1 |
330 |
jeremybenn |
/* Target-dependent code for the ALPHA architecture, for GDB, the GNU Debugger.
|
2 |
|
|
|
3 |
|
|
Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
|
4 |
|
|
2003, 2005, 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
|
5 |
|
|
|
6 |
|
|
This file is part of GDB.
|
7 |
|
|
|
8 |
|
|
This program is free software; you can redistribute it and/or modify
|
9 |
|
|
it under the terms of the GNU General Public License as published by
|
10 |
|
|
the Free Software Foundation; either version 3 of the License, or
|
11 |
|
|
(at your option) any later version.
|
12 |
|
|
|
13 |
|
|
This program is distributed in the hope that it will be useful,
|
14 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
15 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
16 |
|
|
GNU General Public License for more details.
|
17 |
|
|
|
18 |
|
|
You should have received a copy of the GNU General Public License
|
19 |
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
20 |
|
|
|
21 |
|
|
#include "defs.h"
|
22 |
|
|
#include "doublest.h"
|
23 |
|
|
#include "frame.h"
|
24 |
|
|
#include "frame-unwind.h"
|
25 |
|
|
#include "frame-base.h"
|
26 |
|
|
#include "dwarf2-frame.h"
|
27 |
|
|
#include "inferior.h"
|
28 |
|
|
#include "symtab.h"
|
29 |
|
|
#include "value.h"
|
30 |
|
|
#include "gdbcmd.h"
|
31 |
|
|
#include "gdbcore.h"
|
32 |
|
|
#include "dis-asm.h"
|
33 |
|
|
#include "symfile.h"
|
34 |
|
|
#include "objfiles.h"
|
35 |
|
|
#include "gdb_string.h"
|
36 |
|
|
#include "linespec.h"
|
37 |
|
|
#include "regcache.h"
|
38 |
|
|
#include "reggroups.h"
|
39 |
|
|
#include "arch-utils.h"
|
40 |
|
|
#include "osabi.h"
|
41 |
|
|
#include "block.h"
|
42 |
|
|
#include "infcall.h"
|
43 |
|
|
#include "trad-frame.h"
|
44 |
|
|
|
45 |
|
|
#include "elf-bfd.h"
|
46 |
|
|
|
47 |
|
|
#include "alpha-tdep.h"
|
48 |
|
|
|
49 |
|
|
/* Instruction decoding. The notations for registers, immediates and
|
50 |
|
|
opcodes are the same as the one used in Compaq's Alpha architecture
|
51 |
|
|
handbook. */
|
52 |
|
|
|
53 |
|
|
#define INSN_OPCODE(insn) ((insn & 0xfc000000) >> 26)
|
54 |
|
|
|
55 |
|
|
/* Memory instruction format */
|
56 |
|
|
#define MEM_RA(insn) ((insn & 0x03e00000) >> 21)
|
57 |
|
|
#define MEM_RB(insn) ((insn & 0x001f0000) >> 16)
|
58 |
|
|
#define MEM_DISP(insn) \
|
59 |
|
|
(((insn & 0x8000) == 0) ? (insn & 0xffff) : -((-insn) & 0xffff))
|
60 |
|
|
|
61 |
|
|
static const int lda_opcode = 0x08;
|
62 |
|
|
static const int stq_opcode = 0x2d;
|
63 |
|
|
|
64 |
|
|
/* Branch instruction format */
|
65 |
|
|
#define BR_RA(insn) MEM_RA(insn)
|
66 |
|
|
|
67 |
|
|
static const int bne_opcode = 0x3d;
|
68 |
|
|
|
69 |
|
|
/* Operate instruction format */
|
70 |
|
|
#define OPR_FUNCTION(insn) ((insn & 0xfe0) >> 5)
|
71 |
|
|
#define OPR_HAS_IMMEDIATE(insn) ((insn & 0x1000) == 0x1000)
|
72 |
|
|
#define OPR_RA(insn) MEM_RA(insn)
|
73 |
|
|
#define OPR_RC(insn) ((insn & 0x1f))
|
74 |
|
|
#define OPR_LIT(insn) ((insn & 0x1fe000) >> 13)
|
75 |
|
|
|
76 |
|
|
static const int subq_opcode = 0x10;
|
77 |
|
|
static const int subq_function = 0x29;
|
78 |
|
|
|
79 |
|
|
|
80 |
|
|
/* Return the name of the REGNO register.
|
81 |
|
|
|
82 |
|
|
An empty name corresponds to a register number that used to
|
83 |
|
|
be used for a virtual register. That virtual register has
|
84 |
|
|
been removed, but the index is still reserved to maintain
|
85 |
|
|
compatibility with existing remote alpha targets. */
|
86 |
|
|
|
87 |
|
|
static const char *
|
88 |
|
|
alpha_register_name (struct gdbarch *gdbarch, int regno)
|
89 |
|
|
{
|
90 |
|
|
static const char * const register_names[] =
|
91 |
|
|
{
|
92 |
|
|
"v0", "t0", "t1", "t2", "t3", "t4", "t5", "t6",
|
93 |
|
|
"t7", "s0", "s1", "s2", "s3", "s4", "s5", "fp",
|
94 |
|
|
"a0", "a1", "a2", "a3", "a4", "a5", "t8", "t9",
|
95 |
|
|
"t10", "t11", "ra", "t12", "at", "gp", "sp", "zero",
|
96 |
|
|
"f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
|
97 |
|
|
"f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
|
98 |
|
|
"f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
|
99 |
|
|
"f24", "f25", "f26", "f27", "f28", "f29", "f30", "fpcr",
|
100 |
|
|
"pc", "", "unique"
|
101 |
|
|
};
|
102 |
|
|
|
103 |
|
|
if (regno < 0)
|
104 |
|
|
return NULL;
|
105 |
|
|
if (regno >= ARRAY_SIZE(register_names))
|
106 |
|
|
return NULL;
|
107 |
|
|
return register_names[regno];
|
108 |
|
|
}
|
109 |
|
|
|
110 |
|
|
static int
|
111 |
|
|
alpha_cannot_fetch_register (struct gdbarch *gdbarch, int regno)
|
112 |
|
|
{
|
113 |
|
|
return (regno == ALPHA_ZERO_REGNUM
|
114 |
|
|
|| strlen (alpha_register_name (gdbarch, regno)) == 0);
|
115 |
|
|
}
|
116 |
|
|
|
117 |
|
|
static int
|
118 |
|
|
alpha_cannot_store_register (struct gdbarch *gdbarch, int regno)
|
119 |
|
|
{
|
120 |
|
|
return (regno == ALPHA_ZERO_REGNUM
|
121 |
|
|
|| strlen (alpha_register_name (gdbarch, regno)) == 0);
|
122 |
|
|
}
|
123 |
|
|
|
124 |
|
|
static struct type *
|
125 |
|
|
alpha_register_type (struct gdbarch *gdbarch, int regno)
|
126 |
|
|
{
|
127 |
|
|
if (regno == ALPHA_SP_REGNUM || regno == ALPHA_GP_REGNUM)
|
128 |
|
|
return builtin_type (gdbarch)->builtin_data_ptr;
|
129 |
|
|
if (regno == ALPHA_PC_REGNUM)
|
130 |
|
|
return builtin_type (gdbarch)->builtin_func_ptr;
|
131 |
|
|
|
132 |
|
|
/* Don't need to worry about little vs big endian until
|
133 |
|
|
some jerk tries to port to alpha-unicosmk. */
|
134 |
|
|
if (regno >= ALPHA_FP0_REGNUM && regno < ALPHA_FP0_REGNUM + 31)
|
135 |
|
|
return builtin_type (gdbarch)->builtin_double;
|
136 |
|
|
|
137 |
|
|
return builtin_type (gdbarch)->builtin_int64;
|
138 |
|
|
}
|
139 |
|
|
|
140 |
|
|
/* Is REGNUM a member of REGGROUP? */
|
141 |
|
|
|
142 |
|
|
static int
|
143 |
|
|
alpha_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
|
144 |
|
|
struct reggroup *group)
|
145 |
|
|
{
|
146 |
|
|
/* Filter out any registers eliminated, but whose regnum is
|
147 |
|
|
reserved for backward compatibility, e.g. the vfp. */
|
148 |
|
|
if (gdbarch_register_name (gdbarch, regnum) == NULL
|
149 |
|
|
|| *gdbarch_register_name (gdbarch, regnum) == '\0')
|
150 |
|
|
return 0;
|
151 |
|
|
|
152 |
|
|
if (group == all_reggroup)
|
153 |
|
|
return 1;
|
154 |
|
|
|
155 |
|
|
/* Zero should not be saved or restored. Technically it is a general
|
156 |
|
|
register (just as $f31 would be a float if we represented it), but
|
157 |
|
|
there's no point displaying it during "info regs", so leave it out
|
158 |
|
|
of all groups except for "all". */
|
159 |
|
|
if (regnum == ALPHA_ZERO_REGNUM)
|
160 |
|
|
return 0;
|
161 |
|
|
|
162 |
|
|
/* All other registers are saved and restored. */
|
163 |
|
|
if (group == save_reggroup || group == restore_reggroup)
|
164 |
|
|
return 1;
|
165 |
|
|
|
166 |
|
|
/* All other groups are non-overlapping. */
|
167 |
|
|
|
168 |
|
|
/* Since this is really a PALcode memory slot... */
|
169 |
|
|
if (regnum == ALPHA_UNIQUE_REGNUM)
|
170 |
|
|
return group == system_reggroup;
|
171 |
|
|
|
172 |
|
|
/* Force the FPCR to be considered part of the floating point state. */
|
173 |
|
|
if (regnum == ALPHA_FPCR_REGNUM)
|
174 |
|
|
return group == float_reggroup;
|
175 |
|
|
|
176 |
|
|
if (regnum >= ALPHA_FP0_REGNUM && regnum < ALPHA_FP0_REGNUM + 31)
|
177 |
|
|
return group == float_reggroup;
|
178 |
|
|
else
|
179 |
|
|
return group == general_reggroup;
|
180 |
|
|
}
|
181 |
|
|
|
182 |
|
|
/* The following represents exactly the conversion performed by
|
183 |
|
|
the LDS instruction. This applies to both single-precision
|
184 |
|
|
floating point and 32-bit integers. */
|
185 |
|
|
|
186 |
|
|
static void
|
187 |
|
|
alpha_lds (struct gdbarch *gdbarch, void *out, const void *in)
|
188 |
|
|
{
|
189 |
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
190 |
|
|
ULONGEST mem = extract_unsigned_integer (in, 4, byte_order);
|
191 |
|
|
ULONGEST frac = (mem >> 0) & 0x7fffff;
|
192 |
|
|
ULONGEST sign = (mem >> 31) & 1;
|
193 |
|
|
ULONGEST exp_msb = (mem >> 30) & 1;
|
194 |
|
|
ULONGEST exp_low = (mem >> 23) & 0x7f;
|
195 |
|
|
ULONGEST exp, reg;
|
196 |
|
|
|
197 |
|
|
exp = (exp_msb << 10) | exp_low;
|
198 |
|
|
if (exp_msb)
|
199 |
|
|
{
|
200 |
|
|
if (exp_low == 0x7f)
|
201 |
|
|
exp = 0x7ff;
|
202 |
|
|
}
|
203 |
|
|
else
|
204 |
|
|
{
|
205 |
|
|
if (exp_low != 0x00)
|
206 |
|
|
exp |= 0x380;
|
207 |
|
|
}
|
208 |
|
|
|
209 |
|
|
reg = (sign << 63) | (exp << 52) | (frac << 29);
|
210 |
|
|
store_unsigned_integer (out, 8, byte_order, reg);
|
211 |
|
|
}
|
212 |
|
|
|
213 |
|
|
/* Similarly, this represents exactly the conversion performed by
|
214 |
|
|
the STS instruction. */
|
215 |
|
|
|
216 |
|
|
static void
|
217 |
|
|
alpha_sts (struct gdbarch *gdbarch, void *out, const void *in)
|
218 |
|
|
{
|
219 |
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
220 |
|
|
ULONGEST reg, mem;
|
221 |
|
|
|
222 |
|
|
reg = extract_unsigned_integer (in, 8, byte_order);
|
223 |
|
|
mem = ((reg >> 32) & 0xc0000000) | ((reg >> 29) & 0x3fffffff);
|
224 |
|
|
store_unsigned_integer (out, 4, byte_order, mem);
|
225 |
|
|
}
|
226 |
|
|
|
227 |
|
|
/* The alpha needs a conversion between register and memory format if the
|
228 |
|
|
register is a floating point register and memory format is float, as the
|
229 |
|
|
register format must be double or memory format is an integer with 4
|
230 |
|
|
bytes or less, as the representation of integers in floating point
|
231 |
|
|
registers is different. */
|
232 |
|
|
|
233 |
|
|
static int
|
234 |
|
|
alpha_convert_register_p (struct gdbarch *gdbarch, int regno, struct type *type)
|
235 |
|
|
{
|
236 |
|
|
return (regno >= ALPHA_FP0_REGNUM && regno < ALPHA_FP0_REGNUM + 31
|
237 |
|
|
&& TYPE_LENGTH (type) != 8);
|
238 |
|
|
}
|
239 |
|
|
|
240 |
|
|
static void
|
241 |
|
|
alpha_register_to_value (struct frame_info *frame, int regnum,
|
242 |
|
|
struct type *valtype, gdb_byte *out)
|
243 |
|
|
{
|
244 |
|
|
gdb_byte in[MAX_REGISTER_SIZE];
|
245 |
|
|
|
246 |
|
|
frame_register_read (frame, regnum, in);
|
247 |
|
|
switch (TYPE_LENGTH (valtype))
|
248 |
|
|
{
|
249 |
|
|
case 4:
|
250 |
|
|
alpha_sts (get_frame_arch (frame), out, in);
|
251 |
|
|
break;
|
252 |
|
|
default:
|
253 |
|
|
error (_("Cannot retrieve value from floating point register"));
|
254 |
|
|
}
|
255 |
|
|
}
|
256 |
|
|
|
257 |
|
|
static void
|
258 |
|
|
alpha_value_to_register (struct frame_info *frame, int regnum,
|
259 |
|
|
struct type *valtype, const gdb_byte *in)
|
260 |
|
|
{
|
261 |
|
|
gdb_byte out[MAX_REGISTER_SIZE];
|
262 |
|
|
|
263 |
|
|
switch (TYPE_LENGTH (valtype))
|
264 |
|
|
{
|
265 |
|
|
case 4:
|
266 |
|
|
alpha_lds (get_frame_arch (frame), out, in);
|
267 |
|
|
break;
|
268 |
|
|
default:
|
269 |
|
|
error (_("Cannot store value in floating point register"));
|
270 |
|
|
}
|
271 |
|
|
put_frame_register (frame, regnum, out);
|
272 |
|
|
}
|
273 |
|
|
|
274 |
|
|
|
275 |
|
|
/* The alpha passes the first six arguments in the registers, the rest on
|
276 |
|
|
the stack. The register arguments are stored in ARG_REG_BUFFER, and
|
277 |
|
|
then moved into the register file; this simplifies the passing of a
|
278 |
|
|
large struct which extends from the registers to the stack, plus avoids
|
279 |
|
|
three ptrace invocations per word.
