OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-stable/] [gdb-7.2/] [gdb/] [ax-gdb.c] - Blame information for rev 841

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 330 jeremybenn
/* GDB-specific functions for operating on agent expressions.
2
 
3
   Copyright (C) 1998, 1999, 2000, 2001, 2003, 2007, 2008, 2009, 2010
4
   Free Software Foundation, Inc.
5
 
6
   This file is part of GDB.
7
 
8
   This program is free software; you can redistribute it and/or modify
9
   it under the terms of the GNU General Public License as published by
10
   the Free Software Foundation; either version 3 of the License, or
11
   (at your option) any later version.
12
 
13
   This program is distributed in the hope that it will be useful,
14
   but WITHOUT ANY WARRANTY; without even the implied warranty of
15
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16
   GNU General Public License for more details.
17
 
18
   You should have received a copy of the GNU General Public License
19
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
20
 
21
#include "defs.h"
22
#include "symtab.h"
23
#include "symfile.h"
24
#include "gdbtypes.h"
25
#include "language.h"
26
#include "value.h"
27
#include "expression.h"
28
#include "command.h"
29
#include "gdbcmd.h"
30
#include "frame.h"
31
#include "target.h"
32
#include "ax.h"
33
#include "ax-gdb.h"
34
#include "gdb_string.h"
35
#include "block.h"
36
#include "regcache.h"
37
#include "user-regs.h"
38
#include "language.h"
39
#include "dictionary.h"
40
#include "breakpoint.h"
41
#include "tracepoint.h"
42
#include "cp-support.h"
43
 
44
/* To make sense of this file, you should read doc/agentexpr.texi.
45
   Then look at the types and enums in ax-gdb.h.  For the code itself,
46
   look at gen_expr, towards the bottom; that's the main function that
47
   looks at the GDB expressions and calls everything else to generate
48
   code.
49
 
50
   I'm beginning to wonder whether it wouldn't be nicer to internally
51
   generate trees, with types, and then spit out the bytecode in
52
   linear form afterwards; we could generate fewer `swap', `ext', and
53
   `zero_ext' bytecodes that way; it would make good constant folding
54
   easier, too.  But at the moment, I think we should be willing to
55
   pay for the simplicity of this code with less-than-optimal bytecode
56
   strings.
57
 
58
   Remember, "GBD" stands for "Great Britain, Dammit!"  So be careful.  */
59
 
60
 
61
 
62
/* Prototypes for local functions. */
63
 
64
/* There's a standard order to the arguments of these functions:
65
   union exp_element ** --- pointer into expression
66
   struct agent_expr * --- agent expression buffer to generate code into
67
   struct axs_value * --- describes value left on top of stack  */
68
 
69
static struct value *const_var_ref (struct symbol *var);
70
static struct value *const_expr (union exp_element **pc);
71
static struct value *maybe_const_expr (union exp_element **pc);
72
 
73
static void gen_traced_pop (struct gdbarch *, struct agent_expr *, struct axs_value *);
74
 
75
static void gen_sign_extend (struct agent_expr *, struct type *);
76
static void gen_extend (struct agent_expr *, struct type *);
77
static void gen_fetch (struct agent_expr *, struct type *);
78
static void gen_left_shift (struct agent_expr *, int);
79
 
80
 
81
static void gen_frame_args_address (struct gdbarch *, struct agent_expr *);
82
static void gen_frame_locals_address (struct gdbarch *, struct agent_expr *);
83
static void gen_offset (struct agent_expr *ax, int offset);
84
static void gen_sym_offset (struct agent_expr *, struct symbol *);
85
static void gen_var_ref (struct gdbarch *, struct agent_expr *ax,
86
                         struct axs_value *value, struct symbol *var);
87
 
88
 
89
static void gen_int_literal (struct agent_expr *ax,
90
                             struct axs_value *value,
91
                             LONGEST k, struct type *type);
92
 
93
 
94
static void require_rvalue (struct agent_expr *ax, struct axs_value *value);
95
static void gen_usual_unary (struct expression *exp, struct agent_expr *ax,
96
                             struct axs_value *value);
97
static int type_wider_than (struct type *type1, struct type *type2);
98
static struct type *max_type (struct type *type1, struct type *type2);
99
static void gen_conversion (struct agent_expr *ax,
100
                            struct type *from, struct type *to);
101
static int is_nontrivial_conversion (struct type *from, struct type *to);
102
static void gen_usual_arithmetic (struct expression *exp,
103
                                  struct agent_expr *ax,
104
                                  struct axs_value *value1,
105
                                  struct axs_value *value2);
106
static void gen_integral_promotions (struct expression *exp,
107
                                     struct agent_expr *ax,
108
                                     struct axs_value *value);
109
static void gen_cast (struct agent_expr *ax,
110
                      struct axs_value *value, struct type *type);
111
static void gen_scale (struct agent_expr *ax,
112
                       enum agent_op op, struct type *type);
113
static void gen_ptradd (struct agent_expr *ax, struct axs_value *value,
114
                        struct axs_value *value1, struct axs_value *value2);
115
static void gen_ptrsub (struct agent_expr *ax, struct axs_value *value,
116
                        struct axs_value *value1, struct axs_value *value2);
117
static void gen_ptrdiff (struct agent_expr *ax, struct axs_value *value,
118
                         struct axs_value *value1, struct axs_value *value2,
119
                         struct type *result_type);
120
static void gen_binop (struct agent_expr *ax,
121
                       struct axs_value *value,
122
                       struct axs_value *value1,
123
                       struct axs_value *value2,
124
                       enum agent_op op,
125
                       enum agent_op op_unsigned, int may_carry, char *name);
126
static void gen_logical_not (struct agent_expr *ax, struct axs_value *value,
127
                             struct type *result_type);
128
static void gen_complement (struct agent_expr *ax, struct axs_value *value);
129
static void gen_deref (struct agent_expr *, struct axs_value *);
130
static void gen_address_of (struct agent_expr *, struct axs_value *);
131
static void gen_bitfield_ref (struct expression *exp, struct agent_expr *ax,
132
                              struct axs_value *value,
133
                              struct type *type, int start, int end);
134
static void gen_primitive_field (struct expression *exp,
135
                                 struct agent_expr *ax,
136
                                 struct axs_value *value,
137
                                 int offset, int fieldno, struct type *type);
138
static int gen_struct_ref_recursive (struct expression *exp,
139
                                     struct agent_expr *ax,
140
                                     struct axs_value *value,
141
                                     char *field, int offset,
142
                                     struct type *type);
143
static void gen_struct_ref (struct expression *exp, struct agent_expr *ax,
144
                            struct axs_value *value,
145
                            char *field,
146
                            char *operator_name, char *operand_name);
147
static void gen_static_field (struct gdbarch *gdbarch,
148
                              struct agent_expr *ax, struct axs_value *value,
149
                              struct type *type, int fieldno);
150
static void gen_repeat (struct expression *exp, union exp_element **pc,
151
                        struct agent_expr *ax, struct axs_value *value);
152
static void gen_sizeof (struct expression *exp, union exp_element **pc,
153
                        struct agent_expr *ax, struct axs_value *value,
154
                        struct type *size_type);
155
static void gen_expr (struct expression *exp, union exp_element **pc,
156
                      struct agent_expr *ax, struct axs_value *value);
157
static void gen_expr_binop_rest (struct expression *exp,
158
                                 enum exp_opcode op, union exp_element **pc,
159
                                 struct agent_expr *ax,
160
                                 struct axs_value *value,
161
                                 struct axs_value *value1,
162
                                 struct axs_value *value2);
163
 
164
static void agent_command (char *exp, int from_tty);
165
 
166
 
167
/* Detecting constant expressions.  */
168
 
169
/* If the variable reference at *PC is a constant, return its value.
170
   Otherwise, return zero.
171
 
172
   Hey, Wally!  How can a variable reference be a constant?
173
 
174
   Well, Beav, this function really handles the OP_VAR_VALUE operator,
175
   not specifically variable references.  GDB uses OP_VAR_VALUE to
176
   refer to any kind of symbolic reference: function names, enum
177
   elements, and goto labels are all handled through the OP_VAR_VALUE
178
   operator, even though they're constants.  It makes sense given the
179
   situation.
180
 
181
   Gee, Wally, don'cha wonder sometimes if data representations that
182
   subvert commonly accepted definitions of terms in favor of heavily
183
   context-specific interpretations are really just a tool of the
184
   programming hegemony to preserve their power and exclude the
185
   proletariat?  */
186
 
187
static struct value *
188
const_var_ref (struct symbol *var)
189
{
190
  struct type *type = SYMBOL_TYPE (var);
191
 
192
  switch (SYMBOL_CLASS (var))
193
    {
194
    case LOC_CONST:
195
      return value_from_longest (type, (LONGEST) SYMBOL_VALUE (var));
196
 
197
    case LOC_LABEL:
198
      return value_from_pointer (type, (CORE_ADDR) SYMBOL_VALUE_ADDRESS (var));
199
 
200
    default:
201
      return 0;
202
    }
203
}
204
 
205
 
206
/* If the expression starting at *PC has a constant value, return it.
207
   Otherwise, return zero.  If we return a value, then *PC will be
208
   advanced to the end of it.  If we return zero, *PC could be
209
   anywhere.  */
210
static struct value *
211
const_expr (union exp_element **pc)
212
{
213
  enum exp_opcode op = (*pc)->opcode;
214
  struct value *v1;
215
 
216
  switch (op)
217
    {
218
    case OP_LONG:
219
      {
220
        struct type *type = (*pc)[1].type;
221
        LONGEST k = (*pc)[2].longconst;
222
 
223
        (*pc) += 4;
224
        return value_from_longest (type, k);
225
      }
226
 
227
    case OP_VAR_VALUE:
228
      {
229
        struct value *v = const_var_ref ((*pc)[2].symbol);
230
 
231
        (*pc) += 4;
232
        return v;
233
      }
234
 
235
      /* We could add more operators in here.  */
236
 
237
    case UNOP_NEG:
238
      (*pc)++;
239
      v1 = const_expr (pc);
240
      if (v1)
241
        return value_neg (v1);
242
      else
243
        return 0;
244
 
245
    default:
246
      return 0;
247
    }
248
}
249
 
250
 
251
/* Like const_expr, but guarantee also that *PC is undisturbed if the
252
   expression is not constant.  */
253
static struct value *
254
maybe_const_expr (union exp_element **pc)
255
{
256
  union exp_element *tentative_pc = *pc;
257
  struct value *v = const_expr (&tentative_pc);
258
 
259
  /* If we got a value, then update the real PC.  */
260
  if (v)
261
    *pc = tentative_pc;
262
 
263
  return v;
264
}
265
 
266
 
267
/* Generating bytecode from GDB expressions: general assumptions */
268
 
269
/* Here are a few general assumptions made throughout the code; if you
270
   want to make a change that contradicts one of these, then you'd
271
   better scan things pretty thoroughly.
272
 
273
   - We assume that all values occupy one stack element.  For example,
274
   sometimes we'll swap to get at the left argument to a binary
275
   operator.  If we decide that void values should occupy no stack
276
   elements, or that synthetic arrays (whose size is determined at
277
   run time, created by the `@' operator) should occupy two stack
278
   elements (address and length), then this will cause trouble.
279
 
280
   - We assume the stack elements are infinitely wide, and that we
281
   don't have to worry what happens if the user requests an
282
   operation that is wider than the actual interpreter's stack.
283
   That is, it's up to the interpreter to handle directly all the
284
   integer widths the user has access to.  (Woe betide the language
285
   with bignums!)
286
 
287
   - We don't support side effects.  Thus, we don't have to worry about
288
   GCC's generalized lvalues, function calls, etc.
289
 
290
   - We don't support floating point.  Many places where we switch on
291
   some type don't bother to include cases for floating point; there
292
   may be even more subtle ways this assumption exists.  For
293
   example, the arguments to % must be integers.
294
 
295
   - We assume all subexpressions have a static, unchanging type.  If
296
   we tried to support convenience variables, this would be a
297
   problem.
298
 
299
   - All values on the stack should always be fully zero- or
300
   sign-extended.
301
 
302
   (I wasn't sure whether to choose this or its opposite --- that
303
   only addresses are assumed extended --- but it turns out that
304
   neither convention completely eliminates spurious extend
305
   operations (if everything is always extended, then you have to
306
   extend after add, because it could overflow; if nothing is
307
   extended, then you end up producing extends whenever you change
308
   sizes), and this is simpler.)  */
309
 
310
 
311
/* Generating bytecode from GDB expressions: the `trace' kludge  */
312
 
313
/* The compiler in this file is a general-purpose mechanism for
314
   translating GDB expressions into bytecode.  One ought to be able to
315
   find a million and one uses for it.
316
 
