1 |
330 |
jeremybenn |
/* GNU/Linux native-dependent code common to multiple platforms.
|
2 |
|
|
|
3 |
|
|
Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
|
4 |
|
|
Free Software Foundation, Inc.
|
5 |
|
|
|
6 |
|
|
This file is part of GDB.
|
7 |
|
|
|
8 |
|
|
This program is free software; you can redistribute it and/or modify
|
9 |
|
|
it under the terms of the GNU General Public License as published by
|
10 |
|
|
the Free Software Foundation; either version 3 of the License, or
|
11 |
|
|
(at your option) any later version.
|
12 |
|
|
|
13 |
|
|
This program is distributed in the hope that it will be useful,
|
14 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
15 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
16 |
|
|
GNU General Public License for more details.
|
17 |
|
|
|
18 |
|
|
You should have received a copy of the GNU General Public License
|
19 |
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
20 |
|
|
|
21 |
|
|
#include "defs.h"
|
22 |
|
|
#include "inferior.h"
|
23 |
|
|
#include "target.h"
|
24 |
|
|
#include "gdb_string.h"
|
25 |
|
|
#include "gdb_wait.h"
|
26 |
|
|
#include "gdb_assert.h"
|
27 |
|
|
#ifdef HAVE_TKILL_SYSCALL
|
28 |
|
|
#include <unistd.h>
|
29 |
|
|
#include <sys/syscall.h>
|
30 |
|
|
#endif
|
31 |
|
|
#include <sys/ptrace.h>
|
32 |
|
|
#include "linux-nat.h"
|
33 |
|
|
#include "linux-fork.h"
|
34 |
|
|
#include "gdbthread.h"
|
35 |
|
|
#include "gdbcmd.h"
|
36 |
|
|
#include "regcache.h"
|
37 |
|
|
#include "regset.h"
|
38 |
|
|
#include "inf-ptrace.h"
|
39 |
|
|
#include "auxv.h"
|
40 |
|
|
#include <sys/param.h> /* for MAXPATHLEN */
|
41 |
|
|
#include <sys/procfs.h> /* for elf_gregset etc. */
|
42 |
|
|
#include "elf-bfd.h" /* for elfcore_write_* */
|
43 |
|
|
#include "gregset.h" /* for gregset */
|
44 |
|
|
#include "gdbcore.h" /* for get_exec_file */
|
45 |
|
|
#include <ctype.h> /* for isdigit */
|
46 |
|
|
#include "gdbthread.h" /* for struct thread_info etc. */
|
47 |
|
|
#include "gdb_stat.h" /* for struct stat */
|
48 |
|
|
#include <fcntl.h> /* for O_RDONLY */
|
49 |
|
|
#include "inf-loop.h"
|
50 |
|
|
#include "event-loop.h"
|
51 |
|
|
#include "event-top.h"
|
52 |
|
|
#include <pwd.h>
|
53 |
|
|
#include <sys/types.h>
|
54 |
|
|
#include "gdb_dirent.h"
|
55 |
|
|
#include "xml-support.h"
|
56 |
|
|
#include "terminal.h"
|
57 |
|
|
#include <sys/vfs.h>
|
58 |
|
|
#include "solib.h"
|
59 |
|
|
|
60 |
|
|
#ifndef SPUFS_MAGIC
|
61 |
|
|
#define SPUFS_MAGIC 0x23c9b64e
|
62 |
|
|
#endif
|
63 |
|
|
|
64 |
|
|
#ifdef HAVE_PERSONALITY
|
65 |
|
|
# include <sys/personality.h>
|
66 |
|
|
# if !HAVE_DECL_ADDR_NO_RANDOMIZE
|
67 |
|
|
# define ADDR_NO_RANDOMIZE 0x0040000
|
68 |
|
|
# endif
|
69 |
|
|
#endif /* HAVE_PERSONALITY */
|
70 |
|
|
|
71 |
|
|
/* This comment documents high-level logic of this file.
|
72 |
|
|
|
73 |
|
|
Waiting for events in sync mode
|
74 |
|
|
===============================
|
75 |
|
|
|
76 |
|
|
When waiting for an event in a specific thread, we just use waitpid, passing
|
77 |
|
|
the specific pid, and not passing WNOHANG.
