /* pcrel_offset */
1170
 
1171
  HOWTO (R_ARM_LDR_SB_G2,       /* type */
1172
         0,                      /* rightshift */
1173
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1174
         32,                    /* bitsize */
1175
         TRUE,                  /* pc_relative */
1176
         0,                      /* bitpos */
1177
         complain_overflow_dont,/* complain_on_overflow */
1178
         bfd_elf_generic_reloc, /* special_function */
1179
         "R_ARM_LDR_SB_G2",     /* name */
1180
         FALSE,                 /* partial_inplace */
1181
         0xffffffff,            /* src_mask */
1182
         0xffffffff,            /* dst_mask */
1183
         TRUE),                 /* pcrel_offset */
1184
 
1185
  HOWTO (R_ARM_LDRS_SB_G0,      /* type */
1186
         0,                      /* rightshift */
1187
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1188
         32,                    /* bitsize */
1189
         TRUE,                  /* pc_relative */
1190
         0,                      /* bitpos */
1191
         complain_overflow_dont,/* complain_on_overflow */
1192
         bfd_elf_generic_reloc, /* special_function */
1193
         "R_ARM_LDRS_SB_G0",    /* name */
1194
         FALSE,                 /* partial_inplace */
1195
         0xffffffff,            /* src_mask */
1196
         0xffffffff,            /* dst_mask */
1197
         TRUE),                 /* pcrel_offset */
1198
 
1199
  HOWTO (R_ARM_LDRS_SB_G1,      /* type */
1200
         0,                      /* rightshift */
1201
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1202
         32,                    /* bitsize */
1203
         TRUE,                  /* pc_relative */
1204
         0,                      /* bitpos */
1205
         complain_overflow_dont,/* complain_on_overflow */
1206
         bfd_elf_generic_reloc, /* special_function */
1207
         "R_ARM_LDRS_SB_G1",    /* name */
1208
         FALSE,                 /* partial_inplace */
1209
         0xffffffff,            /* src_mask */
1210
         0xffffffff,            /* dst_mask */
1211
         TRUE),                 /* pcrel_offset */
1212
 
1213
  HOWTO (R_ARM_LDRS_SB_G2,      /* type */
1214
         0,                      /* rightshift */
1215
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1216
         32,                    /* bitsize */
1217
         TRUE,                  /* pc_relative */
1218
         0,                      /* bitpos */
1219
         complain_overflow_dont,/* complain_on_overflow */
1220
         bfd_elf_generic_reloc, /* special_function */
1221
         "R_ARM_LDRS_SB_G2",    /* name */
1222
         FALSE,                 /* partial_inplace */
1223
         0xffffffff,            /* src_mask */
1224
         0xffffffff,            /* dst_mask */
1225
         TRUE),                 /* pcrel_offset */
1226
 
1227
  HOWTO (R_ARM_LDC_SB_G0,       /* type */
1228
         0,                      /* rightshift */
1229
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1230
         32,                    /* bitsize */
1231
         TRUE,                  /* pc_relative */
1232
         0,                      /* bitpos */
1233
         complain_overflow_dont,/* complain_on_overflow */
1234
         bfd_elf_generic_reloc, /* special_function */
1235
         "R_ARM_LDC_SB_G0",     /* name */
1236
         FALSE,                 /* partial_inplace */
1237
         0xffffffff,            /* src_mask */
1238
         0xffffffff,            /* dst_mask */
1239
         TRUE),                 /* pcrel_offset */
1240
 
1241
  HOWTO (R_ARM_LDC_SB_G1,       /* type */
1242
         0,                      /* rightshift */
1243
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1244
         32,                    /* bitsize */
1245
         TRUE,                  /* pc_relative */
1246
         0,                      /* bitpos */
1247
         complain_overflow_dont,/* complain_on_overflow */
1248
         bfd_elf_generic_reloc, /* special_function */
1249
         "R_ARM_LDC_SB_G1",     /* name */
1250
         FALSE,                 /* partial_inplace */
1251
         0xffffffff,            /* src_mask */
1252
         0xffffffff,            /* dst_mask */
1253
         TRUE),                 /* pcrel_offset */
1254
 
1255
  HOWTO (R_ARM_LDC_SB_G2,       /* type */
1256
         0,                      /* rightshift */
1257
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1258
         32,                    /* bitsize */
1259
         TRUE,                  /* pc_relative */
1260
         0,                      /* bitpos */
1261
         complain_overflow_dont,/* complain_on_overflow */
1262
         bfd_elf_generic_reloc, /* special_function */
1263
         "R_ARM_LDC_SB_G2",     /* name */
1264
         FALSE,                 /* partial_inplace */
1265
         0xffffffff,            /* src_mask */
1266
         0xffffffff,            /* dst_mask */
1267
         TRUE),                 /* pcrel_offset */
1268
 
1269
  /* End of group relocations.  */
1270
 
1271
  HOWTO (R_ARM_MOVW_BREL_NC,    /* type */
1272
         0,                      /* rightshift */
1273
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1274
         16,                    /* bitsize */
1275
         FALSE,                 /* pc_relative */
1276
         0,                      /* bitpos */
1277
         complain_overflow_dont,/* complain_on_overflow */
1278
         bfd_elf_generic_reloc, /* special_function */
1279
         "R_ARM_MOVW_BREL_NC",  /* name */
1280
         FALSE,                 /* partial_inplace */
1281
         0x0000ffff,            /* src_mask */
1282
         0x0000ffff,            /* dst_mask */
1283
         FALSE),                /* pcrel_offset */
1284
 
1285
  HOWTO (R_ARM_MOVT_BREL,       /* type */
1286
         0,                      /* rightshift */
1287
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1288
         16,                    /* bitsize */
1289
         FALSE,                 /* pc_relative */
1290
         0,                      /* bitpos */
1291
         complain_overflow_bitfield,/* complain_on_overflow */
1292
         bfd_elf_generic_reloc, /* special_function */
1293
         "R_ARM_MOVT_BREL",     /* name */
1294
         FALSE,                 /* partial_inplace */
1295
         0x0000ffff,            /* src_mask */
1296
         0x0000ffff,            /* dst_mask */
1297
         FALSE),                /* pcrel_offset */
1298
 
1299
  HOWTO (R_ARM_MOVW_BREL,       /* type */
1300
         0,                      /* rightshift */
1301
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1302
         16,                    /* bitsize */
1303
         FALSE,                 /* pc_relative */
1304
         0,                      /* bitpos */
1305
         complain_overflow_dont,/* complain_on_overflow */
1306
         bfd_elf_generic_reloc, /* special_function */
1307
         "R_ARM_MOVW_BREL",     /* name */
1308
         FALSE,                 /* partial_inplace */
1309
         0x0000ffff,            /* src_mask */
1310
         0x0000ffff,            /* dst_mask */
1311
         FALSE),                /* pcrel_offset */
1312
 
1313
  HOWTO (R_ARM_THM_MOVW_BREL_NC,/* type */
1314
         0,                      /* rightshift */
1315
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1316
         16,                    /* bitsize */
1317
         FALSE,                 /* pc_relative */
1318
         0,                      /* bitpos */
1319
         complain_overflow_dont,/* complain_on_overflow */
1320
         bfd_elf_generic_reloc, /* special_function */
1321
         "R_ARM_THM_MOVW_BREL_NC",/* name */
1322
         FALSE,                 /* partial_inplace */
1323
         0x040f70ff,            /* src_mask */
1324
         0x040f70ff,            /* dst_mask */
1325
         FALSE),                /* pcrel_offset */
1326
 
1327
  HOWTO (R_ARM_THM_MOVT_BREL,   /* type */
1328
         0,                      /* rightshift */
1329
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1330
         16,                    /* bitsize */
1331
         FALSE,                 /* pc_relative */
1332
         0,                      /* bitpos */
1333
         complain_overflow_bitfield,/* complain_on_overflow */
1334
         bfd_elf_generic_reloc, /* special_function */
1335
         "R_ARM_THM_MOVT_BREL", /* name */
1336
         FALSE,                 /* partial_inplace */
1337
         0x040f70ff,            /* src_mask */
1338
         0x040f70ff,            /* dst_mask */
1339
         FALSE),                /* pcrel_offset */
1340
 
1341
  HOWTO (R_ARM_THM_MOVW_BREL,   /* type */
1342
         0,                      /* rightshift */
1343
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1344
         16,                    /* bitsize */
1345
         FALSE,                 /* pc_relative */
1346
         0,                      /* bitpos */
1347
         complain_overflow_dont,/* complain_on_overflow */
1348
         bfd_elf_generic_reloc, /* special_function */
1349
         "R_ARM_THM_MOVW_BREL", /* name */
1350
         FALSE,                 /* partial_inplace */
1351
         0x040f70ff,            /* src_mask */
1352
         0x040f70ff,            /* dst_mask */
1353
         FALSE),                /* pcrel_offset */
1354
 
1355
  EMPTY_HOWTO (90),   /* Unallocated.  */
1356
  EMPTY_HOWTO (91),
1357
  EMPTY_HOWTO (92),
1358
  EMPTY_HOWTO (93),
1359
 
1360
  HOWTO (R_ARM_PLT32_ABS,       /* type */
1361
         0,                      /* rightshift */
1362
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1363
         32,                    /* bitsize */
1364
         FALSE,                 /* pc_relative */
1365
         0,                      /* bitpos */
1366
         complain_overflow_dont,/* complain_on_overflow */
1367
         bfd_elf_generic_reloc, /* special_function */
1368
         "R_ARM_PLT32_ABS",     /* name */
1369
         FALSE,                 /* partial_inplace */
1370
         0xffffffff,            /* src_mask */
1371
         0xffffffff,            /* dst_mask */
1372
         FALSE),                /* pcrel_offset */
1373
 
1374
  HOWTO (R_ARM_GOT_ABS,         /* type */
1375
         0,                      /* rightshift */
1376
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1377
         32,                    /* bitsize */
1378
         FALSE,                 /* pc_relative */
1379
         0,                      /* bitpos */
1380
         complain_overflow_dont,/* complain_on_overflow */
1381
         bfd_elf_generic_reloc, /* special_function */
1382
         "R_ARM_GOT_ABS",       /* name */
1383
         FALSE,                 /* partial_inplace */
1384
         0xffffffff,            /* src_mask */
1385
         0xffffffff,            /* dst_mask */
1386
         FALSE),                        /* pcrel_offset */
1387
 
1388
  HOWTO (R_ARM_GOT_PREL,        /* type */
1389
         0,                      /* rightshift */
1390
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1391
         32,                    /* bitsize */
1392
         TRUE,                  /* pc_relative */
1393
         0,                      /* bitpos */
1394
         complain_overflow_dont,        /* complain_on_overflow */
1395
         bfd_elf_generic_reloc, /* special_function */
1396
         "R_ARM_GOT_PREL",      /* name */
1397
         FALSE,                 /* partial_inplace */
1398
         0xffffffff,            /* src_mask */
1399
         0xffffffff,            /* dst_mask */
1400
         TRUE),                 /* pcrel_offset */
1401
 
1402
  HOWTO (R_ARM_GOT_BREL12,      /* type */
1403
         0,                      /* rightshift */
1404
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1405
         12,                    /* bitsize */
1406
         FALSE,                 /* pc_relative */
1407
         0,                      /* bitpos */
1408
         complain_overflow_bitfield,/* complain_on_overflow */
1409
         bfd_elf_generic_reloc, /* special_function */
1410
         "R_ARM_GOT_BREL12",    /* name */
1411
         FALSE,                 /* partial_inplace */
1412
         0x00000fff,            /* src_mask */
1413
         0x00000fff,            /* dst_mask */
1414
         FALSE),                /* pcrel_offset */
1415
 
1416
  HOWTO (R_ARM_GOTOFF12,        /* type */
1417
         0,                      /* rightshift */
1418
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1419
         12,                    /* bitsize */
1420
         FALSE,                 /* pc_relative */
1421
         0,                      /* bitpos */
1422
         complain_overflow_bitfield,/* complain_on_overflow */
1423
         bfd_elf_generic_reloc, /* special_function */
1424
         "R_ARM_GOTOFF12",      /* name */
1425
         FALSE,                 /* partial_inplace */
1426
         0x00000fff,            /* src_mask */
1427
         0x00000fff,            /* dst_mask */
1428
         FALSE),                /* pcrel_offset */
1429
 
1430
  EMPTY_HOWTO (R_ARM_GOTRELAX),  /* reserved for future GOT-load optimizations */
1431
 
1432
  /* GNU extension to record C++ vtable member usage */
1433
  HOWTO (R_ARM_GNU_VTENTRY,     /* type */
1434
         0,                     /* rightshift */
1435
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1436
         0,                     /* bitsize */
1437
         FALSE,                 /* pc_relative */
1438
         0,                     /* bitpos */
1439
         complain_overflow_dont, /* complain_on_overflow */
1440
         _bfd_elf_rel_vtable_reloc_fn,  /* special_function */
1441
         "R_ARM_GNU_VTENTRY",   /* name */
1442
         FALSE,                 /* partial_inplace */
1443
         0,                     /* src_mask */
1444
         0,                     /* dst_mask */
1445
         FALSE),                /* pcrel_offset */
1446
 
1447
  /* GNU extension to record C++ vtable hierarchy */
1448
  HOWTO (R_ARM_GNU_VTINHERIT, /* type */
1449
         0,                     /* rightshift */
1450
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1451
         0,                     /* bitsize */
1452
         FALSE,                 /* pc_relative */
1453
         0,                     /* bitpos */
1454
         complain_overflow_dont, /* complain_on_overflow */
1455
         NULL,                  /* special_function */
1456
         "R_ARM_GNU_VTINHERIT", /* name */
1457
         FALSE,                 /* partial_inplace */
1458
         0,                     /* src_mask */
1459
         0,                     /* dst_mask */
1460
         FALSE),                /* pcrel_offset */
1461
 
1462
  HOWTO (R_ARM_THM_JUMP11,      /* type */
1463
         1,                     /* rightshift */
1464
         1,                     /* size (0 = byte, 1 = short, 2 = long) */
1465
         11,                    /* bitsize */
1466
         TRUE,                  /* pc_relative */
1467
         0,                      /* bitpos */
1468
         complain_overflow_signed,      /* complain_on_overflow */
1469
         bfd_elf_generic_reloc, /* special_function */
1470
         "R_ARM_THM_JUMP11",    /* name */
1471
         FALSE,                 /* partial_inplace */
1472
         0x000007ff,            /* src_mask */
1473
         0x000007ff,            /* dst_mask */
1474
         TRUE),                 /* pcrel_offset */
1475
 
1476
  HOWTO (R_ARM_THM_JUMP8,       /* type */
1477
         1,                     /* rightshift */
1478
         1,                     /* size (0 = byte, 1 = short, 2 = long) */
1479
         8,                     /* bitsize */
1480
         TRUE,                  /* pc_relative */
1481
         0,                      /* bitpos */
1482
         complain_overflow_signed,      /* complain_on_overflow */
1483
         bfd_elf_generic_reloc, /* special_function */
1484
         "R_ARM_THM_JUMP8",     /* name */
1485
         FALSE,                 /* partial_inplace */
1486
         0x000000ff,            /* src_mask */
1487
         0x000000ff,            /* dst_mask */
1488
         TRUE),                 /* pcrel_offset */
1489
 
1490
  /* TLS relocations */
1491
  HOWTO (R_ARM_TLS_GD32,        /* type */
1492
         0,                     /* rightshift */
1493
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1494
         32,                    /* bitsize */
1495
         FALSE,                 /* pc_relative */
1496
         0,                     /* bitpos */
1497
         complain_overflow_bitfield,/* complain_on_overflow */
1498
         NULL,                  /* special_function */
1499
         "R_ARM_TLS_GD32",      /* name */
1500
         TRUE,                  /* partial_inplace */
1501
         0xffffffff,            /* src_mask */
1502
         0xffffffff,            /* dst_mask */
1503
         FALSE),                /* pcrel_offset */
1504
 
1505
  HOWTO (R_ARM_TLS_LDM32,       /* type */
1506
         0,                     /* rightshift */
1507
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1508
         32,                    /* bitsize */
1509
         FALSE,                 /* pc_relative */
1510
         0,                     /* bitpos */
1511
         complain_overflow_bitfield,/* complain_on_overflow */
1512
         bfd_elf_generic_reloc, /* special_function */
1513
         "R_ARM_TLS_LDM32",     /* name */
1514
         TRUE,                  /* partial_inplace */
1515
         0xffffffff,            /* src_mask */
1516
         0xffffffff,            /* dst_mask */
1517
         FALSE),                /* pcrel_offset */
1518
 
1519
  HOWTO (R_ARM_TLS_LDO32,       /* type */
1520
         0,                     /* rightshift */
1521
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1522
         32,                    /* bitsize */
1523
         FALSE,                 /* pc_relative */
1524
         0,                     /* bitpos */
1525
         complain_overflow_bitfield,/* complain_on_overflow */
1526
         bfd_elf_generic_reloc, /* special_function */
1527
         "R_ARM_TLS_LDO32",     /* name */
1528
         TRUE,                  /* partial_inplace */
1529
         0xffffffff,            /* src_mask */
1530
         0xffffffff,            /* dst_mask */
1531
         FALSE),                /* pcrel_offset */
1532
 
1533
  HOWTO (R_ARM_TLS_IE32,        /* type */
1534
         0,                     /* rightshift */
1535
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1536
         32,                    /* bitsize */
1537
         FALSE,                  /* pc_relative */
1538
         0,                     /* bitpos */
1539
         complain_overflow_bitfield,/* complain_on_overflow */
1540
         NULL,                  /* special_function */
1541
         "R_ARM_TLS_IE32",      /* name */
1542
         TRUE,                  /* partial_inplace */
1543
         0xffffffff,            /* src_mask */
1544
         0xffffffff,            /* dst_mask */
1545
         FALSE),                /* pcrel_offset */
1546
 
1547
  HOWTO (R_ARM_TLS_LE32,        /* type */
1548
         0,                     /* rightshift */
1549
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1550
         32,                    /* bitsize */
1551
         FALSE,                 /* pc_relative */
1552
         0,                     /* bitpos */
1553
         complain_overflow_bitfield,/* complain_on_overflow */
1554
         bfd_elf_generic_reloc, /* special_function */
1555
         "R_ARM_TLS_LE32",      /* name */
1556
         TRUE,                  /* partial_inplace */
1557
         0xffffffff,            /* src_mask */
1558
         0xffffffff,            /* dst_mask */
1559
         FALSE),                /* pcrel_offset */
1560
 
1561
  HOWTO (R_ARM_TLS_LDO12,       /* type */
1562
         0,                      /* rightshift */
1563
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1564
         12,                    /* bitsize */
1565
         FALSE,                 /* pc_relative */
1566
         0,                      /* bitpos */
1567
         complain_overflow_bitfield,/* complain_on_overflow */
1568
         bfd_elf_generic_reloc, /* special_function */
1569
         "R_ARM_TLS_LDO12",     /* name */
1570
         FALSE,                 /* partial_inplace */
1571
         0x00000fff,            /* src_mask */
1572
         0x00000fff,            /* dst_mask */
1573
         FALSE),                /* pcrel_offset */
1574
 
1575
  HOWTO (R_ARM_TLS_LE12,        /* type */
1576
         0,                      /* rightshift */
1577
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1578
         12,                    /* bitsize */
1579
         FALSE,                 /* pc_relative */
1580
         0,                      /* bitpos */
1581
         complain_overflow_bitfield,/* complain_on_overflow */
1582
         bfd_elf_generic_reloc, /* special_function */
1583
         "R_ARM_TLS_LE12",      /* name */
1584
         FALSE,                 /* partial_inplace */
1585
         0x00000fff,            /* src_mask */
1586
         0x00000fff,            /* dst_mask */
1587
         FALSE),                /* pcrel_offset */
1588
 
1589
  HOWTO (R_ARM_TLS_IE12GP,      /* type */
1590
         0,                      /* rightshift */
1591
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1592
         12,                    /* bitsize */
1593
         FALSE,                 /* pc_relative */
1594
         0,                      /* bitpos */
1595
         complain_overflow_bitfield,/* complain_on_overflow */
1596
         bfd_elf_generic_reloc, /* special_function */
1597
         "R_ARM_TLS_IE12GP",    /* name */
1598
         FALSE,                 /* partial_inplace */
1599
         0x00000fff,            /* src_mask */
1600
         0x00000fff,            /* dst_mask */
1601
         FALSE),                /* pcrel_offset */
1602
};
1603
 
1604
/* 112-127 private relocations
1605
   128 R_ARM_ME_TOO, obsolete
1606
   129-255 unallocated in AAELF.
1607
 
1608
   249-255 extended, currently unused, relocations:  */
1609
 
1610
static reloc_howto_type elf32_arm_howto_table_2[4] =
1611
{
1612
  HOWTO (R_ARM_RREL32,          /* type */
1613
         0,                      /* rightshift */
1614
         0,                      /* size (0 = byte, 1 = short, 2 = long) */
1615
         0,                      /* bitsize */
1616
         FALSE,                 /* pc_relative */
1617
         0,                      /* bitpos */
1618
         complain_overflow_dont,/* complain_on_overflow */
1619
         bfd_elf_generic_reloc, /* special_function */
1620
         "R_ARM_RREL32",        /* name */
1621
         FALSE,                 /* partial_inplace */
1622
         0,                      /* src_mask */
1623
         0,                      /* dst_mask */
1624
         FALSE),                /* pcrel_offset */
1625
 
1626
  HOWTO (R_ARM_RABS32,          /* type */
1627
         0,                      /* rightshift */
1628
         0,                      /* size (0 = byte, 1 = short, 2 = long) */
1629
         0,                      /* bitsize */
1630
         FALSE,                 /* pc_relative */
1631
         0,                      /* bitpos */
1632
         complain_overflow_dont,/* complain_on_overflow */
1633
         bfd_elf_generic_reloc, /* special_function */
1634
         "R_ARM_RABS32",        /* name */
1635
         FALSE,                 /* partial_inplace */
1636
         0,                      /* src_mask */
1637
         0,                      /* dst_mask */
1638
         FALSE),                /* pcrel_offset */
1639
 
1640
  HOWTO (R_ARM_RPC24,           /* type */
1641
         0,                      /* rightshift */
1642
         0,                      /* size (0 = byte, 1 = short, 2 = long) */
1643
         0,                      /* bitsize */
1644
         FALSE,                 /* pc_relative */
1645
         0,                      /* bitpos */
1646
         complain_overflow_dont,/* complain_on_overflow */
1647
         bfd_elf_generic_reloc, /* special_function */
1648
         "R_ARM_RPC24",         /* name */
1649
         FALSE,                 /* partial_inplace */
1650
         0,                      /* src_mask */
1651
         0,                      /* dst_mask */
1652
         FALSE),                /* pcrel_offset */
1653
 
1654
  HOWTO (R_ARM_RBASE,           /* type */
1655
         0,                      /* rightshift */
1656
         0,                      /* size (0 = byte, 1 = short, 2 = long) */
1657
         0,                      /* bitsize */
1658
         FALSE,                 /* pc_relative */
1659
         0,                      /* bitpos */
1660
         complain_overflow_dont,/* complain_on_overflow */
1661
         bfd_elf_generic_reloc, /* special_function */
1662
         "R_ARM_RBASE",         /* name */
1663
         FALSE,                 /* partial_inplace */
1664
         0,                      /* src_mask */
1665
         0,                      /* dst_mask */
1666
         FALSE)                 /* pcrel_offset */
1667
};
1668
 
1669
static reloc_howto_type *
1670
elf32_arm_howto_from_type (unsigned int r_type)
1671
{
1672
  if (r_type < ARRAY_SIZE (elf32_arm_howto_table_1))
1673
    return &elf32_arm_howto_table_1[r_type];
1674
 
1675
  if (r_type >= R_ARM_RREL32
1676
      && r_type < R_ARM_RREL32 + ARRAY_SIZE (elf32_arm_howto_table_2))
1677
    return &elf32_arm_howto_table_2[r_type - R_ARM_RREL32];
1678
 
1679
  return NULL;
1680
}
1681
 
1682
static void
1683
elf32_arm_info_to_howto (bfd * abfd ATTRIBUTE_UNUSED, arelent * bfd_reloc,
1684
                         Elf_Internal_Rela * elf_reloc)
1685
{
1686
  unsigned int r_type;
1687
 
1688
  r_type = ELF32_R_TYPE (elf_reloc->r_info);
1689
  bfd_reloc->howto = elf32_arm_howto_from_type (r_type);
1690
}
1691
 
1692
struct elf32_arm_reloc_map
1693
  {
1694
    bfd_reloc_code_real_type  bfd_reloc_val;
1695
    unsigned char             elf_reloc_val;
1696
  };
1697
 
1698
/* All entries in this list must also be present in elf32_arm_howto_table.  */
1699
static const struct elf32_arm_reloc_map elf32_arm_reloc_map[] =
1700
  {
1701
    {BFD_RELOC_NONE,                 R_ARM_NONE},
1702
    {BFD_RELOC_ARM_PCREL_BRANCH,     R_ARM_PC24},
1703
    {BFD_RELOC_ARM_PCREL_CALL,       R_ARM_CALL},
1704
    {BFD_RELOC_ARM_PCREL_JUMP,       R_ARM_JUMP24},
1705
    {BFD_RELOC_ARM_PCREL_BLX,        R_ARM_XPC25},
1706
    {BFD_RELOC_THUMB_PCREL_BLX,      R_ARM_THM_XPC22},
1707
    {BFD_RELOC_32,                   R_ARM_ABS32},
1708
    {BFD_RELOC_32_PCREL,             R_ARM_REL32},
1709
    {BFD_RELOC_8,                    R_ARM_ABS8},
1710
    {BFD_RELOC_16,                   R_ARM_ABS16},
1711
    {BFD_RELOC_ARM_OFFSET_IMM,       R_ARM_ABS12},
1712
    {BFD_RELOC_ARM_THUMB_OFFSET,     R_ARM_THM_ABS5},
1713
    {BFD_RELOC_THUMB_PCREL_BRANCH25, R_ARM_THM_JUMP24},
1714
    {BFD_RELOC_THUMB_PCREL_BRANCH23, R_ARM_THM_CALL},
1715
    {BFD_RELOC_THUMB_PCREL_BRANCH12, R_ARM_THM_JUMP11},
1716
    {BFD_RELOC_THUMB_PCREL_BRANCH20, R_ARM_THM_JUMP19},
1717
    {BFD_RELOC_THUMB_PCREL_BRANCH9,  R_ARM_THM_JUMP8},
1718
    {BFD_RELOC_THUMB_PCREL_BRANCH7,  R_ARM_THM_JUMP6},
1719
    {BFD_RELOC_ARM_GLOB_DAT,         R_ARM_GLOB_DAT},
1720
    {BFD_RELOC_ARM_JUMP_SLOT,        R_ARM_JUMP_SLOT},
1721
    {BFD_RELOC_ARM_RELATIVE,         R_ARM_RELATIVE},
1722
    {BFD_RELOC_ARM_GOTOFF,           R_ARM_GOTOFF32},
1723
    {BFD_RELOC_ARM_GOTPC,            R_ARM_GOTPC},
1724
    {BFD_RELOC_ARM_GOT_PREL,         R_ARM_GOT_PREL},
1725
    {BFD_RELOC_ARM_GOT32,            R_ARM_GOT32},
1726
    {BFD_RELOC_ARM_PLT32,            R_ARM_PLT32},
1727
    {BFD_RELOC_ARM_TARGET1,          R_ARM_TARGET1},
1728
    {BFD_RELOC_ARM_ROSEGREL32,       R_ARM_ROSEGREL32},
1729
    {BFD_RELOC_ARM_SBREL32,          R_ARM_SBREL32},
1730
    {BFD_RELOC_ARM_PREL31,           R_ARM_PREL31},
1731
    {BFD_RELOC_ARM_TARGET2,          R_ARM_TARGET2},
1732
    {BFD_RELOC_ARM_PLT32,            R_ARM_PLT32},
1733
    {BFD_RELOC_ARM_TLS_GD32,         R_ARM_TLS_GD32},
1734
    {BFD_RELOC_ARM_TLS_LDO32,        R_ARM_TLS_LDO32},
1735
    {BFD_RELOC_ARM_TLS_LDM32,        R_ARM_TLS_LDM32},
1736
    {BFD_RELOC_ARM_TLS_DTPMOD32,     R_ARM_TLS_DTPMOD32},
1737
    {BFD_RELOC_ARM_TLS_DTPOFF32,     R_ARM_TLS_DTPOFF32},
1738
    {BFD_RELOC_ARM_TLS_TPOFF32,      R_ARM_TLS_TPOFF32},
1739
    {BFD_RELOC_ARM_TLS_IE32,         R_ARM_TLS_IE32},
1740
    {BFD_RELOC_ARM_TLS_LE32,         R_ARM_TLS_LE32},
1741
    {BFD_RELOC_VTABLE_INHERIT,       R_ARM_GNU_VTINHERIT},
1742
    {BFD_RELOC_VTABLE_ENTRY,         R_ARM_GNU_VTENTRY},
1743
    {BFD_RELOC_ARM_MOVW,             R_ARM_MOVW_ABS_NC},
1744
    {BFD_RELOC_ARM_MOVT,             R_ARM_MOVT_ABS},
1745
    {BFD_RELOC_ARM_MOVW_PCREL,       R_ARM_MOVW_PREL_NC},
1746
    {BFD_RELOC_ARM_MOVT_PCREL,       R_ARM_MOVT_PREL},
1747
    {BFD_RELOC_ARM_THUMB_MOVW,       R_ARM_THM_MOVW_ABS_NC},
1748
    {BFD_RELOC_ARM_THUMB_MOVT,       R_ARM_THM_MOVT_ABS},
1749
    {BFD_RELOC_ARM_THUMB_MOVW_PCREL, R_ARM_THM_MOVW_PREL_NC},
1750
    {BFD_RELOC_ARM_THUMB_MOVT_PCREL, R_ARM_THM_MOVT_PREL},
1751
    {BFD_RELOC_ARM_ALU_PC_G0_NC, R_ARM_ALU_PC_G0_NC},
1752
    {BFD_RELOC_ARM_ALU_PC_G0, R_ARM_ALU_PC_G0},
1753
    {BFD_RELOC_ARM_ALU_PC_G1_NC, R_ARM_ALU_PC_G1_NC},
1754
    {BFD_RELOC_ARM_ALU_PC_G1, R_ARM_ALU_PC_G1},
1755
    {BFD_RELOC_ARM_ALU_PC_G2, R_ARM_ALU_PC_G2},
1756
    {BFD_RELOC_ARM_LDR_PC_G0, R_ARM_LDR_PC_G0},
1757
    {BFD_RELOC_ARM_LDR_PC_G1, R_ARM_LDR_PC_G1},
1758
    {BFD_RELOC_ARM_LDR_PC_G2, R_ARM_LDR_PC_G2},
1759
    {BFD_RELOC_ARM_LDRS_PC_G0, R_ARM_LDRS_PC_G0},
1760
    {BFD_RELOC_ARM_LDRS_PC_G1, R_ARM_LDRS_PC_G1},
1761
    {BFD_RELOC_ARM_LDRS_PC_G2, R_ARM_LDRS_PC_G2},
1762
    {BFD_RELOC_ARM_LDC_PC_G0, R_ARM_LDC_PC_G0},
1763
    {BFD_RELOC_ARM_LDC_PC_G1, R_ARM_LDC_PC_G1},
1764
    {BFD_RELOC_ARM_LDC_PC_G2, R_ARM_LDC_PC_G2},
1765
    {BFD_RELOC_ARM_ALU_SB_G0_NC, R_ARM_ALU_SB_G0_NC},
1766
    {BFD_RELOC_ARM_ALU_SB_G0, R_ARM_ALU_SB_G0},
1767
    {BFD_RELOC_ARM_ALU_SB_G1_NC, R_ARM_ALU_SB_G1_NC},
1768
    {BFD_RELOC_ARM_ALU_SB_G1, R_ARM_ALU_SB_G1},
1769
    {BFD_RELOC_ARM_ALU_SB_G2, R_ARM_ALU_SB_G2},
1770
    {BFD_RELOC_ARM_LDR_SB_G0, R_ARM_LDR_SB_G0},
1771
    {BFD_RELOC_ARM_LDR_SB_G1, R_ARM_LDR_SB_G1},
1772
    {BFD_RELOC_ARM_LDR_SB_G2, R_ARM_LDR_SB_G2},
1773
    {BFD_RELOC_ARM_LDRS_SB_G0, R_ARM_LDRS_SB_G0},
1774
    {BFD_RELOC_ARM_LDRS_SB_G1, R_ARM_LDRS_SB_G1},
1775
    {BFD_RELOC_ARM_LDRS_SB_G2, R_ARM_LDRS_SB_G2},
1776
    {BFD_RELOC_ARM_LDC_SB_G0, R_ARM_LDC_SB_G0},
1777
    {BFD_RELOC_ARM_LDC_SB_G1, R_ARM_LDC_SB_G1},
1778
    {BFD_RELOC_ARM_LDC_SB_G2, R_ARM_LDC_SB_G2},
1779
    {BFD_RELOC_ARM_V4BX,             R_ARM_V4BX}
1780
  };
1781
 
1782
static reloc_howto_type *
1783
elf32_arm_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1784
                             bfd_reloc_code_real_type code)
1785
{
1786
  unsigned int i;
1787
 
1788
  for (i = 0; i < ARRAY_SIZE (elf32_arm_reloc_map); i ++)
1789
    if (elf32_arm_reloc_map[i].bfd_reloc_val == code)
1790
      return elf32_arm_howto_from_type (elf32_arm_reloc_map[i].elf_reloc_val);
1791
 
1792
  return NULL;
1793
}
1794
 
1795
static reloc_howto_type *
1796
elf32_arm_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1797
                             const char *r_name)
1798
{
1799
  unsigned int i;
1800
 
1801
  for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_1); i++)
1802
    if (elf32_arm_howto_table_1[i].name != NULL
1803
        && strcasecmp (elf32_arm_howto_table_1[i].name, r_name) == 0)
1804
      return &elf32_arm_howto_table_1[i];
1805
 
1806
  for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_2); i++)
1807
    if (elf32_arm_howto_table_2[i].name != NULL
1808
        && strcasecmp (elf32_arm_howto_table_2[i].name, r_name) == 0)
1809
      return &elf32_arm_howto_table_2[i];
1810
 
1811
  return NULL;
1812
}
1813
 
1814
/* Support for core dump NOTE sections.  */
1815
 
1816
static bfd_boolean
1817
elf32_arm_nabi_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
1818
{
1819
  int offset;
1820
  size_t size;
1821
 
1822
  switch (note->descsz)
1823
    {
1824
      default:
1825
        return FALSE;
1826
 
1827
      case 148:         /* Linux/ARM 32-bit.  */
1828
        /* pr_cursig */
1829
        elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
1830
 
1831
        /* pr_pid */
1832
        elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 24);
1833
 
1834
        /* pr_reg */
1835
        offset = 72;
1836
        size = 72;
1837
 
1838
        break;
1839
    }
1840
 
1841
  /* Make a ".reg/999" section.  */
1842
  return _bfd_elfcore_make_pseudosection (abfd, ".reg",
1843
                                          size, note->descpos + offset);
1844
}
1845
 
1846
static bfd_boolean
1847
elf32_arm_nabi_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
1848
{
1849
  switch (note->descsz)
1850
    {
1851
      default:
1852
        return FALSE;
1853
 
1854
      case 124:         /* Linux/ARM elf_prpsinfo.  */
1855
        elf_tdata (abfd)->core_program
1856
         = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
1857
        elf_tdata (abfd)->core_command
1858
         = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
1859
    }
1860
 
1861
  /* Note that for some reason, a spurious space is tacked
1862
     onto the end of the args in some (at least one anyway)
1863
     implementations, so strip it off if it exists.  */
1864
  {
1865
    char *command = elf_tdata (abfd)->core_command;
1866
    int n = strlen (command);
1867
 
1868
    if (0 < n && command[n - 1] == ' ')
1869
      command[n - 1] = '\0';
1870
  }
1871
 
1872
  return TRUE;
1873
}
1874
 
1875
#define TARGET_LITTLE_SYM               bfd_elf32_littlearm_vec
1876
#define TARGET_LITTLE_NAME              "elf32-littlearm"
1877
#define TARGET_BIG_SYM                  bfd_elf32_bigarm_vec
1878
#define TARGET_BIG_NAME                 "elf32-bigarm"
1879
 
1880
#define elf_backend_grok_prstatus       elf32_arm_nabi_grok_prstatus
1881
#define elf_backend_grok_psinfo         elf32_arm_nabi_grok_psinfo
1882
 
1883
typedef unsigned long int insn32;
1884
typedef unsigned short int insn16;
1885
 
1886
/* In lieu of proper flags, assume all EABIv4 or later objects are
1887
   interworkable.  */
1888
#define INTERWORK_FLAG(abfd)  \
1889
  (EF_ARM_EABI_VERSION (elf_elfheader (abfd)->e_flags) >= EF_ARM_EABI_VER4 \
1890
  || (elf_elfheader (abfd)->e_flags & EF_ARM_INTERWORK) \
1891
  || ((abfd)->flags & BFD_LINKER_CREATED))
1892
 
1893
/* The linker script knows the section names for placement.
1894
   The entry_names are used to do simple name mangling on the stubs.
1895
   Given a function name, and its type, the stub can be found. The
1896
   name can be changed. The only requirement is the %s be present.  */
1897
#define THUMB2ARM_GLUE_SECTION_NAME ".glue_7t"
1898
#define THUMB2ARM_GLUE_ENTRY_NAME   "__%s_from_thumb"
1899
 
1900
#define ARM2THUMB_GLUE_SECTION_NAME ".glue_7"
1901
#define ARM2THUMB_GLUE_ENTRY_NAME   "__%s_from_arm"
1902
 
1903
#define VFP11_ERRATUM_VENEER_SECTION_NAME ".vfp11_veneer"
1904
#define VFP11_ERRATUM_VENEER_ENTRY_NAME   "__vfp11_veneer_%x"
1905
 
1906
#define ARM_BX_GLUE_SECTION_NAME ".v4_bx"
1907
#define ARM_BX_GLUE_ENTRY_NAME   "__bx_r%d"
1908
 
1909
#define STUB_ENTRY_NAME   "__%s_veneer"
1910
 
1911
/* The name of the dynamic interpreter.  This is put in the .interp
1912
   section.  */
1913
#define ELF_DYNAMIC_INTERPRETER     "/usr/lib/ld.so.1"
1914
 
1915
#ifdef FOUR_WORD_PLT
1916
 
1917
/* The first entry in a procedure linkage table looks like
1918
   this.  It is set up so that any shared library function that is
1919
   called before the relocation has been set up calls the dynamic
1920
   linker first.  */
1921
static const bfd_vma elf32_arm_plt0_entry [] =
1922
  {
1923
    0xe52de004,         /* str   lr, [sp, #-4]! */
1924
    0xe59fe010,         /* ldr   lr, [pc, #16]  */
1925
    0xe08fe00e,         /* add   lr, pc, lr     */
1926
    0xe5bef008,         /* ldr   pc, [lr, #8]!  */
1927
  };
1928
 
1929
/* Subsequent entries in a procedure linkage table look like
1930
   this.  */
1931
static const bfd_vma elf32_arm_plt_entry [] =
1932
  {
1933
    0xe28fc600,         /* add   ip, pc, #NN    */
1934
    0xe28cca00,         /* add   ip, ip, #NN    */
1935
    0xe5bcf000,         /* ldr   pc, [ip, #NN]! */
1936
    0x00000000,         /* unused               */
1937
  };
1938
 
1939
#else
1940
 
1941
/* The first entry in a procedure linkage table looks like
1942
   this.  It is set up so that any shared library function that is
1943
   called before the relocation has been set up calls the dynamic
1944
   linker first.  */
1945
static const bfd_vma elf32_arm_plt0_entry [] =
1946
  {
1947
    0xe52de004,         /* str   lr, [sp, #-4]! */
1948
    0xe59fe004,         /* ldr   lr, [pc, #4]   */
1949
    0xe08fe00e,         /* add   lr, pc, lr     */
1950
    0xe5bef008,         /* ldr   pc, [lr, #8]!  */
1951
    0x00000000,         /* &GOT[0] - .          */
1952
  };
1953
 
1954
/* Subsequent entries in a procedure linkage table look like
1955
   this.  */
1956
static const bfd_vma elf32_arm_plt_entry [] =
1957
  {
1958
    0xe28fc600,         /* add   ip, pc, #0xNN00000 */
1959
    0xe28cca00,         /* add   ip, ip, #0xNN000   */
1960
    0xe5bcf000,         /* ldr   pc, [ip, #0xNNN]!  */
1961
  };
1962
 
1963
#endif
1964
 
1965
/* The format of the first entry in the procedure linkage table
1966
   for a VxWorks executable.  */
1967
static const bfd_vma elf32_arm_vxworks_exec_plt0_entry[] =
1968
  {
1969
    0xe52dc008,         /* str    ip,[sp,#-8]!                  */
1970
    0xe59fc000,         /* ldr    ip,[pc]                       */
1971
    0xe59cf008,         /* ldr    pc,[ip,#8]                    */
1972
    0x00000000,         /* .long  _GLOBAL_OFFSET_TABLE_         */
1973
  };
1974
 
1975
/* The format of subsequent entries in a VxWorks executable.  */
1976
static const bfd_vma elf32_arm_vxworks_exec_plt_entry[] =
1977
  {
1978
    0xe59fc000,         /* ldr    ip,[pc]                       */
1979
    0xe59cf000,         /* ldr    pc,[ip]                       */
1980
    0x00000000,         /* .long  @got                          */
1981
    0xe59fc000,         /* ldr    ip,[pc]                       */
1982
    0xea000000,         /* b      _PLT                          */
1983
    0x00000000,         /* .long  @pltindex*sizeof(Elf32_Rela)  */
1984
  };
1985
 
1986
/* The format of entries in a VxWorks shared library.  */
1987
static const bfd_vma elf32_arm_vxworks_shared_plt_entry[] =
1988
  {
1989
    0xe59fc000,         /* ldr    ip,[pc]                       */
1990
    0xe79cf009,         /* ldr    pc,[ip,r9]                    */
1991
    0x00000000,         /* .long  @got                          */
1992
    0xe59fc000,         /* ldr    ip,[pc]                       */
1993
    0xe599f008,         /* ldr    pc,[r9,#8]                    */
1994
    0x00000000,         /* .long  @pltindex*sizeof(Elf32_Rela)  */
1995
  };
1996
 
1997
/* An initial stub used if the PLT entry is referenced from Thumb code.  */
1998
#define PLT_THUMB_STUB_SIZE 4
1999
static const bfd_vma elf32_arm_plt_thumb_stub [] =
2000
  {
2001
    0x4778,             /* bx pc */
2002
    0x46c0              /* nop   */
2003
  };
2004
 
2005
/* The entries in a PLT when using a DLL-based target with multiple
2006
   address spaces.  */
2007
static const bfd_vma elf32_arm_symbian_plt_entry [] =
2008
  {
2009
    0xe51ff004,         /* ldr   pc, [pc, #-4] */
2010
    0x00000000,         /* dcd   R_ARM_GLOB_DAT(X) */
2011
  };
2012
 
2013
#define ARM_MAX_FWD_BRANCH_OFFSET  ((((1 << 23) - 1) << 2) + 8)
2014
#define ARM_MAX_BWD_BRANCH_OFFSET  ((-((1 << 23) << 2)) + 8)
2015
#define THM_MAX_FWD_BRANCH_OFFSET  ((1 << 22) -2 + 4)
2016
#define THM_MAX_BWD_BRANCH_OFFSET  (-(1 << 22) + 4)
2017
#define THM2_MAX_FWD_BRANCH_OFFSET (((1 << 24) - 2) + 4)
2018
#define THM2_MAX_BWD_BRANCH_OFFSET (-(1 << 24) + 4)
2019
 
2020
enum stub_insn_type
2021
  {
2022
    THUMB16_TYPE = 1,
2023
    THUMB32_TYPE,
2024
    ARM_TYPE,
2025
    DATA_TYPE
2026
  };
2027
 
2028
#define THUMB16_INSN(X)         {(X), THUMB16_TYPE, R_ARM_NONE, 0}
2029
/* A bit of a hack.  A Thumb conditional branch, in which the proper condition
2030
   is inserted in arm_build_one_stub().  */
2031
#define THUMB16_BCOND_INSN(X)   {(X), THUMB16_TYPE, R_ARM_NONE, 1}
2032
#define THUMB32_INSN(X)         {(X), THUMB32_TYPE, R_ARM_NONE, 0}
2033
#define THUMB32_B_INSN(X, Z)    {(X), THUMB32_TYPE, R_ARM_THM_JUMP24, (Z)}
2034
#define ARM_INSN(X)             {(X), ARM_TYPE, R_ARM_NONE, 0}
2035
#define ARM_REL_INSN(X, Z)      {(X), ARM_TYPE, R_ARM_JUMP24, (Z)}
2036
#define DATA_WORD(X,Y,Z)        {(X), DATA_TYPE, (Y), (Z)}
2037
 
2038
typedef struct
2039
{
2040
  bfd_vma data;
2041
  enum stub_insn_type type;
2042
  unsigned int r_type;
2043
  int reloc_addend;
2044
}  insn_sequence;
2045
 
2046
/* Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
2047
   to reach the stub if necessary.  */
2048
static const insn_sequence elf32_arm_stub_long_branch_any_any[] =
2049
  {
2050
    ARM_INSN(0xe51ff004),            /* ldr   pc, [pc, #-4] */
2051
    DATA_WORD(0, R_ARM_ABS32, 0),    /* dcd   R_ARM_ABS32(X) */
2052
  };
2053
 
2054
/* V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
2055
   available.  */
2056
static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb[] =
2057
  {
2058
    ARM_INSN(0xe59fc000),            /* ldr   ip, [pc, #0] */
2059
    ARM_INSN(0xe12fff1c),            /* bx    ip */
2060
    DATA_WORD(0, R_ARM_ABS32, 0),    /* dcd   R_ARM_ABS32(X) */
2061
  };
2062
 
2063
/* Thumb -> Thumb long branch stub. Used on M-profile architectures.  */
2064
static const insn_sequence elf32_arm_stub_long_branch_thumb_only[] =
2065
  {
2066
    THUMB16_INSN(0xb401),             /* push {r0} */
2067
    THUMB16_INSN(0x4802),             /* ldr  r0, [pc, #8] */
2068
    THUMB16_INSN(0x4684),             /* mov  ip, r0 */
2069
    THUMB16_INSN(0xbc01),             /* pop  {r0} */
2070
    THUMB16_INSN(0x4760),             /* bx   ip */
2071
    THUMB16_INSN(0xbf00),             /* nop */
2072
    DATA_WORD(0, R_ARM_ABS32, 0),     /* dcd  R_ARM_ABS32(X) */
2073
  };
2074
 
2075
/* V4T Thumb -> Thumb long branch stub. Using the stack is not
2076
   allowed.  */
2077
static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb[] =
2078
  {
2079
    THUMB16_INSN(0x4778),             /* bx   pc */
2080
    THUMB16_INSN(0x46c0),             /* nop */
2081
    ARM_INSN(0xe59fc000),             /* ldr  ip, [pc, #0] */
2082
    ARM_INSN(0xe12fff1c),             /* bx   ip */
2083
    DATA_WORD(0, R_ARM_ABS32, 0),     /* dcd  R_ARM_ABS32(X) */
2084
  };
2085
 
2086
/* V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
2087
   available.  */
2088
static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm[] =
2089
  {
2090
    THUMB16_INSN(0x4778),             /* bx   pc */
2091
    THUMB16_INSN(0x46c0),             /* nop   */
2092
    ARM_INSN(0xe51ff004),             /* ldr   pc, [pc, #-4] */
2093
    DATA_WORD(0, R_ARM_ABS32, 0),     /* dcd   R_ARM_ABS32(X) */
2094
  };
2095
 
2096
/* V4T Thumb -> ARM short branch stub. Shorter variant of the above
2097
   one, when the destination is close enough.  */
2098
static const insn_sequence elf32_arm_stub_short_branch_v4t_thumb_arm[] =
2099
  {
2100
    THUMB16_INSN(0x4778),             /* bx   pc */
2101
    THUMB16_INSN(0x46c0),             /* nop   */
2102
    ARM_REL_INSN(0xea000000, -8),     /* b    (X-8) */
2103
  };
2104
 
2105
/* ARM/Thumb -> ARM long branch stub, PIC.  On V5T and above, use
2106
   blx to reach the stub if necessary.  */
2107
static const insn_sequence elf32_arm_stub_long_branch_any_arm_pic[] =
2108
  {
2109
    ARM_INSN(0xe59fc000),             /* ldr   r12, [pc] */
2110
    ARM_INSN(0xe08ff00c),             /* add   pc, pc, ip */
2111
    DATA_WORD(0, R_ARM_REL32, -4),    /* dcd   R_ARM_REL32(X-4) */
2112
  };
2113
 
2114
/* ARM/Thumb -> Thumb long branch stub, PIC.  On V5T and above, use
2115
   blx to reach the stub if necessary.  We can not add into pc;
2116
   it is not guaranteed to mode switch (different in ARMv6 and
2117
   ARMv7).  */
2118
static const insn_sequence elf32_arm_stub_long_branch_any_thumb_pic[] =
2119
  {
2120
    ARM_INSN(0xe59fc004),             /* ldr   r12, [pc, #4] */
2121
    ARM_INSN(0xe08fc00c),             /* add   ip, pc, ip */
2122
    ARM_INSN(0xe12fff1c),             /* bx    ip */
2123
    DATA_WORD(0, R_ARM_REL32, 0),     /* dcd   R_ARM_REL32(X) */
2124
  };
2125
 
2126
/* V4T ARM -> ARM long branch stub, PIC.  */
2127
static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb_pic[] =
2128
  {
2129
    ARM_INSN(0xe59fc004),             /* ldr   ip, [pc, #4] */
2130
    ARM_INSN(0xe08fc00c),             /* add   ip, pc, ip */
2131
    ARM_INSN(0xe12fff1c),             /* bx    ip */
2132
    DATA_WORD(0, R_ARM_REL32, 0),     /* dcd   R_ARM_REL32(X) */
2133
  };
2134
 
2135
/* V4T Thumb -> ARM long branch stub, PIC.  */
2136
static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm_pic[] =
2137
  {
2138
    THUMB16_INSN(0x4778),             /* bx   pc */
2139
    THUMB16_INSN(0x46c0),             /* nop  */
2140
    ARM_INSN(0xe59fc000),             /* ldr  ip, [pc, #0] */
2141
    ARM_INSN(0xe08cf00f),             /* add  pc, ip, pc */
2142
    DATA_WORD(0, R_ARM_REL32, -4),     /* dcd  R_ARM_REL32(X) */
2143
  };
2144
 
2145
/* Thumb -> Thumb long branch stub, PIC. Used on M-profile
2146
   architectures.  */
2147
static const insn_sequence elf32_arm_stub_long_branch_thumb_only_pic[] =
2148
  {
2149
    THUMB16_INSN(0xb401),             /* push {r0} */
2150
    THUMB16_INSN(0x4802),             /* ldr  r0, [pc, #8] */
2151
    THUMB16_INSN(0x46fc),             /* mov  ip, pc */
2152
    THUMB16_INSN(0x4484),             /* add  ip, r0 */
2153
    THUMB16_INSN(0xbc01),             /* pop  {r0} */
2154
    THUMB16_INSN(0x4760),             /* bx   ip */
2155
    DATA_WORD(0, R_ARM_REL32, 4),     /* dcd  R_ARM_REL32(X) */
2156
  };
2157
 
2158
/* V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not
2159
   allowed.  */
2160
static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb_pic[] =
2161
  {
2162
    THUMB16_INSN(0x4778),             /* bx   pc */
2163
    THUMB16_INSN(0x46c0),             /* nop */
2164
    ARM_INSN(0xe59fc004),             /* ldr  ip, [pc, #4] */
2165
    ARM_INSN(0xe08fc00c),             /* add   ip, pc, ip */
2166
    ARM_INSN(0xe12fff1c),             /* bx   ip */
2167
    DATA_WORD(0, R_ARM_REL32, 0),     /* dcd  R_ARM_REL32(X) */
2168
  };
2169
 
2170
/* Cortex-A8 erratum-workaround stubs.  */
2171
 
2172
/* Stub used for conditional branches (which may be beyond +/-1MB away, so we
2173
   can't use a conditional branch to reach this stub).  */
2174
 
2175
static const insn_sequence elf32_arm_stub_a8_veneer_b_cond[] =
2176
  {
2177
    THUMB16_BCOND_INSN(0xd001),         /* b<cond>.n true.  */
2178
    THUMB32_B_INSN(0xf000b800, -4),     /* b.w insn_after_original_branch.  */
2179
    THUMB32_B_INSN(0xf000b800, -4)      /* true: b.w original_branch_dest.  */
2180
  };
2181
 
2182
/* Stub used for b.w and bl.w instructions.  */
2183
 
2184
static const insn_sequence elf32_arm_stub_a8_veneer_b[] =
2185
  {
2186
    THUMB32_B_INSN(0xf000b800, -4)      /* b.w original_branch_dest.  */
2187
  };
2188
 
2189
static const insn_sequence elf32_arm_stub_a8_veneer_bl[] =
2190
  {
2191
    THUMB32_B_INSN(0xf000b800, -4)      /* b.w original_branch_dest.  */
2192
  };
2193
 
2194
/* Stub used for Thumb-2 blx.w instructions.  We modified the original blx.w
2195
   instruction (which switches to ARM mode) to point to this stub.  Jump to the
2196
   real destination using an ARM-mode branch.  */
2197
 
2198
static const insn_sequence elf32_arm_stub_a8_veneer_blx[] =
2199
  {
2200
    ARM_REL_INSN(0xea000000, -8)        /* b original_branch_dest.  */
2201
  };
2202
 
2203
/* Section name for stubs is the associated section name plus this
2204
   string.  */
2205
#define STUB_SUFFIX ".stub"
2206
 
2207
/* One entry per long/short branch stub defined above.  */
2208
#define DEF_STUBS \
2209
  DEF_STUB(long_branch_any_any) \
2210
  DEF_STUB(long_branch_v4t_arm_thumb) \
2211
  DEF_STUB(long_branch_thumb_only) \
2212
  DEF_STUB(long_branch_v4t_thumb_thumb) \
2213
  DEF_STUB(long_branch_v4t_thumb_arm) \
2214
  DEF_STUB(short_branch_v4t_thumb_arm) \
2215
  DEF_STUB(long_branch_any_arm_pic) \
2216
  DEF_STUB(long_branch_any_thumb_pic) \
2217
  DEF_STUB(long_branch_v4t_thumb_thumb_pic) \
2218
  DEF_STUB(long_branch_v4t_arm_thumb_pic) \
2219
  DEF_STUB(long_branch_v4t_thumb_arm_pic) \
2220
  DEF_STUB(long_branch_thumb_only_pic) \
2221
  DEF_STUB(a8_veneer_b_cond) \
2222
  DEF_STUB(a8_veneer_b) \
2223
  DEF_STUB(a8_veneer_bl) \
2224
  DEF_STUB(a8_veneer_blx)
2225
 
2226
#define DEF_STUB(x) arm_stub_##x,
2227
enum elf32_arm_stub_type {
2228
  arm_stub_none,
2229
  DEF_STUBS
2230
  /* Note the first a8_veneer type */
2231
  arm_stub_a8_veneer_lwm = arm_stub_a8_veneer_b_cond
2232
};
2233
#undef DEF_STUB
2234
 
2235
typedef struct
2236
{
2237
  const insn_sequence* template_sequence;
2238
  int template_size;
2239
} stub_def;
2240
 
2241
#define DEF_STUB(x) {elf32_arm_stub_##x, ARRAY_SIZE(elf32_arm_stub_##x)},
2242
static const stub_def stub_definitions[] = {
2243
  {NULL, 0},
2244
  DEF_STUBS
2245
};
2246
 
2247
struct elf32_arm_stub_hash_entry
2248
{
2249
  /* Base hash table entry structure.  */
2250
  struct bfd_hash_entry root;
2251
 
2252
  /* The stub section.  */
2253
  asection *stub_sec;
2254
 
2255
  /* Offset within stub_sec of the beginning of this stub.  */
2256
  bfd_vma stub_offset;
2257
 
2258
  /* Given the symbol's value and its section we can determine its final
2259
     value when building the stubs (so the stub knows where to jump).  */
2260
  bfd_vma target_value;
2261
  asection *target_section;
2262
 
2263
  /* Offset to apply to relocation referencing target_value.  */
2264
  bfd_vma target_addend;
2265
 
2266
  /* The instruction which caused this stub to be generated (only valid for
2267
     Cortex-A8 erratum workaround stubs at present).  */
2268
  unsigned long orig_insn;
2269
 
2270
  /* The stub type.  */
2271
  enum elf32_arm_stub_type stub_type;
2272
  /* Its encoding size in bytes.  */
2273
  int stub_size;
2274
  /* Its template.  */
2275
  const insn_sequence *stub_template;
2276
  /* The size of the template (number of entries).  */
2277
  int stub_template_size;
2278
 
2279
  /* The symbol table entry, if any, that this was derived from.  */
2280
  struct elf32_arm_link_hash_entry *h;
2281
 
2282
  /* Destination symbol type (STT_ARM_TFUNC, ...) */
2283
  unsigned char st_type;
2284
 
2285
  /* Where this stub is being called from, or, in the case of combined
2286
     stub sections, the first input section in the group.  */
2287
  asection *id_sec;
2288
 
2289
  /* The name for the local symbol at the start of this stub.  The
2290
     stub name in the hash table has to be unique; this does not, so
2291
     it can be friendlier.  */
2292
  char *output_name;
2293
};
2294
 
2295
/* Used to build a map of a section.  This is required for mixed-endian
2296
   code/data.  */
2297
 
2298
typedef struct elf32_elf_section_map
2299
{
2300
  bfd_vma vma;
2301
  char type;
2302
}
2303
elf32_arm_section_map;
2304
 
2305
/* Information about a VFP11 erratum veneer, or a branch to such a veneer.  */
2306
 
2307
typedef enum
2308
{
2309
  VFP11_ERRATUM_BRANCH_TO_ARM_VENEER,
2310
  VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER,
2311
  VFP11_ERRATUM_ARM_VENEER,
2312
  VFP11_ERRATUM_THUMB_VENEER
2313
}
2314
elf32_vfp11_erratum_type;
2315
 
2316
typedef struct elf32_vfp11_erratum_list
2317
{
2318
  struct elf32_vfp11_erratum_list *next;
2319
  bfd_vma vma;
2320
  union
2321
  {
2322
    struct
2323
    {
2324
      struct elf32_vfp11_erratum_list *veneer;
2325
      unsigned int vfp_insn;
2326
    } b;
2327
    struct
2328
    {
2329
      struct elf32_vfp11_erratum_list *branch;
2330
      unsigned int id;
2331
    } v;
2332
  } u;
2333
  elf32_vfp11_erratum_type type;
2334
}
2335
elf32_vfp11_erratum_list;
2336
 
2337
typedef enum
2338
{
2339
  DELETE_EXIDX_ENTRY,
2340
  INSERT_EXIDX_CANTUNWIND_AT_END
2341
}
2342
arm_unwind_edit_type;
2343
 
2344
/* A (sorted) list of edits to apply to an unwind table.  */
2345
typedef struct arm_unwind_table_edit
2346
{
2347
  arm_unwind_edit_type type;
2348
  /* Note: we sometimes want to insert an unwind entry corresponding to a
2349
     section different from the one we're currently writing out, so record the
2350
     (text) section this edit relates to here.  */
2351
  asection *linked_section;
2352
  unsigned int index;
2353
  struct arm_unwind_table_edit *next;
2354
}
2355
arm_unwind_table_edit;
2356
 
2357
typedef struct _arm_elf_section_data
2358
{
2359
  /* Information about mapping symbols.  */
2360
  struct bfd_elf_section_data elf;
2361
  unsigned int mapcount;
2362
  unsigned int mapsize;
2363
  elf32_arm_section_map *map;
2364
  /* Information about CPU errata.  */
2365
  unsigned int erratumcount;
2366
  elf32_vfp11_erratum_list *erratumlist;
2367
  /* Information about unwind tables.  */
2368
  union
2369
  {
2370
    /* Unwind info attached to a text section.  */
2371
    struct
2372
    {
2373
      asection *arm_exidx_sec;
2374
    } text;
2375
 
2376
    /* Unwind info attached to an .ARM.exidx section.  */
2377
    struct
2378
    {
2379
      arm_unwind_table_edit *unwind_edit_list;
2380
      arm_unwind_table_edit *unwind_edit_tail;
2381
    } exidx;
2382
  } u;
2383
}
2384
_arm_elf_section_data;
2385
 
2386
#define elf32_arm_section_data(sec) \
2387
  ((_arm_elf_section_data *) elf_section_data (sec))
2388
 
2389
/* A fix which might be required for Cortex-A8 Thumb-2 branch/TLB erratum.
2390
   These fixes are subject to a relaxation procedure (in elf32_arm_size_stubs),
2391
   so may be created multiple times: we use an array of these entries whilst
2392
   relaxing which we can refresh easily, then create stubs for each potentially
2393
   erratum-triggering instruction once we've settled on a solution.  */
2394
 
2395
struct a8_erratum_fix {
2396
  bfd *input_bfd;
2397
  asection *section;
2398
  bfd_vma offset;
2399
  bfd_vma addend;
2400
  unsigned long orig_insn;
2401
  char *stub_name;
2402
  enum elf32_arm_stub_type stub_type;
2403
  int st_type;
2404
};
2405
 
2406
/* A table of relocs applied to branches which might trigger Cortex-A8
2407
   erratum.  */
2408
 
2409
struct a8_erratum_reloc {
2410
  bfd_vma from;
2411
  bfd_vma destination;
2412
  struct elf32_arm_link_hash_entry *hash;
2413
  const char *sym_name;
2414
  unsigned int r_type;
2415
  unsigned char st_type;
2416
  bfd_boolean non_a8_stub;
2417
};
2418
 
2419
/* The size of the thread control block.  */
2420
#define TCB_SIZE        8
2421
 
2422
struct elf_arm_obj_tdata
2423
{
2424
  struct elf_obj_tdata root;
2425
 
2426
  /* tls_type for each local got entry.  */
2427
  char *local_got_tls_type;
2428
 
2429
  /* Zero to warn when linking objects with incompatible enum sizes.  */
2430
  int no_enum_size_warning;
2431
 
2432
  /* Zero to warn when linking objects with incompatible wchar_t sizes.  */
2433
  int no_wchar_size_warning;
2434
};
2435
 
2436
#define elf_arm_tdata(bfd) \
2437
  ((struct elf_arm_obj_tdata *) (bfd)->tdata.any)
2438
 
2439
#define elf32_arm_local_got_tls_type(bfd) \
2440
  (elf_arm_tdata (bfd)->local_got_tls_type)
2441
 
2442
#define is_arm_elf(bfd) \
2443
  (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
2444
   && elf_tdata (bfd) != NULL \
2445
   && elf_object_id (bfd) == ARM_ELF_DATA)
2446
 
2447
static bfd_boolean
2448
elf32_arm_mkobject (bfd *abfd)
2449
{
2450
  return bfd_elf_allocate_object (abfd, sizeof (struct elf_arm_obj_tdata),
2451
                                  ARM_ELF_DATA);
2452
}
2453
 
2454
/* The ARM linker needs to keep track of the number of relocs that it
2455
   decides to copy in check_relocs for each symbol.  This is so that
2456
   it can discard PC relative relocs if it doesn't need them when
2457
   linking with -Bsymbolic.  We store the information in a field
2458
   extending the regular ELF linker hash table.  */
2459
 
2460
/* This structure keeps track of the number of relocs we have copied
2461
   for a given symbol.  */
2462
struct elf32_arm_relocs_copied
2463
  {
2464
    /* Next section.  */
2465
    struct elf32_arm_relocs_copied * next;
2466
    /* A section in dynobj.  */
2467
    asection * section;
2468
    /* Number of relocs copied in this section.  */
2469
    bfd_size_type count;
2470
    /* Number of PC-relative relocs copied in this section.  */
2471
    bfd_size_type pc_count;
2472
  };
2473
 
2474
#define elf32_arm_hash_entry(ent) ((struct elf32_arm_link_hash_entry *)(ent))
2475
 
2476
/* Arm ELF linker hash entry.  */
2477
struct elf32_arm_link_hash_entry
2478
  {
2479
    struct elf_link_hash_entry root;
2480
 
2481
    /* Number of PC relative relocs copied for this symbol.  */
2482
    struct elf32_arm_relocs_copied * relocs_copied;
2483
 
2484
    /* We reference count Thumb references to a PLT entry separately,
2485
       so that we can emit the Thumb trampoline only if needed.  */
2486
    bfd_signed_vma plt_thumb_refcount;
2487
 
2488
    /* Some references from Thumb code may be eliminated by BL->BLX
2489
       conversion, so record them separately.  */
2490
    bfd_signed_vma plt_maybe_thumb_refcount;
2491
 
2492
    /* Since PLT entries have variable size if the Thumb prologue is
2493
       used, we need to record the index into .got.plt instead of
2494
       recomputing it from the PLT offset.  */
2495
    bfd_signed_vma plt_got_offset;
2496
 
2497
#define GOT_UNKNOWN     0
2498
#define GOT_NORMAL      1
2499
#define GOT_TLS_GD      2
2500
#define GOT_TLS_IE      4
2501
    unsigned char tls_type;
2502
 
2503
    /* The symbol marking the real symbol location for exported thumb
2504
       symbols with Arm stubs.  */
2505
    struct elf_link_hash_entry *export_glue;
2506
 
2507
   /* A pointer to the most recently used stub hash entry against this
2508
     symbol.  */
2509
    struct elf32_arm_stub_hash_entry *stub_cache;
2510
  };
2511
 
2512
/* Traverse an arm ELF linker hash table.  */
2513
#define elf32_arm_link_hash_traverse(table, func, info)                 \
2514
  (elf_link_hash_traverse                                               \
2515
   (&(table)->root,                                                     \
2516
    (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func),    \
2517
    (info)))
2518
 
2519
/* Get the ARM elf linker hash table from a link_info structure.  */
2520
#define elf32_arm_hash_table(info) \
2521
  (elf_hash_table_id ((struct elf_link_hash_table *) ((info)->hash)) \
2522
  == ARM_ELF_DATA ? ((struct elf32_arm_link_hash_table *) ((info)->hash)) : NULL)
2523
 
2524
#define arm_stub_hash_lookup(table, string, create, copy) \
2525
  ((struct elf32_arm_stub_hash_entry *) \
2526
   bfd_hash_lookup ((table), (string), (create), (copy)))
2527
 
2528
/* Array to keep track of which stub sections have been created, and
2529
   information on stub grouping.  */
2530
struct map_stub
2531
{
2532
  /* This is the section to which stubs in the group will be
2533
     attached.  */
2534
  asection *link_sec;
2535
  /* The stub section.  */
2536
  asection *stub_sec;
2537
};
2538
 
2539
/* ARM ELF linker hash table.  */
2540
struct elf32_arm_link_hash_table
2541
{
2542
  /* The main hash table.  */
2543
  struct elf_link_hash_table root;
2544
 
2545
  /* The size in bytes of the section containing the Thumb-to-ARM glue.  */
2546
  bfd_size_type thumb_glue_size;
2547
 