|
280 |
|
|
|
281 |
|
|
We don't bother tracking which register values should go in integer
|
282 |
|
|
regs or fp regs; we load the same values into both.
|
283 |
|
|
|
284 |
|
|
If the called function is returning a structure, the address of the
|
285 |
|
|
structure to be returned is passed as a hidden first argument. */
|
286 |
|
|
|
287 |
|
|
static CORE_ADDR
|
288 |
|
|
alpha_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
|
289 |
|
|
struct regcache *regcache, CORE_ADDR bp_addr,
|
290 |
|
|
int nargs, struct value **args, CORE_ADDR sp,
|
291 |
|
|
int struct_return, CORE_ADDR struct_addr)
|
292 |
|
|
{
|
293 |
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
294 |
|
|
int i;
|
295 |
|
|
int accumulate_size = struct_return ? 8 : 0;
|
296 |
|
|
struct alpha_arg
|
297 |
|
|
{
|
298 |
|
|
const gdb_byte *contents;
|
299 |
|
|
int len;
|
300 |
|
|
int offset;
|
301 |
|
|
};
|
302 |
|
|
struct alpha_arg *alpha_args
|
303 |
|
|
= (struct alpha_arg *) alloca (nargs * sizeof (struct alpha_arg));
|
304 |
|
|
struct alpha_arg *m_arg;
|
305 |
|
|
gdb_byte arg_reg_buffer[ALPHA_REGISTER_SIZE * ALPHA_NUM_ARG_REGS];
|
306 |
|
|
int required_arg_regs;
|
307 |
|
|
CORE_ADDR func_addr = find_function_addr (function, NULL);
|
308 |
|
|
|
309 |
|
|
/* The ABI places the address of the called function in T12. */
|
310 |
|
|
regcache_cooked_write_signed (regcache, ALPHA_T12_REGNUM, func_addr);
|
311 |
|
|
|
312 |
|
|
/* Set the return address register to point to the entry point
|
313 |
|
|
of the program, where a breakpoint lies in wait. */
|
314 |
|
|
regcache_cooked_write_signed (regcache, ALPHA_RA_REGNUM, bp_addr);
|
315 |
|
|
|
316 |
|
|
/* Lay out the arguments in memory. */
|
317 |
|
|
for (i = 0, m_arg = alpha_args; i < nargs; i++, m_arg++)
|
318 |
|
|
{
|
319 |
|
|
struct value *arg = args[i];
|
320 |
|
|
struct type *arg_type = check_typedef (value_type (arg));
|
321 |
|
|
|
322 |
|
|
/* Cast argument to long if necessary as the compiler does it too. */
|
323 |
|
|
switch (TYPE_CODE (arg_type))
|
324 |
|
|
{
|
325 |
|
|
case TYPE_CODE_INT:
|
326 |
|
|
case TYPE_CODE_BOOL:
|
327 |
|
|
case TYPE_CODE_CHAR:
|
328 |
|
|
case TYPE_CODE_RANGE:
|
329 |
|
|
case TYPE_CODE_ENUM:
|
330 |
|
|
if (TYPE_LENGTH (arg_type) == 4)
|
331 |
|
|
{
|
332 |
|
|
/* 32-bit values must be sign-extended to 64 bits
|
333 |
|
|
even if the base data type is unsigned. */
|
334 |
|
|
arg_type = builtin_type (gdbarch)->builtin_int32;
|
335 |
|
|
arg = value_cast (arg_type, arg);
|
336 |
|
|
}
|
337 |
|
|
if (TYPE_LENGTH (arg_type) < ALPHA_REGISTER_SIZE)
|
338 |
|
|
{
|
339 |
|
|
arg_type = builtin_type (gdbarch)->builtin_int64;
|
340 |
|
|
arg = value_cast (arg_type, arg);
|
341 |
|
|
}
|
342 |
|
|
break;
|
343 |
|
|
|
344 |
|
|
case TYPE_CODE_FLT:
|
345 |
|
|
/* "float" arguments loaded in registers must be passed in
|
346 |
|
|
register format, aka "double". */
|
347 |
|
|
if (accumulate_size < sizeof (arg_reg_buffer)
|
348 |
|
|
&& TYPE_LENGTH (arg_type) == 4)
|
349 |
|
|
{
|
350 |
|
|
arg_type = builtin_type (gdbarch)->builtin_double;
|
351 |
|
|
arg = value_cast (arg_type, arg);
|
352 |
|
|
}
|
353 |
|
|
/* Tru64 5.1 has a 128-bit long double, and passes this by
|
354 |
|
|
invisible reference. No one else uses this data type. */
|
355 |
|
|
else if (TYPE_LENGTH (arg_type) == 16)
|
356 |
|
|
{
|
357 |
|
|
/* Allocate aligned storage. */
|
358 |
|
|
sp = (sp & -16) - 16;
|
359 |
|
|
|
360 |
|
|
/* Write the real data into the stack. */
|
361 |
|
|
write_memory (sp, value_contents (arg), 16);
|
362 |
|
|
|
363 |
|
|
/* Construct the indirection. */
|
364 |
|
|
arg_type = lookup_pointer_type (arg_type);
|
365 |
|
|
arg = value_from_pointer (arg_type, sp);
|
366 |
|
|
}
|
367 |
|
|
break;
|
368 |
|
|
|
369 |
|
|
case TYPE_CODE_COMPLEX:
|
370 |
|
|
/* ??? The ABI says that complex values are passed as two
|
371 |
|
|
separate scalar values. This distinction only matters
|
372 |
|
|
for complex float. However, GCC does not implement this. */
|
373 |
|
|
|
374 |
|
|
/* Tru64 5.1 has a 128-bit long double, and passes this by
|
375 |
|
|
invisible reference. */
|
376 |
|
|
if (TYPE_LENGTH (arg_type) == 32)
|
377 |
|
|
{
|
378 |
|
|
/* Allocate aligned storage. */
|
379 |
|
|
sp = (sp & -16) - 16;
|
380 |
|
|
|
381 |
|
|
/* Write the real data into the stack. */
|
382 |
|
|
write_memory (sp, value_contents (arg), 32);
|
383 |
|
|
|
384 |
|
|
/* Construct the indirection. */
|
385 |
|
|
arg_type = lookup_pointer_type (arg_type);
|
386 |
|
|
arg = value_from_pointer (arg_type, sp);
|
387 |
|
|
}
|
388 |
|
|
break;
|
389 |
|
|
|
390 |
|
|
default:
|
391 |
|
|
break;
|
392 |
|
|
}
|
393 |
|
|
m_arg->len = TYPE_LENGTH (arg_type);
|
394 |
|
|
m_arg->offset = accumulate_size;
|
395 |
|
|
accumulate_size = (accumulate_size + m_arg->len + 7) & ~7;
|
396 |
|
|
m_arg->contents = value_contents (arg);
|
397 |
|
|
}
|
398 |
|
|
|
399 |
|
|
/* Determine required argument register loads, loading an argument register
|
400 |
|
|
is expensive as it uses three ptrace calls. */
|
401 |
|
|
required_arg_regs = accumulate_size / 8;
|
402 |
|
|
if (required_arg_regs > ALPHA_NUM_ARG_REGS)
|
403 |
|
|
required_arg_regs = ALPHA_NUM_ARG_REGS;
|
404 |
|
|
|
405 |
|
|
/* Make room for the arguments on the stack. */
|
406 |
|
|
if (accumulate_size < sizeof(arg_reg_buffer))
|
407 |
|
|
accumulate_size = 0;
|
408 |
|
|
else
|
409 |
|
|
accumulate_size -= sizeof(arg_reg_buffer);
|
410 |
|
|
sp -= accumulate_size;
|
411 |
|
|
|
412 |
|
|
/* Keep sp aligned to a multiple of 16 as the ABI requires. */
|
413 |
|
|
sp &= ~15;
|
414 |
|
|
|
415 |
|
|
/* `Push' arguments on the stack. */
|
416 |
|
|
for (i = nargs; m_arg--, --i >= 0;)
|
417 |
|
|
{
|
418 |
|
|
const gdb_byte *contents = m_arg->contents;
|
419 |
|
|
int offset = m_arg->offset;
|
420 |
|
|
int len = m_arg->len;
|
421 |
|
|
|
422 |
|
|
/* Copy the bytes destined for registers into arg_reg_buffer. */
|
423 |
|
|
if (offset < sizeof(arg_reg_buffer))
|
424 |
|
|
{
|
425 |
|
|
if (offset + len <= sizeof(arg_reg_buffer))
|
426 |
|
|
{
|
427 |
|
|
memcpy (arg_reg_buffer + offset, contents, len);
|
428 |
|
|
continue;
|
429 |
|
|
}
|
430 |
|
|
else
|
431 |
|
|
{
|
432 |
|
|
int tlen = sizeof(arg_reg_buffer) - offset;
|
433 |
|
|
memcpy (arg_reg_buffer + offset, contents, tlen);
|
434 |
|
|
offset += tlen;
|
435 |
|
|
contents += tlen;
|
436 |
|
|
len -= tlen;
|
437 |
|
|
}
|
438 |
|
|
}
|
439 |
|
|
|
440 |
|
|
/* Everything else goes to the stack. */
|
441 |
|
|
write_memory (sp + offset - sizeof(arg_reg_buffer), contents, len);
|
442 |
|
|
}
|
443 |
|
|
if (struct_return)
|
444 |
|
|
store_unsigned_integer (arg_reg_buffer, ALPHA_REGISTER_SIZE,
|
445 |
|
|
byte_order, struct_addr);
|
446 |
|
|
|
447 |
|
|
/* Load the argument registers. */
|
448 |
|
|
for (i = 0; i < required_arg_regs; i++)
|
449 |
|
|
{
|
450 |
|
|
regcache_cooked_write (regcache, ALPHA_A0_REGNUM + i,
|
451 |
|
|
arg_reg_buffer + i*ALPHA_REGISTER_SIZE);
|
452 |
|
|
regcache_cooked_write (regcache, ALPHA_FPA0_REGNUM + i,
|
453 |
|
|
arg_reg_buffer + i*ALPHA_REGISTER_SIZE);
|
454 |
|
|
}
|
455 |
|
|
|
456 |
|
|
/* Finally, update the stack pointer. */
|
457 |
|
|
regcache_cooked_write_signed (regcache, ALPHA_SP_REGNUM, sp);
|
458 |
|
|
|
459 |
|
|
return sp;
|
460 |
|
|
}
|
461 |
|
|
|
462 |
|
|
/* Extract from REGCACHE the value about to be returned from a function
|
463 |
|
|
and copy it into VALBUF. */
|
464 |
|
|
|
465 |
|
|
static void
|
466 |
|
|
alpha_extract_return_value (struct type *valtype, struct regcache *regcache,
|
467 |
|
|
gdb_byte *valbuf)
|
468 |
|
|
{
|
469 |
|
|
struct gdbarch *gdbarch = get_regcache_arch (regcache);
|
470 |
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
471 |
|
|
int length = TYPE_LENGTH (valtype);
|
472 |
|
|
gdb_byte raw_buffer[ALPHA_REGISTER_SIZE];
|
473 |
|
|
ULONGEST l;
|
474 |
|
|
|
475 |
|
|
switch (TYPE_CODE (valtype))
|
476 |
|
|
{
|
477 |
|
|
case TYPE_CODE_FLT:
|
478 |
|
|
switch (length)
|
479 |
|
|
{
|
480 |
|
|
case 4:
|
481 |
|
|
regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, raw_buffer);
|
482 |
|
|
alpha_sts (gdbarch, valbuf, raw_buffer);
|
483 |
|
|
break;
|
484 |
|
|
|
485 |
|
|
case 8:
|
486 |
|
|
regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, valbuf);
|
487 |
|
|
break;
|
488 |
|
|
|
489 |
|
|
case 16:
|
490 |
|
|
regcache_cooked_read_unsigned (regcache, ALPHA_V0_REGNUM, &l);
|
491 |
