1 |
330 |
jeremybenn |
/* GDB-specific functions for operating on agent expressions.
|
2 |
|
|
|
3 |
|
|
Copyright (C) 1998, 1999, 2000, 2001, 2003, 2007, 2008, 2009, 2010
|
4 |
|
|
Free Software Foundation, Inc.
|
5 |
|
|
|
6 |
|
|
This file is part of GDB.
|
7 |
|
|
|
8 |
|
|
This program is free software; you can redistribute it and/or modify
|
9 |
|
|
it under the terms of the GNU General Public License as published by
|
10 |
|
|
the Free Software Foundation; either version 3 of the License, or
|
11 |
|
|
(at your option) any later version.
|
12 |
|
|
|
13 |
|
|
This program is distributed in the hope that it will be useful,
|
14 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
15 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
16 |
|
|
GNU General Public License for more details.
|
17 |
|
|
|
18 |
|
|
You should have received a copy of the GNU General Public License
|
19 |
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
20 |
|
|
|
21 |
|
|
#include "defs.h"
|
22 |
|
|
#include "symtab.h"
|
23 |
|
|
#include "symfile.h"
|
24 |
|
|
#include "gdbtypes.h"
|
25 |
|
|
#include "language.h"
|
26 |
|
|
#include "value.h"
|
27 |
|
|
#include "expression.h"
|
28 |
|
|
#include "command.h"
|
29 |
|
|
#include "gdbcmd.h"
|
30 |
|
|
#include "frame.h"
|
31 |
|
|
#include "target.h"
|
32 |
|
|
#include "ax.h"
|
33 |
|
|
#include "ax-gdb.h"
|
34 |
|
|
#include "gdb_string.h"
|
35 |
|
|
#include "block.h"
|
36 |
|
|
#include "regcache.h"
|
37 |
|
|
#include "user-regs.h"
|
38 |
|
|
#include "language.h"
|
39 |
|
|
#include "dictionary.h"
|
40 |
|
|
#include "breakpoint.h"
|
41 |
|
|
#include "tracepoint.h"
|
42 |
|
|
#include "cp-support.h"
|
43 |
|
|
|
44 |
|
|
/* To make sense of this file, you should read doc/agentexpr.texi.
|
45 |
|
|
Then look at the types and enums in ax-gdb.h. For the code itself,
|
46 |
|
|
look at gen_expr, towards the bottom; that's the main function that
|
47 |
|
|
looks at the GDB expressions and calls everything else to generate
|
48 |
|
|
code.
|
49 |
|
|
|
50 |
|
|
I'm beginning to wonder whether it wouldn't be nicer to internally
|
51 |
|
|
generate trees, with types, and then spit out the bytecode in
|
52 |
|
|
linear form afterwards; we could generate fewer `swap', `ext', and
|
53 |
|
|
`zero_ext' bytecodes that way; it would make good constant folding
|
54 |
|
|
easier, too. But at the moment, I think we should be willing to
|
55 |
|
|
pay for the simplicity of this code with less-than-optimal bytecode
|
56 |
|
|
strings.
|
57 |
|
|
|
58 |
|
|
Remember, "GBD" stands for "Great Britain, Dammit!" So be careful. */
|
59 |
|
|
|
60 |
|
|
|
61 |
|
|
|
62 |
|
|
/* Prototypes for local functions. */
|
63 |
|
|
|
64 |
|
|
/* There's a standard order to the arguments of these functions:
|
65 |
|
|
union exp_element ** --- pointer into expression
|
66 |
|
|
struct agent_expr * --- agent expression buffer to generate code into
|
67 |
|
|
struct axs_value * --- describes value left on top of stack */
|
68 |
|
|
|
69 |
|
|
static struct value *const_var_ref (struct symbol *var);
|
70 |
|
|
static struct value *const_expr (union exp_element **pc);
|
71 |
|
|
static struct value *maybe_const_expr (union exp_element **pc);
|
72 |
|
|
|
73 |
|
|
static void gen_traced_pop (struct gdbarch *, struct agent_expr *, struct axs_value *);
|
74 |
|
|
|
75 |
|
|
static void gen_sign_extend (struct agent_expr *, struct type *);
|
76 |
|
|
static void gen_extend (struct agent_expr *, struct type *);
|
77 |
|
|
static void gen_fetch (struct agent_expr *, struct type *);
|
78 |
|
|
static void gen_left_shift (struct agent_expr *, int);
|
79 |
|
|
|
80 |
|
|
|
81 |
|
|
static void gen_frame_args_address (struct gdbarch *, struct agent_expr *);
|
82 |
|
|
static void gen_frame_locals_address (struct gdbarch *, struct agent_expr *);
|
83 |
|
|
static void gen_offset (struct agent_expr *ax, int offset);
|
84 |
|
|
static void gen_sym_offset (struct agent_expr *, struct symbol *);
|
85 |
|
|
static void gen_var_ref (struct gdbarch *, struct agent_expr *ax,
|
86 |
|
|
struct axs_value *value, struct symbol *var);
|
87 |
|
|
|
88 |
|
|
|
89 |
|
|
static void gen_int_literal (struct agent_expr *ax,
|
90 |
|
|
struct axs_value *value,
|
91 |
|
|
LONGEST k, struct type *type);
|
92 |
|
|
|
93 |
|
|
|
94 |
|
|
static void require_rvalue (struct agent_expr *ax, struct axs_value *value);
|
95 |
|
|
static void gen_usual_unary (struct expression *exp, struct agent_expr *ax,
|
96 |
|
|
struct axs_value *value);
|
97 |
|
|
static int type_wider_than (struct type *type1, struct type *type2);
|
98 |
|
|
static struct type *max_type (struct type *type1, struct type *type2);
|
99 |
|
|
static void gen_conversion (struct agent_expr *ax,
|
100 |
|
|
struct type *from, struct type *to);
|
101 |
|
|
static int is_nontrivial_conversion (struct type *from, struct type *to);
|
102 |
|
|
static void gen_usual_arithmetic (struct expression *exp,
|
103 |
|
|
struct agent_expr *ax,
|
104 |
|
|
struct axs_value *value1,
|
105 |
|
|
struct axs_value *value2);
|
106 |
|
|
static void gen_integral_promotions (struct expression *exp,
|
107 |
|
|
struct agent_expr *ax,
|
108 |
|
|
struct axs_value *value);
|
109 |
|
|
static void gen_cast (struct agent_expr *ax,
|
110 |
|
|
struct axs_value *value, struct type *type);
|
111 |
|
|
static void gen_scale (struct agent_expr *ax,
|
112 |
|
|
enum agent_op op, struct type *type);
|
113 |
|
|
static void gen_ptradd (struct agent_expr *ax, struct axs_value *value,
|
114 |
|
|
struct axs_value *value1, struct axs_value *value2);
|
115 |
|
|
static void gen_ptrsub (struct agent_expr *ax, struct axs_value *value,
|
116 |
|
|
struct axs_value *value1, struct axs_value *value2);
|
117 |
|
|
static void gen_ptrdiff (struct agent_expr *ax, struct axs_value *value,
|
118 |
|
|
struct axs_value *value1, struct axs_value *value2,
|
119 |
|
|
struct type *result_type);
|
120 |
|
|
static void gen_binop (struct agent_expr *ax,
|
121 |
|
|
struct axs_value *value,
|
122 |
|
|
struct axs_value *value1,
|
123 |
|
|
struct axs_value *value2,
|
124 |
|
|
enum agent_op op,
|
125 |
|
|
enum agent_op op_unsigned, int may_carry, char *name);
|
126 |
|
|
static void gen_logical_not (struct agent_expr *ax, struct axs_value *value,
|
127 |
|
|
struct type *result_type);
|
128 |
|
|
static void gen_complement (struct agent_expr *ax, struct axs_value *value);
|
129 |
|
|
static void gen_deref (struct agent_expr *, struct axs_value *);
|
130 |
|
|
static void gen_address_of (struct agent_expr *, struct axs_value *);
|
131 |
|
|
static void gen_bitfield_ref (struct expression *exp, struct agent_expr *ax,
|
132 |
|
|
struct axs_value *value,
|
133 |
|
|
struct type *type, int start, int end);
|
134 |
|
|
static void gen_primitive_field (struct expression *exp,
|
135 |
|
|
struct agent_expr *ax,
|
136 |
|
|
struct axs_value *value,
|
137 |
|
|
int offset, int fieldno, struct type *type);
|
138 |
|
|
static int gen_struct_ref_recursive (struct expression *exp,
|
139 |
|
|
struct agent_expr *ax,
|
140 |
|
|
struct axs_value *value,
|
141 |
|
|
char *field, int offset,
|
142 |
|
|
struct type *type);
|
143 |
|
|
static void gen_struct_ref (struct expression *exp, struct agent_expr *ax,
|
144 |
|
|
struct axs_value *value,
|
145 |
|
|
char *field,
|
146 |
|
|
char *operator_name, char *operand_name);
|
147 |
|
|
static void gen_static_field (struct gdbarch *gdbarch,
|
148 |
|
|
struct agent_expr *ax, struct axs_value *value,
|
149 |
|
|
struct type *type, int fieldno);
|
150 |
|
|
static void gen_repeat (struct expression *exp, union exp_element **pc,
|
151 |
|
|
struct agent_expr *ax, struct axs_value *value);
|
152 |
|
|
static void gen_sizeof (struct expression *exp, union exp_element **pc,
|
153 |
|
|
struct agent_expr *ax, struct axs_value *value,
|
154 |
|
|
struct type *size_type);
|
155 |
|
|
static void gen_expr (struct expression *exp, union exp_element **pc,
|
156 |
|
|
struct agent_expr *ax, struct axs_value *value);
|
157 |
|
|
static void gen_expr_binop_rest (struct expression *exp,
|
158 |
|
|
enum exp_opcode op, union exp_element **pc,
|
159 |
|
|
struct agent_expr *ax,
|
160 |
|
|
struct axs_value *value,
|
161 |
|
|
struct axs_value *value1,
|
162 |
|
|
struct axs_value *value2);
|
163 |
|
|
|
164 |
|
|
static void agent_command (char *exp, int from_tty);
|
165 |
|
|
|
166 |
|
|
|
167 |
|
|
/* Detecting constant expressions. */
|
168 |
|
|
|
169 |
|
|
/* If the variable reference at *PC is a constant, return its value.
|
170 |
|
|
Otherwise, return zero.
|
171 |
|
|
|
172 |
|
|
Hey, Wally! How can a variable reference be a constant?
|
173 |
|
|
|
174 |
|
|
Well, Beav, this function really handles the OP_VAR_VALUE operator,
|
175 |
|
|
not specifically variable references. GDB uses OP_VAR_VALUE to
|
176 |
|
|
refer to any kind of symbolic reference: function names, enum
|
177 |
|
|
elements, and goto labels are all handled through the OP_VAR_VALUE
|
178 |
|
|
operator, even though they're constants. It makes sense given the
|
179 |
|
|
situation.
|
180 |
|
|
|
181 |
|
|
Gee, Wally, don'cha wonder sometimes if data representations that
|
182 |
|
|
subvert commonly accepted definitions of terms in favor of heavily
|
183 |
|
|
context-specific interpretations are really just a tool of the
|
184 |
|
|
programming hegemony to preserve their power and exclude the
|
185 |
|
|
proletariat? */
|
186 |
|
|
|
187 |
|
|
static struct value *
|
188 |
|
|
const_var_ref (struct symbol *var)
|
189 |
|
|
{
|
190 |
|
|
struct type *type = SYMBOL_TYPE (var);
|
191 |
|
|
|
192 |
|
|
switch (SYMBOL_CLASS (var))
|
193 |
|
|
{
|
194 |
|
|
case LOC_CONST:
|
195 |
|
|
return value_from_longest (type, (LONGEST) SYMBOL_VALUE (var));
|
196 |
|
|
|
197 |
|
|
case LOC_LABEL:
|
198 |
|
|
return value_from_pointer (type, (CORE_ADDR) SYMBOL_VALUE_ADDRESS (var));
|
199 |
|
|
|
200 |
|
|
default:
|
201 |
|
|
return 0;
|
202 |
|
|
}
|
203 |
|
|
}
|
204 |
|
|
|
205 |
|
|
|
206 |
|
|
/* If the expression starting at *PC has a constant value, return it.
|
207 |
|
|
Otherwise, return zero. If we return a value, then *PC will be
|
208 |
|
|
advanced to the end of it. If we return zero, *PC could be
|
209 |
|
|
anywhere. */
|
210 |
|
|
static struct value *
|
211 |
|
|
const_expr (union exp_element **pc)
|
212 |
|
|
{
|
213 |
|
|
enum exp_opcode op = (*pc)->opcode;
|
214 |
|
|
struct value *v1;
|
215 |
|
|
|
216 |
|
|
switch (op)
|
217 |
|
|
{
|
218 |
|
|
case OP_LONG:
|
219 |
|
|
{
|
220 |
|
|
struct type *type = (*pc)[1].type;
|
221 |
|
|
LONGEST k = (*pc)[2].longconst;
|
222 |
|
|
|
223 |
|
|
(*pc) += 4;
|
224 |
|
|
return value_from_longest (type, k);
|
225 |
|
|
}
|
226 |
|
|
|
227 |
|
|
case OP_VAR_VALUE:
|
228 |
|
|
{
|
229 |
|
|
struct value *v = const_var_ref ((*pc)[2].symbol);
|
230 |
|
|
|
231 |
|
|
(*pc) += 4;
|
232 |
|
|
return v;
|
233 |
|
|
}
|
234 |
|
|
|
235 |
|
|
/* We could add more operators in here. */
|
236 |
|
|
|
237 |
|
|
case UNOP_NEG:
|
238 |
|
|
(*pc)++;
|
239 |
|
|
v1 = const_expr (pc);
|
240 |
|
|
if (v1)
|
241 |
|
|
return value_neg (v1);
|
242 |
|
|
else
|
243 |
|
|
return 0;
|
244 |
|
|
|
245 |
|
|
default:
|
246 |
|
|
return 0;
|
247 |
|
|
}
|
248 |
|
|
}
|
249 |
|
|
|
250 |
|
|
|
251 |
|
|
/* Like const_expr, but guarantee also that *PC is undisturbed if the
|
252 |
|
|
expression is not constant. */
|
253 |
|
|
static struct value *
|
254 |
|
|
maybe_const_expr (union exp_element **pc)
|
255 |
|
|
{
|
256 |
|
|
union exp_element *tentative_pc = *pc;
|
257 |
|
|
struct value *v = const_expr (&tentative_pc);
|
258 |
|
|
|
259 |
|
|
/* If we got a value, then update the real PC. */
|
260 |
|
|
if (v)
|
261 |
|
|
*pc = tentative_pc;
|
262 |
|
|
|
263 |
|
|
return v;
|
264 |
|
|
}
|
265 |
|
|
|
266 |
|
|
|
267 |
|
|
/* Generating bytecode from GDB expressions: general assumptions */
|
268 |
|
|
|
269 |
|
|
/* Here are a few general assumptions made throughout the code; if you
|
270 |
|
|
want to make a change that contradicts one of these, then you'd
|
271 |
|
|
better scan things pretty thoroughly.
|
272 |
|
|
|
273 |
|
|
- We assume that all values occupy one stack element. For example,
|
274 |
|
|
sometimes we'll swap to get at the left argument to a binary
|
275 |
|
|
operator. If we decide that void values should occupy no stack
|
276 |
|
|
elements, or that synthetic arrays (whose size is determined at
|
277 |
|
|
run time, created by the `@' operator) should occupy two stack
|
278 |
|
|
elements (address and length), then this will cause trouble.
|
279 |
|
|
|
280 |
|
|
- We assume the stack elements are infinitely wide, and that we
|
281 |
|
|
don't have to worry what happens if the user requests an
|
282 |
|
|
operation that is wider than the actual interpreter's stack.
|
283 |
|
|
That is, it's up to the interpreter to handle directly all the
|
284 |
|
|
integer widths the user has access to. (Woe betide the language
|
285 |
|
|
with bignums!)
|
286 |
|
|
|
287 |
|
|
- We don't support side effects. Thus, we don't have to worry about
|
288 |
|
|
GCC's generalized lvalues, function calls, etc.
|
289 |
|
|
|
290 |
|
|
- We don't support floating point. Many places where we switch on
|
291 |
|
|
some type don't bother to include cases for floating point; there
|
292 |
|
|
may be even more subtle ways this assumption exists. For
|
293 |
|
|
example, the arguments to % must be integers.
|
294 |
|
|
|
295 |
|
|
- We assume all subexpressions have a static, unchanging type. If
|
296 |
|
|
we tried to support convenience variables, this would be a
|
297 |
|
|
problem.
|
298 |
|
|
|
299 |
|
|
- All values on the stack should always be fully zero- or
|
300 |
|
|
sign-extended.
|
301 |
|
|
|
302 |
|
|
(I wasn't sure whether to choose this or its opposite --- that
|
303 |
|
|
only addresses are assumed extended --- but it turns out that
|
304 |
|
|
neither convention completely eliminates spurious extend
|
305 |
|
|
operations (if everything is always extended, then you have to
|
306 |
|
|
extend after add, because it could overflow; if nothing is
|
307 |
|
|
extended, then you end up producing extends whenever you change
|
308 |
|
|
sizes), and this is simpler.) */
|
309 |
|
|
|
310 |
|
|
|
311 |
|
|
/* Generating bytecode from GDB expressions: the `trace' kludge */
|
312 |
|
|
|
313 |
|
|
/* The compiler in this file is a general-purpose mechanism for
|
314 |
|
|
translating GDB expressions into bytecode. One ought to be able to
|
315 |
|
|
find a million and one uses for it.
|
316 |
|
|
|
317 |
|
|
However, at the moment it is HOPELESSLY BRAIN-DAMAGED for the sake
|
318 |
|
|
of expediency. Let he who is without sin cast the first stone.