|
78 |
|
|
|
79 |
|
|
When waiting for an event in all threads, waitpid is not quite good. Prior to
|
80 |
|
|
version 2.4, Linux can either wait for event in main thread, or in secondary
|
81 |
|
|
threads. (2.4 has the __WALL flag). So, if we use blocking waitpid, we might
|
82 |
|
|
miss an event. The solution is to use non-blocking waitpid, together with
|
83 |
|
|
sigsuspend. First, we use non-blocking waitpid to get an event in the main
|
84 |
|
|
process, if any. Second, we use non-blocking waitpid with the __WCLONED
|
85 |
|
|
flag to check for events in cloned processes. If nothing is found, we use
|
86 |
|
|
sigsuspend to wait for SIGCHLD. When SIGCHLD arrives, it means something
|
87 |
|
|
happened to a child process -- and SIGCHLD will be delivered both for events
|
88 |
|
|
in main debugged process and in cloned processes. As soon as we know there's
|
89 |
|
|
an event, we get back to calling nonblocking waitpid with and without __WCLONED.
|
90 |
|
|
|
91 |
|
|
Note that SIGCHLD should be blocked between waitpid and sigsuspend calls,
|
92 |
|
|
so that we don't miss a signal. If SIGCHLD arrives in between, when it's
|
93 |
|
|
blocked, the signal becomes pending and sigsuspend immediately
|
94 |
|
|
notices it and returns.
|
95 |
|
|
|
96 |
|
|
Waiting for events in async mode
|
97 |
|
|
================================
|
98 |
|
|
|
99 |
|
|
In async mode, GDB should always be ready to handle both user input
|
100 |
|
|
and target events, so neither blocking waitpid nor sigsuspend are
|
101 |
|
|
viable options. Instead, we should asynchronously notify the GDB main
|
102 |
|
|
event loop whenever there's an unprocessed event from the target. We
|
103 |
|
|
detect asynchronous target events by handling SIGCHLD signals. To
|
104 |
|
|
notify the event loop about target events, the self-pipe trick is used
|
105 |
|
|
--- a pipe is registered as waitable event source in the event loop,
|
106 |
|
|
the event loop select/poll's on the read end of this pipe (as well on
|
107 |
|
|
other event sources, e.g., stdin), and the SIGCHLD handler writes a
|
108 |
|
|
byte to this pipe. This is more portable than relying on
|
109 |
|
|
pselect/ppoll, since on kernels that lack those syscalls, libc
|
110 |
|
|
emulates them with select/poll+sigprocmask, and that is racy
|
111 |
|
|
(a.k.a. plain broken).
|
112 |
|
|
|
113 |
|
|
Obviously, if we fail to notify the event loop if there's a target
|
114 |
|
|
event, it's bad. OTOH, if we notify the event loop when there's no
|
115 |
|
|
event from the target, linux_nat_wait will detect that there's no real
|
116 |
|
|
event to report, and return event of type TARGET_WAITKIND_IGNORE.
|
117 |
|
|
This is mostly harmless, but it will waste time and is better avoided.
|
118 |
|
|
|
119 |
|
|
The main design point is that every time GDB is outside linux-nat.c,
|
120 |
|
|
we have a SIGCHLD handler installed that is called when something
|
121 |
|
|
happens to the target and notifies the GDB event loop. Whenever GDB
|
122 |
|
|
core decides to handle the event, and calls into linux-nat.c, we
|
123 |
|
|
process things as in sync mode, except that the we never block in
|
124 |
|
|
sigsuspend.
|
125 |
|
|
|
126 |
|
|
While processing an event, we may end up momentarily blocked in
|
127 |
|
|
waitpid calls. Those waitpid calls, while blocking, are guarantied to
|
128 |
|
|
return quickly. E.g., in all-stop mode, before reporting to the core
|
129 |
|
|
that an LWP hit a breakpoint, all LWPs are stopped by sending them
|
130 |
|
|
SIGSTOP, and synchronously waiting for the SIGSTOP to be reported.
|
131 |
|
|
Note that this is different from blocking indefinitely waiting for the
|
132 |
|
|
next event --- here, we're already handling an event.
|
133 |
|
|
|
134 |
|
|
Use of signals
|
135 |
|
|
==============
|
136 |
|
|
|
137 |
|
|
We stop threads by sending a SIGSTOP. The use of SIGSTOP instead of another
|
138 |
|
|
signal is not entirely significant; we just need for a signal to be delivered,
|
139 |
|
|
so that we can intercept it. SIGSTOP's advantage is that it can not be
|
140 |
|
|
blocked. A disadvantage is that it is not a real-time signal, so it can only
|
141 |
|
|
be queued once; we do not keep track of other sources of SIGSTOP.
|
142 |
|
|
|
143 |
|
|
Two other signals that can't be blocked are SIGCONT and SIGKILL. But we can't
|
144 |
|
|
use them, because they have special behavior when the signal is generated -
|
145 |
|
|
not when it is delivered. SIGCONT resumes the entire thread group and SIGKILL
|
146 |
|
|
kills the entire thread group.
|
147 |
|
|
|
148 |
|
|
A delivered SIGSTOP would stop the entire thread group, not just the thread we
|
149 |
|
|
tkill'd. But we never let the SIGSTOP be delivered; we always intercept and
|
150 |
|
|
cancel it (by PTRACE_CONT without passing SIGSTOP).