317
   However, at the moment it is HOPELESSLY BRAIN-DAMAGED for the sake
318
   of expediency.  Let he who is without sin cast the first stone.
319
 
320
   For the data tracing facility, we need to insert `trace' bytecodes
321
   before each data fetch; this records all the memory that the
322
   expression touches in the course of evaluation, so that memory will
323
   be available when the user later tries to evaluate the expression
324
   in GDB.
325
 
326
   This should be done (I think) in a post-processing pass, that walks
327
   an arbitrary agent expression and inserts `trace' operations at the
328
   appropriate points.  But it's much faster to just hack them
329
   directly into the code.  And since we're in a crunch, that's what
330
   I've done.
331
 
332
   Setting the flag trace_kludge to non-zero enables the code that
333
   emits the trace bytecodes at the appropriate points.  */
334
int trace_kludge;
335
 
336
/* Scan for all static fields in the given class, including any base
337
   classes, and generate tracing bytecodes for each.  */
338
 
339
static void
340
gen_trace_static_fields (struct gdbarch *gdbarch,
341
                         struct agent_expr *ax,
342
                         struct type *type)
343
{
344
  int i, nbases = TYPE_N_BASECLASSES (type);
345
  struct axs_value value;
346
 
347
  CHECK_TYPEDEF (type);
348
 
349
  for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
350
    {
351
      if (field_is_static (&TYPE_FIELD (type, i)))
352
        {
353
          gen_static_field (gdbarch, ax, &value, type, i);
354
          if (value.optimized_out)
355
            continue;
356
          switch (value.kind)
357
            {
358
            case axs_lvalue_memory:
359
              {
360
                int length = TYPE_LENGTH (check_typedef (value.type));
361
 
362
                ax_const_l (ax, length);
363
                ax_simple (ax, aop_trace);
364
              }
365
              break;
366
 
367
            case axs_lvalue_register:
368
              /* We don't actually need the register's value to be pushed,
369
                 just note that we need it to be collected.  */
370
              ax_reg_mask (ax, value.u.reg);
371
 
372
            default:
373
              break;
374
            }
375
        }
376
    }
377
 
378
  /* Now scan through base classes recursively.  */
379
  for (i = 0; i < nbases; i++)
380
    {
381
      struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
382
 
383
      gen_trace_static_fields (gdbarch, ax, basetype);
384
    }
385
}
386
 
387
/* Trace the lvalue on the stack, if it needs it.  In either case, pop
388
   the value.  Useful on the left side of a comma, and at the end of
389
   an expression being used for tracing.  */
390
static void
391
gen_traced_pop (struct gdbarch *gdbarch,
392
                struct agent_expr *ax, struct axs_value *value)
393
{
394
  if (trace_kludge)
395
    switch (value->kind)
396
      {
397
      case axs_rvalue:
398
        /* We don't trace rvalues, just the lvalues necessary to
399
           produce them.  So just dispose of this value.  */
400
        ax_simple (ax, aop_pop);
401
        break;
402
 
403
      case axs_lvalue_memory:
404
        {
405
          int length = TYPE_LENGTH (check_typedef (value->type));
406
 
407
          /* There's no point in trying to use a trace_quick bytecode
408
             here, since "trace_quick SIZE pop" is three bytes, whereas
409
             "const8 SIZE trace" is also three bytes, does the same
410
             thing, and the simplest code which generates that will also
411
             work correctly for objects with large sizes.  */
412
          ax_const_l (ax, length);
413
          ax_simple (ax, aop_trace);
414
        }
415
        break;
416
 
417
      case axs_lvalue_register:
418
        /* We don't actually need the register's value to be on the
419
           stack, and the target will get heartburn if the register is
420
           larger than will fit in a stack, so just mark it for
421
           collection and be done with it.  */
422
        ax_reg_mask (ax, value->u.reg);
423
        break;
424
      }
425
  else
426
    /* If we're not tracing, just pop the value.  */
427
    ax_simple (ax, aop_pop);
428
 
429
  /* To trace C++ classes with static fields stored elsewhere.  */
430
  if (trace_kludge
431
      && (TYPE_CODE (value->type) == TYPE_CODE_STRUCT
432
          || TYPE_CODE (value->type) == TYPE_CODE_UNION))
433
    gen_trace_static_fields (gdbarch, ax, value->type);
434
}
435
 
436
 
437
 
438
/* Generating bytecode from GDB expressions: helper functions */
439
 
440
/* Assume that the lower bits of the top of the stack is a value of
441
   type TYPE, and the upper bits are zero.  Sign-extend if necessary.  */
442
static void
443
gen_sign_extend (struct agent_expr *ax, struct type *type)
444
{
445
  /* Do we need to sign-extend this?  */
446
  if (!TYPE_UNSIGNED (type))
447
    ax_ext (ax, TYPE_LENGTH (type) * TARGET_CHAR_BIT);
448
}
449
 
450
 
451
/* Assume the lower bits of the top of the stack hold a value of type
452
   TYPE, and the upper bits are garbage.  Sign-extend or truncate as
453
   needed.  */
454
static void
455
gen_extend (struct agent_expr *ax, struct type *type)
456
{
457
  int bits = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
458
 
459
  /* I just had to.  */
460
  ((TYPE_UNSIGNED (type) ? ax_zero_ext : ax_ext) (ax, bits));
461
}
462
 
463
 
464
/* Assume that the top of the stack contains a value of type "pointer
465
   to TYPE"; generate code to fetch its value.  Note that TYPE is the
466
   target type, not the pointer type.  */
467
static void
468
gen_fetch (struct agent_expr *ax, struct type *type)
469
{
470
  if (trace_kludge)
471
    {
472
      /* Record the area of memory we're about to fetch.  */
473
      ax_trace_quick (ax, TYPE_LENGTH (type));
474
    }
475
 
476
  switch (TYPE_CODE (type))
477
    {
478
    case TYPE_CODE_PTR:
479
    case TYPE_CODE_REF:
480
    case TYPE_CODE_ENUM:
481
    case TYPE_CODE_INT:
482
    case TYPE_CODE_CHAR:
483
    case TYPE_CODE_BOOL:
484
      /* It's a scalar value, so we know how to dereference it.  How
485
         many bytes long is it?  */
486
      switch (TYPE_LENGTH (type))
487
        {
488
        case 8 / TARGET_CHAR_BIT:
489
          ax_simple (ax, aop_ref8);
490
          break;
491
        case 16 / TARGET_CHAR_BIT:
492
          ax_simple (ax, aop_ref16);
493
          break;
494
        case 32 / TARGET_CHAR_BIT:
495
          ax_simple (ax, aop_ref32);
496
          break;
497
        case 64 / TARGET_CHAR_BIT:
498
          ax_simple (ax, aop_ref64);
499
          break;
500
 
501
          /* Either our caller shouldn't have asked us to dereference
502
             that pointer (other code's fault), or we're not
503
             implementing something we should be (this code's fault).
504
             In any case, it's a bug the user shouldn't see.  */
505
        default:
506
          internal_error (__FILE__, __LINE__,
507
                          _("gen_fetch: strange size"));
508
        }
509
 
510
      gen_sign_extend (ax, type);
511
      break;
512
 
513
    default:
514
      /* Either our caller shouldn't have asked us to dereference that
515
         pointer (other code's fault), or we're not implementing
516
         something we should be (this code's fault).  In any case,
517
         it's a bug the user shouldn't see.  */
518
      internal_error (__FILE__, __LINE__,
519
                      _("gen_fetch: bad type code"));
520
    }
521
}
522
 
523
 
524
/* Generate code to left shift the top of the stack by DISTANCE bits, or
525
   right shift it by -DISTANCE bits if DISTANCE < 0.  This generates
526
   unsigned (logical) right shifts.  */
527
static void
528
gen_left_shift (struct agent_expr *ax, int distance)
529
{
530
  if (distance > 0)
531
    {
532
      ax_const_l (ax, distance);
533
      ax_simple (ax, aop_lsh);
534
    }
535
  else if (distance < 0)
536
    {
537
      ax_const_l (ax, -distance);
538
      ax_simple (ax, aop_rsh_unsigned);
539
    }
540
}
541
 
542
 
543
 
544
/* Generating bytecode from GDB expressions: symbol references */
545
 
546
/* Generate code to push the base address of the argument portion of
547
   the top stack frame.  */
548
static void
549
gen_frame_args_address (struct gdbarch *gdbarch, struct agent_expr *ax)
550
{
551
  int frame_reg;
552
  LONGEST frame_offset;
553
 
554
  gdbarch_virtual_frame_pointer (gdbarch,
555
                                 ax->scope, &frame_reg, &frame_offset);
556
  ax_reg (ax, frame_reg);
557
  gen_offset (ax, frame_offset);
558
}
559
 
560
 
561
/* Generate code to push the base address of the locals portion of the
562
   top stack frame.  */
563
static void
564
gen_frame_locals_address (struct gdbarch *gdbarch, struct agent_expr *ax)
565
{
566
  int frame_reg;
567
  LONGEST frame_offset;
568
 
569
  gdbarch_virtual_frame_pointer (gdbarch,
570
                                 ax->scope, &frame_reg, &frame_offset);
571
  ax_reg (ax, frame_reg);
572
  gen_offset (ax, frame_offset);
573
}
574
 
575
 
576
/* Generate code to add OFFSET to the top of the stack.  Try to
577
   generate short and readable code.  We use this for getting to
578
   variables on the stack, and structure members.  If we were
579
   programming in ML, it would be clearer why these are the same
580
   thing.  */
581
static void
582
gen_offset (struct agent_expr *ax, int offset)
583
{
584
  /* It would suffice to simply push the offset and add it, but this
585
     makes it easier to read positive and negative offsets in the
586
     bytecode.  */
587
  if (offset > 0)
588
    {
589
      ax_const_l (ax, offset);
590
      ax_simple (ax, aop_add);
591
    }
592
  else if (offset < 0)
593
    {
594
      ax_const_l (ax, -offset);
595
      ax_simple (ax, aop_sub);
596
    }
597
}
598
 
599
 
600
/* In many cases, a symbol's value is the offset from some other
601
   address (stack frame, base register, etc.)  Generate code to add
602
   VAR's value to the top of the stack.  */
603
static void
604
gen_sym_offset (struct agent_expr *ax, struct symbol *var)
605
{
606
  gen_offset (ax, SYMBOL_VALUE (var));
607
}
608
 
609
 
610
/* Generate code for a variable reference to AX.  The variable is the
611
   symbol VAR.  Set VALUE to describe the result.  */
612
 
613
static void
614
gen_var_ref (struct gdbarch *gdbarch, struct agent_expr *ax,
615
             struct axs_value *value, struct symbol *var)
616
{
617
  /* Dereference any typedefs. */
618
  value->type = check_typedef (SYMBOL_TYPE (var));
619
  value->optimized_out = 0;
620
 
621
  /* I'm imitating the code in read_var_value.  */
622
  switch (SYMBOL_CLASS (var))
623
    {
624
    case LOC_CONST:             /* A constant, like an enum value.  */
625
      ax_const_l (ax, (LONGEST) SYMBOL_VALUE (var));
626
      value->kind = axs_rvalue;
627
      break;
628
 
629
    case LOC_LABEL:             /* A goto label, being used as a value.  */
630
      ax_const_l (ax, (LONGEST) SYMBOL_VALUE_ADDRESS (var));
631
      value->kind = axs_rvalue;
632
      break;
633
 
634
    case LOC_CONST_BYTES:
635
      internal_error (__FILE__, __LINE__,
636
                      _("gen_var_ref: LOC_CONST_BYTES symbols are not supported"));
637
 
638
      /* Variable at a fixed location in memory.  Easy.  */
639
    case LOC_STATIC:
640
      /* Push the address of the variable.  */
641
      ax_const_l (ax, SYMBOL_VALUE_ADDRESS (var));
642
      value->kind = axs_lvalue_memory;
643
      break;
644
 
645
    case LOC_ARG:               /* var lives in argument area of frame */
646
      gen_frame_args_address (gdbarch, ax);
647
      gen_sym_offset (ax, var);
648
      value->kind = axs_lvalue_memory;
649
      break;
650
 
651
    case LOC_REF_ARG:           /* As above, but the frame slot really
652
                                   holds the address of the variable.  */
653
      gen_frame_args_address (gdbarch, ax);
654
      gen_sym_offset (ax, var);
655
      /* Don't assume any particular pointer size.  */
656
      gen_fetch (ax, builtin_type (gdbarch)->builtin_data_ptr);
657
      value->kind = axs_lvalue_memory;
658
      break;
659
 
660
    case LOC_LOCAL:             /* var lives in locals area of frame */
661
      gen_frame_locals_address (gdbarch, ax);
662
      gen_sym_offset (ax, var);
663
      value->kind = axs_lvalue_memory;
664
      break;
665
 
