1 |
330 |
jeremybenn |
/* Functions for manipulating expressions designed to be executed on the agent
|
2 |
|
|
Copyright (C) 1998, 1999, 2000, 2007, 2008, 2009, 2010
|
3 |
|
|
Free Software Foundation, Inc.
|
4 |
|
|
|
5 |
|
|
This file is part of GDB.
|
6 |
|
|
|
7 |
|
|
This program is free software; you can redistribute it and/or modify
|
8 |
|
|
it under the terms of the GNU General Public License as published by
|
9 |
|
|
the Free Software Foundation; either version 3 of the License, or
|
10 |
|
|
(at your option) any later version.
|
11 |
|
|
|
12 |
|
|
This program is distributed in the hope that it will be useful,
|
13 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
14 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
15 |
|
|
GNU General Public License for more details.
|
16 |
|
|
|
17 |
|
|
You should have received a copy of the GNU General Public License
|
18 |
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
19 |
|
|
|
20 |
|
|
/* Despite what the above comment says about this file being part of
|
21 |
|
|
GDB, we would like to keep these functions free of GDB
|
22 |
|
|
dependencies, since we want to be able to use them in contexts
|
23 |
|
|
outside of GDB (test suites, the stub, etc.) */
|
24 |
|
|
|
25 |
|
|
#include "defs.h"
|
26 |
|
|
#include "ax.h"
|
27 |
|
|
|
28 |
|
|
#include "value.h"
|
29 |
|
|
#include "gdb_string.h"
|
30 |
|
|
|
31 |
|
|
static void grow_expr (struct agent_expr *x, int n);
|
32 |
|
|
|
33 |
|
|
static void append_const (struct agent_expr *x, LONGEST val, int n);
|
34 |
|
|
|
35 |
|
|
static LONGEST read_const (struct agent_expr *x, int o, int n);
|
36 |
|
|
|
37 |
|
|
static void generic_ext (struct agent_expr *x, enum agent_op op, int n);
|
38 |
|
|
|
39 |
|
|
/* Functions for building expressions. */
|
40 |
|
|
|
41 |
|
|
/* Allocate a new, empty agent expression. */
|
42 |
|
|
struct agent_expr *
|
43 |
|
|
new_agent_expr (struct gdbarch *gdbarch, CORE_ADDR scope)
|
44 |
|
|
{
|
45 |
|
|
struct agent_expr *x = xmalloc (sizeof (*x));
|
46 |
|
|
|
47 |
|
|
x->len = 0;
|
48 |
|
|
x->size = 1; /* Change this to a larger value once
|
49 |
|
|
reallocation code is tested. */
|
50 |
|
|
x->buf = xmalloc (x->size);
|
51 |
|
|
|
52 |
|
|
x->gdbarch = gdbarch;
|
53 |
|
|
x->scope = scope;
|
54 |
|
|
|
55 |
|
|
/* Bit vector for registers used. */
|
56 |
|
|
x->reg_mask_len = 1;
|
57 |
|
|
x->reg_mask = xmalloc (x->reg_mask_len * sizeof (x->reg_mask[0]));
|
58 |
|
|
memset (x->reg_mask, 0, x->reg_mask_len * sizeof (x->reg_mask[0]));
|
59 |
|
|
|
60 |
|
|
return x;
|
61 |
|
|
}
|
62 |
|
|
|
63 |
|
|
/* Free a agent expression. */
|
64 |
|
|
void
|
65 |
|
|
free_agent_expr (struct agent_expr *x)
|
66 |
|
|
{
|
67 |
|
|
xfree (x->buf);
|
68 |
|
|
xfree (x->reg_mask);
|
69 |
|
|
xfree (x);
|
70 |
|
|
}
|
71 |
|
|
|
72 |
|
|
static void
|
73 |
|
|
do_free_agent_expr_cleanup (void *x)
|
74 |