2548
  /* The size in bytes of the section containing the ARM-to-Thumb glue.  */
2549
  bfd_size_type arm_glue_size;
2550
 
2551
  /* The size in bytes of section containing the ARMv4 BX veneers.  */
2552
  bfd_size_type bx_glue_size;
2553
 
2554
  /* Offsets of ARMv4 BX veneers.  Bit1 set if present, and Bit0 set when
2555
     veneer has been populated.  */
2556
  bfd_vma bx_glue_offset[15];
2557
 
2558
  /* The size in bytes of the section containing glue for VFP11 erratum
2559
     veneers.  */
2560
  bfd_size_type vfp11_erratum_glue_size;
2561
 
2562
  /* A table of fix locations for Cortex-A8 Thumb-2 branch/TLB erratum.  This
2563
     holds Cortex-A8 erratum fix locations between elf32_arm_size_stubs() and
2564
     elf32_arm_write_section().  */
2565
  struct a8_erratum_fix *a8_erratum_fixes;
2566
  unsigned int num_a8_erratum_fixes;
2567
 
2568
  /* An arbitrary input BFD chosen to hold the glue sections.  */
2569
  bfd * bfd_of_glue_owner;
2570
 
2571
  /* Nonzero to output a BE8 image.  */
2572
  int byteswap_code;
2573
 
2574
  /* Zero if R_ARM_TARGET1 means R_ARM_ABS32.
2575
     Nonzero if R_ARM_TARGET1 means R_ARM_REL32.  */
2576
  int target1_is_rel;
2577
 
2578
  /* The relocation to use for R_ARM_TARGET2 relocations.  */
2579
  int target2_reloc;
2580
 
2581
  /* 0 = Ignore R_ARM_V4BX.
2582
     1 = Convert BX to MOV PC.
2583
     2 = Generate v4 interworing stubs.  */
2584
  int fix_v4bx;
2585
 
2586
  /* Whether we should fix the Cortex-A8 Thumb-2 branch/TLB erratum.  */
2587
  int fix_cortex_a8;
2588
 
2589
  /* Nonzero if the ARM/Thumb BLX instructions are available for use.  */
2590
  int use_blx;
2591
 
2592
  /* What sort of code sequences we should look for which may trigger the
2593
     VFP11 denorm erratum.  */
2594
  bfd_arm_vfp11_fix vfp11_fix;
2595
 
2596
  /* Global counter for the number of fixes we have emitted.  */
2597
  int num_vfp11_fixes;
2598
 
2599
  /* Nonzero to force PIC branch veneers.  */
2600
  int pic_veneer;
2601
 
2602
  /* The number of bytes in the initial entry in the PLT.  */
2603
  bfd_size_type plt_header_size;
2604
 
2605
  /* The number of bytes in the subsequent PLT etries.  */
2606
  bfd_size_type plt_entry_size;
2607
 
2608
  /* True if the target system is VxWorks.  */
2609
  int vxworks_p;
2610
 
2611
  /* True if the target system is Symbian OS.  */
2612
  int symbian_p;
2613
 
2614
  /* True if the target uses REL relocations.  */
2615
  int use_rel;
2616
 
2617
  /* Short-cuts to get to dynamic linker sections.  */
2618
  asection *sgot;
2619
  asection *sgotplt;
2620
  asection *srelgot;
2621
  asection *splt;
2622
  asection *srelplt;
2623
  asection *sdynbss;
2624
  asection *srelbss;
2625
 
2626
  /* The (unloaded but important) VxWorks .rela.plt.unloaded section.  */
2627
  asection *srelplt2;
2628
 
2629
  /* Data for R_ARM_TLS_LDM32 relocations.  */
2630
  union
2631
  {
2632
    bfd_signed_vma refcount;
2633
    bfd_vma offset;
2634
  } tls_ldm_got;
2635
 
2636
  /* Small local sym cache.  */
2637
  struct sym_cache sym_cache;
2638
 
2639
  /* For convenience in allocate_dynrelocs.  */
2640
  bfd * obfd;
2641
 
2642
  /* The stub hash table.  */
2643
  struct bfd_hash_table stub_hash_table;
2644
 
2645
  /* Linker stub bfd.  */
2646
  bfd *stub_bfd;
2647
 
2648
  /* Linker call-backs.  */
2649
  asection * (*add_stub_section) (const char *, asection *);
2650
  void (*layout_sections_again) (void);
2651
 
2652
  /* Array to keep track of which stub sections have been created, and
2653
     information on stub grouping.  */
2654
  struct map_stub *stub_group;
2655
 
2656
  /* Number of elements in stub_group.  */
2657
  int top_id;
2658
 
2659
  /* Assorted information used by elf32_arm_size_stubs.  */
2660
  unsigned int bfd_count;
2661
  int top_index;
2662
  asection **input_list;
2663
};
2664
 
2665
/* Create an entry in an ARM ELF linker hash table.  */
2666
 
2667
static struct bfd_hash_entry *
2668
elf32_arm_link_hash_newfunc (struct bfd_hash_entry * entry,
2669
                             struct bfd_hash_table * table,
2670
                             const char * string)
2671
{
2672
  struct elf32_arm_link_hash_entry * ret =
2673
    (struct elf32_arm_link_hash_entry *) entry;
2674
 
2675
  /* Allocate the structure if it has not already been allocated by a
2676
     subclass.  */
2677
  if (ret == NULL)
2678
    ret = (struct elf32_arm_link_hash_entry *)
2679
        bfd_hash_allocate (table, sizeof (struct elf32_arm_link_hash_entry));
2680
  if (ret == NULL)
2681
    return (struct bfd_hash_entry *) ret;
2682
 
2683
  /* Call the allocation method of the superclass.  */
2684
  ret = ((struct elf32_arm_link_hash_entry *)
2685
         _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
2686
                                     table, string));
2687
  if (ret != NULL)
2688
    {
2689
      ret->relocs_copied = NULL;
2690
      ret->tls_type = GOT_UNKNOWN;
2691
      ret->plt_thumb_refcount = 0;
2692
      ret->plt_maybe_thumb_refcount = 0;
2693
      ret->plt_got_offset = -1;
2694
      ret->export_glue = NULL;
2695
 
2696
      ret->stub_cache = NULL;
2697
    }
2698
 
2699
  return (struct bfd_hash_entry *) ret;
2700
}
2701
 
2702
/* Initialize an entry in the stub hash table.  */
2703
 
2704
static struct bfd_hash_entry *
2705
stub_hash_newfunc (struct bfd_hash_entry *entry,
2706
                   struct bfd_hash_table *table,
2707
                   const char *string)
2708
{
2709
  /* Allocate the structure if it has not already been allocated by a
2710
     subclass.  */
2711
  if (entry == NULL)
2712
    {
2713
      entry = (struct bfd_hash_entry *)
2714
          bfd_hash_allocate (table, sizeof (struct elf32_arm_stub_hash_entry));
2715
      if (entry == NULL)
2716
        return entry;
2717
    }
2718
 
2719
  /* Call the allocation method of the superclass.  */
2720
  entry = bfd_hash_newfunc (entry, table, string);
2721
  if (entry != NULL)
2722
    {
2723
      struct elf32_arm_stub_hash_entry *eh;
2724
 
2725
      /* Initialize the local fields.  */
2726
      eh = (struct elf32_arm_stub_hash_entry *) entry;
2727
      eh->stub_sec = NULL;
2728
      eh->stub_offset = 0;
2729
      eh->target_value = 0;
2730
      eh->target_section = NULL;
2731
      eh->target_addend = 0;
2732
      eh->orig_insn = 0;
2733
      eh->stub_type = arm_stub_none;
2734
      eh->stub_size = 0;
2735
      eh->stub_template = NULL;
2736
      eh->stub_template_size = 0;
2737
      eh->h = NULL;
2738
      eh->id_sec = NULL;
2739
      eh->output_name = NULL;
2740
    }
2741
 
2742
  return entry;
2743
}
2744
 
2745
/* Create .got, .gotplt, and .rel(a).got sections in DYNOBJ, and set up
2746
   shortcuts to them in our hash table.  */
2747
 
2748
static bfd_boolean
2749
create_got_section (bfd *dynobj, struct bfd_link_info *info)
2750
{
2751
  struct elf32_arm_link_hash_table *htab;
2752
 
2753
  htab = elf32_arm_hash_table (info);
2754
  if (htab == NULL)
2755
    return FALSE;
2756
 
2757
  /* BPABI objects never have a GOT, or associated sections.  */
2758
  if (htab->symbian_p)
2759
    return TRUE;
2760
 
2761
  if (! _bfd_elf_create_got_section (dynobj, info))
2762
    return FALSE;
2763
 
2764
  htab->sgot = bfd_get_section_by_name (dynobj, ".got");
2765
  htab->sgotplt = bfd_get_section_by_name (dynobj, ".got.plt");
2766
  if (!htab->sgot || !htab->sgotplt)
2767
    abort ();
2768
 
2769
  htab->srelgot = bfd_get_section_by_name (dynobj,
2770
                                           RELOC_SECTION (htab, ".got"));
2771
  if (htab->srelgot == NULL)
2772
    return FALSE;
2773
  return TRUE;
2774
}
2775
 
2776
/* Create .plt, .rel(a).plt, .got, .got.plt, .rel(a).got, .dynbss, and
2777
   .rel(a).bss sections in DYNOBJ, and set up shortcuts to them in our
2778
   hash table.  */
2779
 
2780
static bfd_boolean
2781
elf32_arm_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
2782
{
2783
  struct elf32_arm_link_hash_table *htab;
2784
 
2785
  htab = elf32_arm_hash_table (info);
2786
  if (htab == NULL)
2787
    return FALSE;
2788
 
2789
  if (!htab->sgot && !create_got_section (dynobj, info))
2790
    return FALSE;
2791
 
2792
  if (!_bfd_elf_create_dynamic_sections (dynobj, info))
2793
    return FALSE;
2794
 
2795
  htab->splt = bfd_get_section_by_name (dynobj, ".plt");
2796
  htab->srelplt = bfd_get_section_by_name (dynobj,
2797
                                           RELOC_SECTION (htab, ".plt"));
2798
  htab->sdynbss = bfd_get_section_by_name (dynobj, ".dynbss");
2799
  if (!info->shared)
2800
    htab->srelbss = bfd_get_section_by_name (dynobj,
2801
                                             RELOC_SECTION (htab, ".bss"));
2802
 
2803
  if (htab->vxworks_p)
2804
    {
2805
      if (!elf_vxworks_create_dynamic_sections (dynobj, info, &htab->srelplt2))
2806
        return FALSE;
2807
 
2808
      if (info->shared)
2809
        {
2810
          htab->plt_header_size = 0;
2811
          htab->plt_entry_size
2812
            = 4 * ARRAY_SIZE (elf32_arm_vxworks_shared_plt_entry);
2813
        }
2814
      else
2815
        {
2816
          htab->plt_header_size
2817
            = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt0_entry);
2818
          htab->plt_entry_size
2819
            = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt_entry);
2820
        }
2821
    }
2822
 
2823
  if (!htab->splt
2824
      || !htab->srelplt
2825
      || !htab->sdynbss
2826
      || (!info->shared && !htab->srelbss))
2827
    abort ();
2828
 
2829
  return TRUE;
2830
}
2831
 
2832
/* Copy the extra info we tack onto an elf_link_hash_entry.  */
2833
 
2834
static void
2835
elf32_arm_copy_indirect_symbol (struct bfd_link_info *info,
2836
                                struct elf_link_hash_entry *dir,
2837
                                struct elf_link_hash_entry *ind)
2838
{
2839
  struct elf32_arm_link_hash_entry *edir, *eind;
2840
 
2841
  edir = (struct elf32_arm_link_hash_entry *) dir;
2842
  eind = (struct elf32_arm_link_hash_entry *) ind;
2843
 
2844
  if (eind->relocs_copied != NULL)
2845
    {
2846
      if (edir->relocs_copied != NULL)
2847
        {
2848
          struct elf32_arm_relocs_copied **pp;
2849
          struct elf32_arm_relocs_copied *p;
2850
 
2851
          /* Add reloc counts against the indirect sym to the direct sym
2852
             list.  Merge any entries against the same section.  */
2853
          for (pp = &eind->relocs_copied; (p = *pp) != NULL; )
2854
            {
2855
              struct elf32_arm_relocs_copied *q;
2856
 
2857
              for (q = edir->relocs_copied; q != NULL; q = q->next)
2858
                if (q->section == p->section)
2859
                  {
2860
                    q->pc_count += p->pc_count;
2861
                    q->count += p->count;
2862
                    *pp = p->next;
2863
                    break;
2864
                  }
2865
              if (q == NULL)
2866
                pp = &p->next;
2867
            }
2868
          *pp = edir->relocs_copied;
2869
        }
2870
 
2871
      edir->relocs_copied = eind->relocs_copied;
2872
      eind->relocs_copied = NULL;
2873
    }
2874
 
2875
  if (ind->root.type == bfd_link_hash_indirect)
2876
    {
2877
      /* Copy over PLT info.  */
2878
      edir->plt_thumb_refcount += eind->plt_thumb_refcount;
2879
      eind->plt_thumb_refcount = 0;
2880
      edir->plt_maybe_thumb_refcount += eind->plt_maybe_thumb_refcount;
2881
      eind->plt_maybe_thumb_refcount = 0;
2882
 
2883
      if (dir->got.refcount <= 0)
2884
        {
2885
          edir->tls_type = eind->tls_type;
2886
          eind->tls_type = GOT_UNKNOWN;
2887
        }
2888
    }
2889
 
2890
  _bfd_elf_link_hash_copy_indirect (info, dir, ind);
2891
}
2892
 
2893
/* Create an ARM elf linker hash table.  */
2894
 
2895
static struct bfd_link_hash_table *
2896
elf32_arm_link_hash_table_create (bfd *abfd)
2897
{
2898
  struct elf32_arm_link_hash_table *ret;
2899
  bfd_size_type amt = sizeof (struct elf32_arm_link_hash_table);
2900
 
2901
  ret = (struct elf32_arm_link_hash_table *) bfd_malloc (amt);
2902
  if (ret == NULL)
2903
    return NULL;
2904
 
2905
  if (!_bfd_elf_link_hash_table_init (& ret->root, abfd,
2906
                                      elf32_arm_link_hash_newfunc,
2907
                                      sizeof (struct elf32_arm_link_hash_entry),
2908
                                      ARM_ELF_DATA))
2909
    {
2910
      free (ret);
2911
      return NULL;
2912
    }
2913
 
2914
  ret->sgot = NULL;
2915
  ret->sgotplt = NULL;
2916
  ret->srelgot = NULL;
2917
  ret->splt = NULL;
2918
  ret->srelplt = NULL;
2919
  ret->sdynbss = NULL;
2920
  ret->srelbss = NULL;
2921
  ret->srelplt2 = NULL;
2922
  ret->thumb_glue_size = 0;
2923
  ret->arm_glue_size = 0;
2924
  ret->bx_glue_size = 0;
2925
  memset (ret->bx_glue_offset, 0, sizeof (ret->bx_glue_offset));
2926
  ret->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
2927
  ret->vfp11_erratum_glue_size = 0;
2928
  ret->num_vfp11_fixes = 0;
2929
  ret->fix_cortex_a8 = 0;
2930
  ret->bfd_of_glue_owner = NULL;
2931
  ret->byteswap_code = 0;
2932
  ret->target1_is_rel = 0;
2933
  ret->target2_reloc = R_ARM_NONE;
2934
#ifdef FOUR_WORD_PLT
2935
  ret->plt_header_size = 16;
2936
  ret->plt_entry_size = 16;
2937
#else
2938
  ret->plt_header_size = 20;
2939
  ret->plt_entry_size = 12;
2940
#endif
2941
  ret->fix_v4bx = 0;
2942
  ret->use_blx = 0;
2943
  ret->vxworks_p = 0;
2944
  ret->symbian_p = 0;
2945
  ret->use_rel = 1;
2946
  ret->sym_cache.abfd = NULL;
2947
  ret->obfd = abfd;
2948
  ret->tls_ldm_got.refcount = 0;
2949
  ret->stub_bfd = NULL;
2950
  ret->add_stub_section = NULL;
2951
  ret->layout_sections_again = NULL;
2952
  ret->stub_group = NULL;
2953
  ret->top_id = 0;
2954
  ret->bfd_count = 0;
2955
  ret->top_index = 0;
2956
  ret->input_list = NULL;
2957
 
2958
  if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc,
2959
                            sizeof (struct elf32_arm_stub_hash_entry)))
2960
    {
2961
      free (ret);
2962
      return NULL;
2963
    }
2964
 
2965
  return &ret->root.root;
2966
}
2967
 
2968
/* Free the derived linker hash table.  */
2969
 
2970
static void
2971
elf32_arm_hash_table_free (struct bfd_link_hash_table *hash)
2972
{
2973
  struct elf32_arm_link_hash_table *ret
2974
    = (struct elf32_arm_link_hash_table *) hash;
2975
 
2976
  bfd_hash_table_free (&ret->stub_hash_table);
2977
  _bfd_generic_link_hash_table_free (hash);
2978
}
2979
 
2980
/* Determine if we're dealing with a Thumb only architecture.  */
2981
 
2982
static bfd_boolean
2983
using_thumb_only (struct elf32_arm_link_hash_table *globals)
2984
{
2985
  int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
2986
                                       Tag_CPU_arch);
2987
  int profile;
2988
 
2989
  if (arch == TAG_CPU_ARCH_V6_M || arch == TAG_CPU_ARCH_V6S_M)
2990
    return TRUE;
2991
 
2992
  if (arch != TAG_CPU_ARCH_V7 && arch != TAG_CPU_ARCH_V7E_M)
2993
    return FALSE;
2994
 
2995
  profile = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
2996
                                      Tag_CPU_arch_profile);
2997
 
2998
  return profile == 'M';
2999
}
3000
 
3001
/* Determine if we're dealing with a Thumb-2 object.  */
3002
 
3003
static bfd_boolean
3004
using_thumb2 (struct elf32_arm_link_hash_table *globals)
3005
{
3006
  int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3007
                                       Tag_CPU_arch);
3008
  return arch == TAG_CPU_ARCH_V6T2 || arch >= TAG_CPU_ARCH_V7;
3009
}
3010
 
3011
/* Determine what kind of NOPs are available.  */
3012
 
3013
static bfd_boolean
3014
arch_has_arm_nop (struct elf32_arm_link_hash_table *globals)
3015
{
3016
  const int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3017
                                             Tag_CPU_arch);
3018
  return arch == TAG_CPU_ARCH_V6T2
3019
         || arch == TAG_CPU_ARCH_V6K
3020
         || arch == TAG_CPU_ARCH_V7
3021
         || arch == TAG_CPU_ARCH_V7E_M;
3022
}
3023
 
3024
static bfd_boolean
3025
arch_has_thumb2_nop (struct elf32_arm_link_hash_table *globals)
3026
{
3027
  const int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3028
                                             Tag_CPU_arch);
3029
  return (arch == TAG_CPU_ARCH_V6T2 || arch == TAG_CPU_ARCH_V7
3030
          || arch == TAG_CPU_ARCH_V7E_M);
3031
}
3032
 
3033
static bfd_boolean
3034
arm_stub_is_thumb (enum elf32_arm_stub_type stub_type)
3035
{
3036
  switch (stub_type)
3037
    {
3038
    case arm_stub_long_branch_thumb_only:
3039
    case arm_stub_long_branch_v4t_thumb_arm:
3040
    case arm_stub_short_branch_v4t_thumb_arm:
3041
    case arm_stub_long_branch_v4t_thumb_arm_pic:
3042
    case arm_stub_long_branch_thumb_only_pic:
3043
      return TRUE;
3044
    case arm_stub_none:
3045
      BFD_FAIL ();
3046
      return FALSE;
3047
      break;
3048
    default:
3049
      return FALSE;
3050
    }
3051
}
3052
 
3053
/* Determine the type of stub needed, if any, for a call.  */
3054
 
3055
static enum elf32_arm_stub_type
3056
arm_type_of_stub (struct bfd_link_info *info,
3057
                  asection *input_sec,
3058
                  const Elf_Internal_Rela *rel,
3059
                  int *actual_st_type,
3060
                  struct elf32_arm_link_hash_entry *hash,
3061
                  bfd_vma destination,
3062
                  asection *sym_sec,
3063
                  bfd *input_bfd,
3064
                  const char *name)
3065
{
3066
  bfd_vma location;
3067
  bfd_signed_vma branch_offset;
3068
  unsigned int r_type;
3069
  struct elf32_arm_link_hash_table * globals;
3070
  int thumb2;
3071
  int thumb_only;
3072
  enum elf32_arm_stub_type stub_type = arm_stub_none;
3073
  int use_plt = 0;
3074
  int st_type = *actual_st_type;
3075
 
3076
  /* We don't know the actual type of destination in case it is of
3077
     type STT_SECTION: give up.  */
3078
  if (st_type == STT_SECTION)
3079
    return stub_type;
3080
 
3081
  globals = elf32_arm_hash_table (info);
3082
  if (globals == NULL)
3083
    return stub_type;
3084
 
3085
  thumb_only = using_thumb_only (globals);
3086
 
3087
  thumb2 = using_thumb2 (globals);
3088
 
3089
  /* Determine where the call point is.  */
3090
  location = (input_sec->output_offset
3091
              + input_sec->output_section->vma
3092
              + rel->r_offset);
3093
 
3094
  r_type = ELF32_R_TYPE (rel->r_info);
3095
 
3096
  /* Keep a simpler condition, for the sake of clarity.  */
3097
  if (globals->splt != NULL
3098
      && hash != NULL
3099
      && hash->root.plt.offset != (bfd_vma) -1)
3100
    {
3101
      use_plt = 1;
3102
 
3103
      /* Note when dealing with PLT entries: the main PLT stub is in
3104
         ARM mode, so if the branch is in Thumb mode, another
3105
         Thumb->ARM stub will be inserted later just before the ARM
3106
         PLT stub. We don't take this extra distance into account
3107
         here, because if a long branch stub is needed, we'll add a
3108
         Thumb->Arm one and branch directly to the ARM PLT entry
3109
         because it avoids spreading offset corrections in several
3110
         places.  */
3111
 
3112
      destination = (globals->splt->output_section->vma
3113
                     + globals->splt->output_offset
3114
                     + hash->root.plt.offset);
3115
      st_type = STT_FUNC;
3116
    }
3117
 
3118
  branch_offset = (bfd_signed_vma)(destination - location);
3119
 
3120
  if (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24)
3121
    {
3122
      /* Handle cases where:
3123
         - this call goes too far (different Thumb/Thumb2 max
3124
           distance)
3125
         - it's a Thumb->Arm call and blx is not available, or it's a
3126
           Thumb->Arm branch (not bl). A stub is needed in this case,
3127
           but only if this call is not through a PLT entry. Indeed,
3128
           PLT stubs handle mode switching already.
3129
      */
3130
      if ((!thumb2
3131
            && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
3132
                || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
3133
          || (thumb2
3134
              && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
3135
                  || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
3136
          || ((st_type != STT_ARM_TFUNC)
3137
              && (((r_type == R_ARM_THM_CALL) && !globals->use_blx)
3138
                  || (r_type == R_ARM_THM_JUMP24))
3139
              && !use_plt))
3140
        {
3141
          if (st_type == STT_ARM_TFUNC)
3142
            {
3143
              /* Thumb to thumb.  */
3144
              if (!thumb_only)
3145
                {
3146
                  stub_type = (info->shared | globals->pic_veneer)
3147
                    /* PIC stubs.  */
3148
                    ? ((globals->use_blx
3149
                        && (r_type ==R_ARM_THM_CALL))
3150
                       /* V5T and above. Stub starts with ARM code, so
3151
                          we must be able to switch mode before
3152
                          reaching it, which is only possible for 'bl'
3153
                          (ie R_ARM_THM_CALL relocation).  */
3154
                       ? arm_stub_long_branch_any_thumb_pic
3155
                       /* On V4T, use Thumb code only.  */
3156
                       : arm_stub_long_branch_v4t_thumb_thumb_pic)
3157
 
3158
                    /* non-PIC stubs.  */
3159
                    : ((globals->use_blx
3160
                        && (r_type ==R_ARM_THM_CALL))
3161
                       /* V5T and above.  */
3162
                       ? arm_stub_long_branch_any_any
3163
                       /* V4T.  */
3164
                       : arm_stub_long_branch_v4t_thumb_thumb);
3165
                }
3166
              else
3167
                {
3168
                  stub_type = (info->shared | globals->pic_veneer)
3169
                    /* PIC stub.  */
3170
                    ? arm_stub_long_branch_thumb_only_pic
3171
                    /* non-PIC stub.  */
3172
                    : arm_stub_long_branch_thumb_only;
3173
                }
3174
            }
3175
          else
3176
            {
3177
              /* Thumb to arm.  */
3178
              if (sym_sec != NULL
3179
                  && sym_sec->owner != NULL
3180
                  && !INTERWORK_FLAG (sym_sec->owner))
3181
                {
3182
                  (*_bfd_error_handler)
3183
                    (_("%B(%s): warning: interworking not enabled.\n"
3184
                       "  first occurrence: %B: Thumb call to ARM"),
3185
                     sym_sec->owner, input_bfd, name);
3186
                }
3187
 
3188
              stub_type = (info->shared | globals->pic_veneer)
3189
                /* PIC stubs.  */
3190
                ? ((globals->use_blx
3191
                    && (r_type ==R_ARM_THM_CALL))
3192
                   /* V5T and above.  */
3193
                   ? arm_stub_long_branch_any_arm_pic
3194
                   /* V4T PIC stub.  */
3195
                   : arm_stub_long_branch_v4t_thumb_arm_pic)
3196
 
3197
                /* non-PIC stubs.  */
3198
                : ((globals->use_blx
3199
                    && (r_type ==R_ARM_THM_CALL))
3200
                   /* V5T and above.  */
3201
                   ? arm_stub_long_branch_any_any
3202
                   /* V4T.  */
3203
                   : arm_stub_long_branch_v4t_thumb_arm);
3204
 
3205
              /* Handle v4t short branches.  */
3206
              if ((stub_type == arm_stub_long_branch_v4t_thumb_arm)
3207
                  && (branch_offset <= THM_MAX_FWD_BRANCH_OFFSET)
3208
                  && (branch_offset >= THM_MAX_BWD_BRANCH_OFFSET))
3209
                stub_type = arm_stub_short_branch_v4t_thumb_arm;
3210
            }
3211
        }
3212
    }
3213
  else if (r_type == R_ARM_CALL
3214
           || r_type == R_ARM_JUMP24
3215
           || r_type == R_ARM_PLT32)
3216
    {
3217
      if (st_type == STT_ARM_TFUNC)
3218
        {
3219
          /* Arm to thumb.  */
3220
 
3221
          if (sym_sec != NULL
3222
              && sym_sec->owner != NULL
3223
              && !INTERWORK_FLAG (sym_sec->owner))
3224
            {
3225
              (*_bfd_error_handler)
3226
                (_("%B(%s): warning: interworking not enabled.\n"
3227
                   "  first occurrence: %B: ARM call to Thumb"),
3228
                 sym_sec->owner, input_bfd, name);
3229
            }
3230
 
3231
          /* We have an extra 2-bytes reach because of
3232
             the mode change (bit 24 (H) of BLX encoding).  */
3233
          if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2)
3234
              || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
3235
              || ((r_type == R_ARM_CALL) && !globals->use_blx)
3236
              || (r_type == R_ARM_JUMP24)
3237
              || (r_type == R_ARM_PLT32))
3238
            {
3239
              stub_type = (info->shared | globals->pic_veneer)
3240
                /* PIC stubs.  */
3241
                ? ((globals->use_blx)
3242
                   /* V5T and above.  */
3243
                   ? arm_stub_long_branch_any_thumb_pic
3244
                   /* V4T stub.  */
3245
                   : arm_stub_long_branch_v4t_arm_thumb_pic)
3246
 
3247
                /* non-PIC stubs.  */
3248
                : ((globals->use_blx)
3249
                   /* V5T and above.  */
3250
                   ? arm_stub_long_branch_any_any
3251
                   /* V4T.  */
3252
                   : arm_stub_long_branch_v4t_arm_thumb);
3253
            }
3254
        }
3255
      else
3256
        {
3257
          /* Arm to arm.  */
3258
          if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
3259
              || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET))
3260
            {
3261
              stub_type = (info->shared | globals->pic_veneer)
3262
                /* PIC stubs.  */
3263
                ? arm_stub_long_branch_any_arm_pic
3264
                /* non-PIC stubs.  */
3265
                : arm_stub_long_branch_any_any;
3266
            }
3267
        }
3268
    }
3269
 
3270
  /* If a stub is needed, record the actual destination type.  */
3271
  if (stub_type != arm_stub_none)
3272
    {
3273
      *actual_st_type = st_type;
3274
    }
3275
 
3276
  return stub_type;
3277
}
3278
 
3279
/* Build a name for an entry in the stub hash table.  */
3280
 
3281
static char *
3282
elf32_arm_stub_name (const asection *input_section,
3283
                     const asection *sym_sec,
3284
                     const struct elf32_arm_link_hash_entry *hash,
3285
                     const Elf_Internal_Rela *rel,
3286
                     enum elf32_arm_stub_type stub_type)
3287
{
3288
  char *stub_name;
3289
  bfd_size_type len;
3290
 
3291
  if (hash)
3292
    {
3293
      len = 8 + 1 + strlen (hash->root.root.root.string) + 1 + 8 + 1 + 2 + 1;
3294
      stub_name = (char *) bfd_malloc (len);
3295
      if (stub_name != NULL)
3296
        sprintf (stub_name, "%08x_%s+%x_%d",
3297
                 input_section->id & 0xffffffff,
3298
                 hash->root.root.root.string,
3299
                 (int) rel->r_addend & 0xffffffff,
3300
                 (int) stub_type);
3301
    }
3302
  else
3303
    {
3304
      len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1 + 2 + 1;
3305
      stub_name = (char *) bfd_malloc (len);
3306
      if (stub_name != NULL)
3307
        sprintf (stub_name, "%08x_%x:%x+%x_%d",
3308
                 input_section->id & 0xffffffff,
3309
                 sym_sec->id & 0xffffffff,
3310
                 (int) ELF32_R_SYM (rel->r_info) & 0xffffffff,
3311
                 (int) rel->r_addend & 0xffffffff,
3312
                 (int) stub_type);
3313
    }
3314
 
3315
  return stub_name;
3316
}
3317
 
3318
/* Look up an entry in the stub hash.  Stub entries are cached because
3319
   creating the stub name takes a bit of time.  */
3320
 
3321
static struct elf32_arm_stub_hash_entry *
3322
elf32_arm_get_stub_entry (const asection *input_section,
3323
                          const asection *sym_sec,
3324
                          struct elf_link_hash_entry *hash,
3325
                          const Elf_Internal_Rela *rel,
3326
                          struct elf32_arm_link_hash_table *htab,
3327
                          enum elf32_arm_stub_type stub_type)
3328
{
3329
  struct elf32_arm_stub_hash_entry *stub_entry;
3330
  struct elf32_arm_link_hash_entry *h = (struct elf32_arm_link_hash_entry *) hash;
3331
  const asection *id_sec;
3332
 
3333
  if ((input_section->flags & SEC_CODE) == 0)
3334
    return NULL;
3335
 
3336
  /* If this input section is part of a group of sections sharing one
3337
     stub section, then use the id of the first section in the group.
3338
     Stub names need to include a section id, as there may well be
3339
     more than one stub used to reach say, printf, and we need to
3340
     distinguish between them.  */
3341
  id_sec = htab->stub_group[input_section->id].link_sec;
3342
 
3343
  if (h != NULL && h->stub_cache != NULL
3344
      && h->stub_cache->h == h
3345
      && h->stub_cache->id_sec == id_sec
3346
      && h->stub_cache->stub_type == stub_type)
3347
    {
3348
      stub_entry = h->stub_cache;
3349
    }
3350
  else
3351
    {
3352
      char *stub_name;
3353
 
3354
      stub_name = elf32_arm_stub_name (id_sec, sym_sec, h, rel, stub_type);
3355
      if (stub_name == NULL)
3356
        return NULL;
3357
 
3358
      stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table,
3359
                                        stub_name, FALSE, FALSE);
3360
      if (h != NULL)
3361
        h->stub_cache = stub_entry;
3362
 
3363
      free (stub_name);
3364
    }
3365
 
3366
  return stub_entry;
3367
}
3368
 
3369
/* Find or create a stub section.  Returns a pointer to the stub section, and
3370
   the section to which the stub section will be attached (in *LINK_SEC_P).
3371
   LINK_SEC_P may be NULL.  */
3372
 
3373
static asection *
3374
elf32_arm_create_or_find_stub_sec (asection **link_sec_p, asection *section,
3375
                                   struct elf32_arm_link_hash_table *htab)
3376
{
3377
  asection *link_sec;
3378
  asection *stub_sec;
3379
 
3380
  link_sec = htab->stub_group[section->id].link_sec;
3381
  stub_sec = htab->stub_group[section->id].stub_sec;
3382
  if (stub_sec == NULL)
3383
    {
3384
      stub_sec = htab->stub_group[link_sec->id].stub_sec;
3385
      if (stub_sec == NULL)
3386
        {
3387
          size_t namelen;
3388
          bfd_size_type len;
3389
          char *s_name;
3390
 
3391
          namelen = strlen (link_sec->name);
3392
          len = namelen + sizeof (STUB_SUFFIX);
3393
          s_name = (char *) bfd_alloc (htab->stub_bfd, len);
3394
          if (s_name == NULL)
3395
            return NULL;
3396
 
3397
          memcpy (s_name, link_sec->name, namelen);
3398
          memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
3399
          stub_sec = (*htab->add_stub_section) (s_name, link_sec);
3400
          if (stub_sec == NULL)
3401
            return NULL;
3402
          htab->stub_group[link_sec->id].stub_sec = stub_sec;
3403
        }
3404
      htab->stub_group[section->id].stub_sec = stub_sec;
3405
    }
3406
 
3407
  if (link_sec_p)
3408
    *link_sec_p = link_sec;
3409
 
3410
  return stub_sec;
3411
}
3412
 
3413
/* Add a new stub entry to the stub hash.  Not all fields of the new
3414
   stub entry are initialised.  */
3415
 
3416
static struct elf32_arm_stub_hash_entry *
3417
elf32_arm_add_stub (const char *stub_name,
3418
                    asection *section,
3419
                    struct elf32_arm_link_hash_table *htab)
3420
{
3421
  asection *link_sec;
3422
  asection *stub_sec;
3423
  struct elf32_arm_stub_hash_entry *stub_entry;
3424
 
3425
  stub_sec = elf32_arm_create_or_find_stub_sec (&link_sec, section, htab);
3426
  if (stub_sec == NULL)
3427
    return NULL;
3428
 
3429
  /* Enter this entry into the linker stub hash table.  */
3430
  stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name,
3431
                                     TRUE, FALSE);
3432
  if (stub_entry == NULL)
3433
    {
3434
      (*_bfd_error_handler) (_("%s: cannot create stub entry %s"),
3435
                             section->owner,
3436
                             stub_name);
3437
      return NULL;
3438
    }
3439
 
3440
  stub_entry->stub_sec = stub_sec;
3441
  stub_entry->stub_offset = 0;
3442
  stub_entry->id_sec = link_sec;
3443
 
3444
  return stub_entry;
3445
}
3446
 
3447
/* Store an Arm insn into an output section not processed by
3448
   elf32_arm_write_section.  */
3449
 
3450
static void
3451
put_arm_insn (struct elf32_arm_link_hash_table * htab,
3452
              bfd * output_bfd, bfd_vma val, void * ptr)
3453
{
3454
  if (htab->byteswap_code != bfd_little_endian (output_bfd))
3455
    bfd_putl32 (val, ptr);
3456
  else
3457
    bfd_putb32 (val, ptr);
3458
}
3459
 
3460
/* Store a 16-bit Thumb insn into an output section not processed by
3461
   elf32_arm_write_section.  */
3462
 
3463
static void
3464
put_thumb_insn (struct elf32_arm_link_hash_table * htab,
3465
                bfd * output_bfd, bfd_vma val, void * ptr)
3466
{
3467
  if (htab->byteswap_code != bfd_little_endian (output_bfd))
3468
    bfd_putl16 (val, ptr);
3469
  else
3470
    bfd_putb16 (val, ptr);
3471
}
3472
 
3473
static bfd_reloc_status_type elf32_arm_final_link_relocate
3474
  (reloc_howto_type *, bfd *, bfd *, asection *, bfd_byte *,
3475
   Elf_Internal_Rela *, bfd_vma, struct bfd_link_info *, asection *,
3476
   const char *, int, struct elf_link_hash_entry *, bfd_boolean *, char **);
3477
 
3478
static bfd_boolean
3479
arm_build_one_stub (struct bfd_hash_entry *gen_entry,
3480
                    void * in_arg)
3481
{
3482
#define MAXRELOCS 2
3483
  struct elf32_arm_stub_hash_entry *stub_entry;
3484
  struct elf32_arm_link_hash_table *globals;
3485
  struct bfd_link_info *info;
3486
  asection *stub_sec;
3487
  bfd *stub_bfd;
3488
  bfd_byte *loc;
3489
  bfd_vma sym_value;
3490
  int template_size;
3491
  int size;
3492
  const insn_sequence *template_sequence;
3493
  int i;
3494
  int stub_reloc_idx[MAXRELOCS] = {-1, -1};
3495
  int stub_reloc_offset[MAXRELOCS] = {0, 0};
3496
  int nrelocs = 0;
3497
 
3498
  /* Massage our args to the form they really have.  */
3499
  stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
3500
  info = (struct bfd_link_info *) in_arg;
3501
 
3502
  globals = elf32_arm_hash_table (info);
3503
  if (globals == NULL)
3504
    return FALSE;
3505
 
3506
  stub_sec = stub_entry->stub_sec;
3507
 
3508
  if ((globals->fix_cortex_a8 < 0)
3509
      != (stub_entry->stub_type >= arm_stub_a8_veneer_lwm))
3510
    /* We have to do the a8 fixes last, as they are less aligned than
3511
       the other veneers.  */
3512
    return TRUE;
3513
 
3514
  /* Make a note of the offset within the stubs for this entry.  */
3515
  stub_entry->stub_offset = stub_sec->size;
3516
  loc = stub_sec->contents + stub_entry->stub_offset;
3517
 
3518
  stub_bfd = stub_sec->owner;
3519
 
3520
  /* This is the address of the stub destination.  */
3521
  sym_value = (stub_entry->target_value
3522
               + stub_entry->target_section->output_offset
3523
               + stub_entry->target_section->output_section->vma);
3524
 
3525
  template_sequence = stub_entry->stub_template;
3526
  template_size = stub_entry->stub_template_size;
3527
 
3528
  size = 0;
3529
  for (i = 0; i < template_size; i++)
3530
    {
3531
      switch (template_sequence[i].type)
3532
        {
3533
        case THUMB16_TYPE:
3534
          {
3535
            bfd_vma data = (bfd_vma) template_sequence[i].data;
3536
            if (template_sequence[i].reloc_addend != 0)
3537
              {
3538
                /* We've borrowed the reloc_addend field to mean we should
3539
                   insert a condition code into this (Thumb-1 branch)
3540
                   instruction.  See THUMB16_BCOND_INSN.  */
3541
                BFD_ASSERT ((data & 0xff00) == 0xd000);
3542
                data |= ((stub_entry->orig_insn >> 22) & 0xf) << 8;
3543
              }
3544
            bfd_put_16 (stub_bfd, data, loc + size);
3545
            size += 2;
3546
          }
3547
          break;
3548
 
3549
        case THUMB32_TYPE:
3550
          bfd_put_16 (stub_bfd,
3551
                      (template_sequence[i].data >> 16) & 0xffff,
3552
                      loc + size);
3553
          bfd_put_16 (stub_bfd, template_sequence[i].data & 0xffff,
3554
                      loc + size + 2);
3555
          if (template_sequence[i].r_type != R_ARM_NONE)
3556
            {
3557
              stub_reloc_idx[nrelocs] = i;
3558
              stub_reloc_offset[nrelocs++] = size;
3559
            }
3560
          size += 4;
3561
          break;
3562
 
3563
        case ARM_TYPE:
3564
          bfd_put_32 (stub_bfd, template_sequence[i].data,
3565
                      loc + size);
3566
          /* Handle cases where the target is encoded within the
3567
             instruction.  */
3568
          if (template_sequence[i].r_type == R_ARM_JUMP24)
3569
            {
3570
              stub_reloc_idx[nrelocs] = i;
3571
              stub_reloc_offset[nrelocs++] = size;
3572
            }
3573
          size += 4;
3574
          break;
3575
 
3576
        case DATA_TYPE:
3577
          bfd_put_32 (stub_bfd, template_sequence[i].data, loc + size);
3578
          stub_reloc_idx[nrelocs] = i;
3579
          stub_reloc_offset[nrelocs++] = size;
3580
          size += 4;
3581
          break;
3582
 
3583
        default:
3584
          BFD_FAIL ();
3585
          return FALSE;
3586
        }
3587
    }
3588
 
3589
  stub_sec->size += size;
3590
 
3591
  /* Stub size has already been computed in arm_size_one_stub. Check
3592
     consistency.  */
3593
  BFD_ASSERT (size == stub_entry->stub_size);
3594
 
3595
  /* Destination is Thumb. Force bit 0 to 1 to reflect this.  */
3596
  if (stub_entry->st_type == STT_ARM_TFUNC)
3597
    sym_value |= 1;
3598
 
3599
  /* Assume there is at least one and at most MAXRELOCS entries to relocate
3600
     in each stub.  */
3601
  BFD_ASSERT (nrelocs != 0 && nrelocs <= MAXRELOCS);
3602
 
3603
  for (i = 0; i < nrelocs; i++)
3604
    if (template_sequence[stub_reloc_idx[i]].r_type == R_ARM_THM_JUMP24
3605
        || template_sequence[stub_reloc_idx[i]].r_type == R_ARM_THM_JUMP19
3606
        || template_sequence[stub_reloc_idx[i]].r_type == R_ARM_THM_CALL
3607
        || template_sequence[stub_reloc_idx[i]].r_type == R_ARM_THM_XPC22)
3608
      {
3609
        Elf_Internal_Rela rel;
3610
        bfd_boolean unresolved_reloc;
3611
        char *error_message;
3612
        int sym_flags
3613
          = (template_sequence[stub_reloc_idx[i]].r_type != R_ARM_THM_XPC22)
3614
            ? STT_ARM_TFUNC : 0;
3615
        bfd_vma points_to = sym_value + stub_entry->target_addend;
3616
 
3617
        rel.r_offset = stub_entry->stub_offset + stub_reloc_offset[i];
3618
        rel.r_info = ELF32_R_INFO (0,
3619
                                   template_sequence[stub_reloc_idx[i]].r_type);
3620
        rel.r_addend = template_sequence[stub_reloc_idx[i]].reloc_addend;
3621
 
3622
        if (stub_entry->stub_type == arm_stub_a8_veneer_b_cond && i == 0)
3623
          /* The first relocation in the elf32_arm_stub_a8_veneer_b_cond[]
3624
             template should refer back to the instruction after the original
3625
             branch.  */
3626
          points_to = sym_value;
3627
 
3628
        /* There may be unintended consequences if this is not true.  */
3629
        BFD_ASSERT (stub_entry->h == NULL);
3630
 
3631
        /* Note: _bfd_final_link_relocate doesn't handle these relocations
3632
           properly.  We should probably use this function unconditionally,
3633
           rather than only for certain relocations listed in the enclosing
3634
           conditional, for the sake of consistency.  */
3635
        elf32_arm_final_link_relocate (elf32_arm_howto_from_type
3636
            (template_sequence[stub_reloc_idx[i]].r_type),
3637
          stub_bfd, info->output_bfd, stub_sec, stub_sec->contents, &rel,
3638
          points_to, info, stub_entry->target_section, "", sym_flags,
3639
          (struct elf_link_hash_entry *) stub_entry->h, &unresolved_reloc,
3640
          &error_message);
3641
      }
3642
    else
3643
      {
3644
        Elf_Internal_Rela rel;
3645
        bfd_boolean unresolved_reloc;
3646
        char *error_message;
3647
        bfd_vma points_to = sym_value + stub_entry->target_addend
3648
          + template_sequence[stub_reloc_idx[i]].reloc_addend;
3649
 
3650
        rel.r_offset = stub_entry->stub_offset + stub_reloc_offset[i];
3651
        rel.r_info = ELF32_R_INFO (0,
3652
                                   template_sequence[stub_reloc_idx[i]].r_type);
3653
        rel.r_addend = 0;
3654
 
3655
        elf32_arm_final_link_relocate (elf32_arm_howto_from_type
3656
            (template_sequence[stub_reloc_idx[i]].r_type),
3657
          stub_bfd, info->output_bfd, stub_sec, stub_sec->contents, &rel,
3658
          points_to, info, stub_entry->target_section, "", stub_entry->st_type,
3659
          (struct elf_link_hash_entry *) stub_entry->h, &unresolved_reloc,
3660
          &error_message);
3661
      }
3662
 
3663
  return TRUE;
3664
#undef MAXRELOCS
3665
}
3666
 
3667
/* Calculate the template, template size and instruction size for a stub.
3668
   Return value is the instruction size.  */
3669
 
3670
static unsigned int
3671
find_stub_size_and_template (enum elf32_arm_stub_type stub_type,
3672
                             const insn_sequence **stub_template,
3673
                             int *stub_template_size)
3674
{
3675
  const insn_sequence *template_sequence = NULL;
3676
  int template_size = 0, i;
3677
  unsigned int size;
3678
 
3679
  template_sequence = stub_definitions[stub_type].template_sequence;
3680
  template_size = stub_definitions[stub_type].template_size;
3681
 
3682
  size = 0;
3683
  for (i = 0; i < template_size; i++)
3684
    {
3685
      switch (template_sequence[i].type)
3686
        {
3687
        case THUMB16_TYPE:
3688
          size += 2;
3689
          break;
3690
 
3691
        case ARM_TYPE:
3692
        case THUMB32_TYPE:
3693
        case DATA_TYPE:
3694
          size += 4;
3695
          break;
3696
 
3697
        default:
3698
          BFD_FAIL ();
3699
          return FALSE;
3700
        }
3701
    }
3702
 
3703
  if (stub_template)
3704
    *stub_template = template_sequence;
3705
 
3706
  if (stub_template_size)
3707
    *stub_template_size = template_size;
3708
 
3709
  return size;
3710
}
3711
 
3712
/* As above, but don't actually build the stub.  Just bump offset so
3713
   we know stub section sizes.  */
3714
 
3715
static bfd_boolean
3716
arm_size_one_stub (struct bfd_hash_entry *gen_entry,
3717
                   void *in_arg ATTRIBUTE_UNUSED)
3718
{
3719
  struct elf32_arm_stub_hash_entry *stub_entry;
3720
  const insn_sequence *template_sequence;
3721
  int template_size, size;
3722
 
3723
  /* Massage our args to the form they really have.  */
3724
  stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
3725
 
3726
  BFD_ASSERT((stub_entry->stub_type > arm_stub_none)
3727
             && stub_entry->stub_type < ARRAY_SIZE(stub_definitions));
3728
 
3729
  size = find_stub_size_and_template (stub_entry->stub_type, &template_sequence,
3730
                                      &template_size);
3731
 
3732
  stub_entry->stub_size = size;
3733
  stub_entry->stub_template = template_sequence;
3734
  stub_entry->stub_template_size = template_size;
3735
 
3736
  size = (size + 7) & ~7;
3737
  stub_entry->stub_sec->size += size;
3738
 
3739
  return TRUE;
3740
}
3741
 
3742
/* External entry points for sizing and building linker stubs.  */
3743
 
3744
/* Set up various things so that we can make a list of input sections
3745
   for each output section included in the link.  Returns -1 on error,
3746
 
3747
 
3748
int
3749
elf32_arm_setup_section_lists (bfd *output_bfd,
3750
                               struct bfd_link_info *info)
3751
{
3752
  bfd *input_bfd;
3753
  unsigned int bfd_count;
3754
  int top_id, top_index;
3755
  asection *section;
3756
  asection **input_list, **list;
3757
  bfd_size_type amt;
3758
  struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
3759
 
3760
  if (htab == NULL)
3761
    return 0;
3762
  if (! is_elf_hash_table (htab))
3763
    return 0;
3764
 
3765
  /* Count the number of input BFDs and find the top input section id.  */
3766
  for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
3767
       input_bfd != NULL;
3768
       input_bfd = input_bfd->link_next)
3769
    {
3770
      bfd_count += 1;
3771
      for (section = input_bfd->sections;
3772
           section != NULL;
3773
           section = section->next)
3774
        {
3775
          if (top_id < section->id)
3776
            top_id = section->id;
3777
        }
3778
    }
3779
  htab->bfd_count = bfd_count;
3780
 
3781
  amt = sizeof (struct map_stub) * (top_id + 1);
3782
  htab->stub_group = (struct map_stub *) bfd_zmalloc (amt);
3783
  if (htab->stub_group == NULL)
3784
    return -1;
3785
  htab->top_id = top_id;
3786
 
3787
  /* We can't use output_bfd->section_count here to find the top output
3788
     section index as some sections may have been removed, and
3789
     _bfd_strip_section_from_output doesn't renumber the indices.  */
3790
  for (section = output_bfd->sections, top_index = 0;
3791
       section != NULL;
3792
       section = section->next)
3793
    {
3794
      if (top_index < section->index)
3795
        top_index = section->index;
3796
    }
3797
 
3798
  htab->top_index = top_index;
3799
  amt = sizeof (asection *) * (top_index + 1);
3800
  input_list = (asection **) bfd_malloc (amt);
3801
  htab->input_list = input_list;
3802
  if (input_list == NULL)
3803
    return -1;
3804
 
3805
  /* For sections we aren't interested in, mark their entries with a
3806
     value we can check later.  */
3807
  list = input_list + top_index;
3808
  do
3809
    *list = bfd_abs_section_ptr;
3810
  while (list-- != input_list);
3811
 
3812
  for (section = output_bfd->sections;
3813
       section != NULL;
3814
       section = section->next)
3815
    {
3816
      if ((section->flags & SEC_CODE) != 0)
3817
        input_list[section->index] = NULL;
3818
    }
3819
 
3820
  return 1;
3821
}
3822
 
3823
/* The linker repeatedly calls this function for each input section,
3824
   in the order that input sections are linked into output sections.
3825
   Build lists of input sections to determine groupings between which
3826
   we may insert linker stubs.  */
3827
 
3828
void
3829
elf32_arm_next_input_section (struct bfd_link_info *info,
3830
                              asection *isec)
3831
{
3832
  struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
3833
 
3834
  if (htab == NULL)
3835
    return;
3836
 
3837
  if (isec->output_section->index <= htab->top_index)
3838
    {
3839
      asection **list = htab->input_list + isec->output_section->index;
3840
 
3841
      if (*list != bfd_abs_section_ptr && (isec->flags & SEC_CODE) != 0)
3842
        {
3843
          /* Steal the link_sec pointer for our list.  */
3844
#define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
3845
          /* This happens to make the list in reverse order,
3846
             which we reverse later.  */
3847
          PREV_SEC (isec) = *list;
3848
          *list = isec;
3849
        }
3850
    }
3851
}
3852
 
3853
/* See whether we can group stub sections together.  Grouping stub
3854
   sections may result in fewer stubs.  More importantly, we need to
3855
   put all .init* and .fini* stubs at the end of the .init or
3856
   .fini output sections respectively, because glibc splits the
3857
   _init and _fini functions into multiple parts.  Putting a stub in
3858
   the middle of a function is not a good idea.  */
3859
 
3860
static void
3861
group_sections (struct elf32_arm_link_hash_table *htab,
3862
                bfd_size_type stub_group_size,
3863
                bfd_boolean stubs_always_after_branch)
3864
{
3865
  asection **list = htab->input_list;
3866
 
3867
  do
3868
    {
3869
      asection *tail = *list;
3870
      asection *head;
3871
 
3872
      if (tail == bfd_abs_section_ptr)
3873
        continue;
3874
 
3875
      /* Reverse the list: we must avoid placing stubs at the
3876
         beginning of the section because the beginning of the text
3877
         section may be required for an interrupt vector in bare metal
3878
         code.  */
3879
#define NEXT_SEC PREV_SEC
3880
      head = NULL;
3881
      while (tail != NULL)
3882
        {
3883
          /* Pop from tail.  */
3884
          asection *item = tail;
3885
          tail = PREV_SEC (item);
3886
 
3887
          /* Push on head.  */
3888
          NEXT_SEC (item) = head;
3889
          head = item;
3890
        }
3891
 
3892
      while (head != NULL)
3893
        {
3894
          asection *curr;
3895
          asection *next;
3896
          bfd_vma stub_group_start = head->output_offset;
3897
          bfd_vma end_of_next;
3898
 
3899
          curr = head;
3900
          while (NEXT_SEC (curr) != NULL)
3901
            {
3902
              next = NEXT_SEC (curr);
3903
              end_of_next = next->output_offset + next->size;
3904
              if (end_of_next - stub_group_start >= stub_group_size)
3905
                /* End of NEXT is too far from start, so stop.  */
3906
                break;
3907
              /* Add NEXT to the group.  */
3908
              curr = next;
3909
            }
3910
 
3911
          /* OK, the size from the start to the start of CURR is less
3912
             than stub_group_size and thus can be handled by one stub
3913
             section.  (Or the head section is itself larger than
3914
             stub_group_size, in which case we may be toast.)
3915
             We should really be keeping track of the total size of
3916
             stubs added here, as stubs contribute to the final output
3917
             section size.  */
3918
          do
3919
            {
3920
              next = NEXT_SEC (head);
3921
              /* Set up this stub group.  */
3922
              htab->stub_group[head->id].link_sec = curr;
3923
            }
3924
          while (head != curr && (head = next) != NULL);
3925
 
3926
          /* But wait, there's more!  Input sections up to stub_group_size
3927
             bytes after the stub section can be handled by it too.  */
3928
          if (!stubs_always_after_branch)
3929
            {
3930
              stub_group_start = curr->output_offset + curr->size;
3931
 
3932
              while (next != NULL)
3933
                {
3934
                  end_of_next = next->output_offset + next->size;
3935
                  if (end_of_next - stub_group_start >= stub_group_size)
3936
                    /* End of NEXT is too far from stubs, so stop.  */
3937
                    break;
3938
                  /* Add NEXT to the stub group.  */
3939
                  head = next;
3940
                  next = NEXT_SEC (head);
3941
                  htab->stub_group[head->id].link_sec = curr;
3942
                }
3943
            }
3944
          head = next;
3945
        }
3946
    }
3947
  while (list++ != htab->input_list + htab->top_index);
3948
 
3949
  free (htab->input_list);
3950
#undef PREV_SEC
3951
#undef NEXT_SEC
3952
}
3953
 
3954
/* Comparison function for sorting/searching relocations relating to Cortex-A8
3955
   erratum fix.  */
3956
 
3957
static int
3958
a8_reloc_compare (const void *a, const void *b)
3959
{
3960
  const struct a8_erratum_reloc *ra = (const struct a8_erratum_reloc *) a;
3961
  const struct a8_erratum_reloc *rb = (const struct a8_erratum_reloc *) b;
3962
 
3963
  if (ra->from < rb->from)
3964
    return -1;
3965
  else if (ra->from > rb->from)
3966
    return 1;
3967
  else
3968
    return 0;
3969
}
3970
 
3971
static struct elf_link_hash_entry *find_thumb_glue (struct bfd_link_info *,
3972
                                                    const char *, char **);
3973
 
3974
/* Helper function to scan code for sequences which might trigger the Cortex-A8
3975
   branch/TLB erratum.  Fill in the table described by A8_FIXES_P,
3976
   NUM_A8_FIXES_P, A8_FIX_TABLE_SIZE_P.  Returns true if an error occurs, false
3977
   otherwise.  */
3978
 
3979
static bfd_boolean
3980
cortex_a8_erratum_scan (bfd *input_bfd,
3981
                        struct bfd_link_info *info,
3982
                        struct a8_erratum_fix **a8_fixes_p,
3983
                        unsigned int *num_a8_fixes_p,
3984
                        unsigned int *a8_fix_table_size_p,
3985
                        struct a8_erratum_reloc *a8_relocs,
3986
                        unsigned int num_a8_relocs,
3987
                        unsigned prev_num_a8_fixes,
3988
                        bfd_boolean *stub_changed_p)
3989
{
3990
  asection *section;
3991
  struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
3992
  struct a8_erratum_fix *a8_fixes = *a8_fixes_p;
3993
  unsigned int num_a8_fixes = *num_a8_fixes_p;
3994
  unsigned int a8_fix_table_size = *a8_fix_table_size_p;
3995
 
3996
  if (htab == NULL)
3997
    return FALSE;
3998
 
3999
  for (section = input_bfd->sections;
4000
       section != NULL;
4001
       section = section->next)
4002
    {
4003
      bfd_byte *contents = NULL;
4004
      struct _arm_elf_section_data *sec_data;
4005
      unsigned int span;
4006
      bfd_vma base_vma;
4007
 
4008
      if (elf_section_type (section) != SHT_PROGBITS
4009
          || (elf_section_flags (section) & SHF_EXECINSTR) == 0
4010
          || (section->flags & SEC_EXCLUDE) != 0
4011
          || (section->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
4012
          || (section->output_section == bfd_abs_section_ptr))
4013
        continue;
4014
 
4015
      base_vma = section->output_section->vma + section->output_offset;
4016
 
4017
      if (elf_section_data (section)->this_hdr.contents != NULL)
4018
        contents = elf_section_data (section)->this_hdr.contents;
4019
      else if (! bfd_malloc_and_get_section (input_bfd, section, &contents))
4020
        return TRUE;
4021
 
4022
      sec_data = elf32_arm_section_data (section);
4023
 
4024
      for (span = 0; span < sec_data->mapcount; span++)
4025
        {
4026
          unsigned int span_start = sec_data->map[span].vma;
4027
          unsigned int span_end = (span == sec_data->mapcount - 1)
4028
            ? section->size : sec_data->map[span + 1].vma;
4029
          unsigned int i;
4030
          char span_type = sec_data->map[span].type;
4031
          bfd_boolean last_was_32bit = FALSE, last_was_branch = FALSE;
4032
 
4033
          if (span_type != 't')
4034
            continue;
4035
 
4036
          /* Span is entirely within a single 4KB region: skip scanning.  */
4037
          if (((base_vma + span_start) & ~0xfff)
4038
              == ((base_vma + span_end) & ~0xfff))
4039
            continue;
4040
 
4041
          /* Scan for 32-bit Thumb-2 branches which span two 4K regions, where:
4042
 
4043
               * The opcode is BLX.W, BL.W, B.W, Bcc.W
4044
               * The branch target is in the same 4KB region as the
4045
                 first half of the branch.
4046
               * The instruction before the branch is a 32-bit
4047
                 length non-branch instruction.  */
4048
          for (i = span_start; i < span_end;)
4049
            {
4050
              unsigned int insn = bfd_getl16 (&contents[i]);
4051
              bfd_boolean insn_32bit = FALSE, is_blx = FALSE, is_b = FALSE;
4052
              bfd_boolean is_bl = FALSE, is_bcc = FALSE, is_32bit_branch;
4053
 
4054
              if ((insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000)
4055
                insn_32bit = TRUE;
4056
 
4057
              if (insn_32bit)
4058
                {
4059
                  /* Load the rest of the insn (in manual-friendly order).  */
4060
                  insn = (insn << 16) | bfd_getl16 (&contents[i + 2]);
4061
 
4062
                  /* Encoding T4: B<c>.W.  */
4063
                  is_b = (insn & 0xf800d000) == 0xf0009000;
4064
                  /* Encoding T1: BL<c>.W.  */
4065
                  is_bl = (insn & 0xf800d000) == 0xf000d000;
4066
                  /* Encoding T2: BLX<c>.W.  */
4067
                  is_blx = (insn & 0xf800d000) == 0xf000c000;
4068
                  /* Encoding T3: B<c>.W (not permitted in IT block).  */
4069
                  is_bcc = (insn & 0xf800d000) == 0xf0008000
4070
                           && (insn & 0x07f00000) != 0x03800000;
4071
                }
4072
 
4073
              is_32bit_branch = is_b || is_bl || is_blx || is_bcc;
4074
 
4075
              if (((base_vma + i) & 0xfff) == 0xffe
4076
                  && insn_32bit
4077
                  && is_32bit_branch
4078
                  && last_was_32bit
4079
                  && ! last_was_branch)
4080
                {
4081
                  bfd_signed_vma offset = 0;
4082
                  bfd_boolean force_target_arm = FALSE;
4083
                  bfd_boolean force_target_thumb = FALSE;
4084
                  bfd_vma target;
4085
                  enum elf32_arm_stub_type stub_type = arm_stub_none;
4086
                  struct a8_erratum_reloc key, *found;
4087
 
4088
                  key.from = base_vma + i;
4089
                  found = (struct a8_erratum_reloc *)
4090
                      bsearch (&key, a8_relocs, num_a8_relocs,
4091
                               sizeof (struct a8_erratum_reloc),
4092
                               &a8_reloc_compare);
4093
 
4094
                  if (found)
4095
                    {
4096
                      char *error_message = NULL;
4097
                      struct elf_link_hash_entry *entry;
4098
                      bfd_boolean use_plt = FALSE;
4099
 
4100
                      /* We don't care about the error returned from this
4101
                         function, only if there is glue or not.  */
4102
                      entry = find_thumb_glue (info, found->sym_name,
4103
                                               &error_message);
4104
 
4105
                      if (entry)
4106
                        found->non_a8_stub = TRUE;
4107
 
4108
                      /* Keep a simpler condition, for the sake of clarity.  */
4109
                      if (htab->splt != NULL && found->hash != NULL
4110
                          && found->hash->root.plt.offset != (bfd_vma) -1)
4111
                        use_plt = TRUE;
4112
 
4113
                      if (found->r_type == R_ARM_THM_CALL)
4114
                        {
4115
                          if (found->st_type != STT_ARM_TFUNC || use_plt)
4116
                            force_target_arm = TRUE;
4117
                          else
4118
                            force_target_thumb = TRUE;
4119
                        }
4120
                    }
4121
 
4122
                  /* Check if we have an offending branch instruction.  */
4123
 
4124
                  if (found && found->non_a8_stub)
4125
                    /* We've already made a stub for this instruction, e.g.
4126
                       it's a long branch or a Thumb->ARM stub.  Assume that
4127
                       stub will suffice to work around the A8 erratum (see
4128
                       setting of always_after_branch above).  */
4129
                    ;
4130
                  else if (is_bcc)
4131
                    {
4132
                      offset = (insn & 0x7ff) << 1;
4133
                      offset |= (insn & 0x3f0000) >> 4;
4134
                      offset |= (insn & 0x2000) ? 0x40000 : 0;
4135
                      offset |= (insn & 0x800) ? 0x80000 : 0;
4136
                      offset |= (insn & 0x4000000) ? 0x100000 : 0;
4137
                      if (offset & 0x100000)
4138
                        offset |= ~ ((bfd_signed_vma) 0xfffff);
4139
                      stub_type = arm_stub_a8_veneer_b_cond;
4140
                    }
4141
                  else if (is_b || is_bl || is_blx)
4142
                    {
4143
                      int s = (insn & 0x4000000) != 0;
4144
                      int j1 = (insn & 0x2000) != 0;
4145
                      int j2 = (insn & 0x800) != 0;
4146
                      int i1 = !(j1 ^ s);
4147
                      int i2 = !(j2 ^ s);
4148
 
4149
                      offset = (insn & 0x7ff) << 1;
4150
                      offset |= (insn & 0x3ff0000) >> 4;
4151
                      offset |= i2 << 22;
4152
                      offset |= i1 << 23;
4153
                      offset |= s << 24;
4154
                      if (offset & 0x1000000)
4155
                        offset |= ~ ((bfd_signed_vma) 0xffffff);
4156
 
4157
                      if (is_blx)
4158
                        offset &= ~ ((bfd_signed_vma) 3);
4159
 
4160
                      stub_type = is_blx ? arm_stub_a8_veneer_blx :
4161
                        is_bl ? arm_stub_a8_veneer_bl : arm_stub_a8_veneer_b;
4162
                    }
4163
 
4164
                  if (stub_type != arm_stub_none)
4165
                    {
4166
                      bfd_vma pc_for_insn = base_vma + i + 4;
4167
 
4168
                      /* The original instruction is a BL, but the target is
4169
                         an ARM instruction.  If we were not making a stub,
4170
                         the BL would have been converted to a BLX.  Use the
4171
                         BLX stub instead in that case.  */
4172
                      if (htab->use_blx && force_target_arm
4173
                          && stub_type == arm_stub_a8_veneer_bl)
4174
                        {
4175
                          stub_type = arm_stub_a8_veneer_blx;
4176
                          is_blx = TRUE;
4177
                          is_bl = FALSE;
4178
                        }
4179
                      /* Conversely, if the original instruction was
4180
                         BLX but the target is Thumb mode, use the BL
4181
                         stub.  */
4182
                      else if (force_target_thumb
4183
                               && stub_type == arm_stub_a8_veneer_blx)
4184
                        {
4185
                          stub_type = arm_stub_a8_veneer_bl;
4186
                          is_blx = FALSE;
4187
                          is_bl = TRUE;
4188
                        }
4189
 
4190
                      if (is_blx)
4191
                        pc_for_insn &= ~ ((bfd_vma) 3);
4192
 
4193
                      /* If we found a relocation, use the proper destination,
4194
                         not the offset in the (unrelocated) instruction.
4195
                         Note this is always done if we switched the stub type
4196
                         above.  */
4197
                      if (found)
4198
                        offset =
4199
                          (bfd_signed_vma) (found->destination - pc_for_insn);
4200
 
4201
                      target = pc_for_insn + offset;
4202
 
4203
                      /* The BLX stub is ARM-mode code.  Adjust the offset to
4204
                         take the different PC value (+8 instead of +4) into
4205
                         account.  */
4206
                      if (stub_type == arm_stub_a8_veneer_blx)
4207
                        offset += 4;
4208
 
4209
                      if (((base_vma + i) & ~0xfff) == (target & ~0xfff))
4210
                        {
4211
                          char *stub_name = NULL;
4212
 
4213
                          if (num_a8_fixes == a8_fix_table_size)
4214
                            {
4215
                              a8_fix_table_size *= 2;
4216
                              a8_fixes = (struct a8_erratum_fix *)
4217
                                  bfd_realloc (a8_fixes,
4218
                                               sizeof (struct a8_erratum_fix)
4219
                                               * a8_fix_table_size);
4220
                            }
4221
 
4222
                          if (num_a8_fixes < prev_num_a8_fixes)
4223
                            {
4224
                              /* If we're doing a subsequent scan,
4225
                                 check if we've found the same fix as
4226
                                 before, and try and reuse the stub
4227
                                 name.  */
4228
                              stub_name = a8_fixes[num_a8_fixes].stub_name;
4229
                              if ((a8_fixes[num_a8_fixes].section != section)
4230
                                  || (a8_fixes[num_a8_fixes].offset != i))
4231
                                {
4232
                                  free (stub_name);
4233
                                  stub_name = NULL;
4234
                                  *stub_changed_p = TRUE;
4235
                                }
4236
                            }
4237
 