|
319 |
|
|
|
320 |
|
|
For the data tracing facility, we need to insert `trace' bytecodes
|
321 |
|
|
before each data fetch; this records all the memory that the
|
322 |
|
|
expression touches in the course of evaluation, so that memory will
|
323 |
|
|
be available when the user later tries to evaluate the expression
|
324 |
|
|
in GDB.
|
325 |
|
|
|
326 |
|
|
This should be done (I think) in a post-processing pass, that walks
|
327 |
|
|
an arbitrary agent expression and inserts `trace' operations at the
|
328 |
|
|
appropriate points. But it's much faster to just hack them
|
329 |
|
|
directly into the code. And since we're in a crunch, that's what
|
330 |
|
|
I've done.
|
331 |
|
|
|
332 |
|
|
Setting the flag trace_kludge to non-zero enables the code that
|
333 |
|
|
emits the trace bytecodes at the appropriate points. */
|
334 |
|
|
int trace_kludge;
|
335 |
|
|
|
336 |
|
|
/* Scan for all static fields in the given class, including any base
|
337 |
|
|
classes, and generate tracing bytecodes for each. */
|
338 |
|
|
|
339 |
|
|
static void
|
340 |
|
|
gen_trace_static_fields (struct gdbarch *gdbarch,
|
341 |
|
|
struct agent_expr *ax,
|
342 |
|
|
struct type *type)
|
343 |
|
|
{
|
344 |
|
|
int i, nbases = TYPE_N_BASECLASSES (type);
|
345 |
|
|
struct axs_value value;
|
346 |
|
|
|
347 |
|
|
CHECK_TYPEDEF (type);
|
348 |
|
|
|
349 |
|
|
for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
|
350 |
|
|
{
|
351 |
|
|
if (field_is_static (&TYPE_FIELD (type, i)))
|
352 |
|
|
{
|
353 |
|
|
gen_static_field (gdbarch, ax, &value, type, i);
|
354 |
|
|
if (value.optimized_out)
|
355 |
|
|
continue;
|
356 |
|
|
switch (value.kind)
|
357 |
|
|
{
|
358 |
|
|
case axs_lvalue_memory:
|
359 |
|
|
{
|
360 |
|
|
int length = TYPE_LENGTH (check_typedef (value.type));
|
361 |
|
|
|
362 |
|
|
ax_const_l (ax, length);
|
363 |
|
|
ax_simple (ax, aop_trace);
|
364 |
|
|
}
|
365 |
|
|
break;
|
366 |
|
|
|
367 |
|
|
case axs_lvalue_register:
|
368 |
|
|
/* We don't actually need the register's value to be pushed,
|
369 |
|
|
just note that we need it to be collected. */
|
370 |
|
|
ax_reg_mask (ax, value.u.reg);
|
371 |
|
|
|
372 |
|
|
default:
|
373 |
|
|
break;
|
374 |
|
|
}
|
375 |
|
|
}
|
376 |
|
|
}
|
377 |
|
|
|
378 |
|
|
/* Now scan through base classes recursively. */
|
379 |
|
|
for (i = 0; i < nbases; i++)
|
380 |
|
|
{
|
381 |
|
|
struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
|
382 |
|
|
|
383 |
|
|
gen_trace_static_fields (gdbarch, ax, basetype);
|
384 |
|
|
}
|
385 |
|
|
}
|
386 |
|
|
|
387 |
|
|
/* Trace the lvalue on the stack, if it needs it. In either case, pop
|
388 |
|
|
the value. Useful on the left side of a comma, and at the end of
|
389 |
|
|
an expression being used for tracing. */
|
390 |
|
|
static void
|
391 |
|
|
gen_traced_pop (struct gdbarch *gdbarch,
|
392 |
|
|
struct agent_expr *ax, struct axs_value *value)
|
393 |
|
|
{
|
394 |
|
|
if (trace_kludge)
|
395 |
|
|
switch (value->kind)
|
396 |
|
|
{
|
397 |
|
|
case axs_rvalue:
|
398 |
|
|
/* We don't trace rvalues, just the lvalues necessary to
|
399 |
|
|
produce them. So just dispose of this value. */
|
400 |
|
|
ax_simple (ax, aop_pop);
|
401 |
|
|
break;
|
402 |
|
|
|
403 |
|
|
case axs_lvalue_memory:
|
404 |
|
|
{
|
405 |
|
|
int length = TYPE_LENGTH (check_typedef (value->type));
|
406 |
|
|
|
407 |
|
|
/* There's no point in trying to use a trace_quick bytecode
|
408 |
|
|
here, since "trace_quick SIZE pop" is three bytes, whereas
|
409 |
|
|
"const8 SIZE trace" is also three bytes, does the same
|
410 |
|
|
thing, and the simplest code which generates that will also
|
411 |
|
|
work correctly for objects with large sizes. */
|
412 |
|
|
ax_const_l (ax, length);
|
413 |
|
|
ax_simple (ax, aop_trace);
|
414 |
|
|
}
|
415 |
|
|
break;
|
416 |
|
|
|
417 |
|
|
case axs_lvalue_register:
|
418 |
|
|
/* We don't actually need the register's value to be on the
|
419 |
|
|
stack, and the target will get heartburn if the register is
|
420 |
|
|
larger than will fit in a stack, so just mark it for
|
421 |
|
|
collection and be done with it. */
|
422 |
|
|
ax_reg_mask (ax, value->u.reg);
|
423 |
|
|
break;
|
424 |
|
|
}
|
425 |
|
|
else
|
426 |
|
|
/* If we're not tracing, just pop the value. */
|
427 |
|
|
ax_simple (ax, aop_pop);
|
428 |
|
|
|
429 |
|
|
/* To trace C++ classes with static fields stored elsewhere. */
|
430 |
|
|
if (trace_kludge
|
431 |
|
|
&& (TYPE_CODE (value->type) == TYPE_CODE_STRUCT
|
432 |
|
|
|| TYPE_CODE (value->type) == TYPE_CODE_UNION))
|
433 |
|
|
gen_trace_static_fields (gdbarch, ax, value->type);
|
434 |
|
|
}
|
435 |
|
|
|
436 |
|
|
|
437 |
|
|
|
438 |
|
|
/* Generating bytecode from GDB expressions: helper functions */
|
439 |
|
|
|
440 |
|
|
/* Assume that the lower bits of the top of the stack is a value of
|
441 |
|
|
type TYPE, and the upper bits are zero. Sign-extend if necessary. */
|
442 |
|
|
static void
|
443 |
|
|
gen_sign_extend (struct agent_expr *ax, struct type *type)
|
444 |
|
|
{
|
445 |
|
|
/* Do we need to sign-extend this? */
|
446 |
|
|
if (!TYPE_UNSIGNED (type))
|
447 |
|
|
ax_ext (ax, TYPE_LENGTH (type) * TARGET_CHAR_BIT);
|
448 |
|
|
}
|
449 |
|
|
|
450 |
|
|
|
451 |
|
|
/* Assume the lower bits of the top of the stack hold a value of type
|
452 |
|
|
TYPE, and the upper bits are garbage. Sign-extend or truncate as
|
453 |
|
|
needed. */
|
454 |
|
|
static void
|
455 |
|
|
gen_extend (struct agent_expr *ax, struct type *type)
|
456 |
|
|
{
|
457 |
|
|
int bits = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
|
458 |
|
|
|
459 |
|
|
/* I just had to. */
|
460 |
|
|
((TYPE_UNSIGNED (type) ? ax_zero_ext : ax_ext) (ax, bits));
|
461 |
|
|
}
|
462 |
|
|
|
463 |
|
|
|
464 |
|
|
/* Assume that the top of the stack contains a value of type "pointer
|
465 |
|
|
to TYPE"; generate code to fetch its value. Note that TYPE is the
|
466 |
|
|
target type, not the pointer type. */
|
467 |
|
|
static void
|
468 |
|
|
gen_fetch (struct agent_expr *ax, struct type *type)
|
469 |
|
|
{
|
470 |
|
|
if (trace_kludge)
|
471 |
|
|
{
|
472 |
|
|
/* Record the area of memory we're about to fetch. */
|
473 |
|
|
ax_trace_quick (ax, TYPE_LENGTH (type));
|
474 |
|
|
}
|
475 |
|
|
|
476 |
|
|
switch (TYPE_CODE (type))
|
477 |
|
|
{
|
478 |
|
|
case TYPE_CODE_PTR:
|
479 |
|
|
case TYPE_CODE_REF:
|
480 |
|
|
case TYPE_CODE_ENUM:
|
481 |
|
|
case TYPE_CODE_INT:
|
482 |
|
|
case TYPE_CODE_CHAR:
|
483 |
|
|
case TYPE_CODE_BOOL:
|
484 |
|
|
/* It's a scalar value, so we know how to dereference it. How
|
485 |
|
|
many bytes long is it? */
|
486 |
|
|
switch (TYPE_LENGTH (type))
|
487 |
|
|
{
|
488 |
|
|
case 8 / TARGET_CHAR_BIT:
|
489 |
|
|
ax_simple (ax, aop_ref8);
|
490 |
|
|
break;
|
491 |
|
|
case 16 / TARGET_CHAR_BIT:
|
492 |
|
|
ax_simple (ax, aop_ref16);
|
493 |
|
|
break;
|
494 |
|
|
case 32 / TARGET_CHAR_BIT:
|
495 |
|
|
ax_simple (ax, aop_ref32);
|
496 |
|
|
break;
|
497 |
|
|
case 64 / TARGET_CHAR_BIT:
|
498 |
|
|
ax_simple (ax, aop_ref64);
|
499 |
|
|
break;
|
500 |
|
|
|
501 |
|
|
/* Either our caller shouldn't have asked us to dereference
|
502 |
|
|
that pointer (other code's fault), or we're not
|
503 |
|
|
implementing something we should be (this code's fault).
|
504 |
|
|
In any case, it's a bug the user shouldn't see. */
|
505 |
|
|
default:
|
506 |
|
|
internal_error (__FILE__, __LINE__,
|
507 |
|
|
_("gen_fetch: strange size"));
|
508 |
|
|
}
|
509 |
|
|
|
510 |
|
|
gen_sign_extend (ax, type);
|
511 |
|
|
break;
|
512 |
|
|
|
513 |
|
|
default:
|
514 |
|
|
/* Either our caller shouldn't have asked us to dereference that
|
515 |
|
|
pointer (other code's fault), or we're not implementing
|
516 |
|
|
something we should be (this code's fault). In any case,
|
517 |
|
|
it's a bug the user shouldn't see. */
|
518 |
|
|
internal_error (__FILE__, __LINE__,
|
519 |
|
|
_("gen_fetch: bad type code"));
|
520 |
|
|
}
|
521 |
|
|
}
|
522 |
|
|
|
523 |
|
|
|
524 |
|
|
/* Generate code to left shift the top of the stack by DISTANCE bits, or
|
525 |
|
|
right shift it by -DISTANCE bits if DISTANCE < 0. This generates
|
526 |
|
|
unsigned (logical) right shifts. */
|
527 |
|
|
static void
|
528 |
|
|
gen_left_shift (struct agent_expr *ax, int distance)
|
529 |
|
|
{
|
530 |
|
|
if (distance > 0)
|
531 |
|
|
{
|
532 |
|
|
ax_const_l (ax, distance);
|
533 |
|
|
ax_simple (ax, aop_lsh);
|
534 |
|
|
}
|
535 |
|
|
else if (distance < 0)
|
536 |
|
|
{
|
537 |
|
|
ax_const_l (ax, -distance);
|
538 |
|
|
ax_simple (ax, aop_rsh_unsigned);
|
539 |
|
|
}
|
540 |
|
|
}
|
541 |
|
|
|
542 |
|
|
|
543 |
|
|
|
544 |
|
|
/* Generating bytecode from GDB expressions: symbol references */
|
545 |
|
|
|
546 |
|
|
/* Generate code to push the base address of the argument portion of
|
547 |
|
|
the top stack frame. */
|
548 |
|
|
static void
|
549 |
|
|
gen_frame_args_address (struct gdbarch *gdbarch, struct agent_expr *ax)
|
550 |
|
|
{
|
551 |
|
|
int frame_reg;
|
552 |
|
|
LONGEST frame_offset;
|
553 |
|
|
|
554 |
|
|
gdbarch_virtual_frame_pointer (gdbarch,
|
555 |
|
|
ax->scope, &frame_reg, &frame_offset);
|
556 |
|
|
ax_reg (ax, frame_reg);
|
557 |
|
|
gen_offset (ax, frame_offset);
|
558 |
|
|
}
|
559 |
|
|
|
560 |
|
|
|
561 |
|
|
/* Generate code to push the base address of the locals portion of the
|
562 |
|
|
top stack frame. */
|
563 |
|
|
static void
|
564 |
|
|
gen_frame_locals_address (struct gdbarch *gdbarch, struct agent_expr *ax)
|
565 |
|
|
{
|
566 |
|
|
int frame_reg;
|
567 |
|
|
LONGEST frame_offset;
|
568 |
|
|
|
569 |
|
|
gdbarch_virtual_frame_pointer (gdbarch,
|
570 |
|
|
ax->scope, &frame_reg, &frame_offset);
|
571 |
|
|
ax_reg (ax, frame_reg);
|
572 |
|
|
gen_offset (ax, frame_offset);
|
573 |
|
|
}
|
574 |
|
|
|
575 |
|
|
|
576 |
|
|
/* Generate code to add OFFSET to the top of the stack. Try to
|
577 |
|
|
generate short and readable code. We use this for getting to
|
578 |
|
|
variables on the stack, and structure members. If we were
|
579 |
|
|
programming in ML, it would be clearer why these are the same
|
580 |
|
|
thing. */
|
581 |
|
|
static void
|
582 |
|
|
gen_offset (struct agent_expr *ax, int offset)
|
583 |
|
|
{
|
584 |
|
|
/* It would suffice to simply push the offset and add it, but this
|
585 |
|
|
makes it easier to read positive and negative offsets in the
|
586 |
|
|
bytecode. */
|
587 |
|
|
if (offset > 0)
|
588 |
|
|
{
|
589 |
|
|
ax_const_l (ax, offset);
|
590 |
|
|
ax_simple (ax, aop_add);
|
591 |
|
|
}
|
592 |
|
|
else if (offset < 0)
|
593 |
|
|
{
|
594 |
|
|
ax_const_l (ax, -offset);
|
595 |
|
|
ax_simple (ax, aop_sub);
|
596 |
|
|
}
|
597 |
|
|
}
|
598 |
|
|
|
599 |
|
|
|
600 |
|
|
/* In many cases, a symbol's value is the offset from some other
|
601 |
|
|
address (stack frame, base register, etc.) Generate code to add
|
602 |
|
|
VAR's value to the top of the stack. */
|
603 |
|
|
static void
|
604 |
|
|
gen_sym_offset (struct agent_expr *ax, struct symbol *var)
|
605 |
|
|
{
|
606 |
|
|
gen_offset (ax, SYMBOL_VALUE (var));
|
607 |
|
|
}
|
608 |
|
|
|
609 |
|
|
|
610 |
|
|
/* Generate code for a variable reference to AX. The variable is the
|
611 |
|
|
symbol VAR. Set VALUE to describe the result. */
|
612 |
|
|
|
613 |
|
|
static void
|
614 |
|
|
gen_var_ref (struct gdbarch *gdbarch, struct agent_expr *ax,
|
615 |
|
|
struct axs_value *value, struct symbol *var)
|
616 |
|
|
{
|
617 |
|
|
/* Dereference any typedefs. */
|
618 |
|
|
value->type = check_typedef (SYMBOL_TYPE (var));
|
619 |
|
|
value->optimized_out = 0;
|
620 |
|
|
|
621 |
|
|
/* I'm imitating the code in read_var_value. */
|
622 |
|
|
switch (SYMBOL_CLASS (var))
|
623 |
|
|
{
|
624 |
|
|
case LOC_CONST: /* A constant, like an enum value. */
|
625 |
|
|
ax_const_l (ax, (LONGEST) SYMBOL_VALUE (var));
|
626 |
|
|
value->kind = axs_rvalue;
|
627 |
|
|
break;
|
628 |
|
|
|
629 |
|
|
case LOC_LABEL: /* A goto label, being used as a value. */
|
630 |
|
|
ax_const_l (ax, (LONGEST) SYMBOL_VALUE_ADDRESS (var));
|
631 |
|
|
value->kind = axs_rvalue;
|
632 |
|
|
break;
|
633 |
|
|
|
634 |
|
|
case LOC_CONST_BYTES:
|
635 |
|
|
internal_error (__FILE__, __LINE__,
|
636 |
|
|
_("gen_var_ref: LOC_CONST_BYTES symbols are not supported"));
|
637 |
|
|
|
638 |
|
|
/* Variable at a fixed location in memory. Easy. */
|
639 |
|
|
case LOC_STATIC:
|
640 |
|
|
/* Push the address of the variable. */
|
641 |
|
|
ax_const_l (ax, SYMBOL_VALUE_ADDRESS (var));
|
642 |
|
|
value->kind = axs_lvalue_memory;
|
643 |
|
|
break;
|
644 |
|
|
|
645 |
|
|
case LOC_ARG: /* var lives in argument area of frame */
|
646 |
|
|
gen_frame_args_address (gdbarch, ax);
|
647 |
|
|
gen_sym_offset (ax, var);
|
648 |
|
|
value->kind = axs_lvalue_memory;
|
649 |
|
|
break;
|
650 |
|
|
|
651 |
|
|
case LOC_REF_ARG: /* As above, but the frame slot really
|
652 |
|
|
holds the address of the variable. */
|
653 |
|
|
gen_frame_args_address (gdbarch, ax);
|
654 |
|
|
gen_sym_offset (ax, var);
|
655 |
|
|
/* Don't assume any particular pointer size. */
|
656 |
|
|
gen_fetch (ax, builtin_type (gdbarch)->builtin_data_ptr);
|
657 |
|
|
value->kind = axs_lvalue_memory;
|
658 |
|
|
break;
|
659 |
|
|
|
660 |
|
|
case LOC_LOCAL: /* var lives in locals area of frame */
|
661 |
|
|
gen_frame_locals_address (gdbarch, ax);
|
662 |
|
|
gen_sym_offset (ax, var);
|
663 |
|
|
value->kind = axs_lvalue_memory;
|
664 |
|
|
break;
|
665 |
|
|
|
666 |
|
|
case LOC_TYPEDEF:
|
667 |
|
|
error (_("Cannot compute value of typedef `%s'."),
|
668 |
|
|
SYMBOL_PRINT_NAME (var));
|
669 |
|
|
break;
|
670 |
|
|
|
671 |
|
|
case LOC_BLOCK:
|
672 |
|
|
ax_const_l (ax, BLOCK_START (SYMBOL_BLOCK_VALUE (var)));
|
673 |
|
|
value->kind = axs_rvalue;
|
674 |
|
|
break;
|
675 |
|
|
|
676 |
|
|
case LOC_REGISTER:
|
677 |
|
|
/* Don't generate any code at all; in the process of treating
|
678 |
|
|
this as an lvalue or rvalue, the caller will generate the
|
679 |
|
|
right code. */
|
680 |
|
|
value->kind = axs_lvalue_register;
|
681 |
|
|
value->u.reg = SYMBOL_REGISTER_OPS (var)->register_number (var, gdbarch);
|
682 |
|
|
break;
|
683 |
|
|
|
684 |
|
|
/* A lot like LOC_REF_ARG, but the pointer lives directly in a
|
685 |
|
|
register, not on the stack. Simpler than LOC_REGISTER
|
686 |
|
|
because it's just like any other case where the thing
|
687 |
|
|
has a real address. */
|
688 |
|
|
case LOC_REGPARM_ADDR:
|
689 |
|
|
ax_reg (ax, SYMBOL_REGISTER_OPS (var)->register_number (var, gdbarch));
|
690 |
|
|
value->kind = axs_lvalue_memory;
|
691 |
|
|
break;
|
692 |
|
|
|
693 |
|
|
case LOC_UNRESOLVED:
|
694 |
|
|
{
|
695 |
|
|
struct minimal_symbol *msym
|
696 |
|
|
= lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (var), NULL, NULL);
|
697 |
|
|
|
698 |
|
|
if (!msym)
|
699 |
|
|
error (_("Couldn't resolve symbol `%s'."), SYMBOL_PRINT_NAME (var));
|
700 |
|
|
|
701 |
|
|
/* Push the address of the variable. */
|
702 |
|
|
ax_const_l (ax, SYMBOL_VALUE_ADDRESS (msym));
|
703 |
|
|
value->kind = axs_lvalue_memory;
|
704 |
|
|
}
|
705 |
|
|
break;
|
706 |
|
|
|
707 |
|
|
case LOC_COMPUTED:
|
708 |
|
|
/* FIXME: cagney/2004-01-26: It should be possible to
|
709 |
|
|
unconditionally call the SYMBOL_COMPUTED_OPS method when available.