|
|
{
|
75 |
|
|
free_agent_expr (x);
|
76 |
|
|
}
|
77 |
|
|
|
78 |
|
|
struct cleanup *
|
79 |
|
|
make_cleanup_free_agent_expr (struct agent_expr *x)
|
80 |
|
|
{
|
81 |
|
|
return make_cleanup (do_free_agent_expr_cleanup, x);
|
82 |
|
|
}
|
83 |
|
|
|
84 |
|
|
|
85 |
|
|
/* Make sure that X has room for at least N more bytes. This doesn't
|
86 |
|
|
affect the length, just the allocated size. */
|
87 |
|
|
static void
|
88 |
|
|
grow_expr (struct agent_expr *x, int n)
|
89 |
|
|
{
|
90 |
|
|
if (x->len + n > x->size)
|
91 |
|
|
{
|
92 |
|
|
x->size *= 2;
|
93 |
|
|
if (x->size < x->len + n)
|
94 |
|
|
x->size = x->len + n + 10;
|
95 |
|
|
x->buf = xrealloc (x->buf, x->size);
|
96 |
|
|
}
|
97 |
|
|
}
|
98 |
|
|
|
99 |
|
|
|
100 |
|
|
/* Append the low N bytes of VAL as an N-byte integer to the
|
101 |
|
|
expression X, in big-endian order. */
|
102 |
|
|
static void
|
103 |
|
|
append_const (struct agent_expr *x, LONGEST val, int n)
|
104 |
|
|
{
|
105 |
|
|
int i;
|
106 |
|
|
|
107 |
|
|
grow_expr (x, n);
|
108 |
|
|
for (i = n - 1; i >= 0; i--)
|
109 |
|
|
{
|
110 |
|
|
x->buf[x->len + i] = val & 0xff;
|
111 |
|
|
val >>= 8;
|
112 |
|
|
}
|
113 |
|
|
x->len += n;
|
114 |
|
|
}
|
115 |
|
|
|
116 |
|
|
|
117 |
|
|
/* Extract an N-byte big-endian unsigned integer from expression X at
|
118 |
|
|
offset O. */
|
119 |
|
|
static LONGEST
|
120 |
|
|
read_const (struct agent_expr *x, int o, int n)
|
121 |
|
|
{
|
122 |
|
|
int i;
|
123 |
|
|
LONGEST accum = 0;
|
124 |
|
|
|
125 |
|
|
/* Make sure we're not reading off the end of the expression. */
|
126 |
|
|
if (o + n > x->len)
|
127 |
|
|
error (_("GDB bug: ax-general.c (read_const): incomplete constant"));
|
128 |
|
|
|
129 |
|
|
for (i = 0; i < n; i++)
|
130 |
|
|
accum = (accum << 8) | x->buf[o + i];
|
131 |
|
|
|
132 |
|
|
return accum;
|
133 |
|
|
}
|
134 |
|
|
|
135 |
|
|
|
136 |
|
|
/* Append a simple operator OP to EXPR. */
|
137 |
|
|
void
|
138 |
|
|
ax_simple (struct agent_expr *x, enum agent_op op)
|
139 |
|
|
{
|
140 |
|
|
grow_expr (x, 1);
|
141 |
|
|
x->buf[x->len++] = op;
|
142 |
|
|
}
|
143 |
|
|
|
144 |
|
|
|
145 |
|
|
/* Append a sign-extension or zero-extension instruction to EXPR, to
|
146 |
|
|
extend an N-bit value. */
|
147 |
|
|
static void
|
148 |
|
|
generic_ext (struct agent_expr *x, enum agent_op op, int n)
|
149 |
|
|
{
|
150 |
|
|
/* N must fit in a byte. */
|
151 |
|
|
if (n < 0 || n > 255)
|
152 |
|
|
error (_("GDB bug: ax-general.c (generic_ext): bit count out of range"));
|
153 |
|
|
/* That had better be enough range. */
|
154 |
|
|
if (sizeof (LONGEST) * 8 > 255)
|
155 |
|
|
error (_("GDB bug: ax-general.c (generic_ext): opcode has inadequate range"));
|
156 |
|
|
|
157 |
|
|
grow_expr (x, 2);
|
158 |
|
|
x->buf[x->len++] = op;
|
159 |
|
|
x->buf[x->len++] = n;
|
160 |
|
|
}
|
161 |
|
|
|
162 |
|
|
|
163 |
|
|
/* Append a sign-extension instruction to EXPR, to extend an N-bit value. */