|
151 |
|
|
|
152 |
|
|
We could use a real-time signal instead. This would solve those problems; we
|
153 |
|
|
could use PTRACE_GETSIGINFO to locate the specific stop signals sent by GDB.
|
154 |
|
|
But we would still have to have some support for SIGSTOP, since PTRACE_ATTACH
|
155 |
|
|
generates it, and there are races with trying to find a signal that is not
|
156 |
|
|
blocked. */
|
157 |
|
|
|
158 |
|
|
#ifndef O_LARGEFILE
|
159 |
|
|
#define O_LARGEFILE 0
|
160 |
|
|
#endif
|
161 |
|
|
|
162 |
|
|
/* If the system headers did not provide the constants, hard-code the normal
|
163 |
|
|
values. */
|
164 |
|
|
#ifndef PTRACE_EVENT_FORK
|
165 |
|
|
|
166 |
|
|
#define PTRACE_SETOPTIONS 0x4200
|
167 |
|
|
#define PTRACE_GETEVENTMSG 0x4201
|
168 |
|
|
|
169 |
|
|
/* options set using PTRACE_SETOPTIONS */
|
170 |
|
|
#define PTRACE_O_TRACESYSGOOD 0x00000001
|
171 |
|
|
#define PTRACE_O_TRACEFORK 0x00000002
|
172 |
|
|
#define PTRACE_O_TRACEVFORK 0x00000004
|
173 |
|
|
#define PTRACE_O_TRACECLONE 0x00000008
|
174 |
|
|
#define PTRACE_O_TRACEEXEC 0x00000010
|
175 |
|
|
#define PTRACE_O_TRACEVFORKDONE 0x00000020
|
176 |
|
|
#define PTRACE_O_TRACEEXIT 0x00000040
|
177 |
|
|
|
178 |
|
|
/* Wait extended result codes for the above trace options. */
|
179 |
|
|
#define PTRACE_EVENT_FORK 1
|
180 |
|
|
#define PTRACE_EVENT_VFORK 2
|
181 |
|
|
#define PTRACE_EVENT_CLONE 3
|
182 |
|
|
#define PTRACE_EVENT_EXEC 4
|
183 |
|
|
#define PTRACE_EVENT_VFORK_DONE 5
|
184 |
|
|
#define PTRACE_EVENT_EXIT 6
|
185 |
|
|
|
186 |
|
|
#endif /* PTRACE_EVENT_FORK */
|
187 |
|
|
|
188 |
|
|
/* Unlike other extended result codes, WSTOPSIG (status) on
|
189 |
|
|
PTRACE_O_TRACESYSGOOD syscall events doesn't return SIGTRAP, but
|
190 |
|
|
instead SIGTRAP with bit 7 set. */
|
191 |
|
|
#define SYSCALL_SIGTRAP (SIGTRAP | 0x80)
|
192 |
|
|
|
193 |
|
|
/* We can't always assume that this flag is available, but all systems
|
194 |
|
|
with the ptrace event handlers also have __WALL, so it's safe to use
|
195 |
|
|
here. */
|
196 |
|
|
#ifndef __WALL
|
197 |
|
|
#define __WALL 0x40000000 /* Wait for any child. */
|
198 |
|
|
#endif
|
199 |
|
|
|
200 |
|
|
#ifndef PTRACE_GETSIGINFO
|
201 |
|
|
# define PTRACE_GETSIGINFO 0x4202
|
202 |
|
|
# define PTRACE_SETSIGINFO 0x4203
|
203 |
|
|
#endif
|
204 |
|
|
|
205 |
|
|
/* The single-threaded native GNU/Linux target_ops. We save a pointer for
|
206 |
|
|
the use of the multi-threaded target. */
|
207 |
|
|
static struct target_ops *linux_ops;
|
208 |
|
|
static struct target_ops linux_ops_saved;
|
209 |
|
|
|
210 |
|
|
/* The method to call, if any, when a new thread is attached. */
|
211 |
|
|
static void (*linux_nat_new_thread) (ptid_t);
|
212 |
|
|
|
213 |
|
|
/* The method to call, if any, when the siginfo object needs to be
|
214 |
|
|
converted between the layout returned by ptrace, and the layout in
|
215 |
|
|
the architecture of the inferior. */
|
216 |
|
|
static int (*linux_nat_siginfo_fixup) (struct siginfo *,
|
217 |
|
|
gdb_byte *,
|
218 |
|
|
int);
|
219 |
|
|
|
220 |
|
|
/* The saved to_xfer_partial method, inherited from inf-ptrace.c.