|
710 |
|
|
Unfortunately DWARF 2 stores the frame-base (instead of the
|
711 |
|
|
function) location in a function's symbol. Oops! For the
|
712 |
|
|
moment enable this when/where applicable. */
|
713 |
|
|
SYMBOL_COMPUTED_OPS (var)->tracepoint_var_ref (var, gdbarch, ax, value);
|
714 |
|
|
break;
|
715 |
|
|
|
716 |
|
|
case LOC_OPTIMIZED_OUT:
|
717 |
|
|
/* Flag this, but don't say anything; leave it up to callers to
|
718 |
|
|
warn the user. */
|
719 |
|
|
value->optimized_out = 1;
|
720 |
|
|
break;
|
721 |
|
|
|
722 |
|
|
default:
|
723 |
|
|
error (_("Cannot find value of botched symbol `%s'."),
|
724 |
|
|
SYMBOL_PRINT_NAME (var));
|
725 |
|
|
break;
|
726 |
|
|
}
|
727 |
|
|
}
|
728 |
|
|
|
729 |
|
|
|
730 |
|
|
|
731 |
|
|
/* Generating bytecode from GDB expressions: literals */
|
732 |
|
|
|
733 |
|
|
static void
|
734 |
|
|
gen_int_literal (struct agent_expr *ax, struct axs_value *value, LONGEST k,
|
735 |
|
|
struct type *type)
|
736 |
|
|
{
|
737 |
|
|
ax_const_l (ax, k);
|
738 |
|
|
value->kind = axs_rvalue;
|
739 |
|
|
value->type = check_typedef (type);
|
740 |
|
|
}
|
741 |
|
|
|
742 |
|
|
|
743 |
|
|
|
744 |
|
|
/* Generating bytecode from GDB expressions: unary conversions, casts */
|
745 |
|
|
|
746 |
|
|
/* Take what's on the top of the stack (as described by VALUE), and
|
747 |
|
|
try to make an rvalue out of it. Signal an error if we can't do
|
748 |
|
|
that. */
|
749 |
|
|
static void
|
750 |
|
|
require_rvalue (struct agent_expr *ax, struct axs_value *value)
|
751 |
|
|
{
|
752 |
|
|
/* Only deal with scalars, structs and such may be too large
|
753 |
|
|
to fit in a stack entry. */
|
754 |
|
|
value->type = check_typedef (value->type);
|
755 |
|
|
if (TYPE_CODE (value->type) == TYPE_CODE_ARRAY
|
756 |
|
|
|| TYPE_CODE (value->type) == TYPE_CODE_STRUCT
|
757 |
|
|
|| TYPE_CODE (value->type) == TYPE_CODE_UNION
|
758 |
|
|
|| TYPE_CODE (value->type) == TYPE_CODE_FUNC)
|
759 |
|
|
error (_("Value not scalar: cannot be an rvalue."));
|
760 |
|
|
|
761 |
|
|
switch (value->kind)
|
762 |
|
|
{
|
763 |
|
|
case axs_rvalue:
|
764 |
|
|
/* It's already an rvalue. */
|
765 |
|
|
break;
|
766 |
|
|
|
767 |
|
|
case axs_lvalue_memory:
|
768 |
|
|
/* The top of stack is the address of the object. Dereference. */
|
769 |
|
|
gen_fetch (ax, value->type);
|
770 |
|
|
break;
|
771 |
|
|
|
772 |
|
|
case axs_lvalue_register:
|
773 |
|
|
/* There's nothing on the stack, but value->u.reg is the
|
774 |
|
|
register number containing the value.
|
775 |
|
|
|
776 |
|
|
When we add floating-point support, this is going to have to
|
777 |
|
|
change. What about SPARC register pairs, for example? */
|
778 |
|
|
ax_reg (ax, value->u.reg);
|
779 |
|
|
gen_extend (ax, value->type);
|
780 |
|
|
break;
|
781 |
|
|
}
|
782 |
|
|
|
783 |
|
|
value->kind = axs_rvalue;
|
784 |
|
|
}
|
785 |
|
|
|
786 |
|
|
|
787 |
|
|
/* Assume the top of the stack is described by VALUE, and perform the
|
788 |
|
|
usual unary conversions. This is motivated by ANSI 6.2.2, but of
|
789 |
|
|
course GDB expressions are not ANSI; they're the mishmash union of
|
790 |
|
|
a bunch of languages. Rah.
|
791 |
|
|
|
792 |
|
|
NOTE! This function promises to produce an rvalue only when the
|
793 |
|
|
incoming value is of an appropriate type. In other words, the
|
794 |
|
|
consumer of the value this function produces may assume the value
|
795 |
|
|
is an rvalue only after checking its type.
|
796 |
|
|
|
797 |
|
|
The immediate issue is that if the user tries to use a structure or
|
798 |
|
|
union as an operand of, say, the `+' operator, we don't want to try
|
799 |
|
|
to convert that structure to an rvalue; require_rvalue will bomb on
|
800 |
|
|
structs and unions. Rather, we want to simply pass the struct
|
801 |
|
|
lvalue through unchanged, and let `+' raise an error. */
|
802 |
|
|
|
803 |
|
|
static void
|
804 |
|
|
gen_usual_unary (struct expression *exp, struct agent_expr *ax,
|
805 |
|
|
struct axs_value *value)
|
806 |
|
|
{
|
807 |
|
|
/* We don't have to generate any code for the usual integral
|
808 |
|
|
conversions, since values are always represented as full-width on
|
809 |
|
|
the stack. Should we tweak the type? */
|
810 |
|
|
|
811 |
|
|
/* Some types require special handling. */
|
812 |
|
|
switch (TYPE_CODE (value->type))
|
813 |
|
|
{
|
814 |
|
|
/* Functions get converted to a pointer to the function. */
|
815 |
|
|
case TYPE_CODE_FUNC:
|
816 |
|
|
value->type = lookup_pointer_type (value->type);
|
817 |
|
|
value->kind = axs_rvalue; /* Should always be true, but just in case. */
|
818 |
|
|
break;
|
819 |
|
|
|
820 |
|
|
/* Arrays get converted to a pointer to their first element, and
|
821 |
|
|
are no longer an lvalue. */
|
822 |
|
|
case TYPE_CODE_ARRAY:
|
823 |
|
|
{
|
824 |
|
|
struct type *elements = TYPE_TARGET_TYPE (value->type);
|
825 |
|
|
|
826 |
|
|
value->type = lookup_pointer_type (elements);
|
827 |
|
|
value->kind = axs_rvalue;
|
828 |
|
|
/* We don't need to generate any code; the address of the array
|
829 |
|
|
is also the address of its first element. */
|
830 |
|
|
}
|
831 |
|
|
break;
|
832 |
|
|
|
833 |
|
|
/* Don't try to convert structures and unions to rvalues. Let the
|
834 |
|
|
consumer signal an error. */
|
835 |
|
|
case TYPE_CODE_STRUCT:
|
836 |
|
|
case TYPE_CODE_UNION:
|
837 |
|
|
return;
|
838 |
|
|
|
839 |
|
|
/* If the value is an enum or a bool, call it an integer. */
|
840 |
|
|
case TYPE_CODE_ENUM:
|
841 |
|
|
case TYPE_CODE_BOOL:
|
842 |
|
|
value->type = builtin_type (exp->gdbarch)->builtin_int;
|
843 |
|
|
break;
|
844 |
|
|
}
|
845 |
|
|
|
846 |
|
|
/* If the value is an lvalue, dereference it. */
|
847 |
|
|
require_rvalue (ax, value);
|
848 |
|
|
}
|
849 |
|
|
|
850 |
|
|
|
851 |
|
|
/* Return non-zero iff the type TYPE1 is considered "wider" than the
|
852 |
|
|
type TYPE2, according to the rules described in gen_usual_arithmetic. */
|
853 |
|
|
static int
|
854 |
|
|
type_wider_than (struct type *type1, struct type *type2)
|
855 |
|
|
{
|
856 |
|
|
return (TYPE_LENGTH (type1) > TYPE_LENGTH (type2)
|
857 |
|
|
|| (TYPE_LENGTH (type1) == TYPE_LENGTH (type2)
|
858 |
|
|
&& TYPE_UNSIGNED (type1)
|
859 |
|
|
&& !TYPE_UNSIGNED (type2)));
|
860 |
|
|
}
|
861 |
|
|
|
862 |
|
|
|
863 |
|
|
/* Return the "wider" of the two types TYPE1 and TYPE2. */
|
864 |
|
|
static struct type *
|
865 |
|
|
max_type (struct type *type1, struct type *type2)
|
866 |
|
|
{
|
867 |
|
|
return type_wider_than (type1, type2) ? type1 : type2;
|
868 |
|
|
}
|
869 |
|
|
|
870 |
|
|
|
871 |
|
|
/* Generate code to convert a scalar value of type FROM to type TO. */
|
872 |
|
|
static void
|
873 |
|
|
gen_conversion (struct agent_expr *ax, struct type *from, struct type *to)
|
874 |
|
|
{
|
875 |
|
|
/* Perhaps there is a more graceful way to state these rules. */
|
876 |
|
|
|
877 |
|
|
/* If we're converting to a narrower type, then we need to clear out
|
878 |
|
|
the upper bits. */
|
879 |
|
|
if (TYPE_LENGTH (to) < TYPE_LENGTH (from))
|
880 |
|
|
gen_extend (ax, from);
|
881 |
|
|
|
882 |
|
|
/* If the two values have equal width, but different signednesses,
|
883 |
|
|
then we need to extend. */
|
884 |
|
|
else if (TYPE_LENGTH (to) == TYPE_LENGTH (from))
|
885 |
|
|
{
|
886 |
|
|
if (TYPE_UNSIGNED (from) != TYPE_UNSIGNED (to))
|
887 |
|
|
gen_extend (ax, to);
|
888 |
|
|
}
|
889 |
|
|
|
890 |
|
|
/* If we're converting to a wider type, and becoming unsigned, then
|
891 |
|
|
we need to zero out any possible sign bits. */
|
892 |
|
|
else if (TYPE_LENGTH (to) > TYPE_LENGTH (from))
|
893 |
|
|
{
|
894 |
|
|
if (TYPE_UNSIGNED (to))
|
895 |
|
|
gen_extend (ax, to);
|
896 |
|
|
}
|
897 |
|
|
}
|
898 |
|
|
|
899 |
|
|
|
900 |
|
|
/* Return non-zero iff the type FROM will require any bytecodes to be
|
901 |
|
|
emitted to be converted to the type TO. */
|
902 |
|
|
static int
|
903 |
|
|
is_nontrivial_conversion (struct type *from, struct type *to)
|
904 |
|
|
{
|
905 |
|
|
struct agent_expr *ax = new_agent_expr (NULL, 0);
|
906 |
|
|
int nontrivial;
|
907 |
|
|
|
908 |
|
|
/* Actually generate the code, and see if anything came out. At the
|
909 |
|
|
moment, it would be trivial to replicate the code in
|
910 |
|
|
gen_conversion here, but in the future, when we're supporting
|
911 |
|
|
floating point and the like, it may not be. Doing things this
|
912 |
|
|
way allows this function to be independent of the logic in
|
913 |
|
|
gen_conversion. */
|
914 |
|
|
gen_conversion (ax, from, to);
|
915 |
|
|
nontrivial = ax->len > 0;
|
916 |
|
|
free_agent_expr (ax);
|
917 |
|
|
return nontrivial;
|
918 |
|
|
}
|
919 |
|
|
|
920 |
|
|
|
921 |
|
|
/* Generate code to perform the "usual arithmetic conversions" (ANSI C
|
922 |
|
|
6.2.1.5) for the two operands of an arithmetic operator. This
|
923 |
|
|
effectively finds a "least upper bound" type for the two arguments,
|
924 |
|
|
and promotes each argument to that type. *VALUE1 and *VALUE2
|
925 |
|
|
describe the values as they are passed in, and as they are left. */
|
926 |
|
|
static void
|
927 |
|
|
gen_usual_arithmetic (struct expression *exp, struct agent_expr *ax,
|
928 |
|
|
struct axs_value *value1, struct axs_value *value2)
|
929 |
|
|
{
|
930 |
|
|
/* Do the usual binary conversions. */
|
931 |
|
|
if (TYPE_CODE (value1->type) == TYPE_CODE_INT
|
932 |
|
|
&& TYPE_CODE (value2->type) == TYPE_CODE_INT)
|
933 |
|
|
{
|
934 |
|
|
/* The ANSI integral promotions seem to work this way: Order the
|
935 |
|
|
integer types by size, and then by signedness: an n-bit
|
936 |
|
|
unsigned type is considered "wider" than an n-bit signed
|
937 |
|
|
type. Promote to the "wider" of the two types, and always
|
938 |
|
|
promote at least to int. */
|
939 |
|
|
struct type *target = max_type (builtin_type (exp->gdbarch)->builtin_int,
|
940 |
|
|
max_type (value1->type, value2->type));
|
941 |
|
|
|
942 |
|
|
/* Deal with value2, on the top of the stack. */
|
943 |
|
|
gen_conversion (ax, value2->type, target);
|
944 |
|
|
|
945 |
|
|
/* Deal with value1, not on the top of the stack. Don't
|
946 |
|
|
generate the `swap' instructions if we're not actually going
|
947 |
|
|
to do anything. */
|
948 |
|
|
if (is_nontrivial_conversion (value1->type, target))
|
949 |
|
|
{
|
950 |
|
|
ax_simple (ax, aop_swap);
|
951 |
|
|
gen_conversion (ax, value1->type, target);
|
952 |
|
|
ax_simple (ax, aop_swap);
|
953 |
|
|
}
|
954 |
|
|
|
955 |
|
|
value1->type = value2->type = check_typedef (target);
|
956 |
|
|
}
|
957 |
|
|
}
|
958 |
|
|
|
959 |
|
|
|
960 |
|
|
/* Generate code to perform the integral promotions (ANSI 6.2.1.1) on
|
961 |
|
|
the value on the top of the stack, as described by VALUE. Assume
|
962 |
|
|
the value has integral type. */
|
963 |
|
|
static void
|
964 |
|
|
gen_integral_promotions (struct expression *exp, struct agent_expr *ax,
|
965 |
|
|
struct axs_value *value)
|
966 |
|
|
{
|
967 |
|
|
const struct builtin_type *builtin = builtin_type (exp->gdbarch);
|
968 |
|
|
|
969 |
|
|
if (!type_wider_than (value->type, builtin->builtin_int))
|
970 |
|
|
{
|
971 |
|
|
gen_conversion (ax, value->type, builtin->builtin_int);
|
972 |
|
|
value->type = builtin->builtin_int;
|
973 |
|
|
}
|
974 |
|
|
else if (!type_wider_than (value->type, builtin->builtin_unsigned_int))
|
975 |
|
|
{
|
976 |
|
|
gen_conversion (ax, value->type, builtin->builtin_unsigned_int);
|
977 |
|
|
value->type = builtin->builtin_unsigned_int;
|
978 |
|
|
}
|
979 |
|
|
}
|
980 |
|
|
|
981 |
|
|
|
982 |
|
|
/* Generate code for a cast to TYPE. */
|
983 |
|
|
static void
|
984 |
|
|
gen_cast (struct agent_expr *ax, struct axs_value *value, struct type *type)
|
985 |
|
|
{
|
986 |
|
|
/* GCC does allow casts to yield lvalues, so this should be fixed
|
987 |
|
|
before merging these changes into the trunk. */
|
988 |
|
|
require_rvalue (ax, value);
|
989 |
|
|
/* Dereference typedefs. */
|
990 |
|
|
type = check_typedef (type);
|
991 |
|
|
|
992 |
|
|
switch (TYPE_CODE (type))
|
993 |
|
|
{
|
994 |
|
|
case TYPE_CODE_PTR:
|
995 |
|
|
case TYPE_CODE_REF:
|
996 |
|
|
/* It's implementation-defined, and I'll bet this is what GCC
|
997 |
|
|
does. */
|
998 |
|
|
break;
|
999 |
|
|
|
1000 |
|
|
case TYPE_CODE_ARRAY:
|
1001 |
|
|
case TYPE_CODE_STRUCT:
|
1002 |
|
|
case TYPE_CODE_UNION:
|
1003 |
|
|
case TYPE_CODE_FUNC:
|
1004 |
|
|
error (_("Invalid type cast: intended type must be scalar."));
|
1005 |
|
|
|
1006 |
|
|
case TYPE_CODE_ENUM:
|
1007 |
|
|
case TYPE_CODE_BOOL:
|
1008 |
|
|
/* We don't have to worry about the size of the value, because
|
1009 |
|
|
all our integral values are fully sign-extended, and when
|
1010 |
|
|
casting pointers we can do anything we like. Is there any
|