|
164 |
|
|
void
|
165 |
|
|
ax_ext (struct agent_expr *x, int n)
|
166 |
|
|
{
|
167 |
|
|
generic_ext (x, aop_ext, n);
|
168 |
|
|
}
|
169 |
|
|
|
170 |
|
|
|
171 |
|
|
/* Append a zero-extension instruction to EXPR, to extend an N-bit value. */
|
172 |
|
|
void
|
173 |
|
|
ax_zero_ext (struct agent_expr *x, int n)
|
174 |
|
|
{
|
175 |
|
|
generic_ext (x, aop_zero_ext, n);
|
176 |
|
|
}
|
177 |
|
|
|
178 |
|
|
|
179 |
|
|
/* Append a trace_quick instruction to EXPR, to record N bytes. */
|
180 |
|
|
void
|
181 |
|
|
ax_trace_quick (struct agent_expr *x, int n)
|
182 |
|
|
{
|
183 |
|
|
/* N must fit in a byte. */
|
184 |
|
|
if (n < 0 || n > 255)
|
185 |
|
|
error (_("GDB bug: ax-general.c (ax_trace_quick): size out of range for trace_quick"));
|
186 |
|
|
|
187 |
|
|
grow_expr (x, 2);
|
188 |
|
|
x->buf[x->len++] = aop_trace_quick;
|
189 |
|
|
x->buf[x->len++] = n;
|
190 |
|
|
}
|
191 |
|
|
|
192 |
|
|
|
193 |
|
|
/* Append a goto op to EXPR. OP is the actual op (must be aop_goto or
|
194 |
|
|
aop_if_goto). We assume we don't know the target offset yet,
|
195 |
|
|
because it's probably a forward branch, so we leave space in EXPR
|
196 |
|
|
for the target, and return the offset in EXPR of that space, so we
|
197 |
|
|
can backpatch it once we do know the target offset. Use ax_label
|
198 |
|
|
to do the backpatching. */
|
199 |
|
|
int
|
200 |
|
|
ax_goto (struct agent_expr *x, enum agent_op op)
|
201 |
|
|
{
|
202 |
|
|
grow_expr (x, 3);
|
203 |
|
|
x->buf[x->len + 0] = op;
|
204 |
|
|
x->buf[x->len + 1] = 0xff;
|
205 |
|
|
x->buf[x->len + 2] = 0xff;
|
206 |
|
|
x->len += 3;
|
207 |
|
|
return x->len - 2;
|
208 |
|
|
}
|
209 |
|
|
|
210 |
|
|
/* Suppose a given call to ax_goto returns some value PATCH. When you
|
211 |
|
|
know the offset TARGET that goto should jump to, call
|
212 |
|
|
ax_label (EXPR, PATCH, TARGET)
|
213 |
|
|
to patch TARGET into the ax_goto instruction. */
|
214 |
|
|
void
|
215 |
|
|
ax_label (struct agent_expr *x, int patch, int target)
|
216 |
|
|
{
|
217 |
|
|
/* Make sure the value is in range. Don't accept 0xffff as an
|
218 |
|
|
offset; that's our magic sentinel value for unpatched branches. */
|
219 |
|
|
if (target < 0 || target >= 0xffff)
|
220 |
|
|
error (_("GDB bug: ax-general.c (ax_label): label target out of range"));
|
221 |
|
|
|
222 |
|
|
x->buf[patch] = (target >> 8) & 0xff;
|
223 |
|
|
x->buf[patch + 1] = target & 0xff;
|
224 |
|
|
}
|
225 |
|
|
|
226 |
|
|
|
227 |
|
|
/* Assemble code to push a constant on the stack. */
|
228 |
|
|
void
|
229 |
|
|
ax_const_l (struct agent_expr *x, LONGEST l)
|
230 |
|
|
{
|
231 |
|
|
static enum agent_op ops[]
|
232 |
|
|
=
|
233 |
|
|
{aop_const8, aop_const16, aop_const32, aop_const64};
|
234 |
|
|
int size;
|
235 |
|
|
int op;
|
236 |
|
|
|
237 |
|
|
/* How big is the number? 'op' keeps track of which opcode to use.