|
221 |
|
|
Called by our to_xfer_partial. */
|
222 |
|
|
static LONGEST (*super_xfer_partial) (struct target_ops *,
|
223 |
|
|
enum target_object,
|
224 |
|
|
const char *, gdb_byte *,
|
225 |
|
|
const gdb_byte *,
|
226 |
|
|
ULONGEST, LONGEST);
|
227 |
|
|
|
228 |
|
|
static int debug_linux_nat;
|
229 |
|
|
static void
|
230 |
|
|
show_debug_linux_nat (struct ui_file *file, int from_tty,
|
231 |
|
|
struct cmd_list_element *c, const char *value)
|
232 |
|
|
{
|
233 |
|
|
fprintf_filtered (file, _("Debugging of GNU/Linux lwp module is %s.\n"),
|
234 |
|
|
value);
|
235 |
|
|
}
|
236 |
|
|
|
237 |
|
|
static int debug_linux_nat_async = 0;
|
238 |
|
|
static void
|
239 |
|
|
show_debug_linux_nat_async (struct ui_file *file, int from_tty,
|
240 |
|
|
struct cmd_list_element *c, const char *value)
|
241 |
|
|
{
|
242 |
|
|
fprintf_filtered (file, _("Debugging of GNU/Linux async lwp module is %s.\n"),
|
243 |
|
|
value);
|
244 |
|
|
}
|
245 |
|
|
|
246 |
|
|
static int disable_randomization = 1;
|
247 |
|
|
|
248 |
|
|
static void
|
249 |
|
|
show_disable_randomization (struct ui_file *file, int from_tty,
|
250 |
|
|
struct cmd_list_element *c, const char *value)
|
251 |
|
|
{
|
252 |
|
|
#ifdef HAVE_PERSONALITY
|
253 |
|
|
fprintf_filtered (file, _("\
|
254 |
|
|
Disabling randomization of debuggee's virtual address space is %s.\n"),
|
255 |
|
|
value);
|
256 |
|
|
#else /* !HAVE_PERSONALITY */
|
257 |
|
|
fputs_filtered (_("\
|
258 |
|
|
Disabling randomization of debuggee's virtual address space is unsupported on\n\
|
259 |
|
|
this platform.\n"), file);
|
260 |
|
|
#endif /* !HAVE_PERSONALITY */
|
261 |
|
|
}
|
262 |
|
|
|
263 |
|
|
static void
|
264 |
|
|
set_disable_randomization (char *args, int from_tty, struct cmd_list_element *c)
|
265 |
|
|
{
|
266 |
|
|
#ifndef HAVE_PERSONALITY
|
267 |
|
|
error (_("\
|
268 |
|
|
Disabling randomization of debuggee's virtual address space is unsupported on\n\
|
269 |
|
|
this platform."));
|
270 |
|
|
#endif /* !HAVE_PERSONALITY */
|
271 |
|
|
}
|
272 |
|
|
|
273 |
|
|
struct simple_pid_list
|
274 |
|
|
{
|
275 |
|
|
int pid;
|
276 |
|
|
int status;
|
277 |
|
|
struct simple_pid_list *next;
|
278 |
|
|
};
|
279 |
|
|
struct simple_pid_list *stopped_pids;
|
280 |
|
|
|
281 |
|
|
/* This variable is a tri-state flag: -1 for unknown, 0 if PTRACE_O_TRACEFORK
|
282 |
|
|
can not be used, 1 if it can. */
|
283 |
|
|
|
284 |
|
|
static int linux_supports_tracefork_flag = -1;
|
285 |
|
|
|
286 |
|
|
/* This variable is a tri-state flag: -1 for unknown, 0 if PTRACE_O_TRACESYSGOOD
|
287 |
|
|
can not be used, 1 if it can. */
|
288 |
|
|
|
289 |
|
|
static int linux_supports_tracesysgood_flag = -1;
|
290 |
|
|
|
291 |
|
|
/* If we have PTRACE_O_TRACEFORK, this flag indicates whether we also have
|
292 |
|
|
PTRACE_O_TRACEVFORKDONE. */
|
293 |
|
|
|
294 |
|
|
static int linux_supports_tracevforkdone_flag = -1;
|
295 |
|
|
|
296 |
|
|
/* Async mode support */
|
297 |
|
|
|
298 |
|
|
/* Zero if the async mode, although enabled, is masked, which means
|
299 |
|
|
linux_nat_wait should behave as if async mode was off. */
|
300 |
|
|
static int linux_nat_async_mask_value = 1;
|
301 |
|
|
|
302 |
|
|
/* Stores the current used ptrace() options. */
|
303 |
|
|
static int current_ptrace_options = 0;
|
304 |
|
|
|
305 |
|
|
/* The read/write ends of the pipe registered as waitable file in the
|
306 |
|
|
event loop. */
|
307 |
|
|
static int linux_nat_event_pipe[2] = { -1, -1 };
|
308 |
|
|
|
309 |
|
|
/* Flush the event pipe. */
|
310 |
|
|
|
311 |
|
|
static void
|
312 |
|
|
async_file_flush (void)
|
313 |
|
|
{
|
314 |
|
|
int ret;
|
315 |
|
|
char buf;
|
316 |
|
|
|
317 |
|
|
do
|
318 |
|
|
{
|
319 |
|
|