4238
                          if (!stub_name)
4239
                            {
4240
                              stub_name = (char *) bfd_malloc (8 + 1 + 8 + 1);
4241
                              if (stub_name != NULL)
4242
                                sprintf (stub_name, "%x:%x", section->id, i);
4243
                            }
4244
 
4245
                          a8_fixes[num_a8_fixes].input_bfd = input_bfd;
4246
                          a8_fixes[num_a8_fixes].section = section;
4247
                          a8_fixes[num_a8_fixes].offset = i;
4248
                          a8_fixes[num_a8_fixes].addend = offset;
4249
                          a8_fixes[num_a8_fixes].orig_insn = insn;
4250
                          a8_fixes[num_a8_fixes].stub_name = stub_name;
4251
                          a8_fixes[num_a8_fixes].stub_type = stub_type;
4252
                          a8_fixes[num_a8_fixes].st_type =
4253
                            is_blx ? STT_FUNC : STT_ARM_TFUNC;
4254
 
4255
                          num_a8_fixes++;
4256
                        }
4257
                    }
4258
                }
4259
 
4260
              i += insn_32bit ? 4 : 2;
4261
              last_was_32bit = insn_32bit;
4262
              last_was_branch = is_32bit_branch;
4263
            }
4264
        }
4265
 
4266
      if (elf_section_data (section)->this_hdr.contents == NULL)
4267
        free (contents);
4268
    }
4269
 
4270
  *a8_fixes_p = a8_fixes;
4271
  *num_a8_fixes_p = num_a8_fixes;
4272
  *a8_fix_table_size_p = a8_fix_table_size;
4273
 
4274
  return FALSE;
4275
}
4276
 
4277
/* Determine and set the size of the stub section for a final link.
4278
 
4279
   The basic idea here is to examine all the relocations looking for
4280
   PC-relative calls to a target that is unreachable with a "bl"
4281
   instruction.  */
4282
 
4283
bfd_boolean
4284
elf32_arm_size_stubs (bfd *output_bfd,
4285
                      bfd *stub_bfd,
4286
                      struct bfd_link_info *info,
4287
                      bfd_signed_vma group_size,
4288
                      asection * (*add_stub_section) (const char *, asection *),
4289
                      void (*layout_sections_again) (void))
4290
{
4291
  bfd_size_type stub_group_size;
4292
  bfd_boolean stubs_always_after_branch;
4293
  struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
4294
  struct a8_erratum_fix *a8_fixes = NULL;
4295
  unsigned int num_a8_fixes = 0, a8_fix_table_size = 10;
4296
  struct a8_erratum_reloc *a8_relocs = NULL;
4297
  unsigned int num_a8_relocs = 0, a8_reloc_table_size = 10, i;
4298
 
4299
  if (htab == NULL)
4300
    return FALSE;
4301
 
4302
  if (htab->fix_cortex_a8)
4303
    {
4304
      a8_fixes = (struct a8_erratum_fix *)
4305
          bfd_zmalloc (sizeof (struct a8_erratum_fix) * a8_fix_table_size);
4306
      a8_relocs = (struct a8_erratum_reloc *)
4307
          bfd_zmalloc (sizeof (struct a8_erratum_reloc) * a8_reloc_table_size);
4308
    }
4309
 
4310
  /* Propagate mach to stub bfd, because it may not have been
4311
     finalized when we created stub_bfd.  */
4312
  bfd_set_arch_mach (stub_bfd, bfd_get_arch (output_bfd),
4313
                     bfd_get_mach (output_bfd));
4314
 
4315
  /* Stash our params away.  */
4316
  htab->stub_bfd = stub_bfd;
4317
  htab->add_stub_section = add_stub_section;
4318
  htab->layout_sections_again = layout_sections_again;
4319
  stubs_always_after_branch = group_size < 0;
4320
 
4321
  /* The Cortex-A8 erratum fix depends on stubs not being in the same 4K page
4322
     as the first half of a 32-bit branch straddling two 4K pages.  This is a
4323
     crude way of enforcing that.  */
4324
  if (htab->fix_cortex_a8)
4325
    stubs_always_after_branch = 1;
4326
 
4327
  if (group_size < 0)
4328
    stub_group_size = -group_size;
4329
  else
4330
    stub_group_size = group_size;
4331
 
4332
  if (stub_group_size == 1)
4333
    {
4334
      /* Default values.  */
4335
      /* Thumb branch range is +-4MB has to be used as the default
4336
         maximum size (a given section can contain both ARM and Thumb
4337
         code, so the worst case has to be taken into account).
4338
 
4339
         This value is 24K less than that, which allows for 2025
4340
         12-byte stubs.  If we exceed that, then we will fail to link.
4341
         The user will have to relink with an explicit group size
4342
         option.  */
4343
      stub_group_size = 4170000;
4344
    }
4345
 
4346
  group_sections (htab, stub_group_size, stubs_always_after_branch);
4347
 
4348
  /* If we're applying the cortex A8 fix, we need to determine the
4349
     program header size now, because we cannot change it later --
4350
     that could alter section placements.  Notice the A8 erratum fix
4351
     ends up requiring the section addresses to remain unchanged
4352
     modulo the page size.  That's something we cannot represent
4353
     inside BFD, and we don't want to force the section alignment to
4354
     be the page size.  */
4355
  if (htab->fix_cortex_a8)
4356
    (*htab->layout_sections_again) ();
4357
 
4358
  while (1)
4359
    {
4360
      bfd *input_bfd;
4361
      unsigned int bfd_indx;
4362
      asection *stub_sec;
4363
      bfd_boolean stub_changed = FALSE;
4364
      unsigned prev_num_a8_fixes = num_a8_fixes;
4365
 
4366
      num_a8_fixes = 0;
4367
      for (input_bfd = info->input_bfds, bfd_indx = 0;
4368
           input_bfd != NULL;
4369
           input_bfd = input_bfd->link_next, bfd_indx++)
4370
        {
4371
          Elf_Internal_Shdr *symtab_hdr;
4372
          asection *section;
4373
          Elf_Internal_Sym *local_syms = NULL;
4374
 
4375
          num_a8_relocs = 0;
4376
 
4377
          /* We'll need the symbol table in a second.  */
4378
          symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4379
          if (symtab_hdr->sh_info == 0)
4380
            continue;
4381
 
4382
          /* Walk over each section attached to the input bfd.  */
4383
          for (section = input_bfd->sections;
4384
               section != NULL;
4385
               section = section->next)
4386
            {
4387
              Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
4388
 
4389
              /* If there aren't any relocs, then there's nothing more
4390
                 to do.  */
4391
              if ((section->flags & SEC_RELOC) == 0
4392
                  || section->reloc_count == 0
4393
                  || (section->flags & SEC_CODE) == 0)
4394
                continue;
4395
 
4396
              /* If this section is a link-once section that will be
4397
                 discarded, then don't create any stubs.  */
4398
              if (section->output_section == NULL
4399
                  || section->output_section->owner != output_bfd)
4400
                continue;
4401
 
4402
              /* Get the relocs.  */
4403
              internal_relocs
4404
                = _bfd_elf_link_read_relocs (input_bfd, section, NULL,
4405
                                             NULL, info->keep_memory);
4406
              if (internal_relocs == NULL)
4407
                goto error_ret_free_local;
4408
 
4409
              /* Now examine each relocation.  */
4410
              irela = internal_relocs;
4411
              irelaend = irela + section->reloc_count;
4412
              for (; irela < irelaend; irela++)
4413
                {
4414
                  unsigned int r_type, r_indx;
4415
                  enum elf32_arm_stub_type stub_type;
4416
                  struct elf32_arm_stub_hash_entry *stub_entry;
4417
                  asection *sym_sec;
4418
                  bfd_vma sym_value;
4419
                  bfd_vma destination;
4420
                  struct elf32_arm_link_hash_entry *hash;
4421
                  const char *sym_name;
4422
                  char *stub_name;
4423
                  const asection *id_sec;
4424
                  int st_type;
4425
                  bfd_boolean created_stub = FALSE;
4426
 
4427
                  r_type = ELF32_R_TYPE (irela->r_info);
4428
                  r_indx = ELF32_R_SYM (irela->r_info);
4429
 
4430
                  if (r_type >= (unsigned int) R_ARM_max)
4431
                    {
4432
                      bfd_set_error (bfd_error_bad_value);
4433
                    error_ret_free_internal:
4434
                      if (elf_section_data (section)->relocs == NULL)
4435
                        free (internal_relocs);
4436
                      goto error_ret_free_local;
4437
                    }
4438
 
4439
                  /* Only look for stubs on branch instructions.  */
4440
                  if ((r_type != (unsigned int) R_ARM_CALL)
4441
                      && (r_type != (unsigned int) R_ARM_THM_CALL)
4442
                      && (r_type != (unsigned int) R_ARM_JUMP24)
4443
                      && (r_type != (unsigned int) R_ARM_THM_JUMP19)
4444
                      && (r_type != (unsigned int) R_ARM_THM_XPC22)
4445
                      && (r_type != (unsigned int) R_ARM_THM_JUMP24)
4446
                      && (r_type != (unsigned int) R_ARM_PLT32))
4447
                    continue;
4448
 
4449
                  /* Now determine the call target, its name, value,
4450
                     section.  */
4451
                  sym_sec = NULL;
4452
                  sym_value = 0;
4453
                  destination = 0;
4454
                  hash = NULL;
4455
                  sym_name = NULL;
4456
                  if (r_indx < symtab_hdr->sh_info)
4457
                    {
4458
                      /* It's a local symbol.  */
4459
                      Elf_Internal_Sym *sym;
4460
                      Elf_Internal_Shdr *hdr;
4461
 
4462
                      if (local_syms == NULL)
4463
                        {
4464
                          local_syms
4465
                            = (Elf_Internal_Sym *) symtab_hdr->contents;
4466
                          if (local_syms == NULL)
4467
                            local_syms
4468
                              = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
4469
                                                      symtab_hdr->sh_info, 0,
4470
                                                      NULL, NULL, NULL);
4471
                          if (local_syms == NULL)
4472
                            goto error_ret_free_internal;
4473
                        }
4474
 
4475
                      sym = local_syms + r_indx;
4476
                      hdr = elf_elfsections (input_bfd)[sym->st_shndx];
4477
                      sym_sec = hdr->bfd_section;
4478
                      if (!sym_sec)
4479
                        /* This is an undefined symbol.  It can never
4480
                           be resolved. */
4481
                        continue;
4482
 
4483
                      if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
4484
                        sym_value = sym->st_value;
4485
                      destination = (sym_value + irela->r_addend
4486
                                     + sym_sec->output_offset
4487
                                     + sym_sec->output_section->vma);
4488
                      st_type = ELF_ST_TYPE (sym->st_info);
4489
                      sym_name
4490
                        = bfd_elf_string_from_elf_section (input_bfd,
4491
                                                           symtab_hdr->sh_link,
4492
                                                           sym->st_name);
4493
                    }
4494
                  else
4495
                    {
4496
                      /* It's an external symbol.  */
4497
                      int e_indx;
4498
 
4499
                      e_indx = r_indx - symtab_hdr->sh_info;
4500
                      hash = ((struct elf32_arm_link_hash_entry *)
4501
                              elf_sym_hashes (input_bfd)[e_indx]);
4502
 
4503
                      while (hash->root.root.type == bfd_link_hash_indirect
4504
                             || hash->root.root.type == bfd_link_hash_warning)
4505
                        hash = ((struct elf32_arm_link_hash_entry *)
4506
                                hash->root.root.u.i.link);
4507
 
4508
                      if (hash->root.root.type == bfd_link_hash_defined
4509
                          || hash->root.root.type == bfd_link_hash_defweak)
4510
                        {
4511
                          sym_sec = hash->root.root.u.def.section;
4512
                          sym_value = hash->root.root.u.def.value;
4513
 
4514
                          struct elf32_arm_link_hash_table *globals =
4515
                                                  elf32_arm_hash_table (info);
4516
 
4517
                          /* For a destination in a shared library,
4518
                             use the PLT stub as target address to
4519
                             decide whether a branch stub is
4520
                             needed.  */
4521
                          if (globals != NULL
4522
                              && globals->splt != NULL
4523
                              && hash != NULL
4524
                              && hash->root.plt.offset != (bfd_vma) -1)
4525
                            {
4526
                              sym_sec = globals->splt;
4527
                              sym_value = hash->root.plt.offset;
4528
                              if (sym_sec->output_section != NULL)
4529
                                destination = (sym_value
4530
                                               + sym_sec->output_offset
4531
                                               + sym_sec->output_section->vma);
4532
                            }
4533
                          else if (sym_sec->output_section != NULL)
4534
                            destination = (sym_value + irela->r_addend
4535
                                           + sym_sec->output_offset
4536
                                           + sym_sec->output_section->vma);
4537
                        }
4538
                      else if ((hash->root.root.type == bfd_link_hash_undefined)
4539
                               || (hash->root.root.type == bfd_link_hash_undefweak))
4540
                        {
4541
                          /* For a shared library, use the PLT stub as
4542
                             target address to decide whether a long
4543
                             branch stub is needed.
4544
                             For absolute code, they cannot be handled.  */
4545
                          struct elf32_arm_link_hash_table *globals =
4546
                            elf32_arm_hash_table (info);
4547
 
4548
                          if (globals != NULL
4549
                              && globals->splt != NULL
4550
                              && hash != NULL
4551
                              && hash->root.plt.offset != (bfd_vma) -1)
4552
                            {
4553
                              sym_sec = globals->splt;
4554
                              sym_value = hash->root.plt.offset;
4555
                              if (sym_sec->output_section != NULL)
4556
                                destination = (sym_value
4557
                                               + sym_sec->output_offset
4558
                                               + sym_sec->output_section->vma);
4559
                            }
4560
                          else
4561
                            continue;
4562
                        }
4563
                      else
4564
                        {
4565
                          bfd_set_error (bfd_error_bad_value);
4566
                          goto error_ret_free_internal;
4567
                        }
4568
                      st_type = ELF_ST_TYPE (hash->root.type);
4569
                      sym_name = hash->root.root.root.string;
4570
                    }
4571
 
4572
                  do
4573
                    {
4574
                      /* Determine what (if any) linker stub is needed.  */
4575
                      stub_type = arm_type_of_stub (info, section, irela,
4576
                                                    &st_type, hash,
4577
                                                    destination, sym_sec,
4578
                                                    input_bfd, sym_name);
4579
                      if (stub_type == arm_stub_none)
4580
                        break;
4581
 
4582
                      /* Support for grouping stub sections.  */
4583
                      id_sec = htab->stub_group[section->id].link_sec;
4584
 
4585
                      /* Get the name of this stub.  */
4586
                      stub_name = elf32_arm_stub_name (id_sec, sym_sec, hash,
4587
                                                       irela, stub_type);
4588
                      if (!stub_name)
4589
                        goto error_ret_free_internal;
4590
 
4591
                      /* We've either created a stub for this reloc already,
4592
                         or we are about to.  */
4593
                      created_stub = TRUE;
4594
 
4595
                      stub_entry = arm_stub_hash_lookup
4596
                                     (&htab->stub_hash_table, stub_name,
4597
                                      FALSE, FALSE);
4598
                      if (stub_entry != NULL)
4599
                        {
4600
                          /* The proper stub has already been created.  */
4601
                          free (stub_name);
4602
                          stub_entry->target_value = sym_value;
4603
                          break;
4604
                        }
4605
 
4606
                      stub_entry = elf32_arm_add_stub (stub_name, section,
4607
                                                       htab);
4608
                      if (stub_entry == NULL)
4609
                        {
4610
                          free (stub_name);
4611
                          goto error_ret_free_internal;
4612
                        }
4613
 
4614
                      stub_entry->target_value = sym_value;
4615
                      stub_entry->target_section = sym_sec;
4616
                      stub_entry->stub_type = stub_type;
4617
                      stub_entry->h = hash;
4618
                      stub_entry->st_type = st_type;
4619
 
4620
                      if (sym_name == NULL)
4621
                        sym_name = "unnamed";
4622
                      stub_entry->output_name = (char *)
4623
                          bfd_alloc (htab->stub_bfd,
4624
                                     sizeof (THUMB2ARM_GLUE_ENTRY_NAME)
4625
                                     + strlen (sym_name));
4626
                      if (stub_entry->output_name == NULL)
4627
                        {
4628
                          free (stub_name);
4629
                          goto error_ret_free_internal;
4630
                        }
4631
 
4632
                      /* For historical reasons, use the existing names for
4633
                         ARM-to-Thumb and Thumb-to-ARM stubs.  */
4634
                      if ( ((r_type == (unsigned int) R_ARM_THM_CALL)
4635
                            || (r_type == (unsigned int) R_ARM_THM_JUMP24))
4636
                           && st_type != STT_ARM_TFUNC)
4637
                        sprintf (stub_entry->output_name,
4638
                                 THUMB2ARM_GLUE_ENTRY_NAME, sym_name);
4639
                      else if ( ((r_type == (unsigned int) R_ARM_CALL)
4640
                                 || (r_type == (unsigned int) R_ARM_JUMP24))
4641
                               && st_type == STT_ARM_TFUNC)
4642
                        sprintf (stub_entry->output_name,
4643
                                 ARM2THUMB_GLUE_ENTRY_NAME, sym_name);
4644
                      else
4645
                        sprintf (stub_entry->output_name, STUB_ENTRY_NAME,
4646
                                 sym_name);
4647
 
4648
                      stub_changed = TRUE;
4649
                    }
4650
                  while (0);
4651
 
4652
                  /* Look for relocations which might trigger Cortex-A8
4653
                     erratum.  */
4654
                  if (htab->fix_cortex_a8
4655
                      && (r_type == (unsigned int) R_ARM_THM_JUMP24
4656
                          || r_type == (unsigned int) R_ARM_THM_JUMP19
4657
                          || r_type == (unsigned int) R_ARM_THM_CALL
4658
                          || r_type == (unsigned int) R_ARM_THM_XPC22))
4659
                    {
4660
                      bfd_vma from = section->output_section->vma
4661
                                     + section->output_offset
4662
                                     + irela->r_offset;
4663
 
4664
                      if ((from & 0xfff) == 0xffe)
4665
                        {
4666
                          /* Found a candidate.  Note we haven't checked the
4667
                             destination is within 4K here: if we do so (and
4668
                             don't create an entry in a8_relocs) we can't tell
4669
                             that a branch should have been relocated when
4670
                             scanning later.  */
4671
                          if (num_a8_relocs == a8_reloc_table_size)
4672
                            {
4673
                              a8_reloc_table_size *= 2;
4674
                              a8_relocs = (struct a8_erratum_reloc *)
4675
                                  bfd_realloc (a8_relocs,
4676
                                               sizeof (struct a8_erratum_reloc)
4677
                                               * a8_reloc_table_size);
4678
                            }
4679
 
4680
                          a8_relocs[num_a8_relocs].from = from;
4681
                          a8_relocs[num_a8_relocs].destination = destination;
4682
                          a8_relocs[num_a8_relocs].r_type = r_type;
4683
                          a8_relocs[num_a8_relocs].st_type = st_type;
4684
                          a8_relocs[num_a8_relocs].sym_name = sym_name;
4685
                          a8_relocs[num_a8_relocs].non_a8_stub = created_stub;
4686
                          a8_relocs[num_a8_relocs].hash = hash;
4687
 
4688
                          num_a8_relocs++;
4689
                        }
4690
                    }
4691
                }
4692
 
4693
              /* We're done with the internal relocs, free them.  */
4694
              if (elf_section_data (section)->relocs == NULL)
4695
                free (internal_relocs);
4696
            }
4697
 
4698
          if (htab->fix_cortex_a8)
4699
            {
4700
              /* Sort relocs which might apply to Cortex-A8 erratum.  */
4701
              qsort (a8_relocs, num_a8_relocs,
4702
                     sizeof (struct a8_erratum_reloc),
4703
                     &a8_reloc_compare);
4704
 
4705
              /* Scan for branches which might trigger Cortex-A8 erratum.  */
4706
              if (cortex_a8_erratum_scan (input_bfd, info, &a8_fixes,
4707
                                          &num_a8_fixes, &a8_fix_table_size,
4708
                                          a8_relocs, num_a8_relocs,
4709
                                          prev_num_a8_fixes, &stub_changed)
4710
                  != 0)
4711
                goto error_ret_free_local;
4712
            }
4713
        }
4714
 
4715
      if (prev_num_a8_fixes != num_a8_fixes)
4716
        stub_changed = TRUE;
4717
 
4718
      if (!stub_changed)
4719
        break;
4720
 
4721
      /* OK, we've added some stubs.  Find out the new size of the
4722
         stub sections.  */
4723
      for (stub_sec = htab->stub_bfd->sections;
4724
           stub_sec != NULL;
4725
           stub_sec = stub_sec->next)
4726
        {
4727
          /* Ignore non-stub sections.  */
4728
          if (!strstr (stub_sec->name, STUB_SUFFIX))
4729
            continue;
4730
 
4731
          stub_sec->size = 0;
4732
        }
4733
 
4734
      bfd_hash_traverse (&htab->stub_hash_table, arm_size_one_stub, htab);
4735
 
4736
      /* Add Cortex-A8 erratum veneers to stub section sizes too.  */
4737
      if (htab->fix_cortex_a8)
4738
        for (i = 0; i < num_a8_fixes; i++)
4739
          {
4740
            stub_sec = elf32_arm_create_or_find_stub_sec (NULL,
4741
                         a8_fixes[i].section, htab);
4742
 
4743
            if (stub_sec == NULL)
4744
              goto error_ret_free_local;
4745
 
4746
            stub_sec->size
4747
              += find_stub_size_and_template (a8_fixes[i].stub_type, NULL,
4748
                                              NULL);
4749
          }
4750
 
4751
 
4752
      /* Ask the linker to do its stuff.  */
4753
      (*htab->layout_sections_again) ();
4754
    }
4755
 
4756
  /* Add stubs for Cortex-A8 erratum fixes now.  */
4757
  if (htab->fix_cortex_a8)
4758
    {
4759
      for (i = 0; i < num_a8_fixes; i++)
4760
        {
4761
          struct elf32_arm_stub_hash_entry *stub_entry;
4762
          char *stub_name = a8_fixes[i].stub_name;
4763
          asection *section = a8_fixes[i].section;
4764
          unsigned int section_id = a8_fixes[i].section->id;
4765
          asection *link_sec = htab->stub_group[section_id].link_sec;
4766
          asection *stub_sec = htab->stub_group[section_id].stub_sec;
4767
          const insn_sequence *template_sequence;
4768
          int template_size, size = 0;
4769
 
4770
          stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name,
4771
                                             TRUE, FALSE);
4772
          if (stub_entry == NULL)
4773
            {
4774
              (*_bfd_error_handler) (_("%s: cannot create stub entry %s"),
4775
                                     section->owner,
4776
                                     stub_name);
4777
              return FALSE;
4778
            }
4779
 
4780
          stub_entry->stub_sec = stub_sec;
4781
          stub_entry->stub_offset = 0;
4782
          stub_entry->id_sec = link_sec;
4783
          stub_entry->stub_type = a8_fixes[i].stub_type;
4784
          stub_entry->target_section = a8_fixes[i].section;
4785
          stub_entry->target_value = a8_fixes[i].offset;
4786
          stub_entry->target_addend = a8_fixes[i].addend;
4787
          stub_entry->orig_insn = a8_fixes[i].orig_insn;
4788
          stub_entry->st_type = a8_fixes[i].st_type;
4789
 
4790
          size = find_stub_size_and_template (a8_fixes[i].stub_type,
4791
                                              &template_sequence,
4792
                                              &template_size);
4793
 
4794
          stub_entry->stub_size = size;
4795
          stub_entry->stub_template = template_sequence;
4796
          stub_entry->stub_template_size = template_size;
4797
        }
4798
 
4799
      /* Stash the Cortex-A8 erratum fix array for use later in
4800
         elf32_arm_write_section().  */
4801
      htab->a8_erratum_fixes = a8_fixes;
4802
      htab->num_a8_erratum_fixes = num_a8_fixes;
4803
    }
4804
  else
4805
    {
4806
      htab->a8_erratum_fixes = NULL;
4807
      htab->num_a8_erratum_fixes = 0;
4808
    }
4809
  return TRUE;
4810
 
4811
 error_ret_free_local:
4812
  return FALSE;
4813
}
4814
 
4815
/* Build all the stubs associated with the current output file.  The
4816
   stubs are kept in a hash table attached to the main linker hash
4817
   table.  We also set up the .plt entries for statically linked PIC
4818
   functions here.  This function is called via arm_elf_finish in the
4819
   linker.  */
4820
 
4821
bfd_boolean
4822
elf32_arm_build_stubs (struct bfd_link_info *info)
4823
{
4824
  asection *stub_sec;
4825
  struct bfd_hash_table *table;
4826
  struct elf32_arm_link_hash_table *htab;
4827
 
4828
  htab = elf32_arm_hash_table (info);
4829
  if (htab == NULL)
4830
    return FALSE;
4831
 
4832
  for (stub_sec = htab->stub_bfd->sections;
4833
       stub_sec != NULL;
4834
       stub_sec = stub_sec->next)
4835
    {
4836
      bfd_size_type size;
4837
 
4838
      /* Ignore non-stub sections.  */
4839
      if (!strstr (stub_sec->name, STUB_SUFFIX))
4840
        continue;
4841
 
4842
      /* Allocate memory to hold the linker stubs.  */
4843
      size = stub_sec->size;
4844
      stub_sec->contents = (unsigned char *) bfd_zalloc (htab->stub_bfd, size);
4845
      if (stub_sec->contents == NULL && size != 0)
4846
        return FALSE;
4847
      stub_sec->size = 0;
4848
    }
4849
 
4850
  /* Build the stubs as directed by the stub hash table.  */
4851
  table = &htab->stub_hash_table;
4852
  bfd_hash_traverse (table, arm_build_one_stub, info);
4853
  if (htab->fix_cortex_a8)
4854
    {
4855
      /* Place the cortex a8 stubs last.  */
4856
      htab->fix_cortex_a8 = -1;
4857
      bfd_hash_traverse (table, arm_build_one_stub, info);
4858
    }
4859
 
4860
  return TRUE;
4861
}
4862
 
4863
/* Locate the Thumb encoded calling stub for NAME.  */
4864
 
4865
static struct elf_link_hash_entry *
4866
find_thumb_glue (struct bfd_link_info *link_info,
4867
                 const char *name,
4868
                 char **error_message)
4869
{
4870
  char *tmp_name;
4871
  struct elf_link_hash_entry *hash;
4872
  struct elf32_arm_link_hash_table *hash_table;
4873
 
4874
  /* We need a pointer to the armelf specific hash table.  */
4875
  hash_table = elf32_arm_hash_table (link_info);
4876
  if (hash_table == NULL)
4877
    return NULL;
4878
 
4879
  tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
4880
                                  + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
4881
 
4882
  BFD_ASSERT (tmp_name);
4883
 
4884
  sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
4885
 
4886
  hash = elf_link_hash_lookup
4887
    (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
4888
 
4889
  if (hash == NULL
4890
      && asprintf (error_message, _("unable to find THUMB glue '%s' for '%s'"),
4891
                   tmp_name, name) == -1)
4892
    *error_message = (char *) bfd_errmsg (bfd_error_system_call);
4893
 
4894
  free (tmp_name);
4895
 
4896
  return hash;
4897
}
4898
 
4899
/* Locate the ARM encoded calling stub for NAME.  */
4900
 
4901
static struct elf_link_hash_entry *
4902
find_arm_glue (struct bfd_link_info *link_info,
4903
               const char *name,
4904
               char **error_message)
4905
{
4906
  char *tmp_name;
4907
  struct elf_link_hash_entry *myh;
4908
  struct elf32_arm_link_hash_table *hash_table;
4909
 
4910
  /* We need a pointer to the elfarm specific hash table.  */
4911
  hash_table = elf32_arm_hash_table (link_info);
4912
  if (hash_table == NULL)
4913
    return NULL;
4914
 
4915
  tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
4916
                                  + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
4917
 
4918
  BFD_ASSERT (tmp_name);
4919
 
4920
  sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
4921
 
4922
  myh = elf_link_hash_lookup
4923
    (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
4924
 
4925
  if (myh == NULL
4926
      && asprintf (error_message, _("unable to find ARM glue '%s' for '%s'"),
4927
                   tmp_name, name) == -1)
4928
    *error_message = (char *) bfd_errmsg (bfd_error_system_call);
4929
 
4930
  free (tmp_name);
4931
 
4932
  return myh;
4933
}
4934
 
4935
/* ARM->Thumb glue (static images):
4936
 
4937
   .arm
4938
   __func_from_arm:
4939
   ldr r12, __func_addr
4940
   bx  r12
4941
   __func_addr:
4942
   .word func    @ behave as if you saw a ARM_32 reloc.
4943
 
4944
   (v5t static images)
4945
   .arm
4946
   __func_from_arm:
4947
   ldr pc, __func_addr
4948
   __func_addr:
4949
   .word func    @ behave as if you saw a ARM_32 reloc.
4950
 
4951
   (relocatable images)
4952
   .arm
4953
   __func_from_arm:
4954
   ldr r12, __func_offset
4955
   add r12, r12, pc
4956
   bx  r12
4957
   __func_offset:
4958
   .word func - .   */
4959
 
4960
#define ARM2THUMB_STATIC_GLUE_SIZE 12
4961
static const insn32 a2t1_ldr_insn = 0xe59fc000;
4962
static const insn32 a2t2_bx_r12_insn = 0xe12fff1c;
4963
static const insn32 a2t3_func_addr_insn = 0x00000001;
4964
 
4965
#define ARM2THUMB_V5_STATIC_GLUE_SIZE 8
4966
static const insn32 a2t1v5_ldr_insn = 0xe51ff004;
4967
static const insn32 a2t2v5_func_addr_insn = 0x00000001;
4968
 
4969
#define ARM2THUMB_PIC_GLUE_SIZE 16
4970
static const insn32 a2t1p_ldr_insn = 0xe59fc004;
4971
static const insn32 a2t2p_add_pc_insn = 0xe08cc00f;
4972
static const insn32 a2t3p_bx_r12_insn = 0xe12fff1c;
4973
 
4974
/* Thumb->ARM:                          Thumb->(non-interworking aware) ARM
4975
 
4976
     .thumb                             .thumb
4977
     .align 2                           .align 2
4978
 __func_from_thumb:                 __func_from_thumb:
4979
     bx pc                              push {r6, lr}
4980
     nop                                ldr  r6, __func_addr
4981
     .arm                               mov  lr, pc
4982
     b func                             bx   r6
4983
                                        .arm
4984
                                    ;; back_to_thumb
4985
                                        ldmia r13! {r6, lr}
4986
                                        bx    lr
4987
                                    __func_addr:
4988
                                        .word        func  */
4989
 
4990
#define THUMB2ARM_GLUE_SIZE 8
4991
static const insn16 t2a1_bx_pc_insn = 0x4778;
4992
static const insn16 t2a2_noop_insn = 0x46c0;
4993
static const insn32 t2a3_b_insn = 0xea000000;
4994
 
4995
#define VFP11_ERRATUM_VENEER_SIZE 8
4996
 
4997
#define ARM_BX_VENEER_SIZE 12
4998
static const insn32 armbx1_tst_insn = 0xe3100001;
4999
static const insn32 armbx2_moveq_insn = 0x01a0f000;
5000
static const insn32 armbx3_bx_insn = 0xe12fff10;
5001
 
5002
#ifndef ELFARM_NABI_C_INCLUDED
5003
static void
5004
arm_allocate_glue_section_space (bfd * abfd, bfd_size_type size, const char * name)
5005
{
5006
  asection * s;
5007
  bfd_byte * contents;
5008
 
5009
  if (size == 0)
5010
    {
5011
      /* Do not include empty glue sections in the output.  */
5012
      if (abfd != NULL)
5013
        {
5014
          s = bfd_get_section_by_name (abfd, name);
5015
          if (s != NULL)
5016
            s->flags |= SEC_EXCLUDE;
5017
        }
5018
      return;
5019
    }
5020
 
5021
  BFD_ASSERT (abfd != NULL);
5022
 
5023
  s = bfd_get_section_by_name (abfd, name);
5024
  BFD_ASSERT (s != NULL);
5025
 
5026
  contents = (bfd_byte *) bfd_alloc (abfd, size);
5027
 
5028
  BFD_ASSERT (s->size == size);
5029
  s->contents = contents;
5030
}
5031
 
5032
bfd_boolean
5033
bfd_elf32_arm_allocate_interworking_sections (struct bfd_link_info * info)
5034
{
5035
  struct elf32_arm_link_hash_table * globals;
5036
 
5037
  globals = elf32_arm_hash_table (info);
5038
  BFD_ASSERT (globals != NULL);
5039
 
5040
  arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
5041
                                   globals->arm_glue_size,
5042
                                   ARM2THUMB_GLUE_SECTION_NAME);
5043
 
5044
  arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
5045
                                   globals->thumb_glue_size,
5046
                                   THUMB2ARM_GLUE_SECTION_NAME);
5047
 
5048
  arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
5049
                                   globals->vfp11_erratum_glue_size,
5050
                                   VFP11_ERRATUM_VENEER_SECTION_NAME);
5051
 
5052
  arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
5053
                                   globals->bx_glue_size,
5054
                                   ARM_BX_GLUE_SECTION_NAME);
5055
 
5056
  return TRUE;
5057
}
5058
 
5059
/* Allocate space and symbols for calling a Thumb function from Arm mode.
5060
   returns the symbol identifying the stub.  */
5061
 
5062
static struct elf_link_hash_entry *
5063
record_arm_to_thumb_glue (struct bfd_link_info * link_info,
5064
                          struct elf_link_hash_entry * h)
5065
{
5066
  const char * name = h->root.root.string;
5067
  asection * s;
5068
  char * tmp_name;
5069
  struct elf_link_hash_entry * myh;
5070
  struct bfd_link_hash_entry * bh;
5071
  struct elf32_arm_link_hash_table * globals;
5072
  bfd_vma val;
5073
  bfd_size_type size;
5074
 
5075
  globals = elf32_arm_hash_table (link_info);
5076
  BFD_ASSERT (globals != NULL);
5077
  BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
5078
 
5079
  s = bfd_get_section_by_name
5080
    (globals->bfd_of_glue_owner, ARM2THUMB_GLUE_SECTION_NAME);
5081
 
5082
  BFD_ASSERT (s != NULL);
5083
 
5084
  tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
5085
                                  + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
5086
 
5087
  BFD_ASSERT (tmp_name);
5088
 
5089
  sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
5090
 
5091
  myh = elf_link_hash_lookup
5092
    (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
5093
 
5094
  if (myh != NULL)
5095
    {
5096
      /* We've already seen this guy.  */
5097
      free (tmp_name);
5098
      return myh;
5099
    }
5100
 
5101
  /* The only trick here is using hash_table->arm_glue_size as the value.
5102
     Even though the section isn't allocated yet, this is where we will be
5103
     putting it.  The +1 on the value marks that the stub has not been
5104
     output yet - not that it is a Thumb function.  */
5105
  bh = NULL;
5106
  val = globals->arm_glue_size + 1;
5107
  _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
5108
                                    tmp_name, BSF_GLOBAL, s, val,
5109
                                    NULL, TRUE, FALSE, &bh);
5110
 
5111
  myh = (struct elf_link_hash_entry *) bh;
5112
  myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
5113
  myh->forced_local = 1;
5114
 
5115
  free (tmp_name);
5116
 
5117
  if (link_info->shared || globals->root.is_relocatable_executable
5118
      || globals->pic_veneer)
5119
    size = ARM2THUMB_PIC_GLUE_SIZE;
5120
  else if (globals->use_blx)
5121
    size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
5122
  else
5123
    size = ARM2THUMB_STATIC_GLUE_SIZE;
5124
 
5125
  s->size += size;
5126
  globals->arm_glue_size += size;
5127
 
5128
  return myh;
5129
}
5130
 
5131
/* Allocate space for ARMv4 BX veneers.  */
5132
 
5133
static void
5134
record_arm_bx_glue (struct bfd_link_info * link_info, int reg)
5135
{
5136
  asection * s;
5137
  struct elf32_arm_link_hash_table *globals;
5138
  char *tmp_name;
5139
  struct elf_link_hash_entry *myh;
5140
  struct bfd_link_hash_entry *bh;
5141
  bfd_vma val;
5142
 
5143
  /* BX PC does not need a veneer.  */
5144
  if (reg == 15)
5145
    return;
5146
 
5147
  globals = elf32_arm_hash_table (link_info);
5148
  BFD_ASSERT (globals != NULL);
5149
  BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
5150
 
5151
  /* Check if this veneer has already been allocated.  */
5152
  if (globals->bx_glue_offset[reg])
5153
    return;
5154
 
5155
  s = bfd_get_section_by_name
5156
    (globals->bfd_of_glue_owner, ARM_BX_GLUE_SECTION_NAME);
5157
 
5158
  BFD_ASSERT (s != NULL);
5159
 
5160
  /* Add symbol for veneer.  */
5161
  tmp_name = (char *)
5162
      bfd_malloc ((bfd_size_type) strlen (ARM_BX_GLUE_ENTRY_NAME) + 1);
5163
 
5164
  BFD_ASSERT (tmp_name);
5165
 
5166
  sprintf (tmp_name, ARM_BX_GLUE_ENTRY_NAME, reg);
5167
 
5168
  myh = elf_link_hash_lookup
5169
    (&(globals)->root, tmp_name, FALSE, FALSE, FALSE);
5170
 
5171
  BFD_ASSERT (myh == NULL);
5172
 
5173
  bh = NULL;
5174
  val = globals->bx_glue_size;
5175
  _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
5176
                                    tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
5177
                                    NULL, TRUE, FALSE, &bh);
5178
 
5179
  myh = (struct elf_link_hash_entry *) bh;
5180
  myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
5181
  myh->forced_local = 1;
5182
 
5183
  s->size += ARM_BX_VENEER_SIZE;
5184
  globals->bx_glue_offset[reg] = globals->bx_glue_size | 2;
5185
  globals->bx_glue_size += ARM_BX_VENEER_SIZE;
5186
}
5187
 
5188
 
5189
/* Add an entry to the code/data map for section SEC.  */
5190
 
5191
static void
5192
elf32_arm_section_map_add (asection *sec, char type, bfd_vma vma)
5193
{
5194
  struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
5195
  unsigned int newidx;
5196
 
5197
  if (sec_data->map == NULL)
5198
    {
5199
      sec_data->map = (elf32_arm_section_map *)
5200
          bfd_malloc (sizeof (elf32_arm_section_map));
5201
      sec_data->mapcount = 0;
5202
      sec_data->mapsize = 1;
5203
    }
5204
 
5205
  newidx = sec_data->mapcount++;
5206
 
5207
  if (sec_data->mapcount > sec_data->mapsize)
5208
    {
5209
      sec_data->mapsize *= 2;
5210
      sec_data->map = (elf32_arm_section_map *)
5211
          bfd_realloc_or_free (sec_data->map, sec_data->mapsize
5212
                               * sizeof (elf32_arm_section_map));
5213
    }
5214
 
5215
  if (sec_data->map)
5216
    {
5217
      sec_data->map[newidx].vma = vma;
5218
      sec_data->map[newidx].type = type;
5219
    }
5220
}
5221
 
5222
 
5223
/* Record information about a VFP11 denorm-erratum veneer.  Only ARM-mode
5224
   veneers are handled for now.  */
5225
 
5226
static bfd_vma
5227
record_vfp11_erratum_veneer (struct bfd_link_info *link_info,
5228
                             elf32_vfp11_erratum_list *branch,
5229
                             bfd *branch_bfd,
5230
                             asection *branch_sec,
5231
                             unsigned int offset)
5232
{
5233
  asection *s;
5234
  struct elf32_arm_link_hash_table *hash_table;
5235
  char *tmp_name;
5236
  struct elf_link_hash_entry *myh;
5237
  struct bfd_link_hash_entry *bh;
5238
  bfd_vma val;
5239
  struct _arm_elf_section_data *sec_data;
5240
  elf32_vfp11_erratum_list *newerr;
5241
 
5242
  hash_table = elf32_arm_hash_table (link_info);
5243
  BFD_ASSERT (hash_table != NULL);
5244
  BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
5245
 
5246
  s = bfd_get_section_by_name
5247
    (hash_table->bfd_of_glue_owner, VFP11_ERRATUM_VENEER_SECTION_NAME);
5248
 
5249
  sec_data = elf32_arm_section_data (s);
5250
 
5251
  BFD_ASSERT (s != NULL);
5252
 
5253
  tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
5254
                                  (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
5255
 
5256
  BFD_ASSERT (tmp_name);
5257
 
5258
  sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
5259
           hash_table->num_vfp11_fixes);
5260
 
5261
  myh = elf_link_hash_lookup
5262
    (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
5263
 
5264
  BFD_ASSERT (myh == NULL);
5265
 
5266
  bh = NULL;
5267
  val = hash_table->vfp11_erratum_glue_size;
5268
  _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
5269
                                    tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
5270
                                    NULL, TRUE, FALSE, &bh);
5271
 
5272
  myh = (struct elf_link_hash_entry *) bh;
5273
  myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
5274
  myh->forced_local = 1;
5275
 
5276
  /* Link veneer back to calling location.  */
5277
  sec_data->erratumcount += 1;
5278
  newerr = (elf32_vfp11_erratum_list *)
5279
      bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
5280
 
5281
  newerr->type = VFP11_ERRATUM_ARM_VENEER;
5282
  newerr->vma = -1;
5283
  newerr->u.v.branch = branch;
5284
  newerr->u.v.id = hash_table->num_vfp11_fixes;
5285
  branch->u.b.veneer = newerr;
5286
 
5287
  newerr->next = sec_data->erratumlist;
5288
  sec_data->erratumlist = newerr;
5289
 
5290
  /* A symbol for the return from the veneer.  */
5291
  sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
5292
           hash_table->num_vfp11_fixes);
5293
 
5294
  myh = elf_link_hash_lookup
5295
    (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
5296
 
5297
  if (myh != NULL)
5298
    abort ();
5299
 
5300
  bh = NULL;
5301
  val = offset + 4;
5302
  _bfd_generic_link_add_one_symbol (link_info, branch_bfd, tmp_name, BSF_LOCAL,
5303
                                    branch_sec, val, NULL, TRUE, FALSE, &bh);
5304
 
5305
  myh = (struct elf_link_hash_entry *) bh;
5306
  myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
5307
  myh->forced_local = 1;
5308
 
5309
  free (tmp_name);
5310
 
5311
  /* Generate a mapping symbol for the veneer section, and explicitly add an
5312
     entry for that symbol to the code/data map for the section.  */
5313
  if (hash_table->vfp11_erratum_glue_size == 0)
5314
    {
5315
      bh = NULL;
5316
      /* FIXME: Creates an ARM symbol.  Thumb mode will need attention if it
5317
         ever requires this erratum fix.  */
5318
      _bfd_generic_link_add_one_symbol (link_info,
5319
                                        hash_table->bfd_of_glue_owner, "$a",
5320
                                        BSF_LOCAL, s, 0, NULL,
5321
                                        TRUE, FALSE, &bh);
5322
 
5323
      myh = (struct elf_link_hash_entry *) bh;
5324
      myh->type = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
5325
      myh->forced_local = 1;
5326
 
5327
      /* The elf32_arm_init_maps function only cares about symbols from input
5328
         BFDs.  We must make a note of this generated mapping symbol
5329
         ourselves so that code byteswapping works properly in
5330
         elf32_arm_write_section.  */
5331
      elf32_arm_section_map_add (s, 'a', 0);
5332
    }
5333
 
5334
  s->size += VFP11_ERRATUM_VENEER_SIZE;
5335
  hash_table->vfp11_erratum_glue_size += VFP11_ERRATUM_VENEER_SIZE;
5336
  hash_table->num_vfp11_fixes++;
5337
 
5338
  /* The offset of the veneer.  */
5339
  return val;
5340
}
5341
 
5342
#define ARM_GLUE_SECTION_FLAGS \
5343
  (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE \
5344
   | SEC_READONLY | SEC_LINKER_CREATED)
5345
 
5346
/* Create a fake section for use by the ARM backend of the linker.  */
5347
 
5348
static bfd_boolean
5349
arm_make_glue_section (bfd * abfd, const char * name)
5350
{
5351
  asection * sec;
5352
 
5353
  sec = bfd_get_section_by_name (abfd, name);
5354
  if (sec != NULL)
5355
    /* Already made.  */
5356
    return TRUE;
5357
 
5358
  sec = bfd_make_section_with_flags (abfd, name, ARM_GLUE_SECTION_FLAGS);
5359
 
5360
  if (sec == NULL
5361
      || !bfd_set_section_alignment (abfd, sec, 2))
5362
    return FALSE;
5363
 
5364
  /* Set the gc mark to prevent the section from being removed by garbage
5365
     collection, despite the fact that no relocs refer to this section.  */
5366
  sec->gc_mark = 1;
5367
 
5368
  return TRUE;
5369
}
5370
 
5371
/* Add the glue sections to ABFD.  This function is called from the
5372
   linker scripts in ld/emultempl/{armelf}.em.  */
5373
 
5374
bfd_boolean
5375
bfd_elf32_arm_add_glue_sections_to_bfd (bfd *abfd,
5376
                                        struct bfd_link_info *info)
5377
{
5378
  /* If we are only performing a partial
5379
     link do not bother adding the glue.  */
5380
  if (info->relocatable)
5381
    return TRUE;
5382
 
5383
  return arm_make_glue_section (abfd, ARM2THUMB_GLUE_SECTION_NAME)
5384
    && arm_make_glue_section (abfd, THUMB2ARM_GLUE_SECTION_NAME)
5385
    && arm_make_glue_section (abfd, VFP11_ERRATUM_VENEER_SECTION_NAME)
5386
    && arm_make_glue_section (abfd, ARM_BX_GLUE_SECTION_NAME);
5387
}
5388
 
5389
/* Select a BFD to be used to hold the sections used by the glue code.
5390
   This function is called from the linker scripts in ld/emultempl/
5391
   {armelf/pe}.em.  */
5392
 
5393
bfd_boolean
5394
bfd_elf32_arm_get_bfd_for_interworking (bfd *abfd, struct bfd_link_info *info)
5395
{
5396
  struct elf32_arm_link_hash_table *globals;
5397
 
5398
  /* If we are only performing a partial link
5399
     do not bother getting a bfd to hold the glue.  */
5400
  if (info->relocatable)
5401
    return TRUE;
5402
 
5403
  /* Make sure we don't attach the glue sections to a dynamic object.  */
5404
  BFD_ASSERT (!(abfd->flags & DYNAMIC));
5405
 
5406
  globals = elf32_arm_hash_table (info);
5407
  BFD_ASSERT (globals != NULL);
5408
 
5409
  if (globals->bfd_of_glue_owner != NULL)
5410
    return TRUE;
5411
 
5412
  /* Save the bfd for later use.  */
5413
  globals->bfd_of_glue_owner = abfd;
5414
 
5415
  return TRUE;
5416
}
5417
 
5418
static void
5419
check_use_blx (struct elf32_arm_link_hash_table *globals)
5420
{
5421
  if (bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
5422
                                Tag_CPU_arch) > 2)
5423
    globals->use_blx = 1;
5424
}
5425
 
5426
bfd_boolean
5427
bfd_elf32_arm_process_before_allocation (bfd *abfd,
5428
                                         struct bfd_link_info *link_info)
5429
{
5430
  Elf_Internal_Shdr *symtab_hdr;
5431
  Elf_Internal_Rela *internal_relocs = NULL;
5432
  Elf_Internal_Rela *irel, *irelend;
5433
  bfd_byte *contents = NULL;
5434
 
5435
  asection *sec;
5436
  struct elf32_arm_link_hash_table *globals;
5437
 
5438
  /* If we are only performing a partial link do not bother
5439
     to construct any glue.  */
5440
  if (link_info->relocatable)
5441
    return TRUE;
5442
 
5443
  /* Here we have a bfd that is to be included on the link.  We have a
5444
     hook to do reloc rummaging, before section sizes are nailed down.  */
5445
  globals = elf32_arm_hash_table (link_info);
5446
  BFD_ASSERT (globals != NULL);
5447
 
5448
  check_use_blx (globals);
5449
 
5450
  if (globals->byteswap_code && !bfd_big_endian (abfd))
5451
    {
5452
      _bfd_error_handler (_("%B: BE8 images only valid in big-endian mode."),
5453
                          abfd);
5454
      return FALSE;
5455
    }
5456
 
5457
  /* PR 5398: If we have not decided to include any loadable sections in
5458
     the output then we will not have a glue owner bfd.  This is OK, it
5459
     just means that there is nothing else for us to do here.  */
5460
  if (globals->bfd_of_glue_owner == NULL)
5461
    return TRUE;
5462
 
5463
  /* Rummage around all the relocs and map the glue vectors.  */
5464
  sec = abfd->sections;
5465
 
5466
  if (sec == NULL)
5467
    return TRUE;
5468
 
5469
  for (; sec != NULL; sec = sec->next)
5470
    {
5471
      if (sec->reloc_count == 0)
5472
        continue;
5473
 
5474
      if ((sec->flags & SEC_EXCLUDE) != 0)
5475
        continue;
5476
 
5477
      symtab_hdr = & elf_symtab_hdr (abfd);
5478
 
5479
      /* Load the relocs.  */
5480
      internal_relocs
5481
        = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL, FALSE);
5482
 
5483
      if (internal_relocs == NULL)
5484
        goto error_return;
5485
 
5486
      irelend = internal_relocs + sec->reloc_count;
5487
      for (irel = internal_relocs; irel < irelend; irel++)
5488
        {
5489
          long r_type;
5490
          unsigned long r_index;
5491
 
5492
          struct elf_link_hash_entry *h;
5493
 
5494
          r_type = ELF32_R_TYPE (irel->r_info);
5495
          r_index = ELF32_R_SYM (irel->r_info);
5496
 
5497
          /* These are the only relocation types we care about.  */
5498
          if (   r_type != R_ARM_PC24
5499
              && (r_type != R_ARM_V4BX || globals->fix_v4bx < 2))
5500
            continue;
5501
 
5502
          /* Get the section contents if we haven't done so already.  */
5503
          if (contents == NULL)
5504
            {
5505
              /* Get cached copy if it exists.  */
5506
              if (elf_section_data (sec)->this_hdr.contents != NULL)
5507
                contents = elf_section_data (sec)->this_hdr.contents;
5508
              else
5509
                {
5510
                  /* Go get them off disk.  */
5511
                  if (! bfd_malloc_and_get_section (abfd, sec, &contents))
5512
                    goto error_return;
5513
                }
5514
            }
5515
 
5516
          if (r_type == R_ARM_V4BX)
5517
            {
5518
              int reg;
5519
 
5520
              reg = bfd_get_32 (abfd, contents + irel->r_offset) & 0xf;
5521
              record_arm_bx_glue (link_info, reg);
5522
              continue;
5523
            }
5524
 
5525
          /* If the relocation is not against a symbol it cannot concern us.  */
5526
          h = NULL;
5527
 
5528
          /* We don't care about local symbols.  */
5529
          if (r_index < symtab_hdr->sh_info)
5530
            continue;
5531
 
5532
          /* This is an external symbol.  */
5533
          r_index -= symtab_hdr->sh_info;
5534
          h = (struct elf_link_hash_entry *)
5535
            elf_sym_hashes (abfd)[r_index];
5536
 
5537
          /* If the relocation is against a static symbol it must be within
5538
             the current section and so cannot be a cross ARM/Thumb relocation.  */
5539
          if (h == NULL)
5540
            continue;
5541
 
5542
          /* If the call will go through a PLT entry then we do not need
5543
             glue.  */
5544
          if (globals->splt != NULL && h->plt.offset != (bfd_vma) -1)
5545
            continue;
5546
 
5547
          switch (r_type)
5548
            {
5549
            case R_ARM_PC24:
5550
              /* This one is a call from arm code.  We need to look up
5551
                 the target of the call.  If it is a thumb target, we
5552
                 insert glue.  */
5553
              if (ELF_ST_TYPE (h->type) == STT_ARM_TFUNC)
5554
                record_arm_to_thumb_glue (link_info, h);
5555
              break;
5556
 
5557
            default:
5558
              abort ();
5559
            }
5560
        }
5561
 
5562
      if (contents != NULL
5563
          && elf_section_data (sec)->this_hdr.contents != contents)
5564
        free (contents);
5565
      contents = NULL;
5566
 
5567
      if (internal_relocs != NULL
5568
          && elf_section_data (sec)->relocs != internal_relocs)
5569
        free (internal_relocs);
5570
      internal_relocs = NULL;
5571
    }
5572
 
5573
  return TRUE;
5574
 
5575
error_return:
5576
  if (contents != NULL
5577
      && elf_section_data (sec)->this_hdr.contents != contents)
5578
    free (contents);
5579
  if (internal_relocs != NULL
5580
      && elf_section_data (sec)->relocs != internal_relocs)
5581
    free (internal_relocs);
5582
 
5583
  return FALSE;
5584
}
5585
#endif
5586
 
5587
 
5588
/* Initialise maps of ARM/Thumb/data for input BFDs.  */
5589
 
5590
void
5591
bfd_elf32_arm_init_maps (bfd *abfd)
5592
{
5593
  Elf_Internal_Sym *isymbuf;
5594
  Elf_Internal_Shdr *hdr;
5595
  unsigned int i, localsyms;
5596
 
5597
  /* PR 7093: Make sure that we are dealing with an arm elf binary.  */
5598
  if (! is_arm_elf (abfd))
5599
    return;
5600
 
5601
  if ((abfd->flags & DYNAMIC) != 0)
5602
    return;
5603
 
5604
  hdr = & elf_symtab_hdr (abfd);
5605
  localsyms = hdr->sh_info;
5606
 
5607
  /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field
5608
     should contain the number of local symbols, which should come before any
5609
     global symbols.  Mapping symbols are always local.  */
5610
  isymbuf = bfd_elf_get_elf_syms (abfd, hdr, localsyms, 0, NULL, NULL,
5611
                                  NULL);
5612
 
5613
  /* No internal symbols read?  Skip this BFD.  */
5614
  if (isymbuf == NULL)
5615
    return;
5616
 
5617
  for (i = 0; i < localsyms; i++)
5618
    {
5619
      Elf_Internal_Sym *isym = &isymbuf[i];
5620
      asection *sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
5621
      const char *name;
5622
 
5623
      if (sec != NULL
5624
          && ELF_ST_BIND (isym->st_info) == STB_LOCAL)
5625
        {
5626
          name = bfd_elf_string_from_elf_section (abfd,
5627
            hdr->sh_link, isym->st_name);
5628
 
5629
          if (bfd_is_arm_special_symbol_name (name,
5630
                                              BFD_ARM_SPECIAL_SYM_TYPE_MAP))
5631
            elf32_arm_section_map_add (sec, name[1], isym->st_value);
5632
        }
5633
    }
5634
}
5635
 
5636
 
5637
/* Auto-select enabling of Cortex-A8 erratum fix if the user didn't explicitly
5638
   say what they wanted.  */
5639
 
5640
void
5641
bfd_elf32_arm_set_cortex_a8_fix (bfd *obfd, struct bfd_link_info *link_info)
5642
{
5643
  struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
5644
  obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
5645
 
5646
  if (globals == NULL)
5647
    return;
5648
 
5649
  if (globals->fix_cortex_a8 == -1)
5650
    {
5651
      /* Turn on Cortex-A8 erratum workaround for ARMv7-A.  */
5652
      if (out_attr[Tag_CPU_arch].i == TAG_CPU_ARCH_V7
5653
          && (out_attr[Tag_CPU_arch_profile].i == 'A'
5654
              || out_attr[Tag_CPU_arch_profile].i == 0))
5655
        globals->fix_cortex_a8 = 1;
5656
      else
5657
        globals->fix_cortex_a8 = 0;
5658
    }
5659
}
5660
 
5661
 
5662
void
5663
bfd_elf32_arm_set_vfp11_fix (bfd *obfd, struct bfd_link_info *link_info)
5664
{
5665
  struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
5666
  obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
5667
 
5668
  if (globals == NULL)
5669
    return;
5670
  /* We assume that ARMv7+ does not need the VFP11 denorm erratum fix.  */
5671
  if (out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V7)
5672
    {
5673
      switch (globals->vfp11_fix)
5674
        {
5675
        case BFD_ARM_VFP11_FIX_DEFAULT:
5676
        case BFD_ARM_VFP11_FIX_NONE:
5677
          globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
5678
          break;
5679
 
5680
        default:
5681
          /* Give a warning, but do as the user requests anyway.  */
5682
          (*_bfd_error_handler) (_("%B: warning: selected VFP11 erratum "
5683
            "workaround is not necessary for target architecture"), obfd);
5684
        }
5685
    }
5686
  else if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_DEFAULT)
5687
    /* For earlier architectures, we might need the workaround, but do not
5688
       enable it by default.  If users is running with broken hardware, they
5689
       must enable the erratum fix explicitly.  */
5690
    globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
5691
}
5692
 
5693
 
5694
enum bfd_arm_vfp11_pipe
5695
{
5696
  VFP11_FMAC,
5697
  VFP11_LS,
5698
  VFP11_DS,
5699
  VFP11_BAD
5700
};
5701
 
5702
/* Return a VFP register number.  This is encoded as RX:X for single-precision
5703
   registers, or X:RX for double-precision registers, where RX is the group of
5704
   four bits in the instruction encoding and X is the single extension bit.
5705
   RX and X fields are specified using their lowest (starting) bit.  The return
5706
   value is:
5707
 
5708
     0...31: single-precision registers s0...s31
5709
     32...63: double-precision registers d0...d31.
5710
 
5711
   Although X should be zero for VFP11 (encoding d0...d15 only), we might
5712
   encounter VFP3 instructions, so we allow the full range for DP registers.  */
5713
 
5714
static unsigned int
5715
bfd_arm_vfp11_regno (unsigned int insn, bfd_boolean is_double, unsigned int rx,
5716
                     unsigned int x)
5717
{
5718
  if (is_double)
5719
    return (((insn >> rx) & 0xf) | (((insn >> x) & 1) << 4)) + 32;
5720
  else
5721
    return (((insn >> rx) & 0xf) << 1) | ((insn >> x) & 1);
5722
}
5723
 
5724
/* Set bits in *WMASK according to a register number REG as encoded by
5725
   bfd_arm_vfp11_regno().  Ignore d16-d31.  */
5726
 
5727
static void
5728
bfd_arm_vfp11_write_mask (unsigned int *wmask, unsigned int reg)
5729
{
5730
  if (reg < 32)
5731
    *wmask |= 1 << reg;
5732
  else if (reg < 48)
5733
    *wmask |= 3 << ((reg - 32) * 2);
5734
}
5735
 
5736
/* Return TRUE if WMASK overwrites anything in REGS.  */
5737
 
5738
static bfd_boolean
5739
bfd_arm_vfp11_antidependency (unsigned int wmask, int *regs, int numregs)
5740
{
5741
  int i;
5742
 
5743
  for (i = 0; i < numregs; i++)
5744
    {
5745
      unsigned int reg = regs[i];
5746
 
5747
      if (reg < 32 && (wmask & (1 << reg)) != 0)
5748
        return TRUE;
5749
 
5750
      reg -= 32;
5751
 
5752
      if (reg >= 16)
5753
        continue;
5754
 
5755
      if ((wmask & (3 << (reg * 2))) != 0)
5756
        return TRUE;
5757
    }
5758
 
5759
  return FALSE;
5760
}
5761
 
5762
/* In this function, we're interested in two things: finding input registers
5763
   for VFP data-processing instructions, and finding the set of registers which
5764
   arbitrary VFP instructions may write to.  We use a 32-bit unsigned int to
5765
   hold the written set, so FLDM etc. are easy to deal with (we're only
5766
   interested in 32 SP registers or 16 dp registers, due to the VFP version
5767
   implemented by the chip in question).  DP registers are marked by setting
5768
   both SP registers in the write mask).  */
5769
 
5770
static enum bfd_arm_vfp11_pipe
5771
bfd_arm_vfp11_insn_decode (unsigned int insn, unsigned int *destmask, int *regs,
5772
                           int *numregs)
5773
{
5774
  enum bfd_arm_vfp11_pipe vpipe = VFP11_BAD;
5775
  bfd_boolean is_double = ((insn & 0xf00) == 0xb00) ? 1 : 0;
5776
 
5777
  if ((insn & 0x0f000e10) == 0x0e000a00)  /* A data-processing insn.  */
5778
    {
5779
      unsigned int pqrs;
5780
      unsigned int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
5781
      unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
5782
 
5783
      pqrs = ((insn & 0x00800000) >> 20)
5784
           | ((insn & 0x00300000) >> 19)
5785
           | ((insn & 0x00000040) >> 6);
5786
 
5787
      switch (pqrs)
5788
        {
5789
        case 0: /* fmac[sd].  */
5790
        case 1: /* fnmac[sd].  */
5791
        case 2: /* fmsc[sd].  */
5792
        case 3: /* fnmsc[sd].  */
5793
          vpipe = VFP11_FMAC;
5794
          bfd_arm_vfp11_write_mask (destmask, fd);
5795
          regs[0] = fd;
5796
          regs[1] = bfd_arm_vfp11_regno (insn, is_double, 16, 7);  /* Fn.  */
5797
          regs[2] = fm;
5798
          *numregs = 3;
5799
          break;
5800
 
5801
        case 4: /* fmul[sd].  */
5802
        case 5: /* fnmul[sd].  */
5803
        case 6: /* fadd[sd].  */
5804
        case 7: /* fsub[sd].  */
5805
          vpipe = VFP11_FMAC;
5806
          goto vfp_binop;
5807
 
5808
        case 8: /* fdiv[sd].  */
5809
          vpipe = VFP11_DS;
5810
          vfp_binop:
5811
          bfd_arm_vfp11_write_mask (destmask, fd);
5812
          regs[0] = bfd_arm_vfp11_regno (insn, is_double, 16, 7);   /* Fn.  */
5813
          regs[1] = fm;
5814
          *numregs = 2;
5815
          break;
5816
 
5817
        case 15: /* extended opcode.  */
5818
          {
5819
            unsigned int extn = ((insn >> 15) & 0x1e)
5820
                              | ((insn >> 7) & 1);
5821
 
5822
            switch (extn)
5823
              {
5824
              case 0: /* fcpy[sd].  */
5825
              case 1: /* fabs[sd].  */
5826
              case 2: /* fneg[sd].  */
5827
              case 8: /* fcmp[sd].  */
5828
              case 9: /* fcmpe[sd].  */
5829
              case 10: /* fcmpz[sd].  */
5830
              case 11: /* fcmpez[sd].  */
5831
              case 16: /* fuito[sd].  */
5832
              case 17: /* fsito[sd].  */
5833
              case 24: /* ftoui[sd].  */
5834
              case 25: /* ftouiz[sd].  */
5835
              case 26: /* ftosi[sd].  */
5836
              case 27: /* ftosiz[sd].  */
5837
                /* These instructions will not bounce due to underflow.  */
5838
                *numregs = 0;
5839
                vpipe = VFP11_FMAC;
5840
                break;
5841
 
5842
              case 3: /* fsqrt[sd].  */
5843
                /* fsqrt cannot underflow, but it can (perhaps) overwrite
5844
                   registers to cause the erratum in previous instructions.  */
5845
                bfd_arm_vfp11_write_mask (destmask, fd);
5846
                vpipe = VFP11_DS;
5847
                break;
5848
 
5849
              case 15: /* fcvt{ds,sd}.  */
5850
                {
5851
                  int rnum = 0;
5852
 
5853
                  bfd_arm_vfp11_write_mask (destmask, fd);
5854
 
5855
                  /* Only FCVTSD can underflow.  */
5856
                  if ((insn & 0x100) != 0)
5857
                    regs[rnum++] = fm;
5858
 
5859
                  *numregs = rnum;
5860
 
5861
                  vpipe = VFP11_FMAC;
5862
                }
5863
                break;
5864
 
5865
              default:
5866
                return VFP11_BAD;
5867
              }
5868
          }
5869
          break;
5870
 
5871
        default:
5872
          return VFP11_BAD;
5873
        }
5874
    }
5875
  /* Two-register transfer.  */
5876
  else if ((insn & 0x0fe00ed0) == 0x0c400a10)
5877
    {
5878
      unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
5879
 
5880
      if ((insn & 0x100000) == 0)
5881
        {
5882
          if (is_double)
5883
            bfd_arm_vfp11_write_mask (destmask, fm);
5884
          else
5885
            {
5886
              bfd_arm_vfp11_write_mask (destmask, fm);
5887
              bfd_arm_vfp11_write_mask (destmask, fm + 1);
5888
            }
5889
        }
5890
 
5891
      vpipe = VFP11_LS;
5892
    }
5893
  else if ((insn & 0x0e100e00) == 0x0c100a00)  /* A load insn.  */
5894
    {
5895
      int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
5896
      unsigned int puw = ((insn >> 21) & 0x1) | (((insn >> 23) & 3) << 1);
5897
 
5898
      switch (puw)
5899
        {
5900
        case 0: /* Two-reg transfer.  We should catch these above.  */
5901
          abort ();
5902
 
5903
        case 2: /* fldm[sdx].  */
5904
        case 3:
5905
        case 5:
5906
          {
5907
            unsigned int i, offset = insn & 0xff;
5908
 
5909
            if (is_double)
5910
              offset >>= 1;
5911
 
5912
            for (i = fd; i < fd + offset; i++)
5913
              bfd_arm_vfp11_write_mask (destmask, i);
5914
          }
5915
          break;
5916
 
5917
        case 4: /* fld[sd].  */
5918
        case 6:
5919
          bfd_arm_vfp11_write_mask (destmask, fd);
5920
          break;
5921
 
5922
        default:
5923
          return VFP11_BAD;
5924
        }
5925
 
5926
      vpipe = VFP11_LS;
5927
    }
5928
  /* Single-register transfer. Note L==0.  */
5929
  else if ((insn & 0x0f100e10) == 0x0e000a10)
5930
    {
5931
      unsigned int opcode = (insn >> 21) & 7;
5932
      unsigned int fn = bfd_arm_vfp11_regno (insn, is_double, 16, 7);
5933
 
5934
      switch (opcode)
5935
        {
5936
        case 0: /* fmsr/fmdlr.  */
5937
        case 1: /* fmdhr.  */
5938
          /* Mark fmdhr and fmdlr as writing to the whole of the DP
5939
             destination register.  I don't know if this is exactly right,
5940
             but it is the conservative choice.  */
5941
          bfd_arm_vfp11_write_mask (destmask, fn);
5942
          break;
5943
 
5944
        case 7: /* fmxr.  */
5945
          break;
5946
        }
5947
 
5948
      vpipe = VFP11_LS;
5949
    }
5950
 
5951
  return vpipe;
5952
}
5953
 
5954
 
5955
static int elf32_arm_compare_mapping (const void * a, const void * b);
5956
 
5957
 
5958
/* Look for potentially-troublesome code sequences which might trigger the
5959
   VFP11 denormal/antidependency erratum.  See, e.g., the ARM1136 errata sheet
5960
   (available from ARM) for details of the erratum.  A short version is
5961
   described in ld.texinfo.  */
5962
 
5963
bfd_boolean
5964
bfd_elf32_arm_vfp11_erratum_scan (bfd *abfd, struct bfd_link_info *link_info)
5965
{
5966
  asection *sec;
5967
  bfd_byte *contents = NULL;
5968
  int state = 0;
5969
  int regs[3], numregs = 0;
5970
  struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
5971
  int use_vector = (globals->vfp11_fix == BFD_ARM_VFP11_FIX_VECTOR);
5972
 