666
    case LOC_TYPEDEF:
667
      error (_("Cannot compute value of typedef `%s'."),
668
             SYMBOL_PRINT_NAME (var));
669
      break;
670
 
671
    case LOC_BLOCK:
672
      ax_const_l (ax, BLOCK_START (SYMBOL_BLOCK_VALUE (var)));
673
      value->kind = axs_rvalue;
674
      break;
675
 
676
    case LOC_REGISTER:
677
      /* Don't generate any code at all; in the process of treating
678
         this as an lvalue or rvalue, the caller will generate the
679
         right code.  */
680
      value->kind = axs_lvalue_register;
681
      value->u.reg = SYMBOL_REGISTER_OPS (var)->register_number (var, gdbarch);
682
      break;
683
 
684
      /* A lot like LOC_REF_ARG, but the pointer lives directly in a
685
         register, not on the stack.  Simpler than LOC_REGISTER
686
         because it's just like any other case where the thing
687
         has a real address.  */
688
    case LOC_REGPARM_ADDR:
689
      ax_reg (ax, SYMBOL_REGISTER_OPS (var)->register_number (var, gdbarch));
690
      value->kind = axs_lvalue_memory;
691
      break;
692
 
693
    case LOC_UNRESOLVED:
694
      {
695
        struct minimal_symbol *msym
696
          = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (var), NULL, NULL);
697
 
698
        if (!msym)
699
          error (_("Couldn't resolve symbol `%s'."), SYMBOL_PRINT_NAME (var));
700
 
701
        /* Push the address of the variable.  */
702
        ax_const_l (ax, SYMBOL_VALUE_ADDRESS (msym));
703
        value->kind = axs_lvalue_memory;
704
      }
705
      break;
706
 
707
    case LOC_COMPUTED:
708
      /* FIXME: cagney/2004-01-26: It should be possible to
709
         unconditionally call the SYMBOL_COMPUTED_OPS method when available.
710
         Unfortunately DWARF 2 stores the frame-base (instead of the
711
         function) location in a function's symbol.  Oops!  For the
712
         moment enable this when/where applicable.  */
713
      SYMBOL_COMPUTED_OPS (var)->tracepoint_var_ref (var, gdbarch, ax, value);
714
      break;
715
 
716
    case LOC_OPTIMIZED_OUT:
717
      /* Flag this, but don't say anything; leave it up to callers to
718
         warn the user.  */
719
      value->optimized_out = 1;
720
      break;
721
 
722
    default:
723
      error (_("Cannot find value of botched symbol `%s'."),
724
             SYMBOL_PRINT_NAME (var));
725
      break;
726
    }
727
}
728
 
729
 
730
 
731
/* Generating bytecode from GDB expressions: literals */
732
 
733
static void
734
gen_int_literal (struct agent_expr *ax, struct axs_value *value, LONGEST k,
735
                 struct type *type)
736
{
737
  ax_const_l (ax, k);
738
  value->kind = axs_rvalue;
739
  value->type = check_typedef (type);
740
}
741
 
742
 
743
 
744
/* Generating bytecode from GDB expressions: unary conversions, casts */
745
 
746
/* Take what's on the top of the stack (as described by VALUE), and
747
   try to make an rvalue out of it.  Signal an error if we can't do
748
   that.  */
749
static void
750
require_rvalue (struct agent_expr *ax, struct axs_value *value)
751
{
752
  /* Only deal with scalars, structs and such may be too large
753
     to fit in a stack entry.  */
754
  value->type = check_typedef (value->type);
755
  if (TYPE_CODE (value->type) == TYPE_CODE_ARRAY
756
      || TYPE_CODE (value->type) == TYPE_CODE_STRUCT
757
      || TYPE_CODE (value->type) == TYPE_CODE_UNION
758
      || TYPE_CODE (value->type) == TYPE_CODE_FUNC)
759
    error (_("Value not scalar: cannot be an rvalue."));
760
 
761
  switch (value->kind)
762
    {
763
    case axs_rvalue:
764
      /* It's already an rvalue.  */
765
      break;
766
 
767
    case axs_lvalue_memory:
768
      /* The top of stack is the address of the object.  Dereference.  */
769
      gen_fetch (ax, value->type);
770
      break;
771
 
772
    case axs_lvalue_register:
773
      /* There's nothing on the stack, but value->u.reg is the
774
         register number containing the value.
775
 
776
         When we add floating-point support, this is going to have to
777
         change.  What about SPARC register pairs, for example?  */
778
      ax_reg (ax, value->u.reg);
779
      gen_extend (ax, value->type);
780
      break;
781
    }
782
 
783
  value->kind = axs_rvalue;
784
}
785
 
786
 
787
/* Assume the top of the stack is described by VALUE, and perform the
788
   usual unary conversions.  This is motivated by ANSI 6.2.2, but of
789
   course GDB expressions are not ANSI; they're the mishmash union of
790
   a bunch of languages.  Rah.
791
 
792
   NOTE!  This function promises to produce an rvalue only when the
793
   incoming value is of an appropriate type.  In other words, the
794
   consumer of the value this function produces may assume the value
795
   is an rvalue only after checking its type.
796
 
797
   The immediate issue is that if the user tries to use a structure or
798
   union as an operand of, say, the `+' operator, we don't want to try
799
   to convert that structure to an rvalue; require_rvalue will bomb on
800
   structs and unions.  Rather, we want to simply pass the struct
801
   lvalue through unchanged, and let `+' raise an error.  */
802
 
803
static void
804
gen_usual_unary (struct expression *exp, struct agent_expr *ax,
805
                 struct axs_value *value)
806
{
807
  /* We don't have to generate any code for the usual integral
808
     conversions, since values are always represented as full-width on
809
     the stack.  Should we tweak the type?  */
810
 
811
  /* Some types require special handling.  */
812
  switch (TYPE_CODE (value->type))
813
    {
814
      /* Functions get converted to a pointer to the function.  */
815
    case TYPE_CODE_FUNC:
816
      value->type = lookup_pointer_type (value->type);
817
      value->kind = axs_rvalue; /* Should always be true, but just in case.  */
818
      break;
819
 
820
      /* Arrays get converted to a pointer to their first element, and
821
         are no longer an lvalue.  */
822
    case TYPE_CODE_ARRAY:
823
      {
824
        struct type *elements = TYPE_TARGET_TYPE (value->type);
825
 
826
        value->type = lookup_pointer_type (elements);
827
        value->kind = axs_rvalue;
828
        /* We don't need to generate any code; the address of the array
829
           is also the address of its first element.  */
830
      }
831
      break;
832
 
833
      /* Don't try to convert structures and unions to rvalues.  Let the
834
         consumer signal an error.  */
835
    case TYPE_CODE_STRUCT:
836
    case TYPE_CODE_UNION:
837
      return;
838
 
839
      /* If the value is an enum or a bool, call it an integer.  */
840
    case TYPE_CODE_ENUM:
841
    case TYPE_CODE_BOOL:
842
      value->type = builtin_type (exp->gdbarch)->builtin_int;
843
      break;
844
    }
845
 
846
  /* If the value is an lvalue, dereference it.  */
847
  require_rvalue (ax, value);
848
}
849
 
850
 
851
/* Return non-zero iff the type TYPE1 is considered "wider" than the
852
   type TYPE2, according to the rules described in gen_usual_arithmetic.  */
853
static int
854
type_wider_than (struct type *type1, struct type *type2)
855
{
856
  return (TYPE_LENGTH (type1) > TYPE_LENGTH (type2)
857
          || (TYPE_LENGTH (type1) == TYPE_LENGTH (type2)
858
              && TYPE_UNSIGNED (type1)
859
              && !TYPE_UNSIGNED (type2)));
860
}
861
 
862
 
863
/* Return the "wider" of the two types TYPE1 and TYPE2.  */
864
static struct type *
865
max_type (struct type *type1, struct type *type2)
866
{
867
  return type_wider_than (type1, type2) ? type1 : type2;
868
}
869
 
870
 
871
/* Generate code to convert a scalar value of type FROM to type TO.  */
872
static void
873
gen_conversion (struct agent_expr *ax, struct type *from, struct type *to)
874
{
875
  /* Perhaps there is a more graceful way to state these rules.  */
876
 
877
  /* If we're converting to a narrower type, then we need to clear out
878
     the upper bits.  */
879
  if (TYPE_LENGTH (to) < TYPE_LENGTH (from))
880
    gen_extend (ax, from);
881
 
882
  /* If the two values have equal width, but different signednesses,
883
     then we need to extend.  */
884
  else if (TYPE_LENGTH (to) == TYPE_LENGTH (from))
885
    {
886
      if (TYPE_UNSIGNED (from) != TYPE_UNSIGNED (to))
887
        gen_extend (ax, to);
888
    }
889
 
890
  /* If we're converting to a wider type, and becoming unsigned, then
891
     we need to zero out any possible sign bits.  */
892
  else if (TYPE_LENGTH (to) > TYPE_LENGTH (from))
893
    {
894
      if (TYPE_UNSIGNED (to))
895
        gen_extend (ax, to);
896
    }
897
}
898
 
899
 
900
/* Return non-zero iff the type FROM will require any bytecodes to be
901
   emitted to be converted to the type TO.  */
902
static int
903
is_nontrivial_conversion (struct type *from, struct type *to)
904
{
905
  struct agent_expr *ax = new_agent_expr (NULL, 0);
906
  int nontrivial;
907
 
908
  /* Actually generate the code, and see if anything came out.  At the
909
     moment, it would be trivial to replicate the code in
910
     gen_conversion here, but in the future, when we're supporting
911
     floating point and the like, it may not be.  Doing things this
912
     way allows this function to be independent of the logic in
913
     gen_conversion.  */
914
  gen_conversion (ax, from, to);
915
  nontrivial = ax->len > 0;
916
  free_agent_expr (ax);
917
  return nontrivial;
918
}
919
 
920
 
921
/* Generate code to perform the "usual arithmetic conversions" (ANSI C
922
   6.2.1.5) for the two operands of an arithmetic operator.  This
923
   effectively finds a "least upper bound" type for the two arguments,
924
   and promotes each argument to that type.  *VALUE1 and *VALUE2
925
   describe the values as they are passed in, and as they are left.  */
926
static void
927
gen_usual_arithmetic (struct expression *exp, struct agent_expr *ax,
928
                      struct axs_value *value1, struct axs_value *value2)
929
{
930
  /* Do the usual binary conversions.  */
931
  if (TYPE_CODE (value1->type) == TYPE_CODE_INT
932
      && TYPE_CODE (value2->type) == TYPE_CODE_INT)
933
    {
934
      /* The ANSI integral promotions seem to work this way: Order the
935
         integer types by size, and then by signedness: an n-bit
936
         unsigned type is considered "wider" than an n-bit signed
937
         type.  Promote to the "wider" of the two types, and always
938
         promote at least to int.  */
939
      struct type *target = max_type (builtin_type (exp->gdbarch)->builtin_int,
940
                                      max_type (value1->type, value2->type));
941
 
942
      /* Deal with value2, on the top of the stack.  */
943
      gen_conversion (ax, value2->type, target);
944
 
945
      /* Deal with value1, not on the top of the stack.  Don't
946
         generate the `swap' instructions if we're not actually going
947
         to do anything.  */
948
      if (is_nontrivial_conversion (value1->type, target))
949
        {
950
          ax_simple (ax, aop_swap);
951
          gen_conversion (ax, value1->type, target);
952
          ax_simple (ax, aop_swap);
953
        }
954
 
955
      value1->type = value2->type = check_typedef (target);
956
    }
957
}
958
 
959
 
960
/* Generate code to perform the integral promotions (ANSI 6.2.1.1) on
961
   the value on the top of the stack, as described by VALUE.  Assume
962
   the value has integral type.  */
963
static void
964
gen_integral_promotions (struct expression *exp, struct agent_expr *ax,
965
                         struct axs_value *value)
966
{
967
  const struct builtin_type *builtin = builtin_type (exp->gdbarch);
968
 
969
  if (!type_wider_than (value->type, builtin->builtin_int))
970
    {
971
      gen_conversion (ax, value->type, builtin->builtin_int);
972
      value->type = builtin->builtin_int;
973
    }
974
  else if (!type_wider_than (value->type, builtin->builtin_unsigned_int))
975
    {
976
      gen_conversion (ax, value->type, builtin->builtin_unsigned_int);
977
      value->type = builtin->builtin_unsigned_int;
978
    }
979
}
980
 