|
|
read_memory (l, valbuf, 16);
|
492 |
|
|
break;
|
493 |
|
|
|
494 |
|
|
default:
|
495 |
|
|
internal_error (__FILE__, __LINE__, _("unknown floating point width"));
|
496 |
|
|
}
|
497 |
|
|
break;
|
498 |
|
|
|
499 |
|
|
case TYPE_CODE_COMPLEX:
|
500 |
|
|
switch (length)
|
501 |
|
|
{
|
502 |
|
|
case 8:
|
503 |
|
|
/* ??? This isn't correct wrt the ABI, but it's what GCC does. */
|
504 |
|
|
regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, valbuf);
|
505 |
|
|
break;
|
506 |
|
|
|
507 |
|
|
case 16:
|
508 |
|
|
regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, valbuf);
|
509 |
|
|
regcache_cooked_read (regcache, ALPHA_FP0_REGNUM + 1, valbuf + 8);
|
510 |
|
|
break;
|
511 |
|
|
|
512 |
|
|
case 32:
|
513 |
|
|
regcache_cooked_read_signed (regcache, ALPHA_V0_REGNUM, &l);
|
514 |
|
|
read_memory (l, valbuf, 32);
|
515 |
|
|
break;
|
516 |
|
|
|
517 |
|
|
default:
|
518 |
|
|
internal_error (__FILE__, __LINE__, _("unknown floating point width"));
|
519 |
|
|
}
|
520 |
|
|
break;
|
521 |
|
|
|
522 |
|
|
default:
|
523 |
|
|
/* Assume everything else degenerates to an integer. */
|
524 |
|
|
regcache_cooked_read_unsigned (regcache, ALPHA_V0_REGNUM, &l);
|
525 |
|
|
store_unsigned_integer (valbuf, length, byte_order, l);
|
526 |
|
|
break;
|
527 |
|
|
}
|
528 |
|
|
}
|
529 |
|
|
|
530 |
|
|
/* Insert the given value into REGCACHE as if it was being
|
531 |
|
|
returned by a function. */
|
532 |
|
|
|
533 |
|
|
static void
|
534 |
|
|
alpha_store_return_value (struct type *valtype, struct regcache *regcache,
|
535 |
|
|
const gdb_byte *valbuf)
|
536 |
|
|
{
|
537 |
|
|
struct gdbarch *gdbarch = get_regcache_arch (regcache);
|
538 |
|
|
int length = TYPE_LENGTH (valtype);
|
539 |
|
|
gdb_byte raw_buffer[ALPHA_REGISTER_SIZE];
|
540 |
|
|
ULONGEST l;
|
541 |
|
|
|
542 |
|
|
switch (TYPE_CODE (valtype))
|
543 |
|
|
{
|
544 |
|
|
case TYPE_CODE_FLT:
|
545 |
|
|
switch (length)
|
546 |
|
|
{
|
547 |
|
|
case 4:
|
548 |
|
|
alpha_lds (gdbarch, raw_buffer, valbuf);
|
549 |
|
|
regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, raw_buffer);
|
550 |
|
|
break;
|
551 |
|
|
|
552 |
|
|
case 8:
|
553 |
|
|
regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, valbuf);
|
554 |
|
|
break;
|
555 |
|
|
|
556 |
|
|
case 16:
|
557 |
|
|
/* FIXME: 128-bit long doubles are returned like structures:
|
558 |
|
|
by writing into indirect storage provided by the caller
|
559 |
|
|
as the first argument. */
|
560 |
|
|
error (_("Cannot set a 128-bit long double return value."));
|
561 |
|
|
|
562 |
|
|
default:
|
563 |
|
|
internal_error (__FILE__, __LINE__, _("unknown floating point width"));
|
564 |
|
|
}
|
565 |
|
|
break;
|
566 |
|
|
|
567 |
|
|
case TYPE_CODE_COMPLEX:
|
568 |
|
|
switch (length)
|
569 |
|
|
{
|
570 |
|
|
case 8:
|
571 |
|
|
/* ??? This isn't correct wrt the ABI, but it's what GCC does. */
|
572 |
|
|
regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, valbuf);
|
573 |
|
|
break;
|
574 |
|
|
|
575 |
|
|
case 16:
|
576 |
|
|
regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, valbuf);
|
577 |
|
|
regcache_cooked_write (regcache, ALPHA_FP0_REGNUM + 1, valbuf + 8);
|
578 |
|
|
break;
|
579 |
|
|
|
580 |
|
|
case 32:
|
581 |
|
|
/* FIXME: 128-bit long doubles are returned like structures:
|
582 |
|
|
by writing into indirect storage provided by the caller
|
583 |
|
|
as the first argument. */
|
584 |
|
|
error (_("Cannot set a 128-bit long double return value."));
|
585 |
|
|
|
586 |
|
|
default:
|
587 |
|
|
internal_error (__FILE__, __LINE__, _("unknown floating point width"));
|
588 |
|
|
}
|
589 |
|
|
break;
|
590 |
|
|
|
591 |
|
|
default:
|
592 |
|
|
/* Assume everything else degenerates to an integer. */
|
593 |
|
|
/* 32-bit values must be sign-extended to 64 bits
|
594 |
|
|
even if the base data type is unsigned. */
|
595 |
|
|
if (length == 4)
|
596 |
|
|
valtype = builtin_type (gdbarch)->builtin_int32;
|
597 |
|
|
l = unpack_long (valtype, valbuf);
|
598 |
|
|
regcache_cooked_write_unsigned (regcache, ALPHA_V0_REGNUM, l);
|
599 |
|
|
break;
|
600 |
|
|
}
|
601 |
|
|
}
|
602 |
|
|
|
603 |
|
|
static enum return_value_convention
|
604 |
|
|
alpha_return_value (struct gdbarch *gdbarch, struct type *func_type,
|
605 |
|
|
struct type *type, struct regcache *regcache,
|
606 |
|
|
gdb_byte *readbuf, const gdb_byte *writebuf)
|
607 |
|
|
{
|
608 |
|
|
enum type_code code = TYPE_CODE (type);
|
609 |
|
|
|
610 |
|
|
if ((code == TYPE_CODE_STRUCT
|
611 |
|
|
|| code == TYPE_CODE_UNION
|
612 |
|
|
|| code == TYPE_CODE_ARRAY)
|
613 |
|
|
&& gdbarch_tdep (gdbarch)->return_in_memory (type))
|
614 |
|
|
{
|
615 |
|
|
if (readbuf)
|
616 |
|
|
{
|
617 |
|
|
ULONGEST addr;
|
618 |
|
|
regcache_raw_read_unsigned (regcache, ALPHA_V0_REGNUM, &addr);
|
619 |
|
|
read_memory (addr, readbuf, TYPE_LENGTH (type));
|
620 |
|
|
}
|
621 |
|
|
|
622 |
|
|
return RETURN_VALUE_ABI_RETURNS_ADDRESS;
|
623 |
|
|
}
|
624 |
|
|
|
625 |
|
|
if (readbuf)
|
626 |
|
|
alpha_extract_return_value (type, regcache, readbuf);
|
627 |
|
|
if (writebuf)
|
628 |
|
|
alpha_store_return_value (type, regcache, writebuf);
|
629 |
|
|
|
630 |
|
|
return RETURN_VALUE_REGISTER_CONVENTION;
|
631 |
|
|
}
|
632 |
|
|
|
633 |
|
|
static int
|
634 |
|
|
alpha_return_in_memory_always (struct type *type)
|
635 |
|
|
{
|
636 |
|
|
return 1;
|
637 |
|
|
}
|
638 |
|
|
|
639 |
|
|
static const gdb_byte *
|
640 |
|
|
alpha_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
|
641 |
|
|
{
|
642 |
|
|
static const gdb_byte break_insn[] = { 0x80, 0, 0, 0 }; /* call_pal bpt */
|
643 |
|
|
|
644 |
|
|
*len = sizeof(break_insn);
|
645 |
|
|
return break_insn;
|
646 |
|
|
}
|
647 |
|
|
|
648 |
|
|
|
649 |
|
|
/* This returns the PC of the first insn after the prologue.
|
650 |
|
|
If we can't find the prologue, then return 0. */
|
651 |
|
|
|
652 |
|
|
CORE_ADDR
|
653 |
|
|
alpha_after_prologue (CORE_ADDR pc)
|
654 |
|
|
{
|
655 |
|
|
struct symtab_and_line sal;
|
656 |
|
|
CORE_ADDR func_addr, func_end;
|
657 |
|
|
|
658 |
|
|
if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
|
659 |
|
|
return 0;
|
660 |
|
|
|
661 |
|
|
sal = find_pc_line (func_addr, 0);
|
662 |
|
|
if (sal.end < func_end)
|
663 |
|
|
return sal.end;
|
664 |
|
|
|
665 |
|
|
/* The line after the prologue is after the end of the function. In this
|
666 |
|
|
case, tell the caller to find the prologue the hard way. */
|
667 |
|
|
return 0;
|
668 |
|
|
}
|
669 |
|
|
|
670 |
|
|
/* Read an instruction from memory at PC, looking through breakpoints. */
|
671 |
|
|
|
672 |
|
|
unsigned int
|
673 |
|
|
alpha_read_insn (struct gdbarch *gdbarch, CORE_ADDR pc)
|
674 |
|
|
{
|
675 |
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
676 |
|
|
gdb_byte buf[ALPHA_INSN_SIZE];
|
677 |
|
|
int status;
|
678 |
|
|
|
679 |
|
|
status = target_read_memory (pc, buf, sizeof (buf));
|
680 |
|
|
if (status)
|
681 |
|
|
memory_error (status, pc);
|
682 |
|
|
return extract_unsigned_integer (buf, sizeof (buf), byte_order);
|
683 |
|
|
}
|
684 |
|
|
|
685 |
|
|
/* To skip prologues, I use this predicate. Returns either PC itself
|
686 |
|
|
if the code at PC does not look like a function prologue; otherwise
|
687 |
|
|
returns an address that (if we're lucky) follows the prologue. If
|
688 |
|
|
LENIENT, then we must skip everything which is involved in setting
|
689 |
|
|
up the frame (it's OK to skip more, just so long as we don't skip
|
690 |
|
|
anything which might clobber the registers which are being saved. */
|
691 |
|
|
|
692 |
|
|
static CORE_ADDR
|
693 |
|
|
alpha_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
|
694 |
|
|
{
|
695 |
|
|
unsigned long inst;
|
696 |
|
|
int offset;
|
697 |
|
|
CORE_ADDR post_prologue_pc;
|
698 |
|
|
gdb_byte buf[ALPHA_INSN_SIZE];
|
699 |
|
|
|
700 |
|
|
/* Silently return the unaltered pc upon memory errors.
|
701 |
|
|
This could happen on OSF/1 if decode_line_1 tries to skip the
|
702 |
|
|
prologue for quickstarted shared library functions when the
|
703 |
|
|
shared library is not yet mapped in.
|
704 |
|
|
Reading target memory is slow over serial lines, so we perform
|
705 |
|
|
this check only if the target has shared libraries (which all
|
706 |
|
|
Alpha targets do). */
|
707 |
|
|
if (target_read_memory (pc, buf, sizeof (buf)))
|
708 |
|
|
return pc;
|
709 |
|
|
|
710 |
|
|
/* See if we can determine the end of the prologue via the symbol table.