5973
  if (globals == NULL)
5974
    return FALSE;
5975
 
5976
  /* We use a simple FSM to match troublesome VFP11 instruction sequences.
5977
     The states transition as follows:
5978
 
5979
 
5980
           A VFP FMAC-pipeline instruction has been seen. Fill
5981
           regs[0]..regs[numregs-1] with its input operands. Remember this
5982
           instruction in 'first_fmac'.
5983
 
5984
       1 -> 2
5985
           Any instruction, except for a VFP instruction which overwrites
5986
           regs[*].
5987
 
5988
       1 -> 3 [ -> 0 ]  or
5989
       2 -> 3 [ -> 0 ]
5990
           A VFP instruction has been seen which overwrites any of regs[*].
5991
           We must make a veneer!  Reset state to 0 before examining next
5992
           instruction.
5993
 
5994
       2 -> 0
5995
           If we fail to match anything in state 2, reset to state 0 and reset
5996
           the instruction pointer to the instruction after 'first_fmac'.
5997
 
5998
     If the VFP11 vector mode is in use, there must be at least two unrelated
5999
     instructions between anti-dependent VFP11 instructions to properly avoid
6000
     triggering the erratum, hence the use of the extra state 1.  */
6001
 
6002
  /* If we are only performing a partial link do not bother
6003
     to construct any glue.  */
6004
  if (link_info->relocatable)
6005
    return TRUE;
6006
 
6007
  /* Skip if this bfd does not correspond to an ELF image.  */
6008
  if (! is_arm_elf (abfd))
6009
    return TRUE;
6010
 
6011
  /* We should have chosen a fix type by the time we get here.  */
6012
  BFD_ASSERT (globals->vfp11_fix != BFD_ARM_VFP11_FIX_DEFAULT);
6013
 
6014
  if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_NONE)
6015
    return TRUE;
6016
 
6017
  /* Skip this BFD if it corresponds to an executable or dynamic object.  */
6018
  if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
6019
    return TRUE;
6020
 
6021
  for (sec = abfd->sections; sec != NULL; sec = sec->next)
6022
    {
6023
      unsigned int i, span, first_fmac = 0, veneer_of_insn = 0;
6024
      struct _arm_elf_section_data *sec_data;
6025
 
6026
      /* If we don't have executable progbits, we're not interested in this
6027
         section.  Also skip if section is to be excluded.  */
6028
      if (elf_section_type (sec) != SHT_PROGBITS
6029
          || (elf_section_flags (sec) & SHF_EXECINSTR) == 0
6030
          || (sec->flags & SEC_EXCLUDE) != 0
6031
          || sec->sec_info_type == ELF_INFO_TYPE_JUST_SYMS
6032
          || sec->output_section == bfd_abs_section_ptr
6033
          || strcmp (sec->name, VFP11_ERRATUM_VENEER_SECTION_NAME) == 0)
6034
        continue;
6035
 
6036
      sec_data = elf32_arm_section_data (sec);
6037
 
6038
      if (sec_data->mapcount == 0)
6039
        continue;
6040
 
6041
      if (elf_section_data (sec)->this_hdr.contents != NULL)
6042
        contents = elf_section_data (sec)->this_hdr.contents;
6043
      else if (! bfd_malloc_and_get_section (abfd, sec, &contents))
6044
        goto error_return;
6045
 
6046
      qsort (sec_data->map, sec_data->mapcount, sizeof (elf32_arm_section_map),
6047
             elf32_arm_compare_mapping);
6048
 
6049
      for (span = 0; span < sec_data->mapcount; span++)
6050
        {
6051
          unsigned int span_start = sec_data->map[span].vma;
6052
          unsigned int span_end = (span == sec_data->mapcount - 1)
6053
                                  ? sec->size : sec_data->map[span + 1].vma;
6054
          char span_type = sec_data->map[span].type;
6055
 
6056
          /* FIXME: Only ARM mode is supported at present.  We may need to
6057
             support Thumb-2 mode also at some point.  */
6058
          if (span_type != 'a')
6059
            continue;
6060
 
6061
          for (i = span_start; i < span_end;)
6062
            {
6063
              unsigned int next_i = i + 4;
6064
              unsigned int insn = bfd_big_endian (abfd)
6065
                ? (contents[i] << 24)
6066
                  | (contents[i + 1] << 16)
6067
                  | (contents[i + 2] << 8)
6068
                  | contents[i + 3]
6069
                : (contents[i + 3] << 24)
6070
                  | (contents[i + 2] << 16)
6071
                  | (contents[i + 1] << 8)
6072
                  | contents[i];
6073
              unsigned int writemask = 0;
6074
              enum bfd_arm_vfp11_pipe vpipe;
6075
 
6076
              switch (state)
6077
                {
6078
                case 0:
6079
                  vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask, regs,
6080
                                                    &numregs);
6081
                  /* I'm assuming the VFP11 erratum can trigger with denorm
6082
                     operands on either the FMAC or the DS pipeline. This might
6083
                     lead to slightly overenthusiastic veneer insertion.  */
6084
                  if (vpipe == VFP11_FMAC || vpipe == VFP11_DS)
6085
                    {
6086
                      state = use_vector ? 1 : 2;
6087
                      first_fmac = i;
6088
                      veneer_of_insn = insn;
6089
                    }
6090
                  break;
6091
 
6092
                case 1:
6093
                  {
6094
                    int other_regs[3], other_numregs;
6095
                    vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
6096
                                                      other_regs,
6097
                                                      &other_numregs);
6098
                    if (vpipe != VFP11_BAD
6099
                        && bfd_arm_vfp11_antidependency (writemask, regs,
6100
                                                         numregs))
6101
                      state = 3;
6102
                    else
6103
                      state = 2;
6104
                  }
6105
                  break;
6106
 
6107
                case 2:
6108
                  {
6109
                    int other_regs[3], other_numregs;
6110
                    vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
6111
                                                      other_regs,
6112
                                                      &other_numregs);
6113
                    if (vpipe != VFP11_BAD
6114
                        && bfd_arm_vfp11_antidependency (writemask, regs,
6115
                                                         numregs))
6116
                      state = 3;
6117
                    else
6118
                      {
6119
                        state = 0;
6120
                        next_i = first_fmac + 4;
6121
                      }
6122
                  }
6123
                  break;
6124
 
6125
                case 3:
6126
                  abort ();  /* Should be unreachable.  */
6127
                }
6128
 
6129
              if (state == 3)
6130
                {
6131
                  elf32_vfp11_erratum_list *newerr =(elf32_vfp11_erratum_list *)
6132
                      bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
6133
 
6134
                  elf32_arm_section_data (sec)->erratumcount += 1;
6135
 
6136
                  newerr->u.b.vfp_insn = veneer_of_insn;
6137
 
6138
                  switch (span_type)
6139
                    {
6140
                    case 'a':
6141
                      newerr->type = VFP11_ERRATUM_BRANCH_TO_ARM_VENEER;
6142
                      break;
6143
 
6144
                    default:
6145
                      abort ();
6146
                    }
6147
 
6148
                  record_vfp11_erratum_veneer (link_info, newerr, abfd, sec,
6149
                                               first_fmac);
6150
 
6151
                  newerr->vma = -1;
6152
 
6153
                  newerr->next = sec_data->erratumlist;
6154
                  sec_data->erratumlist = newerr;
6155
 
6156
                  state = 0;
6157
                }
6158
 
6159
              i = next_i;
6160
            }
6161
        }
6162
 
6163
      if (contents != NULL
6164
          && elf_section_data (sec)->this_hdr.contents != contents)
6165
        free (contents);
6166
      contents = NULL;
6167
    }
6168
 
6169
  return TRUE;
6170
 
6171
error_return:
6172
  if (contents != NULL
6173
      && elf_section_data (sec)->this_hdr.contents != contents)
6174
    free (contents);
6175
 
6176
  return FALSE;
6177
}
6178
 
6179
/* Find virtual-memory addresses for VFP11 erratum veneers and return locations
6180
   after sections have been laid out, using specially-named symbols.  */
6181
 
6182
void
6183
bfd_elf32_arm_vfp11_fix_veneer_locations (bfd *abfd,
6184
                                          struct bfd_link_info *link_info)
6185
{
6186
  asection *sec;
6187
  struct elf32_arm_link_hash_table *globals;
6188
  char *tmp_name;
6189
 
6190
  if (link_info->relocatable)
6191
    return;
6192
 
6193
  /* Skip if this bfd does not correspond to an ELF image.  */
6194
  if (! is_arm_elf (abfd))
6195
    return;
6196
 
6197
  globals = elf32_arm_hash_table (link_info);
6198
  if (globals == NULL)
6199
    return;
6200
 
6201
  tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
6202
                                  (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
6203
 
6204
  for (sec = abfd->sections; sec != NULL; sec = sec->next)
6205
    {
6206
      struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
6207
      elf32_vfp11_erratum_list *errnode = sec_data->erratumlist;
6208
 
6209
      for (; errnode != NULL; errnode = errnode->next)
6210
        {
6211
          struct elf_link_hash_entry *myh;
6212
          bfd_vma vma;
6213
 
6214
          switch (errnode->type)
6215
            {
6216
            case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
6217
            case VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER:
6218
              /* Find veneer symbol.  */
6219
              sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
6220
                       errnode->u.b.veneer->u.v.id);
6221
 
6222
              myh = elf_link_hash_lookup
6223
                (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
6224
 
6225
              if (myh == NULL)
6226
                (*_bfd_error_handler) (_("%B: unable to find VFP11 veneer "
6227
                                         "`%s'"), abfd, tmp_name);
6228
 
6229
              vma = myh->root.u.def.section->output_section->vma
6230
                    + myh->root.u.def.section->output_offset
6231
                    + myh->root.u.def.value;
6232
 
6233
              errnode->u.b.veneer->vma = vma;
6234
              break;
6235
 
6236
            case VFP11_ERRATUM_ARM_VENEER:
6237
            case VFP11_ERRATUM_THUMB_VENEER:
6238
              /* Find return location.  */
6239
              sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
6240
                       errnode->u.v.id);
6241
 
6242
              myh = elf_link_hash_lookup
6243
                (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
6244
 
6245
              if (myh == NULL)
6246
                (*_bfd_error_handler) (_("%B: unable to find VFP11 veneer "
6247
                                         "`%s'"), abfd, tmp_name);
6248
 
6249
              vma = myh->root.u.def.section->output_section->vma
6250
                    + myh->root.u.def.section->output_offset
6251
                    + myh->root.u.def.value;
6252
 
6253
              errnode->u.v.branch->vma = vma;
6254
              break;
6255
 
6256
            default:
6257
              abort ();
6258
            }
6259
        }
6260
    }
6261
 
6262
  free (tmp_name);
6263
}
6264
 
6265
 
6266
/* Set target relocation values needed during linking.  */
6267
 
6268
void
6269
bfd_elf32_arm_set_target_relocs (struct bfd *output_bfd,
6270
                                 struct bfd_link_info *link_info,
6271
                                 int target1_is_rel,
6272
                                 char * target2_type,
6273
                                 int fix_v4bx,
6274
                                 int use_blx,
6275
                                 bfd_arm_vfp11_fix vfp11_fix,
6276
                                 int no_enum_warn, int no_wchar_warn,
6277
                                 int pic_veneer, int fix_cortex_a8)
6278
{
6279
  struct elf32_arm_link_hash_table *globals;
6280
 
6281
  globals = elf32_arm_hash_table (link_info);
6282
  if (globals == NULL)
6283
    return;
6284
 
6285
  globals->target1_is_rel = target1_is_rel;
6286
  if (strcmp (target2_type, "rel") == 0)
6287
    globals->target2_reloc = R_ARM_REL32;
6288
  else if (strcmp (target2_type, "abs") == 0)
6289
    globals->target2_reloc = R_ARM_ABS32;
6290
  else if (strcmp (target2_type, "got-rel") == 0)
6291
    globals->target2_reloc = R_ARM_GOT_PREL;
6292
  else
6293
    {
6294
      _bfd_error_handler (_("Invalid TARGET2 relocation type '%s'."),
6295
                          target2_type);
6296
    }
6297
  globals->fix_v4bx = fix_v4bx;
6298
  globals->use_blx |= use_blx;
6299
  globals->vfp11_fix = vfp11_fix;
6300
  globals->pic_veneer = pic_veneer;
6301
  globals->fix_cortex_a8 = fix_cortex_a8;
6302
 
6303
  BFD_ASSERT (is_arm_elf (output_bfd));
6304
  elf_arm_tdata (output_bfd)->no_enum_size_warning = no_enum_warn;
6305
  elf_arm_tdata (output_bfd)->no_wchar_size_warning = no_wchar_warn;
6306
}
6307
 
6308
/* Replace the target offset of a Thumb bl or b.w instruction.  */
6309
 
6310
static void
6311
insert_thumb_branch (bfd *abfd, long int offset, bfd_byte *insn)
6312
{
6313
  bfd_vma upper;
6314
  bfd_vma lower;
6315
  int reloc_sign;
6316
 
6317
  BFD_ASSERT ((offset & 1) == 0);
6318
 
6319
  upper = bfd_get_16 (abfd, insn);
6320
  lower = bfd_get_16 (abfd, insn + 2);
6321
  reloc_sign = (offset < 0) ? 1 : 0;
6322
  upper = (upper & ~(bfd_vma) 0x7ff)
6323
          | ((offset >> 12) & 0x3ff)
6324
          | (reloc_sign << 10);
6325
  lower = (lower & ~(bfd_vma) 0x2fff)
6326
          | (((!((offset >> 23) & 1)) ^ reloc_sign) << 13)
6327
          | (((!((offset >> 22) & 1)) ^ reloc_sign) << 11)
6328
          | ((offset >> 1) & 0x7ff);
6329
  bfd_put_16 (abfd, upper, insn);
6330
  bfd_put_16 (abfd, lower, insn + 2);
6331
}
6332
 
6333
/* Thumb code calling an ARM function.  */
6334
 
6335
static int
6336
elf32_thumb_to_arm_stub (struct bfd_link_info * info,
6337
                         const char *           name,
6338
                         bfd *                  input_bfd,
6339
                         bfd *                  output_bfd,
6340
                         asection *             input_section,
6341
                         bfd_byte *             hit_data,
6342
                         asection *             sym_sec,
6343
                         bfd_vma                offset,
6344
                         bfd_signed_vma         addend,
6345
                         bfd_vma                val,
6346
                         char **error_message)
6347
{
6348
  asection * s = 0;
6349
  bfd_vma my_offset;
6350
  long int ret_offset;
6351
  struct elf_link_hash_entry * myh;
6352
  struct elf32_arm_link_hash_table * globals;
6353
 
6354
  myh = find_thumb_glue (info, name, error_message);
6355
  if (myh == NULL)
6356
    return FALSE;
6357
 
6358
  globals = elf32_arm_hash_table (info);
6359
  BFD_ASSERT (globals != NULL);
6360
  BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
6361
 
6362
  my_offset = myh->root.u.def.value;
6363
 
6364
  s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
6365
                               THUMB2ARM_GLUE_SECTION_NAME);
6366
 
6367
  BFD_ASSERT (s != NULL);
6368
  BFD_ASSERT (s->contents != NULL);
6369
  BFD_ASSERT (s->output_section != NULL);
6370
 
6371
  if ((my_offset & 0x01) == 0x01)
6372
    {
6373
      if (sym_sec != NULL
6374
          && sym_sec->owner != NULL
6375
          && !INTERWORK_FLAG (sym_sec->owner))
6376
        {
6377
          (*_bfd_error_handler)
6378
            (_("%B(%s): warning: interworking not enabled.\n"
6379
               "  first occurrence: %B: thumb call to arm"),
6380
             sym_sec->owner, input_bfd, name);
6381
 
6382
          return FALSE;
6383
        }
6384
 
6385
      --my_offset;
6386
      myh->root.u.def.value = my_offset;
6387
 
6388
      put_thumb_insn (globals, output_bfd, (bfd_vma) t2a1_bx_pc_insn,
6389
                      s->contents + my_offset);
6390
 
6391
      put_thumb_insn (globals, output_bfd, (bfd_vma) t2a2_noop_insn,
6392
                      s->contents + my_offset + 2);
6393
 
6394
      ret_offset =
6395
        /* Address of destination of the stub.  */
6396
        ((bfd_signed_vma) val)
6397
        - ((bfd_signed_vma)
6398
           /* Offset from the start of the current section
6399
              to the start of the stubs.  */
6400
           (s->output_offset
6401
            /* Offset of the start of this stub from the start of the stubs.  */
6402
            + my_offset
6403
            /* Address of the start of the current section.  */
6404
            + s->output_section->vma)
6405
           /* The branch instruction is 4 bytes into the stub.  */
6406
           + 4
6407
           /* ARM branches work from the pc of the instruction + 8.  */
6408
           + 8);
6409
 
6410
      put_arm_insn (globals, output_bfd,
6411
                    (bfd_vma) t2a3_b_insn | ((ret_offset >> 2) & 0x00FFFFFF),
6412
                    s->contents + my_offset + 4);
6413
    }
6414
 
6415
  BFD_ASSERT (my_offset <= globals->thumb_glue_size);
6416
 
6417
  /* Now go back and fix up the original BL insn to point to here.  */
6418
  ret_offset =
6419
    /* Address of where the stub is located.  */
6420
    (s->output_section->vma + s->output_offset + my_offset)
6421
     /* Address of where the BL is located.  */
6422
    - (input_section->output_section->vma + input_section->output_offset
6423
       + offset)
6424
    /* Addend in the relocation.  */
6425
    - addend
6426
    /* Biassing for PC-relative addressing.  */
6427
    - 8;
6428
 
6429
  insert_thumb_branch (input_bfd, ret_offset, hit_data - input_section->vma);
6430
 
6431
  return TRUE;
6432
}
6433
 
6434
/* Populate an Arm to Thumb stub.  Returns the stub symbol.  */
6435
 
6436
static struct elf_link_hash_entry *
6437
elf32_arm_create_thumb_stub (struct bfd_link_info * info,
6438
                             const char *           name,
6439
                             bfd *                  input_bfd,
6440
                             bfd *                  output_bfd,
6441
                             asection *             sym_sec,
6442
                             bfd_vma                val,
6443
                             asection *             s,
6444
                             char **                error_message)
6445
{
6446
  bfd_vma my_offset;
6447
  long int ret_offset;
6448
  struct elf_link_hash_entry * myh;
6449
  struct elf32_arm_link_hash_table * globals;
6450
 
6451
  myh = find_arm_glue (info, name, error_message);
6452
  if (myh == NULL)
6453
    return NULL;
6454
 
6455
  globals = elf32_arm_hash_table (info);
6456
  BFD_ASSERT (globals != NULL);
6457
  BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
6458
 
6459
  my_offset = myh->root.u.def.value;
6460
 
6461
  if ((my_offset & 0x01) == 0x01)
6462
    {
6463
      if (sym_sec != NULL
6464
          && sym_sec->owner != NULL
6465
          && !INTERWORK_FLAG (sym_sec->owner))
6466
        {
6467
          (*_bfd_error_handler)
6468
            (_("%B(%s): warning: interworking not enabled.\n"
6469
               "  first occurrence: %B: arm call to thumb"),
6470
             sym_sec->owner, input_bfd, name);
6471
        }
6472
 
6473
      --my_offset;
6474
      myh->root.u.def.value = my_offset;
6475
 
6476
      if (info->shared || globals->root.is_relocatable_executable
6477
          || globals->pic_veneer)
6478
        {
6479
          /* For relocatable objects we can't use absolute addresses,
6480
             so construct the address from a relative offset.  */
6481
          /* TODO: If the offset is small it's probably worth
6482
             constructing the address with adds.  */
6483
          put_arm_insn (globals, output_bfd, (bfd_vma) a2t1p_ldr_insn,
6484
                        s->contents + my_offset);
6485
          put_arm_insn (globals, output_bfd, (bfd_vma) a2t2p_add_pc_insn,
6486
                        s->contents + my_offset + 4);
6487
          put_arm_insn (globals, output_bfd, (bfd_vma) a2t3p_bx_r12_insn,
6488
                        s->contents + my_offset + 8);
6489
          /* Adjust the offset by 4 for the position of the add,
6490
             and 8 for the pipeline offset.  */
6491
          ret_offset = (val - (s->output_offset
6492
                               + s->output_section->vma
6493
                               + my_offset + 12))
6494
                       | 1;
6495
          bfd_put_32 (output_bfd, ret_offset,
6496
                      s->contents + my_offset + 12);
6497
        }
6498
      else if (globals->use_blx)
6499
        {
6500
          put_arm_insn (globals, output_bfd, (bfd_vma) a2t1v5_ldr_insn,
6501
                        s->contents + my_offset);
6502
 
6503
          /* It's a thumb address.  Add the low order bit.  */
6504
          bfd_put_32 (output_bfd, val | a2t2v5_func_addr_insn,
6505
                      s->contents + my_offset + 4);
6506
        }
6507
      else
6508
        {
6509
          put_arm_insn (globals, output_bfd, (bfd_vma) a2t1_ldr_insn,
6510
                        s->contents + my_offset);
6511
 
6512
          put_arm_insn (globals, output_bfd, (bfd_vma) a2t2_bx_r12_insn,
6513
                        s->contents + my_offset + 4);
6514
 
6515
          /* It's a thumb address.  Add the low order bit.  */
6516
          bfd_put_32 (output_bfd, val | a2t3_func_addr_insn,
6517
                      s->contents + my_offset + 8);
6518
 
6519
          my_offset += 12;
6520
        }
6521
    }
6522
 
6523
  BFD_ASSERT (my_offset <= globals->arm_glue_size);
6524
 
6525
  return myh;
6526
}
6527
 
6528
/* Arm code calling a Thumb function.  */
6529
 
6530
static int
6531
elf32_arm_to_thumb_stub (struct bfd_link_info * info,
6532
                         const char *           name,
6533
                         bfd *                  input_bfd,
6534
                         bfd *                  output_bfd,
6535
                         asection *             input_section,
6536
                         bfd_byte *             hit_data,
6537
                         asection *             sym_sec,
6538
                         bfd_vma                offset,
6539
                         bfd_signed_vma         addend,
6540
                         bfd_vma                val,
6541
                         char **error_message)
6542
{
6543
  unsigned long int tmp;
6544
  bfd_vma my_offset;
6545
  asection * s;
6546
  long int ret_offset;
6547
  struct elf_link_hash_entry * myh;
6548
  struct elf32_arm_link_hash_table * globals;
6549
 
6550
  globals = elf32_arm_hash_table (info);
6551
  BFD_ASSERT (globals != NULL);
6552
  BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
6553
 
6554
  s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
6555
                               ARM2THUMB_GLUE_SECTION_NAME);
6556
  BFD_ASSERT (s != NULL);
6557
  BFD_ASSERT (s->contents != NULL);
6558
  BFD_ASSERT (s->output_section != NULL);
6559
 
6560
  myh = elf32_arm_create_thumb_stub (info, name, input_bfd, output_bfd,
6561
                                     sym_sec, val, s, error_message);
6562
  if (!myh)
6563
    return FALSE;
6564
 
6565
  my_offset = myh->root.u.def.value;
6566
  tmp = bfd_get_32 (input_bfd, hit_data);
6567
  tmp = tmp & 0xFF000000;
6568
 
6569
  /* Somehow these are both 4 too far, so subtract 8.  */
6570
  ret_offset = (s->output_offset
6571
                + my_offset
6572
                + s->output_section->vma
6573
                - (input_section->output_offset
6574
                   + input_section->output_section->vma
6575
                   + offset + addend)
6576
                - 8);
6577
 
6578
  tmp = tmp | ((ret_offset >> 2) & 0x00FFFFFF);
6579
 
6580
  bfd_put_32 (output_bfd, (bfd_vma) tmp, hit_data - input_section->vma);
6581
 
6582
  return TRUE;
6583
}
6584
 
6585
/* Populate Arm stub for an exported Thumb function.  */
6586
 
6587
static bfd_boolean
6588
elf32_arm_to_thumb_export_stub (struct elf_link_hash_entry *h, void * inf)
6589
{
6590
  struct bfd_link_info * info = (struct bfd_link_info *) inf;
6591
  asection * s;
6592
  struct elf_link_hash_entry * myh;
6593
  struct elf32_arm_link_hash_entry *eh;
6594
  struct elf32_arm_link_hash_table * globals;
6595
  asection *sec;
6596
  bfd_vma val;
6597
  char *error_message;
6598
 
6599
  eh = elf32_arm_hash_entry (h);
6600
  /* Allocate stubs for exported Thumb functions on v4t.  */
6601
  if (eh->export_glue == NULL)
6602
    return TRUE;
6603
 
6604
  globals = elf32_arm_hash_table (info);
6605
  BFD_ASSERT (globals != NULL);
6606
  BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
6607
 
6608
  s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
6609
                               ARM2THUMB_GLUE_SECTION_NAME);
6610
  BFD_ASSERT (s != NULL);
6611
  BFD_ASSERT (s->contents != NULL);
6612
  BFD_ASSERT (s->output_section != NULL);
6613
 
6614
  sec = eh->export_glue->root.u.def.section;
6615
 
6616
  BFD_ASSERT (sec->output_section != NULL);
6617
 
6618
  val = eh->export_glue->root.u.def.value + sec->output_offset
6619
        + sec->output_section->vma;
6620
 
6621
  myh = elf32_arm_create_thumb_stub (info, h->root.root.string,
6622
                                     h->root.u.def.section->owner,
6623
                                     globals->obfd, sec, val, s,
6624
                                     &error_message);
6625
  BFD_ASSERT (myh);
6626
  return TRUE;
6627
}
6628
 
6629
/* Populate ARMv4 BX veneers.  Returns the absolute adress of the veneer.  */
6630
 
6631
static bfd_vma
6632
elf32_arm_bx_glue (struct bfd_link_info * info, int reg)
6633
{
6634
  bfd_byte *p;
6635
  bfd_vma glue_addr;
6636
  asection *s;
6637
  struct elf32_arm_link_hash_table *globals;
6638
 
6639
  globals = elf32_arm_hash_table (info);
6640
  BFD_ASSERT (globals != NULL);
6641
  BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
6642
 
6643
  s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
6644
                               ARM_BX_GLUE_SECTION_NAME);
6645
  BFD_ASSERT (s != NULL);
6646
  BFD_ASSERT (s->contents != NULL);
6647
  BFD_ASSERT (s->output_section != NULL);
6648
 
6649
  BFD_ASSERT (globals->bx_glue_offset[reg] & 2);
6650
 
6651
  glue_addr = globals->bx_glue_offset[reg] & ~(bfd_vma)3;
6652
 
6653
  if ((globals->bx_glue_offset[reg] & 1) == 0)
6654
    {
6655
      p = s->contents + glue_addr;
6656
      bfd_put_32 (globals->obfd, armbx1_tst_insn + (reg << 16), p);
6657
      bfd_put_32 (globals->obfd, armbx2_moveq_insn + reg, p + 4);
6658
      bfd_put_32 (globals->obfd, armbx3_bx_insn + reg, p + 8);
6659
      globals->bx_glue_offset[reg] |= 1;
6660
    }
6661
 
6662
  return glue_addr + s->output_section->vma + s->output_offset;
6663
}
6664
 
6665
/* Generate Arm stubs for exported Thumb symbols.  */
6666
static void
6667
elf32_arm_begin_write_processing (bfd *abfd ATTRIBUTE_UNUSED,
6668
                                  struct bfd_link_info *link_info)
6669
{
6670
  struct elf32_arm_link_hash_table * globals;
6671
 
6672
  if (link_info == NULL)
6673
    /* Ignore this if we are not called by the ELF backend linker.  */
6674
    return;
6675
 
6676
  globals = elf32_arm_hash_table (link_info);
6677
  if (globals == NULL)
6678
    return;
6679
 
6680
  /* If blx is available then exported Thumb symbols are OK and there is
6681
     nothing to do.  */
6682
  if (globals->use_blx)
6683
    return;
6684
 
6685
  elf_link_hash_traverse (&globals->root, elf32_arm_to_thumb_export_stub,
6686
                          link_info);
6687
}
6688
 
6689
/* Some relocations map to different relocations depending on the
6690
   target.  Return the real relocation.  */
6691
 
6692
static int
6693
arm_real_reloc_type (struct elf32_arm_link_hash_table * globals,
6694
                     int r_type)
6695
{
6696
  switch (r_type)
6697
    {
6698
    case R_ARM_TARGET1:
6699
      if (globals->target1_is_rel)
6700
        return R_ARM_REL32;
6701
      else
6702
        return R_ARM_ABS32;
6703
 
6704
    case R_ARM_TARGET2:
6705
      return globals->target2_reloc;
6706
 
6707
    default:
6708
      return r_type;
6709
    }
6710
}
6711
 
6712
/* Return the base VMA address which should be subtracted from real addresses
6713
   when resolving @dtpoff relocation.
6714
   This is PT_TLS segment p_vaddr.  */
6715
 
6716
static bfd_vma
6717
dtpoff_base (struct bfd_link_info *info)
6718
{
6719
  /* If tls_sec is NULL, we should have signalled an error already.  */
6720
  if (elf_hash_table (info)->tls_sec == NULL)
6721
    return 0;
6722
  return elf_hash_table (info)->tls_sec->vma;
6723
}
6724
 
6725
/* Return the relocation value for @tpoff relocation
6726
   if STT_TLS virtual address is ADDRESS.  */
6727
 
6728
static bfd_vma
6729
tpoff (struct bfd_link_info *info, bfd_vma address)
6730
{
6731
  struct elf_link_hash_table *htab = elf_hash_table (info);
6732
  bfd_vma base;
6733
 
6734
  /* If tls_sec is NULL, we should have signalled an error already.  */
6735
  if (htab->tls_sec == NULL)
6736
    return 0;
6737
  base = align_power ((bfd_vma) TCB_SIZE, htab->tls_sec->alignment_power);
6738
  return address - htab->tls_sec->vma + base;
6739
}
6740
 
6741
/* Perform an R_ARM_ABS12 relocation on the field pointed to by DATA.
6742
   VALUE is the relocation value.  */
6743
 
6744
static bfd_reloc_status_type
6745
elf32_arm_abs12_reloc (bfd *abfd, void *data, bfd_vma value)
6746
{
6747
  if (value > 0xfff)
6748
    return bfd_reloc_overflow;
6749
 
6750
  value |= bfd_get_32 (abfd, data) & 0xfffff000;
6751
  bfd_put_32 (abfd, value, data);
6752
  return bfd_reloc_ok;
6753
}
6754
 
6755
/* For a given value of n, calculate the value of G_n as required to
6756
   deal with group relocations.  We return it in the form of an
6757
   encoded constant-and-rotation, together with the final residual.  If n is
6758
   specified as less than zero, then final_residual is filled with the
6759
   input value and no further action is performed.  */
6760
 
6761
static bfd_vma
6762
calculate_group_reloc_mask (bfd_vma value, int n, bfd_vma *final_residual)
6763
{
6764
  int current_n;
6765
  bfd_vma g_n;
6766
  bfd_vma encoded_g_n = 0;
6767
  bfd_vma residual = value; /* Also known as Y_n.  */
6768
 
6769
  for (current_n = 0; current_n <= n; current_n++)
6770
    {
6771
      int shift;
6772
 
6773
      /* Calculate which part of the value to mask.  */
6774
      if (residual == 0)
6775
        shift = 0;
6776
      else
6777
        {
6778
          int msb;
6779
 
6780
          /* Determine the most significant bit in the residual and
6781
             align the resulting value to a 2-bit boundary.  */
6782
          for (msb = 30; msb >= 0; msb -= 2)
6783
            if (residual & (3 << msb))
6784
              break;
6785
 
6786
          /* The desired shift is now (msb - 6), or zero, whichever
6787
             is the greater.  */
6788
          shift = msb - 6;
6789
          if (shift < 0)
6790
            shift = 0;
6791
        }
6792
 
6793
      /* Calculate g_n in 32-bit as well as encoded constant+rotation form.  */
6794
      g_n = residual & (0xff << shift);
6795
      encoded_g_n = (g_n >> shift)
6796
                    | ((g_n <= 0xff ? 0 : (32 - shift) / 2) << 8);
6797
 
6798
      /* Calculate the residual for the next time around.  */
6799
      residual &= ~g_n;
6800
    }
6801
 
6802
  *final_residual = residual;
6803
 
6804
  return encoded_g_n;
6805
}
6806
 
6807
/* Given an ARM instruction, determine whether it is an ADD or a SUB.
6808
   Returns 1 if it is an ADD, -1 if it is a SUB, and 0 otherwise.  */
6809
 
6810
static int
6811
identify_add_or_sub (bfd_vma insn)
6812
{
6813
  int opcode = insn & 0x1e00000;
6814
 
6815
  if (opcode == 1 << 23) /* ADD */
6816
    return 1;
6817
 
6818
  if (opcode == 1 << 22) /* SUB */
6819
    return -1;
6820
 
6821
  return 0;
6822
}
6823
 
6824
/* Perform a relocation as part of a final link.  */
6825
 
6826
static bfd_reloc_status_type
6827
elf32_arm_final_link_relocate (reloc_howto_type *           howto,
6828
                               bfd *                        input_bfd,
6829
                               bfd *                        output_bfd,
6830
                               asection *                   input_section,
6831
                               bfd_byte *                   contents,
6832
                               Elf_Internal_Rela *          rel,
6833
                               bfd_vma                      value,
6834
                               struct bfd_link_info *       info,
6835
                               asection *                   sym_sec,
6836
                               const char *                 sym_name,
6837
                               int                          sym_flags,
6838
                               struct elf_link_hash_entry * h,
6839
                               bfd_boolean *                unresolved_reloc_p,
6840
                               char **                      error_message)
6841
{
6842
  unsigned long                 r_type = howto->type;
6843
  unsigned long                 r_symndx;
6844
  bfd_byte *                    hit_data = contents + rel->r_offset;
6845
  bfd *                         dynobj = NULL;
6846
  bfd_vma *                     local_got_offsets;
6847
  asection *                    sgot = NULL;
6848
  asection *                    splt = NULL;
6849
  asection *                    sreloc = NULL;
6850
  bfd_vma                       addend;
6851
  bfd_signed_vma                signed_addend;
6852
  struct elf32_arm_link_hash_table * globals;
6853
 
6854
  globals = elf32_arm_hash_table (info);
6855
  if (globals == NULL)
6856
    return bfd_reloc_notsupported;
6857
 
6858
  BFD_ASSERT (is_arm_elf (input_bfd));
6859
 
6860
  /* Some relocation types map to different relocations depending on the
6861
     target.  We pick the right one here.  */
6862
  r_type = arm_real_reloc_type (globals, r_type);
6863
  if (r_type != howto->type)
6864
    howto = elf32_arm_howto_from_type (r_type);
6865
 
6866
  /* If the start address has been set, then set the EF_ARM_HASENTRY
6867
     flag.  Setting this more than once is redundant, but the cost is
6868
     not too high, and it keeps the code simple.
6869
 
6870
     The test is done  here, rather than somewhere else, because the
6871
     start address is only set just before the final link commences.
6872
 
6873
     Note - if the user deliberately sets a start address of 0, the
6874
     flag will not be set.  */
6875
  if (bfd_get_start_address (output_bfd) != 0)
6876
    elf_elfheader (output_bfd)->e_flags |= EF_ARM_HASENTRY;
6877
 
6878
  dynobj = elf_hash_table (info)->dynobj;
6879
  if (dynobj)
6880
    {
6881
      sgot = bfd_get_section_by_name (dynobj, ".got");
6882
      splt = bfd_get_section_by_name (dynobj, ".plt");
6883
    }
6884
  local_got_offsets = elf_local_got_offsets (input_bfd);
6885
  r_symndx = ELF32_R_SYM (rel->r_info);
6886
 
6887
  if (globals->use_rel)
6888
    {
6889
      addend = bfd_get_32 (input_bfd, hit_data) & howto->src_mask;
6890
 
6891
      if (addend & ((howto->src_mask + 1) >> 1))
6892
        {
6893
          signed_addend = -1;
6894
          signed_addend &= ~ howto->src_mask;
6895
          signed_addend |= addend;
6896
        }
6897
      else
6898
        signed_addend = addend;
6899
    }
6900
  else
6901
    addend = signed_addend = rel->r_addend;
6902
 
6903
  switch (r_type)
6904
    {
6905
    case R_ARM_NONE:
6906
      /* We don't need to find a value for this symbol.  It's just a
6907
         marker.  */
6908
      *unresolved_reloc_p = FALSE;
6909
      return bfd_reloc_ok;
6910
 
6911
    case R_ARM_ABS12:
6912
      if (!globals->vxworks_p)
6913
        return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
6914
 
6915
    case R_ARM_PC24:
6916
    case R_ARM_ABS32:
6917
    case R_ARM_ABS32_NOI:
6918
    case R_ARM_REL32:
6919
    case R_ARM_REL32_NOI:
6920
    case R_ARM_CALL:
6921
    case R_ARM_JUMP24:
6922
    case R_ARM_XPC25:
6923
    case R_ARM_PREL31:
6924
    case R_ARM_PLT32:
6925
      /* Handle relocations which should use the PLT entry.  ABS32/REL32
6926
         will use the symbol's value, which may point to a PLT entry, but we
6927
         don't need to handle that here.  If we created a PLT entry, all
6928
         branches in this object should go to it, except if the PLT is too
6929
         far away, in which case a long branch stub should be inserted.  */
6930
      if ((r_type != R_ARM_ABS32 && r_type != R_ARM_REL32
6931
           && r_type != R_ARM_ABS32_NOI && r_type != R_ARM_REL32_NOI
6932
           && r_type != R_ARM_CALL
6933
           && r_type != R_ARM_JUMP24
6934
           && r_type != R_ARM_PLT32)
6935
          && h != NULL
6936
          && splt != NULL
6937
          && h->plt.offset != (bfd_vma) -1)
6938
        {
6939
          /* If we've created a .plt section, and assigned a PLT entry to
6940
             this function, it should not be known to bind locally.  If
6941
             it were, we would have cleared the PLT entry.  */
6942
          BFD_ASSERT (!SYMBOL_CALLS_LOCAL (info, h));
6943
 
6944
          value = (splt->output_section->vma
6945
                   + splt->output_offset
6946
                   + h->plt.offset);
6947
          *unresolved_reloc_p = FALSE;
6948
          return _bfd_final_link_relocate (howto, input_bfd, input_section,
6949
                                           contents, rel->r_offset, value,
6950
                                           rel->r_addend);
6951
        }
6952
 
6953
      /* When generating a shared object or relocatable executable, these
6954
         relocations are copied into the output file to be resolved at
6955
         run time.  */
6956
      if ((info->shared || globals->root.is_relocatable_executable)
6957
          && (input_section->flags & SEC_ALLOC)
6958
          && !(globals->vxworks_p
6959
               && strcmp (input_section->output_section->name,
6960
                          ".tls_vars") == 0)
6961
          && ((r_type != R_ARM_REL32 && r_type != R_ARM_REL32_NOI)
6962
              || !SYMBOL_CALLS_LOCAL (info, h))
6963
          && (!strstr (input_section->name, STUB_SUFFIX))
6964
          && (h == NULL
6965
              || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
6966
              || h->root.type != bfd_link_hash_undefweak)
6967
          && r_type != R_ARM_PC24
6968
          && r_type != R_ARM_CALL
6969
          && r_type != R_ARM_JUMP24
6970
          && r_type != R_ARM_PREL31
6971
          && r_type != R_ARM_PLT32)
6972
        {
6973
          Elf_Internal_Rela outrel;
6974
          bfd_byte *loc;
6975
          bfd_boolean skip, relocate;
6976
 
6977
          *unresolved_reloc_p = FALSE;
6978
 
6979
          if (sreloc == NULL)
6980
            {
6981
              sreloc = _bfd_elf_get_dynamic_reloc_section (input_bfd, input_section,
6982
                                                           ! globals->use_rel);
6983
 
6984
              if (sreloc == NULL)
6985
                return bfd_reloc_notsupported;
6986
            }
6987
 
6988
          skip = FALSE;
6989
          relocate = FALSE;
6990
 
6991
          outrel.r_addend = addend;
6992
          outrel.r_offset =
6993
            _bfd_elf_section_offset (output_bfd, info, input_section,
6994
                                     rel->r_offset);
6995
          if (outrel.r_offset == (bfd_vma) -1)
6996
            skip = TRUE;
6997
          else if (outrel.r_offset == (bfd_vma) -2)
6998
            skip = TRUE, relocate = TRUE;
6999
          outrel.r_offset += (input_section->output_section->vma
7000
                              + input_section->output_offset);
7001
 
7002
          if (skip)
7003
            memset (&outrel, 0, sizeof outrel);
7004
          else if (h != NULL
7005
                   && h->dynindx != -1
7006
                   && (!info->shared
7007
                       || !info->symbolic
7008
                       || !h->def_regular))
7009
            outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
7010
          else
7011
            {
7012
              int symbol;
7013
 
7014
              /* This symbol is local, or marked to become local.  */
7015
              if (sym_flags == STT_ARM_TFUNC)
7016
                value |= 1;
7017
              if (globals->symbian_p)
7018
                {
7019
                  asection *osec;
7020
 
7021
                  /* On Symbian OS, the data segment and text segement
7022
                     can be relocated independently.  Therefore, we
7023
                     must indicate the segment to which this
7024
                     relocation is relative.  The BPABI allows us to
7025
                     use any symbol in the right segment; we just use
7026
                     the section symbol as it is convenient.  (We
7027
                     cannot use the symbol given by "h" directly as it
7028
                     will not appear in the dynamic symbol table.)
7029
 
7030
                     Note that the dynamic linker ignores the section
7031
                     symbol value, so we don't subtract osec->vma
7032
                     from the emitted reloc addend.  */
7033
                  if (sym_sec)
7034
                    osec = sym_sec->output_section;
7035
                  else
7036
                    osec = input_section->output_section;
7037
                  symbol = elf_section_data (osec)->dynindx;
7038
                  if (symbol == 0)
7039
                    {
7040
                      struct elf_link_hash_table *htab = elf_hash_table (info);
7041
 
7042
                      if ((osec->flags & SEC_READONLY) == 0
7043
                          && htab->data_index_section != NULL)
7044
                        osec = htab->data_index_section;
7045
                      else
7046
                        osec = htab->text_index_section;
7047
                      symbol = elf_section_data (osec)->dynindx;
7048
                    }
7049
                  BFD_ASSERT (symbol != 0);
7050
                }
7051
              else
7052
                /* On SVR4-ish systems, the dynamic loader cannot
7053
                   relocate the text and data segments independently,
7054
                   so the symbol does not matter.  */
7055
                symbol = 0;
7056
              outrel.r_info = ELF32_R_INFO (symbol, R_ARM_RELATIVE);
7057
              if (globals->use_rel)
7058
                relocate = TRUE;
7059
              else
7060
                outrel.r_addend += value;
7061
            }
7062
 
7063
          loc = sreloc->contents;
7064
          loc += sreloc->reloc_count++ * RELOC_SIZE (globals);
7065
          SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
7066
 
7067
          /* If this reloc is against an external symbol, we do not want to
7068
             fiddle with the addend.  Otherwise, we need to include the symbol
7069
             value so that it becomes an addend for the dynamic reloc.  */
7070
          if (! relocate)
7071
            return bfd_reloc_ok;
7072
 
7073
          return _bfd_final_link_relocate (howto, input_bfd, input_section,
7074
                                           contents, rel->r_offset, value,
7075
                                           (bfd_vma) 0);
7076
        }
7077
      else switch (r_type)
7078
        {
7079
        case R_ARM_ABS12:
7080
          return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
7081
 
7082
        case R_ARM_XPC25:         /* Arm BLX instruction.  */
7083
        case R_ARM_CALL:
7084
        case R_ARM_JUMP24:
7085
        case R_ARM_PC24:          /* Arm B/BL instruction.  */
7086
        case R_ARM_PLT32:
7087
          {
7088
          struct elf32_arm_stub_hash_entry *stub_entry = NULL;
7089
 
7090
          if (r_type == R_ARM_XPC25)
7091
            {
7092
              /* Check for Arm calling Arm function.  */
7093
              /* FIXME: Should we translate the instruction into a BL
7094
                 instruction instead ?  */
7095
              if (sym_flags != STT_ARM_TFUNC)
7096
                (*_bfd_error_handler)
7097
                  (_("\%B: Warning: Arm BLX instruction targets Arm function '%s'."),
7098
                   input_bfd,
7099
                   h ? h->root.root.string : "(local)");
7100
            }
7101
          else if (r_type == R_ARM_PC24)
7102
            {
7103
              /* Check for Arm calling Thumb function.  */
7104
              if (sym_flags == STT_ARM_TFUNC)
7105
                {
7106
                  if (elf32_arm_to_thumb_stub (info, sym_name, input_bfd,
7107
                                               output_bfd, input_section,
7108
                                               hit_data, sym_sec, rel->r_offset,
7109
                                               signed_addend, value,
7110
                                               error_message))
7111
                    return bfd_reloc_ok;
7112
                  else
7113
                    return bfd_reloc_dangerous;
7114
                }
7115
            }
7116
 
7117
          /* Check if a stub has to be inserted because the
7118
             destination is too far or we are changing mode.  */
7119
          if (   r_type == R_ARM_CALL
7120
              || r_type == R_ARM_JUMP24
7121
              || r_type == R_ARM_PLT32)
7122
            {
7123
              enum elf32_arm_stub_type stub_type = arm_stub_none;
7124
              struct elf32_arm_link_hash_entry *hash;
7125
 
7126
              hash = (struct elf32_arm_link_hash_entry *) h;
7127
              stub_type = arm_type_of_stub (info, input_section, rel,
7128
                                            &sym_flags, hash,
7129
                                            value, sym_sec,
7130
                                            input_bfd, sym_name);
7131
 
7132
              if (stub_type != arm_stub_none)
7133
                {
7134
                  /* The target is out of reach, so redirect the
7135
                     branch to the local stub for this function.  */
7136
 
7137
                  stub_entry = elf32_arm_get_stub_entry (input_section,
7138
                                                         sym_sec, h,
7139
                                                         rel, globals,
7140
                                                         stub_type);
7141
                  if (stub_entry != NULL)
7142
                    value = (stub_entry->stub_offset
7143
                             + stub_entry->stub_sec->output_offset
7144
                             + stub_entry->stub_sec->output_section->vma);
7145
                }
7146
              else
7147
                {
7148
                  /* If the call goes through a PLT entry, make sure to
7149
                     check distance to the right destination address.  */
7150
                  if (h != NULL
7151
                      && splt != NULL
7152
                      && h->plt.offset != (bfd_vma) -1)
7153
                    {
7154
                      value = (splt->output_section->vma
7155
                               + splt->output_offset
7156
                               + h->plt.offset);
7157
                      *unresolved_reloc_p = FALSE;
7158
                      /* The PLT entry is in ARM mode, regardless of the
7159
                         target function.  */
7160
                      sym_flags = STT_FUNC;
7161
                    }
7162
                }
7163
            }
7164
 
7165
          /* The ARM ELF ABI says that this reloc is computed as: S - P + A
7166
             where:
7167
              S is the address of the symbol in the relocation.
7168
              P is address of the instruction being relocated.
7169
              A is the addend (extracted from the instruction) in bytes.
7170
 
7171
             S is held in 'value'.
7172
             P is the base address of the section containing the
7173
               instruction plus the offset of the reloc into that
7174
               section, ie:
7175
                 (input_section->output_section->vma +
7176
                  input_section->output_offset +
7177
                  rel->r_offset).
7178
             A is the addend, converted into bytes, ie:
7179
                 (signed_addend * 4)
7180
 
7181
             Note: None of these operations have knowledge of the pipeline
7182
             size of the processor, thus it is up to the assembler to
7183
             encode this information into the addend.  */
7184
          value -= (input_section->output_section->vma
7185
                    + input_section->output_offset);
7186
          value -= rel->r_offset;
7187
          if (globals->use_rel)
7188
            value += (signed_addend << howto->size);
7189
          else
7190
            /* RELA addends do not have to be adjusted by howto->size.  */
7191
            value += signed_addend;
7192
 
7193
          signed_addend = value;
7194
          signed_addend >>= howto->rightshift;
7195
 
7196
          /* A branch to an undefined weak symbol is turned into a jump to
7197
             the next instruction unless a PLT entry will be created.
7198
             Do the same for local undefined symbols.
7199
             The jump to the next instruction is optimized as a NOP depending
7200
             on the architecture.  */
7201
          if (h ? (h->root.type == bfd_link_hash_undefweak
7202
                   && !(splt != NULL && h->plt.offset != (bfd_vma) -1))
7203
              : bfd_is_und_section (sym_sec))
7204
            {
7205
              value = (bfd_get_32 (input_bfd, hit_data) & 0xf0000000);
7206
 
7207
              if (arch_has_arm_nop (globals))
7208
                value |= 0x0320f000;
7209
              else
7210
                value |= 0x01a00000; /* Using pre-UAL nop: mov r0, r0.  */
7211
            }
7212
          else
7213
            {
7214
              /* Perform a signed range check.  */
7215
              if (   signed_addend >   ((bfd_signed_vma)  (howto->dst_mask >> 1))
7216
                  || signed_addend < - ((bfd_signed_vma) ((howto->dst_mask + 1) >> 1)))
7217
                return bfd_reloc_overflow;
7218
 
7219
              addend = (value & 2);
7220
 
7221
              value = (signed_addend & howto->dst_mask)
7222
                | (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask));
7223
 
7224
              if (r_type == R_ARM_CALL)
7225
                {
7226
                  /* Set the H bit in the BLX instruction.  */
7227
                  if (sym_flags == STT_ARM_TFUNC)
7228
                    {
7229
                      if (addend)
7230
                        value |= (1 << 24);
7231
                      else
7232
                        value &= ~(bfd_vma)(1 << 24);
7233
                    }
7234
 
7235
                  /* Select the correct instruction (BL or BLX).  */
7236
                  /* Only if we are not handling a BL to a stub. In this
7237
                     case, mode switching is performed by the stub.  */
7238
                  if (sym_flags == STT_ARM_TFUNC && !stub_entry)
7239
                    value |= (1 << 28);
7240
                  else
7241
                    {
7242
                      value &= ~(bfd_vma)(1 << 28);
7243
                      value |= (1 << 24);
7244
                    }
7245
                }
7246
            }
7247
          }
7248
          break;
7249
 
7250
        case R_ARM_ABS32:
7251
          value += addend;
7252
          if (sym_flags == STT_ARM_TFUNC)
7253
            value |= 1;
7254
          break;
7255
 
7256
        case R_ARM_ABS32_NOI:
7257
          value += addend;
7258
          break;
7259
 
7260
        case R_ARM_REL32:
7261
          value += addend;
7262
          if (sym_flags == STT_ARM_TFUNC)
7263
            value |= 1;
7264
          value -= (input_section->output_section->vma
7265
                    + input_section->output_offset + rel->r_offset);
7266
          break;
7267
 
7268
        case R_ARM_REL32_NOI:
7269
          value += addend;
7270
          value -= (input_section->output_section->vma
7271
                    + input_section->output_offset + rel->r_offset);
7272
          break;
7273
 
7274
        case R_ARM_PREL31:
7275
          value -= (input_section->output_section->vma
7276
                    + input_section->output_offset + rel->r_offset);
7277
          value += signed_addend;
7278
          if (! h || h->root.type != bfd_link_hash_undefweak)
7279
            {
7280
              /* Check for overflow.  */
7281
              if ((value ^ (value >> 1)) & (1 << 30))
7282
                return bfd_reloc_overflow;
7283
            }
7284
          value &= 0x7fffffff;
7285
          value |= (bfd_get_32 (input_bfd, hit_data) & 0x80000000);
7286
          if (sym_flags == STT_ARM_TFUNC)
7287
            value |= 1;
7288
          break;
7289
        }
7290
 
7291
      bfd_put_32 (input_bfd, value, hit_data);
7292
      return bfd_reloc_ok;
7293
 
7294
    case R_ARM_ABS8:
7295
      value += addend;
7296
 
7297
      /* There is no way to tell whether the user intended to use a signed or
7298
         unsigned addend.  When checking for overflow we accept either,
7299
         as specified by the AAELF.  */
7300
      if ((long) value > 0xff || (long) value < -0x80)
7301
        return bfd_reloc_overflow;
7302
 
7303
      bfd_put_8 (input_bfd, value, hit_data);
7304
      return bfd_reloc_ok;
7305
 
7306
    case R_ARM_ABS16:
7307
      value += addend;
7308
 
7309
      /* See comment for R_ARM_ABS8.  */
7310
      if ((long) value > 0xffff || (long) value < -0x8000)
7311
        return bfd_reloc_overflow;
7312
 
7313
      bfd_put_16 (input_bfd, value, hit_data);
7314
      return bfd_reloc_ok;
7315
 
7316
    case R_ARM_THM_ABS5:
7317
      /* Support ldr and str instructions for the thumb.  */
7318
      if (globals->use_rel)
7319
        {
7320
          /* Need to refetch addend.  */
7321
          addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
7322
          /* ??? Need to determine shift amount from operand size.  */
7323
          addend >>= howto->rightshift;
7324
        }
7325
      value += addend;
7326
 
7327
      /* ??? Isn't value unsigned?  */
7328
      if ((long) value > 0x1f || (long) value < -0x10)
7329
        return bfd_reloc_overflow;
7330
 
7331
      /* ??? Value needs to be properly shifted into place first.  */
7332
      value |= bfd_get_16 (input_bfd, hit_data) & 0xf83f;
7333
      bfd_put_16 (input_bfd, value, hit_data);
7334
      return bfd_reloc_ok;
7335
 
7336
    case R_ARM_THM_ALU_PREL_11_0:
7337
      /* Corresponds to: addw.w reg, pc, #offset (and similarly for subw).  */
7338
      {
7339
        bfd_vma insn;
7340
        bfd_signed_vma relocation;
7341
 
7342
        insn = (bfd_get_16 (input_bfd, hit_data) << 16)
7343
             | bfd_get_16 (input_bfd, hit_data + 2);
7344
 
7345
        if (globals->use_rel)
7346
          {
7347
            signed_addend = (insn & 0xff) | ((insn & 0x7000) >> 4)
7348
                          | ((insn & (1 << 26)) >> 15);
7349
            if (insn & 0xf00000)
7350
              signed_addend = -signed_addend;
7351
          }
7352
 
7353
        relocation = value + signed_addend;
7354
        relocation -= (input_section->output_section->vma
7355
                       + input_section->output_offset
7356
                       + rel->r_offset);
7357
 
7358
        value = abs (relocation);
7359
 
7360
        if (value >= 0x1000)
7361
          return bfd_reloc_overflow;
7362
 
7363
        insn = (insn & 0xfb0f8f00) | (value & 0xff)
7364
             | ((value & 0x700) << 4)
7365
             | ((value & 0x800) << 15);
7366
        if (relocation < 0)
7367
          insn |= 0xa00000;
7368
 
7369
        bfd_put_16 (input_bfd, insn >> 16, hit_data);
7370
        bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
7371
 
7372
        return bfd_reloc_ok;
7373
      }
7374
 
7375
    case R_ARM_THM_PC8:
7376
      /* PR 10073:  This reloc is not generated by the GNU toolchain,
7377
         but it is supported for compatibility with third party libraries
7378
         generated by other compilers, specifically the ARM/IAR.  */
7379
      {
7380
        bfd_vma insn;
7381
        bfd_signed_vma relocation;
7382
 
7383
        insn = bfd_get_16 (input_bfd, hit_data);
7384
 
7385
        if (globals->use_rel)
7386
          addend = (insn & 0x00ff) << 2;
7387
 
7388
        relocation = value + addend;
7389
        relocation -= (input_section->output_section->vma
7390
                       + input_section->output_offset
7391
                       + rel->r_offset);
7392
 
7393
        value = abs (relocation);
7394
 
7395
        /* We do not check for overflow of this reloc.  Although strictly
7396
           speaking this is incorrect, it appears to be necessary in order
7397
           to work with IAR generated relocs.  Since GCC and GAS do not
7398
           generate R_ARM_THM_PC8 relocs, the lack of a check should not be
7399
           a problem for them.  */
7400
        value &= 0x3fc;
7401
 
7402
        insn = (insn & 0xff00) | (value >> 2);
7403
 
7404
        bfd_put_16 (input_bfd, insn, hit_data);
7405
 
7406
        return bfd_reloc_ok;
7407
      }
7408
 
7409
    case R_ARM_THM_PC12:
7410
      /* Corresponds to: ldr.w reg, [pc, #offset].  */
7411
      {
7412
        bfd_vma insn;
7413
        bfd_signed_vma relocation;
7414
 
7415
        insn = (bfd_get_16 (input_bfd, hit_data) << 16)
7416
             | bfd_get_16 (input_bfd, hit_data + 2);
7417
 
7418
        if (globals->use_rel)
7419
          {
7420
            signed_addend = insn & 0xfff;
7421
            if (!(insn & (1 << 23)))
7422
              signed_addend = -signed_addend;
7423
          }
7424
 
7425
        relocation = value + signed_addend;
7426
        relocation -= (input_section->output_section->vma
7427
                       + input_section->output_offset
7428
                       + rel->r_offset);
7429
 
7430
        value = abs (relocation);
7431
 
7432
        if (value >= 0x1000)
7433
          return bfd_reloc_overflow;
7434
 
7435
        insn = (insn & 0xff7ff000) | value;
7436
        if (relocation >= 0)
7437
          insn |= (1 << 23);
7438
 
7439
        bfd_put_16 (input_bfd, insn >> 16, hit_data);
7440
        bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
7441
 
7442
        return bfd_reloc_ok;
7443
      }
7444
 
7445
    case R_ARM_THM_XPC22:
7446
    case R_ARM_THM_CALL:
7447
    case R_ARM_THM_JUMP24:
7448
      /* Thumb BL (branch long instruction).  */
7449
      {
7450
        bfd_vma relocation;
7451
        bfd_vma reloc_sign;
7452
        bfd_boolean overflow = FALSE;
7453
        bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
7454
        bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
7455
        bfd_signed_vma reloc_signed_max;
7456
        bfd_signed_vma reloc_signed_min;
7457
        bfd_vma check;
7458
        bfd_signed_vma signed_check;
7459
        int bitsize;
7460
        const int thumb2 = using_thumb2 (globals);
7461
 
7462
        /* A branch to an undefined weak symbol is turned into a jump to
7463
           the next instruction unless a PLT entry will be created.
7464
           The jump to the next instruction is optimized as a NOP.W for
7465
           Thumb-2 enabled architectures.  */
7466
        if (h && h->root.type == bfd_link_hash_undefweak
7467
            && !(splt != NULL && h->plt.offset != (bfd_vma) -1))
7468
          {
7469
            if (arch_has_thumb2_nop (globals))
7470
              {
7471
                bfd_put_16 (input_bfd, 0xf3af, hit_data);
7472
                bfd_put_16 (input_bfd, 0x8000, hit_data + 2);
7473
              }
7474
            else
7475
              {
7476
                bfd_put_16 (input_bfd, 0xe000, hit_data);
7477
                bfd_put_16 (input_bfd, 0xbf00, hit_data + 2);
7478
              }
7479
            return bfd_reloc_ok;
7480
          }
7481
 
7482
        /* Fetch the addend.  We use the Thumb-2 encoding (backwards compatible
7483
           with Thumb-1) involving the J1 and J2 bits.  */
7484
        if (globals->use_rel)
7485
          {
7486
            bfd_vma s = (upper_insn & (1 << 10)) >> 10;
7487
            bfd_vma upper = upper_insn & 0x3ff;
7488
            bfd_vma lower = lower_insn & 0x7ff;
7489
            bfd_vma j1 = (lower_insn & (1 << 13)) >> 13;
7490
            bfd_vma j2 = (lower_insn & (1 << 11)) >> 11;
7491
            bfd_vma i1 = j1 ^ s ? 0 : 1;
7492
            bfd_vma i2 = j2 ^ s ? 0 : 1;
7493
 
7494
            addend = (i1 << 23) | (i2 << 22) | (upper << 12) | (lower << 1);
7495
            /* Sign extend.  */
7496
            addend = (addend | ((s ? 0 : 1) << 24)) - (1 << 24);
7497
 
7498
            signed_addend = addend;
7499
          }
7500
 
7501
        if (r_type == R_ARM_THM_XPC22)
7502
          {
7503
            /* Check for Thumb to Thumb call.  */
7504
            /* FIXME: Should we translate the instruction into a BL
7505
               instruction instead ?  */
7506
            if (sym_flags == STT_ARM_TFUNC)
7507
              (*_bfd_error_handler)
7508
                (_("%B: Warning: Thumb BLX instruction targets thumb function '%s'."),
7509
                 input_bfd,
7510
                 h ? h->root.root.string : "(local)");
7511
          }
7512
        else
7513
          {
7514
            /* If it is not a call to Thumb, assume call to Arm.
7515
               If it is a call relative to a section name, then it is not a
7516
               function call at all, but rather a long jump.  Calls through
7517
               the PLT do not require stubs.  */
7518
            if (sym_flags != STT_ARM_TFUNC && sym_flags != STT_SECTION
7519
                && (h == NULL || splt == NULL
7520
                    || h->plt.offset == (bfd_vma) -1))
7521
              {
7522
                if (globals->use_blx && r_type == R_ARM_THM_CALL)
7523
                  {
7524
                    /* Convert BL to BLX.  */
7525
                    lower_insn = (lower_insn & ~0x1000) | 0x0800;
7526
                  }
7527
                else if ((   r_type != R_ARM_THM_CALL)
7528
                         && (r_type != R_ARM_THM_JUMP24))
7529
                  {
7530
                    if (elf32_thumb_to_arm_stub
7531
                        (info, sym_name, input_bfd, output_bfd, input_section,
7532
                         hit_data, sym_sec, rel->r_offset, signed_addend, value,
7533
                         error_message))
7534
                      return bfd_reloc_ok;
7535
                    else
7536
                      return bfd_reloc_dangerous;
7537
                  }
7538
              }
7539
            else if (sym_flags == STT_ARM_TFUNC && globals->use_blx
7540
                     && r_type == R_ARM_THM_CALL)
7541
              {
7542
                /* Make sure this is a BL.  */
7543
                lower_insn |= 0x1800;
7544
              }
7545
          }
7546
 
7547
        enum elf32_arm_stub_type stub_type = arm_stub_none;
7548
        if (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24)
7549
          {
7550
            /* Check if a stub has to be inserted because the destination
7551
               is too far.  */
7552
            struct elf32_arm_stub_hash_entry *stub_entry;
7553
            struct elf32_arm_link_hash_entry *hash;
7554
 
7555
            hash = (struct elf32_arm_link_hash_entry *) h;
7556
 
7557
            stub_type = arm_type_of_stub (info, input_section, rel,
7558
                                          &sym_flags, hash, value, sym_sec,
7559
                                          input_bfd, sym_name);
7560
 
7561
            if (stub_type != arm_stub_none)
7562
              {
7563
                /* The target is out of reach or we are changing modes, so
7564
                   redirect the branch to the local stub for this
7565
                   function.  */
7566
                stub_entry = elf32_arm_get_stub_entry (input_section,
7567
                                                       sym_sec, h,
7568
                                                       rel, globals,
7569
                                                       stub_type);
7570
                if (stub_entry != NULL)
7571
                  value = (stub_entry->stub_offset
7572
                           + stub_entry->stub_sec->output_offset
7573
                           + stub_entry->stub_sec->output_section->vma);
7574
 
7575
                /* If this call becomes a call to Arm, force BLX.  */
7576
                if (globals->use_blx && (r_type == R_ARM_THM_CALL))
7577
                  {
7578
                    if ((stub_entry
7579
                         && !arm_stub_is_thumb (stub_entry->stub_type))
7580
                        || (sym_flags != STT_ARM_TFUNC))
7581
                      lower_insn = (lower_insn & ~0x1000) | 0x0800;
7582
                  }
7583
              }
7584
          }
7585
 
7586
        /* Handle calls via the PLT.  */
7587
        if (stub_type == arm_stub_none
7588
            && h != NULL
7589
            && splt != NULL
7590
            && h->plt.offset != (bfd_vma) -1)
7591
          {
7592
            value = (splt->output_section->vma
7593
                     + splt->output_offset
7594
                     + h->plt.offset);
7595
 
7596
            if (globals->use_blx && r_type == R_ARM_THM_CALL)
7597
              {
7598
                /* If the Thumb BLX instruction is available, convert
7599
                   the BL to a BLX instruction to call the ARM-mode
7600
                   PLT entry.  */
7601
                lower_insn = (lower_insn & ~0x1000) | 0x0800;
7602
                sym_flags = STT_FUNC;
7603
              }
7604
            else
7605
              {
7606
                /* Target the Thumb stub before the ARM PLT entry.  */
7607
                value -= PLT_THUMB_STUB_SIZE;
7608
                sym_flags = STT_ARM_TFUNC;
7609
              }
7610
            *unresolved_reloc_p = FALSE;
7611
          }
7612
 
7613
        relocation = value + signed_addend;
7614
 
7615
        relocation -= (input_section->output_section->vma
7616
                       + input_section->output_offset
7617
                       + rel->r_offset);
7618
 
7619
        check = relocation >> howto->rightshift;
7620
 
7621
        /* If this is a signed value, the rightshift just dropped
7622
           leading 1 bits (assuming twos complement).  */
7623
        if ((bfd_signed_vma) relocation >= 0)
7624
          signed_check = check;
7625
        else
7626
          signed_check = check | ~((bfd_vma) -1 >> howto->rightshift);
7627
 
7628
        /* Calculate the permissable maximum and minimum values for
7629
           this relocation according to whether we're relocating for
7630
           Thumb-2 or not.  */
7631
        bitsize = howto->bitsize;
7632
        if (!thumb2)
7633
          bitsize -= 2;
7634
        reloc_signed_max = (1 << (bitsize - 1)) - 1;
7635
        reloc_signed_min = ~reloc_signed_max;
7636
 
7637
        /* Assumes two's complement.  */
7638
        if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
7639
          overflow = TRUE;
7640
 
7641
        if ((lower_insn & 0x5000) == 0x4000)
7642
          /* For a BLX instruction, make sure that the relocation is rounded up
7643
             to a word boundary.  This follows the semantics of the instruction
7644
             which specifies that bit 1 of the target address will come from bit
7645
             1 of the base address.  */
7646
          relocation = (relocation + 2) & ~ 3;
7647
 
7648
        /* Put RELOCATION back into the insn.  Assumes two's complement.
7649
           We use the Thumb-2 encoding, which is safe even if dealing with
7650
           a Thumb-1 instruction by virtue of our overflow check above.  */
7651
        reloc_sign = (signed_check < 0) ? 1 : 0;
7652
        upper_insn = (upper_insn & ~(bfd_vma) 0x7ff)
7653
                     | ((relocation >> 12) & 0x3ff)
7654
                     | (reloc_sign << 10);
7655
        lower_insn = (lower_insn & ~(bfd_vma) 0x2fff)
7656
                     | (((!((relocation >> 23) & 1)) ^ reloc_sign) << 13)
7657
                     | (((!((relocation >> 22) & 1)) ^ reloc_sign) << 11)
7658
                     | ((relocation >> 1) & 0x7ff);
7659
 
7660
        /* Put the relocated value back in the object file:  */
7661
        bfd_put_16 (input_bfd, upper_insn, hit_data);
7662
        bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
7663
 
7664
        return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
7665
      }
7666
      break;
7667
 