|
238 |
|
|
Notice that we don't really care whether the original number was
|
239 |
|
|
signed or unsigned; we always reproduce the value exactly, and
|
240 |
|
|
use the shortest representation. */
|
241 |
|
|
for (op = 0, size = 8; size < 64; size *= 2, op++)
|
242 |
|
|
{
|
243 |
|
|
LONGEST lim = ((LONGEST) 1) << (size - 1);
|
244 |
|
|
|
245 |
|
|
if (-lim <= l && l <= lim - 1)
|
246 |
|
|
break;
|
247 |
|
|
}
|
248 |
|
|
|
249 |
|
|
/* Emit the right opcode... */
|
250 |
|
|
ax_simple (x, ops[op]);
|
251 |
|
|
|
252 |
|
|
/* Emit the low SIZE bytes as an unsigned number. We know that
|
253 |
|
|
sign-extending this will yield l. */
|
254 |
|
|
append_const (x, l, size / 8);
|
255 |
|
|
|
256 |
|
|
/* Now, if it was negative, and not full-sized, sign-extend it. */
|
257 |
|
|
if (l < 0 && size < 64)
|
258 |
|
|
ax_ext (x, size);
|
259 |
|
|
}
|
260 |
|
|
|
261 |
|
|
|
262 |
|
|
void
|
263 |
|
|
ax_const_d (struct agent_expr *x, LONGEST d)
|
264 |
|
|
{
|
265 |
|
|
/* FIXME: floating-point support not present yet. */
|
266 |
|
|
error (_("GDB bug: ax-general.c (ax_const_d): floating point not supported yet"));
|
267 |
|
|
}
|
268 |
|
|
|
269 |
|
|
|
270 |
|
|
/* Assemble code to push the value of register number REG on the
|
271 |
|
|
stack. */
|
272 |
|
|
void
|
273 |
|
|
ax_reg (struct agent_expr *x, int reg)
|
274 |
|
|
{
|
275 |
|
|
/* Make sure the register number is in range. */
|
276 |
|
|
if (reg < 0 || reg > 0xffff)
|
277 |
|
|
error (_("GDB bug: ax-general.c (ax_reg): register number out of range"));
|
278 |
|
|
grow_expr (x, 3);
|
279 |
|
|
x->buf[x->len] = aop_reg;
|
280 |
|
|
x->buf[x->len + 1] = (reg >> 8) & 0xff;
|
281 |
|
|
x->buf[x->len + 2] = (reg) & 0xff;
|
282 |
|
|
x->len += 3;
|
283 |
|
|
}
|
284 |
|
|
|
285 |
|
|
/* Assemble code to operate on a trace state variable. */
|
286 |
|
|
|
287 |
|
|
void
|
288 |
|
|
ax_tsv (struct agent_expr *x, enum agent_op op, int num)
|
289 |
|
|
{
|
290 |
|
|
/* Make sure the tsv number is in range. */
|
291 |
|
|
if (num < 0 || num > 0xffff)
|
292 |
|
|
internal_error (__FILE__, __LINE__, _("ax-general.c (ax_tsv): variable number is %d, out of range"), num);
|
293 |
|
|
|
294 |
|
|
grow_expr (x, 3);
|
295 |
|
|
x->buf[x->len] = op;
|
296 |
|
|
x->buf[x->len + 1] = (num >> 8) & 0xff;
|
297 |
|
|
x->buf[x->len + 2] = (num) & 0xff;
|
298 |
|
|
x->len += 3;
|
299 |
|
|
}
|
300 |
|
|
|
301 |
|
|
|
302 |
|
|
|
303 |
|
|
/* Functions for disassembling agent expressions, and otherwise
|