ret = read (linux_nat_event_pipe[0], &buf, 1);
|
320 |
|
|
}
|
321 |
|
|
while (ret >= 0 || (ret == -1 && errno == EINTR));
|
322 |
|
|
}
|
323 |
|
|
|
324 |
|
|
/* Put something (anything, doesn't matter what, or how much) in event
|
325 |
|
|
pipe, so that the select/poll in the event-loop realizes we have
|
326 |
|
|
something to process. */
|
327 |
|
|
|
328 |
|
|
static void
|
329 |
|
|
async_file_mark (void)
|
330 |
|
|
{
|
331 |
|
|
int ret;
|
332 |
|
|
|
333 |
|
|
/* It doesn't really matter what the pipe contains, as long we end
|
334 |
|
|
up with something in it. Might as well flush the previous
|
335 |
|
|
left-overs. */
|
336 |
|
|
async_file_flush ();
|
337 |
|
|
|
338 |
|
|
do
|
339 |
|
|
{
|
340 |
|
|
ret = write (linux_nat_event_pipe[1], "+", 1);
|
341 |
|
|
}
|
342 |
|
|
while (ret == -1 && errno == EINTR);
|
343 |
|
|
|
344 |
|
|
/* Ignore EAGAIN. If the pipe is full, the event loop will already
|
345 |
|
|
be awakened anyway. */
|
346 |
|
|
}
|
347 |
|
|
|
348 |
|
|
static void linux_nat_async (void (*callback)
|
349 |
|
|
(enum inferior_event_type event_type, void *context),
|
350 |
|
|
void *context);
|
351 |
|
|
static int linux_nat_async_mask (int mask);
|
352 |
|
|
static int kill_lwp (int lwpid, int signo);
|
353 |
|
|
|
354 |
|
|
static int stop_callback (struct lwp_info *lp, void *data);
|
355 |
|
|
|
356 |
|
|
static void block_child_signals (sigset_t *prev_mask);
|
357 |
|
|
static void restore_child_signals_mask (sigset_t *prev_mask);
|
358 |
|
|
|
359 |
|
|
struct lwp_info;
|
360 |
|
|
static struct lwp_info *add_lwp (ptid_t ptid);
|
361 |
|
|
static void purge_lwp_list (int pid);
|
362 |
|
|
static struct lwp_info *find_lwp_pid (ptid_t ptid);
|
363 |
|
|
|
364 |
|
|
|
365 |
|
|
/* Trivial list manipulation functions to keep track of a list of
|
366 |
|
|
new stopped processes. */
|
367 |
|
|
static void
|
368 |
|
|
add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
|
369 |
|
|
{
|
370 |
|
|
struct simple_pid_list *new_pid = xmalloc (sizeof (struct simple_pid_list));
|
371 |
|
|
|
372 |
|
|
new_pid->pid = pid;
|
373 |
|
|
new_pid->status = status;
|
374 |
|
|
new_pid->next = *listp;
|
375 |
|
|
*listp = new_pid;
|
376 |
|
|
}
|
377 |
|
|
|
378 |
|
|
static int
|
379 |
|
|
pull_pid_from_list (struct simple_pid_list **listp, int pid, int *status)
|
380 |
|
|
{
|
381 |
|
|
struct simple_pid_list **p;
|
382 |
|
|
|
383 |
|
|
for (p = listp; *p != NULL; p = &(*p)->next)
|
384 |
|
|
if ((*p)->pid == pid)
|
385 |
|
|
{
|
386 |
|
|
struct simple_pid_list *next = (*p)->next;
|
387 |
|
|
|
388 |
|
|
*status = (*p)->status;
|
389 |
|
|
xfree (*p);
|
390 |
|
|
*p = next;
|
391 |
|
|
return 1;
|
392 |
|
|
}
|
393 |
|
|
return 0;
|
394 |
|
|
}
|
395 |
|
|
|
396 |
|
|
static void
|
397 |
|
|
linux_record_stopped_pid (int pid, int status)
|
398 |
|
|
{
|
399 |
|
|
add_to_pid_list (&stopped_pids, pid, status);
|
400 |
|
|
}
|
401 |
|
|
|
402 |
|
|
|
403 |
|
|
/* A helper function for linux_test_for_tracefork, called after fork (). */
|
404 |
|
|
|
405 |
|
|
static void
|
406 |
|
|
linux_tracefork_child (void)
|
407 |
|
|
{
|
408 |
|
|
ptrace (PTRACE_TRACEME, 0, 0, 0);
|
409 |
|
|
kill (getpid (), SIGSTOP);
|
410 |
|
|
fork ();
|
411 |
|
|
_exit (0);
|
412 |
|
|
}
|
413 |
|
|
|
414 |
|
|
/* Wrapper function for waitpid which handles EINTR. */
|
415 |
|
|
|
416 |
|
|
static int
|
417 |
|
|
my_waitpid (int pid, int *status, int flags)
|
418 |
|
|
{
|
419 |
|
|
int ret;
|
420 |
|
|
|
421 |
|
|
do
|
422 |
|
|
{
|
423 |
|
|
ret = waitpid (pid, status, flags);
|
424 |
|
|
}
|
425 |
|
|
while (ret == -1 && errno == EINTR);
|
426 |
|
|
|
427 |
|
|
return ret;
|
428 |
|
|
}
|
429 |
|
|
|
430 |
|
|
/* Determine if PTRACE_O_TRACEFORK can be used to follow fork events.