7668
    case R_ARM_THM_JUMP19:
7669
      /* Thumb32 conditional branch instruction.  */
7670
      {
7671
        bfd_vma relocation;
7672
        bfd_boolean overflow = FALSE;
7673
        bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
7674
        bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
7675
        bfd_signed_vma reloc_signed_max = 0xffffe;
7676
        bfd_signed_vma reloc_signed_min = -0x100000;
7677
        bfd_signed_vma signed_check;
7678
 
7679
        /* Need to refetch the addend, reconstruct the top three bits,
7680
           and squish the two 11 bit pieces together.  */
7681
        if (globals->use_rel)
7682
          {
7683
            bfd_vma S     = (upper_insn & 0x0400) >> 10;
7684
            bfd_vma upper = (upper_insn & 0x003f);
7685
            bfd_vma J1    = (lower_insn & 0x2000) >> 13;
7686
            bfd_vma J2    = (lower_insn & 0x0800) >> 11;
7687
            bfd_vma lower = (lower_insn & 0x07ff);
7688
 
7689
            upper |= J1 << 6;
7690
            upper |= J2 << 7;
7691
            upper |= (!S) << 8;
7692
            upper -= 0x0100; /* Sign extend.  */
7693
 
7694
            addend = (upper << 12) | (lower << 1);
7695
            signed_addend = addend;
7696
          }
7697
 
7698
        /* Handle calls via the PLT.  */
7699
        if (h != NULL && splt != NULL && h->plt.offset != (bfd_vma) -1)
7700
          {
7701
            value = (splt->output_section->vma
7702
                     + splt->output_offset
7703
                     + h->plt.offset);
7704
            /* Target the Thumb stub before the ARM PLT entry.  */
7705
            value -= PLT_THUMB_STUB_SIZE;
7706
            *unresolved_reloc_p = FALSE;
7707
          }
7708
 
7709
        /* ??? Should handle interworking?  GCC might someday try to
7710
           use this for tail calls.  */
7711
 
7712
        relocation = value + signed_addend;
7713
        relocation -= (input_section->output_section->vma
7714
                       + input_section->output_offset
7715
                       + rel->r_offset);
7716
        signed_check = (bfd_signed_vma) relocation;
7717
 
7718
        if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
7719
          overflow = TRUE;
7720
 
7721
        /* Put RELOCATION back into the insn.  */
7722
        {
7723
          bfd_vma S  = (relocation & 0x00100000) >> 20;
7724
          bfd_vma J2 = (relocation & 0x00080000) >> 19;
7725
          bfd_vma J1 = (relocation & 0x00040000) >> 18;
7726
          bfd_vma hi = (relocation & 0x0003f000) >> 12;
7727
          bfd_vma lo = (relocation & 0x00000ffe) >>  1;
7728
 
7729
          upper_insn = (upper_insn & 0xfbc0) | (S << 10) | hi;
7730
          lower_insn = (lower_insn & 0xd000) | (J1 << 13) | (J2 << 11) | lo;
7731
        }
7732
 
7733
        /* Put the relocated value back in the object file:  */
7734
        bfd_put_16 (input_bfd, upper_insn, hit_data);
7735
        bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
7736
 
7737
        return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
7738
      }
7739
 
7740
    case R_ARM_THM_JUMP11:
7741
    case R_ARM_THM_JUMP8:
7742
    case R_ARM_THM_JUMP6:
7743
      /* Thumb B (branch) instruction).  */
7744
      {
7745
        bfd_signed_vma relocation;
7746
        bfd_signed_vma reloc_signed_max = (1 << (howto->bitsize - 1)) - 1;
7747
        bfd_signed_vma reloc_signed_min = ~ reloc_signed_max;
7748
        bfd_signed_vma signed_check;
7749
 
7750
        /* CZB cannot jump backward.  */
7751
        if (r_type == R_ARM_THM_JUMP6)
7752
          reloc_signed_min = 0;
7753
 
7754
        if (globals->use_rel)
7755
          {
7756
            /* Need to refetch addend.  */
7757
            addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
7758
            if (addend & ((howto->src_mask + 1) >> 1))
7759
              {
7760
                signed_addend = -1;
7761
                signed_addend &= ~ howto->src_mask;
7762
                signed_addend |= addend;
7763
              }
7764
            else
7765
              signed_addend = addend;
7766
            /* The value in the insn has been right shifted.  We need to
7767
               undo this, so that we can perform the address calculation
7768
               in terms of bytes.  */
7769
            signed_addend <<= howto->rightshift;
7770
          }
7771
        relocation = value + signed_addend;
7772
 
7773
        relocation -= (input_section->output_section->vma
7774
                       + input_section->output_offset
7775
                       + rel->r_offset);
7776
 
7777
        relocation >>= howto->rightshift;
7778
        signed_check = relocation;
7779
 
7780
        if (r_type == R_ARM_THM_JUMP6)
7781
          relocation = ((relocation & 0x0020) << 4) | ((relocation & 0x001f) << 3);
7782
        else
7783
          relocation &= howto->dst_mask;
7784
        relocation |= (bfd_get_16 (input_bfd, hit_data) & (~ howto->dst_mask));
7785
 
7786
        bfd_put_16 (input_bfd, relocation, hit_data);
7787
 
7788
        /* Assumes two's complement.  */
7789
        if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
7790
          return bfd_reloc_overflow;
7791
 
7792
        return bfd_reloc_ok;
7793
      }
7794
 
7795
    case R_ARM_ALU_PCREL7_0:
7796
    case R_ARM_ALU_PCREL15_8:
7797
    case R_ARM_ALU_PCREL23_15:
7798
      {
7799
        bfd_vma insn;
7800
        bfd_vma relocation;
7801
 
7802
        insn = bfd_get_32 (input_bfd, hit_data);
7803
        if (globals->use_rel)
7804
          {
7805
            /* Extract the addend.  */
7806
            addend = (insn & 0xff) << ((insn & 0xf00) >> 7);
7807
            signed_addend = addend;
7808
          }
7809
        relocation = value + signed_addend;
7810
 
7811
        relocation -= (input_section->output_section->vma
7812
                       + input_section->output_offset
7813
                       + rel->r_offset);
7814
        insn = (insn & ~0xfff)
7815
               | ((howto->bitpos << 7) & 0xf00)
7816
               | ((relocation >> howto->bitpos) & 0xff);
7817
        bfd_put_32 (input_bfd, value, hit_data);
7818
      }
7819
      return bfd_reloc_ok;
7820
 
7821
    case R_ARM_GNU_VTINHERIT:
7822
    case R_ARM_GNU_VTENTRY:
7823
      return bfd_reloc_ok;
7824
 
7825
    case R_ARM_GOTOFF32:
7826
      /* Relocation is relative to the start of the
7827
         global offset table.  */
7828
 
7829
      BFD_ASSERT (sgot != NULL);
7830
      if (sgot == NULL)
7831
        return bfd_reloc_notsupported;
7832
 
7833
      /* If we are addressing a Thumb function, we need to adjust the
7834
         address by one, so that attempts to call the function pointer will
7835
         correctly interpret it as Thumb code.  */
7836
      if (sym_flags == STT_ARM_TFUNC)
7837
        value += 1;
7838
 
7839
      /* Note that sgot->output_offset is not involved in this
7840
         calculation.  We always want the start of .got.  If we
7841
         define _GLOBAL_OFFSET_TABLE in a different way, as is
7842
         permitted by the ABI, we might have to change this
7843
         calculation.  */
7844
      value -= sgot->output_section->vma;
7845
      return _bfd_final_link_relocate (howto, input_bfd, input_section,
7846
                                       contents, rel->r_offset, value,
7847
                                       rel->r_addend);
7848
 
7849
    case R_ARM_GOTPC:
7850
      /* Use global offset table as symbol value.  */
7851
      BFD_ASSERT (sgot != NULL);
7852
 
7853
      if (sgot == NULL)
7854
        return bfd_reloc_notsupported;
7855
 
7856
      *unresolved_reloc_p = FALSE;
7857
      value = sgot->output_section->vma;
7858
      return _bfd_final_link_relocate (howto, input_bfd, input_section,
7859
                                       contents, rel->r_offset, value,
7860
                                       rel->r_addend);
7861
 
7862
    case R_ARM_GOT32:
7863
    case R_ARM_GOT_PREL:
7864
      /* Relocation is to the entry for this symbol in the
7865
         global offset table.  */
7866
      if (sgot == NULL)
7867
        return bfd_reloc_notsupported;
7868
 
7869
      if (h != NULL)
7870
        {
7871
          bfd_vma off;
7872
          bfd_boolean dyn;
7873
 
7874
          off = h->got.offset;
7875
          BFD_ASSERT (off != (bfd_vma) -1);
7876
          dyn = globals->root.dynamic_sections_created;
7877
 
7878
          if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
7879
              || (info->shared
7880
                  && SYMBOL_REFERENCES_LOCAL (info, h))
7881
              || (ELF_ST_VISIBILITY (h->other)
7882
                  && h->root.type == bfd_link_hash_undefweak))
7883
            {
7884
              /* This is actually a static link, or it is a -Bsymbolic link
7885
                 and the symbol is defined locally.  We must initialize this
7886
                 entry in the global offset table.  Since the offset must
7887
                 always be a multiple of 4, we use the least significant bit
7888
                 to record whether we have initialized it already.
7889
 
7890
                 When doing a dynamic link, we create a .rel(a).got relocation
7891
                 entry to initialize the value.  This is done in the
7892
                 finish_dynamic_symbol routine.  */
7893
              if ((off & 1) != 0)
7894
                off &= ~1;
7895
              else
7896
                {
7897
                  /* If we are addressing a Thumb function, we need to
7898
                     adjust the address by one, so that attempts to
7899
                     call the function pointer will correctly
7900
                     interpret it as Thumb code.  */
7901
                  if (sym_flags == STT_ARM_TFUNC)
7902
                    value |= 1;
7903
 
7904
                  bfd_put_32 (output_bfd, value, sgot->contents + off);
7905
                  h->got.offset |= 1;
7906
                }
7907
            }
7908
          else
7909
            *unresolved_reloc_p = FALSE;
7910
 
7911
          value = sgot->output_offset + off;
7912
        }
7913
      else
7914
        {
7915
          bfd_vma off;
7916
 
7917
          BFD_ASSERT (local_got_offsets != NULL &&
7918
                      local_got_offsets[r_symndx] != (bfd_vma) -1);
7919
 
7920
          off = local_got_offsets[r_symndx];
7921
 
7922
          /* The offset must always be a multiple of 4.  We use the
7923
             least significant bit to record whether we have already
7924
             generated the necessary reloc.  */
7925
          if ((off & 1) != 0)
7926
            off &= ~1;
7927
          else
7928
            {
7929
              /* If we are addressing a Thumb function, we need to
7930
                 adjust the address by one, so that attempts to
7931
                 call the function pointer will correctly
7932
                 interpret it as Thumb code.  */
7933
              if (sym_flags == STT_ARM_TFUNC)
7934
                value |= 1;
7935
 
7936
              if (globals->use_rel)
7937
                bfd_put_32 (output_bfd, value, sgot->contents + off);
7938
 
7939
              if (info->shared)
7940
                {
7941
                  asection * srelgot;
7942
                  Elf_Internal_Rela outrel;
7943
                  bfd_byte *loc;
7944
 
7945
                  srelgot = (bfd_get_section_by_name
7946
                             (dynobj, RELOC_SECTION (globals, ".got")));
7947
                  BFD_ASSERT (srelgot != NULL);
7948
 
7949
                  outrel.r_addend = addend + value;
7950
                  outrel.r_offset = (sgot->output_section->vma
7951
                                     + sgot->output_offset
7952
                                     + off);
7953
                  outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
7954
                  loc = srelgot->contents;
7955
                  loc += srelgot->reloc_count++ * RELOC_SIZE (globals);
7956
                  SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
7957
                }
7958
 
7959
              local_got_offsets[r_symndx] |= 1;
7960
            }
7961
 
7962
          value = sgot->output_offset + off;
7963
        }
7964
      if (r_type != R_ARM_GOT32)
7965
        value += sgot->output_section->vma;
7966
 
7967
      return _bfd_final_link_relocate (howto, input_bfd, input_section,
7968
                                       contents, rel->r_offset, value,
7969
                                       rel->r_addend);
7970
 
7971
    case R_ARM_TLS_LDO32:
7972
      value = value - dtpoff_base (info);
7973
 
7974
      return _bfd_final_link_relocate (howto, input_bfd, input_section,
7975
                                       contents, rel->r_offset, value,
7976
                                       rel->r_addend);
7977
 
7978
    case R_ARM_TLS_LDM32:
7979
      {
7980
        bfd_vma off;
7981
 
7982
        if (globals->sgot == NULL)
7983
          abort ();
7984
 
7985
        off = globals->tls_ldm_got.offset;
7986
 
7987
        if ((off & 1) != 0)
7988
          off &= ~1;
7989
        else
7990
          {
7991
            /* If we don't know the module number, create a relocation
7992
               for it.  */
7993
            if (info->shared)
7994
              {
7995
                Elf_Internal_Rela outrel;
7996
                bfd_byte *loc;
7997
 
7998
                if (globals->srelgot == NULL)
7999
                  abort ();
8000
 
8001
                outrel.r_addend = 0;
8002
                outrel.r_offset = (globals->sgot->output_section->vma
8003
                                   + globals->sgot->output_offset + off);
8004
                outrel.r_info = ELF32_R_INFO (0, R_ARM_TLS_DTPMOD32);
8005
 
8006
                if (globals->use_rel)
8007
                  bfd_put_32 (output_bfd, outrel.r_addend,
8008
                              globals->sgot->contents + off);
8009
 
8010
                loc = globals->srelgot->contents;
8011
                loc += globals->srelgot->reloc_count++ * RELOC_SIZE (globals);
8012
                SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
8013
              }
8014
            else
8015
              bfd_put_32 (output_bfd, 1, globals->sgot->contents + off);
8016
 
8017
            globals->tls_ldm_got.offset |= 1;
8018
          }
8019
 
8020
        value = globals->sgot->output_section->vma + globals->sgot->output_offset + off
8021
          - (input_section->output_section->vma + input_section->output_offset + rel->r_offset);
8022
 
8023
        return _bfd_final_link_relocate (howto, input_bfd, input_section,
8024
                                         contents, rel->r_offset, value,
8025
                                         rel->r_addend);
8026
      }
8027
 
8028
    case R_ARM_TLS_GD32:
8029
    case R_ARM_TLS_IE32:
8030
      {
8031
        bfd_vma off;
8032
        int indx;
8033
        char tls_type;
8034
 
8035
        if (globals->sgot == NULL)
8036
          abort ();
8037
 
8038
        indx = 0;
8039
        if (h != NULL)
8040
          {
8041
            bfd_boolean dyn;
8042
            dyn = globals->root.dynamic_sections_created;
8043
            if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
8044
                && (!info->shared
8045
                    || !SYMBOL_REFERENCES_LOCAL (info, h)))
8046
              {
8047
                *unresolved_reloc_p = FALSE;
8048
                indx = h->dynindx;
8049
              }
8050
            off = h->got.offset;
8051
            tls_type = ((struct elf32_arm_link_hash_entry *) h)->tls_type;
8052
          }
8053
        else
8054
          {
8055
            if (local_got_offsets == NULL)
8056
              abort ();
8057
            off = local_got_offsets[r_symndx];
8058
            tls_type = elf32_arm_local_got_tls_type (input_bfd)[r_symndx];
8059
          }
8060
 
8061
        if (tls_type == GOT_UNKNOWN)
8062
          abort ();
8063
 
8064
        if ((off & 1) != 0)
8065
          off &= ~1;
8066
        else
8067
          {
8068
            bfd_boolean need_relocs = FALSE;
8069
            Elf_Internal_Rela outrel;
8070
            bfd_byte *loc = NULL;
8071
            int cur_off = off;
8072
 
8073
            /* The GOT entries have not been initialized yet.  Do it
8074
               now, and emit any relocations.  If both an IE GOT and a
8075
               GD GOT are necessary, we emit the GD first.  */
8076
 
8077
            if ((info->shared || indx != 0)
8078
                && (h == NULL
8079
                    || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8080
                    || h->root.type != bfd_link_hash_undefweak))
8081
              {
8082
                need_relocs = TRUE;
8083
                if (globals->srelgot == NULL)
8084
                  abort ();
8085
                loc = globals->srelgot->contents;
8086
                loc += globals->srelgot->reloc_count * RELOC_SIZE (globals);
8087
              }
8088
 
8089
            if (tls_type & GOT_TLS_GD)
8090
              {
8091
                if (need_relocs)
8092
                  {
8093
                    outrel.r_addend = 0;
8094
                    outrel.r_offset = (globals->sgot->output_section->vma
8095
                                       + globals->sgot->output_offset
8096
                                       + cur_off);
8097
                    outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DTPMOD32);
8098
 
8099
                    if (globals->use_rel)
8100
                      bfd_put_32 (output_bfd, outrel.r_addend,
8101
                                  globals->sgot->contents + cur_off);
8102
 
8103
                    SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
8104
                    globals->srelgot->reloc_count++;
8105
                    loc += RELOC_SIZE (globals);
8106
 
8107
                    if (indx == 0)
8108
                      bfd_put_32 (output_bfd, value - dtpoff_base (info),
8109
                                  globals->sgot->contents + cur_off + 4);
8110
                    else
8111
                      {
8112
                        outrel.r_addend = 0;
8113
                        outrel.r_info = ELF32_R_INFO (indx,
8114
                                                      R_ARM_TLS_DTPOFF32);
8115
                        outrel.r_offset += 4;
8116
 
8117
                        if (globals->use_rel)
8118
                          bfd_put_32 (output_bfd, outrel.r_addend,
8119
                                      globals->sgot->contents + cur_off + 4);
8120
 
8121
 
8122
                        SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
8123
                        globals->srelgot->reloc_count++;
8124
                        loc += RELOC_SIZE (globals);
8125
                      }
8126
                  }
8127
                else
8128
                  {
8129
                    /* If we are not emitting relocations for a
8130
                       general dynamic reference, then we must be in a
8131
                       static link or an executable link with the
8132
                       symbol binding locally.  Mark it as belonging
8133
                       to module 1, the executable.  */
8134
                    bfd_put_32 (output_bfd, 1,
8135
                                globals->sgot->contents + cur_off);
8136
                    bfd_put_32 (output_bfd, value - dtpoff_base (info),
8137
                                globals->sgot->contents + cur_off + 4);
8138
                  }
8139
 
8140
                cur_off += 8;
8141
              }
8142
 
8143
            if (tls_type & GOT_TLS_IE)
8144
              {
8145
                if (need_relocs)
8146
                  {
8147
                    if (indx == 0)
8148
                      outrel.r_addend = value - dtpoff_base (info);
8149
                    else
8150
                      outrel.r_addend = 0;
8151
                    outrel.r_offset = (globals->sgot->output_section->vma
8152
                                       + globals->sgot->output_offset
8153
                                       + cur_off);
8154
                    outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_TPOFF32);
8155
 
8156
                    if (globals->use_rel)
8157
                      bfd_put_32 (output_bfd, outrel.r_addend,
8158
                                  globals->sgot->contents + cur_off);
8159
 
8160
                    SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
8161
                    globals->srelgot->reloc_count++;
8162
                    loc += RELOC_SIZE (globals);
8163
                  }
8164
                else
8165
                  bfd_put_32 (output_bfd, tpoff (info, value),
8166
                              globals->sgot->contents + cur_off);
8167
                cur_off += 4;
8168
              }
8169
 
8170
            if (h != NULL)
8171
              h->got.offset |= 1;
8172
            else
8173
              local_got_offsets[r_symndx] |= 1;
8174
          }
8175
 
8176
        if ((tls_type & GOT_TLS_GD) && r_type != R_ARM_TLS_GD32)
8177
          off += 8;
8178
        value = globals->sgot->output_section->vma + globals->sgot->output_offset + off
8179
          - (input_section->output_section->vma + input_section->output_offset + rel->r_offset);
8180
 
8181
        return _bfd_final_link_relocate (howto, input_bfd, input_section,
8182
                                         contents, rel->r_offset, value,
8183
                                         rel->r_addend);
8184
      }
8185
 
8186
    case R_ARM_TLS_LE32:
8187
      if (info->shared)
8188
        {
8189
          (*_bfd_error_handler)
8190
            (_("%B(%A+0x%lx): R_ARM_TLS_LE32 relocation not permitted in shared object"),
8191
             input_bfd, input_section,
8192
             (long) rel->r_offset, howto->name);
8193
          return (bfd_reloc_status_type) FALSE;
8194
        }
8195
      else
8196
        value = tpoff (info, value);
8197
 
8198
      return _bfd_final_link_relocate (howto, input_bfd, input_section,
8199
                                       contents, rel->r_offset, value,
8200
                                       rel->r_addend);
8201
 
8202
    case R_ARM_V4BX:
8203
      if (globals->fix_v4bx)
8204
        {
8205
          bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
8206
 
8207
          /* Ensure that we have a BX instruction.  */
8208
          BFD_ASSERT ((insn & 0x0ffffff0) == 0x012fff10);
8209
 
8210
          if (globals->fix_v4bx == 2 && (insn & 0xf) != 0xf)
8211
            {
8212
              /* Branch to veneer.  */
8213
              bfd_vma glue_addr;
8214
              glue_addr = elf32_arm_bx_glue (info, insn & 0xf);
8215
              glue_addr -= input_section->output_section->vma
8216
                           + input_section->output_offset
8217
                           + rel->r_offset + 8;
8218
              insn = (insn & 0xf0000000) | 0x0a000000
8219
                     | ((glue_addr >> 2) & 0x00ffffff);
8220
            }
8221
          else
8222
            {
8223
              /* Preserve Rm (lowest four bits) and the condition code
8224
                 (highest four bits). Other bits encode MOV PC,Rm.  */
8225
              insn = (insn & 0xf000000f) | 0x01a0f000;
8226
            }
8227
 
8228
          bfd_put_32 (input_bfd, insn, hit_data);
8229
        }
8230
      return bfd_reloc_ok;
8231
 
8232
    case R_ARM_MOVW_ABS_NC:
8233
    case R_ARM_MOVT_ABS:
8234
    case R_ARM_MOVW_PREL_NC:
8235
    case R_ARM_MOVT_PREL:
8236
    /* Until we properly support segment-base-relative addressing then
8237
       we assume the segment base to be zero, as for the group relocations.
8238
       Thus R_ARM_MOVW_BREL_NC has the same semantics as R_ARM_MOVW_ABS_NC
8239
       and R_ARM_MOVT_BREL has the same semantics as R_ARM_MOVT_ABS.  */
8240
    case R_ARM_MOVW_BREL_NC:
8241
    case R_ARM_MOVW_BREL:
8242
    case R_ARM_MOVT_BREL:
8243
      {
8244
        bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
8245
 
8246
        if (globals->use_rel)
8247
          {
8248
            addend = ((insn >> 4) & 0xf000) | (insn & 0xfff);
8249
            signed_addend = (addend ^ 0x8000) - 0x8000;
8250
          }
8251
 
8252
        value += signed_addend;
8253
 
8254
        if (r_type == R_ARM_MOVW_PREL_NC || r_type == R_ARM_MOVT_PREL)
8255
          value -= (input_section->output_section->vma
8256
                    + input_section->output_offset + rel->r_offset);
8257
 
8258
        if (r_type == R_ARM_MOVW_BREL && value >= 0x10000)
8259
          return bfd_reloc_overflow;
8260
 
8261
        if (sym_flags == STT_ARM_TFUNC)
8262
          value |= 1;
8263
 
8264
        if (r_type == R_ARM_MOVT_ABS || r_type == R_ARM_MOVT_PREL
8265
            || r_type == R_ARM_MOVT_BREL)
8266
          value >>= 16;
8267
 
8268
        insn &= 0xfff0f000;
8269
        insn |= value & 0xfff;
8270
        insn |= (value & 0xf000) << 4;
8271
        bfd_put_32 (input_bfd, insn, hit_data);
8272
      }
8273
      return bfd_reloc_ok;
8274
 
8275
    case R_ARM_THM_MOVW_ABS_NC:
8276
    case R_ARM_THM_MOVT_ABS:
8277
    case R_ARM_THM_MOVW_PREL_NC:
8278
    case R_ARM_THM_MOVT_PREL:
8279
    /* Until we properly support segment-base-relative addressing then
8280
       we assume the segment base to be zero, as for the above relocations.
8281
       Thus R_ARM_THM_MOVW_BREL_NC has the same semantics as
8282
       R_ARM_THM_MOVW_ABS_NC and R_ARM_THM_MOVT_BREL has the same semantics
8283
       as R_ARM_THM_MOVT_ABS.  */
8284
    case R_ARM_THM_MOVW_BREL_NC:
8285
    case R_ARM_THM_MOVW_BREL:
8286
    case R_ARM_THM_MOVT_BREL:
8287
      {
8288
        bfd_vma insn;
8289
 
8290
        insn = bfd_get_16 (input_bfd, hit_data) << 16;
8291
        insn |= bfd_get_16 (input_bfd, hit_data + 2);
8292
 
8293
        if (globals->use_rel)
8294
          {
8295
            addend = ((insn >> 4)  & 0xf000)
8296
                   | ((insn >> 15) & 0x0800)
8297
                   | ((insn >> 4)  & 0x0700)
8298
                   | (insn         & 0x00ff);
8299
            signed_addend = (addend ^ 0x8000) - 0x8000;
8300
          }
8301
 
8302
        value += signed_addend;
8303
 
8304
        if (r_type == R_ARM_THM_MOVW_PREL_NC || r_type == R_ARM_THM_MOVT_PREL)
8305
          value -= (input_section->output_section->vma
8306
                    + input_section->output_offset + rel->r_offset);
8307
 
8308
        if (r_type == R_ARM_THM_MOVW_BREL && value >= 0x10000)
8309
          return bfd_reloc_overflow;
8310
 
8311
        if (sym_flags == STT_ARM_TFUNC)
8312
          value |= 1;
8313
 
8314
        if (r_type == R_ARM_THM_MOVT_ABS || r_type == R_ARM_THM_MOVT_PREL
8315
            || r_type == R_ARM_THM_MOVT_BREL)
8316
          value >>= 16;
8317
 
8318
        insn &= 0xfbf08f00;
8319
        insn |= (value & 0xf000) << 4;
8320
        insn |= (value & 0x0800) << 15;
8321
        insn |= (value & 0x0700) << 4;
8322
        insn |= (value & 0x00ff);
8323
 
8324
        bfd_put_16 (input_bfd, insn >> 16, hit_data);
8325
        bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
8326
      }
8327
      return bfd_reloc_ok;
8328
 
8329
    case R_ARM_ALU_PC_G0_NC:
8330
    case R_ARM_ALU_PC_G1_NC:
8331
    case R_ARM_ALU_PC_G0:
8332
    case R_ARM_ALU_PC_G1:
8333
    case R_ARM_ALU_PC_G2:
8334
    case R_ARM_ALU_SB_G0_NC:
8335
    case R_ARM_ALU_SB_G1_NC:
8336
    case R_ARM_ALU_SB_G0:
8337
    case R_ARM_ALU_SB_G1:
8338
    case R_ARM_ALU_SB_G2:
8339
      {
8340
        bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
8341
        bfd_vma pc = input_section->output_section->vma
8342
                     + input_section->output_offset + rel->r_offset;
8343
        /* sb should be the origin of the *segment* containing the symbol.
8344
           It is not clear how to obtain this OS-dependent value, so we
8345
           make an arbitrary choice of zero.  */
8346
        bfd_vma sb = 0;
8347
        bfd_vma residual;
8348
        bfd_vma g_n;
8349
        bfd_signed_vma signed_value;
8350
        int group = 0;
8351
 
8352
        /* Determine which group of bits to select.  */
8353
        switch (r_type)
8354
          {
8355
          case R_ARM_ALU_PC_G0_NC:
8356
          case R_ARM_ALU_PC_G0:
8357
          case R_ARM_ALU_SB_G0_NC:
8358
          case R_ARM_ALU_SB_G0:
8359
            group = 0;
8360
            break;
8361
 
8362
          case R_ARM_ALU_PC_G1_NC:
8363
          case R_ARM_ALU_PC_G1:
8364
          case R_ARM_ALU_SB_G1_NC:
8365
          case R_ARM_ALU_SB_G1:
8366
            group = 1;
8367
            break;
8368
 
8369
          case R_ARM_ALU_PC_G2:
8370
          case R_ARM_ALU_SB_G2:
8371
            group = 2;
8372
            break;
8373
 
8374
          default:
8375
            abort ();
8376
          }
8377
 
8378
        /* If REL, extract the addend from the insn.  If RELA, it will
8379
           have already been fetched for us.  */
8380
        if (globals->use_rel)
8381
          {
8382
            int negative;
8383
            bfd_vma constant = insn & 0xff;
8384
            bfd_vma rotation = (insn & 0xf00) >> 8;
8385
 
8386
            if (rotation == 0)
8387
              signed_addend = constant;
8388
            else
8389
              {
8390
                /* Compensate for the fact that in the instruction, the
8391
                   rotation is stored in multiples of 2 bits.  */
8392
                rotation *= 2;
8393
 
8394
                /* Rotate "constant" right by "rotation" bits.  */
8395
                signed_addend = (constant >> rotation) |
8396
                                (constant << (8 * sizeof (bfd_vma) - rotation));
8397
              }
8398
 
8399
            /* Determine if the instruction is an ADD or a SUB.
8400
               (For REL, this determines the sign of the addend.)  */
8401
            negative = identify_add_or_sub (insn);
8402
            if (negative == 0)
8403
              {
8404
                (*_bfd_error_handler)
8405
                  (_("%B(%A+0x%lx): Only ADD or SUB instructions are allowed for ALU group relocations"),
8406
                  input_bfd, input_section,
8407
                  (long) rel->r_offset, howto->name);
8408
                return bfd_reloc_overflow;
8409
              }
8410
 
8411
            signed_addend *= negative;
8412
          }
8413
 
8414
        /* Compute the value (X) to go in the place.  */
8415
        if (r_type == R_ARM_ALU_PC_G0_NC
8416
            || r_type == R_ARM_ALU_PC_G1_NC
8417
            || r_type == R_ARM_ALU_PC_G0
8418
            || r_type == R_ARM_ALU_PC_G1
8419
            || r_type == R_ARM_ALU_PC_G2)
8420
          /* PC relative.  */
8421
          signed_value = value - pc + signed_addend;
8422
        else
8423
          /* Section base relative.  */
8424
          signed_value = value - sb + signed_addend;
8425
 
8426
        /* If the target symbol is a Thumb function, then set the
8427
           Thumb bit in the address.  */
8428
        if (sym_flags == STT_ARM_TFUNC)
8429
          signed_value |= 1;
8430
 
8431
        /* Calculate the value of the relevant G_n, in encoded
8432
           constant-with-rotation format.  */
8433
        g_n = calculate_group_reloc_mask (abs (signed_value), group,
8434
                                          &residual);
8435
 
8436
        /* Check for overflow if required.  */
8437
        if ((r_type == R_ARM_ALU_PC_G0
8438
             || r_type == R_ARM_ALU_PC_G1
8439
             || r_type == R_ARM_ALU_PC_G2
8440
             || r_type == R_ARM_ALU_SB_G0
8441
             || r_type == R_ARM_ALU_SB_G1
8442
             || r_type == R_ARM_ALU_SB_G2) && residual != 0)
8443
          {
8444
            (*_bfd_error_handler)
8445
              (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
8446
              input_bfd, input_section,
8447
              (long) rel->r_offset, abs (signed_value), howto->name);
8448
            return bfd_reloc_overflow;
8449
          }
8450
 
8451
        /* Mask out the value and the ADD/SUB part of the opcode; take care
8452
           not to destroy the S bit.  */
8453
        insn &= 0xff1ff000;
8454
 
8455
        /* Set the opcode according to whether the value to go in the
8456
           place is negative.  */
8457
        if (signed_value < 0)
8458
          insn |= 1 << 22;
8459
        else
8460
          insn |= 1 << 23;
8461
 
8462
        /* Encode the offset.  */
8463
        insn |= g_n;
8464
 
8465
        bfd_put_32 (input_bfd, insn, hit_data);
8466
      }
8467
      return bfd_reloc_ok;
8468
 
8469
    case R_ARM_LDR_PC_G0:
8470
    case R_ARM_LDR_PC_G1:
8471
    case R_ARM_LDR_PC_G2:
8472
    case R_ARM_LDR_SB_G0:
8473
    case R_ARM_LDR_SB_G1:
8474
    case R_ARM_LDR_SB_G2:
8475
      {
8476
        bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
8477
        bfd_vma pc = input_section->output_section->vma
8478
                     + input_section->output_offset + rel->r_offset;
8479
        bfd_vma sb = 0; /* See note above.  */
8480
        bfd_vma residual;
8481
        bfd_signed_vma signed_value;
8482
        int group = 0;
8483
 
8484
        /* Determine which groups of bits to calculate.  */
8485
        switch (r_type)
8486
          {
8487
          case R_ARM_LDR_PC_G0:
8488
          case R_ARM_LDR_SB_G0:
8489
            group = 0;
8490
            break;
8491
 
8492
          case R_ARM_LDR_PC_G1:
8493
          case R_ARM_LDR_SB_G1:
8494
            group = 1;
8495
            break;
8496
 
8497
          case R_ARM_LDR_PC_G2:
8498
          case R_ARM_LDR_SB_G2:
8499
            group = 2;
8500
            break;
8501
 
8502
          default:
8503
            abort ();
8504
          }
8505
 
8506
        /* If REL, extract the addend from the insn.  If RELA, it will
8507
           have already been fetched for us.  */
8508
        if (globals->use_rel)
8509
          {
8510
            int negative = (insn & (1 << 23)) ? 1 : -1;
8511
            signed_addend = negative * (insn & 0xfff);
8512
          }
8513
 
8514
        /* Compute the value (X) to go in the place.  */
8515
        if (r_type == R_ARM_LDR_PC_G0
8516
            || r_type == R_ARM_LDR_PC_G1
8517
            || r_type == R_ARM_LDR_PC_G2)
8518
          /* PC relative.  */
8519
          signed_value = value - pc + signed_addend;
8520
        else
8521
          /* Section base relative.  */
8522
          signed_value = value - sb + signed_addend;
8523
 
8524
        /* Calculate the value of the relevant G_{n-1} to obtain
8525
           the residual at that stage.  */
8526
        calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
8527
 
8528
        /* Check for overflow.  */
8529
        if (residual >= 0x1000)
8530
          {
8531
            (*_bfd_error_handler)
8532
              (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
8533
              input_bfd, input_section,
8534
              (long) rel->r_offset, abs (signed_value), howto->name);
8535
            return bfd_reloc_overflow;
8536
          }
8537
 
8538
        /* Mask out the value and U bit.  */
8539
        insn &= 0xff7ff000;
8540
 
8541
        /* Set the U bit if the value to go in the place is non-negative.  */
8542
        if (signed_value >= 0)
8543
          insn |= 1 << 23;
8544
 
8545
        /* Encode the offset.  */
8546
        insn |= residual;
8547
 
8548
        bfd_put_32 (input_bfd, insn, hit_data);
8549
      }
8550
      return bfd_reloc_ok;
8551
 
8552
    case R_ARM_LDRS_PC_G0:
8553
    case R_ARM_LDRS_PC_G1:
8554
    case R_ARM_LDRS_PC_G2:
8555
    case R_ARM_LDRS_SB_G0:
8556
    case R_ARM_LDRS_SB_G1:
8557
    case R_ARM_LDRS_SB_G2:
8558
      {
8559
        bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
8560
        bfd_vma pc = input_section->output_section->vma
8561
                     + input_section->output_offset + rel->r_offset;
8562
        bfd_vma sb = 0; /* See note above.  */
8563
        bfd_vma residual;
8564
        bfd_signed_vma signed_value;
8565
        int group = 0;
8566
 
8567
        /* Determine which groups of bits to calculate.  */
8568
        switch (r_type)
8569
          {
8570
          case R_ARM_LDRS_PC_G0:
8571
          case R_ARM_LDRS_SB_G0:
8572
            group = 0;
8573
            break;
8574
 
8575
          case R_ARM_LDRS_PC_G1:
8576
          case R_ARM_LDRS_SB_G1:
8577
            group = 1;
8578
            break;
8579
 
8580
          case R_ARM_LDRS_PC_G2:
8581
          case R_ARM_LDRS_SB_G2:
8582
            group = 2;
8583
            break;
8584
 
8585
          default:
8586
            abort ();
8587
          }
8588
 
8589
        /* If REL, extract the addend from the insn.  If RELA, it will
8590
           have already been fetched for us.  */
8591
        if (globals->use_rel)
8592
          {
8593
            int negative = (insn & (1 << 23)) ? 1 : -1;
8594
            signed_addend = negative * (((insn & 0xf00) >> 4) + (insn & 0xf));
8595
          }
8596
 
8597
        /* Compute the value (X) to go in the place.  */
8598
        if (r_type == R_ARM_LDRS_PC_G0
8599
            || r_type == R_ARM_LDRS_PC_G1
8600
            || r_type == R_ARM_LDRS_PC_G2)
8601
          /* PC relative.  */
8602
          signed_value = value - pc + signed_addend;
8603
        else
8604
          /* Section base relative.  */
8605
          signed_value = value - sb + signed_addend;
8606
 
8607
        /* Calculate the value of the relevant G_{n-1} to obtain
8608
           the residual at that stage.  */
8609
        calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
8610
 
8611
        /* Check for overflow.  */
8612
        if (residual >= 0x100)
8613
          {
8614
            (*_bfd_error_handler)
8615
              (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
8616
              input_bfd, input_section,
8617
              (long) rel->r_offset, abs (signed_value), howto->name);
8618
            return bfd_reloc_overflow;
8619
          }
8620
 
8621
        /* Mask out the value and U bit.  */
8622
        insn &= 0xff7ff0f0;
8623
 
8624
        /* Set the U bit if the value to go in the place is non-negative.  */
8625
        if (signed_value >= 0)
8626
          insn |= 1 << 23;
8627
 
8628
        /* Encode the offset.  */
8629
        insn |= ((residual & 0xf0) << 4) | (residual & 0xf);
8630
 
8631
        bfd_put_32 (input_bfd, insn, hit_data);
8632
      }
8633
      return bfd_reloc_ok;
8634
 
8635
    case R_ARM_LDC_PC_G0:
8636
    case R_ARM_LDC_PC_G1:
8637
    case R_ARM_LDC_PC_G2:
8638
    case R_ARM_LDC_SB_G0:
8639
    case R_ARM_LDC_SB_G1:
8640
    case R_ARM_LDC_SB_G2:
8641
      {
8642
        bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
8643
        bfd_vma pc = input_section->output_section->vma
8644
                     + input_section->output_offset + rel->r_offset;
8645
        bfd_vma sb = 0; /* See note above.  */
8646
        bfd_vma residual;
8647
        bfd_signed_vma signed_value;
8648
        int group = 0;
8649
 
8650
        /* Determine which groups of bits to calculate.  */
8651
        switch (r_type)
8652
          {
8653
          case R_ARM_LDC_PC_G0:
8654
          case R_ARM_LDC_SB_G0:
8655
            group = 0;
8656
            break;
8657
 
8658
          case R_ARM_LDC_PC_G1:
8659
          case R_ARM_LDC_SB_G1:
8660
            group = 1;
8661
            break;
8662
 
8663
          case R_ARM_LDC_PC_G2:
8664
          case R_ARM_LDC_SB_G2:
8665
            group = 2;
8666
            break;
8667
 
8668
          default:
8669
            abort ();
8670
          }
8671
 
8672
        /* If REL, extract the addend from the insn.  If RELA, it will
8673
           have already been fetched for us.  */
8674
        if (globals->use_rel)
8675
          {
8676
            int negative = (insn & (1 << 23)) ? 1 : -1;
8677
            signed_addend = negative * ((insn & 0xff) << 2);
8678
          }
8679
 
8680
        /* Compute the value (X) to go in the place.  */
8681
        if (r_type == R_ARM_LDC_PC_G0
8682
            || r_type == R_ARM_LDC_PC_G1
8683
            || r_type == R_ARM_LDC_PC_G2)
8684
          /* PC relative.  */
8685
          signed_value = value - pc + signed_addend;
8686
        else
8687
          /* Section base relative.  */
8688
          signed_value = value - sb + signed_addend;
8689
 
8690
        /* Calculate the value of the relevant G_{n-1} to obtain
8691
           the residual at that stage.  */
8692
        calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
8693
 
8694
        /* Check for overflow.  (The absolute value to go in the place must be
8695
           divisible by four and, after having been divided by four, must
8696
           fit in eight bits.)  */
8697
        if ((residual & 0x3) != 0 || residual >= 0x400)
8698
          {
8699
            (*_bfd_error_handler)
8700
              (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
8701
              input_bfd, input_section,
8702
              (long) rel->r_offset, abs (signed_value), howto->name);
8703
            return bfd_reloc_overflow;
8704
          }
8705
 
8706
        /* Mask out the value and U bit.  */
8707
        insn &= 0xff7fff00;
8708
 
8709
        /* Set the U bit if the value to go in the place is non-negative.  */
8710
        if (signed_value >= 0)
8711
          insn |= 1 << 23;
8712
 
8713
        /* Encode the offset.  */
8714
        insn |= residual >> 2;
8715
 
8716
        bfd_put_32 (input_bfd, insn, hit_data);
8717
      }
8718
      return bfd_reloc_ok;
8719
 
8720
    default:
8721
      return bfd_reloc_notsupported;
8722
    }
8723
}
8724
 
8725
/* Add INCREMENT to the reloc (of type HOWTO) at ADDRESS.  */
8726
static void
8727
arm_add_to_rel (bfd *              abfd,
8728
                bfd_byte *         address,
8729
                reloc_howto_type * howto,
8730
                bfd_signed_vma     increment)
8731
{
8732
  bfd_signed_vma addend;
8733
 
8734
  if (howto->type == R_ARM_THM_CALL
8735
      || howto->type == R_ARM_THM_JUMP24)
8736
    {
8737
      int upper_insn, lower_insn;
8738
      int upper, lower;
8739
 
8740
      upper_insn = bfd_get_16 (abfd, address);
8741
      lower_insn = bfd_get_16 (abfd, address + 2);
8742
      upper = upper_insn & 0x7ff;
8743
      lower = lower_insn & 0x7ff;
8744
 
8745
      addend = (upper << 12) | (lower << 1);
8746
      addend += increment;
8747
      addend >>= 1;
8748
 
8749
      upper_insn = (upper_insn & 0xf800) | ((addend >> 11) & 0x7ff);
8750
      lower_insn = (lower_insn & 0xf800) | (addend & 0x7ff);
8751
 
8752
      bfd_put_16 (abfd, (bfd_vma) upper_insn, address);
8753
      bfd_put_16 (abfd, (bfd_vma) lower_insn, address + 2);
8754
    }
8755
  else
8756
    {
8757
      bfd_vma        contents;
8758
 
8759
      contents = bfd_get_32 (abfd, address);
8760
 
8761
      /* Get the (signed) value from the instruction.  */
8762
      addend = contents & howto->src_mask;
8763
      if (addend & ((howto->src_mask + 1) >> 1))
8764
        {
8765
          bfd_signed_vma mask;
8766
 
8767
          mask = -1;
8768
          mask &= ~ howto->src_mask;
8769
          addend |= mask;
8770
        }
8771
 
8772
      /* Add in the increment, (which is a byte value).  */
8773
      switch (howto->type)
8774
        {
8775
        default:
8776
          addend += increment;
8777
          break;
8778
 
8779
        case R_ARM_PC24:
8780
        case R_ARM_PLT32:
8781
        case R_ARM_CALL:
8782
        case R_ARM_JUMP24:
8783
          addend <<= howto->size;
8784
          addend += increment;
8785
 
8786
          /* Should we check for overflow here ?  */
8787
 
8788
          /* Drop any undesired bits.  */
8789
          addend >>= howto->rightshift;
8790
          break;
8791
        }
8792
 
8793
      contents = (contents & ~ howto->dst_mask) | (addend & howto->dst_mask);
8794
 
8795
      bfd_put_32 (abfd, contents, address);
8796
    }
8797
}
8798
 
8799
#define IS_ARM_TLS_RELOC(R_TYPE)        \
8800
  ((R_TYPE) == R_ARM_TLS_GD32           \
8801
   || (R_TYPE) == R_ARM_TLS_LDO32       \
8802
   || (R_TYPE) == R_ARM_TLS_LDM32       \
8803
   || (R_TYPE) == R_ARM_TLS_DTPOFF32    \
8804
   || (R_TYPE) == R_ARM_TLS_DTPMOD32    \
8805
   || (R_TYPE) == R_ARM_TLS_TPOFF32     \
8806
   || (R_TYPE) == R_ARM_TLS_LE32        \
8807
   || (R_TYPE) == R_ARM_TLS_IE32)
8808
 
8809
/* Relocate an ARM ELF section.  */
8810
 
8811
static bfd_boolean
8812
elf32_arm_relocate_section (bfd *                  output_bfd,
8813
                            struct bfd_link_info * info,
8814
                            bfd *                  input_bfd,
8815
                            asection *             input_section,
8816
                            bfd_byte *             contents,
8817
                            Elf_Internal_Rela *    relocs,
8818
                            Elf_Internal_Sym *     local_syms,
8819
                            asection **            local_sections)
8820
{
8821
  Elf_Internal_Shdr *symtab_hdr;
8822
  struct elf_link_hash_entry **sym_hashes;
8823
  Elf_Internal_Rela *rel;
8824
  Elf_Internal_Rela *relend;
8825
  const char *name;
8826
  struct elf32_arm_link_hash_table * globals;
8827
 
8828
  globals = elf32_arm_hash_table (info);
8829
  if (globals == NULL)
8830
    return FALSE;
8831
 
8832
  symtab_hdr = & elf_symtab_hdr (input_bfd);
8833
  sym_hashes = elf_sym_hashes (input_bfd);
8834
 
8835
  rel = relocs;
8836
  relend = relocs + input_section->reloc_count;
8837
  for (; rel < relend; rel++)
8838
    {
8839
      int                          r_type;
8840
      reloc_howto_type *           howto;
8841
      unsigned long                r_symndx;
8842
      Elf_Internal_Sym *           sym;
8843
      asection *                   sec;
8844
      struct elf_link_hash_entry * h;
8845
      bfd_vma                      relocation;
8846
      bfd_reloc_status_type        r;
8847
      arelent                      bfd_reloc;
8848
      char                         sym_type;
8849
      bfd_boolean                  unresolved_reloc = FALSE;
8850
      char *error_message = NULL;
8851
 
8852
      r_symndx = ELF32_R_SYM (rel->r_info);
8853
      r_type   = ELF32_R_TYPE (rel->r_info);
8854
      r_type   = arm_real_reloc_type (globals, r_type);
8855
 
8856
      if (   r_type == R_ARM_GNU_VTENTRY
8857
          || r_type == R_ARM_GNU_VTINHERIT)
8858
        continue;
8859
 
8860
      bfd_reloc.howto = elf32_arm_howto_from_type (r_type);
8861
      howto = bfd_reloc.howto;
8862
 
8863
      h = NULL;
8864
      sym = NULL;
8865
      sec = NULL;
8866
 
8867
      if (r_symndx < symtab_hdr->sh_info)
8868
        {
8869
          sym = local_syms + r_symndx;
8870
          sym_type = ELF32_ST_TYPE (sym->st_info);
8871
          sec = local_sections[r_symndx];
8872
 
8873
          /* An object file might have a reference to a local
8874
             undefined symbol.  This is a daft object file, but we
8875
             should at least do something about it.  V4BX & NONE
8876
             relocations do not use the symbol and are explicitly
8877
             allowed to use the undefined symbol, so allow those.  */
8878
          if (r_type != R_ARM_V4BX
8879
              && r_type != R_ARM_NONE
8880
              && bfd_is_und_section (sec)
8881
              && ELF_ST_BIND (sym->st_info) != STB_WEAK)
8882
            {
8883
              if (!info->callbacks->undefined_symbol
8884
                  (info, bfd_elf_string_from_elf_section
8885
                   (input_bfd, symtab_hdr->sh_link, sym->st_name),
8886
                   input_bfd, input_section,
8887
                   rel->r_offset, TRUE))
8888
                return FALSE;
8889
            }
8890
 
8891
          if (globals->use_rel)
8892
            {
8893
              relocation = (sec->output_section->vma
8894
                            + sec->output_offset
8895
                            + sym->st_value);
8896
              if (!info->relocatable
8897
                  && (sec->flags & SEC_MERGE)
8898
                  && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
8899
                {
8900
                  asection *msec;
8901
                  bfd_vma addend, value;
8902
 
8903
                  switch (r_type)
8904
                    {
8905
                    case R_ARM_MOVW_ABS_NC:
8906
                    case R_ARM_MOVT_ABS:
8907
                      value = bfd_get_32 (input_bfd, contents + rel->r_offset);
8908
                      addend = ((value & 0xf0000) >> 4) | (value & 0xfff);
8909
                      addend = (addend ^ 0x8000) - 0x8000;
8910
                      break;
8911
 
8912
                    case R_ARM_THM_MOVW_ABS_NC:
8913
                    case R_ARM_THM_MOVT_ABS:
8914
                      value = bfd_get_16 (input_bfd, contents + rel->r_offset)
8915
                              << 16;
8916
                      value |= bfd_get_16 (input_bfd,
8917
                                           contents + rel->r_offset + 2);
8918
                      addend = ((value & 0xf7000) >> 4) | (value & 0xff)
8919
                               | ((value & 0x04000000) >> 15);
8920
                      addend = (addend ^ 0x8000) - 0x8000;
8921
                      break;
8922
 
8923
                    default:
8924
                      if (howto->rightshift
8925
                          || (howto->src_mask & (howto->src_mask + 1)))
8926
                        {
8927
                          (*_bfd_error_handler)
8928
                            (_("%B(%A+0x%lx): %s relocation against SEC_MERGE section"),
8929
                             input_bfd, input_section,
8930
                             (long) rel->r_offset, howto->name);
8931
                          return FALSE;
8932
                        }
8933
 
8934
                      value = bfd_get_32 (input_bfd, contents + rel->r_offset);
8935
 
8936
                      /* Get the (signed) value from the instruction.  */
8937
                      addend = value & howto->src_mask;
8938
                      if (addend & ((howto->src_mask + 1) >> 1))
8939
                        {
8940
                          bfd_signed_vma mask;
8941
 
8942
                          mask = -1;
8943
                          mask &= ~ howto->src_mask;
8944
                          addend |= mask;
8945
                        }
8946
                      break;
8947
                    }
8948
 
8949
                  msec = sec;
8950
                  addend =
8951
                    _bfd_elf_rel_local_sym (output_bfd, sym, &msec, addend)
8952
                    - relocation;
8953
                  addend += msec->output_section->vma + msec->output_offset;
8954
 
8955
                  /* Cases here must match those in the preceeding
8956
                     switch statement.  */
8957
                  switch (r_type)
8958
                    {
8959
                    case R_ARM_MOVW_ABS_NC:
8960
                    case R_ARM_MOVT_ABS:
8961
                      value = (value & 0xfff0f000) | ((addend & 0xf000) << 4)
8962
                              | (addend & 0xfff);
8963
                      bfd_put_32 (input_bfd, value, contents + rel->r_offset);
8964
                      break;
8965
 
8966
                    case R_ARM_THM_MOVW_ABS_NC:
8967
                    case R_ARM_THM_MOVT_ABS:
8968
                      value = (value & 0xfbf08f00) | ((addend & 0xf700) << 4)
8969
                              | (addend & 0xff) | ((addend & 0x0800) << 15);
8970
                      bfd_put_16 (input_bfd, value >> 16,
8971
                                  contents + rel->r_offset);
8972
                      bfd_put_16 (input_bfd, value,
8973
                                  contents + rel->r_offset + 2);
8974
                      break;
8975
 
8976
                    default:
8977
                      value = (value & ~ howto->dst_mask)
8978
                              | (addend & howto->dst_mask);
8979
                      bfd_put_32 (input_bfd, value, contents + rel->r_offset);
8980
                      break;
8981
                    }
8982
                }
8983
            }
8984
          else
8985
            relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
8986
        }
8987
      else
8988
        {
8989
          bfd_boolean warned;
8990
 
8991
          RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
8992
                                   r_symndx, symtab_hdr, sym_hashes,
8993
                                   h, sec, relocation,
8994
                                   unresolved_reloc, warned);
8995
 
8996
          sym_type = h->type;
8997
        }
8998
 
8999
      if (sec != NULL && elf_discarded_section (sec))
9000
        {
9001
          /* For relocs against symbols from removed linkonce sections,
9002
             or sections discarded by a linker script, we just want the
9003
             section contents zeroed.  Avoid any special processing.  */
9004
          _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset);
9005
          rel->r_info = 0;
9006
          rel->r_addend = 0;
9007
          continue;
9008
        }
9009
 
9010
      if (info->relocatable)
9011
        {
9012
          /* This is a relocatable link.  We don't have to change
9013
             anything, unless the reloc is against a section symbol,
9014
             in which case we have to adjust according to where the
9015
             section symbol winds up in the output section.  */
9016
          if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
9017
            {
9018
              if (globals->use_rel)
9019
                arm_add_to_rel (input_bfd, contents + rel->r_offset,
9020
                                howto, (bfd_signed_vma) sec->output_offset);
9021
              else
9022
                rel->r_addend += sec->output_offset;
9023
            }
9024
          continue;
9025
        }
9026
 
9027
      if (h != NULL)
9028
        name = h->root.root.string;
9029
      else
9030
        {
9031
          name = (bfd_elf_string_from_elf_section
9032
                  (input_bfd, symtab_hdr->sh_link, sym->st_name));
9033
          if (name == NULL || *name == '\0')
9034
            name = bfd_section_name (input_bfd, sec);
9035
        }
9036
 
9037
      if (r_symndx != 0
9038
          && r_type != R_ARM_NONE
9039
          && (h == NULL
9040
              || h->root.type == bfd_link_hash_defined
9041
              || h->root.type == bfd_link_hash_defweak)
9042
          && IS_ARM_TLS_RELOC (r_type) != (sym_type == STT_TLS))
9043
        {
9044
          (*_bfd_error_handler)
9045
            ((sym_type == STT_TLS
9046
              ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
9047
              : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")),
9048
             input_bfd,
9049
             input_section,
9050
             (long) rel->r_offset,
9051
             howto->name,
9052
             name);
9053
        }
9054
 
9055
      r = elf32_arm_final_link_relocate (howto, input_bfd, output_bfd,
9056
                                         input_section, contents, rel,
9057
                                         relocation, info, sec, name,
9058
                                         (h ? ELF_ST_TYPE (h->type) :
9059
                                          ELF_ST_TYPE (sym->st_info)), h,
9060
                                         &unresolved_reloc, &error_message);
9061
 
9062
      /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
9063
         because such sections are not SEC_ALLOC and thus ld.so will
9064
         not process them.  */
9065
      if (unresolved_reloc
9066
          && !((input_section->flags & SEC_DEBUGGING) != 0
9067
               && h->def_dynamic))
9068
        {
9069
          (*_bfd_error_handler)
9070
            (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
9071
             input_bfd,
9072
             input_section,
9073
             (long) rel->r_offset,
9074
             howto->name,
9075
             h->root.root.string);
9076
          return FALSE;
9077
        }
9078
 
9079
      if (r != bfd_reloc_ok)
9080
        {
9081
          switch (r)
9082
            {
9083
            case bfd_reloc_overflow:
9084
              /* If the overflowing reloc was to an undefined symbol,
9085
                 we have already printed one error message and there
9086
                 is no point complaining again.  */
9087
              if ((! h ||
9088
                   h->root.type != bfd_link_hash_undefined)
9089
                  && (!((*info->callbacks->reloc_overflow)
9090
                        (info, (h ? &h->root : NULL), name, howto->name,
9091
                         (bfd_vma) 0, input_bfd, input_section,
9092
                         rel->r_offset))))
9093
                  return FALSE;
9094
              break;
9095
 
9096
            case bfd_reloc_undefined:
9097
              if (!((*info->callbacks->undefined_symbol)
9098
                    (info, name, input_bfd, input_section,
9099
                     rel->r_offset, TRUE)))
9100
                return FALSE;
9101
              break;
9102
 
9103
            case bfd_reloc_outofrange:
9104
              error_message = _("out of range");
9105
              goto common_error;
9106
 
9107
            case bfd_reloc_notsupported:
9108
              error_message = _("unsupported relocation");
9109
              goto common_error;
9110
 
9111
            case bfd_reloc_dangerous:
9112
              /* error_message should already be set.  */
9113
              goto common_error;
9114
 
9115
            default:
9116
              error_message = _("unknown error");
9117
              /* Fall through.  */
9118
 
9119
            common_error:
9120
              BFD_ASSERT (error_message != NULL);
9121
              if (!((*info->callbacks->reloc_dangerous)
9122
                    (info, error_message, input_bfd, input_section,
9123
                     rel->r_offset)))
9124
                return FALSE;
9125
              break;
9126
            }
9127
        }
9128
    }
9129
 
9130
  return TRUE;
9131
}
9132
 
9133
/* Add a new unwind edit to the list described by HEAD, TAIL.  If TINDEX is zero,
9134
   adds the edit to the start of the list.  (The list must be built in order of
9135
   ascending TINDEX: the function's callers are primarily responsible for
9136
   maintaining that condition).  */
9137
 
9138
static void
9139
add_unwind_table_edit (arm_unwind_table_edit **head,
9140
                       arm_unwind_table_edit **tail,
9141
                       arm_unwind_edit_type type,
9142
                       asection *linked_section,
9143
                       unsigned int tindex)
9144
{
9145
  arm_unwind_table_edit *new_edit = (arm_unwind_table_edit *)
9146
      xmalloc (sizeof (arm_unwind_table_edit));
9147
 
9148
  new_edit->type = type;
9149
  new_edit->linked_section = linked_section;
9150
  new_edit->index = tindex;
9151
 
9152
  if (tindex > 0)
9153
    {
9154
      new_edit->next = NULL;
9155
 
9156
      if (*tail)
9157
        (*tail)->next = new_edit;
9158
 
9159
      (*tail) = new_edit;
9160
 
9161
      if (!*head)
9162
        (*head) = new_edit;
9163
    }
9164
  else
9165
    {
9166
      new_edit->next = *head;
9167
 
9168
      if (!*tail)
9169
        *tail = new_edit;
9170
 
9171
      *head = new_edit;
9172
    }
9173
}
9174
 
9175
static _arm_elf_section_data *get_arm_elf_section_data (asection *);
9176
 
9177
/* Increase the size of EXIDX_SEC by ADJUST bytes.  ADJUST mau be negative.  */
9178
static void
9179
adjust_exidx_size(asection *exidx_sec, int adjust)
9180
{
9181
  asection *out_sec;
9182
 
9183
  if (!exidx_sec->rawsize)
9184
    exidx_sec->rawsize = exidx_sec->size;
9185
 
9186
  bfd_set_section_size (exidx_sec->owner, exidx_sec, exidx_sec->size + adjust);
9187
  out_sec = exidx_sec->output_section;
9188
  /* Adjust size of output section.  */
9189
  bfd_set_section_size (out_sec->owner, out_sec, out_sec->size +adjust);
9190
}
9191
 
9192
/* Insert an EXIDX_CANTUNWIND marker at the end of a section.  */
9193
static void
9194
insert_cantunwind_after(asection *text_sec, asection *exidx_sec)
9195
{
9196
  struct _arm_elf_section_data *exidx_arm_data;
9197
 
9198
  exidx_arm_data = get_arm_elf_section_data (exidx_sec);
9199
  add_unwind_table_edit (
9200
    &exidx_arm_data->u.exidx.unwind_edit_list,
9201
    &exidx_arm_data->u.exidx.unwind_edit_tail,
9202
    INSERT_EXIDX_CANTUNWIND_AT_END, text_sec, UINT_MAX);
9203
 
9204
  adjust_exidx_size(exidx_sec, 8);
9205
}
9206
 
9207
/* Scan .ARM.exidx tables, and create a list describing edits which should be
9208
   made to those tables, such that:
9209
 
9210
     1. Regions without unwind data are marked with EXIDX_CANTUNWIND entries.
9211
     2. Duplicate entries are merged together (EXIDX_CANTUNWIND, or unwind
9212
        codes which have been inlined into the index).
9213
 
9214
   If MERGE_EXIDX_ENTRIES is false, duplicate entries are not merged.
9215
 
9216
   The edits are applied when the tables are written
9217
   (in elf32_arm_write_section).
9218
*/
9219
 
9220
bfd_boolean
9221
elf32_arm_fix_exidx_coverage (asection **text_section_order,
9222
                              unsigned int num_text_sections,
9223
                              struct bfd_link_info *info,
9224
                              bfd_boolean merge_exidx_entries)
9225
{
9226
  bfd *inp;
9227
  unsigned int last_second_word = 0, i;
9228
  asection *last_exidx_sec = NULL;
9229
  asection *last_text_sec = NULL;
9230
  int last_unwind_type = -1;
9231
 
9232
  /* Walk over all EXIDX sections, and create backlinks from the corrsponding
9233
     text sections.  */
9234
  for (inp = info->input_bfds; inp != NULL; inp = inp->link_next)
9235
    {
9236
      asection *sec;
9237
 
9238
      for (sec = inp->sections; sec != NULL; sec = sec->next)
9239
        {
9240
          struct bfd_elf_section_data *elf_sec = elf_section_data (sec);
9241
          Elf_Internal_Shdr *hdr = &elf_sec->this_hdr;
9242
 
9243
          if (!hdr || hdr->sh_type != SHT_ARM_EXIDX)
9244
            continue;
9245
 
9246
          if (elf_sec->linked_to)
9247
            {
9248
              Elf_Internal_Shdr *linked_hdr
9249
                = &elf_section_data (elf_sec->linked_to)->this_hdr;
9250
              struct _arm_elf_section_data *linked_sec_arm_data
9251
                = get_arm_elf_section_data (linked_hdr->bfd_section);
9252
 
9253
              if (linked_sec_arm_data == NULL)
9254
                continue;
9255
 
9256
              /* Link this .ARM.exidx section back from the text section it
9257
                 describes.  */
9258
              linked_sec_arm_data->u.text.arm_exidx_sec = sec;
9259
            }
9260
        }
9261
    }
9262
 
9263
  /* Walk all text sections in order of increasing VMA.  Eilminate duplicate
9264
     index table entries (EXIDX_CANTUNWIND and inlined unwind opcodes),
9265
     and add EXIDX_CANTUNWIND entries for sections with no unwind table data.  */
9266
 
9267
  for (i = 0; i < num_text_sections; i++)
9268
    {
9269
      asection *sec = text_section_order[i];
9270
      asection *exidx_sec;
9271
      struct _arm_elf_section_data *arm_data = get_arm_elf_section_data (sec);
9272
      struct _arm_elf_section_data *exidx_arm_data;
9273
      bfd_byte *contents = NULL;
9274
      int deleted_exidx_bytes = 0;
9275
      bfd_vma j;
9276
      arm_unwind_table_edit *unwind_edit_head = NULL;
9277
      arm_unwind_table_edit *unwind_edit_tail = NULL;
9278
      Elf_Internal_Shdr *hdr;
9279
      bfd *ibfd;
9280
 
9281
      if (arm_data == NULL)
9282
        continue;
9283
 
9284
      exidx_sec = arm_data->u.text.arm_exidx_sec;
9285
      if (exidx_sec == NULL)
9286
        {
9287
          /* Section has no unwind data.  */
9288
          if (last_unwind_type == 0 || !last_exidx_sec)
9289
            continue;
9290
 
9291
          /* Ignore zero sized sections.  */
9292
          if (sec->size == 0)
9293
            continue;
9294
 
9295
          insert_cantunwind_after(last_text_sec, last_exidx_sec);
9296
          last_unwind_type = 0;
9297
          continue;
9298
        }
9299
 
9300
      /* Skip /DISCARD/ sections.  */
9301
      if (bfd_is_abs_section (exidx_sec->output_section))
9302
        continue;
9303
 
9304
      hdr = &elf_section_data (exidx_sec)->this_hdr;
9305
      if (hdr->sh_type != SHT_ARM_EXIDX)
9306
        continue;
9307
 
9308
      exidx_arm_data = get_arm_elf_section_data (exidx_sec);
9309
      if (exidx_arm_data == NULL)
9310
        continue;
9311
 
9312
      ibfd = exidx_sec->owner;
9313
 
9314
      if (hdr->contents != NULL)
9315
        contents = hdr->contents;
9316
      else if (! bfd_malloc_and_get_section (ibfd, exidx_sec, &contents))
9317
        /* An error?  */
9318
        continue;
9319
 
9320
      for (j = 0; j < hdr->sh_size; j += 8)
9321
        {
9322
          unsigned int second_word = bfd_get_32 (ibfd, contents + j + 4);
9323
          int unwind_type;
9324
          int elide = 0;
9325
 
9326
          /* An EXIDX_CANTUNWIND entry.  */
9327
          if (second_word == 1)
9328
            {
9329
              if (last_unwind_type == 0)
9330
                elide = 1;
9331
              unwind_type = 0;
9332
            }
9333
          /* Inlined unwinding data.  Merge if equal to previous.  */
9334
          else if ((second_word & 0x80000000) != 0)
9335
            {
9336
              if (merge_exidx_entries
9337
                   && last_second_word == second_word && last_unwind_type == 1)
9338
                elide = 1;
9339
              unwind_type = 1;
9340
              last_second_word = second_word;
9341
            }
9342
          /* Normal table entry.  In theory we could merge these too,
9343
             but duplicate entries are likely to be much less common.  */
9344
          else
9345
            unwind_type = 2;
9346
 
9347
          if (elide)
9348
            {
9349
              add_unwind_table_edit (&unwind_edit_head, &unwind_edit_tail,
9350
                                     DELETE_EXIDX_ENTRY, NULL, j / 8);
9351
 
9352
              deleted_exidx_bytes += 8;
9353
            }
9354
 
9355
          last_unwind_type = unwind_type;
9356
        }
9357
 
9358
      /* Free contents if we allocated it ourselves.  */
9359
      if (contents != hdr->contents)
9360
        free (contents);
9361
 
9362
      /* Record edits to be applied later (in elf32_arm_write_section).  */
9363
      exidx_arm_data->u.exidx.unwind_edit_list = unwind_edit_head;
9364
      exidx_arm_data->u.exidx.unwind_edit_tail = unwind_edit_tail;
9365
 
9366
      if (deleted_exidx_bytes > 0)
9367
        adjust_exidx_size(exidx_sec, -deleted_exidx_bytes);
9368
 
9369
      last_exidx_sec = exidx_sec;
9370
      last_text_sec = sec;
9371
    }
9372
 
9373
  /* Add terminating CANTUNWIND entry.  */
9374
  if (last_exidx_sec && last_unwind_type != 0)
9375
    insert_cantunwind_after(last_text_sec, last_exidx_sec);
9376
 
9377
  return TRUE;
9378
}
9379
 
9380
static bfd_boolean
9381
elf32_arm_output_glue_section (struct bfd_link_info *info, bfd *obfd,
9382
                               bfd *ibfd, const char *name)
9383
{
9384
  asection *sec, *osec;
9385
 
9386
  sec = bfd_get_section_by_name (ibfd, name);
9387
  if (sec == NULL || (sec->flags & SEC_EXCLUDE) != 0)
9388
    return TRUE;
9389
 