304 |
|
|
debugging the expression compiler. */
|
305 |
|
|
|
306 |
|
|
struct aop_map aop_map[] =
|
307 |
|
|
{
|
308 |
|
|
{0, 0, 0, 0, 0},
|
309 |
|
|
{"float", 0, 0, 0, 0}, /* 0x01 */
|
310 |
|
|
{"add", 0, 0, 2, 1}, /* 0x02 */
|
311 |
|
|
{"sub", 0, 0, 2, 1}, /* 0x03 */
|
312 |
|
|
{"mul", 0, 0, 2, 1}, /* 0x04 */
|
313 |
|
|
{"div_signed", 0, 0, 2, 1}, /* 0x05 */
|
314 |
|
|
{"div_unsigned", 0, 0, 2, 1}, /* 0x06 */
|
315 |
|
|
{"rem_signed", 0, 0, 2, 1}, /* 0x07 */
|
316 |
|
|
{"rem_unsigned", 0, 0, 2, 1}, /* 0x08 */
|
317 |
|
|
{"lsh", 0, 0, 2, 1}, /* 0x09 */
|
318 |
|
|
{"rsh_signed", 0, 0, 2, 1}, /* 0x0a */
|
319 |
|
|
{"rsh_unsigned", 0, 0, 2, 1}, /* 0x0b */
|
320 |
|
|
{"trace", 0, 0, 2, 0}, /* 0x0c */
|
321 |
|
|
{"trace_quick", 1, 0, 1, 1}, /* 0x0d */
|
322 |
|
|
{"log_not", 0, 0, 1, 1}, /* 0x0e */
|
323 |
|
|
{"bit_and", 0, 0, 2, 1}, /* 0x0f */
|
324 |
|
|
{"bit_or", 0, 0, 2, 1}, /* 0x10 */
|
325 |
|
|
{"bit_xor", 0, 0, 2, 1}, /* 0x11 */
|
326 |
|
|
{"bit_not", 0, 0, 1, 1}, /* 0x12 */
|
327 |
|
|
{"equal", 0, 0, 2, 1}, /* 0x13 */
|
328 |
|
|
{"less_signed", 0, 0, 2, 1}, /* 0x14 */
|
329 |
|
|
{"less_unsigned", 0, 0, 2, 1}, /* 0x15 */
|
330 |
|
|
{"ext", 1, 0, 1, 1}, /* 0x16 */
|
331 |
|
|
{"ref8", 0, 8, 1, 1}, /* 0x17 */
|
332 |
|
|
{"ref16", 0, 16, 1, 1}, /* 0x18 */
|
333 |
|
|
{"ref32", 0, 32, 1, 1}, /* 0x19 */
|
334 |
|
|
{"ref64", 0, 64, 1, 1}, /* 0x1a */
|
335 |
|
|
{"ref_float", 0, 0, 1, 1}, /* 0x1b */
|
336 |
|
|
{"ref_double", 0, 0, 1, 1}, /* 0x1c */
|
337 |
|
|
{"ref_long_double", 0, 0, 1, 1}, /* 0x1d */
|
338 |
|
|
{"l_to_d", 0, 0, 1, 1}, /* 0x1e */
|
339 |
|
|
{"d_to_l", 0, 0, 1, 1}, /* 0x1f */
|
340 |
|
|
{"if_goto", 2, 0, 1, 0}, /* 0x20 */
|
341 |
|
|
{"goto", 2, 0, 0, 0}, /* 0x21 */
|
342 |
|
|
{"const8", 1, 8, 0, 1}, /* 0x22 */
|
343 |
|
|
{"const16", 2, 16, 0, 1}, /* 0x23 */
|
344 |
|
|
{"const32", 4, 32, 0, 1}, /* 0x24 */
|
345 |
|
|
{"const64", 8, 64, 0, 1}, /* 0x25 */
|
346 |
|
|
{"reg", 2, 0, 0, 1}, /* 0x26 */
|
347 |
|
|
{"end", 0, 0, 0, 0}, /* 0x27 */
|
348 |
|
|
{"dup", 0, 0, 1, 2}, /* 0x28 */
|
349 |
|
|
{"pop", 0, 0, 1, 0}, /* 0x29 */
|
350 |
|
|
{"zero_ext", 1, 0, 1, 1}, /* 0x2a */
|
351 |
|
|
{"swap", 0, 0, 2, 2}, /* 0x2b */
|
352 |
|
|
{"getv", 2, 0, 0, 1}, /* 0x2c */
|
353 |
|
|
{"setv", 2, 0, 0, 1}, /* 0x2d */
|
354 |
|
|
{"tracev", 2, 0, 0, 1}, /* 0x2e */
|
355 |
|
|
{0, 0, 0, 0, 0}, /* 0x2f */
|
356 |
|
|
{"trace16", 2, 0, 1, 1}, /* 0x30 */
|
357 |
|
|
};
|
358 |
|
|
|
359 |
|
|
|
360 |
|
|