|
711 |
|
|
If so, then return either PC, or the PC after the prologue, whichever
|
712 |
|
|
is greater. */
|
713 |
|
|
|
714 |
|
|
post_prologue_pc = alpha_after_prologue (pc);
|
715 |
|
|
if (post_prologue_pc != 0)
|
716 |
|
|
return max (pc, post_prologue_pc);
|
717 |
|
|
|
718 |
|
|
/* Can't determine prologue from the symbol table, need to examine
|
719 |
|
|
instructions. */
|
720 |
|
|
|
721 |
|
|
/* Skip the typical prologue instructions. These are the stack adjustment
|
722 |
|
|
instruction and the instructions that save registers on the stack
|
723 |
|
|
or in the gcc frame. */
|
724 |
|
|
for (offset = 0; offset < 100; offset += ALPHA_INSN_SIZE)
|
725 |
|
|
{
|
726 |
|
|
inst = alpha_read_insn (gdbarch, pc + offset);
|
727 |
|
|
|
728 |
|
|
if ((inst & 0xffff0000) == 0x27bb0000) /* ldah $gp,n($t12) */
|
729 |
|
|
continue;
|
730 |
|
|
if ((inst & 0xffff0000) == 0x23bd0000) /* lda $gp,n($gp) */
|
731 |
|
|
continue;
|
732 |
|
|
if ((inst & 0xffff0000) == 0x23de0000) /* lda $sp,n($sp) */
|
733 |
|
|
continue;
|
734 |
|
|
if ((inst & 0xffe01fff) == 0x43c0153e) /* subq $sp,n,$sp */
|
735 |
|
|
continue;
|
736 |
|
|
|
737 |
|
|
if (((inst & 0xfc1f0000) == 0xb41e0000 /* stq reg,n($sp) */
|
738 |
|
|
|| (inst & 0xfc1f0000) == 0x9c1e0000) /* stt reg,n($sp) */
|
739 |
|
|
&& (inst & 0x03e00000) != 0x03e00000) /* reg != $zero */
|
740 |
|
|
continue;
|
741 |
|
|
|
742 |
|
|
if (inst == 0x47de040f) /* bis sp,sp,fp */
|
743 |
|
|
continue;
|
744 |
|
|
if (inst == 0x47fe040f) /* bis zero,sp,fp */
|
745 |
|
|
continue;
|
746 |
|
|
|
747 |
|
|
break;
|
748 |
|
|
}
|
749 |
|
|
return pc + offset;
|
750 |
|
|
}
|
751 |
|
|
|
752 |
|
|
|
753 |
|
|
/* Figure out where the longjmp will land.
|
754 |
|
|
We expect the first arg to be a pointer to the jmp_buf structure from
|
755 |
|
|
which we extract the PC (JB_PC) that we will land at. The PC is copied
|
756 |
|
|
into the "pc". This routine returns true on success. */
|
757 |
|
|
|
758 |
|
|
static int
|
759 |
|
|
alpha_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
|
760 |
|
|
{
|
761 |
|
|
struct gdbarch *gdbarch = get_frame_arch (frame);
|
762 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
763 |
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
764 |
|
|
CORE_ADDR jb_addr;
|
765 |
|
|
gdb_byte raw_buffer[ALPHA_REGISTER_SIZE];
|
766 |
|
|
|
767 |
|
|
jb_addr = get_frame_register_unsigned (frame, ALPHA_A0_REGNUM);
|
768 |
|
|
|
769 |
|
|
if (target_read_memory (jb_addr + (tdep->jb_pc * tdep->jb_elt_size),
|
770 |
|
|
raw_buffer, tdep->jb_elt_size))
|
771 |
|
|
return 0;
|
772 |
|
|
|
773 |
|
|
*pc = extract_unsigned_integer (raw_buffer, tdep->jb_elt_size, byte_order);
|
774 |
|
|
return 1;
|
775 |
|
|
}
|
776 |
|
|
|
777 |
|
|
|
778 |
|
|
/* Frame unwinder for signal trampolines. We use alpha tdep bits that
|
779 |
|
|
describe the location and shape of the sigcontext structure. After
|
780 |
|
|
that, all registers are in memory, so it's easy. */
|
781 |
|
|
/* ??? Shouldn't we be able to do this generically, rather than with
|
782 |
|
|
OSABI data specific to Alpha? */
|
783 |
|
|
|
784 |
|
|
struct alpha_sigtramp_unwind_cache
|
785 |
|
|
{
|
786 |
|
|
CORE_ADDR sigcontext_addr;
|
787 |
|
|
};
|
788 |
|
|
|
789 |
|
|
static struct alpha_sigtramp_unwind_cache *
|
790 |
|
|
alpha_sigtramp_frame_unwind_cache (struct frame_info *this_frame,
|
791 |
|
|
void **this_prologue_cache)
|
792 |
|
|
{
|
793 |
|
|
struct alpha_sigtramp_unwind_cache *info;
|
794 |
|
|
struct gdbarch_tdep *tdep;
|
795 |
|
|
|
796 |
|
|
if (*this_prologue_cache)
|
797 |
|
|
return *this_prologue_cache;
|
798 |
|
|
|
799 |
|
|
info = FRAME_OBSTACK_ZALLOC (struct alpha_sigtramp_unwind_cache);
|
800 |
|
|
*this_prologue_cache = info;
|
801 |
|
|
|
802 |
|
|
tdep = gdbarch_tdep (get_frame_arch (this_frame));
|
803 |
|
|
info->sigcontext_addr = tdep->sigcontext_addr (this_frame);
|
804 |
|
|
|
805 |
|
|
return info;
|
806 |
|
|
}
|
807 |
|
|
|
808 |
|
|
/* Return the address of REGNUM in a sigtramp frame. Since this is
|
809 |
|
|
all arithmetic, it doesn't seem worthwhile to cache it. */
|
810 |
|
|
|
811 |
|
|
static CORE_ADDR
|
812 |
|
|
alpha_sigtramp_register_address (struct gdbarch *gdbarch,
|
813 |
|
|
CORE_ADDR sigcontext_addr, int regnum)
|
814 |
|
|
{
|
815 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
816 |
|
|
|
817 |
|
|
if (regnum >= 0 && regnum < 32)
|
818 |
|
|
return sigcontext_addr + tdep->sc_regs_offset + regnum * 8;
|
819 |
|
|
else if (regnum >= ALPHA_FP0_REGNUM && regnum < ALPHA_FP0_REGNUM + 32)
|
820 |
|
|
return sigcontext_addr + tdep->sc_fpregs_offset + regnum * 8;
|
821 |
|
|
else if (regnum == ALPHA_PC_REGNUM)
|
822 |
|
|
return sigcontext_addr + tdep->sc_pc_offset;
|
823 |
|
|
|
824 |
|
|
return 0;
|
825 |
|
|
}
|
826 |
|
|
|
827 |
|
|
/* Given a GDB frame, determine the address of the calling function's
|
828 |
|
|
frame. This will be used to create a new GDB frame struct. */
|
829 |
|
|
|
830 |
|
|
static void
|
831 |
|
|
alpha_sigtramp_frame_this_id (struct frame_info *this_frame,
|
832 |
|
|
void **this_prologue_cache,
|
833 |
|
|
struct frame_id *this_id)
|
834 |
|
|
{
|
835 |
|
|
struct gdbarch *gdbarch = get_frame_arch (this_frame);
|
836 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
837 |
|
|
struct alpha_sigtramp_unwind_cache *info
|
838 |
|
|
= alpha_sigtramp_frame_unwind_cache (this_frame, this_prologue_cache);
|
839 |
|
|
CORE_ADDR stack_addr, code_addr;
|
840 |
|
|
|
841 |
|
|
/* If the OSABI couldn't locate the sigcontext, give up. */
|
842 |
|
|
if (info->sigcontext_addr == 0)
|
843 |
|
|
return;
|
844 |
|
|
|
845 |
|
|
/* If we have dynamic signal trampolines, find their start.
|
846 |
|
|
If we do not, then we must assume there is a symbol record
|
847 |
|
|
that can provide the start address. */
|
848 |
|
|
if (tdep->dynamic_sigtramp_offset)
|
849 |
|
|
{
|
850 |
|
|
int offset;
|
851 |
|
|
code_addr = get_frame_pc (this_frame);
|
852 |
|
|
offset = tdep->dynamic_sigtramp_offset (gdbarch, code_addr);
|
853 |
|
|
if (offset >= 0)
|
854 |
|
|
code_addr -= offset;
|
855 |
|
|
else
|
856 |
|
|
code_addr = 0;
|
857 |
|
|
}
|
858 |
|
|
else
|
859 |
|
|
code_addr = get_frame_func (this_frame);
|
860 |
|
|
|
861 |
|
|
/* The stack address is trivially read from the sigcontext. */
|
862 |
|
|
stack_addr = alpha_sigtramp_register_address (gdbarch, info->sigcontext_addr,
|
863 |
|
|
ALPHA_SP_REGNUM);
|
864 |
|
|
stack_addr = get_frame_memory_unsigned (this_frame, stack_addr,
|
865 |
|
|
ALPHA_REGISTER_SIZE);
|
866 |
|
|
|
867 |
|
|
*this_id = frame_id_build (stack_addr, code_addr);
|
868 |
|
|
}
|
869 |
|
|
|
870 |
|
|
/* Retrieve the value of REGNUM in FRAME. Don't give up! */
|
871 |
|
|
|
872 |
|
|
static struct value *
|
873 |
|
|
alpha_sigtramp_frame_prev_register (struct frame_info *this_frame,
|
874 |
|
|
void **this_prologue_cache, int regnum)
|
875 |
|
|
{
|
876 |
|
|
struct alpha_sigtramp_unwind_cache *info
|
877 |
|
|
= alpha_sigtramp_frame_unwind_cache (this_frame, this_prologue_cache);
|
878 |
|
|
CORE_ADDR addr;
|
879 |
|
|
|
880 |
|
|
if (info->sigcontext_addr != 0)
|
881 |
|
|
{
|
882 |
|
|
/* All integer and fp registers are stored in memory. */
|
883 |
|
|
addr = alpha_sigtramp_register_address (get_frame_arch (this_frame),
|
884 |
|
|
info->sigcontext_addr, regnum);
|
885 |
|
|
if (addr != 0)
|
886 |
|
|
return frame_unwind_got_memory (this_frame, regnum, addr);
|
887 |
|
|
}
|
888 |
|
|
|
889 |
|
|
/* This extra register may actually be in the sigcontext, but our
|
890 |
|
|
current description of it in alpha_sigtramp_frame_unwind_cache
|
891 |
|
|
doesn't include it. Too bad. Fall back on whatever's in the
|
892 |
|
|
outer frame. */
|
893 |
|
|
return frame_unwind_got_register (this_frame, regnum, regnum);
|
894 |
|
|
}
|
895 |
|
|
|
896 |
|
|
static int
|
897 |
|
|
alpha_sigtramp_frame_sniffer (const struct frame_unwind *self,
|
898 |
|
|
struct frame_info *this_frame,
|
899 |
|
|
void **this_prologue_cache)
|
900 |
|
|
{
|
901 |
|
|
struct gdbarch *gdbarch = get_frame_arch (this_frame);
|
902 |
|
|
CORE_ADDR pc = get_frame_pc (this_frame);
|
903 |
|
|
char *name;
|
904 |
|
|
|
905 |
|
|
/* NOTE: cagney/2004-04-30: Do not copy/clone this code. Instead
|
906 |
|
|
look at tramp-frame.h and other simplier per-architecture
|
907 |
|
|
sigtramp unwinders. */
|
908 |
|
|
|
909 |
|
|
/* We shouldn't even bother to try if the OSABI didn't register a
|
910 |
|
|
sigcontext_addr handler or pc_in_sigtramp hander. */
|
911 |
|
|
if (gdbarch_tdep (gdbarch)->sigcontext_addr == NULL)
|
912 |
|
|
return 0;
|
913 |
|
|
if (gdbarch_tdep (gdbarch)->pc_in_sigtramp == NULL)
|
914 |
|
|
return 0;
|
915 |
|
|
|
916 |
|
|
/* Otherwise we should be in a signal frame. */
|
917 |
|
|
find_pc_partial_function (pc, &name, NULL, NULL);
|
918 |
|
|
if (gdbarch_tdep (gdbarch)->pc_in_sigtramp (gdbarch, pc, name))
|
919 |
|
|
return 1;
|
920 |
|
|
|
921 |
|
|
return 0;
|
922 |
|
|
}
|
923 |
|
|
|
924 |
|
|
static const struct frame_unwind alpha_sigtramp_frame_unwind = {
|
925 |
|
|
SIGTRAMP_FRAME,
|
926 |
|
|
alpha_sigtramp_frame_this_id,
|
927 |
|
|
alpha_sigtramp_frame_prev_register,
|
928 |
|
|
NULL,
|
929 |
|
|
alpha_sigtramp_frame_sniffer
|
930 |
|
|
};
|
931 |
|
|
|
932 |
|
|
|
933 |
|
|
|
934 |
|
|
/* Heuristic_proc_start may hunt through the text section for a long
|
935 |
|
|
time across a 2400 baud serial line. Allows the user to limit this
|
936 |
|
|
search. */
|
937 |
|
|
static unsigned int heuristic_fence_post = 0;
|
938 |
|
|
|
939 |
|
|
/* Attempt to locate the start of the function containing PC. We assume that
|
940 |
|
|
the previous function ends with an about_to_return insn. Not foolproof by
|
941 |
|
|
any means, since gcc is happy to put the epilogue in the middle of a
|
942 |
|
|
function. But we're guessing anyway... */
|
943 |
|
|
|
944 |
|
|
static CORE_ADDR
|
945 |
|
|
alpha_heuristic_proc_start (struct gdbarch *gdbarch, CORE_ADDR pc)
|
946 |
|
|
{
|