9390
  osec = sec->output_section;
9391
  if (elf32_arm_write_section (obfd, info, sec, sec->contents))
9392
    return TRUE;
9393
 
9394
  if (! bfd_set_section_contents (obfd, osec, sec->contents,
9395
                                  sec->output_offset, sec->size))
9396
    return FALSE;
9397
 
9398
  return TRUE;
9399
}
9400
 
9401
static bfd_boolean
9402
elf32_arm_final_link (bfd *abfd, struct bfd_link_info *info)
9403
{
9404
  struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info);
9405
  asection *sec, *osec;
9406
 
9407
  if (globals == NULL)
9408
    return FALSE;
9409
 
9410
  /* Invoke the regular ELF backend linker to do all the work.  */
9411
  if (!bfd_elf_final_link (abfd, info))
9412
    return FALSE;
9413
 
9414
  /* Process stub sections (eg BE8 encoding, ...).  */
9415
  struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
9416
  int i;
9417
  for(i=0; i<htab->top_id; i++) {
9418
    sec = htab->stub_group[i].stub_sec;
9419
    if (sec) {
9420
      osec = sec->output_section;
9421
      elf32_arm_write_section (abfd, info, sec, sec->contents);
9422
      if (! bfd_set_section_contents (abfd, osec, sec->contents,
9423
                                      sec->output_offset, sec->size))
9424
        return FALSE;
9425
    }
9426
  }
9427
 
9428
  /* Write out any glue sections now that we have created all the
9429
     stubs.  */
9430
  if (globals->bfd_of_glue_owner != NULL)
9431
    {
9432
      if (! elf32_arm_output_glue_section (info, abfd,
9433
                                           globals->bfd_of_glue_owner,
9434
                                           ARM2THUMB_GLUE_SECTION_NAME))
9435
        return FALSE;
9436
 
9437
      if (! elf32_arm_output_glue_section (info, abfd,
9438
                                           globals->bfd_of_glue_owner,
9439
                                           THUMB2ARM_GLUE_SECTION_NAME))
9440
        return FALSE;
9441
 
9442
      if (! elf32_arm_output_glue_section (info, abfd,
9443
                                           globals->bfd_of_glue_owner,
9444
                                           VFP11_ERRATUM_VENEER_SECTION_NAME))
9445
        return FALSE;
9446
 
9447
      if (! elf32_arm_output_glue_section (info, abfd,
9448
                                           globals->bfd_of_glue_owner,
9449
                                           ARM_BX_GLUE_SECTION_NAME))
9450
        return FALSE;
9451
    }
9452
 
9453
  return TRUE;
9454
}
9455
 
9456
/* Set the right machine number.  */
9457
 
9458
static bfd_boolean
9459
elf32_arm_object_p (bfd *abfd)
9460
{
9461
  unsigned int mach;
9462
 
9463
  mach = bfd_arm_get_mach_from_notes (abfd, ARM_NOTE_SECTION);
9464
 
9465
  if (mach != bfd_mach_arm_unknown)
9466
    bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach);
9467
 
9468
  else if (elf_elfheader (abfd)->e_flags & EF_ARM_MAVERICK_FLOAT)
9469
    bfd_default_set_arch_mach (abfd, bfd_arch_arm, bfd_mach_arm_ep9312);
9470
 
9471
  else
9472
    bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach);
9473
 
9474
  return TRUE;
9475
}
9476
 
9477
/* Function to keep ARM specific flags in the ELF header.  */
9478
 
9479
static bfd_boolean
9480
elf32_arm_set_private_flags (bfd *abfd, flagword flags)
9481
{
9482
  if (elf_flags_init (abfd)
9483
      && elf_elfheader (abfd)->e_flags != flags)
9484
    {
9485
      if (EF_ARM_EABI_VERSION (flags) == EF_ARM_EABI_UNKNOWN)
9486
        {
9487
          if (flags & EF_ARM_INTERWORK)
9488
            (*_bfd_error_handler)
9489
              (_("Warning: Not setting interworking flag of %B since it has already been specified as non-interworking"),
9490
               abfd);
9491
          else
9492
            _bfd_error_handler
9493
              (_("Warning: Clearing the interworking flag of %B due to outside request"),
9494
               abfd);
9495
        }
9496
    }
9497
  else
9498
    {
9499
      elf_elfheader (abfd)->e_flags = flags;
9500
      elf_flags_init (abfd) = TRUE;
9501
    }
9502
 
9503
  return TRUE;
9504
}
9505
 
9506
/* Copy backend specific data from one object module to another.  */
9507
 
9508
static bfd_boolean
9509
elf32_arm_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
9510
{
9511
  flagword in_flags;
9512
  flagword out_flags;
9513
 
9514
  if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
9515
    return TRUE;
9516
 
9517
  in_flags  = elf_elfheader (ibfd)->e_flags;
9518
  out_flags = elf_elfheader (obfd)->e_flags;
9519
 
9520
  if (elf_flags_init (obfd)
9521
      && EF_ARM_EABI_VERSION (out_flags) == EF_ARM_EABI_UNKNOWN
9522
      && in_flags != out_flags)
9523
    {
9524
      /* Cannot mix APCS26 and APCS32 code.  */
9525
      if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
9526
        return FALSE;
9527
 
9528
      /* Cannot mix float APCS and non-float APCS code.  */
9529
      if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
9530
        return FALSE;
9531
 
9532
      /* If the src and dest have different interworking flags
9533
         then turn off the interworking bit.  */
9534
      if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
9535
        {
9536
          if (out_flags & EF_ARM_INTERWORK)
9537
            _bfd_error_handler
9538
              (_("Warning: Clearing the interworking flag of %B because non-interworking code in %B has been linked with it"),
9539
               obfd, ibfd);
9540
 
9541
          in_flags &= ~EF_ARM_INTERWORK;
9542
        }
9543
 
9544
      /* Likewise for PIC, though don't warn for this case.  */
9545
      if ((in_flags & EF_ARM_PIC) != (out_flags & EF_ARM_PIC))
9546
        in_flags &= ~EF_ARM_PIC;
9547
    }
9548
 
9549
  elf_elfheader (obfd)->e_flags = in_flags;
9550
  elf_flags_init (obfd) = TRUE;
9551
 
9552
  /* Also copy the EI_OSABI field.  */
9553
  elf_elfheader (obfd)->e_ident[EI_OSABI] =
9554
    elf_elfheader (ibfd)->e_ident[EI_OSABI];
9555
 
9556
  /* Copy object attributes.  */
9557
  _bfd_elf_copy_obj_attributes (ibfd, obfd);
9558
 
9559
  return TRUE;
9560
}
9561
 
9562
/* Values for Tag_ABI_PCS_R9_use.  */
9563
enum
9564
{
9565
  AEABI_R9_V6,
9566
  AEABI_R9_SB,
9567
  AEABI_R9_TLS,
9568
  AEABI_R9_unused
9569
};
9570
 
9571
/* Values for Tag_ABI_PCS_RW_data.  */
9572
enum
9573
{
9574
  AEABI_PCS_RW_data_absolute,
9575
  AEABI_PCS_RW_data_PCrel,
9576
  AEABI_PCS_RW_data_SBrel,
9577
  AEABI_PCS_RW_data_unused
9578
};
9579
 
9580
/* Values for Tag_ABI_enum_size.  */
9581
enum
9582
{
9583
  AEABI_enum_unused,
9584
  AEABI_enum_short,
9585
  AEABI_enum_wide,
9586
  AEABI_enum_forced_wide
9587
};
9588
 
9589
/* Determine whether an object attribute tag takes an integer, a
9590
   string or both.  */
9591
 
9592
static int
9593
elf32_arm_obj_attrs_arg_type (int tag)
9594
{
9595
  if (tag == Tag_compatibility)
9596
    return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_STR_VAL;
9597
  else if (tag == Tag_nodefaults)
9598
    return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_NO_DEFAULT;
9599
  else if (tag == Tag_CPU_raw_name || tag == Tag_CPU_name)
9600
    return ATTR_TYPE_FLAG_STR_VAL;
9601
  else if (tag < 32)
9602
    return ATTR_TYPE_FLAG_INT_VAL;
9603
  else
9604
    return (tag & 1) != 0 ? ATTR_TYPE_FLAG_STR_VAL : ATTR_TYPE_FLAG_INT_VAL;
9605
}
9606
 
9607
/* The ABI defines that Tag_conformance should be emitted first, and that
9608
   Tag_nodefaults should be second (if either is defined).  This sets those
9609
   two positions, and bumps up the position of all the remaining tags to
9610
   compensate.  */
9611
static int
9612
elf32_arm_obj_attrs_order (int num)
9613
{
9614
  if (num == LEAST_KNOWN_OBJ_ATTRIBUTE)
9615
    return Tag_conformance;
9616
  if (num == LEAST_KNOWN_OBJ_ATTRIBUTE + 1)
9617
    return Tag_nodefaults;
9618
  if ((num - 2) < Tag_nodefaults)
9619
    return num - 2;
9620
  if ((num - 1) < Tag_conformance)
9621
    return num - 1;
9622
  return num;
9623
}
9624
 
9625
/* Read the architecture from the Tag_also_compatible_with attribute, if any.
9626
   Returns -1 if no architecture could be read.  */
9627
 
9628
static int
9629
get_secondary_compatible_arch (bfd *abfd)
9630
{
9631
  obj_attribute *attr =
9632
    &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with];
9633
 
9634
  /* Note: the tag and its argument below are uleb128 values, though
9635
     currently-defined values fit in one byte for each.  */
9636
  if (attr->s
9637
      && attr->s[0] == Tag_CPU_arch
9638
      && (attr->s[1] & 128) != 128
9639
      && attr->s[2] == 0)
9640
   return attr->s[1];
9641
 
9642
  /* This tag is "safely ignorable", so don't complain if it looks funny.  */
9643
  return -1;
9644
}
9645
 
9646
/* Set, or unset, the architecture of the Tag_also_compatible_with attribute.
9647
   The tag is removed if ARCH is -1.  */
9648
 
9649
static void
9650
set_secondary_compatible_arch (bfd *abfd, int arch)
9651
{
9652
  obj_attribute *attr =
9653
    &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with];
9654
 
9655
  if (arch == -1)
9656
    {
9657
      attr->s = NULL;
9658
      return;
9659
    }
9660
 
9661
  /* Note: the tag and its argument below are uleb128 values, though
9662
     currently-defined values fit in one byte for each.  */
9663
  if (!attr->s)
9664
    attr->s = (char *) bfd_alloc (abfd, 3);
9665
  attr->s[0] = Tag_CPU_arch;
9666
  attr->s[1] = arch;
9667
  attr->s[2] = '\0';
9668
}
9669
 
9670
/* Combine two values for Tag_CPU_arch, taking secondary compatibility tags
9671
   into account.  */
9672
 
9673
static int
9674
tag_cpu_arch_combine (bfd *ibfd, int oldtag, int *secondary_compat_out,
9675
                      int newtag, int secondary_compat)
9676
{
9677
#define T(X) TAG_CPU_ARCH_##X
9678
  int tagl, tagh, result;
9679
  const int v6t2[] =
9680
    {
9681
      T(V6T2),   /* PRE_V4.  */
9682
      T(V6T2),   /* V4.  */
9683
      T(V6T2),   /* V4T.  */
9684
      T(V6T2),   /* V5T.  */
9685
      T(V6T2),   /* V5TE.  */
9686
      T(V6T2),   /* V5TEJ.  */
9687
      T(V6T2),   /* V6.  */
9688
      T(V7),     /* V6KZ.  */
9689
      T(V6T2)    /* V6T2.  */
9690
    };
9691
  const int v6k[] =
9692
    {
9693
      T(V6K),    /* PRE_V4.  */
9694
      T(V6K),    /* V4.  */
9695
      T(V6K),    /* V4T.  */
9696
      T(V6K),    /* V5T.  */
9697
      T(V6K),    /* V5TE.  */
9698
      T(V6K),    /* V5TEJ.  */
9699
      T(V6K),    /* V6.  */
9700
      T(V6KZ),   /* V6KZ.  */
9701
      T(V7),     /* V6T2.  */
9702
      T(V6K)     /* V6K.  */
9703
    };
9704
  const int v7[] =
9705
    {
9706
      T(V7),     /* PRE_V4.  */
9707
      T(V7),     /* V4.  */
9708
      T(V7),     /* V4T.  */
9709
      T(V7),     /* V5T.  */
9710
      T(V7),     /* V5TE.  */
9711
      T(V7),     /* V5TEJ.  */
9712
      T(V7),     /* V6.  */
9713
      T(V7),     /* V6KZ.  */
9714
      T(V7),     /* V6T2.  */
9715
      T(V7),     /* V6K.  */
9716
      T(V7)      /* V7.  */
9717
    };
9718
  const int v6_m[] =
9719
    {
9720
      -1,        /* PRE_V4.  */
9721
      -1,        /* V4.  */
9722
      T(V6K),    /* V4T.  */
9723
      T(V6K),    /* V5T.  */
9724
      T(V6K),    /* V5TE.  */
9725
      T(V6K),    /* V5TEJ.  */
9726
      T(V6K),    /* V6.  */
9727
      T(V6KZ),   /* V6KZ.  */
9728
      T(V7),     /* V6T2.  */
9729
      T(V6K),    /* V6K.  */
9730
      T(V7),     /* V7.  */
9731
      T(V6_M)    /* V6_M.  */
9732
    };
9733
  const int v6s_m[] =
9734
    {
9735
      -1,        /* PRE_V4.  */
9736
      -1,        /* V4.  */
9737
      T(V6K),    /* V4T.  */
9738
      T(V6K),    /* V5T.  */
9739
      T(V6K),    /* V5TE.  */
9740
      T(V6K),    /* V5TEJ.  */
9741
      T(V6K),    /* V6.  */
9742
      T(V6KZ),   /* V6KZ.  */
9743
      T(V7),     /* V6T2.  */
9744
      T(V6K),    /* V6K.  */
9745
      T(V7),     /* V7.  */
9746
      T(V6S_M),  /* V6_M.  */
9747
      T(V6S_M)   /* V6S_M.  */
9748
    };
9749
  const int v7e_m[] =
9750
    {
9751
      -1,        /* PRE_V4.  */
9752
      -1,        /* V4.  */
9753
      T(V7E_M),  /* V4T.  */
9754
      T(V7E_M),  /* V5T.  */
9755
      T(V7E_M),  /* V5TE.  */
9756
      T(V7E_M),  /* V5TEJ.  */
9757
      T(V7E_M),  /* V6.  */
9758
      T(V7E_M),  /* V6KZ.  */
9759
      T(V7E_M),  /* V6T2.  */
9760
      T(V7E_M),  /* V6K.  */
9761
      T(V7E_M),  /* V7.  */
9762
      T(V7E_M),  /* V6_M.  */
9763
      T(V7E_M),  /* V6S_M.  */
9764
      T(V7E_M)   /* V7E_M.  */
9765
    };
9766
  const int v4t_plus_v6_m[] =
9767
    {
9768
      -1,               /* PRE_V4.  */
9769
      -1,               /* V4.  */
9770
      T(V4T),           /* V4T.  */
9771
      T(V5T),           /* V5T.  */
9772
      T(V5TE),          /* V5TE.  */
9773
      T(V5TEJ),         /* V5TEJ.  */
9774
      T(V6),            /* V6.  */
9775
      T(V6KZ),          /* V6KZ.  */
9776
      T(V6T2),          /* V6T2.  */
9777
      T(V6K),           /* V6K.  */
9778
      T(V7),            /* V7.  */
9779
      T(V6_M),          /* V6_M.  */
9780
      T(V6S_M),         /* V6S_M.  */
9781
      T(V7E_M),         /* V7E_M.  */
9782
      T(V4T_PLUS_V6_M)  /* V4T plus V6_M.  */
9783
    };
9784
  const int *comb[] =
9785
    {
9786
      v6t2,
9787
      v6k,
9788
      v7,
9789
      v6_m,
9790
      v6s_m,
9791
      v7e_m,
9792
      /* Pseudo-architecture.  */
9793
      v4t_plus_v6_m
9794
    };
9795
 
9796
  /* Check we've not got a higher architecture than we know about.  */
9797
 
9798
  if (oldtag > MAX_TAG_CPU_ARCH || newtag > MAX_TAG_CPU_ARCH)
9799
    {
9800
      _bfd_error_handler (_("error: %B: Unknown CPU architecture"), ibfd);
9801
      return -1;
9802
    }
9803
 
9804
  /* Override old tag if we have a Tag_also_compatible_with on the output.  */
9805
 
9806
  if ((oldtag == T(V6_M) && *secondary_compat_out == T(V4T))
9807
      || (oldtag == T(V4T) && *secondary_compat_out == T(V6_M)))
9808
    oldtag = T(V4T_PLUS_V6_M);
9809
 
9810
  /* And override the new tag if we have a Tag_also_compatible_with on the
9811
     input.  */
9812
 
9813
  if ((newtag == T(V6_M) && secondary_compat == T(V4T))
9814
      || (newtag == T(V4T) && secondary_compat == T(V6_M)))
9815
    newtag = T(V4T_PLUS_V6_M);
9816
 
9817
  tagl = (oldtag < newtag) ? oldtag : newtag;
9818
  result = tagh = (oldtag > newtag) ? oldtag : newtag;
9819
 
9820
  /* Architectures before V6KZ add features monotonically.  */
9821
  if (tagh <= TAG_CPU_ARCH_V6KZ)
9822
    return result;
9823
 
9824
  result = comb[tagh - T(V6T2)][tagl];
9825
 
9826
  /* Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
9827
     as the canonical version.  */
9828
  if (result == T(V4T_PLUS_V6_M))
9829
    {
9830
      result = T(V4T);
9831
      *secondary_compat_out = T(V6_M);
9832
    }
9833
  else
9834
    *secondary_compat_out = -1;
9835
 
9836
  if (result == -1)
9837
    {
9838
      _bfd_error_handler (_("error: %B: Conflicting CPU architectures %d/%d"),
9839
                          ibfd, oldtag, newtag);
9840
      return -1;
9841
    }
9842
 
9843
  return result;
9844
#undef T
9845
}
9846
 
9847
/* Merge EABI object attributes from IBFD into OBFD.  Raise an error if there
9848
   are conflicting attributes.  */
9849
 
9850
static bfd_boolean
9851
elf32_arm_merge_eabi_attributes (bfd *ibfd, bfd *obfd)
9852
{
9853
  obj_attribute *in_attr;
9854
  obj_attribute *out_attr;
9855
  obj_attribute_list *in_list;
9856
  obj_attribute_list *out_list;
9857
  obj_attribute_list **out_listp;
9858
  /* Some tags have 0 = don't care, 1 = strong requirement,
9859
     2 = weak requirement.  */
9860
  static const int order_021[3] = {0, 2, 1};
9861
  int i;
9862
  bfd_boolean result = TRUE;
9863
 
9864
  /* Skip the linker stubs file.  This preserves previous behavior
9865
     of accepting unknown attributes in the first input file - but
9866
     is that a bug?  */
9867
  if (ibfd->flags & BFD_LINKER_CREATED)
9868
    return TRUE;
9869
 
9870
  if (!elf_known_obj_attributes_proc (obfd)[0].i)
9871
    {
9872
      /* This is the first object.  Copy the attributes.  */
9873
      _bfd_elf_copy_obj_attributes (ibfd, obfd);
9874
 
9875
      out_attr = elf_known_obj_attributes_proc (obfd);
9876
 
9877
      /* Use the Tag_null value to indicate the attributes have been
9878
         initialized.  */
9879
      out_attr[0].i = 1;
9880
 
9881
      /* We do not output objects with Tag_MPextension_use_legacy - we move
9882
         the attribute's value to Tag_MPextension_use.  */
9883
      if (out_attr[Tag_MPextension_use_legacy].i != 0)
9884
        {
9885
          if (out_attr[Tag_MPextension_use].i != 0
9886
              && out_attr[Tag_MPextension_use_legacy].i
9887
                != out_attr[Tag_MPextension_use].i)
9888
            {
9889
              _bfd_error_handler
9890
                (_("Error: %B has both the current and legacy "
9891
                   "Tag_MPextension_use attributes"), ibfd);
9892
              result = FALSE;
9893
            }
9894
 
9895
          out_attr[Tag_MPextension_use] =
9896
            out_attr[Tag_MPextension_use_legacy];
9897
          out_attr[Tag_MPextension_use_legacy].type = 0;
9898
          out_attr[Tag_MPextension_use_legacy].i = 0;
9899
        }
9900
 
9901
      return result;
9902
    }
9903
 
9904
  in_attr = elf_known_obj_attributes_proc (ibfd);
9905
  out_attr = elf_known_obj_attributes_proc (obfd);
9906
  /* This needs to happen before Tag_ABI_FP_number_model is merged.  */
9907
  if (in_attr[Tag_ABI_VFP_args].i != out_attr[Tag_ABI_VFP_args].i)
9908
    {
9909
      /* Ignore mismatches if the object doesn't use floating point.  */
9910
      if (out_attr[Tag_ABI_FP_number_model].i == 0)
9911
        out_attr[Tag_ABI_VFP_args].i = in_attr[Tag_ABI_VFP_args].i;
9912
      else if (in_attr[Tag_ABI_FP_number_model].i != 0)
9913
        {
9914
          _bfd_error_handler
9915
            (_("error: %B uses VFP register arguments, %B does not"),
9916
             in_attr[Tag_ABI_VFP_args].i ? ibfd : obfd,
9917
             in_attr[Tag_ABI_VFP_args].i ? obfd : ibfd);
9918
          result = FALSE;
9919
        }
9920
    }
9921
 
9922
  for (i = LEAST_KNOWN_OBJ_ATTRIBUTE; i < NUM_KNOWN_OBJ_ATTRIBUTES; i++)
9923
    {
9924
      /* Merge this attribute with existing attributes.  */
9925
      switch (i)
9926
        {
9927
        case Tag_CPU_raw_name:
9928
        case Tag_CPU_name:
9929
          /* These are merged after Tag_CPU_arch. */
9930
          break;
9931
 
9932
        case Tag_ABI_optimization_goals:
9933
        case Tag_ABI_FP_optimization_goals:
9934
          /* Use the first value seen.  */
9935
          break;
9936
 
9937
        case Tag_CPU_arch:
9938
          {
9939
            int secondary_compat = -1, secondary_compat_out = -1;
9940
            unsigned int saved_out_attr = out_attr[i].i;
9941
            static const char *name_table[] = {
9942
                /* These aren't real CPU names, but we can't guess
9943
                   that from the architecture version alone.  */
9944
                "Pre v4",
9945
                "ARM v4",
9946
                "ARM v4T",
9947
                "ARM v5T",
9948
                "ARM v5TE",
9949
                "ARM v5TEJ",
9950
                "ARM v6",
9951
                "ARM v6KZ",
9952
                "ARM v6T2",
9953
                "ARM v6K",
9954
                "ARM v7",
9955
                "ARM v6-M",
9956
                "ARM v6S-M"
9957
            };
9958
 
9959
            /* Merge Tag_CPU_arch and Tag_also_compatible_with.  */
9960
            secondary_compat = get_secondary_compatible_arch (ibfd);
9961
            secondary_compat_out = get_secondary_compatible_arch (obfd);
9962
            out_attr[i].i = tag_cpu_arch_combine (ibfd, out_attr[i].i,
9963
                                                  &secondary_compat_out,
9964
                                                  in_attr[i].i,
9965
                                                  secondary_compat);
9966
            set_secondary_compatible_arch (obfd, secondary_compat_out);
9967
 
9968
            /* Merge Tag_CPU_name and Tag_CPU_raw_name.  */
9969
            if (out_attr[i].i == saved_out_attr)
9970
              ; /* Leave the names alone.  */
9971
            else if (out_attr[i].i == in_attr[i].i)
9972
              {
9973
                /* The output architecture has been changed to match the
9974
                   input architecture.  Use the input names.  */
9975
                out_attr[Tag_CPU_name].s = in_attr[Tag_CPU_name].s
9976
                  ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_name].s)
9977
                  : NULL;
9978
                out_attr[Tag_CPU_raw_name].s = in_attr[Tag_CPU_raw_name].s
9979
                  ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_raw_name].s)
9980
                  : NULL;
9981
              }
9982
            else
9983
              {
9984
                out_attr[Tag_CPU_name].s = NULL;
9985
                out_attr[Tag_CPU_raw_name].s = NULL;
9986
              }
9987
 
9988
            /* If we still don't have a value for Tag_CPU_name,
9989
               make one up now.  Tag_CPU_raw_name remains blank.  */
9990
            if (out_attr[Tag_CPU_name].s == NULL
9991
                && out_attr[i].i < ARRAY_SIZE (name_table))
9992
              out_attr[Tag_CPU_name].s =
9993
                _bfd_elf_attr_strdup (obfd, name_table[out_attr[i].i]);
9994
          }
9995
          break;
9996
 
9997
        case Tag_ARM_ISA_use:
9998
        case Tag_THUMB_ISA_use:
9999
        case Tag_WMMX_arch:
10000
        case Tag_Advanced_SIMD_arch:
10001
          /* ??? Do Advanced_SIMD (NEON) and WMMX conflict?  */
10002
        case Tag_ABI_FP_rounding:
10003
        case Tag_ABI_FP_exceptions:
10004
        case Tag_ABI_FP_user_exceptions:
10005
        case Tag_ABI_FP_number_model:
10006
        case Tag_FP_HP_extension:
10007
        case Tag_CPU_unaligned_access:
10008
        case Tag_T2EE_use:
10009
        case Tag_MPextension_use:
10010
          /* Use the largest value specified.  */
10011
          if (in_attr[i].i > out_attr[i].i)
10012
            out_attr[i].i = in_attr[i].i;
10013
          break;
10014
 
10015
        case Tag_ABI_align_preserved:
10016
        case Tag_ABI_PCS_RO_data:
10017
          /* Use the smallest value specified.  */
10018
          if (in_attr[i].i < out_attr[i].i)
10019
            out_attr[i].i = in_attr[i].i;
10020
          break;
10021
 
10022
        case Tag_ABI_align_needed:
10023
          if ((in_attr[i].i > 0 || out_attr[i].i > 0)
10024
              && (in_attr[Tag_ABI_align_preserved].i == 0
10025
                  || out_attr[Tag_ABI_align_preserved].i == 0))
10026
            {
10027
              /* This error message should be enabled once all non-conformant
10028
                 binaries in the toolchain have had the attributes set
10029
                 properly.
10030
              _bfd_error_handler
10031
                (_("error: %B: 8-byte data alignment conflicts with %B"),
10032
                 obfd, ibfd);
10033
              result = FALSE; */
10034
            }
10035
          /* Fall through.  */
10036
        case Tag_ABI_FP_denormal:
10037
        case Tag_ABI_PCS_GOT_use:
10038
          /* Use the "greatest" from the sequence 0, 2, 1, or the largest
10039
             value if greater than 2 (for future-proofing).  */
10040
          if ((in_attr[i].i > 2 && in_attr[i].i > out_attr[i].i)
10041
              || (in_attr[i].i <= 2 && out_attr[i].i <= 2
10042
                  && order_021[in_attr[i].i] > order_021[out_attr[i].i]))
10043
            out_attr[i].i = in_attr[i].i;
10044
          break;
10045
 
10046
        case Tag_Virtualization_use:
10047
          /* The virtualization tag effectively stores two bits of
10048
             information: the intended use of TrustZone (in bit 0), and the
10049
             intended use of Virtualization (in bit 1).  */
10050
          if (out_attr[i].i == 0)
10051
            out_attr[i].i = in_attr[i].i;
10052
          else if (in_attr[i].i != 0
10053
                   && in_attr[i].i != out_attr[i].i)
10054
            {
10055
              if (in_attr[i].i <= 3 && out_attr[i].i <= 3)
10056
                out_attr[i].i = 3;
10057
              else
10058
                {
10059
                  _bfd_error_handler
10060
                    (_("error: %B: unable to merge virtualization attributes "
10061
                       "with %B"),
10062
                     obfd, ibfd);
10063
                  result = FALSE;
10064
                }
10065
            }
10066
          break;
10067
 
10068
        case Tag_CPU_arch_profile:
10069
          if (out_attr[i].i != in_attr[i].i)
10070
            {
10071
              /* 0 will merge with anything.
10072
                 'A' and 'S' merge to 'A'.
10073
                 'R' and 'S' merge to 'R'.
10074
                 'M' and 'A|R|S' is an error.  */
10075
              if (out_attr[i].i == 0
10076
                  || (out_attr[i].i == 'S'
10077
                      && (in_attr[i].i == 'A' || in_attr[i].i == 'R')))
10078
                out_attr[i].i = in_attr[i].i;
10079
              else if (in_attr[i].i == 0
10080
                       || (in_attr[i].i == 'S'
10081
                           && (out_attr[i].i == 'A' || out_attr[i].i == 'R')))
10082
                ; /* Do nothing. */
10083
              else
10084
                {
10085
                  _bfd_error_handler
10086
                    (_("error: %B: Conflicting architecture profiles %c/%c"),
10087
                     ibfd,
10088
                     in_attr[i].i ? in_attr[i].i : '0',
10089
                     out_attr[i].i ? out_attr[i].i : '0');
10090
                  result = FALSE;
10091
                }
10092
            }
10093
          break;
10094
        case Tag_FP_arch:
10095
            {
10096
              /* Tag_ABI_HardFP_use is handled along with Tag_FP_arch since
10097
                 the meaning of Tag_ABI_HardFP_use depends on Tag_FP_arch
10098
                 when it's 0.  It might mean absence of FP hardware if
10099
                 Tag_FP_arch is zero, otherwise it is effectively SP + DP.  */
10100
 
10101
              static const struct
10102
              {
10103
                  int ver;
10104
                  int regs;
10105
              } vfp_versions[7] =
10106
                {
10107
                  {0, 0},
10108
                  {1, 16},
10109
                  {2, 16},
10110
                  {3, 32},
10111
                  {3, 16},
10112
                  {4, 32},
10113
                  {4, 16}
10114
                };
10115
              int ver;
10116
              int regs;
10117
              int newval;
10118
 
10119
              /* If the output has no requirement about FP hardware,
10120
                 follow the requirement of the input.  */
10121
              if (out_attr[i].i == 0)
10122
                {
10123
                  BFD_ASSERT (out_attr[Tag_ABI_HardFP_use].i == 0);
10124
                  out_attr[i].i = in_attr[i].i;
10125
                  out_attr[Tag_ABI_HardFP_use].i
10126
                    = in_attr[Tag_ABI_HardFP_use].i;
10127
                  break;
10128
                }
10129
              /* If the input has no requirement about FP hardware, do
10130
                 nothing.  */
10131
              else if (in_attr[i].i == 0)
10132
                {
10133
                  BFD_ASSERT (in_attr[Tag_ABI_HardFP_use].i == 0);
10134
                  break;
10135
                }
10136
 
10137
              /* Both the input and the output have nonzero Tag_FP_arch.
10138
                 So Tag_ABI_HardFP_use is (SP & DP) when it's zero.  */
10139
 
10140
              /* If both the input and the output have zero Tag_ABI_HardFP_use,
10141
                 do nothing.  */
10142
              if (in_attr[Tag_ABI_HardFP_use].i == 0
10143
                  && out_attr[Tag_ABI_HardFP_use].i == 0)
10144
                ;
10145
              /* If the input and the output have different Tag_ABI_HardFP_use,
10146
                 the combination of them is 3 (SP & DP).  */
10147
              else if (in_attr[Tag_ABI_HardFP_use].i
10148
                       != out_attr[Tag_ABI_HardFP_use].i)
10149
                out_attr[Tag_ABI_HardFP_use].i = 3;
10150
 
10151
              /* Now we can handle Tag_FP_arch.  */
10152
 
10153
              /* Values greater than 6 aren't defined, so just pick the
10154
                 biggest */
10155
              if (in_attr[i].i > 6 && in_attr[i].i > out_attr[i].i)
10156
                {
10157
                  out_attr[i] = in_attr[i];
10158
                  break;
10159
                }
10160
              /* The output uses the superset of input features
10161
                 (ISA version) and registers.  */
10162
              ver = vfp_versions[in_attr[i].i].ver;
10163
              if (ver < vfp_versions[out_attr[i].i].ver)
10164
                ver = vfp_versions[out_attr[i].i].ver;
10165
              regs = vfp_versions[in_attr[i].i].regs;
10166
              if (regs < vfp_versions[out_attr[i].i].regs)
10167
                regs = vfp_versions[out_attr[i].i].regs;
10168
              /* This assumes all possible supersets are also a valid
10169
                 options.  */
10170
              for (newval = 6; newval > 0; newval--)
10171
                {
10172
                  if (regs == vfp_versions[newval].regs
10173
                      && ver == vfp_versions[newval].ver)
10174
                    break;
10175
                }
10176
              out_attr[i].i = newval;
10177
            }
10178
          break;
10179
        case Tag_PCS_config:
10180
          if (out_attr[i].i == 0)
10181
            out_attr[i].i = in_attr[i].i;
10182
          else if (in_attr[i].i != 0 && out_attr[i].i != 0)
10183
            {
10184
              /* It's sometimes ok to mix different configs, so this is only
10185
                 a warning.  */
10186
              _bfd_error_handler
10187
                (_("Warning: %B: Conflicting platform configuration"), ibfd);
10188
            }
10189
          break;
10190
        case Tag_ABI_PCS_R9_use:
10191
          if (in_attr[i].i != out_attr[i].i
10192
              && out_attr[i].i != AEABI_R9_unused
10193
              && in_attr[i].i != AEABI_R9_unused)
10194
            {
10195
              _bfd_error_handler
10196
                (_("error: %B: Conflicting use of R9"), ibfd);
10197
              result = FALSE;
10198
            }
10199
          if (out_attr[i].i == AEABI_R9_unused)
10200
            out_attr[i].i = in_attr[i].i;
10201
          break;
10202
        case Tag_ABI_PCS_RW_data:
10203
          if (in_attr[i].i == AEABI_PCS_RW_data_SBrel
10204
              && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_SB
10205
              && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_unused)
10206
            {
10207
              _bfd_error_handler
10208
                (_("error: %B: SB relative addressing conflicts with use of R9"),
10209
                 ibfd);
10210
              result = FALSE;
10211
            }
10212
          /* Use the smallest value specified.  */
10213
          if (in_attr[i].i < out_attr[i].i)
10214
            out_attr[i].i = in_attr[i].i;
10215
          break;
10216
        case Tag_ABI_PCS_wchar_t:
10217
          if (out_attr[i].i && in_attr[i].i && out_attr[i].i != in_attr[i].i
10218
              && !elf_arm_tdata (obfd)->no_wchar_size_warning)
10219
            {
10220
              _bfd_error_handler
10221
                (_("warning: %B uses %u-byte wchar_t yet the output is to use %u-byte wchar_t; use of wchar_t values across objects may fail"),
10222
                 ibfd, in_attr[i].i, out_attr[i].i);
10223
            }
10224
          else if (in_attr[i].i && !out_attr[i].i)
10225
            out_attr[i].i = in_attr[i].i;
10226
          break;
10227
        case Tag_ABI_enum_size:
10228
          if (in_attr[i].i != AEABI_enum_unused)
10229
            {
10230
              if (out_attr[i].i == AEABI_enum_unused
10231
                  || out_attr[i].i == AEABI_enum_forced_wide)
10232
                {
10233
                  /* The existing object is compatible with anything.
10234
                     Use whatever requirements the new object has.  */
10235
                  out_attr[i].i = in_attr[i].i;
10236
                }
10237
              else if (in_attr[i].i != AEABI_enum_forced_wide
10238
                       && out_attr[i].i != in_attr[i].i
10239
                       && !elf_arm_tdata (obfd)->no_enum_size_warning)
10240
                {
10241
                  static const char *aeabi_enum_names[] =
10242
                    { "", "variable-size", "32-bit", "" };
10243
                  const char *in_name =
10244
                    in_attr[i].i < ARRAY_SIZE(aeabi_enum_names)
10245
                    ? aeabi_enum_names[in_attr[i].i]
10246
                    : "<unknown>";
10247
                  const char *out_name =
10248
                    out_attr[i].i < ARRAY_SIZE(aeabi_enum_names)
10249
                    ? aeabi_enum_names[out_attr[i].i]
10250
                    : "<unknown>";
10251
                  _bfd_error_handler
10252
                    (_("warning: %B uses %s enums yet the output is to use %s enums; use of enum values across objects may fail"),
10253
                     ibfd, in_name, out_name);
10254
                }
10255
            }
10256
          break;
10257
        case Tag_ABI_VFP_args:
10258
          /* Aready done.  */
10259
          break;
10260
        case Tag_ABI_WMMX_args:
10261
          if (in_attr[i].i != out_attr[i].i)
10262
            {
10263
              _bfd_error_handler
10264
                (_("error: %B uses iWMMXt register arguments, %B does not"),
10265
                 ibfd, obfd);
10266
              result = FALSE;
10267
            }
10268
          break;
10269
        case Tag_compatibility:
10270
          /* Merged in target-independent code.  */
10271
          break;
10272
        case Tag_ABI_HardFP_use:
10273
          /* This is handled along with Tag_FP_arch.  */
10274
          break;
10275
        case Tag_ABI_FP_16bit_format:
10276
          if (in_attr[i].i != 0 && out_attr[i].i != 0)
10277
            {
10278
              if (in_attr[i].i != out_attr[i].i)
10279
                {
10280
                  _bfd_error_handler
10281
                    (_("error: fp16 format mismatch between %B and %B"),
10282
                     ibfd, obfd);
10283
                  result = FALSE;
10284
                }
10285
            }
10286
          if (in_attr[i].i != 0)
10287
            out_attr[i].i = in_attr[i].i;
10288
          break;
10289
 
10290
        case Tag_DIV_use:
10291
          /* This tag is set to zero if we can use UDIV and SDIV in Thumb
10292
             mode on a v7-M or v7-R CPU; to one if we can not use UDIV or
10293
             SDIV at all; and to two if we can use UDIV or SDIV on a v7-A
10294
             CPU.  We will merge as follows: If the input attribute's value
10295
             is one then the output attribute's value remains unchanged.  If
10296
             the input attribute's value is zero or two then if the output
10297
             attribute's value is one the output value is set to the input
10298
             value, otherwise the output value must be the same as the
10299
             inputs.  */
10300
          if (in_attr[i].i != 1 && out_attr[i].i != 1)
10301
            {
10302
              if (in_attr[i].i != out_attr[i].i)
10303
                {
10304
                  _bfd_error_handler
10305
                    (_("DIV usage mismatch between %B and %B"),
10306
                     ibfd, obfd);
10307
                  result = FALSE;
10308
                }
10309
            }
10310
 
10311
          if (in_attr[i].i != 1)
10312
            out_attr[i].i = in_attr[i].i;
10313
 
10314
          break;
10315
 
10316
        case Tag_MPextension_use_legacy:
10317
          /* We don't output objects with Tag_MPextension_use_legacy - we
10318
             move the value to Tag_MPextension_use.  */
10319
          if (in_attr[i].i != 0 && in_attr[Tag_MPextension_use].i != 0)
10320
            {
10321
              if (in_attr[Tag_MPextension_use].i != in_attr[i].i)
10322
                {
10323
                  _bfd_error_handler
10324
                    (_("%B has has both the current and legacy "
10325
                       "Tag_MPextension_use attributes"),
10326
                     ibfd);
10327
                  result = FALSE;
10328
                }
10329
            }
10330
 
10331
          if (in_attr[i].i > out_attr[Tag_MPextension_use].i)
10332
            out_attr[Tag_MPextension_use] = in_attr[i];
10333
 
10334
          break;
10335
 
10336
        case Tag_nodefaults:
10337
          /* This tag is set if it exists, but the value is unused (and is
10338
             typically zero).  We don't actually need to do anything here -
10339
             the merge happens automatically when the type flags are merged
10340
             below.  */
10341
          break;
10342
        case Tag_also_compatible_with:
10343
          /* Already done in Tag_CPU_arch.  */
10344
          break;
10345
        case Tag_conformance:
10346
          /* Keep the attribute if it matches.  Throw it away otherwise.
10347
             No attribute means no claim to conform.  */
10348
          if (!in_attr[i].s || !out_attr[i].s
10349
              || strcmp (in_attr[i].s, out_attr[i].s) != 0)
10350
            out_attr[i].s = NULL;
10351
          break;
10352
 
10353
        default:
10354
          {
10355
            bfd *err_bfd = NULL;
10356
 
10357
            /* The "known_obj_attributes" table does contain some undefined
10358
               attributes.  Ensure that there are unused.  */
10359
            if (out_attr[i].i != 0 || out_attr[i].s != NULL)
10360
              err_bfd = obfd;
10361
            else if (in_attr[i].i != 0 || in_attr[i].s != NULL)
10362
              err_bfd = ibfd;
10363
 
10364
            if (err_bfd != NULL)
10365
              {
10366
                /* Attribute numbers >=64 (mod 128) can be safely ignored.  */
10367
                if ((i & 127) < 64)
10368
                  {
10369
                    _bfd_error_handler
10370
                      (_("%B: Unknown mandatory EABI object attribute %d"),
10371
                       err_bfd, i);
10372
                    bfd_set_error (bfd_error_bad_value);
10373
                    result = FALSE;
10374
                  }
10375
                else
10376
                  {
10377
                    _bfd_error_handler
10378
                      (_("Warning: %B: Unknown EABI object attribute %d"),
10379
                       err_bfd, i);
10380
                  }
10381
              }
10382
 
10383
            /* Only pass on attributes that match in both inputs.  */
10384
            if (in_attr[i].i != out_attr[i].i
10385
                || in_attr[i].s != out_attr[i].s
10386
                || (in_attr[i].s != NULL && out_attr[i].s != NULL
10387
                    && strcmp (in_attr[i].s, out_attr[i].s) != 0))
10388
              {
10389
                out_attr[i].i = 0;
10390
                out_attr[i].s = NULL;
10391
              }
10392
          }
10393
        }
10394
 
10395
      /* If out_attr was copied from in_attr then it won't have a type yet.  */
10396
      if (in_attr[i].type && !out_attr[i].type)
10397
        out_attr[i].type = in_attr[i].type;
10398
    }
10399
 
10400
  /* Merge Tag_compatibility attributes and any common GNU ones.  */
10401
  if (!_bfd_elf_merge_object_attributes (ibfd, obfd))
10402
    return FALSE;
10403
 
10404
  /* Check for any attributes not known on ARM.  */
10405
  in_list = elf_other_obj_attributes_proc (ibfd);
10406
  out_listp = &elf_other_obj_attributes_proc (obfd);
10407
  out_list = *out_listp;
10408
 
10409
  for (; in_list || out_list; )
10410
    {
10411
      bfd *err_bfd = NULL;
10412
      int err_tag = 0;
10413
 
10414
      /* The tags for each list are in numerical order.  */
10415
      /* If the tags are equal, then merge.  */
10416
      if (out_list && (!in_list || in_list->tag > out_list->tag))
10417
        {
10418
          /* This attribute only exists in obfd.  We can't merge, and we don't
10419
             know what the tag means, so delete it.  */
10420
          err_bfd = obfd;
10421
          err_tag = out_list->tag;
10422
          *out_listp = out_list->next;
10423
          out_list = *out_listp;
10424
        }
10425
      else if (in_list && (!out_list || in_list->tag < out_list->tag))
10426
        {
10427
          /* This attribute only exists in ibfd. We can't merge, and we don't
10428
             know what the tag means, so ignore it.  */
10429
          err_bfd = ibfd;
10430
          err_tag = in_list->tag;
10431
          in_list = in_list->next;
10432
        }
10433
      else /* The tags are equal.  */
10434
        {
10435
          /* As present, all attributes in the list are unknown, and
10436
             therefore can't be merged meaningfully.  */
10437
          err_bfd = obfd;
10438
          err_tag = out_list->tag;
10439
 
10440
          /*  Only pass on attributes that match in both inputs.  */
10441
          if (in_list->attr.i != out_list->attr.i
10442
              || in_list->attr.s != out_list->attr.s
10443
              || (in_list->attr.s && out_list->attr.s
10444
                  && strcmp (in_list->attr.s, out_list->attr.s) != 0))
10445
            {
10446
              /* No match.  Delete the attribute.  */
10447
              *out_listp = out_list->next;
10448
              out_list = *out_listp;
10449
            }
10450
          else
10451
            {
10452
              /* Matched.  Keep the attribute and move to the next.  */
10453
              out_list = out_list->next;
10454
              in_list = in_list->next;
10455
            }
10456
        }
10457
 
10458
      if (err_bfd)
10459
        {
10460
          /* Attribute numbers >=64 (mod 128) can be safely ignored.  */
10461
          if ((err_tag & 127) < 64)
10462
            {
10463
              _bfd_error_handler
10464
                (_("%B: Unknown mandatory EABI object attribute %d"),
10465
                 err_bfd, err_tag);
10466
              bfd_set_error (bfd_error_bad_value);
10467
              result = FALSE;
10468
            }
10469
          else
10470
            {
10471
              _bfd_error_handler
10472
                (_("Warning: %B: Unknown EABI object attribute %d"),
10473
                 err_bfd, err_tag);
10474
            }
10475
        }
10476
    }
10477
  return result;
10478
}
10479
 
10480
 
10481
/* Return TRUE if the two EABI versions are incompatible.  */
10482
 
10483
static bfd_boolean
10484
elf32_arm_versions_compatible (unsigned iver, unsigned over)
10485
{
10486
  /* v4 and v5 are the same spec before and after it was released,
10487
     so allow mixing them.  */
10488
  if ((iver == EF_ARM_EABI_VER4 && over == EF_ARM_EABI_VER5)
10489
      || (iver == EF_ARM_EABI_VER5 && over == EF_ARM_EABI_VER4))
10490
    return TRUE;
10491
 
10492
  return (iver == over);
10493
}
10494
 
10495
/* Merge backend specific data from an object file to the output
10496
   object file when linking.  */
10497
 
10498
static bfd_boolean
10499
elf32_arm_merge_private_bfd_data (bfd * ibfd, bfd * obfd);
10500
 
10501
/* Display the flags field.  */
10502
 
10503
static bfd_boolean
10504
elf32_arm_print_private_bfd_data (bfd *abfd, void * ptr)
10505
{
10506
  FILE * file = (FILE *) ptr;
10507
  unsigned long flags;
10508
 
10509
  BFD_ASSERT (abfd != NULL && ptr != NULL);
10510
 
10511
  /* Print normal ELF private data.  */
10512
  _bfd_elf_print_private_bfd_data (abfd, ptr);
10513
 
10514
  flags = elf_elfheader (abfd)->e_flags;
10515
  /* Ignore init flag - it may not be set, despite the flags field
10516
     containing valid data.  */
10517
 
10518
  /* xgettext:c-format */
10519
  fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
10520
 
10521
  switch (EF_ARM_EABI_VERSION (flags))
10522
    {
10523
    case EF_ARM_EABI_UNKNOWN:
10524
      /* The following flag bits are GNU extensions and not part of the
10525
         official ARM ELF extended ABI.  Hence they are only decoded if
10526
         the EABI version is not set.  */
10527
      if (flags & EF_ARM_INTERWORK)
10528
        fprintf (file, _(" [interworking enabled]"));
10529
 
10530
      if (flags & EF_ARM_APCS_26)
10531
        fprintf (file, " [APCS-26]");
10532
      else
10533
        fprintf (file, " [APCS-32]");
10534
 
10535
      if (flags & EF_ARM_VFP_FLOAT)
10536
        fprintf (file, _(" [VFP float format]"));
10537
      else if (flags & EF_ARM_MAVERICK_FLOAT)
10538
        fprintf (file, _(" [Maverick float format]"));
10539
      else
10540
        fprintf (file, _(" [FPA float format]"));
10541
 
10542
      if (flags & EF_ARM_APCS_FLOAT)
10543
        fprintf (file, _(" [floats passed in float registers]"));
10544
 
10545
      if (flags & EF_ARM_PIC)
10546
        fprintf (file, _(" [position independent]"));
10547
 
10548
      if (flags & EF_ARM_NEW_ABI)
10549
        fprintf (file, _(" [new ABI]"));
10550
 
10551
      if (flags & EF_ARM_OLD_ABI)
10552
        fprintf (file, _(" [old ABI]"));
10553
 
10554
      if (flags & EF_ARM_SOFT_FLOAT)
10555
        fprintf (file, _(" [software FP]"));
10556
 
10557
      flags &= ~(EF_ARM_INTERWORK | EF_ARM_APCS_26 | EF_ARM_APCS_FLOAT
10558
                 | EF_ARM_PIC | EF_ARM_NEW_ABI | EF_ARM_OLD_ABI
10559
                 | EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT
10560
                 | EF_ARM_MAVERICK_FLOAT);
10561
      break;
10562
 
10563
    case EF_ARM_EABI_VER1:
10564
      fprintf (file, _(" [Version1 EABI]"));
10565
 
10566
      if (flags & EF_ARM_SYMSARESORTED)
10567
        fprintf (file, _(" [sorted symbol table]"));
10568
      else
10569
        fprintf (file, _(" [unsorted symbol table]"));
10570
 
10571
      flags &= ~ EF_ARM_SYMSARESORTED;
10572
      break;
10573
 
10574
    case EF_ARM_EABI_VER2:
10575
      fprintf (file, _(" [Version2 EABI]"));
10576
 
10577
      if (flags & EF_ARM_SYMSARESORTED)
10578
        fprintf (file, _(" [sorted symbol table]"));
10579
      else
10580
        fprintf (file, _(" [unsorted symbol table]"));
10581
 
10582
      if (flags & EF_ARM_DYNSYMSUSESEGIDX)
10583
        fprintf (file, _(" [dynamic symbols use segment index]"));
10584
 
10585
      if (flags & EF_ARM_MAPSYMSFIRST)
10586
        fprintf (file, _(" [mapping symbols precede others]"));
10587
 
10588
      flags &= ~(EF_ARM_SYMSARESORTED | EF_ARM_DYNSYMSUSESEGIDX
10589
                 | EF_ARM_MAPSYMSFIRST);
10590
      break;
10591
 
10592
    case EF_ARM_EABI_VER3:
10593
      fprintf (file, _(" [Version3 EABI]"));
10594
      break;
10595
 
10596
    case EF_ARM_EABI_VER4:
10597
      fprintf (file, _(" [Version4 EABI]"));
10598
      goto eabi;
10599
 
10600
    case EF_ARM_EABI_VER5:
10601
      fprintf (file, _(" [Version5 EABI]"));
10602
    eabi:
10603
      if (flags & EF_ARM_BE8)
10604
        fprintf (file, _(" [BE8]"));
10605
 
10606
      if (flags & EF_ARM_LE8)
10607
        fprintf (file, _(" [LE8]"));
10608
 
10609
      flags &= ~(EF_ARM_LE8 | EF_ARM_BE8);
10610
      break;
10611
 
10612
    default:
10613
      fprintf (file, _(" <EABI version unrecognised>"));
10614
      break;
10615
    }
10616
 
10617
  flags &= ~ EF_ARM_EABIMASK;
10618
 
10619
  if (flags & EF_ARM_RELEXEC)
10620
    fprintf (file, _(" [relocatable executable]"));
10621
 
10622
  if (flags & EF_ARM_HASENTRY)
10623
    fprintf (file, _(" [has entry point]"));
10624
 
10625
  flags &= ~ (EF_ARM_RELEXEC | EF_ARM_HASENTRY);
10626
 
10627
  if (flags)
10628
    fprintf (file, _("<Unrecognised flag bits set>"));
10629
 
10630
  fputc ('\n', file);
10631
 
10632
  return TRUE;
10633
}
10634
 
10635
static int
10636
elf32_arm_get_symbol_type (Elf_Internal_Sym * elf_sym, int type)
10637
{
10638
  switch (ELF_ST_TYPE (elf_sym->st_info))
10639
    {
10640
    case STT_ARM_TFUNC:
10641
      return ELF_ST_TYPE (elf_sym->st_info);
10642
 
10643
    case STT_ARM_16BIT:
10644
      /* If the symbol is not an object, return the STT_ARM_16BIT flag.
10645
         This allows us to distinguish between data used by Thumb instructions
10646
         and non-data (which is probably code) inside Thumb regions of an
10647
         executable.  */
10648
      if (type != STT_OBJECT && type != STT_TLS)
10649
        return ELF_ST_TYPE (elf_sym->st_info);
10650
      break;
10651
 
10652
    default:
10653
      break;
10654
    }
10655
 
10656
  return type;
10657
}
10658
 
10659
static asection *
10660
elf32_arm_gc_mark_hook (asection *sec,
10661
                        struct bfd_link_info *info,
10662
                        Elf_Internal_Rela *rel,
10663
                        struct elf_link_hash_entry *h,
10664
                        Elf_Internal_Sym *sym)
10665
{
10666
  if (h != NULL)
10667
    switch (ELF32_R_TYPE (rel->r_info))
10668
      {
10669
      case R_ARM_GNU_VTINHERIT:
10670
      case R_ARM_GNU_VTENTRY:
10671
        return NULL;
10672
      }
10673
 
10674
  return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
10675
}
10676
 
10677
/* Update the got entry reference counts for the section being removed.  */
10678
 
10679
static bfd_boolean
10680
elf32_arm_gc_sweep_hook (bfd *                     abfd,
10681
                         struct bfd_link_info *    info,
10682
                         asection *                sec,
10683
                         const Elf_Internal_Rela * relocs)
10684
{
10685
  Elf_Internal_Shdr *symtab_hdr;
10686
  struct elf_link_hash_entry **sym_hashes;
10687
  bfd_signed_vma *local_got_refcounts;
10688
  const Elf_Internal_Rela *rel, *relend;
10689
  struct elf32_arm_link_hash_table * globals;
10690
 
10691
  if (info->relocatable)
10692
    return TRUE;
10693
 
10694
  globals = elf32_arm_hash_table (info);
10695
  if (globals == NULL)
10696
    return FALSE;
10697
 
10698
  elf_section_data (sec)->local_dynrel = NULL;
10699
 
10700
  symtab_hdr = & elf_symtab_hdr (abfd);
10701
  sym_hashes = elf_sym_hashes (abfd);
10702
  local_got_refcounts = elf_local_got_refcounts (abfd);
10703
 
10704
  check_use_blx (globals);
10705
 
10706
  relend = relocs + sec->reloc_count;
10707
  for (rel = relocs; rel < relend; rel++)
10708
    {
10709
      unsigned long r_symndx;
10710
      struct elf_link_hash_entry *h = NULL;
10711
      int r_type;
10712
 
10713
      r_symndx = ELF32_R_SYM (rel->r_info);
10714
      if (r_symndx >= symtab_hdr->sh_info)
10715
        {
10716
          h = sym_hashes[r_symndx - symtab_hdr->sh_info];
10717
          while (h->root.type == bfd_link_hash_indirect
10718
                 || h->root.type == bfd_link_hash_warning)
10719
            h = (struct elf_link_hash_entry *) h->root.u.i.link;
10720
        }
10721
 
10722
      r_type = ELF32_R_TYPE (rel->r_info);
10723
      r_type = arm_real_reloc_type (globals, r_type);
10724
      switch (r_type)
10725
        {
10726
        case R_ARM_GOT32:
10727
        case R_ARM_GOT_PREL:
10728
        case R_ARM_TLS_GD32:
10729
        case R_ARM_TLS_IE32:
10730
          if (h != NULL)
10731
            {
10732
              if (h->got.refcount > 0)
10733
                h->got.refcount -= 1;
10734
            }
10735
          else if (local_got_refcounts != NULL)
10736
            {
10737
              if (local_got_refcounts[r_symndx] > 0)
10738
                local_got_refcounts[r_symndx] -= 1;
10739
            }
10740
          break;
10741
 
10742
        case R_ARM_TLS_LDM32:
10743
          globals->tls_ldm_got.refcount -= 1;
10744
          break;
10745
 
10746
        case R_ARM_ABS32:
10747
        case R_ARM_ABS32_NOI:
10748
        case R_ARM_REL32:
10749
        case R_ARM_REL32_NOI:
10750
        case R_ARM_PC24:
10751
        case R_ARM_PLT32:
10752
        case R_ARM_CALL:
10753
        case R_ARM_JUMP24:
10754
        case R_ARM_PREL31:
10755
        case R_ARM_THM_CALL:
10756
        case R_ARM_THM_JUMP24:
10757
        case R_ARM_THM_JUMP19:
10758
        case R_ARM_MOVW_ABS_NC:
10759
        case R_ARM_MOVT_ABS:
10760
        case R_ARM_MOVW_PREL_NC:
10761
        case R_ARM_MOVT_PREL:
10762
        case R_ARM_THM_MOVW_ABS_NC:
10763
        case R_ARM_THM_MOVT_ABS:
10764
        case R_ARM_THM_MOVW_PREL_NC:
10765
        case R_ARM_THM_MOVT_PREL:
10766
          /* Should the interworking branches be here also?  */
10767
 
10768
          if (h != NULL)
10769
            {
10770
              struct elf32_arm_link_hash_entry *eh;
10771
              struct elf32_arm_relocs_copied **pp;
10772
              struct elf32_arm_relocs_copied *p;
10773
 
10774
              eh = (struct elf32_arm_link_hash_entry *) h;
10775
 
10776
              if (h->plt.refcount > 0)
10777
                {
10778
                  h->plt.refcount -= 1;
10779
                  if (r_type == R_ARM_THM_CALL)
10780
                    eh->plt_maybe_thumb_refcount--;
10781
 
10782
                  if (r_type == R_ARM_THM_JUMP24
10783
                      || r_type == R_ARM_THM_JUMP19)
10784
                    eh->plt_thumb_refcount--;
10785
                }
10786
 
10787
              if (r_type == R_ARM_ABS32
10788
                  || r_type == R_ARM_REL32
10789
                  || r_type == R_ARM_ABS32_NOI
10790
                  || r_type == R_ARM_REL32_NOI)
10791
                {
10792
                  for (pp = &eh->relocs_copied; (p = *pp) != NULL;
10793
                       pp = &p->next)
10794
                  if (p->section == sec)
10795
                    {
10796
                      p->count -= 1;
10797
                      if (ELF32_R_TYPE (rel->r_info) == R_ARM_REL32
10798
                          || ELF32_R_TYPE (rel->r_info) == R_ARM_REL32_NOI)
10799
                        p->pc_count -= 1;
10800
                      if (p->count == 0)
10801
                        *pp = p->next;
10802
                      break;
10803
                    }
10804
                }
10805
            }
10806
          break;
10807
 
10808
        default:
10809
          break;
10810
        }
10811
    }
10812
 
10813
  return TRUE;
10814
}
10815
 
10816
/* Look through the relocs for a section during the first phase.  */
10817
 
10818
static bfd_boolean
10819
elf32_arm_check_relocs (bfd *abfd, struct bfd_link_info *info,
10820
                        asection *sec, const Elf_Internal_Rela *relocs)
10821
{
10822
  Elf_Internal_Shdr *symtab_hdr;
10823
  struct elf_link_hash_entry **sym_hashes;
10824
  const Elf_Internal_Rela *rel;
10825
  const Elf_Internal_Rela *rel_end;
10826
  bfd *dynobj;
10827
  asection *sreloc;
10828
  struct elf32_arm_link_hash_table *htab;
10829
  bfd_boolean needs_plt;
10830
  unsigned long nsyms;
10831
 
10832
  if (info->relocatable)
10833
    return TRUE;
10834
 
10835
  BFD_ASSERT (is_arm_elf (abfd));
10836
 
10837
  htab = elf32_arm_hash_table (info);
10838
  if (htab == NULL)
10839
    return FALSE;
10840
 
10841
  sreloc = NULL;
10842
 
10843
  /* Create dynamic sections for relocatable executables so that we can
10844
     copy relocations.  */
10845
  if (htab->root.is_relocatable_executable
10846
      && ! htab->root.dynamic_sections_created)
10847
    {
10848
      if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
10849
        return FALSE;
10850
    }
10851
 
10852
  dynobj = elf_hash_table (info)->dynobj;
10853
  symtab_hdr = & elf_symtab_hdr (abfd);
10854
  sym_hashes = elf_sym_hashes (abfd);
10855
  nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
10856
 
10857
  rel_end = relocs + sec->reloc_count;
10858
  for (rel = relocs; rel < rel_end; rel++)
10859
    {
10860
      struct elf_link_hash_entry *h;
10861
      struct elf32_arm_link_hash_entry *eh;
10862
      unsigned long r_symndx;
10863
      int r_type;
10864
 
10865
      r_symndx = ELF32_R_SYM (rel->r_info);
10866
      r_type = ELF32_R_TYPE (rel->r_info);
10867
      r_type = arm_real_reloc_type (htab, r_type);
10868
 
10869
      if (r_symndx >= nsyms
10870
          /* PR 9934: It is possible to have relocations that do not
10871
             refer to symbols, thus it is also possible to have an
10872
             object file containing relocations but no symbol table.  */
10873
          && (r_symndx > 0 || nsyms > 0))
10874
        {
10875
          (*_bfd_error_handler) (_("%B: bad symbol index: %d"), abfd,
10876
                                   r_symndx);
10877
          return FALSE;
10878
        }
10879
 
10880
      if (nsyms == 0 || r_symndx < symtab_hdr->sh_info)
10881
        h = NULL;
10882
      else
10883
        {
10884
          h = sym_hashes[r_symndx - symtab_hdr->sh_info];
10885
          while (h->root.type == bfd_link_hash_indirect
10886
                 || h->root.type == bfd_link_hash_warning)
10887
            h = (struct elf_link_hash_entry *) h->root.u.i.link;
10888
        }
10889
 
10890
      eh = (struct elf32_arm_link_hash_entry *) h;
10891
 
10892
      switch (r_type)
10893
        {
10894
          case R_ARM_GOT32:
10895
          case R_ARM_GOT_PREL:
10896
          case R_ARM_TLS_GD32:
10897
          case R_ARM_TLS_IE32:
10898
            /* This symbol requires a global offset table entry.  */
10899
            {
10900
              int tls_type, old_tls_type;
10901
 
10902
              switch (r_type)
10903
                {
10904
                case R_ARM_TLS_GD32: tls_type = GOT_TLS_GD; break;
10905
                case R_ARM_TLS_IE32: tls_type = GOT_TLS_IE; break;
10906
                default: tls_type = GOT_NORMAL; break;
10907
                }
10908
 
10909
              if (h != NULL)
10910
                {
10911
                  h->got.refcount++;
10912
                  old_tls_type = elf32_arm_hash_entry (h)->tls_type;
10913
                }
10914
              else
10915
                {
10916
                  bfd_signed_vma *local_got_refcounts;
10917
 
10918
                  /* This is a global offset table entry for a local symbol.  */
10919
                  local_got_refcounts = elf_local_got_refcounts (abfd);
10920
                  if (local_got_refcounts == NULL)
10921
                    {
10922
                      bfd_size_type size;
10923
 
10924
                      size = symtab_hdr->sh_info;
10925
                      size *= (sizeof (bfd_signed_vma) + sizeof (char));
10926
                      local_got_refcounts = (bfd_signed_vma *)
10927
                          bfd_zalloc (abfd, size);
10928
                      if (local_got_refcounts == NULL)
10929
                        return FALSE;
10930
                      elf_local_got_refcounts (abfd) = local_got_refcounts;
10931
                      elf32_arm_local_got_tls_type (abfd)
10932
                        = (char *) (local_got_refcounts + symtab_hdr->sh_info);
10933
                    }
10934
                  local_got_refcounts[r_symndx] += 1;
10935
                  old_tls_type = elf32_arm_local_got_tls_type (abfd) [r_symndx];
10936
                }
10937
 
10938
              /* We will already have issued an error message if there is a
10939
                 TLS / non-TLS mismatch, based on the symbol type.  We don't
10940
                 support any linker relaxations.  So just combine any TLS
10941
                 types needed.  */
10942
              if (old_tls_type != GOT_UNKNOWN && old_tls_type != GOT_NORMAL
10943
                  && tls_type != GOT_NORMAL)
10944
                tls_type |= old_tls_type;
10945
 
10946
              if (old_tls_type != tls_type)
10947
                {
10948
                  if (h != NULL)
10949
                    elf32_arm_hash_entry (h)->tls_type = tls_type;
10950
                  else
10951
                    elf32_arm_local_got_tls_type (abfd) [r_symndx] = tls_type;
10952
                }
10953
            }
10954
            /* Fall through.  */
10955
 
10956
          case R_ARM_TLS_LDM32:
10957
            if (r_type == R_ARM_TLS_LDM32)
10958
                htab->tls_ldm_got.refcount++;
10959
            /* Fall through.  */
10960
 
10961
          case R_ARM_GOTOFF32:
10962
          case R_ARM_GOTPC:
10963
            if (htab->sgot == NULL)
10964
              {
10965
                if (htab->root.dynobj == NULL)
10966
                  htab->root.dynobj = abfd;
10967
                if (!create_got_section (htab->root.dynobj, info))
10968
                  return FALSE;
10969
              }
10970
            break;
10971
 
10972
          case R_ARM_ABS12:
10973
            /* VxWorks uses dynamic R_ARM_ABS12 relocations for
10974
               ldr __GOTT_INDEX__ offsets.  */
10975
            if (!htab->vxworks_p)
10976
              break;
10977
            /* Fall through.  */
10978
 
10979
          case R_ARM_PC24:
10980
          case R_ARM_PLT32:
10981
          case R_ARM_CALL:
10982
          case R_ARM_JUMP24:
10983
          case R_ARM_PREL31:
10984
          case R_ARM_THM_CALL:
10985
          case R_ARM_THM_JUMP24:
10986
          case R_ARM_THM_JUMP19:
10987
            needs_plt = 1;
10988
            goto normal_reloc;
10989
 
10990
          case R_ARM_MOVW_ABS_NC:
10991
          case R_ARM_MOVT_ABS:
10992
          case R_ARM_THM_MOVW_ABS_NC:
10993
          case R_ARM_THM_MOVT_ABS:
10994
            if (info->shared)
10995
              {
10996
                (*_bfd_error_handler)
10997
                  (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
10998
                   abfd, elf32_arm_howto_table_1[r_type].name,
10999
                   (h) ? h->root.root.string : "a local symbol");
11000
                bfd_set_error (bfd_error_bad_value);
11001
                return FALSE;
11002
              }
11003
 
11004
            /* Fall through.  */
11005
          case R_ARM_ABS32:
11006
          case R_ARM_ABS32_NOI:
11007
          case R_ARM_REL32:
11008
          case R_ARM_REL32_NOI:
11009
          case R_ARM_MOVW_PREL_NC:
11010
          case R_ARM_MOVT_PREL:
11011
          case R_ARM_THM_MOVW_PREL_NC:
11012
          case R_ARM_THM_MOVT_PREL:
11013
            needs_plt = 0;
11014
          normal_reloc:
11015
 
11016
            /* Should the interworking branches be listed here?  */
11017
            if (h != NULL)
11018
              {
11019
                /* If this reloc is in a read-only section, we might
11020
                   need a copy reloc.  We can't check reliably at this
11021
                   stage whether the section is read-only, as input
11022
                   sections have not yet been mapped to output sections.
11023
                   Tentatively set the flag for now, and correct in
11024
                   adjust_dynamic_symbol.  */
11025
                if (!info->shared)
11026
                  h->non_got_ref = 1;
11027
 
11028
                /* We may need a .plt entry if the function this reloc
11029
                   refers to is in a different object.  We can't tell for
11030
                   sure yet, because something later might force the
11031
                   symbol local.  */
11032
                if (needs_plt)
11033
                  h->needs_plt = 1;
11034
 