/* Disassemble the expression EXPR, writing to F. */
|
361 |
|
|
void
|
362 |
|
|
ax_print (struct ui_file *f, struct agent_expr *x)
|
363 |
|
|
{
|
364 |
|
|
int i;
|
365 |
|
|
int is_float = 0;
|
366 |
|
|
|
367 |
|
|
fprintf_filtered (f, _("Scope: %s\n"), paddress (x->gdbarch, x->scope));
|
368 |
|
|
fprintf_filtered (f, _("Reg mask:"));
|
369 |
|
|
for (i = 0; i < x->reg_mask_len; ++i)
|
370 |
|
|
fprintf_filtered (f, _(" %02x"), x->reg_mask[i]);
|
371 |
|
|
fprintf_filtered (f, _("\n"));
|
372 |
|
|
|
373 |
|
|
/* Check the size of the name array against the number of entries in
|
374 |
|
|
the enum, to catch additions that people didn't sync. */
|
375 |
|
|
if ((sizeof (aop_map) / sizeof (aop_map[0]))
|
376 |
|
|
!= aop_last)
|
377 |
|
|
error (_("GDB bug: ax-general.c (ax_print): opcode map out of sync"));
|
378 |
|
|
|
379 |
|
|
for (i = 0; i < x->len;)
|
380 |
|
|
{
|
381 |
|
|
enum agent_op op = x->buf[i];
|
382 |
|
|
|
383 |
|
|
if (op >= (sizeof (aop_map) / sizeof (aop_map[0]))
|
384 |
|
|
|| !aop_map[op].name)
|
385 |
|
|
{
|
386 |
|
|
fprintf_filtered (f, _("%3d <bad opcode %02x>\n"), i, op);
|
387 |
|
|
i++;
|
388 |
|
|
continue;
|
389 |
|
|
}
|
390 |
|
|
if (i + 1 + aop_map[op].op_size > x->len)
|
391 |
|
|
{
|
392 |
|
|
fprintf_filtered (f, _("%3d <incomplete opcode %s>\n"),
|
393 |
|
|
i, aop_map[op].name);
|
394 |
|
|
break;
|
395 |
|
|
}
|
396 |
|
|
|
397 |
|
|
fprintf_filtered (f, "%3d %s", i, aop_map[op].name);
|
398 |
|
|
if (aop_map[op].op_size > 0)
|
399 |
|
|
{
|
400 |
|
|
fputs_filtered (" ", f);
|
401 |
|
|
|
402 |
|
|
print_longest (f, 'd', 0,
|
403 |
|
|
read_const (x, i + 1, aop_map[op].op_size));
|
404 |
|
|
}
|
405 |
|
|
fprintf_filtered (f, "\n");
|
406 |
|
|
i += 1 + aop_map[op].op_size;
|
407 |
|
|
|
408 |
|
|
is_float = (op == aop_float);
|
409 |
|
|
}
|
410 |
|
|
}
|
411 |
|
|
|
412 |
|
|
/* Add register REG to the register mask for expression AX. */
|
413 |
|
|
void
|
414 |
|
|
ax_reg_mask (struct agent_expr *ax, int reg)
|
415 |
|
|
{
|
416 |
|
|
int byte = reg / 8;
|
417 |
|
|
|
418 |
|
|
/* Grow the bit mask if necessary. */
|
419 |
|
|
if (byte >= ax->reg_mask_len)
|
420 |
|
|
{
|
421 |
|
|
/* It's not appropriate to double here. This isn't a
|
422 |
|
|
string buffer. */
|
423 |
|
|
int new_len = byte + 1;
|
424 |
|
|
unsigned char *new_reg_mask = xrealloc (ax->reg_mask,
|
425 |
|
|
new_len * sizeof (ax->reg_mask[0]));
|
426 |
|
|
memset (new_reg_mask + ax->reg_mask_len, 0,
|
427 |
|
|