981
 
982
/* Generate code for a cast to TYPE.  */
983
static void
984
gen_cast (struct agent_expr *ax, struct axs_value *value, struct type *type)
985
{
986
  /* GCC does allow casts to yield lvalues, so this should be fixed
987
     before merging these changes into the trunk.  */
988
  require_rvalue (ax, value);
989
  /* Dereference typedefs. */
990
  type = check_typedef (type);
991
 
992
  switch (TYPE_CODE (type))
993
    {
994
    case TYPE_CODE_PTR:
995
    case TYPE_CODE_REF:
996
      /* It's implementation-defined, and I'll bet this is what GCC
997
         does.  */
998
      break;
999
 
1000
    case TYPE_CODE_ARRAY:
1001
    case TYPE_CODE_STRUCT:
1002
    case TYPE_CODE_UNION:
1003
    case TYPE_CODE_FUNC:
1004
      error (_("Invalid type cast: intended type must be scalar."));
1005
 
1006
    case TYPE_CODE_ENUM:
1007
    case TYPE_CODE_BOOL:
1008
      /* We don't have to worry about the size of the value, because
1009
         all our integral values are fully sign-extended, and when
1010
         casting pointers we can do anything we like.  Is there any
1011
         way for us to know what GCC actually does with a cast like
1012
         this?  */
1013
      break;
1014
 
1015
    case TYPE_CODE_INT:
1016
      gen_conversion (ax, value->type, type);
1017
      break;
1018
 
1019
    case TYPE_CODE_VOID:
1020
      /* We could pop the value, and rely on everyone else to check
1021
         the type and notice that this value doesn't occupy a stack
1022
         slot.  But for now, leave the value on the stack, and
1023
         preserve the "value == stack element" assumption.  */
1024
      break;
1025
 
1026
    default:
1027
      error (_("Casts to requested type are not yet implemented."));
1028
    }
1029
 
1030
  value->type = type;
1031
}
1032
 
1033
 
1034
 
1035
/* Generating bytecode from GDB expressions: arithmetic */
1036
 
1037
/* Scale the integer on the top of the stack by the size of the target
1038
   of the pointer type TYPE.  */
1039
static void
1040
gen_scale (struct agent_expr *ax, enum agent_op op, struct type *type)
1041
{
1042
  struct type *element = TYPE_TARGET_TYPE (type);
1043
 
1044
  if (TYPE_LENGTH (element) != 1)
1045
    {
1046
      ax_const_l (ax, TYPE_LENGTH (element));
1047
      ax_simple (ax, op);
1048
    }
1049
}
1050
 
1051
 
1052
/* Generate code for pointer arithmetic PTR + INT.  */
1053
static void
1054
gen_ptradd (struct agent_expr *ax, struct axs_value *value,
1055
            struct axs_value *value1, struct axs_value *value2)
1056
{
1057
  gdb_assert (pointer_type (value1->type));
1058
  gdb_assert (TYPE_CODE (value2->type) == TYPE_CODE_INT);
1059
 
1060
  gen_scale (ax, aop_mul, value1->type);
1061
  ax_simple (ax, aop_add);
1062
  gen_extend (ax, value1->type);        /* Catch overflow.  */
1063
  value->type = value1->type;
1064
  value->kind = axs_rvalue;
1065
}
1066
 
1067
 
1068
/* Generate code for pointer arithmetic PTR - INT.  */
1069
static void
1070
gen_ptrsub (struct agent_expr *ax, struct axs_value *value,
1071
            struct axs_value *value1, struct axs_value *value2)
1072
{
1073
  gdb_assert (pointer_type (value1->type));
1074
  gdb_assert (TYPE_CODE (value2->type) == TYPE_CODE_INT);
1075
 
1076
  gen_scale (ax, aop_mul, value1->type);
1077
  ax_simple (ax, aop_sub);
1078
  gen_extend (ax, value1->type);        /* Catch overflow.  */
1079
  value->type = value1->type;
1080
  value->kind = axs_rvalue;
1081
}
1082
 
1083
 
1084
/* Generate code for pointer arithmetic PTR - PTR.  */
1085
static void
1086
gen_ptrdiff (struct agent_expr *ax, struct axs_value *value,
1087
             struct axs_value *value1, struct axs_value *value2,
1088
             struct type *result_type)
1089
{
1090
  gdb_assert (pointer_type (value1->type));
1091
  gdb_assert (pointer_type (value2->type));
1092
 
1093
  if (TYPE_LENGTH (TYPE_TARGET_TYPE (value1->type))
1094
      != TYPE_LENGTH (TYPE_TARGET_TYPE (value2->type)))
1095
    error (_("\
1096
First argument of `-' is a pointer, but second argument is neither\n\
1097
an integer nor a pointer of the same type."));
1098
 
1099
  ax_simple (ax, aop_sub);
1100
  gen_scale (ax, aop_div_unsigned, value1->type);
1101
  value->type = result_type;
1102
  value->kind = axs_rvalue;
1103
}
1104
 
1105
static void
1106
gen_equal (struct agent_expr *ax, struct axs_value *value,
1107
           struct axs_value *value1, struct axs_value *value2,
1108
           struct type *result_type)
1109
{
1110
  if (pointer_type (value1->type) || pointer_type (value2->type))
1111
    ax_simple (ax, aop_equal);
1112
  else
1113
    gen_binop (ax, value, value1, value2,
1114
               aop_equal, aop_equal, 0, "equal");
1115
  value->type = result_type;
1116
  value->kind = axs_rvalue;
1117
}
1118
 
1119
static void
1120
gen_less (struct agent_expr *ax, struct axs_value *value,
1121
          struct axs_value *value1, struct axs_value *value2,
1122
          struct type *result_type)
1123
{
1124
  if (pointer_type (value1->type) || pointer_type (value2->type))
1125
    ax_simple (ax, aop_less_unsigned);
1126
  else
1127
    gen_binop (ax, value, value1, value2,
1128
               aop_less_signed, aop_less_unsigned, 0, "less than");
1129
  value->type = result_type;
1130
  value->kind = axs_rvalue;
1131
}
1132
 
1133
/* Generate code for a binary operator that doesn't do pointer magic.
1134
   We set VALUE to describe the result value; we assume VALUE1 and
1135
   VALUE2 describe the two operands, and that they've undergone the
1136
   usual binary conversions.  MAY_CARRY should be non-zero iff the
1137
   result needs to be extended.  NAME is the English name of the
1138
   operator, used in error messages */
1139
static void
1140
gen_binop (struct agent_expr *ax, struct axs_value *value,
1141
           struct axs_value *value1, struct axs_value *value2, enum agent_op op,
1142
           enum agent_op op_unsigned, int may_carry, char *name)
1143
{
1144
  /* We only handle INT op INT.  */
1145
  if ((TYPE_CODE (value1->type) != TYPE_CODE_INT)
1146
      || (TYPE_CODE (value2->type) != TYPE_CODE_INT))
1147
    error (_("Invalid combination of types in %s."), name);
1148
 
1149
  ax_simple (ax,
1150
             TYPE_UNSIGNED (value1->type) ? op_unsigned : op);
1151
  if (may_carry)
1152
    gen_extend (ax, value1->type);      /* catch overflow */
1153
  value->type = value1->type;
1154
  value->kind = axs_rvalue;
1155
}
1156
 
1157
 
1158
static void
1159
gen_logical_not (struct agent_expr *ax, struct axs_value *value,
1160
                 struct type *result_type)
1161
{
1162
  if (TYPE_CODE (value->type) != TYPE_CODE_INT
1163
      && TYPE_CODE (value->type) != TYPE_CODE_PTR)
1164
    error (_("Invalid type of operand to `!'."));
1165
 
1166
  ax_simple (ax, aop_log_not);
1167
  value->type = result_type;
1168
}
1169
 
1170
 
1171
static void
1172
gen_complement (struct agent_expr *ax, struct axs_value *value)
1173
{
1174
  if (TYPE_CODE (value->type) != TYPE_CODE_INT)
1175
    error (_("Invalid type of operand to `~'."));
1176
 
1177
  ax_simple (ax, aop_bit_not);
1178
  gen_extend (ax, value->type);
1179
}
1180
 
1181
 
1182
 
1183
/* Generating bytecode from GDB expressions: * & . -> @ sizeof */
1184
 
1185
/* Dereference the value on the top of the stack.  */
1186
static void
1187
gen_deref (struct agent_expr *ax, struct axs_value *value)
1188
{
1189
  /* The caller should check the type, because several operators use
1190
     this, and we don't know what error message to generate.  */
1191
  if (!pointer_type (value->type))
1192
    internal_error (__FILE__, __LINE__,
1193
                    _("gen_deref: expected a pointer"));
1194
 
1195
  /* We've got an rvalue now, which is a pointer.  We want to yield an
1196
     lvalue, whose address is exactly that pointer.  So we don't
1197
     actually emit any code; we just change the type from "Pointer to
1198
     T" to "T", and mark the value as an lvalue in memory.  Leave it
1199
     to the consumer to actually dereference it.  */
1200
  value->type = check_typedef (TYPE_TARGET_TYPE (value->type));
1201
  if (TYPE_CODE (value->type) == TYPE_CODE_VOID)
1202
    error (_("Attempt to dereference a generic pointer."));
1203
  value->kind = ((TYPE_CODE (value->type) == TYPE_CODE_FUNC)
1204
                 ? axs_rvalue : axs_lvalue_memory);
1205
}
1206
 
1207
 
1208
/* Produce the address of the lvalue on the top of the stack.  */
1209
static void
1210
gen_address_of (struct agent_expr *ax, struct axs_value *value)
1211
{
1212
  /* Special case for taking the address of a function.  The ANSI
1213
     standard describes this as a special case, too, so this
1214
     arrangement is not without motivation.  */
1215
  if (TYPE_CODE (value->type) == TYPE_CODE_FUNC)
1216
    /* The value's already an rvalue on the stack, so we just need to
1217
       change the type.  */
1218
    value->type = lookup_pointer_type (value->type);
1219
  else
1220
    switch (value->kind)
1221
      {
1222
      case axs_rvalue:
1223
        error (_("Operand of `&' is an rvalue, which has no address."));
1224
 
1225
      case axs_lvalue_register:
1226
        error (_("Operand of `&' is in a register, and has no address."));
1227
 
1228
      case axs_lvalue_memory:
1229
        value->kind = axs_rvalue;
1230
        value->type = lookup_pointer_type (value->type);
1231
        break;
1232
      }
1233
}
1234
 
1235
/* Generate code to push the value of a bitfield of a structure whose
1236
   address is on the top of the stack.  START and END give the
1237
   starting and one-past-ending *bit* numbers of the field within the
1238
   structure.  */
1239
static void
1240
gen_bitfield_ref (struct expression *exp, struct agent_expr *ax,
1241
                  struct axs_value *value, struct type *type,
1242
                  int start, int end)
1243
{
1244
  /* Note that ops[i] fetches 8 << i bits.  */
1245
  static enum agent_op ops[]
1246
    = {aop_ref8, aop_ref16, aop_ref32, aop_ref64};
1247
  static int num_ops = (sizeof (ops) / sizeof (ops[0]));
1248
 
1249
  /* We don't want to touch any byte that the bitfield doesn't
1250
     actually occupy; we shouldn't make any accesses we're not
1251
     explicitly permitted to.  We rely here on the fact that the
1252
     bytecode `ref' operators work on unaligned addresses.
1253
 
1254
     It takes some fancy footwork to get the stack to work the way
1255
     we'd like.  Say we're retrieving a bitfield that requires three
1256
     fetches.  Initially, the stack just contains the address:
1257
     addr
1258
     For the first fetch, we duplicate the address
1259
     addr addr
1260
     then add the byte offset, do the fetch, and shift and mask as
1261
     needed, yielding a fragment of the value, properly aligned for
1262
     the final bitwise or:
1263
     addr frag1
1264
     then we swap, and repeat the process:
1265
     frag1 addr                    --- address on top
1266
     frag1 addr addr               --- duplicate it
1267
     frag1 addr frag2              --- get second fragment
1268
     frag1 frag2 addr              --- swap again
1269
     frag1 frag2 frag3             --- get third fragment
1270
     Notice that, since the third fragment is the last one, we don't
1271
     bother duplicating the address this time.  Now we have all the
1272
     fragments on the stack, and we can simply `or' them together,
1273
     yielding the final value of the bitfield.  */
1274
 
1275
  /* The first and one-after-last bits in the field, but rounded down
1276
     and up to byte boundaries.  */
1277
  int bound_start = (start / TARGET_CHAR_BIT) * TARGET_CHAR_BIT;
1278
  int bound_end = (((end + TARGET_CHAR_BIT - 1)
1279
                    / TARGET_CHAR_BIT)
1280
                   * TARGET_CHAR_BIT);
1281
 
1282
  /* current bit offset within the structure */
1283
  int offset;
1284
 
1285
  /* The index in ops of the opcode we're considering.  */
1286
  int op;
1287
 