1011 |
|
|
way for us to know what GCC actually does with a cast like
|
1012 |
|
|
this? */
|
1013 |
|
|
break;
|
1014 |
|
|
|
1015 |
|
|
case TYPE_CODE_INT:
|
1016 |
|
|
gen_conversion (ax, value->type, type);
|
1017 |
|
|
break;
|
1018 |
|
|
|
1019 |
|
|
case TYPE_CODE_VOID:
|
1020 |
|
|
/* We could pop the value, and rely on everyone else to check
|
1021 |
|
|
the type and notice that this value doesn't occupy a stack
|
1022 |
|
|
slot. But for now, leave the value on the stack, and
|
1023 |
|
|
preserve the "value == stack element" assumption. */
|
1024 |
|
|
break;
|
1025 |
|
|
|
1026 |
|
|
default:
|
1027 |
|
|
error (_("Casts to requested type are not yet implemented."));
|
1028 |
|
|
}
|
1029 |
|
|
|
1030 |
|
|
value->type = type;
|
1031 |
|
|
}
|
1032 |
|
|
|
1033 |
|
|
|
1034 |
|
|
|
1035 |
|
|
/* Generating bytecode from GDB expressions: arithmetic */
|
1036 |
|
|
|
1037 |
|
|
/* Scale the integer on the top of the stack by the size of the target
|
1038 |
|
|
of the pointer type TYPE. */
|
1039 |
|
|
static void
|
1040 |
|
|
gen_scale (struct agent_expr *ax, enum agent_op op, struct type *type)
|
1041 |
|
|
{
|
1042 |
|
|
struct type *element = TYPE_TARGET_TYPE (type);
|
1043 |
|
|
|
1044 |
|
|
if (TYPE_LENGTH (element) != 1)
|
1045 |
|
|
{
|
1046 |
|
|
ax_const_l (ax, TYPE_LENGTH (element));
|
1047 |
|
|
ax_simple (ax, op);
|
1048 |
|
|
}
|
1049 |
|
|
}
|
1050 |
|
|
|
1051 |
|
|
|
1052 |
|
|
/* Generate code for pointer arithmetic PTR + INT. */
|
1053 |
|
|
static void
|
1054 |
|
|
gen_ptradd (struct agent_expr *ax, struct axs_value *value,
|
1055 |
|
|
struct axs_value *value1, struct axs_value *value2)
|
1056 |
|
|
{
|
1057 |
|
|
gdb_assert (pointer_type (value1->type));
|
1058 |
|
|
gdb_assert (TYPE_CODE (value2->type) == TYPE_CODE_INT);
|
1059 |
|
|
|
1060 |
|
|
gen_scale (ax, aop_mul, value1->type);
|
1061 |
|
|
ax_simple (ax, aop_add);
|
1062 |
|
|
gen_extend (ax, value1->type); /* Catch overflow. */
|
1063 |
|
|
value->type = value1->type;
|
1064 |
|
|
value->kind = axs_rvalue;
|
1065 |
|
|
}
|
1066 |
|
|
|
1067 |
|
|
|
1068 |
|
|
/* Generate code for pointer arithmetic PTR - INT. */
|
1069 |
|
|
static void
|
1070 |
|
|
gen_ptrsub (struct agent_expr *ax, struct axs_value *value,
|
1071 |
|
|
struct axs_value *value1, struct axs_value *value2)
|
1072 |
|
|
{
|
1073 |
|
|
gdb_assert (pointer_type (value1->type));
|
1074 |
|
|
gdb_assert (TYPE_CODE (value2->type) == TYPE_CODE_INT);
|
1075 |
|
|
|
1076 |
|
|
gen_scale (ax, aop_mul, value1->type);
|
1077 |
|
|
ax_simple (ax, aop_sub);
|
1078 |
|
|
gen_extend (ax, value1->type); /* Catch overflow. */
|
1079 |
|
|
value->type = value1->type;
|
1080 |
|
|
value->kind = axs_rvalue;
|
1081 |
|
|
}
|
1082 |
|
|
|
1083 |
|
|
|
1084 |
|
|
/* Generate code for pointer arithmetic PTR - PTR. */
|
1085 |
|
|
static void
|
1086 |
|
|
gen_ptrdiff (struct agent_expr *ax, struct axs_value *value,
|
1087 |
|
|
struct axs_value *value1, struct axs_value *value2,
|
1088 |
|
|
struct type *result_type)
|
1089 |
|
|
{
|
1090 |
|
|
gdb_assert (pointer_type (value1->type));
|
1091 |
|
|
gdb_assert (pointer_type (value2->type));
|
1092 |
|
|
|
1093 |
|
|
if (TYPE_LENGTH (TYPE_TARGET_TYPE (value1->type))
|
1094 |
|
|
!= TYPE_LENGTH (TYPE_TARGET_TYPE (value2->type)))
|
1095 |
|
|
error (_("\
|
1096 |
|
|
First argument of `-' is a pointer, but second argument is neither\n\
|
1097 |
|
|
an integer nor a pointer of the same type."));
|
1098 |
|
|
|
1099 |
|
|
ax_simple (ax, aop_sub);
|
1100 |
|
|
gen_scale (ax, aop_div_unsigned, value1->type);
|
1101 |
|
|
value->type = result_type;
|
1102 |
|
|
value->kind = axs_rvalue;
|
1103 |
|
|
}
|
1104 |
|
|
|
1105 |
|
|
static void
|
1106 |
|
|
gen_equal (struct agent_expr *ax, struct axs_value *value,
|
1107 |
|
|
struct axs_value *value1, struct axs_value *value2,
|
1108 |
|
|
struct type *result_type)
|
1109 |
|
|
{
|
1110 |
|
|
if (pointer_type (value1->type) || pointer_type (value2->type))
|
1111 |
|
|
ax_simple (ax, aop_equal);
|
1112 |
|
|
else
|
1113 |
|
|
gen_binop (ax, value, value1, value2,
|
1114 |
|
|
aop_equal, aop_equal, 0, "equal");
|
1115 |
|
|
value->type = result_type;
|
1116 |
|
|
value->kind = axs_rvalue;
|
1117 |
|
|
}
|
1118 |
|
|
|
1119 |
|
|
static void
|
1120 |
|
|
gen_less (struct agent_expr *ax, struct axs_value *value,
|
1121 |
|
|
struct axs_value *value1, struct axs_value *value2,
|
1122 |
|
|
struct type *result_type)
|
1123 |
|
|
{
|
1124 |
|
|
if (pointer_type (value1->type) || pointer_type (value2->type))
|
1125 |
|
|
ax_simple (ax, aop_less_unsigned);
|
1126 |
|
|
else
|
1127 |
|
|
gen_binop (ax, value, value1, value2,
|
1128 |
|
|
aop_less_signed, aop_less_unsigned, 0, "less than");
|
1129 |
|
|
value->type = result_type;
|
1130 |
|
|
value->kind = axs_rvalue;
|
1131 |
|
|
}
|
1132 |
|
|
|
1133 |
|
|
/* Generate code for a binary operator that doesn't do pointer magic.
|
1134 |
|
|
We set VALUE to describe the result value; we assume VALUE1 and
|
1135 |
|
|
VALUE2 describe the two operands, and that they've undergone the
|
1136 |
|
|
usual binary conversions. MAY_CARRY should be non-zero iff the
|
1137 |
|
|
result needs to be extended. NAME is the English name of the
|
1138 |
|
|
operator, used in error messages */
|
1139 |
|
|
static void
|
1140 |
|
|
gen_binop (struct agent_expr *ax, struct axs_value *value,
|
1141 |
|
|
struct axs_value *value1, struct axs_value *value2, enum agent_op op,
|
1142 |
|
|
enum agent_op op_unsigned, int may_carry, char *name)
|
1143 |
|
|
{
|
1144 |
|
|
/* We only handle INT op INT. */
|
1145 |
|
|
if ((TYPE_CODE (value1->type) != TYPE_CODE_INT)
|
1146 |
|
|
|| (TYPE_CODE (value2->type) != TYPE_CODE_INT))
|
1147 |
|
|
error (_("Invalid combination of types in %s."), name);
|
1148 |
|
|
|
1149 |
|
|
ax_simple (ax,
|
1150 |
|
|
TYPE_UNSIGNED (value1->type) ? op_unsigned : op);
|
1151 |
|
|
if (may_carry)
|
1152 |
|
|
gen_extend (ax, value1->type); /* catch overflow */
|
1153 |
|
|
value->type = value1->type;
|
1154 |
|
|
value->kind = axs_rvalue;
|
1155 |
|
|
}
|
1156 |
|
|
|
1157 |
|
|
|
1158 |
|
|
static void
|
1159 |
|
|
gen_logical_not (struct agent_expr *ax, struct axs_value *value,
|
1160 |
|
|
struct type *result_type)
|
1161 |
|
|
{
|
1162 |
|
|
if (TYPE_CODE (value->type) != TYPE_CODE_INT
|
1163 |
|
|
&& TYPE_CODE (value->type) != TYPE_CODE_PTR)
|
1164 |
|
|
error (_("Invalid type of operand to `!'."));
|
1165 |
|
|
|
1166 |
|
|
ax_simple (ax, aop_log_not);
|
1167 |
|
|
value->type = result_type;
|
1168 |
|
|
}
|
1169 |
|
|
|
1170 |
|
|
|
1171 |
|
|
static void
|
1172 |
|
|
gen_complement (struct agent_expr *ax, struct axs_value *value)
|
1173 |
|
|
{
|
1174 |
|
|
if (TYPE_CODE (value->type) != TYPE_CODE_INT)
|
1175 |
|
|
error (_("Invalid type of operand to `~'."));
|
1176 |
|
|
|
1177 |
|
|
ax_simple (ax, aop_bit_not);
|
1178 |
|
|
gen_extend (ax, value->type);
|
1179 |
|
|
}
|
1180 |
|
|
|
1181 |
|
|
|
1182 |
|
|
|
1183 |
|
|
/* Generating bytecode from GDB expressions: * & . -> @ sizeof */
|
1184 |
|
|
|
1185 |
|
|
/* Dereference the value on the top of the stack. */
|
1186 |
|
|
static void
|
1187 |
|
|
gen_deref (struct agent_expr *ax, struct axs_value *value)
|
1188 |
|
|
{
|
1189 |
|
|
/* The caller should check the type, because several operators use
|
1190 |
|
|
this, and we don't know what error message to generate. */
|
1191 |
|
|
if (!pointer_type (value->type))
|
1192 |
|
|
internal_error (__FILE__, __LINE__,
|
1193 |
|
|
_("gen_deref: expected a pointer"));
|
1194 |
|
|
|
1195 |
|
|
/* We've got an rvalue now, which is a pointer. We want to yield an
|
1196 |
|
|
lvalue, whose address is exactly that pointer. So we don't
|
1197 |
|
|
actually emit any code; we just change the type from "Pointer to
|
1198 |
|
|
T" to "T", and mark the value as an lvalue in memory. Leave it
|
1199 |
|
|
to the consumer to actually dereference it. */
|
1200 |
|
|
value->type = check_typedef (TYPE_TARGET_TYPE (value->type));
|
1201 |
|
|
if (TYPE_CODE (value->type) == TYPE_CODE_VOID)
|
1202 |
|
|
error (_("Attempt to dereference a generic pointer."));
|
1203 |
|
|
value->kind = ((TYPE_CODE (value->type) == TYPE_CODE_FUNC)
|
1204 |
|
|
? axs_rvalue : axs_lvalue_memory);
|
1205 |
|
|
}
|
1206 |
|
|
|
1207 |
|
|
|
1208 |
|
|
/* Produce the address of the lvalue on the top of the stack. */
|
1209 |
|
|
static void
|
1210 |
|
|
gen_address_of (struct agent_expr *ax, struct axs_value *value)
|
1211 |
|
|
{
|
1212 |
|
|
/* Special case for taking the address of a function. The ANSI
|
1213 |
|
|
standard describes this as a special case, too, so this
|
1214 |
|
|
arrangement is not without motivation. */
|
1215 |
|
|
if (TYPE_CODE (value->type) == TYPE_CODE_FUNC)
|
1216 |
|
|
/* The value's already an rvalue on the stack, so we just need to
|
1217 |
|
|
change the type. */
|
1218 |
|
|
value->type = lookup_pointer_type (value->type);
|
1219 |
|
|
else
|
1220 |
|
|
switch (value->kind)
|
1221 |
|
|
{
|
1222 |
|
|
case axs_rvalue:
|
1223 |
|
|
error (_("Operand of `&' is an rvalue, which has no address."));
|
1224 |
|
|
|
1225 |
|
|
case axs_lvalue_register:
|
1226 |
|
|
error (_("Operand of `&' is in a register, and has no address."));
|
1227 |
|
|
|
1228 |
|
|
case axs_lvalue_memory:
|
1229 |
|
|
value->kind = axs_rvalue;
|
1230 |
|
|
value->type = lookup_pointer_type (value->type);
|
1231 |
|
|
break;
|
1232 |
|
|
}
|
1233 |
|
|
}
|
1234 |
|
|
|
1235 |
|
|
/* Generate code to push the value of a bitfield of a structure whose
|
1236 |
|
|
address is on the top of the stack. START and END give the
|
1237 |
|
|
starting and one-past-ending *bit* numbers of the field within the
|
1238 |
|
|
structure. */
|
1239 |
|
|
static void
|
1240 |
|
|
gen_bitfield_ref (struct expression *exp, struct agent_expr *ax,
|
1241 |
|
|
struct axs_value *value, struct type *type,
|
1242 |
|
|
int start, int end)
|
1243 |
|
|
{
|
1244 |
|
|
/* Note that ops[i] fetches 8 << i bits. */
|
1245 |
|
|
static enum agent_op ops[]
|
1246 |
|
|
= {aop_ref8, aop_ref16, aop_ref32, aop_ref64};
|
1247 |
|
|
static int num_ops = (sizeof (ops) / sizeof (ops[0]));
|
1248 |
|
|
|
1249 |
|
|
/* We don't want to touch any byte that the bitfield doesn't
|
1250 |
|
|
actually occupy; we shouldn't make any accesses we're not
|
1251 |
|
|
explicitly permitted to. We rely here on the fact that the
|
1252 |
|
|
bytecode `ref' operators work on unaligned addresses.
|
1253 |
|
|
|
1254 |
|
|
It takes some fancy footwork to get the stack to work the way
|
1255 |
|
|
we'd like. Say we're retrieving a bitfield that requires three
|
1256 |
|
|
fetches. Initially, the stack just contains the address:
|
1257 |
|
|
addr
|
1258 |
|
|
For the first fetch, we duplicate the address
|
1259 |
|
|
addr addr
|
1260 |
|
|
then add the byte offset, do the fetch, and shift and mask as
|
1261 |
|
|
needed, yielding a fragment of the value, properly aligned for
|
1262 |
|
|
the final bitwise or:
|
1263 |
|
|
addr frag1
|
1264 |
|
|
then we swap, and repeat the process:
|
1265 |
|
|
frag1 addr --- address on top
|
1266 |
|
|
frag1 addr addr --- duplicate it
|
1267 |
|
|
frag1 addr frag2 --- get second fragment
|
1268 |
|
|
frag1 frag2 addr --- swap again
|
1269 |
|
|
frag1 frag2 frag3 --- get third fragment
|
1270 |
|
|
Notice that, since the third fragment is the last one, we don't
|
1271 |
|
|
bother duplicating the address this time. Now we have all the
|
1272 |
|
|
fragments on the stack, and we can simply `or' them together,
|
1273 |
|
|
yielding the final value of the bitfield. */
|
1274 |
|
|
|
1275 |
|
|
/* The first and one-after-last bits in the field, but rounded down
|
1276 |
|
|
and up to byte boundaries. */
|
1277 |
|
|
int bound_start = (start / TARGET_CHAR_BIT) * TARGET_CHAR_BIT;
|
1278 |
|
|
int bound_end = (((end + TARGET_CHAR_BIT - 1)
|
1279 |
|
|
/ TARGET_CHAR_BIT)
|
1280 |
|
|
* TARGET_CHAR_BIT);
|
1281 |
|
|
|
1282 |
|
|
/* current bit offset within the structure */
|
1283 |
|
|
int offset;
|
1284 |
|
|
|
1285 |
|
|
/* The index in ops of the opcode we're considering. */
|
1286 |
|
|
int op;
|
1287 |
|
|
|
1288 |
|
|
/* The number of fragments we generated in the process. Probably
|
1289 |
|
|
equal to the number of `one' bits in bytesize, but who cares? */
|
1290 |
|
|
int fragment_count;
|
1291 |
|
|
|
1292 |
|
|
/* Dereference any typedefs. */
|
1293 |
|
|
type = check_typedef (type);
|
1294 |
|
|
|
1295 |
|
|
/* Can we fetch the number of bits requested at all? */
|
1296 |
|
|
if ((end - start) > ((1 << num_ops) * 8))
|
1297 |
|
|
internal_error (__FILE__, __LINE__,
|
1298 |
|
|
_("gen_bitfield_ref: bitfield too wide"));
|
1299 |
|
|
|
1300 |
|
|
/* Note that we know here that we only need to try each opcode once.