|
431 |
|
|
|
432 |
|
|
First, we try to enable fork tracing on ORIGINAL_PID. If this fails,
|
433 |
|
|
we know that the feature is not available. This may change the tracing
|
434 |
|
|
options for ORIGINAL_PID, but we'll be setting them shortly anyway.
|
435 |
|
|
|
436 |
|
|
However, if it succeeds, we don't know for sure that the feature is
|
437 |
|
|
available; old versions of PTRACE_SETOPTIONS ignored unknown options. We
|
438 |
|
|
create a child process, attach to it, use PTRACE_SETOPTIONS to enable
|
439 |
|
|
fork tracing, and let it fork. If the process exits, we assume that we
|
440 |
|
|
can't use TRACEFORK; if we get the fork notification, and we can extract
|
441 |
|
|
the new child's PID, then we assume that we can. */
|
442 |
|
|
|
443 |
|
|
static void
|
444 |
|
|
linux_test_for_tracefork (int original_pid)
|
445 |
|
|
{
|
446 |
|
|
int child_pid, ret, status;
|
447 |
|
|
long second_pid;
|
448 |
|
|
sigset_t prev_mask;
|
449 |
|
|
|
450 |
|
|
/* We don't want those ptrace calls to be interrupted. */
|
451 |
|
|
block_child_signals (&prev_mask);
|
452 |
|
|
|
453 |
|
|
linux_supports_tracefork_flag = 0;
|
454 |
|
|
linux_supports_tracevforkdone_flag = 0;
|
455 |
|
|
|
456 |
|
|
ret = ptrace (PTRACE_SETOPTIONS, original_pid, 0, PTRACE_O_TRACEFORK);
|
457 |
|
|
if (ret != 0)
|
458 |
|
|
{
|
459 |
|
|
restore_child_signals_mask (&prev_mask);
|
460 |
|
|
return;
|
461 |
|
|
}
|
462 |
|
|
|
463 |
|
|
child_pid = fork ();
|
464 |
|
|
if (child_pid == -1)
|
465 |
|
|
perror_with_name (("fork"));
|
466 |
|
|
|
467 |
|
|
if (child_pid == 0)
|
468 |
|
|
linux_tracefork_child ();
|
469 |
|
|
|
470 |
|
|
ret = my_waitpid (child_pid, &status, 0);
|
471 |
|
|
if (ret == -1)
|
472 |
|
|
perror_with_name (("waitpid"));
|
473 |
|
|
else if (ret != child_pid)
|
474 |
|
|
error (_("linux_test_for_tracefork: waitpid: unexpected result %d."), ret);
|
475 |
|
|
if (! WIFSTOPPED (status))
|
476 |
|
|
error (_("linux_test_for_tracefork: waitpid: unexpected status %d."), status);
|
477 |
|
|
|
478 |
|
|
ret = ptrace (PTRACE_SETOPTIONS, child_pid, 0, PTRACE_O_TRACEFORK);
|
479 |
|
|
if (ret != 0)
|
480 |
|
|
{
|
481 |
|
|
ret = ptrace (PTRACE_KILL, child_pid, 0, 0);
|
482 |
|
|
if (ret != 0)
|
483 |
|
|
{
|
484 |
|
|
warning (_("linux_test_for_tracefork: failed to kill child"));
|
485 |
|
|
restore_child_signals_mask (&prev_mask);
|
486 |
|
|
return;
|
487 |
|
|
}
|
488 |
|
|
|
489 |
|
|
ret = my_waitpid (child_pid, &status, 0);
|
490 |
|
|
if (ret != child_pid)
|
491 |
|
|
warning (_("linux_test_for_tracefork: failed to wait for killed child"));
|
492 |
|
|
else if (!WIFSIGNALED (status))
|
493 |
|
|
warning (_("linux_test_for_tracefork: unexpected wait status 0x%x from "
|
494 |
|
|
"killed child"), status);
|
495 |
|
|
|
496 |
|
|