1288
  /* The number of fragments we generated in the process.  Probably
1289
     equal to the number of `one' bits in bytesize, but who cares?  */
1290
  int fragment_count;
1291
 
1292
  /* Dereference any typedefs. */
1293
  type = check_typedef (type);
1294
 
1295
  /* Can we fetch the number of bits requested at all?  */
1296
  if ((end - start) > ((1 << num_ops) * 8))
1297
    internal_error (__FILE__, __LINE__,
1298
                    _("gen_bitfield_ref: bitfield too wide"));
1299
 
1300
  /* Note that we know here that we only need to try each opcode once.
1301
     That may not be true on machines with weird byte sizes.  */
1302
  offset = bound_start;
1303
  fragment_count = 0;
1304
  for (op = num_ops - 1; op >= 0; op--)
1305
    {
1306
      /* number of bits that ops[op] would fetch */
1307
      int op_size = 8 << op;
1308
 
1309
      /* The stack at this point, from bottom to top, contains zero or
1310
         more fragments, then the address.  */
1311
 
1312
      /* Does this fetch fit within the bitfield?  */
1313
      if (offset + op_size <= bound_end)
1314
        {
1315
          /* Is this the last fragment?  */
1316
          int last_frag = (offset + op_size == bound_end);
1317
 
1318
          if (!last_frag)
1319
            ax_simple (ax, aop_dup);    /* keep a copy of the address */
1320
 
1321
          /* Add the offset.  */
1322
          gen_offset (ax, offset / TARGET_CHAR_BIT);
1323
 
1324
          if (trace_kludge)
1325
            {
1326
              /* Record the area of memory we're about to fetch.  */
1327
              ax_trace_quick (ax, op_size / TARGET_CHAR_BIT);
1328
            }
1329
 
1330
          /* Perform the fetch.  */
1331
          ax_simple (ax, ops[op]);
1332
 
1333
          /* Shift the bits we have to their proper position.
1334
             gen_left_shift will generate right shifts when the operand
1335
             is negative.
1336
 
1337
             A big-endian field diagram to ponder:
1338
             byte 0  byte 1  byte 2  byte 3  byte 4  byte 5  byte 6  byte 7
1339
             +------++------++------++------++------++------++------++------+
1340
             xxxxAAAAAAAAAAAAAAAAAAAAAAAAAAAABBBBBBBBBBBBBBBBCCCCCxxxxxxxxxxx
1341
             ^               ^               ^    ^
1342
             bit number      16              32              48   53
1343
             These are bit numbers as supplied by GDB.  Note that the
1344
             bit numbers run from right to left once you've fetched the
1345
             value!
1346
 
1347
             A little-endian field diagram to ponder:
1348
             byte 7  byte 6  byte 5  byte 4  byte 3  byte 2  byte 1  byte 0
1349
             +------++------++------++------++------++------++------++------+
1350
             xxxxxxxxxxxAAAAABBBBBBBBBBBBBBBBCCCCCCCCCCCCCCCCCCCCCCCCCCCCxxxx
1351
             ^               ^               ^           ^   ^
1352
             bit number     48              32              16          4   0
1353
 
1354
             In both cases, the most significant end is on the left
1355
             (i.e. normal numeric writing order), which means that you
1356
             don't go crazy thinking about `left' and `right' shifts.
1357
 
1358
             We don't have to worry about masking yet:
1359
             - If they contain garbage off the least significant end, then we
1360
             must be looking at the low end of the field, and the right
1361
             shift will wipe them out.
1362
             - If they contain garbage off the most significant end, then we
1363
             must be looking at the most significant end of the word, and
1364
             the sign/zero extension will wipe them out.
1365
             - If we're in the interior of the word, then there is no garbage
1366
             on either end, because the ref operators zero-extend.  */
1367
          if (gdbarch_byte_order (exp->gdbarch) == BFD_ENDIAN_BIG)
1368
            gen_left_shift (ax, end - (offset + op_size));
1369
          else
1370
            gen_left_shift (ax, offset - start);
1371
 
1372
          if (!last_frag)
1373
            /* Bring the copy of the address up to the top.  */
1374
            ax_simple (ax, aop_swap);
1375
 
1376
          offset += op_size;
1377
          fragment_count++;
1378
        }
1379
    }
1380
 
1381
  /* Generate enough bitwise `or' operations to combine all the
1382
     fragments we left on the stack.  */
1383
  while (fragment_count-- > 1)
1384
    ax_simple (ax, aop_bit_or);
1385
 
1386
  /* Sign- or zero-extend the value as appropriate.  */
1387
  ((TYPE_UNSIGNED (type) ? ax_zero_ext : ax_ext) (ax, end - start));
1388
 
1389
  /* This is *not* an lvalue.  Ugh.  */
1390
  value->kind = axs_rvalue;
1391
  value->type = type;
1392
}
1393
 
1394
/* Generate bytecodes for field number FIELDNO of type TYPE.  OFFSET
1395
   is an accumulated offset (in bytes), will be nonzero for objects
1396
   embedded in other objects, like C++ base classes.  Behavior should
1397
   generally follow value_primitive_field.  */
1398
 
1399
static void
1400
gen_primitive_field (struct expression *exp,
1401
                     struct agent_expr *ax, struct axs_value *value,
1402
                     int offset, int fieldno, struct type *type)
1403
{
1404
  /* Is this a bitfield?  */
1405
  if (TYPE_FIELD_PACKED (type, fieldno))
1406
    gen_bitfield_ref (exp, ax, value, TYPE_FIELD_TYPE (type, fieldno),
1407
                      (offset * TARGET_CHAR_BIT
1408
                       + TYPE_FIELD_BITPOS (type, fieldno)),
1409
                      (offset * TARGET_CHAR_BIT
1410
                       + TYPE_FIELD_BITPOS (type, fieldno)
1411
                       + TYPE_FIELD_BITSIZE (type, fieldno)));
1412
  else
1413
    {
1414
      gen_offset (ax, offset
1415
                  + TYPE_FIELD_BITPOS (type, fieldno) / TARGET_CHAR_BIT);
1416
      value->kind = axs_lvalue_memory;
1417
      value->type = TYPE_FIELD_TYPE (type, fieldno);
1418
    }
1419
}
1420
 
1421
/* Search for the given field in either the given type or one of its
1422
   base classes.  Return 1 if found, 0 if not.  */
1423
 
1424
static int
1425
gen_struct_ref_recursive (struct expression *exp, struct agent_expr *ax,
1426
                          struct axs_value *value,
1427
                          char *field, int offset, struct type *type)
1428
{
1429
  int i, rslt;
1430
  int nbases = TYPE_N_BASECLASSES (type);
1431
 
1432
  CHECK_TYPEDEF (type);
1433
 
1434
  for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
1435
    {
1436
      char *this_name = TYPE_FIELD_NAME (type, i);
1437
 
1438
      if (this_name)
1439
        {
1440
          if (strcmp (field, this_name) == 0)
1441
            {
1442
              /* Note that bytecodes for the struct's base (aka
1443
                 "this") will have been generated already, which will
1444
                 be unnecessary but not harmful if the static field is
1445
                 being handled as a global.  */
1446
              if (field_is_static (&TYPE_FIELD (type, i)))
1447
                {
1448
                  gen_static_field (exp->gdbarch, ax, value, type, i);
1449
                  if (value->optimized_out)
1450
                    error (_("static field `%s' has been optimized out, cannot use"),
1451
                           field);
1452
                  return 1;
1453
                }
1454
 
1455
              gen_primitive_field (exp, ax, value, offset, i, type);
1456
              return 1;
1457
            }
1458
#if 0 /* is this right? */
1459
          if (this_name[0] == '\0')
1460
            internal_error (__FILE__, __LINE__,
1461
                            _("find_field: anonymous unions not supported"));
1462
#endif
1463
        }
1464
    }
1465
 
1466
  /* Now scan through base classes recursively.  */
1467
  for (i = 0; i < nbases; i++)
1468
    {
1469
      struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
1470
 
1471
      rslt = gen_struct_ref_recursive (exp, ax, value, field,
1472
                                       offset + TYPE_BASECLASS_BITPOS (type, i) / TARGET_CHAR_BIT,
1473
                                       basetype);
1474
      if (rslt)
1475
        return 1;
1476
    }
1477
 
1478
  /* Not found anywhere, flag so caller can complain.  */
1479
  return 0;
1480
}
1481
 
1482
/* Generate code to reference the member named FIELD of a structure or
1483
   union.  The top of the stack, as described by VALUE, should have
1484
   type (pointer to a)* struct/union.  OPERATOR_NAME is the name of
1485
   the operator being compiled, and OPERAND_NAME is the kind of thing
1486
   it operates on; we use them in error messages.  */
1487
static void
1488
gen_struct_ref (struct expression *exp, struct agent_expr *ax,
1489
                struct axs_value *value, char *field,
1490
                char *operator_name, char *operand_name)
1491
{
1492
  struct type *type;
1493
  int found;
1494
 
1495
  /* Follow pointers until we reach a non-pointer.  These aren't the C
1496
     semantics, but they're what the normal GDB evaluator does, so we
1497
     should at least be consistent.  */
1498
  while (pointer_type (value->type))
1499
    {
1500
      require_rvalue (ax, value);
1501
      gen_deref (ax, value);
1502
    }
1503
  type = check_typedef (value->type);
1504
 
1505
  /* This must yield a structure or a union.  */
1506
  if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1507
      && TYPE_CODE (type) != TYPE_CODE_UNION)
1508
    error (_("The left operand of `%s' is not a %s."),
1509
           operator_name, operand_name);
1510
 
1511
  /* And it must be in memory; we don't deal with structure rvalues,
1512
     or structures living in registers.  */
1513
  if (value->kind != axs_lvalue_memory)
1514
    error (_("Structure does not live in memory."));
1515
 
1516
  /* Search through fields and base classes recursively.  */
1517
  found = gen_struct_ref_recursive (exp, ax, value, field, 0, type);
1518
 
1519
  if (!found)
1520
    error (_("Couldn't find member named `%s' in struct/union/class `%s'"),
1521
           field, TYPE_TAG_NAME (type));
1522
}
1523
 
1524
static int
1525
gen_namespace_elt (struct expression *exp,
1526
                   struct agent_expr *ax, struct axs_value *value,
1527
                   const struct type *curtype, char *name);
1528
static int
1529
gen_maybe_namespace_elt (struct expression *exp,
1530
                         struct agent_expr *ax, struct axs_value *value,
1531
                         const struct type *curtype, char *name);
1532
 
1533
static void
1534
gen_static_field (struct gdbarch *gdbarch,
1535
                  struct agent_expr *ax, struct axs_value *value,
1536
                  struct type *type, int fieldno)
1537
{
1538
  if (TYPE_FIELD_LOC_KIND (type, fieldno) == FIELD_LOC_KIND_PHYSADDR)
1539
    {
1540
      ax_const_l (ax, TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
1541
      value->kind = axs_lvalue_memory;
1542
      value->type = TYPE_FIELD_TYPE (type, fieldno);
1543
      value->optimized_out = 0;
1544
    }
1545
  else
1546
    {
1547
      char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
1548
      struct symbol *sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0);
1549
 
1550
      if (sym)
1551
        {
1552
          gen_var_ref (gdbarch, ax, value, sym);
1553
 
1554
          /* Don't error if the value was optimized out, we may be
1555
             scanning all static fields and just want to pass over this
1556
             and continue with the rest.  */
1557
        }
1558
      else
1559
        {
1560
          /* Silently assume this was optimized out; class printing
1561
             will let the user know why the data is missing.  */
1562
          value->optimized_out = 1;
1563
        }
1564
    }
1565
}
1566
 
1567
static int
1568
gen_struct_elt_for_reference (struct expression *exp,
1569
                              struct agent_expr *ax, struct axs_value *value,
1570
                              struct type *type, char *fieldname)
1571
{
1572
  struct type *t = type;
1573
  int i;
1574
 
1575
  if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1576
      && TYPE_CODE (t) != TYPE_CODE_UNION)
1577
    internal_error (__FILE__, __LINE__,
1578
                    _("non-aggregate type to gen_struct_elt_for_reference"));
1579
 
1580
  for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
1581
    {
1582
      char *t_field_name = TYPE_FIELD_NAME (t, i);
1583
 
1584
      if (t_field_name && strcmp (t_field_name, fieldname) == 0)
1585
        {
1586
          if (field_is_static (&TYPE_FIELD (t, i)))
1587
            {
1588
              gen_static_field (exp->gdbarch, ax, value, t, i);
1589
              if (value->optimized_out)
1590
                error (_("static field `%s' has been optimized out, cannot use"),
1591
                       fieldname);
1592
              return 1;
1593
            }
1594
          if (TYPE_FIELD_PACKED (t, i))
1595
            error (_("pointers to bitfield members not allowed"));
1596
 