947 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
948 |
|
|
CORE_ADDR last_non_nop = pc;
|
949 |
|
|
CORE_ADDR fence = pc - heuristic_fence_post;
|
950 |
|
|
CORE_ADDR orig_pc = pc;
|
951 |
|
|
CORE_ADDR func;
|
952 |
|
|
struct inferior *inf;
|
953 |
|
|
|
954 |
|
|
if (pc == 0)
|
955 |
|
|
return 0;
|
956 |
|
|
|
957 |
|
|
/* First see if we can find the start of the function from minimal
|
958 |
|
|
symbol information. This can succeed with a binary that doesn't
|
959 |
|
|
have debug info, but hasn't been stripped. */
|
960 |
|
|
func = get_pc_function_start (pc);
|
961 |
|
|
if (func)
|
962 |
|
|
return func;
|
963 |
|
|
|
964 |
|
|
if (heuristic_fence_post == UINT_MAX
|
965 |
|
|
|| fence < tdep->vm_min_address)
|
966 |
|
|
fence = tdep->vm_min_address;
|
967 |
|
|
|
968 |
|
|
/* Search back for previous return; also stop at a 0, which might be
|
969 |
|
|
seen for instance before the start of a code section. Don't include
|
970 |
|
|
nops, since this usually indicates padding between functions. */
|
971 |
|
|
for (pc -= ALPHA_INSN_SIZE; pc >= fence; pc -= ALPHA_INSN_SIZE)
|
972 |
|
|
{
|
973 |
|
|
unsigned int insn = alpha_read_insn (gdbarch, pc);
|
974 |
|
|
switch (insn)
|
975 |
|
|
{
|
976 |
|
|
case 0: /* invalid insn */
|
977 |
|
|
case 0x6bfa8001: /* ret $31,($26),1 */
|
978 |
|
|
return last_non_nop;
|
979 |
|
|
|
980 |
|
|
case 0x2ffe0000: /* unop: ldq_u $31,0($30) */
|
981 |
|
|
case 0x47ff041f: /* nop: bis $31,$31,$31 */
|
982 |
|
|
break;
|
983 |
|
|
|
984 |
|
|
default:
|
985 |
|
|
last_non_nop = pc;
|
986 |
|
|
break;
|
987 |
|
|
}
|
988 |
|
|
}
|
989 |
|
|
|
990 |
|
|
inf = current_inferior ();
|
991 |
|
|
|
992 |
|
|
/* It's not clear to me why we reach this point when stopping quietly,
|
993 |
|
|
but with this test, at least we don't print out warnings for every
|
994 |
|
|
child forked (eg, on decstation). 22apr93 rich@cygnus.com. */
|
995 |
|
|
if (inf->stop_soon == NO_STOP_QUIETLY)
|
996 |
|
|
{
|
997 |
|
|
static int blurb_printed = 0;
|
998 |
|
|
|
999 |
|
|
if (fence == tdep->vm_min_address)
|
1000 |
|
|
warning (_("Hit beginning of text section without finding \
|
1001 |
|
|
enclosing function for address %s"), paddress (gdbarch, orig_pc));
|
1002 |
|
|
else
|
1003 |
|
|
warning (_("Hit heuristic-fence-post without finding \
|
1004 |
|
|
enclosing function for address %s"), paddress (gdbarch, orig_pc));
|
1005 |
|
|
|
1006 |
|
|
if (!blurb_printed)
|
1007 |
|
|
{
|
1008 |
|
|
printf_filtered (_("\
|
1009 |
|
|
This warning occurs if you are debugging a function without any symbols\n\
|
1010 |
|
|
(for example, in a stripped executable). In that case, you may wish to\n\
|
1011 |
|
|
increase the size of the search with the `set heuristic-fence-post' command.\n\
|
1012 |
|
|
\n\
|
1013 |
|
|
Otherwise, you told GDB there was a function where there isn't one, or\n\
|
1014 |
|
|
(more likely) you have encountered a bug in GDB.\n"));
|
1015 |
|
|
blurb_printed = 1;
|
1016 |
|
|
}
|
1017 |
|
|
}
|
1018 |
|
|
|
1019 |
|
|
return 0;
|
1020 |
|
|
}
|
1021 |
|
|
|
1022 |
|
|
/* Fallback alpha frame unwinder. Uses instruction scanning and knows
|
1023 |
|
|
something about the traditional layout of alpha stack frames. */
|
1024 |
|
|
|
1025 |
|
|
struct alpha_heuristic_unwind_cache
|
1026 |
|
|
{
|
1027 |
|
|
CORE_ADDR vfp;
|
1028 |
|
|
CORE_ADDR start_pc;
|
1029 |
|
|
struct trad_frame_saved_reg *saved_regs;
|
1030 |
|
|
int return_reg;
|
1031 |
|
|
};
|
1032 |
|
|
|
1033 |
|
|
/* If a probing loop sequence starts at PC, simulate it and compute
|
1034 |
|
|
FRAME_SIZE and PC after its execution. Otherwise, return with PC and
|
1035 |
|
|
FRAME_SIZE unchanged. */
|
1036 |
|
|
|
1037 |
|
|
static void
|
1038 |
|
|
alpha_heuristic_analyze_probing_loop (struct gdbarch *gdbarch, CORE_ADDR *pc,
|
1039 |
|
|
int *frame_size)
|
1040 |
|
|
{
|
1041 |
|
|
CORE_ADDR cur_pc = *pc;
|
1042 |
|
|
int cur_frame_size = *frame_size;
|
1043 |
|
|
int nb_of_iterations, reg_index, reg_probe;
|
1044 |
|
|
unsigned int insn;
|
1045 |
|
|
|
1046 |
|
|
/* The following pattern is recognized as a probing loop:
|
1047 |
|
|
|
1048 |
|
|
lda REG_INDEX,NB_OF_ITERATIONS
|
1049 |
|
|
lda REG_PROBE,<immediate>(sp)
|
1050 |
|
|
|
1051 |
|
|
LOOP_START:
|
1052 |
|
|
stq zero,<immediate>(REG_PROBE)
|
1053 |
|
|
subq REG_INDEX,0x1,REG_INDEX
|
1054 |
|
|
lda REG_PROBE,<immediate>(REG_PROBE)
|
1055 |
|
|
bne REG_INDEX, LOOP_START
|
1056 |
|
|
|
1057 |
|
|
lda sp,<immediate>(REG_PROBE)
|
1058 |
|
|
|
1059 |
|
|
If anything different is found, the function returns without
|
1060 |
|
|
changing PC and FRAME_SIZE. Otherwise, PC will point immediately
|
1061 |
|
|
after this sequence, and FRAME_SIZE will be updated.
|
1062 |
|
|
*/
|
1063 |
|
|
|
1064 |
|
|
/* lda REG_INDEX,NB_OF_ITERATIONS */
|
1065 |
|
|
|
1066 |
|
|
insn = alpha_read_insn (gdbarch, cur_pc);
|
1067 |
|
|
if (INSN_OPCODE (insn) != lda_opcode)
|
1068 |
|
|
return;
|
1069 |
|
|
reg_index = MEM_RA (insn);
|
1070 |
|
|
nb_of_iterations = MEM_DISP (insn);
|
1071 |
|
|
|
1072 |
|
|
/* lda REG_PROBE,<immediate>(sp) */
|
1073 |
|
|
|
1074 |
|
|
cur_pc += ALPHA_INSN_SIZE;
|
1075 |
|
|
insn = alpha_read_insn (gdbarch, cur_pc);
|
1076 |
|
|
if (INSN_OPCODE (insn) != lda_opcode
|
1077 |
|
|
|| MEM_RB (insn) != ALPHA_SP_REGNUM)
|
1078 |
|
|
return;
|
1079 |
|
|
reg_probe = MEM_RA (insn);
|
1080 |
|
|
cur_frame_size -= MEM_DISP (insn);
|
1081 |
|
|
|
1082 |
|
|
/* stq zero,<immediate>(REG_PROBE) */
|
1083 |
|
|
|
1084 |
|
|
cur_pc += ALPHA_INSN_SIZE;
|
1085 |
|
|
insn = alpha_read_insn (gdbarch, cur_pc);
|
1086 |
|
|
if (INSN_OPCODE (insn) != stq_opcode
|
1087 |
|
|
|| MEM_RA (insn) != 0x1f
|
1088 |
|
|
|| MEM_RB (insn) != reg_probe)
|
1089 |
|
|
return;
|
1090 |
|
|
|
1091 |
|
|
/* subq REG_INDEX,0x1,REG_INDEX */
|
1092 |
|
|
|
1093 |
|
|
cur_pc += ALPHA_INSN_SIZE;
|
1094 |
|
|
insn = alpha_read_insn (gdbarch, cur_pc);
|
1095 |
|
|
if (INSN_OPCODE (insn) != subq_opcode
|
1096 |
|
|
|| !OPR_HAS_IMMEDIATE (insn)
|
1097 |
|
|
|| OPR_FUNCTION (insn) != subq_function
|
1098 |
|
|
|| OPR_LIT(insn) != 1
|
1099 |
|
|
|| OPR_RA (insn) != reg_index
|
1100 |
|
|
|| OPR_RC (insn) != reg_index)
|
1101 |
|
|
return;
|
1102 |
|
|
|
1103 |
|
|
/* lda REG_PROBE,<immediate>(REG_PROBE) */
|
1104 |
|
|
|
1105 |
|
|
cur_pc += ALPHA_INSN_SIZE;
|
1106 |
|
|
insn = alpha_read_insn (gdbarch, cur_pc);
|
1107 |
|
|
if (INSN_OPCODE (insn) != lda_opcode
|
1108 |
|
|
|| MEM_RA (insn) != reg_probe
|
1109 |
|
|
|| MEM_RB (insn) != reg_probe)
|
1110 |
|
|
return;
|
1111 |
|
|
cur_frame_size -= MEM_DISP (insn) * nb_of_iterations;
|
1112 |
|
|
|
1113 |
|
|
/* bne REG_INDEX, LOOP_START */
|
1114 |
|
|
|
1115 |
|
|
cur_pc += ALPHA_INSN_SIZE;
|
1116 |
|
|
insn = alpha_read_insn (gdbarch, cur_pc);
|
1117 |
|
|
if (INSN_OPCODE (insn) != bne_opcode
|
1118 |
|
|
|| MEM_RA (insn) != reg_index)
|
1119 |
|
|
return;
|
1120 |
|
|
|
1121 |
|
|
/* lda sp,<immediate>(REG_PROBE) */
|
1122 |
|
|
|
1123 |
|
|
cur_pc += ALPHA_INSN_SIZE;
|
1124 |
|
|
insn = alpha_read_insn (gdbarch, cur_pc);
|
1125 |
|
|
if (INSN_OPCODE (insn) != lda_opcode
|
1126 |
|
|
|| MEM_RA (insn) != ALPHA_SP_REGNUM
|
1127 |
|
|
|| MEM_RB (insn) != reg_probe)
|
1128 |
|
|
return;
|
1129 |
|
|
cur_frame_size -= MEM_DISP (insn);
|
1130 |
|
|
|
1131 |
|
|
*pc = cur_pc;
|
1132 |
|
|
*frame_size = cur_frame_size;
|
1133 |
|
|
}
|
1134 |
|
|
|
1135 |
|
|
static struct alpha_heuristic_unwind_cache *
|
1136 |
|
|
alpha_heuristic_frame_unwind_cache (struct frame_info *this_frame,
|
1137 |
|
|
void **this_prologue_cache,
|
1138 |
|
|
CORE_ADDR start_pc)
|
1139 |
|
|
{
|
1140 |
|
|
struct gdbarch *gdbarch = get_frame_arch (this_frame);
|
1141 |
|
|
struct alpha_heuristic_unwind_cache *info;
|
1142 |
|
|
ULONGEST val;
|
1143 |
|
|
CORE_ADDR limit_pc, cur_pc;
|
1144 |
|
|
int frame_reg, frame_size, return_reg, reg;
|
1145 |
|
|
|
1146 |
|
|
if (*this_prologue_cache)
|
1147 |
|
|
return *this_prologue_cache;
|
1148 |
|
|
|
1149 |
|
|
info = FRAME_OBSTACK_ZALLOC (struct alpha_heuristic_unwind_cache);
|
1150 |
|
|
*this_prologue_cache = info;
|
1151 |
|
|
info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
|
1152 |
|
|
|
1153 |
|
|
limit_pc = get_frame_pc (this_frame);
|
1154 |
|
|
if (start_pc == 0)
|
1155 |
|
|
start_pc = alpha_heuristic_proc_start (gdbarch, limit_pc);
|
1156 |
|
|
info->start_pc = start_pc;
|
1157 |
|
|
|
1158 |
|
|
frame_reg = ALPHA_SP_REGNUM;
|
1159 |
|
|
frame_size = 0;
|
1160 |
|
|
return_reg = -1;
|
1161 |
|
|
|
1162 |
|
|
/* If we've identified a likely place to start, do code scanning. */
|
1163 |
|
|
if (start_pc != 0)
|
1164 |
|
|
{
|
1165 |
|
|
/* Limit the forward search to 50 instructions. */
|
1166 |
|
|
if (start_pc + 200 < limit_pc)
|
1167 |
|
|
limit_pc = start_pc + 200;
|
1168 |
|
|
|
1169 |
|
|
for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += ALPHA_INSN_SIZE)
|
1170 |
|
|
{
|
1171 |
|
|
unsigned int word = alpha_read_insn (gdbarch, cur_pc);
|
1172 |
|
|
|
1173 |
|
|
if ((word & 0xffff0000) == 0x23de0000) /* lda $sp,n($sp) */
|
1174 |
|
|
{
|
1175 |
|
|
if (word & 0x8000)
|
1176 |
|
|
{
|
1177 |
|
|
/* Consider only the first stack allocation instruction
|
1178 |
|
|
to contain the static size of the frame. */
|
1179 |
|
|
if (frame_size == 0)
|
1180 |
|
|
frame_size = (-word) & 0xffff;
|
1181 |
|
|
}
|
1182 |
|
|
else
|
1183 |
|
|
{
|
1184 |
|
|
/* Exit loop if a positive stack adjustment is found, which
|
1185 |
|
|
usually means that the stack cleanup code in the function
|
1186 |
|
|
epilogue is reached. */
|
1187 |
|
|
break;
|
1188 |
|
|
}
|
1189 |
|
|
}
|
1190 |
|
|
else if ((word & 0xfc1f0000) == 0xb41e0000) /* stq reg,n($sp) */
|
1191 |
|
|
{
|
1192 |
|
|
reg = (word & 0x03e00000) >> 21;
|
1193 |
|
|
|
1194 |
|
|
/* Ignore this instruction if we have already encountered
|
1195 |
|
|
an instruction saving the same register earlier in the
|
1196 |
|
|
function code. The current instruction does not tell
|
1197 |
|
|
us where the original value upon function entry is saved.