(new_len - ax->reg_mask_len) * sizeof (ax->reg_mask[0]));
|
428 |
|
|
ax->reg_mask_len = new_len;
|
429 |
|
|
ax->reg_mask = new_reg_mask;
|
430 |
|
|
}
|
431 |
|
|
|
432 |
|
|
ax->reg_mask[byte] |= 1 << (reg % 8);
|
433 |
|
|
}
|
434 |
|
|
|
435 |
|
|
/* Given an agent expression AX, fill in requirements and other descriptive
|
436 |
|
|
bits. */
|
437 |
|
|
void
|
438 |
|
|
ax_reqs (struct agent_expr *ax)
|
439 |
|
|
{
|
440 |
|
|
int i;
|
441 |
|
|
int height;
|
442 |
|
|
|
443 |
|
|
/* Jump target table. targets[i] is non-zero iff we have found a
|
444 |
|
|
jump to offset i. */
|
445 |
|
|
char *targets = (char *) alloca (ax->len * sizeof (targets[0]));
|
446 |
|
|
|
447 |
|
|
/* Instruction boundary table. boundary[i] is non-zero iff our scan
|
448 |
|
|
has reached an instruction starting at offset i. */
|
449 |
|
|
char *boundary = (char *) alloca (ax->len * sizeof (boundary[0]));
|
450 |
|
|
|
451 |
|
|
/* Stack height record. If either targets[i] or boundary[i] is
|
452 |
|
|
non-zero, heights[i] is the height the stack should have before
|
453 |
|
|
executing the bytecode at that point. */
|
454 |
|
|
int *heights = (int *) alloca (ax->len * sizeof (heights[0]));
|
455 |
|
|
|
456 |
|
|
/* Pointer to a description of the present op. */
|
457 |
|
|
struct aop_map *op;
|
458 |
|
|
|
459 |
|
|
memset (targets, 0, ax->len * sizeof (targets[0]));
|
460 |
|
|
memset (boundary, 0, ax->len * sizeof (boundary[0]));
|
461 |
|
|
|
462 |
|
|
ax->max_height = ax->min_height = height = 0;
|
463 |
|
|
ax->flaw = agent_flaw_none;
|
464 |
|
|
ax->max_data_size = 0;
|
465 |
|
|
|
466 |
|
|
for (i = 0; i < ax->len; i += 1 + op->op_size)
|
467 |
|
|
{
|
468 |
|
|
if (ax->buf[i] > (sizeof (aop_map) / sizeof (aop_map[0])))
|
469 |
|
|
{
|
470 |
|
|
ax->flaw = agent_flaw_bad_instruction;
|
471 |
|
|
return;
|
472 |
|
|
}
|
473 |
|
|
|
474 |
|
|
op = &aop_map[ax->buf[i]];
|
475 |
|
|
|
476 |
|
|
if (!op->name)
|
477 |
|
|
{
|
478 |
|
|
ax->flaw = agent_flaw_bad_instruction;
|
479 |
|
|
return;
|
480 |
|
|
}
|
481 |
|
|
|
482 |
|
|
if (i + 1 + op->op_size > ax->len)
|
483 |
|
|
{
|
484 |
|
|
ax->flaw = agent_flaw_incomplete_instruction;
|
485 |
|
|
return;
|
486 |
|
|
}
|
487 |
|
|
|
488 |
|
|
/* If this instruction is a forward jump target, does the
|
489 |
|
|
current stack height match the stack height at the jump
|
490 |
|
|
source? */
|
491 |
|
|
if (targets[i] && (heights[i] != height))
|
492 |
|
|
{
|
493 |
|
|
ax->flaw = agent_flaw_height_mismatch;
|
494 |
|
|