|
1301 |
|
|
That may not be true on machines with weird byte sizes. */
|
1302 |
|
|
offset = bound_start;
|
1303 |
|
|
fragment_count = 0;
|
1304 |
|
|
for (op = num_ops - 1; op >= 0; op--)
|
1305 |
|
|
{
|
1306 |
|
|
/* number of bits that ops[op] would fetch */
|
1307 |
|
|
int op_size = 8 << op;
|
1308 |
|
|
|
1309 |
|
|
/* The stack at this point, from bottom to top, contains zero or
|
1310 |
|
|
more fragments, then the address. */
|
1311 |
|
|
|
1312 |
|
|
/* Does this fetch fit within the bitfield? */
|
1313 |
|
|
if (offset + op_size <= bound_end)
|
1314 |
|
|
{
|
1315 |
|
|
/* Is this the last fragment? */
|
1316 |
|
|
int last_frag = (offset + op_size == bound_end);
|
1317 |
|
|
|
1318 |
|
|
if (!last_frag)
|
1319 |
|
|
ax_simple (ax, aop_dup); /* keep a copy of the address */
|
1320 |
|
|
|
1321 |
|
|
/* Add the offset. */
|
1322 |
|
|
gen_offset (ax, offset / TARGET_CHAR_BIT);
|
1323 |
|
|
|
1324 |
|
|
if (trace_kludge)
|
1325 |
|
|
{
|
1326 |
|
|
/* Record the area of memory we're about to fetch. */
|
1327 |
|
|
ax_trace_quick (ax, op_size / TARGET_CHAR_BIT);
|
1328 |
|
|
}
|
1329 |
|
|
|
1330 |
|
|
/* Perform the fetch. */
|
1331 |
|
|
ax_simple (ax, ops[op]);
|
1332 |
|
|
|
1333 |
|
|
/* Shift the bits we have to their proper position.
|
1334 |
|
|
gen_left_shift will generate right shifts when the operand
|
1335 |
|
|
is negative.
|
1336 |
|
|
|
1337 |
|
|
A big-endian field diagram to ponder:
|
1338 |
|
|
byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7
|
1339 |
|
|
+------++------++------++------++------++------++------++------+
|
1340 |
|
|
xxxxAAAAAAAAAAAAAAAAAAAAAAAAAAAABBBBBBBBBBBBBBBBCCCCCxxxxxxxxxxx
|
1341 |
|
|
^ ^ ^ ^
|
1342 |
|
|
bit number 16 32 48 53
|
1343 |
|
|
These are bit numbers as supplied by GDB. Note that the
|
1344 |
|
|
bit numbers run from right to left once you've fetched the
|
1345 |
|
|
value!
|
1346 |
|
|
|
1347 |
|
|
A little-endian field diagram to ponder:
|
1348 |
|
|
byte 7 byte 6 byte 5 byte 4 byte 3 byte 2 byte 1 byte 0
|
1349 |
|
|
+------++------++------++------++------++------++------++------+
|
1350 |
|
|
xxxxxxxxxxxAAAAABBBBBBBBBBBBBBBBCCCCCCCCCCCCCCCCCCCCCCCCCCCCxxxx
|
1351 |
|
|
^ ^ ^ ^ ^
|
1352 |
|
|
bit number 48 32 16 4 0
|
1353 |
|
|
|
1354 |
|
|
In both cases, the most significant end is on the left
|
1355 |
|
|
(i.e. normal numeric writing order), which means that you
|
1356 |
|
|
don't go crazy thinking about `left' and `right' shifts.
|
1357 |
|
|
|
1358 |
|
|
We don't have to worry about masking yet:
|
1359 |
|
|
- If they contain garbage off the least significant end, then we
|
1360 |
|
|
must be looking at the low end of the field, and the right
|
1361 |
|
|
shift will wipe them out.
|
1362 |
|
|
- If they contain garbage off the most significant end, then we
|
1363 |
|
|
must be looking at the most significant end of the word, and
|
1364 |
|
|
the sign/zero extension will wipe them out.
|
1365 |
|
|
- If we're in the interior of the word, then there is no garbage
|
1366 |
|
|
on either end, because the ref operators zero-extend. */
|
1367 |
|
|
if (gdbarch_byte_order (exp->gdbarch) == BFD_ENDIAN_BIG)
|
1368 |
|
|
gen_left_shift (ax, end - (offset + op_size));
|
1369 |
|
|
else
|
1370 |
|
|
gen_left_shift (ax, offset - start);
|
1371 |
|
|
|
1372 |
|
|
if (!last_frag)
|
1373 |
|
|
/* Bring the copy of the address up to the top. */
|
1374 |
|
|
ax_simple (ax, aop_swap);
|
1375 |
|
|
|
1376 |
|
|
offset += op_size;
|
1377 |
|
|
fragment_count++;
|
1378 |
|
|
}
|
1379 |
|
|
}
|
1380 |
|
|
|
1381 |
|
|
/* Generate enough bitwise `or' operations to combine all the
|
1382 |
|
|
fragments we left on the stack. */
|
1383 |
|
|
while (fragment_count-- > 1)
|
1384 |
|
|
ax_simple (ax, aop_bit_or);
|
1385 |
|
|
|
1386 |
|
|
/* Sign- or zero-extend the value as appropriate. */
|
1387 |
|
|
((TYPE_UNSIGNED (type) ? ax_zero_ext : ax_ext) (ax, end - start));
|
1388 |
|
|
|
1389 |
|
|
/* This is *not* an lvalue. Ugh. */
|
1390 |
|
|
value->kind = axs_rvalue;
|
1391 |
|
|
value->type = type;
|
1392 |
|
|
}
|
1393 |
|
|
|
1394 |
|
|
/* Generate bytecodes for field number FIELDNO of type TYPE. OFFSET
|
1395 |
|
|
is an accumulated offset (in bytes), will be nonzero for objects
|
1396 |
|
|
embedded in other objects, like C++ base classes. Behavior should
|
1397 |
|
|
generally follow value_primitive_field. */
|
1398 |
|
|
|
1399 |
|
|
static void
|
1400 |
|
|
gen_primitive_field (struct expression *exp,
|
1401 |
|
|
struct agent_expr *ax, struct axs_value *value,
|
1402 |
|
|
int offset, int fieldno, struct type *type)
|
1403 |
|
|
{
|
1404 |
|
|
/* Is this a bitfield? */
|
1405 |
|
|
if (TYPE_FIELD_PACKED (type, fieldno))
|
1406 |
|
|
gen_bitfield_ref (exp, ax, value, TYPE_FIELD_TYPE (type, fieldno),
|
1407 |
|
|
(offset * TARGET_CHAR_BIT
|
1408 |
|
|
+ TYPE_FIELD_BITPOS (type, fieldno)),
|
1409 |
|
|
(offset * TARGET_CHAR_BIT
|
1410 |
|
|
+ TYPE_FIELD_BITPOS (type, fieldno)
|
1411 |
|
|
+ TYPE_FIELD_BITSIZE (type, fieldno)));
|
1412 |
|
|
else
|
1413 |
|
|
{
|
1414 |
|
|
gen_offset (ax, offset
|
1415 |
|
|
+ TYPE_FIELD_BITPOS (type, fieldno) / TARGET_CHAR_BIT);
|
1416 |
|
|
value->kind = axs_lvalue_memory;
|
1417 |
|
|
value->type = TYPE_FIELD_TYPE (type, fieldno);
|
1418 |
|
|
}
|
1419 |
|
|
}
|
1420 |
|
|
|
1421 |
|
|
/* Search for the given field in either the given type or one of its
|
1422 |
|
|
base classes. Return 1 if found, 0 if not. */
|
1423 |
|
|
|
1424 |
|
|
static int
|
1425 |
|
|
gen_struct_ref_recursive (struct expression *exp, struct agent_expr *ax,
|
1426 |
|
|
struct axs_value *value,
|
1427 |
|
|
char *field, int offset, struct type *type)
|
1428 |
|
|
{
|
1429 |
|
|
int i, rslt;
|
1430 |
|
|
int nbases = TYPE_N_BASECLASSES (type);
|
1431 |
|
|
|
1432 |
|
|
CHECK_TYPEDEF (type);
|
1433 |
|
|
|
1434 |
|
|
for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
|
1435 |
|
|
{
|
1436 |
|
|
char *this_name = TYPE_FIELD_NAME (type, i);
|
1437 |
|
|
|
1438 |
|
|
if (this_name)
|
1439 |
|
|
{
|
1440 |
|
|
if (strcmp (field, this_name) == 0)
|
1441 |
|
|
{
|
1442 |
|
|
/* Note that bytecodes for the struct's base (aka
|
1443 |
|
|
"this") will have been generated already, which will
|
1444 |
|
|
be unnecessary but not harmful if the static field is
|
1445 |
|
|
being handled as a global. */
|
1446 |
|
|
if (field_is_static (&TYPE_FIELD (type, i)))
|
1447 |
|
|
{
|
1448 |
|
|
gen_static_field (exp->gdbarch, ax, value, type, i);
|
1449 |
|
|
if (value->optimized_out)
|
1450 |
|
|
error (_("static field `%s' has been optimized out, cannot use"),
|
1451 |
|
|
field);
|
1452 |
|
|
return 1;
|
1453 |
|
|
}
|
1454 |
|
|
|
1455 |
|
|
gen_primitive_field (exp, ax, value, offset, i, type);
|
1456 |
|
|
return 1;
|
1457 |
|
|
}
|
1458 |
|
|
#if 0 /* is this right? */
|
1459 |
|
|
if (this_name[0] == '\0')
|
1460 |
|
|
internal_error (__FILE__, __LINE__,
|
1461 |
|
|
_("find_field: anonymous unions not supported"));
|
1462 |
|
|
#endif
|
1463 |
|
|
}
|
1464 |
|
|
}
|
1465 |
|
|
|
1466 |
|
|
/* Now scan through base classes recursively. */
|
1467 |
|
|
for (i = 0; i < nbases; i++)
|
1468 |
|
|
{
|
1469 |
|
|
struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
|
1470 |
|
|
|
1471 |
|
|
rslt = gen_struct_ref_recursive (exp, ax, value, field,
|
1472 |
|
|
offset + TYPE_BASECLASS_BITPOS (type, i) / TARGET_CHAR_BIT,
|
1473 |
|
|
basetype);
|
1474 |
|
|
if (rslt)
|
1475 |
|
|
return 1;
|
1476 |
|
|
}
|
1477 |
|
|
|
1478 |
|
|
/* Not found anywhere, flag so caller can complain. */
|
1479 |
|
|
return 0;
|
1480 |
|
|
}
|
1481 |
|
|
|
1482 |
|
|
/* Generate code to reference the member named FIELD of a structure or
|
1483 |
|
|
union. The top of the stack, as described by VALUE, should have
|
1484 |
|
|
type (pointer to a)* struct/union. OPERATOR_NAME is the name of
|
1485 |
|
|
the operator being compiled, and OPERAND_NAME is the kind of thing
|
1486 |
|
|
it operates on; we use them in error messages. */
|
1487 |
|
|
static void
|
1488 |
|
|
gen_struct_ref (struct expression *exp, struct agent_expr *ax,
|
1489 |
|
|
struct axs_value *value, char *field,
|
1490 |
|
|
char *operator_name, char *operand_name)
|
1491 |
|
|
{
|
1492 |
|
|
struct type *type;
|
1493 |
|
|
int found;
|
1494 |
|
|
|
1495 |
|
|
/* Follow pointers until we reach a non-pointer. These aren't the C
|
1496 |
|
|
semantics, but they're what the normal GDB evaluator does, so we
|
1497 |
|
|
should at least be consistent. */
|
1498 |
|
|
while (pointer_type (value->type))
|
1499 |
|
|
{
|
1500 |
|
|
require_rvalue (ax, value);
|
1501 |
|
|
gen_deref (ax, value);
|
1502 |
|
|
}
|
1503 |
|
|
type = check_typedef (value->type);
|
1504 |
|
|
|
1505 |
|
|
/* This must yield a structure or a union. */
|
1506 |
|
|
if (TYPE_CODE (type) != TYPE_CODE_STRUCT
|
1507 |
|
|
&& TYPE_CODE (type) != TYPE_CODE_UNION)
|
1508 |
|
|
error (_("The left operand of `%s' is not a %s."),
|
1509 |
|
|
operator_name, operand_name);
|
1510 |
|
|
|
1511 |
|
|
/* And it must be in memory; we don't deal with structure rvalues,
|
1512 |
|
|
or structures living in registers. */
|
1513 |
|
|
if (value->kind != axs_lvalue_memory)
|
1514 |
|
|
error (_("Structure does not live in memory."));
|
1515 |
|
|
|
1516 |
|
|
/* Search through fields and base classes recursively. */
|
1517 |
|
|
found = gen_struct_ref_recursive (exp, ax, value, field, 0, type);
|
1518 |
|
|
|
1519 |
|
|
if (!found)
|
1520 |
|
|
error (_("Couldn't find member named `%s' in struct/union/class `%s'"),
|
1521 |
|
|
field, TYPE_TAG_NAME (type));
|
1522 |
|
|
}
|
1523 |
|
|
|
1524 |
|
|
static int
|
1525 |
|
|
gen_namespace_elt (struct expression *exp,
|
1526 |
|
|
struct agent_expr *ax, struct axs_value *value,
|
1527 |
|
|
const struct type *curtype, char *name);
|
1528 |
|
|
static int
|
1529 |
|
|
gen_maybe_namespace_elt (struct expression *exp,
|
1530 |
|
|
struct agent_expr *ax, struct axs_value *value,
|
1531 |
|
|
const struct type *curtype, char *name);
|
1532 |
|
|
|
1533 |
|
|
static void
|
1534 |
|
|
gen_static_field (struct gdbarch *gdbarch,
|
1535 |
|
|
struct agent_expr *ax, struct axs_value *value,
|
1536 |
|
|
struct type *type, int fieldno)
|
1537 |
|
|
{
|
1538 |
|
|
if (TYPE_FIELD_LOC_KIND (type, fieldno) == FIELD_LOC_KIND_PHYSADDR)
|
1539 |
|
|
{
|
1540 |
|
|
ax_const_l (ax, TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
|
1541 |
|
|
value->kind = axs_lvalue_memory;
|
1542 |
|
|
value->type = TYPE_FIELD_TYPE (type, fieldno);
|
1543 |
|
|
value->optimized_out = 0;
|
1544 |
|
|
}
|
1545 |
|
|
else
|
1546 |
|
|
{
|
1547 |
|
|
char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
|
1548 |
|
|
struct symbol *sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0);
|
1549 |
|
|
|
1550 |
|
|
if (sym)
|
1551 |
|
|
{
|
1552 |
|
|
gen_var_ref (gdbarch, ax, value, sym);
|
1553 |
|
|
|
1554 |
|
|
/* Don't error if the value was optimized out, we may be
|
1555 |
|
|
scanning all static fields and just want to pass over this
|
1556 |
|
|
and continue with the rest. */
|
1557 |
|
|
}
|
1558 |
|
|
else
|
1559 |
|
|
{
|
1560 |
|
|
/* Silently assume this was optimized out; class printing
|
1561 |
|
|
will let the user know why the data is missing. */
|
1562 |
|
|
value->optimized_out = 1;
|
1563 |
|
|
}
|
1564 |
|
|
}
|
1565 |
|
|
}
|
1566 |
|
|
|
1567 |
|
|
static int
|
1568 |
|
|
gen_struct_elt_for_reference (struct expression *exp,
|
1569 |
|
|
struct agent_expr *ax, struct axs_value *value,
|
1570 |
|
|
struct type *type, char *fieldname)
|
1571 |
|
|
{
|
1572 |
|
|
struct type *t = type;
|
1573 |
|
|
int i;
|
1574 |
|
|
|
1575 |
|
|
if (TYPE_CODE (t) != TYPE_CODE_STRUCT
|
1576 |
|
|
&& TYPE_CODE (t) != TYPE_CODE_UNION)
|
1577 |
|
|
internal_error (__FILE__, __LINE__,
|
1578 |
|
|
_("non-aggregate type to gen_struct_elt_for_reference"));
|
1579 |
|
|
|
1580 |
|
|
for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
|
1581 |
|
|
{
|
1582 |
|
|
char *t_field_name = TYPE_FIELD_NAME (t, i);
|
1583 |
|
|
|
1584 |
|
|
if (t_field_name && strcmp (t_field_name, fieldname) == 0)
|
1585 |
|
|
{
|
1586 |
|
|
if (field_is_static (&TYPE_FIELD (t, i)))
|
1587 |
|
|
{
|
1588 |
|
|
gen_static_field (exp->gdbarch, ax, value, t, i);
|
1589 |
|
|
if (value->optimized_out)
|
1590 |
|
|
error (_("static field `%s' has been optimized out, cannot use"),
|
1591 |
|
|
fieldname);
|
1592 |
|
|
return 1;
|
1593 |
|
|
}
|
1594 |
|
|
if (TYPE_FIELD_PACKED (t, i))
|
1595 |
|
|
error (_("pointers to bitfield members not allowed"));
|
1596 |
|
|
|
1597 |
|
|
/* FIXME we need a way to do "want_address" equivalent */
|
1598 |
|
|
|
1599 |
|
|
error (_("Cannot reference non-static field \"%s\""), fieldname);
|
1600 |
|
|
}
|
1601 |
|
|
}
|
1602 |
|
|
|
1603 |
|
|
/* FIXME add other scoped-reference cases here */
|
1604 |
|
|
|
1605 |
|
|
/* Do a last-ditch lookup. */
|
1606 |
|
|
return gen_maybe_namespace_elt (exp, ax, value, type, fieldname);
|
1607 |
|
|
}
|
1608 |
|
|
|
1609 |
|
|
/* C++: Return the member NAME of the namespace given by the type
|
1610 |
|
|
CURTYPE. */
|
1611 |
|
|
|
1612 |
|
|
static int
|
1613 |
|
|
gen_namespace_elt (struct expression *exp,
|
1614 |
|
|
struct agent_expr *ax, struct axs_value *value,
|
1615 |
|
|
const struct type *curtype, char *name)
|
1616 |
|
|
{
|
1617 |
|
|
int found = gen_maybe_namespace_elt (exp, ax, value, curtype, name);
|
1618 |
|
|
|
1619 |
|
|
if (!found)
|
1620 |
|
|
error (_("No symbol \"%s\" in namespace \"%s\"."),
|
1621 |
|
|
name, TYPE_TAG_NAME (curtype));
|
1622 |
|
|
|
1623 |
|
|
return found;
|
1624 |
|
|
}
|
1625 |
|
|
|
1626 |
|
|
/* A helper function used by value_namespace_elt and
|
1627 |
|
|
value_struct_elt_for_reference. It looks up NAME inside the
|
1628 |
|
|
context CURTYPE; this works if CURTYPE is a namespace or if CURTYPE
|
1629 |
|
|
is a class and NAME refers to a type in CURTYPE itself (as opposed
|
1630 |
|
|
to, say, some base class of CURTYPE). */
|
1631 |
|
|
|
1632 |
|
|
static int
|
1633 |
|
|
gen_maybe_namespace_elt (struct expression *exp,
|
1634 |
|
|
struct agent_expr *ax, struct axs_value *value,
|
1635 |
|
|
const struct type *curtype, char *name)
|
1636 |
|
|
{
|
1637 |
|
|
const char *namespace_name = TYPE_TAG_NAME (curtype);
|
1638 |
|
|
struct symbol *sym;
|
1639 |
|
|
|
1640 |
|
|
sym = cp_lookup_symbol_namespace (namespace_name, name,
|
1641 |
|
|
block_for_pc (ax->scope),
|
1642 |
|
|
VAR_DOMAIN);
|
1643 |
|
|
|
1644 |
|
|
if (sym == NULL)
|
1645 |
|
|
return 0;
|
1646 |
|
|
|
1647 |
|
|
gen_var_ref (exp->gdbarch, ax, value, sym);
|
1648 |
|
|
|
1649 |
|
|
if (value->optimized_out)
|
1650 |
|
|
error (_("`%s' has been optimized out, cannot use"),
|
1651 |
|
|
SYMBOL_PRINT_NAME (sym));
|
1652 |
|
|
|
1653 |
|
|
return 1;
|
1654 |
|
|
}
|
1655 |
|
|
|
1656 |
|
|
|
1657 |
|
|
static int
|
1658 |
|
|
gen_aggregate_elt_ref (struct expression *exp,
|
1659 |
|
|
struct agent_expr *ax, struct axs_value *value,
|
1660 |
|
|
struct type *type, char *field,
|
1661 |
|
|
char *operator_name, char *operand_name)
|
1662 |
|
|
{
|
1663 |
|
|
switch (TYPE_CODE (type))
|
1664 |
|
|
{
|
1665 |
|
|
case TYPE_CODE_STRUCT:
|
1666 |
|
|
case TYPE_CODE_UNION:
|
1667 |
|
|
return gen_struct_elt_for_reference (exp, ax, value, type, field);
|
1668 |
|
|
break;
|
1669 |
|
|
case TYPE_CODE_NAMESPACE:
|
1670 |
|
|
return gen_namespace_elt (exp, ax, value, type, field);
|
1671 |
|
|
break;
|
1672 |
|
|
default:
|
1673 |
|
|
internal_error (__FILE__, __LINE__,
|
1674 |
|
|
_("non-aggregate type in gen_aggregate_elt_ref"));
|
1675 |
|
|
}
|
1676 |
|
|
|
1677 |
|
|
return 0;
|
1678 |
|
|
}
|
1679 |
|
|
|
1680 |
|
|
/* Generate code for GDB's magical `repeat' operator.