|
1198 |
|
|
All it says is that the function we are scanning reused
|
1199 |
|
|
that register for some computation of its own, and is now
|
1200 |
|
|
saving its result. */
|
1201 |
|
|
if (trad_frame_addr_p(info->saved_regs, reg))
|
1202 |
|
|
continue;
|
1203 |
|
|
|
1204 |
|
|
if (reg == 31)
|
1205 |
|
|
continue;
|
1206 |
|
|
|
1207 |
|
|
/* Do not compute the address where the register was saved yet,
|
1208 |
|
|
because we don't know yet if the offset will need to be
|
1209 |
|
|
relative to $sp or $fp (we can not compute the address
|
1210 |
|
|
relative to $sp if $sp is updated during the execution of
|
1211 |
|
|
the current subroutine, for instance when doing some alloca).
|
1212 |
|
|
So just store the offset for the moment, and compute the
|
1213 |
|
|
address later when we know whether this frame has a frame
|
1214 |
|
|
pointer or not. */
|
1215 |
|
|
/* Hack: temporarily add one, so that the offset is non-zero
|
1216 |
|
|
and we can tell which registers have save offsets below. */
|
1217 |
|
|
info->saved_regs[reg].addr = (word & 0xffff) + 1;
|
1218 |
|
|
|
1219 |
|
|
/* Starting with OSF/1-3.2C, the system libraries are shipped
|
1220 |
|
|
without local symbols, but they still contain procedure
|
1221 |
|
|
descriptors without a symbol reference. GDB is currently
|
1222 |
|
|
unable to find these procedure descriptors and uses
|
1223 |
|
|
heuristic_proc_desc instead.
|
1224 |
|
|
As some low level compiler support routines (__div*, __add*)
|
1225 |
|
|
use a non-standard return address register, we have to
|
1226 |
|
|
add some heuristics to determine the return address register,
|
1227 |
|
|
or stepping over these routines will fail.
|
1228 |
|
|
Usually the return address register is the first register
|
1229 |
|
|
saved on the stack, but assembler optimization might
|
1230 |
|
|
rearrange the register saves.
|
1231 |
|
|
So we recognize only a few registers (t7, t9, ra) within
|
1232 |
|
|
the procedure prologue as valid return address registers.
|
1233 |
|
|
If we encounter a return instruction, we extract the
|
1234 |
|
|
the return address register from it.
|
1235 |
|
|
|
1236 |
|
|
FIXME: Rewriting GDB to access the procedure descriptors,
|
1237 |
|
|
e.g. via the minimal symbol table, might obviate this hack. */
|
1238 |
|
|
if (return_reg == -1
|
1239 |
|
|
&& cur_pc < (start_pc + 80)
|
1240 |
|
|
&& (reg == ALPHA_T7_REGNUM
|
1241 |
|
|
|| reg == ALPHA_T9_REGNUM
|
1242 |
|
|
|| reg == ALPHA_RA_REGNUM))
|
1243 |
|
|
return_reg = reg;
|
1244 |
|
|
}
|
1245 |
|
|
else if ((word & 0xffe0ffff) == 0x6be08001) /* ret zero,reg,1 */
|
1246 |
|
|
return_reg = (word >> 16) & 0x1f;
|
1247 |
|
|
else if (word == 0x47de040f) /* bis sp,sp,fp */
|
1248 |
|
|
frame_reg = ALPHA_GCC_FP_REGNUM;
|
1249 |
|
|
else if (word == 0x47fe040f) /* bis zero,sp,fp */
|
1250 |
|
|
frame_reg = ALPHA_GCC_FP_REGNUM;
|
1251 |
|
|
|
1252 |
|
|
alpha_heuristic_analyze_probing_loop (gdbarch, &cur_pc, &frame_size);
|
1253 |
|
|
}
|
1254 |
|
|
|
1255 |
|
|
/* If we haven't found a valid return address register yet, keep
|
1256 |
|
|
searching in the procedure prologue. */
|
1257 |
|
|
if (return_reg == -1)
|
1258 |
|
|
{
|
1259 |
|
|
while (cur_pc < (limit_pc + 80) && cur_pc < (start_pc + 80))
|
1260 |
|
|
{
|
1261 |
|
|
unsigned int word = alpha_read_insn (gdbarch, cur_pc);
|
1262 |
|
|
|
1263 |
|
|
if ((word & 0xfc1f0000) == 0xb41e0000) /* stq reg,n($sp) */
|
1264 |
|
|
{
|
1265 |
|
|
reg = (word & 0x03e00000) >> 21;
|
1266 |
|
|
if (reg == ALPHA_T7_REGNUM
|
1267 |
|
|
|| reg == ALPHA_T9_REGNUM
|
1268 |
|
|
|| reg == ALPHA_RA_REGNUM)
|
1269 |
|
|
{
|
1270 |
|
|
return_reg = reg;
|
1271 |
|
|
break;
|
1272 |
|
|
}
|
1273 |
|
|
}
|
1274 |
|
|
else if ((word & 0xffe0ffff) == 0x6be08001) /* ret zero,reg,1 */
|
1275 |
|
|
{
|
1276 |
|
|
return_reg = (word >> 16) & 0x1f;
|
1277 |
|
|
break;
|
1278 |
|
|
}
|
1279 |
|
|
|
1280 |
|
|
cur_pc += ALPHA_INSN_SIZE;
|
1281 |
|
|
}
|
1282 |
|
|
}
|
1283 |
|
|
}
|
1284 |
|
|
|
1285 |
|
|
/* Failing that, do default to the customary RA. */
|
1286 |
|
|
if (return_reg == -1)
|
1287 |
|
|
return_reg = ALPHA_RA_REGNUM;
|
1288 |
|
|
info->return_reg = return_reg;
|
1289 |
|
|
|
1290 |
|
|
val = get_frame_register_unsigned (this_frame, frame_reg);
|
1291 |
|
|
info->vfp = val + frame_size;
|
1292 |
|
|
|
1293 |
|
|
/* Convert offsets to absolute addresses. See above about adding
|
1294 |
|
|
one to the offsets to make all detected offsets non-zero. */
|
1295 |
|
|
for (reg = 0; reg < ALPHA_NUM_REGS; ++reg)
|
1296 |
|
|
if (trad_frame_addr_p(info->saved_regs, reg))
|
1297 |
|
|
info->saved_regs[reg].addr += val - 1;
|
1298 |
|
|
|
1299 |
|
|
/* The stack pointer of the previous frame is computed by popping
|
1300 |
|
|
the current stack frame. */
|
1301 |
|
|
if (!trad_frame_addr_p (info->saved_regs, ALPHA_SP_REGNUM))
|
1302 |
|
|
trad_frame_set_value (info->saved_regs, ALPHA_SP_REGNUM, info->vfp);
|
1303 |
|
|
|
1304 |
|
|
return info;
|
1305 |
|
|
}
|
1306 |
|
|
|
1307 |
|
|
/* Given a GDB frame, determine the address of the calling function's
|
1308 |
|
|
frame. This will be used to create a new GDB frame struct. */
|
1309 |
|
|
|
1310 |
|
|
static void
|
1311 |
|
|
alpha_heuristic_frame_this_id (struct frame_info *this_frame,
|
1312 |
|
|
void **this_prologue_cache,
|
1313 |
|
|
struct frame_id *this_id)
|
1314 |
|
|
{
|
1315 |
|
|
struct alpha_heuristic_unwind_cache *info
|
1316 |
|
|
= alpha_heuristic_frame_unwind_cache (this_frame, this_prologue_cache, 0);
|
1317 |
|
|
|
1318 |
|
|
*this_id = frame_id_build (info->vfp, info->start_pc);
|
1319 |
|
|
}
|
1320 |
|
|
|
1321 |
|
|
/* Retrieve the value of REGNUM in FRAME. Don't give up! */
|
1322 |
|
|
|
1323 |
|
|
static struct value *
|
1324 |
|
|
alpha_heuristic_frame_prev_register (struct frame_info *this_frame,
|
1325 |
|
|
void **this_prologue_cache, int regnum)
|
1326 |
|
|
{
|
1327 |
|
|
struct alpha_heuristic_unwind_cache *info
|
1328 |
|
|
= alpha_heuristic_frame_unwind_cache (this_frame, this_prologue_cache, 0);
|
1329 |
|
|
|
1330 |
|
|
/* The PC of the previous frame is stored in the link register of
|
1331 |
|
|
the current frame. Frob regnum so that we pull the value from
|
1332 |
|
|
the correct place. */
|
1333 |
|
|
if (regnum == ALPHA_PC_REGNUM)
|
1334 |
|
|
regnum = info->return_reg;
|
1335 |
|
|
|
1336 |
|
|
return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
|
1337 |
|
|
}
|
1338 |
|
|
|
1339 |
|
|
static const struct frame_unwind alpha_heuristic_frame_unwind = {
|
1340 |
|
|
NORMAL_FRAME,
|
1341 |
|
|
alpha_heuristic_frame_this_id,
|
1342 |
|
|
alpha_heuristic_frame_prev_register,
|
1343 |
|
|
NULL,
|
1344 |
|
|
default_frame_sniffer
|
1345 |
|
|
};
|
1346 |
|
|
|
1347 |
|
|
static CORE_ADDR
|
1348 |
|
|
alpha_heuristic_frame_base_address (struct frame_info *this_frame,
|
1349 |
|
|
void **this_prologue_cache)
|
1350 |
|
|
{
|
1351 |
|
|
struct alpha_heuristic_unwind_cache *info
|
1352 |
|
|
= alpha_heuristic_frame_unwind_cache (this_frame, this_prologue_cache, 0);
|
1353 |
|
|
|
1354 |
|
|
return info->vfp;
|
1355 |
|
|
}
|
1356 |
|
|
|
1357 |
|
|
static const struct frame_base alpha_heuristic_frame_base = {
|
1358 |
|
|
&alpha_heuristic_frame_unwind,
|
1359 |
|
|
alpha_heuristic_frame_base_address,
|
1360 |
|
|
alpha_heuristic_frame_base_address,
|
1361 |
|
|
alpha_heuristic_frame_base_address
|
1362 |
|
|
};
|
1363 |
|
|
|
1364 |
|
|
/* Just like reinit_frame_cache, but with the right arguments to be
|
1365 |
|
|
callable as an sfunc. Used by the "set heuristic-fence-post" command. */
|
1366 |
|
|
|
1367 |
|
|
static void
|
1368 |
|
|
reinit_frame_cache_sfunc (char *args, int from_tty, struct cmd_list_element *c)
|
1369 |
|
|
{
|
1370 |
|
|
reinit_frame_cache ();
|
1371 |
|
|
}
|
1372 |
|
|
|
1373 |
|
|
|
1374 |
|
|
/* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
|
1375 |
|
|
dummy frame. The frame ID's base needs to match the TOS value
|
1376 |
|
|
saved by save_dummy_frame_tos(), and the PC match the dummy frame's
|
1377 |
|
|
breakpoint. */
|
1378 |
|
|
|
1379 |
|
|
static struct frame_id
|
1380 |
|
|
alpha_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
|
1381 |
|
|
{
|
1382 |
|
|
ULONGEST base;
|
1383 |
|
|
base = get_frame_register_unsigned (this_frame, ALPHA_SP_REGNUM);
|
1384 |
|
|
return frame_id_build (base, get_frame_pc (this_frame));
|
1385 |
|
|
}
|
1386 |
|
|
|
1387 |
|
|
static CORE_ADDR
|
1388 |
|
|
alpha_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
|
1389 |
|
|
{
|
1390 |
|
|
ULONGEST pc;
|
1391 |
|
|
pc = frame_unwind_register_unsigned (next_frame, ALPHA_PC_REGNUM);
|
1392 |
|
|
return pc;
|
1393 |
|
|
}
|
1394 |
|
|
|
1395 |
|
|
|
1396 |
|
|
/* Helper routines for alpha*-nat.c files to move register sets to and
|