11035
                /* If we create a PLT entry, this relocation will reference
11036
                   it, even if it's an ABS32 relocation.  */
11037
                h->plt.refcount += 1;
11038
 
11039
                /* It's too early to use htab->use_blx here, so we have to
11040
                   record possible blx references separately from
11041
                   relocs that definitely need a thumb stub.  */
11042
 
11043
                if (r_type == R_ARM_THM_CALL)
11044
                  eh->plt_maybe_thumb_refcount += 1;
11045
 
11046
                if (r_type == R_ARM_THM_JUMP24
11047
                    || r_type == R_ARM_THM_JUMP19)
11048
                  eh->plt_thumb_refcount += 1;
11049
              }
11050
 
11051
            /* If we are creating a shared library or relocatable executable,
11052
               and this is a reloc against a global symbol, or a non PC
11053
               relative reloc against a local symbol, then we need to copy
11054
               the reloc into the shared library.  However, if we are linking
11055
               with -Bsymbolic, we do not need to copy a reloc against a
11056
               global symbol which is defined in an object we are
11057
               including in the link (i.e., DEF_REGULAR is set).  At
11058
               this point we have not seen all the input files, so it is
11059
               possible that DEF_REGULAR is not set now but will be set
11060
               later (it is never cleared).  We account for that
11061
               possibility below by storing information in the
11062
               relocs_copied field of the hash table entry.  */
11063
            if ((info->shared || htab->root.is_relocatable_executable)
11064
                && (sec->flags & SEC_ALLOC) != 0
11065
                && ((r_type == R_ARM_ABS32 || r_type == R_ARM_ABS32_NOI)
11066
                    || (h != NULL && ! h->needs_plt
11067
                        && (! info->symbolic || ! h->def_regular))))
11068
              {
11069
                struct elf32_arm_relocs_copied *p, **head;
11070
 
11071
                /* When creating a shared object, we must copy these
11072
                   reloc types into the output file.  We create a reloc
11073
                   section in dynobj and make room for this reloc.  */
11074
                if (sreloc == NULL)
11075
                  {
11076
                    sreloc = _bfd_elf_make_dynamic_reloc_section
11077
                      (sec, dynobj, 2, abfd, ! htab->use_rel);
11078
 
11079
                    if (sreloc == NULL)
11080
                      return FALSE;
11081
 
11082
                    /* BPABI objects never have dynamic relocations mapped.  */
11083
                    if (htab->symbian_p)
11084
                      {
11085
                        flagword flags;
11086
 
11087
                        flags = bfd_get_section_flags (dynobj, sreloc);
11088
                        flags &= ~(SEC_LOAD | SEC_ALLOC);
11089
                        bfd_set_section_flags (dynobj, sreloc, flags);
11090
                      }
11091
                  }
11092
 
11093
                /* If this is a global symbol, we count the number of
11094
                   relocations we need for this symbol.  */
11095
                if (h != NULL)
11096
                  {
11097
                    head = &((struct elf32_arm_link_hash_entry *) h)->relocs_copied;
11098
                  }
11099
                else
11100
                  {
11101
                    /* Track dynamic relocs needed for local syms too.
11102
                       We really need local syms available to do this
11103
                       easily.  Oh well.  */
11104
                    asection *s;
11105
                    void *vpp;
11106
                    Elf_Internal_Sym *isym;
11107
 
11108
                    isym = bfd_sym_from_r_symndx (&htab->sym_cache,
11109
                                                  abfd, r_symndx);
11110
                    if (isym == NULL)
11111
                      return FALSE;
11112
 
11113
                    s = bfd_section_from_elf_index (abfd, isym->st_shndx);
11114
                    if (s == NULL)
11115
                      s = sec;
11116
 
11117
                    vpp = &elf_section_data (s)->local_dynrel;
11118
                    head = (struct elf32_arm_relocs_copied **) vpp;
11119
                  }
11120
 
11121
                p = *head;
11122
                if (p == NULL || p->section != sec)
11123
                  {
11124
                    bfd_size_type amt = sizeof *p;
11125
 
11126
                    p = (struct elf32_arm_relocs_copied *)
11127
                        bfd_alloc (htab->root.dynobj, amt);
11128
                    if (p == NULL)
11129
                      return FALSE;
11130
                    p->next = *head;
11131
                    *head = p;
11132
                    p->section = sec;
11133
                    p->count = 0;
11134
                    p->pc_count = 0;
11135
                  }
11136
 
11137
                if (r_type == R_ARM_REL32 || r_type == R_ARM_REL32_NOI)
11138
                  p->pc_count += 1;
11139
                p->count += 1;
11140
              }
11141
            break;
11142
 
11143
        /* This relocation describes the C++ object vtable hierarchy.
11144
           Reconstruct it for later use during GC.  */
11145
        case R_ARM_GNU_VTINHERIT:
11146
          if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
11147
            return FALSE;
11148
          break;
11149
 
11150
        /* This relocation describes which C++ vtable entries are actually
11151
           used.  Record for later use during GC.  */
11152
        case R_ARM_GNU_VTENTRY:
11153
          BFD_ASSERT (h != NULL);
11154
          if (h != NULL
11155
              && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
11156
            return FALSE;
11157
          break;
11158
        }
11159
    }
11160
 
11161
  return TRUE;
11162
}
11163
 
11164
/* Unwinding tables are not referenced directly.  This pass marks them as
11165
   required if the corresponding code section is marked.  */
11166
 
11167
static bfd_boolean
11168
elf32_arm_gc_mark_extra_sections (struct bfd_link_info *info,
11169
                                  elf_gc_mark_hook_fn gc_mark_hook)
11170
{
11171
  bfd *sub;
11172
  Elf_Internal_Shdr **elf_shdrp;
11173
  bfd_boolean again;
11174
 
11175
  /* Marking EH data may cause additional code sections to be marked,
11176
     requiring multiple passes.  */
11177
  again = TRUE;
11178
  while (again)
11179
    {
11180
      again = FALSE;
11181
      for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11182
        {
11183
          asection *o;
11184
 
11185
          if (! is_arm_elf (sub))
11186
            continue;
11187
 
11188
          elf_shdrp = elf_elfsections (sub);
11189
          for (o = sub->sections; o != NULL; o = o->next)
11190
            {
11191
              Elf_Internal_Shdr *hdr;
11192
 
11193
              hdr = &elf_section_data (o)->this_hdr;
11194
              if (hdr->sh_type == SHT_ARM_EXIDX
11195
                  && hdr->sh_link
11196
                  && hdr->sh_link < elf_numsections (sub)
11197
                  && !o->gc_mark
11198
                  && elf_shdrp[hdr->sh_link]->bfd_section->gc_mark)
11199
                {
11200
                  again = TRUE;
11201
                  if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
11202
                    return FALSE;
11203
                }
11204
            }
11205
        }
11206
    }
11207
 
11208
  return TRUE;
11209
}
11210
 
11211
/* Treat mapping symbols as special target symbols.  */
11212
 
11213
static bfd_boolean
11214
elf32_arm_is_target_special_symbol (bfd * abfd ATTRIBUTE_UNUSED, asymbol * sym)
11215
{
11216
  return bfd_is_arm_special_symbol_name (sym->name,
11217
                                         BFD_ARM_SPECIAL_SYM_TYPE_ANY);
11218
}
11219
 
11220
/* This is a copy of elf_find_function() from elf.c except that
11221
   ARM mapping symbols are ignored when looking for function names
11222
   and STT_ARM_TFUNC is considered to a function type.  */
11223
 
11224
static bfd_boolean
11225
arm_elf_find_function (bfd *         abfd ATTRIBUTE_UNUSED,
11226
                       asection *    section,
11227
                       asymbol **    symbols,
11228
                       bfd_vma       offset,
11229
                       const char ** filename_ptr,
11230
                       const char ** functionname_ptr)
11231
{
11232
  const char * filename = NULL;
11233
  asymbol * func = NULL;
11234
  bfd_vma low_func = 0;
11235
  asymbol ** p;
11236
 
11237
  for (p = symbols; *p != NULL; p++)
11238
    {
11239
      elf_symbol_type *q;
11240
 
11241
      q = (elf_symbol_type *) *p;
11242
 
11243
      switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
11244
        {
11245
        default:
11246
          break;
11247
        case STT_FILE:
11248
          filename = bfd_asymbol_name (&q->symbol);
11249
          break;
11250
        case STT_FUNC:
11251
        case STT_ARM_TFUNC:
11252
        case STT_NOTYPE:
11253
          /* Skip mapping symbols.  */
11254
          if ((q->symbol.flags & BSF_LOCAL)
11255
              && bfd_is_arm_special_symbol_name (q->symbol.name,
11256
                    BFD_ARM_SPECIAL_SYM_TYPE_ANY))
11257
            continue;
11258
          /* Fall through.  */
11259
          if (bfd_get_section (&q->symbol) == section
11260
              && q->symbol.value >= low_func
11261
              && q->symbol.value <= offset)
11262
            {
11263
              func = (asymbol *) q;
11264
              low_func = q->symbol.value;
11265
            }
11266
          break;
11267
        }
11268
    }
11269
 
11270
  if (func == NULL)
11271
    return FALSE;
11272
 
11273
  if (filename_ptr)
11274
    *filename_ptr = filename;
11275
  if (functionname_ptr)
11276
    *functionname_ptr = bfd_asymbol_name (func);
11277
 
11278
  return TRUE;
11279
}
11280
 
11281
 
11282
/* Find the nearest line to a particular section and offset, for error
11283
   reporting.   This code is a duplicate of the code in elf.c, except
11284
   that it uses arm_elf_find_function.  */
11285
 
11286
static bfd_boolean
11287
elf32_arm_find_nearest_line (bfd *          abfd,
11288
                             asection *     section,
11289
                             asymbol **     symbols,
11290
                             bfd_vma        offset,
11291
                             const char **  filename_ptr,
11292
                             const char **  functionname_ptr,
11293
                             unsigned int * line_ptr)
11294
{
11295
  bfd_boolean found = FALSE;
11296
 
11297
  /* We skip _bfd_dwarf1_find_nearest_line since no known ARM toolchain uses it.  */
11298
 
11299
  if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
11300
                                     filename_ptr, functionname_ptr,
11301
                                     line_ptr, 0,
11302
                                     & elf_tdata (abfd)->dwarf2_find_line_info))
11303
    {
11304
      if (!*functionname_ptr)
11305
        arm_elf_find_function (abfd, section, symbols, offset,
11306
                               *filename_ptr ? NULL : filename_ptr,
11307
                               functionname_ptr);
11308
 
11309
      return TRUE;
11310
    }
11311
 
11312
  if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
11313
                                             & found, filename_ptr,
11314
                                             functionname_ptr, line_ptr,
11315
                                             & elf_tdata (abfd)->line_info))
11316
    return FALSE;
11317
 
11318
  if (found && (*functionname_ptr || *line_ptr))
11319
    return TRUE;
11320
 
11321
  if (symbols == NULL)
11322
    return FALSE;
11323
 
11324
  if (! arm_elf_find_function (abfd, section, symbols, offset,
11325
                               filename_ptr, functionname_ptr))
11326
    return FALSE;
11327
 
11328
  *line_ptr = 0;
11329
  return TRUE;
11330
}
11331
 
11332
static bfd_boolean
11333
elf32_arm_find_inliner_info (bfd *          abfd,
11334
                             const char **  filename_ptr,
11335
                             const char **  functionname_ptr,
11336
                             unsigned int * line_ptr)
11337
{
11338
  bfd_boolean found;
11339
  found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
11340
                                         functionname_ptr, line_ptr,
11341
                                         & elf_tdata (abfd)->dwarf2_find_line_info);
11342
  return found;
11343
}
11344
 
11345
/* Adjust a symbol defined by a dynamic object and referenced by a
11346
   regular object.  The current definition is in some section of the
11347
   dynamic object, but we're not including those sections.  We have to
11348
   change the definition to something the rest of the link can
11349
   understand.  */
11350
 
11351
static bfd_boolean
11352
elf32_arm_adjust_dynamic_symbol (struct bfd_link_info * info,
11353
                                 struct elf_link_hash_entry * h)
11354
{
11355
  bfd * dynobj;
11356
  asection * s;
11357
  struct elf32_arm_link_hash_entry * eh;
11358
  struct elf32_arm_link_hash_table *globals;
11359
 
11360
  globals = elf32_arm_hash_table (info);
11361
  if (globals == NULL)
11362
    return FALSE;
11363
 
11364
  dynobj = elf_hash_table (info)->dynobj;
11365
 
11366
  /* Make sure we know what is going on here.  */
11367
  BFD_ASSERT (dynobj != NULL
11368
              && (h->needs_plt
11369
                  || h->u.weakdef != NULL
11370
                  || (h->def_dynamic
11371
                      && h->ref_regular
11372
                      && !h->def_regular)));
11373
 
11374
  eh = (struct elf32_arm_link_hash_entry *) h;
11375
 
11376
  /* If this is a function, put it in the procedure linkage table.  We
11377
     will fill in the contents of the procedure linkage table later,
11378
     when we know the address of the .got section.  */
11379
  if (h->type == STT_FUNC || h->type == STT_ARM_TFUNC
11380
      || h->needs_plt)
11381
    {
11382
      if (h->plt.refcount <= 0
11383
          || SYMBOL_CALLS_LOCAL (info, h)
11384
          || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
11385
              && h->root.type == bfd_link_hash_undefweak))
11386
        {
11387
          /* This case can occur if we saw a PLT32 reloc in an input
11388
             file, but the symbol was never referred to by a dynamic
11389
             object, or if all references were garbage collected.  In
11390
             such a case, we don't actually need to build a procedure
11391
             linkage table, and we can just do a PC24 reloc instead.  */
11392
          h->plt.offset = (bfd_vma) -1;
11393
          eh->plt_thumb_refcount = 0;
11394
          eh->plt_maybe_thumb_refcount = 0;
11395
          h->needs_plt = 0;
11396
        }
11397
 
11398
      return TRUE;
11399
    }
11400
  else
11401
    {
11402
      /* It's possible that we incorrectly decided a .plt reloc was
11403
         needed for an R_ARM_PC24 or similar reloc to a non-function sym
11404
         in check_relocs.  We can't decide accurately between function
11405
         and non-function syms in check-relocs; Objects loaded later in
11406
         the link may change h->type.  So fix it now.  */
11407
      h->plt.offset = (bfd_vma) -1;
11408
      eh->plt_thumb_refcount = 0;
11409
      eh->plt_maybe_thumb_refcount = 0;
11410
    }
11411
 
11412
  /* If this is a weak symbol, and there is a real definition, the
11413
     processor independent code will have arranged for us to see the
11414
     real definition first, and we can just use the same value.  */
11415
  if (h->u.weakdef != NULL)
11416
    {
11417
      BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
11418
                  || h->u.weakdef->root.type == bfd_link_hash_defweak);
11419
      h->root.u.def.section = h->u.weakdef->root.u.def.section;
11420
      h->root.u.def.value = h->u.weakdef->root.u.def.value;
11421
      return TRUE;
11422
    }
11423
 
11424
  /* If there are no non-GOT references, we do not need a copy
11425
     relocation.  */
11426
  if (!h->non_got_ref)
11427
    return TRUE;
11428
 
11429
  /* This is a reference to a symbol defined by a dynamic object which
11430
     is not a function.  */
11431
 
11432
  /* If we are creating a shared library, we must presume that the
11433
     only references to the symbol are via the global offset table.
11434
     For such cases we need not do anything here; the relocations will
11435
     be handled correctly by relocate_section.  Relocatable executables
11436
     can reference data in shared objects directly, so we don't need to
11437
     do anything here.  */
11438
  if (info->shared || globals->root.is_relocatable_executable)
11439
    return TRUE;
11440
 
11441
  if (h->size == 0)
11442
    {
11443
      (*_bfd_error_handler) (_("dynamic variable `%s' is zero size"),
11444
                             h->root.root.string);
11445
      return TRUE;
11446
    }
11447
 
11448
  /* We must allocate the symbol in our .dynbss section, which will
11449
     become part of the .bss section of the executable.  There will be
11450
     an entry for this symbol in the .dynsym section.  The dynamic
11451
     object will contain position independent code, so all references
11452
     from the dynamic object to this symbol will go through the global
11453
     offset table.  The dynamic linker will use the .dynsym entry to
11454
     determine the address it must put in the global offset table, so
11455
     both the dynamic object and the regular object will refer to the
11456
     same memory location for the variable.  */
11457
  s = bfd_get_section_by_name (dynobj, ".dynbss");
11458
  BFD_ASSERT (s != NULL);
11459
 
11460
  /* We must generate a R_ARM_COPY reloc to tell the dynamic linker to
11461
     copy the initial value out of the dynamic object and into the
11462
     runtime process image.  We need to remember the offset into the
11463
     .rel(a).bss section we are going to use.  */
11464
  if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
11465
    {
11466
      asection *srel;
11467
 
11468
      srel = bfd_get_section_by_name (dynobj, RELOC_SECTION (globals, ".bss"));
11469
      BFD_ASSERT (srel != NULL);
11470
      srel->size += RELOC_SIZE (globals);
11471
      h->needs_copy = 1;
11472
    }
11473
 
11474
  return _bfd_elf_adjust_dynamic_copy (h, s);
11475
}
11476
 
11477
/* Allocate space in .plt, .got and associated reloc sections for
11478
   dynamic relocs.  */
11479
 
11480
static bfd_boolean
11481
allocate_dynrelocs (struct elf_link_hash_entry *h, void * inf)
11482
{
11483
  struct bfd_link_info *info;
11484
  struct elf32_arm_link_hash_table *htab;
11485
  struct elf32_arm_link_hash_entry *eh;
11486
  struct elf32_arm_relocs_copied *p;
11487
  bfd_signed_vma thumb_refs;
11488
 
11489
  eh = (struct elf32_arm_link_hash_entry *) h;
11490
 
11491
  if (h->root.type == bfd_link_hash_indirect)
11492
    return TRUE;
11493
 
11494
  if (h->root.type == bfd_link_hash_warning)
11495
    /* When warning symbols are created, they **replace** the "real"
11496
       entry in the hash table, thus we never get to see the real
11497
       symbol in a hash traversal.  So look at it now.  */
11498
    h = (struct elf_link_hash_entry *) h->root.u.i.link;
11499
 
11500
  info = (struct bfd_link_info *) inf;
11501
  htab = elf32_arm_hash_table (info);
11502
  if (htab == NULL)
11503
    return FALSE;
11504
 
11505
  if (htab->root.dynamic_sections_created
11506
      && h->plt.refcount > 0)
11507
    {
11508
      /* Make sure this symbol is output as a dynamic symbol.
11509
         Undefined weak syms won't yet be marked as dynamic.  */
11510
      if (h->dynindx == -1
11511
          && !h->forced_local)
11512
        {
11513
          if (! bfd_elf_link_record_dynamic_symbol (info, h))
11514
            return FALSE;
11515
        }
11516
 
11517
      if (info->shared
11518
          || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
11519
        {
11520
          asection *s = htab->splt;
11521
 
11522
          /* If this is the first .plt entry, make room for the special
11523
             first entry.  */
11524
          if (s->size == 0)
11525
            s->size += htab->plt_header_size;
11526
 
11527
          h->plt.offset = s->size;
11528
 
11529
          /* If we will insert a Thumb trampoline before this PLT, leave room
11530
             for it.  */
11531
          thumb_refs = eh->plt_thumb_refcount;
11532
          if (!htab->use_blx)
11533
            thumb_refs += eh->plt_maybe_thumb_refcount;
11534
 
11535
          if (thumb_refs > 0)
11536
            {
11537
              h->plt.offset += PLT_THUMB_STUB_SIZE;
11538
              s->size += PLT_THUMB_STUB_SIZE;
11539
            }
11540
 
11541
          /* If this symbol is not defined in a regular file, and we are
11542
             not generating a shared library, then set the symbol to this
11543
             location in the .plt.  This is required to make function
11544
             pointers compare as equal between the normal executable and
11545
             the shared library.  */
11546
          if (! info->shared
11547
              && !h->def_regular)
11548
            {
11549
              h->root.u.def.section = s;
11550
              h->root.u.def.value = h->plt.offset;
11551
 
11552
              /* Make sure the function is not marked as Thumb, in case
11553
                 it is the target of an ABS32 relocation, which will
11554
                 point to the PLT entry.  */
11555
              if (ELF_ST_TYPE (h->type) == STT_ARM_TFUNC)
11556
                h->type = ELF_ST_INFO (ELF_ST_BIND (h->type), STT_FUNC);
11557
            }
11558
 
11559
          /* Make room for this entry.  */
11560
          s->size += htab->plt_entry_size;
11561
 
11562
          if (!htab->symbian_p)
11563
            {
11564
              /* We also need to make an entry in the .got.plt section, which
11565
                 will be placed in the .got section by the linker script.  */
11566
              eh->plt_got_offset = htab->sgotplt->size;
11567
              htab->sgotplt->size += 4;
11568
            }
11569
 
11570
          /* We also need to make an entry in the .rel(a).plt section.  */
11571
          htab->srelplt->size += RELOC_SIZE (htab);
11572
 
11573
          /* VxWorks executables have a second set of relocations for
11574
             each PLT entry.  They go in a separate relocation section,
11575
             which is processed by the kernel loader.  */
11576
          if (htab->vxworks_p && !info->shared)
11577
            {
11578
              /* There is a relocation for the initial PLT entry:
11579
                 an R_ARM_32 relocation for _GLOBAL_OFFSET_TABLE_.  */
11580
              if (h->plt.offset == htab->plt_header_size)
11581
                htab->srelplt2->size += RELOC_SIZE (htab);
11582
 
11583
              /* There are two extra relocations for each subsequent
11584
                 PLT entry: an R_ARM_32 relocation for the GOT entry,
11585
                 and an R_ARM_32 relocation for the PLT entry.  */
11586
              htab->srelplt2->size += RELOC_SIZE (htab) * 2;
11587
            }
11588
        }
11589
      else
11590
        {
11591
          h->plt.offset = (bfd_vma) -1;
11592
          h->needs_plt = 0;
11593
        }
11594
    }
11595
  else
11596
    {
11597
      h->plt.offset = (bfd_vma) -1;
11598
      h->needs_plt = 0;
11599
    }
11600
 
11601
  if (h->got.refcount > 0)
11602
    {
11603
      asection *s;
11604
      bfd_boolean dyn;
11605
      int tls_type = elf32_arm_hash_entry (h)->tls_type;
11606
      int indx;
11607
 
11608
      /* Make sure this symbol is output as a dynamic symbol.
11609
         Undefined weak syms won't yet be marked as dynamic.  */
11610
      if (h->dynindx == -1
11611
          && !h->forced_local)
11612
        {
11613
          if (! bfd_elf_link_record_dynamic_symbol (info, h))
11614
            return FALSE;
11615
        }
11616
 
11617
      if (!htab->symbian_p)
11618
        {
11619
          s = htab->sgot;
11620
          h->got.offset = s->size;
11621
 
11622
          if (tls_type == GOT_UNKNOWN)
11623
            abort ();
11624
 
11625
          if (tls_type == GOT_NORMAL)
11626
            /* Non-TLS symbols need one GOT slot.  */
11627
            s->size += 4;
11628
          else
11629
            {
11630
              if (tls_type & GOT_TLS_GD)
11631
                /* R_ARM_TLS_GD32 needs 2 consecutive GOT slots.  */
11632
                s->size += 8;
11633
              if (tls_type & GOT_TLS_IE)
11634
                /* R_ARM_TLS_IE32 needs one GOT slot.  */
11635
                s->size += 4;
11636
            }
11637
 
11638
          dyn = htab->root.dynamic_sections_created;
11639
 
11640
          indx = 0;
11641
          if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
11642
              && (!info->shared
11643
                  || !SYMBOL_REFERENCES_LOCAL (info, h)))
11644
            indx = h->dynindx;
11645
 
11646
          if (tls_type != GOT_NORMAL
11647
              && (info->shared || indx != 0)
11648
              && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
11649
                  || h->root.type != bfd_link_hash_undefweak))
11650
            {
11651
              if (tls_type & GOT_TLS_IE)
11652
                htab->srelgot->size += RELOC_SIZE (htab);
11653
 
11654
              if (tls_type & GOT_TLS_GD)
11655
                htab->srelgot->size += RELOC_SIZE (htab);
11656
 
11657
              if ((tls_type & GOT_TLS_GD) && indx != 0)
11658
                htab->srelgot->size += RELOC_SIZE (htab);
11659
            }
11660
          else if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
11661
                    || h->root.type != bfd_link_hash_undefweak)
11662
                   && (info->shared
11663
                   || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
11664
            htab->srelgot->size += RELOC_SIZE (htab);
11665
        }
11666
    }
11667
  else
11668
    h->got.offset = (bfd_vma) -1;
11669
 
11670
  /* Allocate stubs for exported Thumb functions on v4t.  */
11671
  if (!htab->use_blx && h->dynindx != -1
11672
      && h->def_regular
11673
      && ELF_ST_TYPE (h->type) == STT_ARM_TFUNC
11674
      && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
11675
    {
11676
      struct elf_link_hash_entry * th;
11677
      struct bfd_link_hash_entry * bh;
11678
      struct elf_link_hash_entry * myh;
11679
      char name[1024];
11680
      asection *s;
11681
      bh = NULL;
11682
      /* Create a new symbol to regist the real location of the function.  */
11683
      s = h->root.u.def.section;
11684
      sprintf (name, "__real_%s", h->root.root.string);
11685
      _bfd_generic_link_add_one_symbol (info, s->owner,
11686
                                        name, BSF_GLOBAL, s,
11687
                                        h->root.u.def.value,
11688
                                        NULL, TRUE, FALSE, &bh);
11689
 
11690
      myh = (struct elf_link_hash_entry *) bh;
11691
      myh->type = ELF_ST_INFO (STB_LOCAL, STT_ARM_TFUNC);
11692
      myh->forced_local = 1;
11693
      eh->export_glue = myh;
11694
      th = record_arm_to_thumb_glue (info, h);
11695
      /* Point the symbol at the stub.  */
11696
      h->type = ELF_ST_INFO (ELF_ST_BIND (h->type), STT_FUNC);
11697
      h->root.u.def.section = th->root.u.def.section;
11698
      h->root.u.def.value = th->root.u.def.value & ~1;
11699
    }
11700
 
11701
  if (eh->relocs_copied == NULL)
11702
    return TRUE;
11703
 
11704
  /* In the shared -Bsymbolic case, discard space allocated for
11705
     dynamic pc-relative relocs against symbols which turn out to be
11706
     defined in regular objects.  For the normal shared case, discard
11707
     space for pc-relative relocs that have become local due to symbol
11708
     visibility changes.  */
11709
 
11710
  if (info->shared || htab->root.is_relocatable_executable)
11711
    {
11712
      /* The only relocs that use pc_count are R_ARM_REL32 and
11713
         R_ARM_REL32_NOI, which will appear on something like
11714
         ".long foo - .".  We want calls to protected symbols to resolve
11715
         directly to the function rather than going via the plt.  If people
11716
         want function pointer comparisons to work as expected then they
11717
         should avoid writing assembly like ".long foo - .".  */
11718
      if (SYMBOL_CALLS_LOCAL (info, h))
11719
        {
11720
          struct elf32_arm_relocs_copied **pp;
11721
 
11722
          for (pp = &eh->relocs_copied; (p = *pp) != NULL; )
11723
            {
11724
              p->count -= p->pc_count;
11725
              p->pc_count = 0;
11726
              if (p->count == 0)
11727
                *pp = p->next;
11728
              else
11729
                pp = &p->next;
11730
            }
11731
        }
11732
 
11733
      if (htab->vxworks_p)
11734
        {
11735
          struct elf32_arm_relocs_copied **pp;
11736
 
11737
          for (pp = &eh->relocs_copied; (p = *pp) != NULL; )
11738
            {
11739
              if (strcmp (p->section->output_section->name, ".tls_vars") == 0)
11740
                *pp = p->next;
11741
              else
11742
                pp = &p->next;
11743
            }
11744
        }
11745
 
11746
      /* Also discard relocs on undefined weak syms with non-default
11747
         visibility.  */
11748
      if (eh->relocs_copied != NULL
11749
          && h->root.type == bfd_link_hash_undefweak)
11750
        {
11751
          if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
11752
            eh->relocs_copied = NULL;
11753
 
11754
          /* Make sure undefined weak symbols are output as a dynamic
11755
             symbol in PIEs.  */
11756
          else if (h->dynindx == -1
11757
                   && !h->forced_local)
11758
            {
11759
              if (! bfd_elf_link_record_dynamic_symbol (info, h))
11760
                return FALSE;
11761
            }
11762
        }
11763
 
11764
      else if (htab->root.is_relocatable_executable && h->dynindx == -1
11765
               && h->root.type == bfd_link_hash_new)
11766
        {
11767
          /* Output absolute symbols so that we can create relocations
11768
             against them.  For normal symbols we output a relocation
11769
             against the section that contains them.  */
11770
          if (! bfd_elf_link_record_dynamic_symbol (info, h))
11771
            return FALSE;
11772
        }
11773
 
11774
    }
11775
  else
11776
    {
11777
      /* For the non-shared case, discard space for relocs against
11778
         symbols which turn out to need copy relocs or are not
11779
         dynamic.  */
11780
 
11781
      if (!h->non_got_ref
11782
          && ((h->def_dynamic
11783
               && !h->def_regular)
11784
              || (htab->root.dynamic_sections_created
11785
                  && (h->root.type == bfd_link_hash_undefweak
11786
                      || h->root.type == bfd_link_hash_undefined))))
11787
        {
11788
          /* Make sure this symbol is output as a dynamic symbol.
11789
             Undefined weak syms won't yet be marked as dynamic.  */
11790
          if (h->dynindx == -1
11791
              && !h->forced_local)
11792
            {
11793
              if (! bfd_elf_link_record_dynamic_symbol (info, h))
11794
                return FALSE;
11795
            }
11796
 
11797
          /* If that succeeded, we know we'll be keeping all the
11798
             relocs.  */
11799
          if (h->dynindx != -1)
11800
            goto keep;
11801
        }
11802
 
11803
      eh->relocs_copied = NULL;
11804
 
11805
    keep: ;
11806
    }
11807
 
11808
  /* Finally, allocate space.  */
11809
  for (p = eh->relocs_copied; p != NULL; p = p->next)
11810
    {
11811
      asection *sreloc = elf_section_data (p->section)->sreloc;
11812
      sreloc->size += p->count * RELOC_SIZE (htab);
11813
    }
11814
 
11815
  return TRUE;
11816
}
11817
 
11818
/* Find any dynamic relocs that apply to read-only sections.  */
11819
 
11820
static bfd_boolean
11821
elf32_arm_readonly_dynrelocs (struct elf_link_hash_entry * h, void * inf)
11822
{
11823
  struct elf32_arm_link_hash_entry * eh;
11824
  struct elf32_arm_relocs_copied * p;
11825
 
11826
  if (h->root.type == bfd_link_hash_warning)
11827
    h = (struct elf_link_hash_entry *) h->root.u.i.link;
11828
 
11829
  eh = (struct elf32_arm_link_hash_entry *) h;
11830
  for (p = eh->relocs_copied; p != NULL; p = p->next)
11831
    {
11832
      asection *s = p->section;
11833
 
11834
      if (s != NULL && (s->flags & SEC_READONLY) != 0)
11835
        {
11836
          struct bfd_link_info *info = (struct bfd_link_info *) inf;
11837
 
11838
          info->flags |= DF_TEXTREL;
11839
 
11840
          /* Not an error, just cut short the traversal.  */
11841
          return FALSE;
11842
        }
11843
    }
11844
  return TRUE;
11845
}
11846
 
11847
void
11848
bfd_elf32_arm_set_byteswap_code (struct bfd_link_info *info,
11849
                                 int byteswap_code)
11850
{
11851
  struct elf32_arm_link_hash_table *globals;
11852
 
11853
  globals = elf32_arm_hash_table (info);
11854
  if (globals == NULL)
11855
    return;
11856
 
11857
  globals->byteswap_code = byteswap_code;
11858
}
11859
 
11860
/* Set the sizes of the dynamic sections.  */
11861
 
11862
static bfd_boolean
11863
elf32_arm_size_dynamic_sections (bfd * output_bfd ATTRIBUTE_UNUSED,
11864
                                 struct bfd_link_info * info)
11865
{
11866
  bfd * dynobj;
11867
  asection * s;
11868
  bfd_boolean plt;
11869
  bfd_boolean relocs;
11870
  bfd *ibfd;
11871
  struct elf32_arm_link_hash_table *htab;
11872
 
11873
  htab = elf32_arm_hash_table (info);
11874
  if (htab == NULL)
11875
    return FALSE;
11876
 
11877
  dynobj = elf_hash_table (info)->dynobj;
11878
  BFD_ASSERT (dynobj != NULL);
11879
  check_use_blx (htab);
11880
 
11881
  if (elf_hash_table (info)->dynamic_sections_created)
11882
    {
11883
      /* Set the contents of the .interp section to the interpreter.  */
11884
      if (info->executable)
11885
        {
11886
          s = bfd_get_section_by_name (dynobj, ".interp");
11887
          BFD_ASSERT (s != NULL);
11888
          s->size = sizeof ELF_DYNAMIC_INTERPRETER;
11889
          s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
11890
        }
11891
    }
11892
 
11893
  /* Set up .got offsets for local syms, and space for local dynamic
11894
     relocs.  */
11895
  for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
11896
    {
11897
      bfd_signed_vma *local_got;
11898
      bfd_signed_vma *end_local_got;
11899
      char *local_tls_type;
11900
      bfd_size_type locsymcount;
11901
      Elf_Internal_Shdr *symtab_hdr;
11902
      asection *srel;
11903
      bfd_boolean is_vxworks = htab->vxworks_p;
11904
 
11905
      if (! is_arm_elf (ibfd))
11906
        continue;
11907
 
11908
      for (s = ibfd->sections; s != NULL; s = s->next)
11909
        {
11910
          struct elf32_arm_relocs_copied *p;
11911
 
11912
          for (p = (struct elf32_arm_relocs_copied *)
11913
                   elf_section_data (s)->local_dynrel; p != NULL; p = p->next)
11914
            {
11915
              if (!bfd_is_abs_section (p->section)
11916
                  && bfd_is_abs_section (p->section->output_section))
11917
                {
11918
                  /* Input section has been discarded, either because
11919
                     it is a copy of a linkonce section or due to
11920
                     linker script /DISCARD/, so we'll be discarding
11921
                     the relocs too.  */
11922
                }
11923
              else if (is_vxworks
11924
                       && strcmp (p->section->output_section->name,
11925
                                  ".tls_vars") == 0)
11926
                {
11927
                  /* Relocations in vxworks .tls_vars sections are
11928
                     handled specially by the loader.  */
11929
                }
11930
              else if (p->count != 0)
11931
                {
11932
                  srel = elf_section_data (p->section)->sreloc;
11933
                  srel->size += p->count * RELOC_SIZE (htab);
11934
                  if ((p->section->output_section->flags & SEC_READONLY) != 0)
11935
                    info->flags |= DF_TEXTREL;
11936
                }
11937
            }
11938
        }
11939
 
11940
      local_got = elf_local_got_refcounts (ibfd);
11941
      if (!local_got)
11942
        continue;
11943
 
11944
      symtab_hdr = & elf_symtab_hdr (ibfd);
11945
      locsymcount = symtab_hdr->sh_info;
11946
      end_local_got = local_got + locsymcount;
11947
      local_tls_type = elf32_arm_local_got_tls_type (ibfd);
11948
      s = htab->sgot;
11949
      srel = htab->srelgot;
11950
      for (; local_got < end_local_got; ++local_got, ++local_tls_type)
11951
        {
11952
          if (*local_got > 0)
11953
            {
11954
              *local_got = s->size;
11955
              if (*local_tls_type & GOT_TLS_GD)
11956
                /* TLS_GD relocs need an 8-byte structure in the GOT.  */
11957
                s->size += 8;
11958
              if (*local_tls_type & GOT_TLS_IE)
11959
                s->size += 4;
11960
              if (*local_tls_type == GOT_NORMAL)
11961
                s->size += 4;
11962
 
11963
              if (info->shared || *local_tls_type == GOT_TLS_GD)
11964
                srel->size += RELOC_SIZE (htab);
11965
            }
11966
          else
11967
            *local_got = (bfd_vma) -1;
11968
        }
11969
    }
11970
 
11971
  if (htab->tls_ldm_got.refcount > 0)
11972
    {
11973
      /* Allocate two GOT entries and one dynamic relocation (if necessary)
11974
         for R_ARM_TLS_LDM32 relocations.  */
11975
      htab->tls_ldm_got.offset = htab->sgot->size;
11976
      htab->sgot->size += 8;
11977
      if (info->shared)
11978
        htab->srelgot->size += RELOC_SIZE (htab);
11979
    }
11980
  else
11981
    htab->tls_ldm_got.offset = -1;
11982
 
11983
  /* Allocate global sym .plt and .got entries, and space for global
11984
     sym dynamic relocs.  */
11985
  elf_link_hash_traverse (& htab->root, allocate_dynrelocs, info);
11986
 
11987
  /* Here we rummage through the found bfds to collect glue information.  */
11988
  for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
11989
    {
11990
      if (! is_arm_elf (ibfd))
11991
        continue;
11992
 
11993
      /* Initialise mapping tables for code/data.  */
11994
      bfd_elf32_arm_init_maps (ibfd);
11995
 
11996
      if (!bfd_elf32_arm_process_before_allocation (ibfd, info)
11997
          || !bfd_elf32_arm_vfp11_erratum_scan (ibfd, info))
11998
        /* xgettext:c-format */
11999
        _bfd_error_handler (_("Errors encountered processing file %s"),
12000
                            ibfd->filename);
12001
    }
12002
 
12003
  /* Allocate space for the glue sections now that we've sized them.  */
12004
  bfd_elf32_arm_allocate_interworking_sections (info);
12005
 
12006
  /* The check_relocs and adjust_dynamic_symbol entry points have
12007
     determined the sizes of the various dynamic sections.  Allocate
12008
     memory for them.  */
12009
  plt = FALSE;
12010
  relocs = FALSE;
12011
  for (s = dynobj->sections; s != NULL; s = s->next)
12012
    {
12013
      const char * name;
12014
 
12015
      if ((s->flags & SEC_LINKER_CREATED) == 0)
12016
        continue;
12017
 
12018
      /* It's OK to base decisions on the section name, because none
12019
         of the dynobj section names depend upon the input files.  */
12020
      name = bfd_get_section_name (dynobj, s);
12021
 
12022
      if (strcmp (name, ".plt") == 0)
12023
        {
12024
          /* Remember whether there is a PLT.  */
12025
          plt = s->size != 0;
12026
        }
12027
      else if (CONST_STRNEQ (name, ".rel"))
12028
        {
12029
          if (s->size != 0)
12030
            {
12031
              /* Remember whether there are any reloc sections other
12032
                 than .rel(a).plt and .rela.plt.unloaded.  */
12033
              if (s != htab->srelplt && s != htab->srelplt2)
12034
                relocs = TRUE;
12035
 
12036
              /* We use the reloc_count field as a counter if we need
12037
                 to copy relocs into the output file.  */
12038
              s->reloc_count = 0;
12039
            }
12040
        }
12041
      else if (! CONST_STRNEQ (name, ".got")
12042
               && strcmp (name, ".dynbss") != 0)
12043
        {
12044
          /* It's not one of our sections, so don't allocate space.  */
12045
          continue;
12046
        }
12047
 
12048
      if (s->size == 0)
12049
        {
12050
          /* If we don't need this section, strip it from the
12051
             output file.  This is mostly to handle .rel(a).bss and
12052
             .rel(a).plt.  We must create both sections in
12053
             create_dynamic_sections, because they must be created
12054
             before the linker maps input sections to output
12055
             sections.  The linker does that before
12056
             adjust_dynamic_symbol is called, and it is that
12057
             function which decides whether anything needs to go
12058
             into these sections.  */
12059
          s->flags |= SEC_EXCLUDE;
12060
          continue;
12061
        }
12062
 
12063
      if ((s->flags & SEC_HAS_CONTENTS) == 0)
12064
        continue;
12065
 
12066
      /* Allocate memory for the section contents.  */
12067
      s->contents = (unsigned char *) bfd_zalloc (dynobj, s->size);
12068
      if (s->contents == NULL)
12069
        return FALSE;
12070
    }
12071
 
12072
  if (elf_hash_table (info)->dynamic_sections_created)
12073
    {
12074
      /* Add some entries to the .dynamic section.  We fill in the
12075
         values later, in elf32_arm_finish_dynamic_sections, but we
12076
         must add the entries now so that we get the correct size for
12077
         the .dynamic section.  The DT_DEBUG entry is filled in by the
12078
         dynamic linker and used by the debugger.  */
12079
#define add_dynamic_entry(TAG, VAL) \
12080
  _bfd_elf_add_dynamic_entry (info, TAG, VAL)
12081
 
12082
     if (info->executable)
12083
        {
12084
          if (!add_dynamic_entry (DT_DEBUG, 0))
12085
            return FALSE;
12086
        }
12087
 
12088
      if (plt)
12089
        {
12090
          if (   !add_dynamic_entry (DT_PLTGOT, 0)
12091
              || !add_dynamic_entry (DT_PLTRELSZ, 0)
12092
              || !add_dynamic_entry (DT_PLTREL,
12093
                                     htab->use_rel ? DT_REL : DT_RELA)
12094
              || !add_dynamic_entry (DT_JMPREL, 0))
12095
            return FALSE;
12096
        }
12097
 
12098
      if (relocs)
12099
        {
12100
          if (htab->use_rel)
12101
            {
12102
              if (!add_dynamic_entry (DT_REL, 0)
12103
                  || !add_dynamic_entry (DT_RELSZ, 0)
12104
                  || !add_dynamic_entry (DT_RELENT, RELOC_SIZE (htab)))
12105
                return FALSE;
12106
            }
12107
          else
12108
            {
12109
              if (!add_dynamic_entry (DT_RELA, 0)
12110
                  || !add_dynamic_entry (DT_RELASZ, 0)
12111
                  || !add_dynamic_entry (DT_RELAENT, RELOC_SIZE (htab)))
12112
                return FALSE;
12113
            }
12114
        }
12115
 
12116
      /* If any dynamic relocs apply to a read-only section,
12117
         then we need a DT_TEXTREL entry.  */
12118
      if ((info->flags & DF_TEXTREL) == 0)
12119
        elf_link_hash_traverse (& htab->root, elf32_arm_readonly_dynrelocs,
12120
                                info);
12121
 
12122
      if ((info->flags & DF_TEXTREL) != 0)
12123
        {
12124
          if (!add_dynamic_entry (DT_TEXTREL, 0))
12125
            return FALSE;
12126
        }
12127
      if (htab->vxworks_p
12128
          && !elf_vxworks_add_dynamic_entries (output_bfd, info))
12129
        return FALSE;
12130
    }
12131
#undef add_dynamic_entry
12132
 
12133
  return TRUE;
12134
}
12135
 
12136
/* Finish up dynamic symbol handling.  We set the contents of various
12137
   dynamic sections here.  */
12138
 
12139
static bfd_boolean
12140
elf32_arm_finish_dynamic_symbol (bfd * output_bfd,
12141
                                 struct bfd_link_info * info,
12142
                                 struct elf_link_hash_entry * h,
12143
                                 Elf_Internal_Sym * sym)
12144
{
12145
  bfd * dynobj;
12146
  struct elf32_arm_link_hash_table *htab;
12147
  struct elf32_arm_link_hash_entry *eh;
12148
 
12149
  dynobj = elf_hash_table (info)->dynobj;
12150
  htab = elf32_arm_hash_table (info);
12151
  if (htab == NULL)
12152
    return FALSE;
12153
 
12154
  eh = (struct elf32_arm_link_hash_entry *) h;
12155
 
12156
  if (h->plt.offset != (bfd_vma) -1)
12157
    {
12158
      asection * splt;
12159
      asection * srel;
12160
      bfd_byte *loc;
12161
      bfd_vma plt_index;
12162
      Elf_Internal_Rela rel;
12163
 
12164
      /* This symbol has an entry in the procedure linkage table.  Set
12165
         it up.  */
12166
 
12167
      BFD_ASSERT (h->dynindx != -1);
12168
 
12169
      splt = bfd_get_section_by_name (dynobj, ".plt");
12170
      srel = bfd_get_section_by_name (dynobj, RELOC_SECTION (htab, ".plt"));
12171
      BFD_ASSERT (splt != NULL && srel != NULL);
12172
 
12173
      /* Fill in the entry in the procedure linkage table.  */
12174
      if (htab->symbian_p)
12175
        {
12176
          put_arm_insn (htab, output_bfd,
12177
                      elf32_arm_symbian_plt_entry[0],
12178
                      splt->contents + h->plt.offset);
12179
          bfd_put_32 (output_bfd,
12180
                      elf32_arm_symbian_plt_entry[1],
12181
                      splt->contents + h->plt.offset + 4);
12182
 
12183
          /* Fill in the entry in the .rel.plt section.  */
12184
          rel.r_offset = (splt->output_section->vma
12185
                          + splt->output_offset
12186
                          + h->plt.offset + 4);
12187
          rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
12188
 
12189
          /* Get the index in the procedure linkage table which
12190
             corresponds to this symbol.  This is the index of this symbol
12191
             in all the symbols for which we are making plt entries.  The
12192
             first entry in the procedure linkage table is reserved.  */
12193
          plt_index = ((h->plt.offset - htab->plt_header_size)
12194
                       / htab->plt_entry_size);
12195
        }
12196
      else
12197
        {
12198
          bfd_vma got_offset, got_address, plt_address;
12199
          bfd_vma got_displacement;
12200
          asection * sgot;
12201
          bfd_byte * ptr;
12202
 
12203
          sgot = bfd_get_section_by_name (dynobj, ".got.plt");
12204
          BFD_ASSERT (sgot != NULL);
12205
 
12206
          /* Get the offset into the .got.plt table of the entry that
12207
             corresponds to this function.  */
12208
          got_offset = eh->plt_got_offset;
12209
 
12210
          /* Get the index in the procedure linkage table which
12211
             corresponds to this symbol.  This is the index of this symbol
12212
             in all the symbols for which we are making plt entries.  The
12213
             first three entries in .got.plt are reserved; after that
12214
             symbols appear in the same order as in .plt.  */
12215
          plt_index = (got_offset - 12) / 4;
12216
 
12217
          /* Calculate the address of the GOT entry.  */
12218
          got_address = (sgot->output_section->vma
12219
                         + sgot->output_offset
12220
                         + got_offset);
12221
 
12222
          /* ...and the address of the PLT entry.  */
12223
          plt_address = (splt->output_section->vma
12224
                         + splt->output_offset
12225
                         + h->plt.offset);
12226
 
12227
          ptr = htab->splt->contents + h->plt.offset;
12228
          if (htab->vxworks_p && info->shared)
12229
            {
12230
              unsigned int i;
12231
              bfd_vma val;
12232
 
12233
              for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
12234
                {
12235
                  val = elf32_arm_vxworks_shared_plt_entry[i];
12236
                  if (i == 2)
12237
                    val |= got_address - sgot->output_section->vma;
12238
                  if (i == 5)
12239
                    val |= plt_index * RELOC_SIZE (htab);
12240
                  if (i == 2 || i == 5)
12241
                    bfd_put_32 (output_bfd, val, ptr);
12242
                  else
12243
                    put_arm_insn (htab, output_bfd, val, ptr);
12244
                }
12245
            }
12246
          else if (htab->vxworks_p)
12247
            {
12248
              unsigned int i;
12249
              bfd_vma val;
12250
 
12251
              for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
12252
                {
12253
                  val = elf32_arm_vxworks_exec_plt_entry[i];
12254
                  if (i == 2)
12255
                    val |= got_address;
12256
                  if (i == 4)
12257
                    val |= 0xffffff & -((h->plt.offset + i * 4 + 8) >> 2);
12258
                  if (i == 5)
12259
                    val |= plt_index * RELOC_SIZE (htab);
12260
                  if (i == 2 || i == 5)
12261
                    bfd_put_32 (output_bfd, val, ptr);
12262
                  else
12263
                    put_arm_insn (htab, output_bfd, val, ptr);
12264
                }
12265
 
12266
              loc = (htab->srelplt2->contents
12267
                     + (plt_index * 2 + 1) * RELOC_SIZE (htab));
12268
 
12269
              /* Create the .rela.plt.unloaded R_ARM_ABS32 relocation
12270
                 referencing the GOT for this PLT entry.  */
12271
              rel.r_offset = plt_address + 8;
12272
              rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
12273
              rel.r_addend = got_offset;
12274
              SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
12275
              loc += RELOC_SIZE (htab);
12276
 
12277
              /* Create the R_ARM_ABS32 relocation referencing the
12278
                 beginning of the PLT for this GOT entry.  */
12279
              rel.r_offset = got_address;
12280
              rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
12281
              rel.r_addend = 0;
12282
              SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
12283
            }
12284
          else
12285
            {
12286
              bfd_signed_vma thumb_refs;
12287
              /* Calculate the displacement between the PLT slot and the
12288
                 entry in the GOT.  The eight-byte offset accounts for the
12289
                 value produced by adding to pc in the first instruction
12290
                 of the PLT stub.  */
12291
              got_displacement = got_address - (plt_address + 8);
12292
 
12293
              BFD_ASSERT ((got_displacement & 0xf0000000) == 0);
12294
 
12295
              thumb_refs = eh->plt_thumb_refcount;
12296
              if (!htab->use_blx)
12297
                thumb_refs += eh->plt_maybe_thumb_refcount;
12298
 
12299
              if (thumb_refs > 0)
12300
                {
12301
                  put_thumb_insn (htab, output_bfd,
12302
                                  elf32_arm_plt_thumb_stub[0], ptr - 4);
12303
                  put_thumb_insn (htab, output_bfd,
12304
                                  elf32_arm_plt_thumb_stub[1], ptr - 2);
12305
                }
12306
 
12307
              put_arm_insn (htab, output_bfd,
12308
                            elf32_arm_plt_entry[0]
12309
                            | ((got_displacement & 0x0ff00000) >> 20),
12310
                            ptr + 0);
12311
              put_arm_insn (htab, output_bfd,
12312
                            elf32_arm_plt_entry[1]
12313
                            | ((got_displacement & 0x000ff000) >> 12),
12314
                            ptr+ 4);
12315
              put_arm_insn (htab, output_bfd,
12316
                            elf32_arm_plt_entry[2]
12317
                            | (got_displacement & 0x00000fff),
12318
                            ptr + 8);
12319
#ifdef FOUR_WORD_PLT
12320
              bfd_put_32 (output_bfd, elf32_arm_plt_entry[3], ptr + 12);
12321
#endif
12322
            }
12323
 
12324
          /* Fill in the entry in the global offset table.  */
12325
          bfd_put_32 (output_bfd,
12326
                      (splt->output_section->vma
12327
                       + splt->output_offset),
12328
                      sgot->contents + got_offset);
12329
 
12330
          /* Fill in the entry in the .rel(a).plt section.  */
12331
          rel.r_addend = 0;
12332
          rel.r_offset = got_address;
12333
          rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_JUMP_SLOT);
12334
        }
12335
 
12336
      loc = srel->contents + plt_index * RELOC_SIZE (htab);
12337
      SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
12338
 
12339
      if (!h->def_regular)
12340
        {
12341
          /* Mark the symbol as undefined, rather than as defined in
12342
             the .plt section.  Leave the value alone.  */
12343
          sym->st_shndx = SHN_UNDEF;
12344
          /* If the symbol is weak, we do need to clear the value.
12345
             Otherwise, the PLT entry would provide a definition for
12346
             the symbol even if the symbol wasn't defined anywhere,
12347
             and so the symbol would never be NULL.  */
12348
          if (!h->ref_regular_nonweak)
12349
            sym->st_value = 0;
12350
        }
12351
    }
12352
 
12353
  if (h->got.offset != (bfd_vma) -1
12354
      && (elf32_arm_hash_entry (h)->tls_type & GOT_TLS_GD) == 0
12355
      && (elf32_arm_hash_entry (h)->tls_type & GOT_TLS_IE) == 0)
12356
    {
12357
      asection * sgot;
12358
      asection * srel;
12359
      Elf_Internal_Rela rel;
12360
      bfd_byte *loc;
12361
      bfd_vma offset;
12362
 
12363
      /* This symbol has an entry in the global offset table.  Set it
12364
         up.  */
12365
      sgot = bfd_get_section_by_name (dynobj, ".got");
12366
      srel = bfd_get_section_by_name (dynobj, RELOC_SECTION (htab, ".got"));
12367
      BFD_ASSERT (sgot != NULL && srel != NULL);
12368
 
12369
      offset = (h->got.offset & ~(bfd_vma) 1);
12370
      rel.r_addend = 0;
12371
      rel.r_offset = (sgot->output_section->vma
12372
                      + sgot->output_offset
12373
                      + offset);
12374
 
12375
      /* If this is a static link, or it is a -Bsymbolic link and the
12376
         symbol is defined locally or was forced to be local because
12377
         of a version file, we just want to emit a RELATIVE reloc.
12378
         The entry in the global offset table will already have been
12379
         initialized in the relocate_section function.  */
12380
      if (info->shared
12381
          && SYMBOL_REFERENCES_LOCAL (info, h))
12382
        {
12383
          BFD_ASSERT ((h->got.offset & 1) != 0);
12384
          rel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
12385
          if (!htab->use_rel)
12386
            {
12387
              rel.r_addend = bfd_get_32 (output_bfd, sgot->contents + offset);
12388
              bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + offset);
12389
            }
12390
        }
12391
      else
12392
        {
12393
          BFD_ASSERT ((h->got.offset & 1) == 0);
12394
          bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + offset);
12395
          rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
12396
        }
12397
 
12398
      loc = srel->contents + srel->reloc_count++ * RELOC_SIZE (htab);
12399
      SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
12400
    }
12401
 
12402
  if (h->needs_copy)
12403
    {
12404
      asection * s;
12405
      Elf_Internal_Rela rel;
12406
      bfd_byte *loc;
12407
 
12408
      /* This symbol needs a copy reloc.  Set it up.  */
12409
      BFD_ASSERT (h->dynindx != -1
12410
                  && (h->root.type == bfd_link_hash_defined
12411
                      || h->root.type == bfd_link_hash_defweak));
12412
 
12413
      s = bfd_get_section_by_name (h->root.u.def.section->owner,
12414
                                   RELOC_SECTION (htab, ".bss"));
12415
      BFD_ASSERT (s != NULL);
12416
 
12417
      rel.r_addend = 0;
12418
      rel.r_offset = (h->root.u.def.value
12419
                      + h->root.u.def.section->output_section->vma
12420
                      + h->root.u.def.section->output_offset);
12421
      rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_COPY);
12422
      loc = s->contents + s->reloc_count++ * RELOC_SIZE (htab);
12423
      SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
12424
    }
12425
 
12426
  /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute.  On VxWorks,
12427
     the _GLOBAL_OFFSET_TABLE_ symbol is not absolute: it is relative
12428
     to the ".got" section.  */
12429
  if (strcmp (h->root.root.string, "_DYNAMIC") == 0
12430
      || (!htab->vxworks_p && h == htab->root.hgot))
12431
    sym->st_shndx = SHN_ABS;
12432
 
12433
  return TRUE;
12434
}
12435
 
12436
/* Finish up the dynamic sections.  */
12437
 
12438
static bfd_boolean
12439
elf32_arm_finish_dynamic_sections (bfd * output_bfd, struct bfd_link_info * info)
12440
{
12441
  bfd * dynobj;
12442
  asection * sgot;
12443
  asection * sdyn;
12444
  struct elf32_arm_link_hash_table *htab;
12445
 
12446
  htab = elf32_arm_hash_table (info);
12447
  if (htab == NULL)
12448
    return FALSE;
12449
 
12450
  dynobj = elf_hash_table (info)->dynobj;
12451
 
12452
  sgot = bfd_get_section_by_name (dynobj, ".got.plt");
12453
  BFD_ASSERT (htab->symbian_p || sgot != NULL);
12454
  sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
12455
 
12456
  if (elf_hash_table (info)->dynamic_sections_created)
12457
    {
12458
      asection *splt;
12459
      Elf32_External_Dyn *dyncon, *dynconend;
12460
 
12461
      splt = bfd_get_section_by_name (dynobj, ".plt");
12462
      BFD_ASSERT (splt != NULL && sdyn != NULL);
12463
 
12464
      dyncon = (Elf32_External_Dyn *) sdyn->contents;
12465
      dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
12466
 
12467
      for (; dyncon < dynconend; dyncon++)
12468
        {
12469
          Elf_Internal_Dyn dyn;
12470
          const char * name;
12471
          asection * s;
12472
 
12473
          bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
12474
 
12475
          switch (dyn.d_tag)
12476
            {
12477
              unsigned int type;
12478
 
12479
            default:
12480
              if (htab->vxworks_p
12481
                  && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
12482
                bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
12483
              break;
12484
 
12485
            case DT_HASH:
12486
              name = ".hash";
12487
              goto get_vma_if_bpabi;
12488
            case DT_STRTAB:
12489
              name = ".dynstr";
12490
              goto get_vma_if_bpabi;
12491
            case DT_SYMTAB:
12492
              name = ".dynsym";
12493
              goto get_vma_if_bpabi;
12494
            case DT_VERSYM:
12495
              name = ".gnu.version";
12496
              goto get_vma_if_bpabi;
12497
            case DT_VERDEF:
12498
              name = ".gnu.version_d";
12499
              goto get_vma_if_bpabi;
12500
            case DT_VERNEED:
12501
              name = ".gnu.version_r";
12502
              goto get_vma_if_bpabi;
12503
 
12504
            case DT_PLTGOT:
12505
              name = ".got";
12506
              goto get_vma;
12507
            case DT_JMPREL:
12508
              name = RELOC_SECTION (htab, ".plt");
12509
            get_vma:
12510
              s = bfd_get_section_by_name (output_bfd, name);
12511
              BFD_ASSERT (s != NULL);
12512
              if (!htab->symbian_p)
12513
                dyn.d_un.d_ptr = s->vma;
12514
              else
12515
                /* In the BPABI, tags in the PT_DYNAMIC section point
12516
                   at the file offset, not the memory address, for the
12517
                   convenience of the post linker.  */
12518
                dyn.d_un.d_ptr = s->filepos;
12519
              bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
12520
              break;
12521
 
12522
            get_vma_if_bpabi:
12523
              if (htab->symbian_p)
12524
                goto get_vma;
12525
              break;
12526
 
12527
            case DT_PLTRELSZ:
12528
              s = bfd_get_section_by_name (output_bfd,
12529
                                           RELOC_SECTION (htab, ".plt"));
12530
              BFD_ASSERT (s != NULL);
12531
              dyn.d_un.d_val = s->size;
12532
              bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
12533
              break;
12534
 
12535
            case DT_RELSZ:
12536
            case DT_RELASZ:
12537
              if (!htab->symbian_p)
12538
                {
12539
                  /* My reading of the SVR4 ABI indicates that the
12540
                     procedure linkage table relocs (DT_JMPREL) should be
12541
                     included in the overall relocs (DT_REL).  This is
12542
                     what Solaris does.  However, UnixWare can not handle
12543
                     that case.  Therefore, we override the DT_RELSZ entry
12544
                     here to make it not include the JMPREL relocs.  Since
12545
                     the linker script arranges for .rel(a).plt to follow all
12546
                     other relocation sections, we don't have to worry
12547
                     about changing the DT_REL entry.  */
12548
                  s = bfd_get_section_by_name (output_bfd,
12549
                                               RELOC_SECTION (htab, ".plt"));
12550
                  if (s != NULL)
12551
                    dyn.d_un.d_val -= s->size;
12552
                  bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
12553
                  break;
12554
                }
12555
              /* Fall through.  */
12556
 
12557
            case DT_REL:
12558
            case DT_RELA:
12559
              /* In the BPABI, the DT_REL tag must point at the file
12560
                 offset, not the VMA, of the first relocation
12561
                 section.  So, we use code similar to that in
12562
                 elflink.c, but do not check for SHF_ALLOC on the
12563
                 relcoation section, since relocations sections are
12564
                 never allocated under the BPABI.  The comments above
12565
                 about Unixware notwithstanding, we include all of the
12566
                 relocations here.  */
12567
              if (htab->symbian_p)
12568
                {
12569
                  unsigned int i;
12570
                  type = ((dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
12571
                          ? SHT_REL : SHT_RELA);
12572
                  dyn.d_un.d_val = 0;
12573
                  for (i = 1; i < elf_numsections (output_bfd); i++)
12574
                    {
12575
                      Elf_Internal_Shdr *hdr
12576
                        = elf_elfsections (output_bfd)[i];
12577
                      if (hdr->sh_type == type)
12578
                        {
12579
                          if (dyn.d_tag == DT_RELSZ
12580
                              || dyn.d_tag == DT_RELASZ)
12581
                            dyn.d_un.d_val += hdr->sh_size;
12582
                          else if ((ufile_ptr) hdr->sh_offset
12583
                                   <= dyn.d_un.d_val - 1)
12584
                            dyn.d_un.d_val = hdr->sh_offset;
12585
                        }
12586
                    }
12587
                  bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
12588
                }
12589
              break;
12590
 
12591
              /* Set the bottom bit of DT_INIT/FINI if the
12592
                 corresponding function is Thumb.  */
12593
            case DT_INIT:
12594
              name = info->init_function;
12595
              goto get_sym;
12596
            case DT_FINI:
12597
              name = info->fini_function;
12598
            get_sym:
12599
              /* If it wasn't set by elf_bfd_final_link
12600
                 then there is nothing to adjust.  */
12601
              if (dyn.d_un.d_val != 0)
12602
                {
12603
                  struct elf_link_hash_entry * eh;
12604
 
12605
                  eh = elf_link_hash_lookup (elf_hash_table (info), name,
12606
                                             FALSE, FALSE, TRUE);
12607
                  if (eh != NULL
12608
                      && ELF_ST_TYPE (eh->type) == STT_ARM_TFUNC)
12609
                    {
12610
                      dyn.d_un.d_val |= 1;
12611
                      bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
12612
                    }
12613
                }
12614
              break;
12615
            }
12616
        }
12617
 
12618
      /* Fill in the first entry in the procedure linkage table.  */
12619
      if (splt->size > 0 && htab->plt_header_size)
12620
        {
12621
          const bfd_vma *plt0_entry;
12622
          bfd_vma got_address, plt_address, got_displacement;
12623
 
12624
          /* Calculate the addresses of the GOT and PLT.  */
12625
          got_address = sgot->output_section->vma + sgot->output_offset;
12626
          plt_address = splt->output_section->vma + splt->output_offset;
12627
 
12628
          if (htab->vxworks_p)
12629
            {
12630
              /* The VxWorks GOT is relocated by the dynamic linker.
12631
                 Therefore, we must emit relocations rather than simply
12632
                 computing the values now.  */
12633
              Elf_Internal_Rela rel;
12634
 
12635
              plt0_entry = elf32_arm_vxworks_exec_plt0_entry;
12636
              put_arm_insn (htab, output_bfd, plt0_entry[0],
12637
                            splt->contents + 0);
12638
              put_arm_insn (htab, output_bfd, plt0_entry[1],
12639
                            splt->contents + 4);
12640
              put_arm_insn (htab, output_bfd, plt0_entry[2],
12641
                            splt->contents + 8);
12642
              bfd_put_32 (output_bfd, got_address, splt->contents + 12);
12643
 
12644
              /* Generate a relocation for _GLOBAL_OFFSET_TABLE_.  */
12645
              rel.r_offset = plt_address + 12;
12646
              rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
12647
              rel.r_addend = 0;
12648
              SWAP_RELOC_OUT (htab) (output_bfd, &rel,
12649
                                     htab->srelplt2->contents);
12650
            }
12651
          else
12652
            {
12653
              got_displacement = got_address - (plt_address + 16);
12654
 
12655
              plt0_entry = elf32_arm_plt0_entry;
12656
              put_arm_insn (htab, output_bfd, plt0_entry[0],
12657
                            splt->contents + 0);
12658
              put_arm_insn (htab, output_bfd, plt0_entry[1],
12659
                            splt->contents + 4);
12660
              put_arm_insn (htab, output_bfd, plt0_entry[2],
12661
                            splt->contents + 8);
12662
              put_arm_insn (htab, output_bfd, plt0_entry[3],
12663
                            splt->contents + 12);
12664
 
12665
#ifdef FOUR_WORD_PLT
12666
              /* The displacement value goes in the otherwise-unused
12667
                 last word of the second entry.  */
12668
              bfd_put_32 (output_bfd, got_displacement, splt->contents + 28);
12669
#else
12670
              bfd_put_32 (output_bfd, got_displacement, splt->contents + 16);
12671
#endif
12672
            }
12673
        }
12674
 
12675
      /* UnixWare sets the entsize of .plt to 4, although that doesn't
12676
         really seem like the right value.  */
12677
      if (splt->output_section->owner == output_bfd)
12678
        elf_section_data (splt->output_section)->this_hdr.sh_entsize = 4;
12679
 
12680
      if (htab->vxworks_p && !info->shared && htab->splt->size > 0)
12681
        {
12682
          /* Correct the .rel(a).plt.unloaded relocations.  They will have
12683
             incorrect symbol indexes.  */
12684
          int num_plts;
12685
          unsigned char *p;
12686
 
12687
          num_plts = ((htab->splt->size - htab->plt_header_size)
12688
                      / htab->plt_entry_size);
12689
          p = htab->srelplt2->contents + RELOC_SIZE (htab);
12690
 
12691
          for (; num_plts; num_plts--)
12692
            {
12693
              Elf_Internal_Rela rel;
12694
 
12695
              SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
12696
              rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
12697
              SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
12698
              p += RELOC_SIZE (htab);
12699
 
12700
              SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
12701
              rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
12702
              SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
12703
              p += RELOC_SIZE (htab);
12704
            }
12705
        }
12706
    }
12707
 
12708
  /* Fill in the first three entries in the global offset table.  */
12709
  if (sgot)
12710
    {
12711
      if (sgot->size > 0)
12712
        {
12713
          if (sdyn == NULL)
12714
            bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
12715
          else
12716
            bfd_put_32 (output_bfd,
12717
                        sdyn->output_section->vma + sdyn->output_offset,
12718
                        sgot->contents);
12719
          bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
12720
          bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
12721
        }
12722
 
12723
      elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
12724
    }
12725
 
12726
  return TRUE;
12727
}
12728
 
12729
static void
12730
elf32_arm_post_process_headers (bfd * abfd, struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
12731
{
12732
  Elf_Internal_Ehdr * i_ehdrp;  /* ELF file header, internal form.  */
12733
  struct elf32_arm_link_hash_table *globals;
12734
 
12735
  i_ehdrp = elf_elfheader (abfd);
12736
 
12737
  if (EF_ARM_EABI_VERSION (i_ehdrp->e_flags) == EF_ARM_EABI_UNKNOWN)
12738
    i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_ARM;
12739
  else
12740
    i_ehdrp->e_ident[EI_OSABI] = 0;
12741
  i_ehdrp->e_ident[EI_ABIVERSION] = ARM_ELF_ABI_VERSION;
12742
 
12743
  if (link_info)
12744
    {
12745
      globals = elf32_arm_hash_table (link_info);
12746
      if (globals != NULL && globals->byteswap_code)
12747
        i_ehdrp->e_flags |= EF_ARM_BE8;
12748
    }
12749
}
12750
 