1597
          /* FIXME we need a way to do "want_address" equivalent */
1598
 
1599
          error (_("Cannot reference non-static field \"%s\""), fieldname);
1600
        }
1601
    }
1602
 
1603
  /* FIXME add other scoped-reference cases here */
1604
 
1605
  /* Do a last-ditch lookup.  */
1606
  return gen_maybe_namespace_elt (exp, ax, value, type, fieldname);
1607
}
1608
 
1609
/* C++: Return the member NAME of the namespace given by the type
1610
   CURTYPE.  */
1611
 
1612
static int
1613
gen_namespace_elt (struct expression *exp,
1614
                   struct agent_expr *ax, struct axs_value *value,
1615
                   const struct type *curtype, char *name)
1616
{
1617
  int found = gen_maybe_namespace_elt (exp, ax, value, curtype, name);
1618
 
1619
  if (!found)
1620
    error (_("No symbol \"%s\" in namespace \"%s\"."),
1621
           name, TYPE_TAG_NAME (curtype));
1622
 
1623
  return found;
1624
}
1625
 
1626
/* A helper function used by value_namespace_elt and
1627
   value_struct_elt_for_reference.  It looks up NAME inside the
1628
   context CURTYPE; this works if CURTYPE is a namespace or if CURTYPE
1629
   is a class and NAME refers to a type in CURTYPE itself (as opposed
1630
   to, say, some base class of CURTYPE).  */
1631
 
1632
static int
1633
gen_maybe_namespace_elt (struct expression *exp,
1634
                         struct agent_expr *ax, struct axs_value *value,
1635
                         const struct type *curtype, char *name)
1636
{
1637
  const char *namespace_name = TYPE_TAG_NAME (curtype);
1638
  struct symbol *sym;
1639
 
1640
  sym = cp_lookup_symbol_namespace (namespace_name, name,
1641
                                    block_for_pc (ax->scope),
1642
                                    VAR_DOMAIN);
1643
 
1644
  if (sym == NULL)
1645
    return 0;
1646
 
1647
  gen_var_ref (exp->gdbarch, ax, value, sym);
1648
 
1649
  if (value->optimized_out)
1650
    error (_("`%s' has been optimized out, cannot use"),
1651
           SYMBOL_PRINT_NAME (sym));
1652
 
1653
  return 1;
1654
}
1655
 
1656
 
1657
static int
1658
gen_aggregate_elt_ref (struct expression *exp,
1659
                       struct agent_expr *ax, struct axs_value *value,
1660
                       struct type *type, char *field,
1661
                       char *operator_name, char *operand_name)
1662
{
1663
  switch (TYPE_CODE (type))
1664
    {
1665
    case TYPE_CODE_STRUCT:
1666
    case TYPE_CODE_UNION:
1667
      return gen_struct_elt_for_reference (exp, ax, value, type, field);
1668
      break;
1669
    case TYPE_CODE_NAMESPACE:
1670
      return gen_namespace_elt (exp, ax, value, type, field);
1671
      break;
1672
    default:
1673
      internal_error (__FILE__, __LINE__,
1674
                      _("non-aggregate type in gen_aggregate_elt_ref"));
1675
    }
1676
 
1677
  return 0;
1678
}
1679
 
1680
/* Generate code for GDB's magical `repeat' operator.
1681
   LVALUE @ INT creates an array INT elements long, and whose elements
1682
   have the same type as LVALUE, located in memory so that LVALUE is
1683
   its first element.  For example, argv[0]@argc gives you the array
1684
   of command-line arguments.
1685
 
1686
   Unfortunately, because we have to know the types before we actually
1687
   have a value for the expression, we can't implement this perfectly
1688
   without changing the type system, having values that occupy two
1689
   stack slots, doing weird things with sizeof, etc.  So we require
1690
   the right operand to be a constant expression.  */
1691
static void
1692
gen_repeat (struct expression *exp, union exp_element **pc,
1693
            struct agent_expr *ax, struct axs_value *value)
1694
{
1695
  struct axs_value value1;
1696
 
1697
  /* We don't want to turn this into an rvalue, so no conversions
1698
     here.  */
1699
  gen_expr (exp, pc, ax, &value1);
1700
  if (value1.kind != axs_lvalue_memory)
1701
    error (_("Left operand of `@' must be an object in memory."));
1702
 
1703
  /* Evaluate the length; it had better be a constant.  */
1704
  {
1705
    struct value *v = const_expr (pc);
1706
    int length;
1707
 
1708
    if (!v)
1709
      error (_("Right operand of `@' must be a constant, in agent expressions."));
1710
    if (TYPE_CODE (value_type (v)) != TYPE_CODE_INT)
1711
      error (_("Right operand of `@' must be an integer."));
1712
    length = value_as_long (v);
1713
    if (length <= 0)
1714
      error (_("Right operand of `@' must be positive."));
1715
 
1716
    /* The top of the stack is already the address of the object, so
1717
       all we need to do is frob the type of the lvalue.  */
1718
    {
1719
      /* FIXME-type-allocation: need a way to free this type when we are
1720
         done with it.  */
1721
      struct type *array
1722
        = lookup_array_range_type (value1.type, 0, length - 1);
1723
 
1724
      value->kind = axs_lvalue_memory;
1725
      value->type = array;
1726
    }
1727
  }
1728
}
1729
 
1730
 
1731
/* Emit code for the `sizeof' operator.
1732
   *PC should point at the start of the operand expression; we advance it
1733
   to the first instruction after the operand.  */
1734
static void
1735
gen_sizeof (struct expression *exp, union exp_element **pc,
1736
            struct agent_expr *ax, struct axs_value *value,
1737
            struct type *size_type)
1738
{
1739
  /* We don't care about the value of the operand expression; we only
1740
     care about its type.  However, in the current arrangement, the
1741
     only way to find an expression's type is to generate code for it.
1742
     So we generate code for the operand, and then throw it away,
1743
     replacing it with code that simply pushes its size.  */
1744
  int start = ax->len;
1745
 
1746
  gen_expr (exp, pc, ax, value);
1747
 
1748
  /* Throw away the code we just generated.  */
1749
  ax->len = start;
1750
 
1751
  ax_const_l (ax, TYPE_LENGTH (value->type));
1752
  value->kind = axs_rvalue;
1753
  value->type = size_type;
1754
}
1755
 
1756
 
1757
/* Generating bytecode from GDB expressions: general recursive thingy  */
1758
 
1759
/* XXX: i18n */
1760
/* A gen_expr function written by a Gen-X'er guy.
1761
   Append code for the subexpression of EXPR starting at *POS_P to AX.  */
1762
static void
1763
gen_expr (struct expression *exp, union exp_element **pc,
1764
          struct agent_expr *ax, struct axs_value *value)
1765
{
1766
  /* Used to hold the descriptions of operand expressions.  */
1767
  struct axs_value value1, value2, value3;
1768
  enum exp_opcode op = (*pc)[0].opcode, op2;
1769
  int if1, go1, if2, go2, end;
1770
  struct type *int_type = builtin_type (exp->gdbarch)->builtin_int;
1771
 
1772
  /* If we're looking at a constant expression, just push its value.  */
1773
  {
1774
    struct value *v = maybe_const_expr (pc);
1775
 
1776
    if (v)
1777
      {
1778
        ax_const_l (ax, value_as_long (v));
1779
        value->kind = axs_rvalue;
1780
        value->type = check_typedef (value_type (v));
1781
        return;
1782
      }
1783
  }
1784
 
1785
  /* Otherwise, go ahead and generate code for it.  */
1786
  switch (op)
1787
    {
1788
      /* Binary arithmetic operators.  */
1789
    case BINOP_ADD:
1790
    case BINOP_SUB:
1791
    case BINOP_MUL:
1792
    case BINOP_DIV:
1793
    case BINOP_REM:
1794
    case BINOP_LSH:
1795
    case BINOP_RSH:
1796
    case BINOP_SUBSCRIPT:
1797
    case BINOP_BITWISE_AND:
1798
    case BINOP_BITWISE_IOR:
1799
    case BINOP_BITWISE_XOR:
1800
    case BINOP_EQUAL:
1801
    case BINOP_NOTEQUAL:
1802
    case BINOP_LESS:
1803
    case BINOP_GTR:
1804
    case BINOP_LEQ:
1805
    case BINOP_GEQ:
1806
      (*pc)++;
1807
      gen_expr (exp, pc, ax, &value1);
1808
      gen_usual_unary (exp, ax, &value1);
1809
      gen_expr_binop_rest (exp, op, pc, ax, value, &value1, &value2);
1810
      break;
1811
 
1812
    case BINOP_LOGICAL_AND:
1813
      (*pc)++;
1814
      /* Generate the obvious sequence of tests and jumps.  */
1815
      gen_expr (exp, pc, ax, &value1);
1816
      gen_usual_unary (exp, ax, &value1);
1817
      if1 = ax_goto (ax, aop_if_goto);
1818
      go1 = ax_goto (ax, aop_goto);
1819
      ax_label (ax, if1, ax->len);
1820
      gen_expr (exp, pc, ax, &value2);
1821
      gen_usual_unary (exp, ax, &value2);
1822
      if2 = ax_goto (ax, aop_if_goto);
1823
      go2 = ax_goto (ax, aop_goto);
1824
      ax_label (ax, if2, ax->len);
1825
      ax_const_l (ax, 1);
1826
      end = ax_goto (ax, aop_goto);
1827
      ax_label (ax, go1, ax->len);
1828
      ax_label (ax, go2, ax->len);
1829
      ax_const_l (ax, 0);
1830
      ax_label (ax, end, ax->len);
1831
      value->kind = axs_rvalue;
1832
      value->type = int_type;
1833
      break;
1834
 
1835
    case BINOP_LOGICAL_OR:
1836
      (*pc)++;
1837
      /* Generate the obvious sequence of tests and jumps.  */
1838
      gen_expr (exp, pc, ax, &value1);
1839
      gen_usual_unary (exp, ax, &value1);
1840
      if1 = ax_goto (ax, aop_if_goto);
1841
      gen_expr (exp, pc, ax, &value2);
1842
      gen_usual_unary (exp, ax, &value2);
1843
      if2 = ax_goto (ax, aop_if_goto);
1844
      ax_const_l (ax, 0);
1845
      end = ax_goto (ax, aop_goto);
1846
      ax_label (ax, if1, ax->len);
1847
      ax_label (ax, if2, ax->len);
1848
      ax_const_l (ax, 1);
1849
      ax_label (ax, end, ax->len);
1850
      value->kind = axs_rvalue;
1851
      value->type = int_type;
1852
      break;
1853
 
1854
    case TERNOP_COND:
1855
      (*pc)++;
1856
      gen_expr (exp, pc, ax, &value1);
1857
      gen_usual_unary (exp, ax, &value1);
1858
      /* For (A ? B : C), it's easiest to generate subexpression
1859
         bytecodes in order, but if_goto jumps on true, so we invert
1860
         the sense of A.  Then we can do B by dropping through, and
1861
         jump to do C.  */
1862
      gen_logical_not (ax, &value1, int_type);
1863
      if1 = ax_goto (ax, aop_if_goto);
1864
      gen_expr (exp, pc, ax, &value2);
1865
      gen_usual_unary (exp, ax, &value2);
1866
      end = ax_goto (ax, aop_goto);
1867
      ax_label (ax, if1, ax->len);
1868
      gen_expr (exp, pc, ax, &value3);
1869
      gen_usual_unary (exp, ax, &value3);
1870
      ax_label (ax, end, ax->len);
1871
      /* This is arbitary - what if B and C are incompatible types? */
1872
      value->type = value2.type;
1873
      value->kind = value2.kind;
1874
      break;
1875
 
1876
    case BINOP_ASSIGN:
1877
      (*pc)++;
1878
      if ((*pc)[0].opcode == OP_INTERNALVAR)
1879
        {
1880
          char *name = internalvar_name ((*pc)[1].internalvar);
1881
          struct trace_state_variable *tsv;
1882
 
1883
          (*pc) += 3;
1884
          gen_expr (exp, pc, ax, value);
1885
          tsv = find_trace_state_variable (name);
1886
          if (tsv)
1887
            {
1888
              ax_tsv (ax, aop_setv, tsv->number);
1889
              if (trace_kludge)
1890
                ax_tsv (ax, aop_tracev, tsv->number);
1891
            }
1892
          else
1893
            error (_("$%s is not a trace state variable, may not assign to it"), name);
1894
        }
1895
      else
1896
        error (_("May only assign to trace state variables"));
1897
      break;
1898
 