1397 |
|
|
from core files. The UNIQUE pointer is allowed to be NULL, as most
|
1398 |
|
|
targets don't supply this value in their core files. */
|
1399 |
|
|
|
1400 |
|
|
void
|
1401 |
|
|
alpha_supply_int_regs (struct regcache *regcache, int regno,
|
1402 |
|
|
const void *r0_r30, const void *pc, const void *unique)
|
1403 |
|
|
{
|
1404 |
|
|
const gdb_byte *regs = r0_r30;
|
1405 |
|
|
int i;
|
1406 |
|
|
|
1407 |
|
|
for (i = 0; i < 31; ++i)
|
1408 |
|
|
if (regno == i || regno == -1)
|
1409 |
|
|
regcache_raw_supply (regcache, i, regs + i * 8);
|
1410 |
|
|
|
1411 |
|
|
if (regno == ALPHA_ZERO_REGNUM || regno == -1)
|
1412 |
|
|
regcache_raw_supply (regcache, ALPHA_ZERO_REGNUM, NULL);
|
1413 |
|
|
|
1414 |
|
|
if (regno == ALPHA_PC_REGNUM || regno == -1)
|
1415 |
|
|
regcache_raw_supply (regcache, ALPHA_PC_REGNUM, pc);
|
1416 |
|
|
|
1417 |
|
|
if (regno == ALPHA_UNIQUE_REGNUM || regno == -1)
|
1418 |
|
|
regcache_raw_supply (regcache, ALPHA_UNIQUE_REGNUM, unique);
|
1419 |
|
|
}
|
1420 |
|
|
|
1421 |
|
|
void
|
1422 |
|
|
alpha_fill_int_regs (const struct regcache *regcache,
|
1423 |
|
|
int regno, void *r0_r30, void *pc, void *unique)
|
1424 |
|
|
{
|
1425 |
|
|
gdb_byte *regs = r0_r30;
|
1426 |
|
|
int i;
|
1427 |
|
|
|
1428 |
|
|
for (i = 0; i < 31; ++i)
|
1429 |
|
|
if (regno == i || regno == -1)
|
1430 |
|
|
regcache_raw_collect (regcache, i, regs + i * 8);
|
1431 |
|
|
|
1432 |
|
|
if (regno == ALPHA_PC_REGNUM || regno == -1)
|
1433 |
|
|
regcache_raw_collect (regcache, ALPHA_PC_REGNUM, pc);
|
1434 |
|
|
|
1435 |
|
|
if (unique && (regno == ALPHA_UNIQUE_REGNUM || regno == -1))
|
1436 |
|
|
regcache_raw_collect (regcache, ALPHA_UNIQUE_REGNUM, unique);
|
1437 |
|
|
}
|
1438 |
|
|
|
1439 |
|
|
void
|
1440 |
|
|
alpha_supply_fp_regs (struct regcache *regcache, int regno,
|
1441 |
|
|
const void *f0_f30, const void *fpcr)
|
1442 |
|
|
{
|
1443 |
|
|
const gdb_byte *regs = f0_f30;
|
1444 |
|
|
int i;
|
1445 |
|
|
|
1446 |
|
|
for (i = ALPHA_FP0_REGNUM; i < ALPHA_FP0_REGNUM + 31; ++i)
|
1447 |
|
|
if (regno == i || regno == -1)
|
1448 |
|
|
regcache_raw_supply (regcache, i,
|
1449 |
|
|
regs + (i - ALPHA_FP0_REGNUM) * 8);
|
1450 |
|
|
|
1451 |
|
|
if (regno == ALPHA_FPCR_REGNUM || regno == -1)
|
1452 |
|
|
regcache_raw_supply (regcache, ALPHA_FPCR_REGNUM, fpcr);
|
1453 |
|
|
}
|
1454 |
|
|
|
1455 |
|
|
void
|
1456 |
|
|
alpha_fill_fp_regs (const struct regcache *regcache,
|
1457 |
|
|
int regno, void *f0_f30, void *fpcr)
|
1458 |
|
|
{
|
1459 |
|
|
gdb_byte *regs = f0_f30;
|
1460 |
|
|
int i;
|
1461 |
|
|
|
1462 |
|
|
for (i = ALPHA_FP0_REGNUM; i < ALPHA_FP0_REGNUM + 31; ++i)
|
1463 |
|
|
if (regno == i || regno == -1)
|
1464 |
|
|
regcache_raw_collect (regcache, i,
|
1465 |
|
|
regs + (i - ALPHA_FP0_REGNUM) * 8);
|
1466 |
|
|
|
1467 |
|
|
if (regno == ALPHA_FPCR_REGNUM || regno == -1)
|
1468 |
|
|
regcache_raw_collect (regcache, ALPHA_FPCR_REGNUM, fpcr);
|
1469 |
|
|
}
|
1470 |
|
|
|
1471 |
|
|
|
1472 |
|
|
|
1473 |
|
|
/* Return nonzero if the G_floating register value in REG is equal to
|
1474 |
|
|
zero for FP control instructions. */
|
1475 |
|
|
|
1476 |
|
|
static int
|
1477 |
|
|
fp_register_zero_p (LONGEST reg)
|
1478 |
|
|
{
|
1479 |
|
|
/* Check that all bits except the sign bit are zero. */
|
1480 |
|
|
const LONGEST zero_mask = ((LONGEST) 1 << 63) ^ -1;
|
1481 |
|
|
|
1482 |
|
|
return ((reg & zero_mask) == 0);
|
1483 |
|
|
}
|
1484 |
|
|
|
1485 |
|
|
/* Return the value of the sign bit for the G_floating register
|
1486 |
|
|
value held in REG. */
|
1487 |
|
|
|
1488 |
|
|
static int
|
1489 |
|
|
fp_register_sign_bit (LONGEST reg)
|
1490 |
|
|
{
|
1491 |
|
|
const LONGEST sign_mask = (LONGEST) 1 << 63;
|
1492 |
|
|
|
1493 |
|
|
return ((reg & sign_mask) != 0);
|
1494 |
|
|
}
|
1495 |
|
|
|
1496 |
|
|
/* alpha_software_single_step() is called just before we want to resume
|
1497 |
|
|
the inferior, if we want to single-step it but there is no hardware
|
1498 |
|
|
or kernel single-step support (NetBSD on Alpha, for example). We find
|
1499 |
|
|
the target of the coming instruction and breakpoint it. */
|
1500 |
|
|
|
1501 |
|
|
static CORE_ADDR
|
1502 |
|
|
alpha_next_pc (struct frame_info *frame, CORE_ADDR pc)
|
1503 |
|
|
{
|
1504 |
|
|
struct gdbarch *gdbarch = get_frame_arch (frame);
|
1505 |
|
|
unsigned int insn;
|
1506 |
|
|
unsigned int op;
|
1507 |
|
|
int regno;
|
1508 |
|
|
int offset;
|
1509 |
|
|
LONGEST rav;
|
1510 |
|
|
|
1511 |
|
|
insn = alpha_read_insn (gdbarch, pc);
|
1512 |
|
|
|
1513 |
|
|
/* Opcode is top 6 bits. */
|
1514 |
|
|
op = (insn >> 26) & 0x3f;
|
1515 |
|
|
|
1516 |
|
|
if (op == 0x1a)
|
1517 |
|
|
{
|
1518 |
|
|
/* Jump format: target PC is:
|
1519 |
|
|
RB & ~3 */
|
1520 |
|
|
return (get_frame_register_unsigned (frame, (insn >> 16) & 0x1f) & ~3);
|
1521 |
|
|
}
|
1522 |
|
|
|
1523 |
|
|
if ((op & 0x30) == 0x30)
|
1524 |
|
|
{
|
1525 |
|
|
/* Branch format: target PC is:
|
1526 |
|
|
(new PC) + (4 * sext(displacement)) */
|
1527 |
|
|
if (op == 0x30 /* BR */
|
1528 |
|
|
|| op == 0x34) /* BSR */
|
1529 |
|
|
{
|
1530 |
|
|
branch_taken:
|
1531 |
|
|
offset = (insn & 0x001fffff);
|
1532 |
|
|
if (offset & 0x00100000)
|
1533 |
|
|
offset |= 0xffe00000;
|
1534 |
|
|
offset *= ALPHA_INSN_SIZE;
|
1535 |
|
|
return (pc + ALPHA_INSN_SIZE + offset);
|
1536 |
|
|
}
|
1537 |
|
|
|
1538 |
|
|
/* Need to determine if branch is taken; read RA. */
|
1539 |
|
|
regno = (insn >> 21) & 0x1f;
|
1540 |
|
|
switch (op)
|
1541 |
|
|
{
|
1542 |
|
|
case 0x31: /* FBEQ */
|
1543 |
|
|
case 0x36: /* FBGE */
|
1544 |
|
|
case 0x37: /* FBGT */
|
1545 |
|
|
case 0x33: /* FBLE */
|
1546 |
|
|
case 0x32: /* FBLT */
|
1547 |
|
|
case 0x35: /* FBNE */
|
1548 |
|
|
regno += gdbarch_fp0_regnum (gdbarch);
|
1549 |
|
|
}
|
1550 |
|
|
|
1551 |
|
|
rav = get_frame_register_signed (frame, regno);
|
1552 |
|
|
|
1553 |
|
|
switch (op)
|
1554 |
|
|
{
|
1555 |
|
|
case 0x38: /* BLBC */
|
1556 |
|
|
if ((rav & 1) == 0)
|
1557 |
|
|
goto branch_taken;
|
1558 |
|
|
break;
|
1559 |
|
|
case 0x3c: /* BLBS */
|
1560 |
|
|
if (rav & 1)
|
1561 |
|
|
goto branch_taken;
|
1562 |
|
|
break;
|
1563 |
|
|
case 0x39: /* BEQ */
|
1564 |
|
|
if (rav == 0)
|
1565 |
|
|
goto branch_taken;
|
1566 |
|
|
break;
|
1567 |
|
|
case 0x3d: /* BNE */
|
1568 |
|
|
if (rav != 0)
|
1569 |
|
|
goto branch_taken;
|
1570 |
|
|
break;
|
1571 |
|
|
case 0x3a: /* BLT */
|
1572 |
|
|
if (rav < 0)
|
1573 |
|
|
goto branch_taken;
|
1574 |
|
|
break;
|
1575 |
|
|
case 0x3b: /* BLE */
|
1576 |
|
|
if (rav <= 0)
|
1577 |
|
|
goto branch_taken;
|
1578 |
|
|
break;
|
1579 |
|
|
case 0x3f: /* BGT */
|
1580 |
|
|
if (rav > 0)
|
1581 |
|
|
goto branch_taken;
|
1582 |
|
|
break;
|
1583 |
|
|
case 0x3e: /* BGE */
|
1584 |
|
|
if (rav >= 0)
|
1585 |
|
|
goto branch_taken;
|
1586 |
|
|
break;
|
1587 |
|
|
|
1588 |
|
|
/* Floating point branches. */
|
1589 |
|
|
|
1590 |
|
|
case 0x31: /* FBEQ */
|
1591 |
|
|
if (fp_register_zero_p (rav))
|
1592 |
|
|
goto branch_taken;
|
1593 |
|
|
break;
|
1594 |
|
|
case 0x36: /* FBGE */
|
1595 |
|
|
if (fp_register_sign_bit (rav) == 0 || fp_register_zero_p (rav))
|
1596 |
|
|
goto branch_taken;
|
1597 |
|
|
break;
|
1598 |
|
|
case 0x37: /* FBGT */
|
1599 |
|
|
if (fp_register_sign_bit (rav) == 0 && ! fp_register_zero_p (rav))
|
1600 |
|
|
goto branch_taken;
|
1601 |
|
|
break;
|
1602 |
|
|
case 0x33: /* FBLE */
|
1603 |
|
|
if (fp_register_sign_bit (rav) == 1 || fp_register_zero_p (rav))
|
1604 |
|
|
goto branch_taken;
|
1605 |
|
|
break;
|
1606 |
|
|
case 0x32: /* FBLT */
|
1607 |
|
|
if (fp_register_sign_bit (rav) == 1 && ! fp_register_zero_p (rav))
|
1608 |
|
|
goto branch_taken;
|
1609 |
|
|
break;
|
1610 |
|
|
case 0x35: /* FBNE */
|
1611 |
|
|
if (! fp_register_zero_p (rav))
|
1612 |
|
|
goto branch_taken;
|
1613 |
|
|
break;
|
1614 |
|
|
}
|
1615 |
|
|
}
|
1616 |
|
|
|
1617 |
|
|
/* Not a branch or branch not taken; target PC is:
|
1618 |
|
|
pc + 4 */
|
1619 |
|
|
return (pc + ALPHA_INSN_SIZE);
|
1620 |
|
|
}
|
1621 |
|
|
|
1622 |
|
|
int
|
1623 |
|
|
alpha_software_single_step (struct frame_info *frame)
|
1624 |
|
|
{
|
1625 |
|
|
struct gdbarch *gdbarch = get_frame_arch (frame);
|
1626 |
|
|
struct address_space *aspace = get_frame_address_space (frame);
|
1627 |
|
|
CORE_ADDR pc, next_pc;
|
1628 |
|
|
|
1629 |
|
|
pc = get_frame_pc (frame);
|
1630 |
|
|
next_pc = alpha_next_pc (frame, pc);
|
1631 |
|
|
|
1632 |
|
|
insert_single_step_breakpoint (gdbarch, aspace, next_pc);
|
1633 |
|
|
return 1;
|
1634 |
|
|
}
|
1635 |
|
|
|
1636 |
|
|
|
1637 |
|
|
/* Initialize the current architecture based on INFO. If possible, re-use an
|
1638 |
|
|
architecture from ARCHES, which is a list of architectures already created
|
1639 |
|
|
during this debugging session.