|
1681 |
|
|
LVALUE @ INT creates an array INT elements long, and whose elements
|
1682 |
|
|
have the same type as LVALUE, located in memory so that LVALUE is
|
1683 |
|
|
its first element. For example, argv[0]@argc gives you the array
|
1684 |
|
|
of command-line arguments.
|
1685 |
|
|
|
1686 |
|
|
Unfortunately, because we have to know the types before we actually
|
1687 |
|
|
have a value for the expression, we can't implement this perfectly
|
1688 |
|
|
without changing the type system, having values that occupy two
|
1689 |
|
|
stack slots, doing weird things with sizeof, etc. So we require
|
1690 |
|
|
the right operand to be a constant expression. */
|
1691 |
|
|
static void
|
1692 |
|
|
gen_repeat (struct expression *exp, union exp_element **pc,
|
1693 |
|
|
struct agent_expr *ax, struct axs_value *value)
|
1694 |
|
|
{
|
1695 |
|
|
struct axs_value value1;
|
1696 |
|
|
|
1697 |
|
|
/* We don't want to turn this into an rvalue, so no conversions
|
1698 |
|
|
here. */
|
1699 |
|
|
gen_expr (exp, pc, ax, &value1);
|
1700 |
|
|
if (value1.kind != axs_lvalue_memory)
|
1701 |
|
|
error (_("Left operand of `@' must be an object in memory."));
|
1702 |
|
|
|
1703 |
|
|
/* Evaluate the length; it had better be a constant. */
|
1704 |
|
|
{
|
1705 |
|
|
struct value *v = const_expr (pc);
|
1706 |
|
|
int length;
|
1707 |
|
|
|
1708 |
|
|
if (!v)
|
1709 |
|
|
error (_("Right operand of `@' must be a constant, in agent expressions."));
|
1710 |
|
|
if (TYPE_CODE (value_type (v)) != TYPE_CODE_INT)
|
1711 |
|
|
error (_("Right operand of `@' must be an integer."));
|
1712 |
|
|
length = value_as_long (v);
|
1713 |
|
|
if (length <= 0)
|
1714 |
|
|
error (_("Right operand of `@' must be positive."));
|
1715 |
|
|
|
1716 |
|
|
/* The top of the stack is already the address of the object, so
|
1717 |
|
|
all we need to do is frob the type of the lvalue. */
|
1718 |
|
|
{
|
1719 |
|
|
/* FIXME-type-allocation: need a way to free this type when we are
|
1720 |
|
|
done with it. */
|
1721 |
|
|
struct type *array
|
1722 |
|
|
= lookup_array_range_type (value1.type, 0, length - 1);
|
1723 |
|
|
|
1724 |
|
|
value->kind = axs_lvalue_memory;
|
1725 |
|
|
value->type = array;
|
1726 |
|
|
}
|
1727 |
|
|
}
|
1728 |
|
|
}
|
1729 |
|
|
|
1730 |
|
|
|
1731 |
|
|
/* Emit code for the `sizeof' operator.
|
1732 |
|
|
*PC should point at the start of the operand expression; we advance it
|
1733 |
|
|
to the first instruction after the operand. */
|
1734 |
|
|
static void
|
1735 |
|
|
gen_sizeof (struct expression *exp, union exp_element **pc,
|
1736 |
|
|
struct agent_expr *ax, struct axs_value *value,
|
1737 |
|
|
struct type *size_type)
|
1738 |
|
|
{
|
1739 |
|
|
/* We don't care about the value of the operand expression; we only
|
1740 |
|
|
care about its type. However, in the current arrangement, the
|
1741 |
|
|
only way to find an expression's type is to generate code for it.
|
1742 |
|
|
So we generate code for the operand, and then throw it away,
|
1743 |
|
|
replacing it with code that simply pushes its size. */
|
1744 |
|
|
int start = ax->len;
|
1745 |
|
|
|
1746 |
|
|
gen_expr (exp, pc, ax, value);
|
1747 |
|
|
|
1748 |
|
|
/* Throw away the code we just generated. */
|
1749 |
|
|
ax->len = start;
|
1750 |
|
|
|
1751 |
|
|
ax_const_l (ax, TYPE_LENGTH (value->type));
|
1752 |
|
|
value->kind = axs_rvalue;
|
1753 |
|
|
value->type = size_type;
|
1754 |
|
|
}
|
1755 |
|
|
|
1756 |
|
|
|
1757 |
|
|
/* Generating bytecode from GDB expressions: general recursive thingy */
|
1758 |
|
|
|
1759 |
|
|
/* XXX: i18n */
|
1760 |
|
|
/* A gen_expr function written by a Gen-X'er guy.
|
1761 |
|
|
Append code for the subexpression of EXPR starting at *POS_P to AX. */
|
1762 |
|
|
static void
|
1763 |
|
|
gen_expr (struct expression *exp, union exp_element **pc,
|
1764 |
|
|
struct agent_expr *ax, struct axs_value *value)
|
1765 |
|
|
{
|
1766 |
|
|
/* Used to hold the descriptions of operand expressions. */
|
1767 |
|
|
struct axs_value value1, value2, value3;
|
1768 |
|
|
enum exp_opcode op = (*pc)[0].opcode, op2;
|
1769 |
|
|
int if1, go1, if2, go2, end;
|
1770 |
|
|
struct type *int_type = builtin_type (exp->gdbarch)->builtin_int;
|
1771 |
|
|
|
1772 |
|
|
/* If we're looking at a constant expression, just push its value. */
|
1773 |
|
|
{
|
1774 |
|
|
struct value *v = maybe_const_expr (pc);
|
1775 |
|
|
|
1776 |
|
|
if (v)
|
1777 |
|
|
{
|
1778 |
|
|
ax_const_l (ax, value_as_long (v));
|
1779 |
|
|
value->kind = axs_rvalue;
|
1780 |
|
|
value->type = check_typedef (value_type (v));
|
1781 |
|
|
return;
|
1782 |
|
|
}
|
1783 |
|
|
}
|
1784 |
|
|
|
1785 |
|
|
/* Otherwise, go ahead and generate code for it. */
|
1786 |
|
|
switch (op)
|
1787 |
|
|
{
|
1788 |
|
|
/* Binary arithmetic operators. */
|
1789 |
|
|
case BINOP_ADD:
|
1790 |
|
|
case BINOP_SUB:
|
1791 |
|
|
case BINOP_MUL:
|
1792 |
|
|
case BINOP_DIV:
|
1793 |
|
|
case BINOP_REM:
|
1794 |
|
|
case BINOP_LSH:
|
1795 |
|
|
case BINOP_RSH:
|
1796 |
|
|
case BINOP_SUBSCRIPT:
|
1797 |
|
|
case BINOP_BITWISE_AND:
|
1798 |
|
|
case BINOP_BITWISE_IOR:
|
1799 |
|
|
case BINOP_BITWISE_XOR:
|
1800 |
|
|
case BINOP_EQUAL:
|
1801 |
|
|
case BINOP_NOTEQUAL:
|
1802 |
|
|
case BINOP_LESS:
|
1803 |
|
|
case BINOP_GTR:
|
1804 |
|
|
case BINOP_LEQ:
|
1805 |
|
|
case BINOP_GEQ:
|
1806 |
|
|
(*pc)++;
|
1807 |
|
|
gen_expr (exp, pc, ax, &value1);
|
1808 |
|
|
gen_usual_unary (exp, ax, &value1);
|
1809 |
|
|
gen_expr_binop_rest (exp, op, pc, ax, value, &value1, &value2);
|
1810 |
|
|
break;
|
1811 |
|
|
|
1812 |
|
|
case BINOP_LOGICAL_AND:
|
1813 |
|
|
(*pc)++;
|
1814 |
|
|
/* Generate the obvious sequence of tests and jumps. */
|
1815 |
|
|
gen_expr (exp, pc, ax, &value1);
|
1816 |
|
|
gen_usual_unary (exp, ax, &value1);
|
1817 |
|
|
if1 = ax_goto (ax, aop_if_goto);
|
1818 |
|
|
go1 = ax_goto (ax, aop_goto);
|
1819 |
|
|
ax_label (ax, if1, ax->len);
|
1820 |
|
|
gen_expr (exp, pc, ax, &value2);
|
1821 |
|
|
gen_usual_unary (exp, ax, &value2);
|
1822 |
|
|
if2 = ax_goto (ax, aop_if_goto);
|
1823 |
|
|
go2 = ax_goto (ax, aop_goto);
|
1824 |
|
|
ax_label (ax, if2, ax->len);
|
1825 |
|
|
ax_const_l (ax, 1);
|
1826 |
|
|
end = ax_goto (ax, aop_goto);
|
1827 |
|
|
ax_label (ax, go1, ax->len);
|
1828 |
|
|
ax_label (ax, go2, ax->len);
|
1829 |
|
|
ax_const_l (ax, 0);
|
1830 |
|
|
ax_label (ax, end, ax->len);
|
1831 |
|
|
value->kind = axs_rvalue;
|
1832 |
|
|
value->type = int_type;
|
1833 |
|
|
break;
|
1834 |
|
|
|
1835 |
|
|
case BINOP_LOGICAL_OR:
|
1836 |
|
|
(*pc)++;
|
1837 |
|
|
/* Generate the obvious sequence of tests and jumps. */
|
1838 |
|
|
gen_expr (exp, pc, ax, &value1);
|
1839 |
|
|
gen_usual_unary (exp, ax, &value1);
|
1840 |
|
|
if1 = ax_goto (ax, aop_if_goto);
|
1841 |
|
|
gen_expr (exp, pc, ax, &value2);
|
1842 |
|
|
gen_usual_unary (exp, ax, &value2);
|
1843 |
|
|
if2 = ax_goto (ax, aop_if_goto);
|
1844 |
|
|
ax_const_l (ax, 0);
|
1845 |
|
|
end = ax_goto (ax, aop_goto);
|
1846 |
|
|
ax_label (ax, if1, ax->len);
|
1847 |
|
|
ax_label (ax, if2, ax->len);
|
1848 |
|
|
ax_const_l (ax, 1);
|
1849 |
|
|
ax_label (ax, end, ax->len);
|
1850 |
|
|
value->kind = axs_rvalue;
|
1851 |
|
|
value->type = int_type;
|
1852 |
|
|
break;
|
1853 |
|
|
|
1854 |
|
|
case TERNOP_COND:
|
1855 |
|
|
(*pc)++;
|
1856 |
|
|
gen_expr (exp, pc, ax, &value1);
|
1857 |
|
|
gen_usual_unary (exp, ax, &value1);
|
1858 |
|
|
/* For (A ? B : C), it's easiest to generate subexpression
|
1859 |
|
|
bytecodes in order, but if_goto jumps on true, so we invert
|
1860 |
|
|
the sense of A. Then we can do B by dropping through, and
|
1861 |
|
|
jump to do C. */
|
1862 |
|
|
gen_logical_not (ax, &value1, int_type);
|
1863 |
|
|
if1 = ax_goto (ax, aop_if_goto);
|
1864 |
|
|
gen_expr (exp, pc, ax, &value2);
|
1865 |
|
|
gen_usual_unary (exp, ax, &value2);
|
1866 |
|
|
end = ax_goto (ax, aop_goto);
|
1867 |
|
|
ax_label (ax, if1, ax->len);
|
1868 |
|
|
gen_expr (exp, pc, ax, &value3);
|
1869 |
|
|
gen_usual_unary (exp, ax, &value3);
|
1870 |
|
|
ax_label (ax, end, ax->len);
|
1871 |
|
|
/* This is arbitary - what if B and C are incompatible types? */
|
1872 |
|
|
value->type = value2.type;
|
1873 |
|
|
value->kind = value2.kind;
|
1874 |
|
|
break;
|
1875 |
|
|
|
1876 |
|
|
case BINOP_ASSIGN:
|
1877 |
|
|
(*pc)++;
|
1878 |
|
|
if ((*pc)[0].opcode == OP_INTERNALVAR)
|
1879 |
|
|
{
|
1880 |
|
|
char *name = internalvar_name ((*pc)[1].internalvar);
|
1881 |
|
|
struct trace_state_variable *tsv;
|
1882 |
|
|
|
1883 |
|
|
(*pc) += 3;
|
1884 |
|
|
gen_expr (exp, pc, ax, value);
|
1885 |
|
|
tsv = find_trace_state_variable (name);
|
1886 |
|
|
if (tsv)
|
1887 |
|
|
{
|
1888 |
|
|
ax_tsv (ax, aop_setv, tsv->number);
|
1889 |
|
|
if (trace_kludge)
|
1890 |
|
|
ax_tsv (ax, aop_tracev, tsv->number);
|
1891 |
|
|
}
|
1892 |
|
|
else
|
1893 |
|
|
error (_("$%s is not a trace state variable, may not assign to it"), name);
|
1894 |
|
|
}
|
1895 |
|
|
else
|
1896 |
|
|
error (_("May only assign to trace state variables"));
|
1897 |
|
|
break;
|
1898 |
|
|
|
1899 |
|
|
case BINOP_ASSIGN_MODIFY:
|
1900 |
|
|
(*pc)++;
|
1901 |
|
|
op2 = (*pc)[0].opcode;
|
1902 |
|
|
(*pc)++;
|
1903 |
|
|
(*pc)++;
|
1904 |
|
|
if ((*pc)[0].opcode == OP_INTERNALVAR)
|
1905 |
|
|
{
|
1906 |
|
|
char *name = internalvar_name ((*pc)[1].internalvar);
|
1907 |
|
|
struct trace_state_variable *tsv;
|
1908 |
|
|
|
1909 |
|
|
(*pc) += 3;
|
1910 |
|
|
tsv = find_trace_state_variable (name);
|
1911 |
|
|
if (tsv)
|
1912 |
|
|
{
|
1913 |
|
|
/* The tsv will be the left half of the binary operation. */
|
1914 |
|
|
ax_tsv (ax, aop_getv, tsv->number);
|
1915 |
|
|
if (trace_kludge)
|
1916 |
|
|
ax_tsv (ax, aop_tracev, tsv->number);
|
1917 |
|
|
/* Trace state variables are always 64-bit integers. */
|
1918 |
|
|
value1.kind = axs_rvalue;
|
1919 |
|
|
value1.type = builtin_type (exp->gdbarch)->builtin_long_long;
|
1920 |
|
|
/* Now do right half of expression. */
|
1921 |
|
|
gen_expr_binop_rest (exp, op2, pc, ax, value, &value1, &value2);
|
1922 |
|
|
/* We have a result of the binary op, set the tsv. */
|
1923 |
|
|
ax_tsv (ax, aop_setv, tsv->number);
|
1924 |
|
|
if (trace_kludge)
|
1925 |
|
|
ax_tsv (ax, aop_tracev, tsv->number);
|
1926 |
|
|
}
|
1927 |
|
|
else
|
1928 |
|
|
error (_("$%s is not a trace state variable, may not assign to it"), name);
|
1929 |
|
|
}
|
1930 |
|
|
else
|
1931 |
|
|
error (_("May only assign to trace state variables"));
|
1932 |
|
|
break;
|
1933 |
|
|
|
1934 |
|
|
/* Note that we need to be a little subtle about generating code
|
1935 |
|
|
for comma. In C, we can do some optimizations here because
|
1936 |
|
|
we know the left operand is only being evaluated for effect.