1899
    case BINOP_ASSIGN_MODIFY:
1900
      (*pc)++;
1901
      op2 = (*pc)[0].opcode;
1902
      (*pc)++;
1903
      (*pc)++;
1904
      if ((*pc)[0].opcode == OP_INTERNALVAR)
1905
        {
1906
          char *name = internalvar_name ((*pc)[1].internalvar);
1907
          struct trace_state_variable *tsv;
1908
 
1909
          (*pc) += 3;
1910
          tsv = find_trace_state_variable (name);
1911
          if (tsv)
1912
            {
1913
              /* The tsv will be the left half of the binary operation.  */
1914
              ax_tsv (ax, aop_getv, tsv->number);
1915
              if (trace_kludge)
1916
                ax_tsv (ax, aop_tracev, tsv->number);
1917
              /* Trace state variables are always 64-bit integers.  */
1918
              value1.kind = axs_rvalue;
1919
              value1.type = builtin_type (exp->gdbarch)->builtin_long_long;
1920
              /* Now do right half of expression.  */
1921
              gen_expr_binop_rest (exp, op2, pc, ax, value, &value1, &value2);
1922
              /* We have a result of the binary op, set the tsv.  */
1923
              ax_tsv (ax, aop_setv, tsv->number);
1924
              if (trace_kludge)
1925
                ax_tsv (ax, aop_tracev, tsv->number);
1926
            }
1927
          else
1928
            error (_("$%s is not a trace state variable, may not assign to it"), name);
1929
        }
1930
      else
1931
        error (_("May only assign to trace state variables"));
1932
      break;
1933
 
1934
      /* Note that we need to be a little subtle about generating code
1935
         for comma.  In C, we can do some optimizations here because
1936
         we know the left operand is only being evaluated for effect.
1937
         However, if the tracing kludge is in effect, then we always
1938
         need to evaluate the left hand side fully, so that all the
1939
         variables it mentions get traced.  */
1940
    case BINOP_COMMA:
1941
      (*pc)++;
1942
      gen_expr (exp, pc, ax, &value1);
1943
      /* Don't just dispose of the left operand.  We might be tracing,
1944
         in which case we want to emit code to trace it if it's an
1945
         lvalue.  */
1946
      gen_traced_pop (exp->gdbarch, ax, &value1);
1947
      gen_expr (exp, pc, ax, value);
1948
      /* It's the consumer's responsibility to trace the right operand.  */
1949
      break;
1950
 
1951
    case OP_LONG:               /* some integer constant */
1952
      {
1953
        struct type *type = (*pc)[1].type;
1954
        LONGEST k = (*pc)[2].longconst;
1955
 
1956
        (*pc) += 4;
1957
        gen_int_literal (ax, value, k, type);
1958
      }
1959
      break;
1960
 
1961
    case OP_VAR_VALUE:
1962
      gen_var_ref (exp->gdbarch, ax, value, (*pc)[2].symbol);
1963
 
1964
      if (value->optimized_out)
1965
        error (_("`%s' has been optimized out, cannot use"),
1966
               SYMBOL_PRINT_NAME ((*pc)[2].symbol));
1967
 
1968
      (*pc) += 4;
1969
      break;
1970
 
1971
    case OP_REGISTER:
1972
      {
1973
        const char *name = &(*pc)[2].string;
1974
        int reg;
1975
 
1976
        (*pc) += 4 + BYTES_TO_EXP_ELEM ((*pc)[1].longconst + 1);
1977
        reg = user_reg_map_name_to_regnum (exp->gdbarch, name, strlen (name));
1978
        if (reg == -1)
1979
          internal_error (__FILE__, __LINE__,
1980
                          _("Register $%s not available"), name);
1981
        if (reg >= gdbarch_num_regs (exp->gdbarch))
1982
          error (_("'%s' is a pseudo-register; "
1983
                   "GDB cannot yet trace pseudoregister contents."),
1984
                 name);
1985
        value->kind = axs_lvalue_register;
1986
        value->u.reg = reg;
1987
        value->type = register_type (exp->gdbarch, reg);
1988
      }
1989
      break;
1990
 
1991
    case OP_INTERNALVAR:
1992
      {
1993
        const char *name = internalvar_name ((*pc)[1].internalvar);
1994
        struct trace_state_variable *tsv;
1995
 
1996
        (*pc) += 3;
1997
        tsv = find_trace_state_variable (name);
1998
        if (tsv)
1999
          {
2000
            ax_tsv (ax, aop_getv, tsv->number);
2001
            if (trace_kludge)
2002
              ax_tsv (ax, aop_tracev, tsv->number);
2003
            /* Trace state variables are always 64-bit integers.  */
2004
            value->kind = axs_rvalue;
2005
            value->type = builtin_type (exp->gdbarch)->builtin_long_long;
2006
          }
2007
        else
2008
          error (_("$%s is not a trace state variable; GDB agent expressions cannot use convenience variables."), name);
2009
      }
2010
      break;
2011
 
2012
      /* Weirdo operator: see comments for gen_repeat for details.  */
2013
    case BINOP_REPEAT:
2014
      /* Note that gen_repeat handles its own argument evaluation.  */
2015
      (*pc)++;
2016
      gen_repeat (exp, pc, ax, value);
2017
      break;
2018
 
2019
    case UNOP_CAST:
2020
      {
2021
        struct type *type = (*pc)[1].type;
2022
 
2023
        (*pc) += 3;
2024
        gen_expr (exp, pc, ax, value);
2025
        gen_cast (ax, value, type);
2026
      }
2027
      break;
2028
 
2029
    case UNOP_MEMVAL:
2030
      {
2031
        struct type *type = check_typedef ((*pc)[1].type);
2032
 
2033
        (*pc) += 3;
2034
        gen_expr (exp, pc, ax, value);
2035
        /* I'm not sure I understand UNOP_MEMVAL entirely.  I think
2036
           it's just a hack for dealing with minsyms; you take some
2037
           integer constant, pretend it's the address of an lvalue of
2038
           the given type, and dereference it.  */
2039
        if (value->kind != axs_rvalue)
2040
          /* This would be weird.  */
2041
          internal_error (__FILE__, __LINE__,
2042
                          _("gen_expr: OP_MEMVAL operand isn't an rvalue???"));
2043
        value->type = type;
2044
        value->kind = axs_lvalue_memory;
2045
      }
2046
      break;
2047
 
2048
    case UNOP_PLUS:
2049
      (*pc)++;
2050
      /* + FOO is equivalent to 0 + FOO, which can be optimized. */
2051
      gen_expr (exp, pc, ax, value);
2052
      gen_usual_unary (exp, ax, value);
2053
      break;
2054
 
2055
    case UNOP_NEG:
2056
      (*pc)++;
2057
      /* -FOO is equivalent to 0 - FOO.  */
2058
      gen_int_literal (ax, &value1, 0,
2059
                       builtin_type (exp->gdbarch)->builtin_int);
2060
      gen_usual_unary (exp, ax, &value1);       /* shouldn't do much */
2061
      gen_expr (exp, pc, ax, &value2);
2062
      gen_usual_unary (exp, ax, &value2);
2063
      gen_usual_arithmetic (exp, ax, &value1, &value2);
2064
      gen_binop (ax, value, &value1, &value2, aop_sub, aop_sub, 1, "negation");
2065
      break;
2066
 
2067
    case UNOP_LOGICAL_NOT:
2068
      (*pc)++;
2069
      gen_expr (exp, pc, ax, value);
2070
      gen_usual_unary (exp, ax, value);
2071
      gen_logical_not (ax, value, int_type);
2072
      break;
2073
 
2074
    case UNOP_COMPLEMENT:
2075
      (*pc)++;
2076
      gen_expr (exp, pc, ax, value);
2077
      gen_usual_unary (exp, ax, value);
2078
      gen_integral_promotions (exp, ax, value);
2079
      gen_complement (ax, value);
2080
      break;
2081
 
2082
    case UNOP_IND:
2083
      (*pc)++;
2084
      gen_expr (exp, pc, ax, value);
2085
      gen_usual_unary (exp, ax, value);
2086
      if (!pointer_type (value->type))
2087
        error (_("Argument of unary `*' is not a pointer."));
2088
      gen_deref (ax, value);
2089
      break;
2090
 
2091
    case UNOP_ADDR:
2092
      (*pc)++;
2093
      gen_expr (exp, pc, ax, value);
2094
      gen_address_of (ax, value);
2095
      break;
2096
 
2097
    case UNOP_SIZEOF:
2098
      (*pc)++;
2099
      /* Notice that gen_sizeof handles its own operand, unlike most
2100
         of the other unary operator functions.  This is because we
2101
         have to throw away the code we generate.  */
2102
      gen_sizeof (exp, pc, ax, value,
2103
                  builtin_type (exp->gdbarch)->builtin_int);
2104
      break;
2105
 
2106
    case STRUCTOP_STRUCT:
2107
    case STRUCTOP_PTR:
2108
      {
2109
        int length = (*pc)[1].longconst;
2110
        char *name = &(*pc)[2].string;
2111
 
2112
        (*pc) += 4 + BYTES_TO_EXP_ELEM (length + 1);
2113
        gen_expr (exp, pc, ax, value);
2114
        if (op == STRUCTOP_STRUCT)
2115
          gen_struct_ref (exp, ax, value, name, ".", "structure or union");
2116
        else if (op == STRUCTOP_PTR)
2117
          gen_struct_ref (exp, ax, value, name, "->",
2118
                          "pointer to a structure or union");
2119
        else
2120
          /* If this `if' chain doesn't handle it, then the case list
2121
             shouldn't mention it, and we shouldn't be here.  */
2122
          internal_error (__FILE__, __LINE__,
2123
                          _("gen_expr: unhandled struct case"));
2124
      }
2125
      break;
2126
 
2127
    case OP_THIS:
2128
      {
2129
        char *this_name;
2130
        struct symbol *func, *sym;
2131
        struct block *b;
2132
 
2133
        func = block_linkage_function (block_for_pc (ax->scope));
2134
        this_name = language_def (SYMBOL_LANGUAGE (func))->la_name_of_this;
2135
        b = SYMBOL_BLOCK_VALUE (func);
2136
 
2137
        /* Calling lookup_block_symbol is necessary to get the LOC_REGISTER
2138
           symbol instead of the LOC_ARG one (if both exist).  */
2139
        sym = lookup_block_symbol (b, this_name, VAR_DOMAIN);
2140
        if (!sym)
2141
          error (_("no `%s' found"), this_name);
2142
 
2143
        gen_var_ref (exp->gdbarch, ax, value, sym);
2144
 
2145
        if (value->optimized_out)
2146
          error (_("`%s' has been optimized out, cannot use"),
2147
                 SYMBOL_PRINT_NAME (sym));
2148
 
2149
        (*pc) += 2;
2150
      }
2151
      break;
2152
 
2153
    case OP_SCOPE:
2154
      {
2155
        struct type *type = (*pc)[1].type;
2156
        int length = longest_to_int ((*pc)[2].longconst);
2157
        char *name = &(*pc)[3].string;
2158
        int found;
2159
 
2160
        found = gen_aggregate_elt_ref (exp, ax, value, type, name,
2161
                                       "?", "??");
2162
        if (!found)
2163
          error (_("There is no field named %s"), name);
2164
        (*pc) += 5 + BYTES_TO_EXP_ELEM (length + 1);
2165
      }
2166
      break;
2167
 
2168
    case OP_TYPE:
2169
      error (_("Attempt to use a type name as an expression."));
2170
 
2171
    default:
2172
      error (_("Unsupported operator %s (%d) in expression."),
2173
             op_string (op), op);
2174
    }
2175
}
2176
 
2177
/* This handles the middle-to-right-side of code generation for binary
2178
   expressions, which is shared between regular binary operations and
2179
   assign-modify (+= and friends) expressions.  */
2180
 
2181
static void
2182
gen_expr_binop_rest (struct expression *exp,
2183
                     enum exp_opcode op, union exp_element **pc,
2184
                     struct agent_expr *ax, struct axs_value *value,
2185
                     struct axs_value *value1, struct axs_value *value2)
2186
{
2187
  struct type *int_type = builtin_type (exp->gdbarch)->builtin_int;
2188
 