|
1640 |
|
|
|
1641 |
|
|
Called e.g. at program startup, when reading a core file, and when reading
|
1642 |
|
|
a binary file. */
|
1643 |
|
|
|
1644 |
|
|
static struct gdbarch *
|
1645 |
|
|
alpha_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
|
1646 |
|
|
{
|
1647 |
|
|
struct gdbarch_tdep *tdep;
|
1648 |
|
|
struct gdbarch *gdbarch;
|
1649 |
|
|
|
1650 |
|
|
/* Try to determine the ABI of the object we are loading. */
|
1651 |
|
|
if (info.abfd != NULL && info.osabi == GDB_OSABI_UNKNOWN)
|
1652 |
|
|
{
|
1653 |
|
|
/* If it's an ECOFF file, assume it's OSF/1. */
|
1654 |
|
|
if (bfd_get_flavour (info.abfd) == bfd_target_ecoff_flavour)
|
1655 |
|
|
info.osabi = GDB_OSABI_OSF1;
|
1656 |
|
|
}
|
1657 |
|
|
|
1658 |
|
|
/* Find a candidate among extant architectures. */
|
1659 |
|
|
arches = gdbarch_list_lookup_by_info (arches, &info);
|
1660 |
|
|
if (arches != NULL)
|
1661 |
|
|
return arches->gdbarch;
|
1662 |
|
|
|
1663 |
|
|
tdep = xmalloc (sizeof (struct gdbarch_tdep));
|
1664 |
|
|
gdbarch = gdbarch_alloc (&info, tdep);
|
1665 |
|
|
|
1666 |
|
|
/* Lowest text address. This is used by heuristic_proc_start()
|
1667 |
|
|
to decide when to stop looking. */
|
1668 |
|
|
tdep->vm_min_address = (CORE_ADDR) 0x120000000LL;
|
1669 |
|
|
|
1670 |
|
|
tdep->dynamic_sigtramp_offset = NULL;
|
1671 |
|
|
tdep->sigcontext_addr = NULL;
|
1672 |
|
|
tdep->sc_pc_offset = 2 * 8;
|
1673 |
|
|
tdep->sc_regs_offset = 4 * 8;
|
1674 |
|
|
tdep->sc_fpregs_offset = tdep->sc_regs_offset + 32 * 8 + 8;
|
1675 |
|
|
|
1676 |
|
|
tdep->jb_pc = -1; /* longjmp support not enabled by default */
|
1677 |
|
|
|
1678 |
|
|
tdep->return_in_memory = alpha_return_in_memory_always;
|
1679 |
|
|
|
1680 |
|
|
/* Type sizes */
|
1681 |
|
|
set_gdbarch_short_bit (gdbarch, 16);
|
1682 |
|
|
set_gdbarch_int_bit (gdbarch, 32);
|
1683 |
|
|
set_gdbarch_long_bit (gdbarch, 64);
|
1684 |
|
|
set_gdbarch_long_long_bit (gdbarch, 64);
|
1685 |
|
|
set_gdbarch_float_bit (gdbarch, 32);
|
1686 |
|
|
set_gdbarch_double_bit (gdbarch, 64);
|
1687 |
|
|
set_gdbarch_long_double_bit (gdbarch, 64);
|
1688 |
|
|
set_gdbarch_ptr_bit (gdbarch, 64);
|
1689 |
|
|
|
1690 |
|
|
/* Register info */
|
1691 |
|
|
set_gdbarch_num_regs (gdbarch, ALPHA_NUM_REGS);
|
1692 |
|
|
set_gdbarch_sp_regnum (gdbarch, ALPHA_SP_REGNUM);
|
1693 |
|
|
set_gdbarch_pc_regnum (gdbarch, ALPHA_PC_REGNUM);
|
1694 |
|
|
set_gdbarch_fp0_regnum (gdbarch, ALPHA_FP0_REGNUM);
|
1695 |
|
|
|
1696 |
|
|
set_gdbarch_register_name (gdbarch, alpha_register_name);
|
1697 |
|
|
set_gdbarch_register_type (gdbarch, alpha_register_type);
|
1698 |
|
|
|
1699 |
|
|
set_gdbarch_cannot_fetch_register (gdbarch, alpha_cannot_fetch_register);
|
1700 |
|
|
set_gdbarch_cannot_store_register (gdbarch, alpha_cannot_store_register);
|
1701 |
|
|
|
1702 |
|
|
set_gdbarch_convert_register_p (gdbarch, alpha_convert_register_p);
|
1703 |
|
|
set_gdbarch_register_to_value (gdbarch, alpha_register_to_value);
|
1704 |
|
|
set_gdbarch_value_to_register (gdbarch, alpha_value_to_register);
|
1705 |
|
|
|
1706 |
|
|
set_gdbarch_register_reggroup_p (gdbarch, alpha_register_reggroup_p);
|
1707 |
|
|
|
1708 |
|
|
/* Prologue heuristics. */
|
1709 |
|
|
set_gdbarch_skip_prologue (gdbarch, alpha_skip_prologue);
|
1710 |
|
|
|
1711 |
|
|
/* Disassembler. */
|
1712 |
|
|
set_gdbarch_print_insn (gdbarch, print_insn_alpha);
|
1713 |
|
|
|
1714 |
|
|
/* Call info. */
|
1715 |
|
|
|
1716 |
|
|
set_gdbarch_return_value (gdbarch, alpha_return_value);
|
1717 |
|
|
|
1718 |
|
|
/* Settings for calling functions in the inferior. */
|
1719 |
|
|
set_gdbarch_push_dummy_call (gdbarch, alpha_push_dummy_call);
|
1720 |
|
|
|
1721 |
|
|
/* Methods for saving / extracting a dummy frame's ID. */
|
1722 |
|
|
set_gdbarch_dummy_id (gdbarch, alpha_dummy_id);
|
1723 |
|
|
|
1724 |
|
|
/* Return the unwound PC value. */
|
1725 |
|
|
set_gdbarch_unwind_pc (gdbarch, alpha_unwind_pc);
|
1726 |
|
|
|
1727 |
|
|
set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
|
1728 |
|
|
set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
|
1729 |
|
|
|
1730 |
|
|
set_gdbarch_breakpoint_from_pc (gdbarch, alpha_breakpoint_from_pc);
|
1731 |
|
|
set_gdbarch_decr_pc_after_break (gdbarch, ALPHA_INSN_SIZE);
|
1732 |
|
|
set_gdbarch_cannot_step_breakpoint (gdbarch, 1);
|
1733 |
|
|
|
1734 |
|
|
/* Hook in ABI-specific overrides, if they have been registered. */
|
1735 |
|
|
gdbarch_init_osabi (info, gdbarch);
|
1736 |
|
|
|
1737 |
|
|
/* Now that we have tuned the configuration, set a few final things
|
1738 |
|
|
based on what the OS ABI has told us. */
|
1739 |
|
|
|
1740 |
|
|
if (tdep->jb_pc >= 0)
|
1741 |
|
|
set_gdbarch_get_longjmp_target (gdbarch, alpha_get_longjmp_target);
|
1742 |
|
|
|
1743 |
|
|
frame_unwind_append_unwinder (gdbarch, &alpha_sigtramp_frame_unwind);
|
1744 |
|
|
frame_unwind_append_unwinder (gdbarch, &alpha_heuristic_frame_unwind);
|
1745 |
|
|
|
1746 |
|
|
frame_base_set_default (gdbarch, &alpha_heuristic_frame_base);
|
1747 |
|
|
|
1748 |
|
|
return gdbarch;
|
1749 |
|
|
}
|
1750 |
|
|
|
1751 |
|
|
void
|
1752 |
|
|
alpha_dwarf2_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
|
1753 |
|
|
{
|
1754 |
|
|
dwarf2_append_unwinders (gdbarch);
|
1755 |
|
|
frame_base_append_sniffer (gdbarch, dwarf2_frame_base_sniffer);
|
1756 |
|
|
}
|
1757 |
|
|
|
1758 |
|
|
extern initialize_file_ftype _initialize_alpha_tdep; /* -Wmissing-prototypes */
|
1759 |
|
|
|
1760 |
|
|
void
|
1761 |
|
|
_initialize_alpha_tdep (void)
|
1762 |
|
|
{
|
1763 |
|
|
struct cmd_list_element *c;
|
1764 |
|
|
|
1765 |
|
|
gdbarch_register (bfd_arch_alpha, alpha_gdbarch_init, NULL);
|
1766 |
|
|
|
1767 |
|
|
/* Let the user set the fence post for heuristic_proc_start. */
|
1768 |
|
|
|
1769 |
|
|
/* We really would like to have both "0" and "unlimited" work, but
|
1770 |
|
|
command.c doesn't deal with that. So make it a var_zinteger
|
1771 |
|
|
because the user can always use "999999" or some such for unlimited. */
|
1772 |
|
|
/* We need to throw away the frame cache when we set this, since it
|
1773 |
|
|
might change our ability to get backtraces. */
|
1774 |
|
|
add_setshow_zinteger_cmd ("heuristic-fence-post", class_support,
|
1775 |
|
|
&heuristic_fence_post, _("\
|
1776 |
|
|
Set the distance searched for the start of a function."), _("\
|
1777 |
|
|
Show the distance searched for the start of a function."), _("\
|
1778 |
|
|
If you are debugging a stripped executable, GDB needs to search through the\n\
|
1779 |
|
|
program for the start of a function. This command sets the distance of the\n\
|
1780 |
|
|
search. The only need to set it is when debugging a stripped executable."),
|
1781 |
|
|
reinit_frame_cache_sfunc,
|
1782 |
|
|
NULL, /* FIXME: i18n: The distance searched for the start of a function is \"%d\". */
|
1783 |
|
|
&setlist, &showlist);
|
1784 |
|
|
}
|