return;
|
495 |
|
|
}
|
496 |
|
|
|
497 |
|
|
boundary[i] = 1;
|
498 |
|
|
heights[i] = height;
|
499 |
|
|
|
500 |
|
|
height -= op->consumed;
|
501 |
|
|
if (height < ax->min_height)
|
502 |
|
|
ax->min_height = height;
|
503 |
|
|
height += op->produced;
|
504 |
|
|
if (height > ax->max_height)
|
505 |
|
|
ax->max_height = height;
|
506 |
|
|
|
507 |
|
|
if (op->data_size > ax->max_data_size)
|
508 |
|
|
ax->max_data_size = op->data_size;
|
509 |
|
|
|
510 |
|
|
/* For jump instructions, check that the target is a valid
|
511 |
|
|
offset. If it is, record the fact that that location is a
|
512 |
|
|
jump target, and record the height we expect there. */
|
513 |
|
|
if (aop_goto == op - aop_map
|
514 |
|
|
|| aop_if_goto == op - aop_map)
|
515 |
|
|
{
|
516 |
|
|
int target = read_const (ax, i + 1, 2);
|
517 |
|
|
if (target < 0 || target >= ax->len)
|
518 |
|
|
{
|
519 |
|
|
ax->flaw = agent_flaw_bad_jump;
|
520 |
|
|
return;
|
521 |
|
|
}
|
522 |
|
|
|
523 |
|
|
/* Do we have any information about what the stack height
|
524 |
|
|
should be at the target? */
|
525 |
|
|
if (targets[target] || boundary[target])
|
526 |
|
|
{
|
527 |
|
|
if (heights[target] != height)
|
528 |
|
|
{
|
529 |
|
|
ax->flaw = agent_flaw_height_mismatch;
|
530 |
|
|
return;
|
531 |
|
|
}
|
532 |
|
|
}
|
533 |
|
|
|
534 |
|
|
/* Record the target, along with the stack height we expect. */
|
535 |
|
|
targets[target] = 1;
|
536 |
|
|
heights[target] = height;
|
537 |
|
|
}
|
538 |
|
|
|
539 |
|
|
/* For unconditional jumps with a successor, check that the
|
540 |
|
|
successor is a target, and pick up its stack height. */
|
541 |
|
|
if (aop_goto == op - aop_map
|
542 |
|
|
&& i + 3 < ax->len)
|
543 |
|
|
{
|
544 |
|
|
if (!targets[i + 3])
|
545 |
|
|
{
|
546 |
|
|
ax->flaw = agent_flaw_hole;
|
547 |
|
|
return;
|
548 |
|
|
}
|
549 |
|
|
|
550 |
|
|
height = heights[i + 3];
|
551 |
|
|
}
|
552 |
|
|
|
553 |
|
|
/* For reg instructions, record the register in the bit mask. */
|
554 |
|
|
if (aop_reg == op - aop_map)
|
555 |
|
|
{
|
556 |
|
|
int reg = read_const (ax, i + 1, 2);
|
557 |
|
|
|
558 |
|
|
ax_reg_mask (ax, reg);
|
559 |
|
|
}
|
560 |
|
|
}
|
561 |
|
|
|
562 |
|
|
/* Check that all the targets are on boundaries. */
|
563 |
|
|
for (i = 0; i < ax->len; i++)
|
564 |
|
|
if (targets[i] && !boundary[i])
|
565 |
|
|
{
|
566 |
|
|
ax->flaw = agent_flaw_bad_jump;
|
567 |
|
|
return;
|
568 |
|
|
}
|
569 |
|
|
|
570 |
|
|
ax->final_height = height;
|
571 |
|
|
}
|