12751
static enum elf_reloc_type_class
12752
elf32_arm_reloc_type_class (const Elf_Internal_Rela *rela)
12753
{
12754
  switch ((int) ELF32_R_TYPE (rela->r_info))
12755
    {
12756
    case R_ARM_RELATIVE:
12757
      return reloc_class_relative;
12758
    case R_ARM_JUMP_SLOT:
12759
      return reloc_class_plt;
12760
    case R_ARM_COPY:
12761
      return reloc_class_copy;
12762
    default:
12763
      return reloc_class_normal;
12764
    }
12765
}
12766
 
12767
/* Set the right machine number for an Arm ELF file.  */
12768
 
12769
static bfd_boolean
12770
elf32_arm_section_flags (flagword *flags, const Elf_Internal_Shdr *hdr)
12771
{
12772
  if (hdr->sh_type == SHT_NOTE)
12773
    *flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_CONTENTS;
12774
 
12775
  return TRUE;
12776
}
12777
 
12778
static void
12779
elf32_arm_final_write_processing (bfd *abfd, bfd_boolean linker ATTRIBUTE_UNUSED)
12780
{
12781
  bfd_arm_update_notes (abfd, ARM_NOTE_SECTION);
12782
}
12783
 
12784
/* Return TRUE if this is an unwinding table entry.  */
12785
 
12786
static bfd_boolean
12787
is_arm_elf_unwind_section_name (bfd * abfd ATTRIBUTE_UNUSED, const char * name)
12788
{
12789
  return (CONST_STRNEQ (name, ELF_STRING_ARM_unwind)
12790
          || CONST_STRNEQ (name, ELF_STRING_ARM_unwind_once));
12791
}
12792
 
12793
 
12794
/* Set the type and flags for an ARM section.  We do this by
12795
   the section name, which is a hack, but ought to work.  */
12796
 
12797
static bfd_boolean
12798
elf32_arm_fake_sections (bfd * abfd, Elf_Internal_Shdr * hdr, asection * sec)
12799
{
12800
  const char * name;
12801
 
12802
  name = bfd_get_section_name (abfd, sec);
12803
 
12804
  if (is_arm_elf_unwind_section_name (abfd, name))
12805
    {
12806
      hdr->sh_type = SHT_ARM_EXIDX;
12807
      hdr->sh_flags |= SHF_LINK_ORDER;
12808
    }
12809
  return TRUE;
12810
}
12811
 
12812
/* Handle an ARM specific section when reading an object file.  This is
12813
   called when bfd_section_from_shdr finds a section with an unknown
12814
   type.  */
12815
 
12816
static bfd_boolean
12817
elf32_arm_section_from_shdr (bfd *abfd,
12818
                             Elf_Internal_Shdr * hdr,
12819
                             const char *name,
12820
                             int shindex)
12821
{
12822
  /* There ought to be a place to keep ELF backend specific flags, but
12823
     at the moment there isn't one.  We just keep track of the
12824
     sections by their name, instead.  Fortunately, the ABI gives
12825
     names for all the ARM specific sections, so we will probably get
12826
     away with this.  */
12827
  switch (hdr->sh_type)
12828
    {
12829
    case SHT_ARM_EXIDX:
12830
    case SHT_ARM_PREEMPTMAP:
12831
    case SHT_ARM_ATTRIBUTES:
12832
      break;
12833
 
12834
    default:
12835
      return FALSE;
12836
    }
12837
 
12838
  if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
12839
    return FALSE;
12840
 
12841
  return TRUE;
12842
}
12843
 
12844
static _arm_elf_section_data *
12845
get_arm_elf_section_data (asection * sec)
12846
{
12847
  if (sec && sec->owner && is_arm_elf (sec->owner))
12848
    return elf32_arm_section_data (sec);
12849
  else
12850
    return NULL;
12851
}
12852
 
12853
typedef struct
12854
{
12855
  void *finfo;
12856
  struct bfd_link_info *info;
12857
  asection *sec;
12858
  int sec_shndx;
12859
  int (*func) (void *, const char *, Elf_Internal_Sym *,
12860
               asection *, struct elf_link_hash_entry *);
12861
} output_arch_syminfo;
12862
 
12863
enum map_symbol_type
12864
{
12865
  ARM_MAP_ARM,
12866
  ARM_MAP_THUMB,
12867
  ARM_MAP_DATA
12868
};
12869
 
12870
 
12871
/* Output a single mapping symbol.  */
12872
 
12873
static bfd_boolean
12874
elf32_arm_output_map_sym (output_arch_syminfo *osi,
12875
                          enum map_symbol_type type,
12876
                          bfd_vma offset)
12877
{
12878
  static const char *names[3] = {"$a", "$t", "$d"};
12879
  Elf_Internal_Sym sym;
12880
 
12881
  sym.st_value = osi->sec->output_section->vma
12882
                 + osi->sec->output_offset
12883
                 + offset;
12884
  sym.st_size = 0;
12885
  sym.st_other = 0;
12886
  sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
12887
  sym.st_shndx = osi->sec_shndx;
12888
  elf32_arm_section_map_add (osi->sec, names[type][1], offset);
12889
  return osi->func (osi->finfo, names[type], &sym, osi->sec, NULL) == 1;
12890
}
12891
 
12892
 
12893
/* Output mapping symbols for PLT entries associated with H.  */
12894
 
12895
static bfd_boolean
12896
elf32_arm_output_plt_map (struct elf_link_hash_entry *h, void *inf)
12897
{
12898
  output_arch_syminfo *osi = (output_arch_syminfo *) inf;
12899
  struct elf32_arm_link_hash_table *htab;
12900
  struct elf32_arm_link_hash_entry *eh;
12901
  bfd_vma addr;
12902
 
12903
  if (h->root.type == bfd_link_hash_indirect)
12904
    return TRUE;
12905
 
12906
  if (h->root.type == bfd_link_hash_warning)
12907
    /* When warning symbols are created, they **replace** the "real"
12908
       entry in the hash table, thus we never get to see the real
12909
       symbol in a hash traversal.  So look at it now.  */
12910
    h = (struct elf_link_hash_entry *) h->root.u.i.link;
12911
 
12912
  if (h->plt.offset == (bfd_vma) -1)
12913
    return TRUE;
12914
 
12915
  htab = elf32_arm_hash_table (osi->info);
12916
  if (htab == NULL)
12917
    return FALSE;
12918
 
12919
  eh = (struct elf32_arm_link_hash_entry *) h;
12920
  addr = h->plt.offset;
12921
  if (htab->symbian_p)
12922
    {
12923
      if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
12924
        return FALSE;
12925
      if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 4))
12926
        return FALSE;
12927
    }
12928
  else if (htab->vxworks_p)
12929
    {
12930
      if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
12931
        return FALSE;
12932
      if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 8))
12933
        return FALSE;
12934
      if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr + 12))
12935
        return FALSE;
12936
      if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 20))
12937
        return FALSE;
12938
    }
12939
  else
12940
    {
12941
      bfd_signed_vma thumb_refs;
12942
 
12943
      thumb_refs = eh->plt_thumb_refcount;
12944
      if (!htab->use_blx)
12945
        thumb_refs += eh->plt_maybe_thumb_refcount;
12946
 
12947
      if (thumb_refs > 0)
12948
        {
12949
          if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr - 4))
12950
            return FALSE;
12951
        }
12952
#ifdef FOUR_WORD_PLT
12953
      if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
12954
        return FALSE;
12955
      if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 12))
12956
        return FALSE;
12957
#else
12958
      /* A three-word PLT with no Thumb thunk contains only Arm code,
12959
         so only need to output a mapping symbol for the first PLT entry and
12960
         entries with thumb thunks.  */
12961
      if (thumb_refs > 0 || addr == 20)
12962
        {
12963
          if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
12964
            return FALSE;
12965
        }
12966
#endif
12967
    }
12968
 
12969
  return TRUE;
12970
}
12971
 
12972
/* Output a single local symbol for a generated stub.  */
12973
 
12974
static bfd_boolean
12975
elf32_arm_output_stub_sym (output_arch_syminfo *osi, const char *name,
12976
                           bfd_vma offset, bfd_vma size)
12977
{
12978
  Elf_Internal_Sym sym;
12979
 
12980
  sym.st_value = osi->sec->output_section->vma
12981
                 + osi->sec->output_offset
12982
                 + offset;
12983
  sym.st_size = size;
12984
  sym.st_other = 0;
12985
  sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
12986
  sym.st_shndx = osi->sec_shndx;
12987
  return osi->func (osi->finfo, name, &sym, osi->sec, NULL) == 1;
12988
}
12989
 
12990
static bfd_boolean
12991
arm_map_one_stub (struct bfd_hash_entry * gen_entry,
12992
                  void * in_arg)
12993
{
12994
  struct elf32_arm_stub_hash_entry *stub_entry;
12995
  asection *stub_sec;
12996
  bfd_vma addr;
12997
  char *stub_name;
12998
  output_arch_syminfo *osi;
12999
  const insn_sequence *template_sequence;
13000
  enum stub_insn_type prev_type;
13001
  int size;
13002
  int i;
13003
  enum map_symbol_type sym_type;
13004
 
13005
  /* Massage our args to the form they really have.  */
13006
  stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
13007
  osi = (output_arch_syminfo *) in_arg;
13008
 
13009
  stub_sec = stub_entry->stub_sec;
13010
 
13011
  /* Ensure this stub is attached to the current section being
13012
     processed.  */
13013
  if (stub_sec != osi->sec)
13014
    return TRUE;
13015
 
13016
  addr = (bfd_vma) stub_entry->stub_offset;
13017
  stub_name = stub_entry->output_name;
13018
 
13019
  template_sequence = stub_entry->stub_template;
13020
  switch (template_sequence[0].type)
13021
    {
13022
    case ARM_TYPE:
13023
      if (!elf32_arm_output_stub_sym (osi, stub_name, addr, stub_entry->stub_size))
13024
        return FALSE;
13025
      break;
13026
    case THUMB16_TYPE:
13027
    case THUMB32_TYPE:
13028
      if (!elf32_arm_output_stub_sym (osi, stub_name, addr | 1,
13029
                                      stub_entry->stub_size))
13030
        return FALSE;
13031
      break;
13032
    default:
13033
      BFD_FAIL ();
13034
      return 0;
13035
    }
13036
 
13037
  prev_type = DATA_TYPE;
13038
  size = 0;
13039
  for (i = 0; i < stub_entry->stub_template_size; i++)
13040
    {
13041
      switch (template_sequence[i].type)
13042
        {
13043
        case ARM_TYPE:
13044
          sym_type = ARM_MAP_ARM;
13045
          break;
13046
 
13047
        case THUMB16_TYPE:
13048
        case THUMB32_TYPE:
13049
          sym_type = ARM_MAP_THUMB;
13050
          break;
13051
 
13052
        case DATA_TYPE:
13053
          sym_type = ARM_MAP_DATA;
13054
          break;
13055
 
13056
        default:
13057
          BFD_FAIL ();
13058
          return FALSE;
13059
        }
13060
 
13061
      if (template_sequence[i].type != prev_type)
13062
        {
13063
          prev_type = template_sequence[i].type;
13064
          if (!elf32_arm_output_map_sym (osi, sym_type, addr + size))
13065
            return FALSE;
13066
        }
13067
 
13068
      switch (template_sequence[i].type)
13069
        {
13070
        case ARM_TYPE:
13071
        case THUMB32_TYPE:
13072
          size += 4;
13073
          break;
13074
 
13075
        case THUMB16_TYPE:
13076
          size += 2;
13077
          break;
13078
 
13079
        case DATA_TYPE:
13080
          size += 4;
13081
          break;
13082
 
13083
        default:
13084
          BFD_FAIL ();
13085
          return FALSE;
13086
        }
13087
    }
13088
 
13089
  return TRUE;
13090
}
13091
 
13092
/* Output mapping symbols for linker generated sections,
13093
   and for those data-only sections that do not have a
13094
   $d.  */
13095
 
13096
static bfd_boolean
13097
elf32_arm_output_arch_local_syms (bfd *output_bfd,
13098
                                  struct bfd_link_info *info,
13099
                                  void *finfo,
13100
                                  int (*func) (void *, const char *,
13101
                                               Elf_Internal_Sym *,
13102
                                               asection *,
13103
                                               struct elf_link_hash_entry *))
13104
{
13105
  output_arch_syminfo osi;
13106
  struct elf32_arm_link_hash_table *htab;
13107
  bfd_vma offset;
13108
  bfd_size_type size;
13109
  bfd *input_bfd;
13110
 
13111
  htab = elf32_arm_hash_table (info);
13112
  if (htab == NULL)
13113
    return FALSE;
13114
 
13115
  check_use_blx (htab);
13116
 
13117
  osi.finfo = finfo;
13118
  osi.info = info;
13119
  osi.func = func;
13120
 
13121
  /* Add a $d mapping symbol to data-only sections that
13122
     don't have any mapping symbol.  This may result in (harmless) redundant
13123
     mapping symbols.  */
13124
  for (input_bfd = info->input_bfds;
13125
       input_bfd != NULL;
13126
       input_bfd = input_bfd->link_next)
13127
    {
13128
      if ((input_bfd->flags & (BFD_LINKER_CREATED | HAS_SYMS)) == HAS_SYMS)
13129
        for (osi.sec = input_bfd->sections;
13130
             osi.sec != NULL;
13131
             osi.sec = osi.sec->next)
13132
          {
13133
            if (osi.sec->output_section != NULL
13134
                && ((osi.sec->output_section->flags & (SEC_ALLOC | SEC_CODE))
13135
                    != 0)
13136
                && (osi.sec->flags & (SEC_HAS_CONTENTS | SEC_LINKER_CREATED))
13137
                   == SEC_HAS_CONTENTS
13138
                && get_arm_elf_section_data (osi.sec) != NULL
13139
                && get_arm_elf_section_data (osi.sec)->mapcount == 0
13140
                && osi.sec->size > 0)
13141
              {
13142
                osi.sec_shndx = _bfd_elf_section_from_bfd_section
13143
                  (output_bfd, osi.sec->output_section);
13144
                if (osi.sec_shndx != (int)SHN_BAD)
13145
                  elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 0);
13146
              }
13147
          }
13148
    }
13149
 
13150
  /* ARM->Thumb glue.  */
13151
  if (htab->arm_glue_size > 0)
13152
    {
13153
      osi.sec = bfd_get_section_by_name (htab->bfd_of_glue_owner,
13154
                                         ARM2THUMB_GLUE_SECTION_NAME);
13155
 
13156
      osi.sec_shndx = _bfd_elf_section_from_bfd_section
13157
          (output_bfd, osi.sec->output_section);
13158
      if (info->shared || htab->root.is_relocatable_executable
13159
          || htab->pic_veneer)
13160
        size = ARM2THUMB_PIC_GLUE_SIZE;
13161
      else if (htab->use_blx)
13162
        size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
13163
      else
13164
        size = ARM2THUMB_STATIC_GLUE_SIZE;
13165
 
13166
      for (offset = 0; offset < htab->arm_glue_size; offset += size)
13167
        {
13168
          elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset);
13169
          elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, offset + size - 4);
13170
        }
13171
    }
13172
 
13173
  /* Thumb->ARM glue.  */
13174
  if (htab->thumb_glue_size > 0)
13175
    {
13176
      osi.sec = bfd_get_section_by_name (htab->bfd_of_glue_owner,
13177
                                         THUMB2ARM_GLUE_SECTION_NAME);
13178
 
13179
      osi.sec_shndx = _bfd_elf_section_from_bfd_section
13180
          (output_bfd, osi.sec->output_section);
13181
      size = THUMB2ARM_GLUE_SIZE;
13182
 
13183
      for (offset = 0; offset < htab->thumb_glue_size; offset += size)
13184
        {
13185
          elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, offset);
13186
          elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset + 4);
13187
        }
13188
    }
13189
 
13190
  /* ARMv4 BX veneers.  */
13191
  if (htab->bx_glue_size > 0)
13192
    {
13193
      osi.sec = bfd_get_section_by_name (htab->bfd_of_glue_owner,
13194
                                         ARM_BX_GLUE_SECTION_NAME);
13195
 
13196
      osi.sec_shndx = _bfd_elf_section_from_bfd_section
13197
          (output_bfd, osi.sec->output_section);
13198
 
13199
      elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0);
13200
    }
13201
 
13202
  /* Long calls stubs.  */
13203
  if (htab->stub_bfd && htab->stub_bfd->sections)
13204
    {
13205
      asection* stub_sec;
13206
 
13207
      for (stub_sec = htab->stub_bfd->sections;
13208
           stub_sec != NULL;
13209
           stub_sec = stub_sec->next)
13210
        {
13211
          /* Ignore non-stub sections.  */
13212
          if (!strstr (stub_sec->name, STUB_SUFFIX))
13213
            continue;
13214
 
13215
          osi.sec = stub_sec;
13216
 
13217
          osi.sec_shndx = _bfd_elf_section_from_bfd_section
13218
            (output_bfd, osi.sec->output_section);
13219
 
13220
          bfd_hash_traverse (&htab->stub_hash_table, arm_map_one_stub, &osi);
13221
        }
13222
    }
13223
 
13224
  /* Finally, output mapping symbols for the PLT.  */
13225
  if (!htab->splt || htab->splt->size == 0)
13226
    return TRUE;
13227
 
13228
  osi.sec_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
13229
                                                     htab->splt->output_section);
13230
  osi.sec = htab->splt;
13231
  /* Output mapping symbols for the plt header.  SymbianOS does not have a
13232
     plt header.  */
13233
  if (htab->vxworks_p)
13234
    {
13235
      /* VxWorks shared libraries have no PLT header.  */
13236
      if (!info->shared)
13237
        {
13238
          if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
13239
            return FALSE;
13240
          if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 12))
13241
            return FALSE;
13242
        }
13243
    }
13244
  else if (!htab->symbian_p)
13245
    {
13246
      if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
13247
        return FALSE;
13248
#ifndef FOUR_WORD_PLT
13249
      if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 16))
13250
        return FALSE;
13251
#endif
13252
    }
13253
 
13254
  elf_link_hash_traverse (&htab->root, elf32_arm_output_plt_map, (void *) &osi);
13255
  return TRUE;
13256
}
13257
 
13258
/* Allocate target specific section data.  */
13259
 
13260
static bfd_boolean
13261
elf32_arm_new_section_hook (bfd *abfd, asection *sec)
13262
{
13263
  if (!sec->used_by_bfd)
13264
    {
13265
      _arm_elf_section_data *sdata;
13266
      bfd_size_type amt = sizeof (*sdata);
13267
 
13268
      sdata = (_arm_elf_section_data *) bfd_zalloc (abfd, amt);
13269
      if (sdata == NULL)
13270
        return FALSE;
13271
      sec->used_by_bfd = sdata;
13272
    }
13273
 
13274
  return _bfd_elf_new_section_hook (abfd, sec);
13275
}
13276
 
13277
 
13278
/* Used to order a list of mapping symbols by address.  */
13279
 
13280
static int
13281
elf32_arm_compare_mapping (const void * a, const void * b)
13282
{
13283
  const elf32_arm_section_map *amap = (const elf32_arm_section_map *) a;
13284
  const elf32_arm_section_map *bmap = (const elf32_arm_section_map *) b;
13285
 
13286
  if (amap->vma > bmap->vma)
13287
    return 1;
13288
  else if (amap->vma < bmap->vma)
13289
    return -1;
13290
  else if (amap->type > bmap->type)
13291
    /* Ensure results do not depend on the host qsort for objects with
13292
       multiple mapping symbols at the same address by sorting on type
13293
       after vma.  */
13294
    return 1;
13295
  else if (amap->type < bmap->type)
13296
    return -1;
13297
  else
13298
    return 0;
13299
}
13300
 
13301
/* Add OFFSET to lower 31 bits of ADDR, leaving other bits unmodified.  */
13302
 
13303
static unsigned long
13304
offset_prel31 (unsigned long addr, bfd_vma offset)
13305
{
13306
  return (addr & ~0x7ffffffful) | ((addr + offset) & 0x7ffffffful);
13307
}
13308
 
13309
/* Copy an .ARM.exidx table entry, adding OFFSET to (applied) PREL31
13310
   relocations.  */
13311
 
13312
static void
13313
copy_exidx_entry (bfd *output_bfd, bfd_byte *to, bfd_byte *from, bfd_vma offset)
13314
{
13315
  unsigned long first_word = bfd_get_32 (output_bfd, from);
13316
  unsigned long second_word = bfd_get_32 (output_bfd, from + 4);
13317
 
13318
  /* High bit of first word is supposed to be zero.  */
13319
  if ((first_word & 0x80000000ul) == 0)
13320
    first_word = offset_prel31 (first_word, offset);
13321
 
13322
  /* If the high bit of the first word is clear, and the bit pattern is not 0x1
13323
     (EXIDX_CANTUNWIND), this is an offset to an .ARM.extab entry.  */
13324
  if ((second_word != 0x1) && ((second_word & 0x80000000ul) == 0))
13325
    second_word = offset_prel31 (second_word, offset);
13326
 
13327
  bfd_put_32 (output_bfd, first_word, to);
13328
  bfd_put_32 (output_bfd, second_word, to + 4);
13329
}
13330
 
13331
/* Data for make_branch_to_a8_stub().  */
13332
 
13333
struct a8_branch_to_stub_data {
13334
  asection *writing_section;
13335
  bfd_byte *contents;
13336
};
13337
 
13338
 
13339
/* Helper to insert branches to Cortex-A8 erratum stubs in the right
13340
   places for a particular section.  */
13341
 
13342
static bfd_boolean
13343
make_branch_to_a8_stub (struct bfd_hash_entry *gen_entry,
13344
                       void *in_arg)
13345
{
13346
  struct elf32_arm_stub_hash_entry *stub_entry;
13347
  struct a8_branch_to_stub_data *data;
13348
  bfd_byte *contents;
13349
  unsigned long branch_insn;
13350
  bfd_vma veneered_insn_loc, veneer_entry_loc;
13351
  bfd_signed_vma branch_offset;
13352
  bfd *abfd;
13353
  unsigned int target;
13354
 
13355
  stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
13356
  data = (struct a8_branch_to_stub_data *) in_arg;
13357
 
13358
  if (stub_entry->target_section != data->writing_section
13359
      || stub_entry->stub_type < arm_stub_a8_veneer_b_cond)
13360
    return TRUE;
13361
 
13362
  contents = data->contents;
13363
 
13364
  veneered_insn_loc = stub_entry->target_section->output_section->vma
13365
                      + stub_entry->target_section->output_offset
13366
                      + stub_entry->target_value;
13367
 
13368
  veneer_entry_loc = stub_entry->stub_sec->output_section->vma
13369
                     + stub_entry->stub_sec->output_offset
13370
                     + stub_entry->stub_offset;
13371
 
13372
  if (stub_entry->stub_type == arm_stub_a8_veneer_blx)
13373
    veneered_insn_loc &= ~3u;
13374
 
13375
  branch_offset = veneer_entry_loc - veneered_insn_loc - 4;
13376
 
13377
  abfd = stub_entry->target_section->owner;
13378
  target = stub_entry->target_value;
13379
 
13380
  /* We attempt to avoid this condition by setting stubs_always_after_branch
13381
     in elf32_arm_size_stubs if we've enabled the Cortex-A8 erratum workaround.
13382
     This check is just to be on the safe side...  */
13383
  if ((veneered_insn_loc & ~0xfff) == (veneer_entry_loc & ~0xfff))
13384
    {
13385
      (*_bfd_error_handler) (_("%B: error: Cortex-A8 erratum stub is "
13386
                               "allocated in unsafe location"), abfd);
13387
      return FALSE;
13388
    }
13389
 
13390
  switch (stub_entry->stub_type)
13391
    {
13392
    case arm_stub_a8_veneer_b:
13393
    case arm_stub_a8_veneer_b_cond:
13394
      branch_insn = 0xf0009000;
13395
      goto jump24;
13396
 
13397
    case arm_stub_a8_veneer_blx:
13398
      branch_insn = 0xf000e800;
13399
      goto jump24;
13400
 
13401
    case arm_stub_a8_veneer_bl:
13402
      {
13403
        unsigned int i1, j1, i2, j2, s;
13404
 
13405
        branch_insn = 0xf000d000;
13406
 
13407
      jump24:
13408
        if (branch_offset < -16777216 || branch_offset > 16777214)
13409
          {
13410
            /* There's not much we can do apart from complain if this
13411
               happens.  */
13412
            (*_bfd_error_handler) (_("%B: error: Cortex-A8 erratum stub out "
13413
                                     "of range (input file too large)"), abfd);
13414
            return FALSE;
13415
          }
13416
 
13417
        /* i1 = not(j1 eor s), so:
13418
           not i1 = j1 eor s
13419
           j1 = (not i1) eor s.  */
13420
 
13421
        branch_insn |= (branch_offset >> 1) & 0x7ff;
13422
        branch_insn |= ((branch_offset >> 12) & 0x3ff) << 16;
13423
        i2 = (branch_offset >> 22) & 1;
13424
        i1 = (branch_offset >> 23) & 1;
13425
        s = (branch_offset >> 24) & 1;
13426
        j1 = (!i1) ^ s;
13427
        j2 = (!i2) ^ s;
13428
        branch_insn |= j2 << 11;
13429
        branch_insn |= j1 << 13;
13430
        branch_insn |= s << 26;
13431
      }
13432
      break;
13433
 
13434
    default:
13435
      BFD_FAIL ();
13436
      return FALSE;
13437
    }
13438
 
13439
  bfd_put_16 (abfd, (branch_insn >> 16) & 0xffff, &contents[target]);
13440
  bfd_put_16 (abfd, branch_insn & 0xffff, &contents[target + 2]);
13441
 
13442
  return TRUE;
13443
}
13444
 
13445
/* Do code byteswapping.  Return FALSE afterwards so that the section is
13446
   written out as normal.  */
13447
 
13448
static bfd_boolean
13449
elf32_arm_write_section (bfd *output_bfd,
13450
                         struct bfd_link_info *link_info,
13451
                         asection *sec,
13452
                         bfd_byte *contents)
13453
{
13454
  unsigned int mapcount, errcount;
13455
  _arm_elf_section_data *arm_data;
13456
  struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
13457
  elf32_arm_section_map *map;
13458
  elf32_vfp11_erratum_list *errnode;
13459
  bfd_vma ptr;
13460
  bfd_vma end;
13461
  bfd_vma offset = sec->output_section->vma + sec->output_offset;
13462
  bfd_byte tmp;
13463
  unsigned int i;
13464
 
13465
  if (globals == NULL)
13466
    return FALSE;
13467
 
13468
  /* If this section has not been allocated an _arm_elf_section_data
13469
     structure then we cannot record anything.  */
13470
  arm_data = get_arm_elf_section_data (sec);
13471
  if (arm_data == NULL)
13472
    return FALSE;
13473
 
13474
  mapcount = arm_data->mapcount;
13475
  map = arm_data->map;
13476
  errcount = arm_data->erratumcount;
13477
 
13478
  if (errcount != 0)
13479
    {
13480
      unsigned int endianflip = bfd_big_endian (output_bfd) ? 3 : 0;
13481
 
13482
      for (errnode = arm_data->erratumlist; errnode != 0;
13483
           errnode = errnode->next)
13484
        {
13485
          bfd_vma target = errnode->vma - offset;
13486
 
13487
          switch (errnode->type)
13488
            {
13489
            case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
13490
              {
13491
                bfd_vma branch_to_veneer;
13492
                /* Original condition code of instruction, plus bit mask for
13493
                   ARM B instruction.  */
13494
                unsigned int insn = (errnode->u.b.vfp_insn & 0xf0000000)
13495
                                  | 0x0a000000;
13496
 
13497
                /* The instruction is before the label.  */
13498
                target -= 4;
13499
 
13500
                /* Above offset included in -4 below.  */
13501
                branch_to_veneer = errnode->u.b.veneer->vma
13502
                                   - errnode->vma - 4;
13503
 
13504
                if ((signed) branch_to_veneer < -(1 << 25)
13505
                    || (signed) branch_to_veneer >= (1 << 25))
13506
                  (*_bfd_error_handler) (_("%B: error: VFP11 veneer out of "
13507
                                           "range"), output_bfd);
13508
 
13509
                insn |= (branch_to_veneer >> 2) & 0xffffff;
13510
                contents[endianflip ^ target] = insn & 0xff;
13511
                contents[endianflip ^ (target + 1)] = (insn >> 8) & 0xff;
13512
                contents[endianflip ^ (target + 2)] = (insn >> 16) & 0xff;
13513
                contents[endianflip ^ (target + 3)] = (insn >> 24) & 0xff;
13514
              }
13515
              break;
13516
 
13517
            case VFP11_ERRATUM_ARM_VENEER:
13518
              {
13519
                bfd_vma branch_from_veneer;
13520
                unsigned int insn;
13521
 
13522
                /* Take size of veneer into account.  */
13523
                branch_from_veneer = errnode->u.v.branch->vma
13524
                                     - errnode->vma - 12;
13525
 
13526
                if ((signed) branch_from_veneer < -(1 << 25)
13527
                    || (signed) branch_from_veneer >= (1 << 25))
13528
                  (*_bfd_error_handler) (_("%B: error: VFP11 veneer out of "
13529
                                           "range"), output_bfd);
13530
 
13531
                /* Original instruction.  */
13532
                insn = errnode->u.v.branch->u.b.vfp_insn;
13533
                contents[endianflip ^ target] = insn & 0xff;
13534
                contents[endianflip ^ (target + 1)] = (insn >> 8) & 0xff;
13535
                contents[endianflip ^ (target + 2)] = (insn >> 16) & 0xff;
13536
                contents[endianflip ^ (target + 3)] = (insn >> 24) & 0xff;
13537
 
13538
                /* Branch back to insn after original insn.  */
13539
                insn = 0xea000000 | ((branch_from_veneer >> 2) & 0xffffff);
13540
                contents[endianflip ^ (target + 4)] = insn & 0xff;
13541
                contents[endianflip ^ (target + 5)] = (insn >> 8) & 0xff;
13542
                contents[endianflip ^ (target + 6)] = (insn >> 16) & 0xff;
13543
                contents[endianflip ^ (target + 7)] = (insn >> 24) & 0xff;
13544
              }
13545
              break;
13546
 
13547
            default:
13548
              abort ();
13549
            }
13550
        }
13551
    }
13552
 
13553
  if (arm_data->elf.this_hdr.sh_type == SHT_ARM_EXIDX)
13554
    {
13555
      arm_unwind_table_edit *edit_node
13556
        = arm_data->u.exidx.unwind_edit_list;
13557
      /* Now, sec->size is the size of the section we will write.  The original
13558
         size (before we merged duplicate entries and inserted EXIDX_CANTUNWIND
13559
         markers) was sec->rawsize.  (This isn't the case if we perform no
13560
         edits, then rawsize will be zero and we should use size).  */
13561
      bfd_byte *edited_contents = (bfd_byte *) bfd_malloc (sec->size);
13562
      unsigned int input_size = sec->rawsize ? sec->rawsize : sec->size;
13563
      unsigned int in_index, out_index;
13564
      bfd_vma add_to_offsets = 0;
13565
 
13566
      for (in_index = 0, out_index = 0; in_index * 8 < input_size || edit_node;)
13567
        {
13568
          if (edit_node)
13569
            {
13570
              unsigned int edit_index = edit_node->index;
13571
 
13572
              if (in_index < edit_index && in_index * 8 < input_size)
13573
                {
13574
                  copy_exidx_entry (output_bfd, edited_contents + out_index * 8,
13575
                                    contents + in_index * 8, add_to_offsets);
13576
                  out_index++;
13577
                  in_index++;
13578
                }
13579
              else if (in_index == edit_index
13580
                       || (in_index * 8 >= input_size
13581
                           && edit_index == UINT_MAX))
13582
                {
13583
                  switch (edit_node->type)
13584
                    {
13585
                    case DELETE_EXIDX_ENTRY:
13586
                      in_index++;
13587
                      add_to_offsets += 8;
13588
                      break;
13589
 
13590
                    case INSERT_EXIDX_CANTUNWIND_AT_END:
13591
                      {
13592
                        asection *text_sec = edit_node->linked_section;
13593
                        bfd_vma text_offset = text_sec->output_section->vma
13594
                                              + text_sec->output_offset
13595
                                              + text_sec->size;
13596
                        bfd_vma exidx_offset = offset + out_index * 8;
13597
                        unsigned long prel31_offset;
13598
 
13599
                        /* Note: this is meant to be equivalent to an
13600
                           R_ARM_PREL31 relocation.  These synthetic
13601
                           EXIDX_CANTUNWIND markers are not relocated by the
13602
                           usual BFD method.  */
13603
                        prel31_offset = (text_offset - exidx_offset)
13604
                                        & 0x7ffffffful;
13605
 
13606
                        /* First address we can't unwind.  */
13607
                        bfd_put_32 (output_bfd, prel31_offset,
13608
                                    &edited_contents[out_index * 8]);
13609
 
13610
                        /* Code for EXIDX_CANTUNWIND.  */
13611
                        bfd_put_32 (output_bfd, 0x1,
13612
                                    &edited_contents[out_index * 8 + 4]);
13613
 
13614
                        out_index++;
13615
                        add_to_offsets -= 8;
13616
                      }
13617
                      break;
13618
                    }
13619
 
13620
                  edit_node = edit_node->next;
13621
                }
13622
            }
13623
          else
13624
            {
13625
              /* No more edits, copy remaining entries verbatim.  */
13626
              copy_exidx_entry (output_bfd, edited_contents + out_index * 8,
13627
                                contents + in_index * 8, add_to_offsets);
13628
              out_index++;
13629
              in_index++;
13630
            }
13631
        }
13632
 
13633
      if (!(sec->flags & SEC_EXCLUDE) && !(sec->flags & SEC_NEVER_LOAD))
13634
        bfd_set_section_contents (output_bfd, sec->output_section,
13635
                                  edited_contents,
13636
                                  (file_ptr) sec->output_offset, sec->size);
13637
 
13638
      return TRUE;
13639
    }
13640
 
13641
  /* Fix code to point to Cortex-A8 erratum stubs.  */
13642
  if (globals->fix_cortex_a8)
13643
    {
13644
      struct a8_branch_to_stub_data data;
13645
 
13646
      data.writing_section = sec;
13647
      data.contents = contents;
13648
 
13649
      bfd_hash_traverse (&globals->stub_hash_table, make_branch_to_a8_stub,
13650
                         &data);
13651
    }
13652
 
13653
  if (mapcount == 0)
13654
    return FALSE;
13655
 
13656
  if (globals->byteswap_code)
13657
    {
13658
      qsort (map, mapcount, sizeof (* map), elf32_arm_compare_mapping);
13659
 
13660
      ptr = map[0].vma;
13661
      for (i = 0; i < mapcount; i++)
13662
        {
13663
          if (i == mapcount - 1)
13664
            end = sec->size;
13665
          else
13666
            end = map[i + 1].vma;
13667
 
13668
          switch (map[i].type)
13669
            {
13670
            case 'a':
13671
              /* Byte swap code words.  */
13672
              while (ptr + 3 < end)
13673
                {
13674
                  tmp = contents[ptr];
13675
                  contents[ptr] = contents[ptr + 3];
13676
                  contents[ptr + 3] = tmp;
13677
                  tmp = contents[ptr + 1];
13678
                  contents[ptr + 1] = contents[ptr + 2];
13679
                  contents[ptr + 2] = tmp;
13680
                  ptr += 4;
13681
                }
13682
              break;
13683
 
13684
            case 't':
13685
              /* Byte swap code halfwords.  */
13686
              while (ptr + 1 < end)
13687
                {
13688
                  tmp = contents[ptr];
13689
                  contents[ptr] = contents[ptr + 1];
13690
                  contents[ptr + 1] = tmp;
13691
                  ptr += 2;
13692
                }
13693
              break;
13694
 
13695
            case 'd':
13696
              /* Leave data alone.  */
13697
              break;
13698
            }
13699
          ptr = end;
13700
        }
13701
    }
13702
 
13703
  free (map);
13704
  arm_data->mapcount = -1;
13705
  arm_data->mapsize = 0;
13706
  arm_data->map = NULL;
13707
 
13708
  return FALSE;
13709
}
13710
 
13711
/* Display STT_ARM_TFUNC symbols as functions.  */
13712
 
13713
static void
13714
elf32_arm_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED,
13715
                             asymbol *asym)
13716
{
13717
  elf_symbol_type *elfsym = (elf_symbol_type *) asym;
13718
 
13719
  if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_ARM_TFUNC)
13720
    elfsym->symbol.flags |= BSF_FUNCTION;
13721
}
13722
 
13723
 
13724
/* Mangle thumb function symbols as we read them in.  */
13725
 
13726
static bfd_boolean
13727
elf32_arm_swap_symbol_in (bfd * abfd,
13728
                          const void *psrc,
13729
                          const void *pshn,
13730
                          Elf_Internal_Sym *dst)
13731
{
13732
  if (!bfd_elf32_swap_symbol_in (abfd, psrc, pshn, dst))
13733
    return FALSE;
13734
 
13735
  /* New EABI objects mark thumb function symbols by setting the low bit of
13736
     the address.  Turn these into STT_ARM_TFUNC.  */
13737
  if ((ELF_ST_TYPE (dst->st_info) == STT_FUNC)
13738
      && (dst->st_value & 1))
13739
    {
13740
      dst->st_info = ELF_ST_INFO (ELF_ST_BIND (dst->st_info), STT_ARM_TFUNC);
13741
      dst->st_value &= ~(bfd_vma) 1;
13742
    }
13743
  return TRUE;
13744
}
13745
 
13746
 
13747
/* Mangle thumb function symbols as we write them out.  */
13748
 
13749
static void
13750
elf32_arm_swap_symbol_out (bfd *abfd,
13751
                           const Elf_Internal_Sym *src,
13752
                           void *cdst,
13753
                           void *shndx)
13754
{
13755
  Elf_Internal_Sym newsym;
13756
 
13757
  /* We convert STT_ARM_TFUNC symbols into STT_FUNC with the low bit
13758
     of the address set, as per the new EABI.  We do this unconditionally
13759
     because objcopy does not set the elf header flags until after
13760
     it writes out the symbol table.  */
13761
  if (ELF_ST_TYPE (src->st_info) == STT_ARM_TFUNC)
13762
    {
13763
      newsym = *src;
13764
      newsym.st_info = ELF_ST_INFO (ELF_ST_BIND (src->st_info), STT_FUNC);
13765
      if (newsym.st_shndx != SHN_UNDEF)
13766
        {
13767
          /* Do this only for defined symbols. At link type, the static
13768
             linker will simulate the work of dynamic linker of resolving
13769
             symbols and will carry over the thumbness of found symbols to
13770
             the output symbol table. It's not clear how it happens, but
13771
             the thumbness of undefined symbols can well be different at
13772
             runtime, and writing '1' for them will be confusing for users
13773
             and possibly for dynamic linker itself.
13774
          */
13775
          newsym.st_value |= 1;
13776
        }
13777
 
13778
      src = &newsym;
13779
    }
13780
  bfd_elf32_swap_symbol_out (abfd, src, cdst, shndx);
13781
}
13782
 
13783
/* Add the PT_ARM_EXIDX program header.  */
13784
 
13785
static bfd_boolean
13786
elf32_arm_modify_segment_map (bfd *abfd,
13787
                              struct bfd_link_info *info ATTRIBUTE_UNUSED)
13788
{
13789
  struct elf_segment_map *m;
13790
  asection *sec;
13791
 
13792
  sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
13793
  if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
13794
    {
13795
      /* If there is already a PT_ARM_EXIDX header, then we do not
13796
         want to add another one.  This situation arises when running
13797
         "strip"; the input binary already has the header.  */
13798
      m = elf_tdata (abfd)->segment_map;
13799
      while (m && m->p_type != PT_ARM_EXIDX)
13800
        m = m->next;
13801
      if (!m)
13802
        {
13803
          m = (struct elf_segment_map *)
13804
              bfd_zalloc (abfd, sizeof (struct elf_segment_map));
13805
          if (m == NULL)
13806
            return FALSE;
13807
          m->p_type = PT_ARM_EXIDX;
13808
          m->count = 1;
13809
          m->sections[0] = sec;
13810
 
13811
          m->next = elf_tdata (abfd)->segment_map;
13812
          elf_tdata (abfd)->segment_map = m;
13813
        }
13814
    }
13815
 
13816
  return TRUE;
13817
}
13818
 
13819
/* We may add a PT_ARM_EXIDX program header.  */
13820
 
13821
static int
13822
elf32_arm_additional_program_headers (bfd *abfd,
13823
                                      struct bfd_link_info *info ATTRIBUTE_UNUSED)
13824
{
13825
  asection *sec;
13826
 
13827
  sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
13828
  if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
13829
    return 1;
13830
  else
13831
    return 0;
13832
}
13833
 
13834
/* We have two function types: STT_FUNC and STT_ARM_TFUNC.  */
13835
 
13836
static bfd_boolean
13837
elf32_arm_is_function_type (unsigned int type)
13838
{
13839
  return (type == STT_FUNC) || (type == STT_ARM_TFUNC);
13840
}
13841
 
13842
/* We use this to override swap_symbol_in and swap_symbol_out.  */
13843
const struct elf_size_info elf32_arm_size_info =
13844
{
13845
  sizeof (Elf32_External_Ehdr),
13846
  sizeof (Elf32_External_Phdr),
13847
  sizeof (Elf32_External_Shdr),
13848
  sizeof (Elf32_External_Rel),
13849
  sizeof (Elf32_External_Rela),
13850
  sizeof (Elf32_External_Sym),
13851
  sizeof (Elf32_External_Dyn),
13852
  sizeof (Elf_External_Note),
13853
  4,
13854
  1,
13855
  32, 2,
13856
  ELFCLASS32, EV_CURRENT,
13857
  bfd_elf32_write_out_phdrs,
13858
  bfd_elf32_write_shdrs_and_ehdr,
13859
  bfd_elf32_checksum_contents,
13860
  bfd_elf32_write_relocs,
13861
  elf32_arm_swap_symbol_in,
13862
  elf32_arm_swap_symbol_out,
13863
  bfd_elf32_slurp_reloc_table,
13864
  bfd_elf32_slurp_symbol_table,
13865
  bfd_elf32_swap_dyn_in,
13866
  bfd_elf32_swap_dyn_out,
13867
  bfd_elf32_swap_reloc_in,
13868
  bfd_elf32_swap_reloc_out,
13869
  bfd_elf32_swap_reloca_in,
13870
  bfd_elf32_swap_reloca_out
13871
};
13872
 
13873
#define ELF_ARCH                        bfd_arch_arm
13874
#define ELF_MACHINE_CODE                EM_ARM
13875
#ifdef __QNXTARGET__
13876
#define ELF_MAXPAGESIZE                 0x1000
13877
#else
13878
#define ELF_MAXPAGESIZE                 0x8000
13879
#endif
13880
#define ELF_MINPAGESIZE                 0x1000
13881
#define ELF_COMMONPAGESIZE              0x1000
13882
 
13883
#define bfd_elf32_mkobject                      elf32_arm_mkobject
13884
 
13885
#define bfd_elf32_bfd_copy_private_bfd_data     elf32_arm_copy_private_bfd_data
13886
#define bfd_elf32_bfd_merge_private_bfd_data    elf32_arm_merge_private_bfd_data
13887
#define bfd_elf32_bfd_set_private_flags         elf32_arm_set_private_flags
13888
#define bfd_elf32_bfd_print_private_bfd_data    elf32_arm_print_private_bfd_data
13889
#define bfd_elf32_bfd_link_hash_table_create    elf32_arm_link_hash_table_create
13890
#define bfd_elf32_bfd_link_hash_table_free      elf32_arm_hash_table_free
13891
#define bfd_elf32_bfd_reloc_type_lookup         elf32_arm_reloc_type_lookup
13892
#define bfd_elf32_bfd_reloc_name_lookup elf32_arm_reloc_name_lookup
13893
#define bfd_elf32_find_nearest_line             elf32_arm_find_nearest_line
13894
#define bfd_elf32_find_inliner_info             elf32_arm_find_inliner_info
13895
#define bfd_elf32_new_section_hook              elf32_arm_new_section_hook
13896
#define bfd_elf32_bfd_is_target_special_symbol  elf32_arm_is_target_special_symbol
13897
#define bfd_elf32_bfd_final_link                elf32_arm_final_link
13898
 
13899
#define elf_backend_get_symbol_type             elf32_arm_get_symbol_type
13900
#define elf_backend_gc_mark_hook                elf32_arm_gc_mark_hook
13901
#define elf_backend_gc_mark_extra_sections      elf32_arm_gc_mark_extra_sections
13902
#define elf_backend_gc_sweep_hook               elf32_arm_gc_sweep_hook
13903
#define elf_backend_check_relocs                elf32_arm_check_relocs
13904
#define elf_backend_relocate_section            elf32_arm_relocate_section
13905
#define elf_backend_write_section               elf32_arm_write_section
13906
#define elf_backend_adjust_dynamic_symbol       elf32_arm_adjust_dynamic_symbol
13907
#define elf_backend_create_dynamic_sections     elf32_arm_create_dynamic_sections
13908
#define elf_backend_finish_dynamic_symbol       elf32_arm_finish_dynamic_symbol
13909
#define elf_backend_finish_dynamic_sections     elf32_arm_finish_dynamic_sections
13910
#define elf_backend_size_dynamic_sections       elf32_arm_size_dynamic_sections
13911
#define elf_backend_init_index_section          _bfd_elf_init_2_index_sections
13912
#define elf_backend_post_process_headers        elf32_arm_post_process_headers
13913
#define elf_backend_reloc_type_class            elf32_arm_reloc_type_class
13914
#define elf_backend_object_p                    elf32_arm_object_p
13915
#define elf_backend_section_flags               elf32_arm_section_flags
13916
#define elf_backend_fake_sections               elf32_arm_fake_sections
13917
#define elf_backend_section_from_shdr           elf32_arm_section_from_shdr
13918
#define elf_backend_final_write_processing      elf32_arm_final_write_processing
13919
#define elf_backend_copy_indirect_symbol        elf32_arm_copy_indirect_symbol
13920
#define elf_backend_symbol_processing           elf32_arm_symbol_processing
13921
#define elf_backend_size_info                   elf32_arm_size_info
13922
#define elf_backend_modify_segment_map          elf32_arm_modify_segment_map
13923
#define elf_backend_additional_program_headers  elf32_arm_additional_program_headers
13924
#define elf_backend_output_arch_local_syms      elf32_arm_output_arch_local_syms
13925
#define elf_backend_begin_write_processing      elf32_arm_begin_write_processing
13926
#define elf_backend_is_function_type            elf32_arm_is_function_type
13927
 
13928
#define elf_backend_can_refcount       1
13929
#define elf_backend_can_gc_sections    1
13930
#define elf_backend_plt_readonly       1
13931
#define elf_backend_want_got_plt       1
13932
#define elf_backend_want_plt_sym       0
13933
#define elf_backend_may_use_rel_p      1
13934
#define elf_backend_may_use_rela_p     0
13935
#define elf_backend_default_use_rela_p 0
13936
 
13937
#define elf_backend_got_header_size     12
13938
 
13939
#undef  elf_backend_obj_attrs_vendor
13940
#define elf_backend_obj_attrs_vendor            "aeabi"
13941
#undef  elf_backend_obj_attrs_section
13942
#define elf_backend_obj_attrs_section           ".ARM.attributes"
13943
#undef  elf_backend_obj_attrs_arg_type
13944
#define elf_backend_obj_attrs_arg_type          elf32_arm_obj_attrs_arg_type
13945
#undef  elf_backend_obj_attrs_section_type
13946
#define elf_backend_obj_attrs_section_type      SHT_ARM_ATTRIBUTES
13947
#define elf_backend_obj_attrs_order     elf32_arm_obj_attrs_order
13948
 
13949
#include "elf32-target.h"
13950
 
13951
/* VxWorks Targets.  */
13952
 
13953
#undef  TARGET_LITTLE_SYM
13954
#define TARGET_LITTLE_SYM               bfd_elf32_littlearm_vxworks_vec
13955
#undef  TARGET_LITTLE_NAME
13956
#define TARGET_LITTLE_NAME              "elf32-littlearm-vxworks"
13957
#undef  TARGET_BIG_SYM
13958
#define TARGET_BIG_SYM                  bfd_elf32_bigarm_vxworks_vec
13959
#undef  TARGET_BIG_NAME
13960
#define TARGET_BIG_NAME                 "elf32-bigarm-vxworks"
13961
 
13962
/* Like elf32_arm_link_hash_table_create -- but overrides
13963
   appropriately for VxWorks.  */
13964
 
13965
static struct bfd_link_hash_table *
13966
elf32_arm_vxworks_link_hash_table_create (bfd *abfd)
13967
{
13968
  struct bfd_link_hash_table *ret;
13969
 
13970
  ret = elf32_arm_link_hash_table_create (abfd);
13971
  if (ret)
13972
    {
13973
      struct elf32_arm_link_hash_table *htab
13974
        = (struct elf32_arm_link_hash_table *) ret;
13975
      htab->use_rel = 0;
13976
      htab->vxworks_p = 1;
13977
    }
13978
  return ret;
13979
}
13980
 
13981
static void
13982
elf32_arm_vxworks_final_write_processing (bfd *abfd, bfd_boolean linker)
13983
{
13984
  elf32_arm_final_write_processing (abfd, linker);
13985
  elf_vxworks_final_write_processing (abfd, linker);
13986
}
13987
 
13988
#undef  elf32_bed
13989
#define elf32_bed elf32_arm_vxworks_bed
13990
 
13991
#undef  bfd_elf32_bfd_link_hash_table_create
13992
#define bfd_elf32_bfd_link_hash_table_create    elf32_arm_vxworks_link_hash_table_create
13993
#undef  elf_backend_add_symbol_hook
13994
#define elf_backend_add_symbol_hook             elf_vxworks_add_symbol_hook
13995
#undef  elf_backend_final_write_processing
13996
#define elf_backend_final_write_processing      elf32_arm_vxworks_final_write_processing
13997
#undef  elf_backend_emit_relocs
13998
#define elf_backend_emit_relocs                 elf_vxworks_emit_relocs
13999
 
14000
#undef  elf_backend_may_use_rel_p
14001
#define elf_backend_may_use_rel_p       0
14002
#undef  elf_backend_may_use_rela_p
14003
#define elf_backend_may_use_rela_p      1
14004
#undef  elf_backend_default_use_rela_p
14005
#define elf_backend_default_use_rela_p  1
14006
#undef  elf_backend_want_plt_sym
14007
#define elf_backend_want_plt_sym        1
14008
#undef  ELF_MAXPAGESIZE
14009
#define ELF_MAXPAGESIZE                 0x1000
14010
 
14011
#include "elf32-target.h"
14012
 
14013
 
14014
/* Merge backend specific data from an object file to the output
14015
   object file when linking.  */
14016
 
14017
static bfd_boolean
14018
elf32_arm_merge_private_bfd_data (bfd * ibfd, bfd * obfd)
14019
{
14020
  flagword out_flags;
14021
  flagword in_flags;
14022
  bfd_boolean flags_compatible = TRUE;
14023
  asection *sec;
14024
 
14025
  /* Check if we have the same endianess.  */
14026
  if (! _bfd_generic_verify_endian_match (ibfd, obfd))
14027
    return FALSE;
14028
 
14029
  if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
14030
    return TRUE;
14031
 
14032
  if (!elf32_arm_merge_eabi_attributes (ibfd, obfd))
14033
    return FALSE;
14034
 
14035
  /* The input BFD must have had its flags initialised.  */
14036
  /* The following seems bogus to me -- The flags are initialized in
14037
     the assembler but I don't think an elf_flags_init field is
14038
     written into the object.  */
14039
  /* BFD_ASSERT (elf_flags_init (ibfd)); */
14040
 
14041
  in_flags  = elf_elfheader (ibfd)->e_flags;
14042
  out_flags = elf_elfheader (obfd)->e_flags;
14043
 
14044
  /* In theory there is no reason why we couldn't handle this.  However
14045
     in practice it isn't even close to working and there is no real
14046
     reason to want it.  */
14047
  if (EF_ARM_EABI_VERSION (in_flags) >= EF_ARM_EABI_VER4
14048
      && !(ibfd->flags & DYNAMIC)
14049
      && (in_flags & EF_ARM_BE8))
14050
    {
14051
      _bfd_error_handler (_("error: %B is already in final BE8 format"),
14052
                          ibfd);
14053
      return FALSE;
14054
    }
14055
 
14056
  if (!elf_flags_init (obfd))
14057
    {
14058
      /* If the input is the default architecture and had the default
14059
         flags then do not bother setting the flags for the output
14060
         architecture, instead allow future merges to do this.  If no
14061
         future merges ever set these flags then they will retain their
14062
         uninitialised values, which surprise surprise, correspond
14063
         to the default values.  */
14064
      if (bfd_get_arch_info (ibfd)->the_default
14065
          && elf_elfheader (ibfd)->e_flags == 0)
14066
        return TRUE;
14067
 
14068
      elf_flags_init (obfd) = TRUE;
14069
      elf_elfheader (obfd)->e_flags = in_flags;
14070
 
14071
      if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
14072
          && bfd_get_arch_info (obfd)->the_default)
14073
        return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), bfd_get_mach (ibfd));
14074
 
14075
      return TRUE;
14076
    }
14077
 
14078
  /* Determine what should happen if the input ARM architecture
14079
     does not match the output ARM architecture.  */
14080
  if (! bfd_arm_merge_machines (ibfd, obfd))
14081
    return FALSE;
14082
 
14083
  /* Identical flags must be compatible.  */
14084
  if (in_flags == out_flags)
14085
    return TRUE;
14086
 
14087
  /* Check to see if the input BFD actually contains any sections.  If
14088
     not, its flags may not have been initialised either, but it
14089
     cannot actually cause any incompatiblity.  Do not short-circuit
14090
     dynamic objects; their section list may be emptied by
14091
    elf_link_add_object_symbols.
14092
 
14093
    Also check to see if there are no code sections in the input.
14094
    In this case there is no need to check for code specific flags.
14095
    XXX - do we need to worry about floating-point format compatability
14096
    in data sections ?  */
14097
  if (!(ibfd->flags & DYNAMIC))
14098
    {
14099
      bfd_boolean null_input_bfd = TRUE;
14100
      bfd_boolean only_data_sections = TRUE;
14101
 
14102
      for (sec = ibfd->sections; sec != NULL; sec = sec->next)
14103
        {
14104
          /* Ignore synthetic glue sections.  */
14105
          if (strcmp (sec->name, ".glue_7")
14106
              && strcmp (sec->name, ".glue_7t"))
14107
            {
14108
              if ((bfd_get_section_flags (ibfd, sec)
14109
                   & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
14110
                  == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
14111
                only_data_sections = FALSE;
14112
 
14113
              null_input_bfd = FALSE;
14114
              break;
14115
            }
14116
        }
14117
 
14118
      if (null_input_bfd || only_data_sections)
14119
        return TRUE;
14120
    }
14121
 
14122
  /* Complain about various flag mismatches.  */
14123
  if (!elf32_arm_versions_compatible (EF_ARM_EABI_VERSION (in_flags),
14124
                                      EF_ARM_EABI_VERSION (out_flags)))
14125
    {
14126
      _bfd_error_handler
14127
        (_("error: Source object %B has EABI version %d, but target %B has EABI version %d"),
14128
         ibfd, obfd,
14129
         (in_flags & EF_ARM_EABIMASK) >> 24,
14130
         (out_flags & EF_ARM_EABIMASK) >> 24);
14131
      return FALSE;
14132
    }
14133
 
14134
  /* Not sure what needs to be checked for EABI versions >= 1.  */
14135
  /* VxWorks libraries do not use these flags.  */
14136
  if (get_elf_backend_data (obfd) != &elf32_arm_vxworks_bed
14137
      && get_elf_backend_data (ibfd) != &elf32_arm_vxworks_bed
14138
      && EF_ARM_EABI_VERSION (in_flags) == EF_ARM_EABI_UNKNOWN)
14139
    {
14140
      if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
14141
        {
14142
          _bfd_error_handler
14143
            (_("error: %B is compiled for APCS-%d, whereas target %B uses APCS-%d"),
14144
             ibfd, obfd,
14145
             in_flags & EF_ARM_APCS_26 ? 26 : 32,
14146
             out_flags & EF_ARM_APCS_26 ? 26 : 32);
14147
          flags_compatible = FALSE;
14148
        }
14149
 
14150
      if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
14151
        {
14152
          if (in_flags & EF_ARM_APCS_FLOAT)
14153
            _bfd_error_handler
14154
              (_("error: %B passes floats in float registers, whereas %B passes them in integer registers"),
14155
               ibfd, obfd);
14156
          else
14157
            _bfd_error_handler
14158
              (_("error: %B passes floats in integer registers, whereas %B passes them in float registers"),
14159
               ibfd, obfd);
14160
 
14161
          flags_compatible = FALSE;
14162
        }
14163
 
14164
      if ((in_flags & EF_ARM_VFP_FLOAT) != (out_flags & EF_ARM_VFP_FLOAT))
14165
        {
14166
          if (in_flags & EF_ARM_VFP_FLOAT)
14167
            _bfd_error_handler
14168
              (_("error: %B uses VFP instructions, whereas %B does not"),
14169
               ibfd, obfd);
14170
          else
14171
            _bfd_error_handler
14172
              (_("error: %B uses FPA instructions, whereas %B does not"),
14173
               ibfd, obfd);
14174
 
14175
          flags_compatible = FALSE;
14176
        }
14177
 
14178
      if ((in_flags & EF_ARM_MAVERICK_FLOAT) != (out_flags & EF_ARM_MAVERICK_FLOAT))
14179
        {
14180
          if (in_flags & EF_ARM_MAVERICK_FLOAT)
14181
            _bfd_error_handler
14182
              (_("error: %B uses Maverick instructions, whereas %B does not"),
14183
               ibfd, obfd);
14184
          else
14185
            _bfd_error_handler
14186
              (_("error: %B does not use Maverick instructions, whereas %B does"),
14187
               ibfd, obfd);
14188
 
14189
          flags_compatible = FALSE;
14190
        }
14191
 
14192
#ifdef EF_ARM_SOFT_FLOAT
14193
      if ((in_flags & EF_ARM_SOFT_FLOAT) != (out_flags & EF_ARM_SOFT_FLOAT))
14194
        {
14195
          /* We can allow interworking between code that is VFP format
14196
             layout, and uses either soft float or integer regs for
14197
             passing floating point arguments and results.  We already
14198
             know that the APCS_FLOAT flags match; similarly for VFP
14199
             flags.  */
14200
          if ((in_flags & EF_ARM_APCS_FLOAT) != 0
14201
              || (in_flags & EF_ARM_VFP_FLOAT) == 0)
14202
            {
14203
              if (in_flags & EF_ARM_SOFT_FLOAT)
14204
                _bfd_error_handler
14205
                  (_("error: %B uses software FP, whereas %B uses hardware FP"),
14206
                   ibfd, obfd);
14207
              else
14208
                _bfd_error_handler
14209
                  (_("error: %B uses hardware FP, whereas %B uses software FP"),
14210
                   ibfd, obfd);
14211
 
14212
              flags_compatible = FALSE;
14213
            }
14214
        }
14215
#endif
14216
 
14217
      /* Interworking mismatch is only a warning.  */
14218
      if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
14219
        {
14220
          if (in_flags & EF_ARM_INTERWORK)
14221
            {
14222
              _bfd_error_handler
14223
                (_("Warning: %B supports interworking, whereas %B does not"),
14224
                 ibfd, obfd);
14225
            }
14226
          else
14227
            {
14228
              _bfd_error_handler
14229
                (_("Warning: %B does not support interworking, whereas %B does"),
14230
                 ibfd, obfd);
14231
            }
14232
        }
14233
    }
14234
 
14235
  return flags_compatible;
14236
}
14237
 
14238
 
14239
/* Symbian OS Targets.  */
14240
 
14241
#undef  TARGET_LITTLE_SYM
14242
#define TARGET_LITTLE_SYM               bfd_elf32_littlearm_symbian_vec
14243
#undef  TARGET_LITTLE_NAME
14244
#define TARGET_LITTLE_NAME              "elf32-littlearm-symbian"
14245
#undef  TARGET_BIG_SYM
14246
#define TARGET_BIG_SYM                  bfd_elf32_bigarm_symbian_vec
14247
#undef  TARGET_BIG_NAME
14248
#define TARGET_BIG_NAME                 "elf32-bigarm-symbian"
14249
 
14250
/* Like elf32_arm_link_hash_table_create -- but overrides
14251
   appropriately for Symbian OS.  */
14252
 
14253
static struct bfd_link_hash_table *
14254
elf32_arm_symbian_link_hash_table_create (bfd *abfd)
14255
{
14256
  struct bfd_link_hash_table *ret;
14257
 
14258
  ret = elf32_arm_link_hash_table_create (abfd);
14259
  if (ret)
14260
    {
14261
      struct elf32_arm_link_hash_table *htab
14262
        = (struct elf32_arm_link_hash_table *)ret;
14263
      /* There is no PLT header for Symbian OS.  */
14264
      htab->plt_header_size = 0;
14265
      /* The PLT entries are each one instruction and one word.  */
14266
      htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry);
14267
      htab->symbian_p = 1;
14268
      /* Symbian uses armv5t or above, so use_blx is always true.  */
14269
      htab->use_blx = 1;
14270
      htab->root.is_relocatable_executable = 1;
14271
    }
14272
  return ret;
14273
}
14274
 
14275
static const struct bfd_elf_special_section
14276
elf32_arm_symbian_special_sections[] =
14277
{
14278
  /* In a BPABI executable, the dynamic linking sections do not go in
14279
     the loadable read-only segment.  The post-linker may wish to
14280
     refer to these sections, but they are not part of the final
14281
     program image.  */
14282
  { STRING_COMMA_LEN (".dynamic"),       0, SHT_DYNAMIC,  0 },
14283
  { STRING_COMMA_LEN (".dynstr"),        0, SHT_STRTAB,   0 },
14284
  { STRING_COMMA_LEN (".dynsym"),        0, SHT_DYNSYM,   0 },
14285
  { STRING_COMMA_LEN (".got"),           0, SHT_PROGBITS, 0 },
14286
  { STRING_COMMA_LEN (".hash"),          0, SHT_HASH,     0 },
14287
  /* These sections do not need to be writable as the SymbianOS
14288
     postlinker will arrange things so that no dynamic relocation is
14289
     required.  */
14290
  { STRING_COMMA_LEN (".init_array"),    0, SHT_INIT_ARRAY,    SHF_ALLOC },
14291
  { STRING_COMMA_LEN (".fini_array"),    0, SHT_FINI_ARRAY,    SHF_ALLOC },
14292
  { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC },
14293
  { NULL,                             0, 0, 0,                 0 }
14294
};
14295
 
14296
static void
14297
elf32_arm_symbian_begin_write_processing (bfd *abfd,
14298
                                          struct bfd_link_info *link_info)
14299
{
14300
  /* BPABI objects are never loaded directly by an OS kernel; they are
14301
     processed by a postlinker first, into an OS-specific format.  If
14302
     the D_PAGED bit is set on the file, BFD will align segments on
14303
     page boundaries, so that an OS can directly map the file.  With
14304
     BPABI objects, that just results in wasted space.  In addition,
14305
     because we clear the D_PAGED bit, map_sections_to_segments will
14306
     recognize that the program headers should not be mapped into any
14307
     loadable segment.  */
14308
  abfd->flags &= ~D_PAGED;
14309
  elf32_arm_begin_write_processing (abfd, link_info);
14310
}
14311
 
14312
static bfd_boolean
14313
elf32_arm_symbian_modify_segment_map (bfd *abfd,
14314
                                      struct bfd_link_info *info)
14315
{
14316
  struct elf_segment_map *m;
14317
  asection *dynsec;
14318
 
14319
  /* BPABI shared libraries and executables should have a PT_DYNAMIC
14320
     segment.  However, because the .dynamic section is not marked
14321
     with SEC_LOAD, the generic ELF code will not create such a
14322
     segment.  */
14323
  dynsec = bfd_get_section_by_name (abfd, ".dynamic");
14324
  if (dynsec)
14325
    {
14326
      for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
14327
        if (m->p_type == PT_DYNAMIC)
14328
          break;
14329
 
14330
      if (m == NULL)
14331
        {
14332
          m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
14333
          m->next = elf_tdata (abfd)->segment_map;
14334
          elf_tdata (abfd)->segment_map = m;
14335
        }
14336
    }
14337
 
14338
  /* Also call the generic arm routine.  */
14339
  return elf32_arm_modify_segment_map (abfd, info);
14340
}
14341
 
14342
/* Return address for Ith PLT stub in section PLT, for relocation REL
14343
   or (bfd_vma) -1 if it should not be included.  */
14344
 
14345
static bfd_vma
14346
elf32_arm_symbian_plt_sym_val (bfd_vma i, const asection *plt,
14347
                               const arelent *rel ATTRIBUTE_UNUSED)
14348
{
14349
  return plt->vma + 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry) * i;
14350
}
14351
 
14352
 
14353
#undef  elf32_bed
14354
#define elf32_bed elf32_arm_symbian_bed
14355
 
14356
/* The dynamic sections are not allocated on SymbianOS; the postlinker
14357
   will process them and then discard them.  */
14358
#undef  ELF_DYNAMIC_SEC_FLAGS
14359
#define ELF_DYNAMIC_SEC_FLAGS \
14360
  (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED)
14361
 
14362
#undef elf_backend_add_symbol_hook
14363
#undef elf_backend_emit_relocs
14364
 
14365
#undef  bfd_elf32_bfd_link_hash_table_create
14366
#define bfd_elf32_bfd_link_hash_table_create    elf32_arm_symbian_link_hash_table_create
14367
#undef  elf_backend_special_sections
14368
#define elf_backend_special_sections            elf32_arm_symbian_special_sections
14369
#undef  elf_backend_begin_write_processing
14370
#define elf_backend_begin_write_processing      elf32_arm_symbian_begin_write_processing
14371
#undef  elf_backend_final_write_processing
14372
#define elf_backend_final_write_processing      elf32_arm_final_write_processing
14373
 
14374
#undef  elf_backend_modify_segment_map
14375
#define elf_backend_modify_segment_map elf32_arm_symbian_modify_segment_map
14376
 
14377
/* There is no .got section for BPABI objects, and hence no header.  */
14378
#undef  elf_backend_got_header_size
14379
#define elf_backend_got_header_size 0
14380
 
14381
/* Similarly, there is no .got.plt section.  */
14382
#undef  elf_backend_want_got_plt
14383
#define elf_backend_want_got_plt 0
14384
 
14385
#undef  elf_backend_plt_sym_val
14386
#define elf_backend_plt_sym_val         elf32_arm_symbian_plt_sym_val
14387
 
14388
#undef  elf_backend_may_use_rel_p
14389
#define elf_backend_may_use_rel_p       1
14390
#undef  elf_backend_may_use_rela_p
14391
#define elf_backend_may_use_rela_p      0
14392
#undef  elf_backend_default_use_rela_p
14393
#define elf_backend_default_use_rela_p  0
14394
#undef  elf_backend_want_plt_sym
14395
#define elf_backend_want_plt_sym        0
14396
#undef  ELF_MAXPAGESIZE
14397
#define ELF_MAXPAGESIZE                 0x8000
14398
 
14399
#include "elf32-target.h"

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.