restore_child_signals_mask (&prev_mask);
|
497 |
|
|
return;
|
498 |
|
|
}
|
499 |
|
|
|
500 |
|
|
/* Check whether PTRACE_O_TRACEVFORKDONE is available. */
|
501 |
|
|
ret = ptrace (PTRACE_SETOPTIONS, child_pid, 0,
|
502 |
|
|
PTRACE_O_TRACEFORK | PTRACE_O_TRACEVFORKDONE);
|
503 |
|
|
linux_supports_tracevforkdone_flag = (ret == 0);
|
504 |
|
|
|
505 |
|
|
ret = ptrace (PTRACE_CONT, child_pid, 0, 0);
|
506 |
|
|
if (ret != 0)
|
507 |
|
|
warning (_("linux_test_for_tracefork: failed to resume child"));
|
508 |
|
|
|
509 |
|
|
ret = my_waitpid (child_pid, &status, 0);
|
510 |
|
|
|
511 |
|
|
if (ret == child_pid && WIFSTOPPED (status)
|
512 |
|
|
&& status >> 16 == PTRACE_EVENT_FORK)
|
513 |
|
|
{
|
514 |
|
|
second_pid = 0;
|
515 |
|
|
ret = ptrace (PTRACE_GETEVENTMSG, child_pid, 0, &second_pid);
|
516 |
|
|
if (ret == 0 && second_pid != 0)
|
517 |
|
|
{
|
518 |
|
|
int second_status;
|
519 |
|
|
|
520 |
|
|
linux_supports_tracefork_flag = 1;
|
521 |
|
|
my_waitpid (second_pid, &second_status, 0);
|
522 |
|
|
ret = ptrace (PTRACE_KILL, second_pid, 0, 0);
|
523 |
|
|
if (ret != 0)
|
524 |
|
|
warning (_("linux_test_for_tracefork: failed to kill second child"));
|
525 |
|
|
my_waitpid (second_pid, &status, 0);
|
526 |
|
|
}
|
527 |
|
|
}
|
528 |
|
|
else
|
529 |
|
|
warning (_("linux_test_for_tracefork: unexpected result from waitpid "
|
530 |
|
|
"(%d, status 0x%x)"), ret, status);
|
531 |
|
|
|
532 |
|
|
ret = ptrace (PTRACE_KILL, child_pid, 0, 0);
|
533 |
|
|
if (ret != 0)
|
534 |
|
|
warning (_("linux_test_for_tracefork: failed to kill child"));
|
535 |
|
|
my_waitpid (child_pid, &status, 0);
|
536 |
|
|
|
537 |
|
|
restore_child_signals_mask (&prev_mask);
|
538 |
|
|
}
|
539 |
|
|
|
540 |
|
|
/* Determine if PTRACE_O_TRACESYSGOOD can be used to follow syscalls.
|
541 |
|
|
|
542 |
|
|
We try to enable syscall tracing on ORIGINAL_PID. If this fails,
|
543 |
|
|
we know that the feature is not available. This may change the tracing
|
544 |
|
|
options for ORIGINAL_PID, but we'll be setting them shortly anyway. */
|
545 |
|
|
|
546 |
|
|
static void
|
547 |
|
|
linux_test_for_tracesysgood (int original_pid)
|
548 |
|
|
{
|
549 |
|
|
int ret;
|
550 |
|
|
sigset_t prev_mask;
|
551 |
|
|
|
552 |
|
|
/* We don't want those ptrace calls to be interrupted. */
|
553 |
|
|
block_child_signals (&prev_mask);
|
554 |
|
|
|
555 |
|
|
linux_supports_tracesysgood_flag = 0;
|
556 |
|
|
|
557 |
|
|
ret = ptrace (PTRACE_SETOPTIONS, original_pid, 0, PTRACE_O_TRACESYSGOOD);
|
558 |
|
|
if (ret != 0)
|
559 |
|
|
goto out;
|
560 |
|
|
|
561 |
|
|
linux_supports_tracesysgood_flag = 1;
|
562 |
|
|
out:
|
563 |
|
|
restore_child_signals_mask (&prev_mask);
|
564 |
|
|
}
|
565 |
|
|
|
566 |
|
|
/* Determine wether we support PTRACE_O_TRACESYSGOOD option available.