|
1937 |
|
|
However, if the tracing kludge is in effect, then we always
|
1938 |
|
|
need to evaluate the left hand side fully, so that all the
|
1939 |
|
|
variables it mentions get traced. */
|
1940 |
|
|
case BINOP_COMMA:
|
1941 |
|
|
(*pc)++;
|
1942 |
|
|
gen_expr (exp, pc, ax, &value1);
|
1943 |
|
|
/* Don't just dispose of the left operand. We might be tracing,
|
1944 |
|
|
in which case we want to emit code to trace it if it's an
|
1945 |
|
|
lvalue. */
|
1946 |
|
|
gen_traced_pop (exp->gdbarch, ax, &value1);
|
1947 |
|
|
gen_expr (exp, pc, ax, value);
|
1948 |
|
|
/* It's the consumer's responsibility to trace the right operand. */
|
1949 |
|
|
break;
|
1950 |
|
|
|
1951 |
|
|
case OP_LONG: /* some integer constant */
|
1952 |
|
|
{
|
1953 |
|
|
struct type *type = (*pc)[1].type;
|
1954 |
|
|
LONGEST k = (*pc)[2].longconst;
|
1955 |
|
|
|
1956 |
|
|
(*pc) += 4;
|
1957 |
|
|
gen_int_literal (ax, value, k, type);
|
1958 |
|
|
}
|
1959 |
|
|
break;
|
1960 |
|
|
|
1961 |
|
|
case OP_VAR_VALUE:
|
1962 |
|
|
gen_var_ref (exp->gdbarch, ax, value, (*pc)[2].symbol);
|
1963 |
|
|
|
1964 |
|
|
if (value->optimized_out)
|
1965 |
|
|
error (_("`%s' has been optimized out, cannot use"),
|
1966 |
|
|
SYMBOL_PRINT_NAME ((*pc)[2].symbol));
|
1967 |
|
|
|
1968 |
|
|
(*pc) += 4;
|
1969 |
|
|
break;
|
1970 |
|
|
|
1971 |
|
|
case OP_REGISTER:
|
1972 |
|
|
{
|
1973 |
|
|
const char *name = &(*pc)[2].string;
|
1974 |
|
|
int reg;
|
1975 |
|
|
|
1976 |
|
|
(*pc) += 4 + BYTES_TO_EXP_ELEM ((*pc)[1].longconst + 1);
|
1977 |
|
|
reg = user_reg_map_name_to_regnum (exp->gdbarch, name, strlen (name));
|
1978 |
|
|
if (reg == -1)
|
1979 |
|
|
internal_error (__FILE__, __LINE__,
|
1980 |
|
|
_("Register $%s not available"), name);
|
1981 |
|
|
if (reg >= gdbarch_num_regs (exp->gdbarch))
|
1982 |
|
|
error (_("'%s' is a pseudo-register; "
|
1983 |
|
|
"GDB cannot yet trace pseudoregister contents."),
|
1984 |
|
|
name);
|
1985 |
|
|
value->kind = axs_lvalue_register;
|
1986 |
|
|
value->u.reg = reg;
|
1987 |
|
|
value->type = register_type (exp->gdbarch, reg);
|
1988 |
|
|
}
|
1989 |
|
|
break;
|
1990 |
|
|
|
1991 |
|
|
case OP_INTERNALVAR:
|
1992 |
|
|
{
|
1993 |
|
|
const char *name = internalvar_name ((*pc)[1].internalvar);
|
1994 |
|
|
struct trace_state_variable *tsv;
|
1995 |
|
|
|
1996 |
|
|
(*pc) += 3;
|
1997 |
|
|
tsv = find_trace_state_variable (name);
|
1998 |
|
|
if (tsv)
|
1999 |
|
|
{
|
2000 |
|
|
ax_tsv (ax, aop_getv, tsv->number);
|
2001 |
|
|
if (trace_kludge)
|
2002 |
|
|
ax_tsv (ax, aop_tracev, tsv->number);
|
2003 |
|
|
/* Trace state variables are always 64-bit integers. */
|
2004 |
|
|
value->kind = axs_rvalue;
|
2005 |
|
|
value->type = builtin_type (exp->gdbarch)->builtin_long_long;
|
2006 |
|
|
}
|
2007 |
|
|
else
|
2008 |
|
|
error (_("$%s is not a trace state variable; GDB agent expressions cannot use convenience variables."), name);
|
2009 |
|
|
}
|
2010 |
|
|
break;
|
2011 |
|
|
|
2012 |
|
|
/* Weirdo operator: see comments for gen_repeat for details. */
|
2013 |
|
|
case BINOP_REPEAT:
|
2014 |
|
|
/* Note that gen_repeat handles its own argument evaluation. */
|
2015 |
|
|
(*pc)++;
|
2016 |
|
|
gen_repeat (exp, pc, ax, value);
|
2017 |
|
|
break;
|
2018 |
|
|
|
2019 |
|
|
case UNOP_CAST:
|
2020 |
|
|
{
|
2021 |
|
|
struct type *type = (*pc)[1].type;
|
2022 |
|
|
|
2023 |
|
|
(*pc) += 3;
|
2024 |
|
|
gen_expr (exp, pc, ax, value);
|
2025 |
|
|
gen_cast (ax, value, type);
|
2026 |
|
|
}
|
2027 |
|
|
break;
|
2028 |
|
|
|
2029 |
|
|
case UNOP_MEMVAL:
|
2030 |
|
|
{
|
2031 |
|
|
struct type *type = check_typedef ((*pc)[1].type);
|
2032 |
|
|
|
2033 |
|
|
(*pc) += 3;
|
2034 |
|
|
gen_expr (exp, pc, ax, value);
|
2035 |
|
|
/* I'm not sure I understand UNOP_MEMVAL entirely. I think
|
2036 |
|
|
it's just a hack for dealing with minsyms; you take some
|
2037 |
|
|
integer constant, pretend it's the address of an lvalue of
|
2038 |
|
|
the given type, and dereference it. */
|
2039 |
|
|
if (value->kind != axs_rvalue)
|
2040 |
|
|
/* This would be weird. */
|
2041 |
|
|
internal_error (__FILE__, __LINE__,
|
2042 |
|
|
_("gen_expr: OP_MEMVAL operand isn't an rvalue???"));
|
2043 |
|
|
value->type = type;
|
2044 |
|
|
value->kind = axs_lvalue_memory;
|
2045 |
|
|
}
|
2046 |
|
|
break;
|
2047 |
|
|
|
2048 |
|
|
case UNOP_PLUS:
|
2049 |
|
|
(*pc)++;
|
2050 |
|
|
/* + FOO is equivalent to 0 + FOO, which can be optimized. */
|
2051 |
|
|
gen_expr (exp, pc, ax, value);
|
2052 |
|
|
gen_usual_unary (exp, ax, value);
|
2053 |
|
|
break;
|
2054 |
|
|
|
2055 |
|
|
case UNOP_NEG:
|
2056 |
|
|
(*pc)++;
|
2057 |
|
|
/* -FOO is equivalent to 0 - FOO. */
|
2058 |
|
|
gen_int_literal (ax, &value1, 0,
|
2059 |
|
|
builtin_type (exp->gdbarch)->builtin_int);
|
2060 |
|
|
gen_usual_unary (exp, ax, &value1); /* shouldn't do much */
|
2061 |
|
|
gen_expr (exp, pc, ax, &value2);
|
2062 |
|
|
gen_usual_unary (exp, ax, &value2);
|
2063 |
|
|
gen_usual_arithmetic (exp, ax, &value1, &value2);
|
2064 |
|
|
gen_binop (ax, value, &value1, &value2, aop_sub, aop_sub, 1, "negation");
|
2065 |
|
|
break;
|
2066 |
|
|
|
2067 |
|
|
case UNOP_LOGICAL_NOT:
|
2068 |
|
|
(*pc)++;
|
2069 |
|
|
gen_expr (exp, pc, ax, value);
|
2070 |
|
|
gen_usual_unary (exp, ax, value);
|
2071 |
|
|
gen_logical_not (ax, value, int_type);
|
2072 |
|
|
break;
|
2073 |
|
|
|
2074 |
|
|
case UNOP_COMPLEMENT:
|
2075 |
|
|
(*pc)++;
|
2076 |
|
|
gen_expr (exp, pc, ax, value);
|
2077 |
|
|
gen_usual_unary (exp, ax, value);
|
2078 |
|
|
gen_integral_promotions (exp, ax, value);
|
2079 |
|
|
gen_complement (ax, value);
|
2080 |
|
|
break;
|
2081 |
|
|
|
2082 |
|
|
case UNOP_IND:
|
2083 |
|
|
(*pc)++;
|
2084 |
|
|
gen_expr (exp, pc, ax, value);
|
2085 |
|
|
gen_usual_unary (exp, ax, value);
|
2086 |
|
|
if (!pointer_type (value->type))
|
2087 |
|
|
error (_("Argument of unary `*' is not a pointer."));
|
2088 |
|
|
gen_deref (ax, value);
|
2089 |
|
|
break;
|
2090 |
|
|
|
2091 |
|
|
case UNOP_ADDR:
|
2092 |
|
|
(*pc)++;
|
2093 |
|
|
gen_expr (exp, pc, ax, value);
|
2094 |
|
|
gen_address_of (ax, value);
|
2095 |
|
|
break;
|
2096 |
|
|
|
2097 |
|
|
case UNOP_SIZEOF:
|
2098 |
|
|
(*pc)++;
|
2099 |
|
|
/* Notice that gen_sizeof handles its own operand, unlike most
|
2100 |
|
|
of the other unary operator functions. This is because we
|
2101 |
|
|
have to throw away the code we generate. */
|
2102 |
|
|
gen_sizeof (exp, pc, ax, value,
|
2103 |
|
|
builtin_type (exp->gdbarch)->builtin_int);
|
2104 |
|
|
break;
|
2105 |
|
|
|
2106 |
|
|
case STRUCTOP_STRUCT:
|
2107 |
|
|
case STRUCTOP_PTR:
|
2108 |
|
|
{
|
2109 |
|
|
int length = (*pc)[1].longconst;
|
2110 |
|
|
char *name = &(*pc)[2].string;
|
2111 |
|
|
|
2112 |
|
|
(*pc) += 4 + BYTES_TO_EXP_ELEM (length + 1);
|
2113 |
|
|
gen_expr (exp, pc, ax, value);
|
2114 |
|
|
if (op == STRUCTOP_STRUCT)
|
2115 |
|
|
gen_struct_ref (exp, ax, value, name, ".", "structure or union");
|
2116 |
|
|
else if (op == STRUCTOP_PTR)
|
2117 |
|
|
gen_struct_ref (exp, ax, value, name, "->",
|
2118 |
|
|
"pointer to a structure or union");
|
2119 |
|
|
else
|
2120 |
|
|
/* If this `if' chain doesn't handle it, then the case list
|
2121 |
|
|
shouldn't mention it, and we shouldn't be here. */
|
2122 |
|
|
internal_error (__FILE__, __LINE__,
|
2123 |
|
|
_("gen_expr: unhandled struct case"));
|
2124 |
|
|
}
|
2125 |
|
|
break;
|
2126 |
|
|
|
2127 |
|
|
case OP_THIS:
|
2128 |
|
|
{
|
2129 |
|
|
char *this_name;
|
2130 |
|
|
struct symbol *func, *sym;
|
2131 |
|
|
struct block *b;
|
2132 |
|
|
|
2133 |
|
|
func = block_linkage_function (block_for_pc (ax->scope));
|
2134 |
|
|
this_name = language_def (SYMBOL_LANGUAGE (func))->la_name_of_this;
|
2135 |
|
|
b = SYMBOL_BLOCK_VALUE (func);
|
2136 |
|
|
|
2137 |
|
|
/* Calling lookup_block_symbol is necessary to get the LOC_REGISTER
|
2138 |
|
|
symbol instead of the LOC_ARG one (if both exist). */
|
2139 |
|
|
sym = lookup_block_symbol (b, this_name, VAR_DOMAIN);
|
2140 |
|
|
if (!sym)
|
2141 |
|
|
error (_("no `%s' found"), this_name);
|
2142 |
|
|
|
2143 |
|
|
gen_var_ref (exp->gdbarch, ax, value, sym);
|
2144 |
|
|
|
2145 |
|
|
if (value->optimized_out)
|
2146 |
|
|
error (_("`%s' has been optimized out, cannot use"),
|
2147 |
|
|
SYMBOL_PRINT_NAME (sym));
|
2148 |
|
|
|
2149 |
|
|
(*pc) += 2;
|
2150 |
|
|
}
|
2151 |
|
|
break;
|
2152 |
|
|
|
2153 |
|
|
case OP_SCOPE:
|
2154 |
|
|
{
|
2155 |
|
|
struct type *type = (*pc)[1].type;
|
2156 |
|
|
int length = longest_to_int ((*pc)[2].longconst);
|
2157 |
|
|
char *name = &(*pc)[3].string;
|
2158 |
|
|
int found;
|
2159 |
|
|
|
2160 |
|
|
found = gen_aggregate_elt_ref (exp, ax, value, type, name,
|
2161 |
|
|
"?", "??");
|
2162 |
|
|
if (!found)
|
2163 |
|
|
error (_("There is no field named %s"), name);
|
2164 |
|
|
(*pc) += 5 + BYTES_TO_EXP_ELEM (length + 1);
|
2165 |
|
|
}
|
2166 |
|
|
break;
|
2167 |
|
|
|
2168 |
|
|
case OP_TYPE:
|
2169 |
|
|
error (_("Attempt to use a type name as an expression."));
|
2170 |
|
|
|
2171 |
|
|
default:
|
2172 |
|
|
error (_("Unsupported operator %s (%d) in expression."),
|
2173 |
|
|
op_string (op), op);
|
2174 |
|
|
}
|
2175 |
|
|
}
|
2176 |
|
|
|
2177 |
|
|
/* This handles the middle-to-right-side of code generation for binary
|
2178 |
|
|
expressions, which is shared between regular binary operations and
|
2179 |
|
|
assign-modify (+= and friends) expressions. */
|
2180 |
|
|
|
2181 |
|
|
static void
|
2182 |
|
|
gen_expr_binop_rest (struct expression *exp,
|
2183 |
|
|
enum exp_opcode op, union exp_element **pc,
|
2184 |
|
|
struct agent_expr *ax, struct axs_value *value,
|
2185 |
|
|
struct axs_value *value1, struct axs_value *value2)
|
2186 |
|
|
{
|
2187 |
|
|
struct type *int_type = builtin_type (exp->gdbarch)->builtin_int;
|
2188 |
|
|
|
2189 |
|
|
gen_expr (exp, pc, ax, value2);
|
2190 |
|
|
gen_usual_unary (exp, ax, value2);
|
2191 |
|
|
gen_usual_arithmetic (exp, ax, value1, value2);
|
2192 |
|
|
switch (op)
|
2193 |
|
|
{
|
2194 |
|
|
case BINOP_ADD:
|
2195 |
|
|
if (TYPE_CODE (value1->type) == TYPE_CODE_INT
|
2196 |
|
|
&& pointer_type (value2->type))
|
2197 |
|
|
{
|
2198 |
|
|
/* Swap the values and proceed normally. */
|
2199 |
|
|
ax_simple (ax, aop_swap);
|
2200 |
|
|
gen_ptradd (ax, value, value2, value1);
|
2201 |
|
|
}
|
2202 |
|
|
else if (pointer_type (value1->type)
|
2203 |
|
|
&& TYPE_CODE (value2->type) == TYPE_CODE_INT)
|
2204 |
|
|
gen_ptradd (ax, value, value1, value2);
|
2205 |
|
|
else
|
2206 |
|
|
gen_binop (ax, value, value1, value2,
|
2207 |
|
|
aop_add, aop_add, 1, "addition");
|
2208 |
|
|
break;
|
2209 |
|
|
case BINOP_SUB:
|
2210 |
|
|
if (pointer_type (value1->type)
|
2211 |
|
|
&& TYPE_CODE (value2->type) == TYPE_CODE_INT)
|
2212 |
|
|
gen_ptrsub (ax,value, value1, value2);
|
2213 |
|
|
else if (pointer_type (value1->type)
|
2214 |
|
|
&& pointer_type (value2->type))
|
2215 |
|
|
/* FIXME --- result type should be ptrdiff_t */
|
2216 |
|
|
gen_ptrdiff (ax, value, value1, value2,
|
2217 |
|
|
builtin_type (exp->gdbarch)->builtin_long);
|
2218 |
|
|
else
|
2219 |
|
|
gen_binop (ax, value, value1, value2,
|
2220 |
|
|
aop_sub, aop_sub, 1, "subtraction");
|
2221 |
|
|
break;
|
2222 |
|
|
case BINOP_MUL:
|
2223 |
|
|
gen_binop (ax, value, value1, value2,
|
2224 |
|
|
aop_mul, aop_mul, 1, "multiplication");
|
2225 |
|
|
break;
|
2226 |
|
|
case BINOP_DIV:
|
2227 |
|
|
gen_binop (ax, value, value1, value2,
|
2228 |
|
|
aop_div_signed, aop_div_unsigned, 1, "division");
|
2229 |
|
|
break;
|
2230 |
|
|
case BINOP_REM:
|
2231 |
|
|
gen_binop (ax, value, value1, value2,
|
2232 |
|
|
aop_rem_signed, aop_rem_unsigned, 1, "remainder");
|
2233 |
|
|
break;
|
2234 |
|
|