2189
  gen_expr (exp, pc, ax, value2);
2190
  gen_usual_unary (exp, ax, value2);
2191
  gen_usual_arithmetic (exp, ax, value1, value2);
2192
  switch (op)
2193
    {
2194
    case BINOP_ADD:
2195
      if (TYPE_CODE (value1->type) == TYPE_CODE_INT
2196
          && pointer_type (value2->type))
2197
        {
2198
          /* Swap the values and proceed normally.  */
2199
          ax_simple (ax, aop_swap);
2200
          gen_ptradd (ax, value, value2, value1);
2201
        }
2202
      else if (pointer_type (value1->type)
2203
               && TYPE_CODE (value2->type) == TYPE_CODE_INT)
2204
        gen_ptradd (ax, value, value1, value2);
2205
      else
2206
        gen_binop (ax, value, value1, value2,
2207
                   aop_add, aop_add, 1, "addition");
2208
      break;
2209
    case BINOP_SUB:
2210
      if (pointer_type (value1->type)
2211
          && TYPE_CODE (value2->type) == TYPE_CODE_INT)
2212
        gen_ptrsub (ax,value, value1, value2);
2213
      else if (pointer_type (value1->type)
2214
               && pointer_type (value2->type))
2215
        /* FIXME --- result type should be ptrdiff_t */
2216
        gen_ptrdiff (ax, value, value1, value2,
2217
                     builtin_type (exp->gdbarch)->builtin_long);
2218
      else
2219
        gen_binop (ax, value, value1, value2,
2220
                   aop_sub, aop_sub, 1, "subtraction");
2221
      break;
2222
    case BINOP_MUL:
2223
      gen_binop (ax, value, value1, value2,
2224
                 aop_mul, aop_mul, 1, "multiplication");
2225
      break;
2226
    case BINOP_DIV:
2227
      gen_binop (ax, value, value1, value2,
2228
                 aop_div_signed, aop_div_unsigned, 1, "division");
2229
      break;
2230
    case BINOP_REM:
2231
      gen_binop (ax, value, value1, value2,
2232
                 aop_rem_signed, aop_rem_unsigned, 1, "remainder");
2233
      break;
2234
    case BINOP_LSH:
2235
      gen_binop (ax, value, value1, value2,
2236
                 aop_lsh, aop_lsh, 1, "left shift");
2237
      break;
2238
    case BINOP_RSH:
2239
      gen_binop (ax, value, value1, value2,
2240
                 aop_rsh_signed, aop_rsh_unsigned, 1, "right shift");
2241
      break;
2242
    case BINOP_SUBSCRIPT:
2243
      {
2244
        struct type *type;
2245
 
2246
        if (binop_types_user_defined_p (op, value1->type, value2->type))
2247
          {
2248
            error (_("\
2249
cannot subscript requested type: cannot call user defined functions"));
2250
          }
2251
        else
2252
          {
2253
            /* If the user attempts to subscript something that is not
2254
               an array or pointer type (like a plain int variable for
2255
               example), then report this as an error.  */
2256
            type = check_typedef (value1->type);
2257
            if (TYPE_CODE (type) != TYPE_CODE_ARRAY
2258
                && TYPE_CODE (type) != TYPE_CODE_PTR)
2259
              {
2260
                if (TYPE_NAME (type))
2261
                  error (_("cannot subscript something of type `%s'"),
2262
                         TYPE_NAME (type));
2263
                else
2264
                  error (_("cannot subscript requested type"));
2265
              }
2266
          }
2267
 
2268
        if (!is_integral_type (value2->type))
2269
          error (_("Argument to arithmetic operation not a number or boolean."));
2270
 
2271
        gen_ptradd (ax, value, value1, value2);
2272
        gen_deref (ax, value);
2273
        break;
2274
      }
2275
    case BINOP_BITWISE_AND:
2276
      gen_binop (ax, value, value1, value2,
2277
                 aop_bit_and, aop_bit_and, 0, "bitwise and");
2278
      break;
2279
 
2280
    case BINOP_BITWISE_IOR:
2281
      gen_binop (ax, value, value1, value2,
2282
                 aop_bit_or, aop_bit_or, 0, "bitwise or");
2283
      break;
2284
 
2285
    case BINOP_BITWISE_XOR:
2286
      gen_binop (ax, value, value1, value2,
2287
                 aop_bit_xor, aop_bit_xor, 0, "bitwise exclusive-or");
2288
      break;
2289
 
2290
    case BINOP_EQUAL:
2291
      gen_equal (ax, value, value1, value2, int_type);
2292
      break;
2293
 
2294
    case BINOP_NOTEQUAL:
2295
      gen_equal (ax, value, value1, value2, int_type);
2296
      gen_logical_not (ax, value, int_type);
2297
      break;
2298
 
2299
    case BINOP_LESS:
2300
      gen_less (ax, value, value1, value2, int_type);
2301
      break;
2302
 
2303
    case BINOP_GTR:
2304
      ax_simple (ax, aop_swap);
2305
      gen_less (ax, value, value1, value2, int_type);
2306
      break;
2307
 
2308
    case BINOP_LEQ:
2309
      ax_simple (ax, aop_swap);
2310
      gen_less (ax, value, value1, value2, int_type);
2311
      gen_logical_not (ax, value, int_type);
2312
      break;
2313
 
2314
    case BINOP_GEQ:
2315
      gen_less (ax, value, value1, value2, int_type);
2316
      gen_logical_not (ax, value, int_type);
2317
      break;
2318
 
2319
    default:
2320
      /* We should only list operators in the outer case statement
2321
         that we actually handle in the inner case statement.  */
2322
      internal_error (__FILE__, __LINE__,
2323
                      _("gen_expr: op case sets don't match"));
2324
    }
2325
}
2326
 
2327
 
2328
/* Given a single variable and a scope, generate bytecodes to trace
2329
   its value.  This is for use in situations where we have only a
2330
   variable's name, and no parsed expression; for instance, when the
2331
   name comes from a list of local variables of a function.  */
2332
 
2333
struct agent_expr *
2334
gen_trace_for_var (CORE_ADDR scope, struct gdbarch *gdbarch,
2335
                   struct symbol *var)
2336
{
2337
  struct cleanup *old_chain = 0;
2338
  struct agent_expr *ax = new_agent_expr (gdbarch, scope);
2339
  struct axs_value value;
2340
 
2341
  old_chain = make_cleanup_free_agent_expr (ax);
2342
 
2343
  trace_kludge = 1;
2344
  gen_var_ref (gdbarch, ax, &value, var);
2345
 
2346
  /* If there is no actual variable to trace, flag it by returning
2347
     an empty agent expression.  */
2348
  if (value.optimized_out)
2349
    {
2350
      do_cleanups (old_chain);
2351
      return NULL;
2352
    }
2353
 
2354
  /* Make sure we record the final object, and get rid of it.  */
2355
  gen_traced_pop (gdbarch, ax, &value);
2356
 
2357
  /* Oh, and terminate.  */
2358
  ax_simple (ax, aop_end);
2359
 
2360
  /* We have successfully built the agent expr, so cancel the cleanup
2361
     request.  If we add more cleanups that we always want done, this
2362
     will have to get more complicated.  */
2363
  discard_cleanups (old_chain);
2364
  return ax;
2365
}
2366
 
2367
/* Generating bytecode from GDB expressions: driver */
2368
 
2369
/* Given a GDB expression EXPR, return bytecode to trace its value.
2370
   The result will use the `trace' and `trace_quick' bytecodes to
2371
   record the value of all memory touched by the expression.  The
2372
   caller can then use the ax_reqs function to discover which
2373
   registers it relies upon.  */
2374
struct agent_expr *
2375
gen_trace_for_expr (CORE_ADDR scope, struct expression *expr)
2376
{
2377
  struct cleanup *old_chain = 0;
2378
  struct agent_expr *ax = new_agent_expr (expr->gdbarch, scope);
2379
  union exp_element *pc;
2380
  struct axs_value value;
2381
 
2382
  old_chain = make_cleanup_free_agent_expr (ax);
2383
 
2384
  pc = expr->elts;
2385
  trace_kludge = 1;
2386
  value.optimized_out = 0;
2387
  gen_expr (expr, &pc, ax, &value);
2388
 
2389
  /* Make sure we record the final object, and get rid of it.  */
2390
  gen_traced_pop (expr->gdbarch, ax, &value);
2391
 
2392
  /* Oh, and terminate.  */
2393
  ax_simple (ax, aop_end);
2394
 
2395
  /* We have successfully built the agent expr, so cancel the cleanup
2396
     request.  If we add more cleanups that we always want done, this
2397
     will have to get more complicated.  */
2398
  discard_cleanups (old_chain);
2399
  return ax;
2400
}
2401
 
2402
/* Given a GDB expression EXPR, return a bytecode sequence that will
2403
   evaluate and return a result.  The bytecodes will do a direct
2404
   evaluation, using the current data on the target, rather than
2405
   recording blocks of memory and registers for later use, as
2406
   gen_trace_for_expr does.  The generated bytecode sequence leaves
2407
   the result of expression evaluation on the top of the stack.  */
2408
 
2409
struct agent_expr *
2410
gen_eval_for_expr (CORE_ADDR scope, struct expression *expr)
2411
{
2412
  struct cleanup *old_chain = 0;
2413
  struct agent_expr *ax = new_agent_expr (expr->gdbarch, scope);
2414
  union exp_element *pc;
2415
  struct axs_value value;
2416
 
2417
  old_chain = make_cleanup_free_agent_expr (ax);
2418
 
2419
  pc = expr->elts;
2420
  trace_kludge = 0;
2421
  value.optimized_out = 0;
2422
  gen_expr (expr, &pc, ax, &value);
2423
 
2424
  require_rvalue (ax, &value);
2425
 
2426
  /* Oh, and terminate.  */
2427
  ax_simple (ax, aop_end);
2428
 
2429
  /* We have successfully built the agent expr, so cancel the cleanup
2430
     request.  If we add more cleanups that we always want done, this
2431
     will have to get more complicated.  */
2432
  discard_cleanups (old_chain);
2433
  return ax;
2434
}
2435
 
2436
static void
2437
agent_command (char *exp, int from_tty)
2438
{
2439
  struct cleanup *old_chain = 0;
2440
  struct expression *expr;
2441
  struct agent_expr *agent;
2442
  struct frame_info *fi = get_current_frame (); /* need current scope */
2443
 
2444
  /* We don't deal with overlay debugging at the moment.  We need to
2445
     think more carefully about this.  If you copy this code into
2446
     another command, change the error message; the user shouldn't
2447
     have to know anything about agent expressions.  */
2448
  if (overlay_debugging)
2449
    error (_("GDB can't do agent expression translation with overlays."));
2450
 
2451
  if (exp == 0)
2452
    error_no_arg (_("expression to translate"));
2453
 
2454
  expr = parse_expression (exp);
2455
  old_chain = make_cleanup (free_current_contents, &expr);
2456
  agent = gen_trace_for_expr (get_frame_pc (fi), expr);
2457
  make_cleanup_free_agent_expr (agent);
2458
  ax_reqs (agent);
2459
  ax_print (gdb_stdout, agent);
2460
 
2461
  /* It would be nice to call ax_reqs here to gather some general info
2462
     about the expression, and then print out the result.  */
2463
 
2464
  do_cleanups (old_chain);
2465
  dont_repeat ();
2466
}
2467
 
2468
/* Parse the given expression, compile it into an agent expression
2469
   that does direct evaluation, and display the resulting
2470
   expression.  */
2471
 
2472
static void
2473
agent_eval_command (char *exp, int from_tty)
2474
{
2475
  struct cleanup *old_chain = 0;
2476
  struct expression *expr;
2477
  struct agent_expr *agent;
2478
  struct frame_info *fi = get_current_frame (); /* need current scope */
2479
 
2480
  /* We don't deal with overlay debugging at the moment.  We need to
2481
     think more carefully about this.  If you copy this code into
2482
     another command, change the error message; the user shouldn't
2483
     have to know anything about agent expressions.  */
2484
  if (overlay_debugging)
2485
    error (_("GDB can't do agent expression translation with overlays."));
2486
 
2487
  if (exp == 0)
2488
    error_no_arg (_("expression to translate"));
2489
 
2490
  expr = parse_expression (exp);
2491
  old_chain = make_cleanup (free_current_contents, &expr);
2492
  agent = gen_eval_for_expr (get_frame_pc (fi), expr);
2493
  make_cleanup_free_agent_expr (agent);
2494
  ax_reqs (agent);
2495
  ax_print (gdb_stdout, agent);
2496
 
2497
  /* It would be nice to call ax_reqs here to gather some general info
2498
     about the expression, and then print out the result.  */
2499
 
2500
  do_cleanups (old_chain);
2501
  dont_repeat ();
2502
}
2503
 
2504
 
2505
/* Initialization code.  */
2506
 
2507
void _initialize_ax_gdb (void);
2508
void
2509
_initialize_ax_gdb (void)
2510
{
2511
  add_cmd ("agent", class_maintenance, agent_command,
2512
           _("Translate an expression into remote agent bytecode for tracing."),
2513
           &maintenancelist);
2514
 
2515
  add_cmd ("agent-eval", class_maintenance, agent_eval_command,
2516
           _("Translate an expression into remote agent bytecode for evaluation."),
2517
           &maintenancelist);
2518
}

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.