case BINOP_LSH:
|
2235 |
|
|
gen_binop (ax, value, value1, value2,
|
2236 |
|
|
aop_lsh, aop_lsh, 1, "left shift");
|
2237 |
|
|
break;
|
2238 |
|
|
case BINOP_RSH:
|
2239 |
|
|
gen_binop (ax, value, value1, value2,
|
2240 |
|
|
aop_rsh_signed, aop_rsh_unsigned, 1, "right shift");
|
2241 |
|
|
break;
|
2242 |
|
|
case BINOP_SUBSCRIPT:
|
2243 |
|
|
{
|
2244 |
|
|
struct type *type;
|
2245 |
|
|
|
2246 |
|
|
if (binop_types_user_defined_p (op, value1->type, value2->type))
|
2247 |
|
|
{
|
2248 |
|
|
error (_("\
|
2249 |
|
|
cannot subscript requested type: cannot call user defined functions"));
|
2250 |
|
|
}
|
2251 |
|
|
else
|
2252 |
|
|
{
|
2253 |
|
|
/* If the user attempts to subscript something that is not
|
2254 |
|
|
an array or pointer type (like a plain int variable for
|
2255 |
|
|
example), then report this as an error. */
|
2256 |
|
|
type = check_typedef (value1->type);
|
2257 |
|
|
if (TYPE_CODE (type) != TYPE_CODE_ARRAY
|
2258 |
|
|
&& TYPE_CODE (type) != TYPE_CODE_PTR)
|
2259 |
|
|
{
|
2260 |
|
|
if (TYPE_NAME (type))
|
2261 |
|
|
error (_("cannot subscript something of type `%s'"),
|
2262 |
|
|
TYPE_NAME (type));
|
2263 |
|
|
else
|
2264 |
|
|
error (_("cannot subscript requested type"));
|
2265 |
|
|
}
|
2266 |
|
|
}
|
2267 |
|
|
|
2268 |
|
|
if (!is_integral_type (value2->type))
|
2269 |
|
|
error (_("Argument to arithmetic operation not a number or boolean."));
|
2270 |
|
|
|
2271 |
|
|
gen_ptradd (ax, value, value1, value2);
|
2272 |
|
|
gen_deref (ax, value);
|
2273 |
|
|
break;
|
2274 |
|
|
}
|
2275 |
|
|
case BINOP_BITWISE_AND:
|
2276 |
|
|
gen_binop (ax, value, value1, value2,
|
2277 |
|
|
aop_bit_and, aop_bit_and, 0, "bitwise and");
|
2278 |
|
|
break;
|
2279 |
|
|
|
2280 |
|
|
case BINOP_BITWISE_IOR:
|
2281 |
|
|
gen_binop (ax, value, value1, value2,
|
2282 |
|
|
aop_bit_or, aop_bit_or, 0, "bitwise or");
|
2283 |
|
|
break;
|
2284 |
|
|
|
2285 |
|
|
case BINOP_BITWISE_XOR:
|
2286 |
|
|
gen_binop (ax, value, value1, value2,
|
2287 |
|
|
aop_bit_xor, aop_bit_xor, 0, "bitwise exclusive-or");
|
2288 |
|
|
break;
|
2289 |
|
|
|
2290 |
|
|
case BINOP_EQUAL:
|
2291 |
|
|
gen_equal (ax, value, value1, value2, int_type);
|
2292 |
|
|
break;
|
2293 |
|
|
|
2294 |
|
|
case BINOP_NOTEQUAL:
|
2295 |
|
|
gen_equal (ax, value, value1, value2, int_type);
|
2296 |
|
|
gen_logical_not (ax, value, int_type);
|
2297 |
|
|
break;
|
2298 |
|
|
|
2299 |
|
|
case BINOP_LESS:
|
2300 |
|
|
gen_less (ax, value, value1, value2, int_type);
|
2301 |
|
|
break;
|
2302 |
|
|
|
2303 |
|
|
case BINOP_GTR:
|
2304 |
|
|
ax_simple (ax, aop_swap);
|
2305 |
|
|
gen_less (ax, value, value1, value2, int_type);
|
2306 |
|
|
break;
|
2307 |
|
|
|
2308 |
|
|
case BINOP_LEQ:
|
2309 |
|
|
ax_simple (ax, aop_swap);
|
2310 |
|
|
gen_less (ax, value, value1, value2, int_type);
|
2311 |
|
|
gen_logical_not (ax, value, int_type);
|
2312 |
|
|
break;
|
2313 |
|
|
|
2314 |
|
|
case BINOP_GEQ:
|
2315 |
|
|
gen_less (ax, value, value1, value2, int_type);
|
2316 |
|
|
gen_logical_not (ax, value, int_type);
|
2317 |
|
|
break;
|
2318 |
|
|
|
2319 |
|
|
default:
|
2320 |
|
|
/* We should only list operators in the outer case statement
|
2321 |
|
|
that we actually handle in the inner case statement. */
|
2322 |
|
|
internal_error (__FILE__, __LINE__,
|
2323 |
|
|
_("gen_expr: op case sets don't match"));
|
2324 |
|
|
}
|
2325 |
|
|
}
|
2326 |
|
|
|
2327 |
|
|
|
2328 |
|
|
/* Given a single variable and a scope, generate bytecodes to trace
|
2329 |
|
|
its value. This is for use in situations where we have only a
|
2330 |
|
|
variable's name, and no parsed expression; for instance, when the
|
2331 |
|
|
name comes from a list of local variables of a function. */
|
2332 |
|
|
|
2333 |
|
|
struct agent_expr *
|
2334 |
|
|
gen_trace_for_var (CORE_ADDR scope, struct gdbarch *gdbarch,
|
2335 |
|
|
struct symbol *var)
|
2336 |
|
|
{
|
2337 |
|
|
struct cleanup *old_chain = 0;
|
2338 |
|
|
struct agent_expr *ax = new_agent_expr (gdbarch, scope);
|
2339 |
|
|
struct axs_value value;
|
2340 |
|
|
|
2341 |
|
|
old_chain = make_cleanup_free_agent_expr (ax);
|
2342 |
|
|
|
2343 |
|
|
trace_kludge = 1;
|
2344 |
|
|
gen_var_ref (gdbarch, ax, &value, var);
|
2345 |
|
|
|
2346 |
|
|
/* If there is no actual variable to trace, flag it by returning
|
2347 |
|
|
an empty agent expression. */
|
2348 |
|
|
if (value.optimized_out)
|
2349 |
|
|
{
|
2350 |
|
|
do_cleanups (old_chain);
|
2351 |
|
|
return NULL;
|
2352 |
|
|
}
|
2353 |
|
|
|
2354 |
|
|
/* Make sure we record the final object, and get rid of it. */
|
2355 |
|
|
gen_traced_pop (gdbarch, ax, &value);
|
2356 |
|
|
|
2357 |
|
|
/* Oh, and terminate. */
|
2358 |
|
|
ax_simple (ax, aop_end);
|
2359 |
|
|
|
2360 |
|
|
/* We have successfully built the agent expr, so cancel the cleanup
|
2361 |
|
|
request. If we add more cleanups that we always want done, this
|
2362 |
|
|
will have to get more complicated. */
|
2363 |
|
|
discard_cleanups (old_chain);
|
2364 |
|
|
return ax;
|
2365 |
|
|
}
|
2366 |
|
|
|
2367 |
|
|
/* Generating bytecode from GDB expressions: driver */
|
2368 |
|
|
|
2369 |
|
|
/* Given a GDB expression EXPR, return bytecode to trace its value.
|
2370 |
|
|
The result will use the `trace' and `trace_quick' bytecodes to
|
2371 |
|
|
record the value of all memory touched by the expression. The
|
2372 |
|
|
caller can then use the ax_reqs function to discover which
|
2373 |
|
|
registers it relies upon. */
|
2374 |
|
|
struct agent_expr *
|
2375 |
|
|
gen_trace_for_expr (CORE_ADDR scope, struct expression *expr)
|
2376 |
|
|
{
|
2377 |
|
|
struct cleanup *old_chain = 0;
|
2378 |
|
|
struct agent_expr *ax = new_agent_expr (expr->gdbarch, scope);
|
2379 |
|
|
union exp_element *pc;
|
2380 |
|
|
struct axs_value value;
|
2381 |
|
|
|
2382 |
|
|
old_chain = make_cleanup_free_agent_expr (ax);
|
2383 |
|
|
|
2384 |
|
|
pc = expr->elts;
|
2385 |
|
|
trace_kludge = 1;
|
2386 |
|
|
value.optimized_out = 0;
|
2387 |
|
|
gen_expr (expr, &pc, ax, &value);
|
2388 |
|
|
|
2389 |
|
|
/* Make sure we record the final object, and get rid of it. */
|
2390 |
|
|
gen_traced_pop (expr->gdbarch, ax, &value);
|
2391 |
|
|
|
2392 |
|
|
/* Oh, and terminate. */
|
2393 |
|
|
ax_simple (ax, aop_end);
|
2394 |
|
|
|
2395 |
|
|
/* We have successfully built the agent expr, so cancel the cleanup
|
2396 |
|
|
request. If we add more cleanups that we always want done, this
|
2397 |
|
|
will have to get more complicated. */
|
2398 |
|
|
discard_cleanups (old_chain);
|
2399 |
|
|
return ax;
|
2400 |
|
|
}
|
2401 |
|
|
|
2402 |
|
|
/* Given a GDB expression EXPR, return a bytecode sequence that will
|
2403 |
|
|
evaluate and return a result. The bytecodes will do a direct
|
2404 |
|
|
evaluation, using the current data on the target, rather than
|
2405 |
|
|
recording blocks of memory and registers for later use, as
|
2406 |
|
|
gen_trace_for_expr does. The generated bytecode sequence leaves
|
2407 |
|
|
the result of expression evaluation on the top of the stack. */
|
2408 |
|
|
|
2409 |
|
|
struct agent_expr *
|
2410 |
|
|
gen_eval_for_expr (CORE_ADDR scope, struct expression *expr)
|
2411 |
|
|
{
|
2412 |
|
|
struct cleanup *old_chain = 0;
|
2413 |
|
|
struct agent_expr *ax = new_agent_expr (expr->gdbarch, scope);
|
2414 |
|
|
union exp_element *pc;
|
2415 |
|
|
struct axs_value value;
|
2416 |
|
|
|
2417 |
|
|
old_chain = make_cleanup_free_agent_expr (ax);
|
2418 |
|
|
|
2419 |
|
|
pc = expr->elts;
|
2420 |
|
|
trace_kludge = 0;
|
2421 |
|
|
value.optimized_out = 0;
|
2422 |
|
|
gen_expr (expr, &pc, ax, &value);
|
2423 |
|
|
|
2424 |
|
|
require_rvalue (ax, &value);
|
2425 |
|
|
|
2426 |
|
|
/* Oh, and terminate. */
|
2427 |
|
|
ax_simple (ax, aop_end);
|
2428 |
|
|
|
2429 |
|
|
/* We have successfully built the agent expr, so cancel the cleanup
|
2430 |
|
|
request. If we add more cleanups that we always want done, this
|
2431 |
|
|
will have to get more complicated. */
|
2432 |
|
|
discard_cleanups (old_chain);
|
2433 |
|
|
return ax;
|
2434 |
|
|
}
|
2435 |
|
|
|
2436 |
|
|
static void
|
2437 |
|
|
agent_command (char *exp, int from_tty)
|
2438 |
|
|
{
|
2439 |
|
|
struct cleanup *old_chain = 0;
|
2440 |
|
|
struct expression *expr;
|
2441 |
|
|
struct agent_expr *agent;
|
2442 |
|
|
struct frame_info *fi = get_current_frame (); /* need current scope */
|
2443 |
|
|
|
2444 |
|
|
/* We don't deal with overlay debugging at the moment. We need to
|
2445 |
|
|
think more carefully about this. If you copy this code into
|
2446 |
|
|
another command, change the error message; the user shouldn't
|
2447 |
|
|
have to know anything about agent expressions. */
|
2448 |
|
|
if (overlay_debugging)
|
2449 |
|
|
error (_("GDB can't do agent expression translation with overlays."));
|
2450 |
|
|
|
2451 |
|
|
if (exp == 0)
|
2452 |
|
|
error_no_arg (_("expression to translate"));
|
2453 |
|
|
|
2454 |
|
|
expr = parse_expression (exp);
|
2455 |
|
|
old_chain = make_cleanup (free_current_contents, &expr);
|
2456 |
|
|
agent = gen_trace_for_expr (get_frame_pc (fi), expr);
|
2457 |
|
|
make_cleanup_free_agent_expr (agent);
|
2458 |
|
|
ax_reqs (agent);
|
2459 |
|
|
ax_print (gdb_stdout, agent);
|
2460 |
|
|
|
2461 |
|
|
/* It would be nice to call ax_reqs here to gather some general info
|
2462 |
|
|
about the expression, and then print out the result. */
|
2463 |
|
|
|
2464 |
|
|
do_cleanups (old_chain);
|
2465 |
|
|
dont_repeat ();
|
2466 |
|
|
}
|
2467 |
|
|
|
2468 |
|
|
/* Parse the given expression, compile it into an agent expression
|
2469 |
|
|
that does direct evaluation, and display the resulting
|
2470 |
|
|
expression. */
|
2471 |
|
|
|
2472 |
|
|
static void
|
2473 |
|
|
agent_eval_command (char *exp, int from_tty)
|
2474 |
|
|
{
|
2475 |
|
|
struct cleanup *old_chain = 0;
|
2476 |
|
|
struct expression *expr;
|
2477 |
|
|
struct agent_expr *agent;
|
2478 |
|
|
struct frame_info *fi = get_current_frame (); /* need current scope */
|
2479 |
|
|
|
2480 |
|
|
/* We don't deal with overlay debugging at the moment. We need to
|
2481 |
|
|
think more carefully about this. If you copy this code into
|
2482 |
|
|
another command, change the error message; the user shouldn't
|
2483 |
|
|
have to know anything about agent expressions. */
|
2484 |
|
|
if (overlay_debugging)
|
2485 |
|
|
error (_("GDB can't do agent expression translation with overlays."));
|
2486 |
|
|
|
2487 |
|
|
if (exp == 0)
|
2488 |
|
|
error_no_arg (_("expression to translate"));
|
2489 |
|
|
|
2490 |
|
|
expr = parse_expression (exp);
|
2491 |
|
|
old_chain = make_cleanup (free_current_contents, &expr);
|
2492 |
|
|
agent = gen_eval_for_expr (get_frame_pc (fi), expr);
|
2493 |
|
|
make_cleanup_free_agent_expr (agent);
|
2494 |
|
|
ax_reqs (agent);
|
2495 |
|
|
ax_print (gdb_stdout, agent);
|
2496 |
|
|
|
2497 |
|
|
/* It would be nice to call ax_reqs here to gather some general info
|
2498 |
|
|
about the expression, and then print out the result. */
|
2499 |
|
|
|
2500 |
|
|
do_cleanups (old_chain);
|
2501 |
|
|
dont_repeat ();
|
2502 |
|
|
}
|
2503 |
|
|
|
2504 |
|
|
|
2505 |
|
|
/* Initialization code. */
|
2506 |
|
|
|
2507 |
|
|
void _initialize_ax_gdb (void);
|
2508 |
|
|
void
|
2509 |
|
|
_initialize_ax_gdb (void)
|
2510 |
|
|
{
|
2511 |
|
|
add_cmd ("agent", class_maintenance, agent_command,
|
2512 |
|
|
_("Translate an expression into remote agent bytecode for tracing."),
|
2513 |
|
|
&maintenancelist);
|
2514 |
|
|
|
2515 |
|
|
add_cmd ("agent-eval", class_maintenance, agent_eval_command,
|
2516 |
|
|
_("Translate an expression into remote agent bytecode for evaluation."),
|
2517 |
|
|
&maintenancelist);
|
2518 |
|
|
}
|