|
567 |
|
|
This function also sets linux_supports_tracesysgood_flag. */
|
568 |
|
|
|
569 |
|
|
static int
|
570 |
|
|
linux_supports_tracesysgood (int pid)
|
571 |
|
|
{
|
572 |
|
|
if (linux_supports_tracesysgood_flag == -1)
|
573 |
|
|
linux_test_for_tracesysgood (pid);
|
574 |
|
|
return linux_supports_tracesysgood_flag;
|
575 |
|
|
}
|
576 |
|
|
|
577 |
|
|
/* Return non-zero iff we have tracefork functionality available.
|
578 |
|
|
This function also sets linux_supports_tracefork_flag. */
|
579 |
|
|
|
580 |
|
|
static int
|
581 |
|
|
linux_supports_tracefork (int pid)
|
582 |
|
|
{
|
583 |
|
|
if (linux_supports_tracefork_flag == -1)
|
584 |
|
|
linux_test_for_tracefork (pid);
|
585 |
|
|
return linux_supports_tracefork_flag;
|
586 |
|
|
}
|
587 |
|
|
|
588 |
|
|
static int
|
589 |
|
|
linux_supports_tracevforkdone (int pid)
|
590 |
|
|
{
|
591 |
|
|
if (linux_supports_tracefork_flag == -1)
|
592 |
|
|
linux_test_for_tracefork (pid);
|
593 |
|
|
return linux_supports_tracevforkdone_flag;
|
594 |
|
|
}
|
595 |
|
|
|
596 |
|
|
static void
|
597 |
|
|
linux_enable_tracesysgood (ptid_t ptid)
|
598 |
|
|
{
|
599 |
|
|
int pid = ptid_get_lwp (ptid);
|
600 |
|
|
|
601 |
|
|
if (pid == 0)
|
602 |
|
|
pid = ptid_get_pid (ptid);
|
603 |
|
|
|
604 |
|
|
if (linux_supports_tracesysgood (pid) == 0)
|
605 |
|
|
return;
|
606 |
|
|
|
607 |
|
|
current_ptrace_options |= PTRACE_O_TRACESYSGOOD;
|
608 |
|
|
|
609 |
|
|
ptrace (PTRACE_SETOPTIONS, pid, 0, current_ptrace_options);
|
610 |
|
|
}
|
611 |
|
|
|
612 |
|
|
|
613 |
|
|
void
|
614 |
|
|
linux_enable_event_reporting (ptid_t ptid)
|
615 |
|
|
{
|
616 |
|
|
int pid = ptid_get_lwp (ptid);
|
617 |
|
|
|
618 |
|
|
if (pid == 0)
|
619 |
|
|
pid = ptid_get_pid (ptid);
|
620 |
|
|
|
621 |
|
|
if (! linux_supports_tracefork (pid))
|
622 |
|
|
return;
|
623 |
|
|
|
624 |
|
|
current_ptrace_options |= PTRACE_O_TRACEFORK | PTRACE_O_TRACEVFORK
|
625 |
|
|
| PTRACE_O_TRACEEXEC | PTRACE_O_TRACECLONE;
|
626 |
|
|
|
627 |
|
|
if (linux_supports_tracevforkdone (pid))
|
628 |
|
|
current_ptrace_options |= PTRACE_O_TRACEVFORKDONE;
|
629 |
|
|
|
630 |
|
|
/* Do not enable PTRACE_O_TRACEEXIT until GDB is more prepared to support
|
631 |
|
|
read-only process state. */
|
632 |
|
|
|
633 |
|
|
ptrace (PTRACE_SETOPTIONS, pid, 0, current_ptrace_options);
|
634 |
|
|
}
|
635 |
|
|
|
636 |
|
|
static void
|
637 |
|
|
linux_child_post_attach (int pid)
|
638 |
|
|
{
|
639 |
|
|
linux_enable_event_reporting (pid_to_ptid (pid));
|
640 |
|
|
check_for_thread_db ();
|
641 |
|
|
linux_enable_tracesysgood (pid_to_ptid (pid));
|
642 |
|
|
}
|
643 |
|
|
|
644 |
|
|
static void
|
645 |
|
|
linux_child_post_startup_inferior (ptid_t ptid)
|
646 |
|
|
{
|
647 |
|
|
linux_enable_event_reporting (ptid);
|
648 |
|
|
check_for_thread_db ();
|
649 |
|
|
linux_enable_tracesysgood (ptid);
|
650 |
|
|
}
|
651 |
|
|
|
652 |
|
|
static int
|
653 |
|
|
linux_child_follow_fork (struct target_ops *ops, int follow_child)
|
654 |
|
|
{
|
655 |
|
|
sigset_t prev_mask;
|
656 |
|
|
int has_vforked;
|
657 |
|
|
int parent_pid, child_pid;
|
658 |
|
|
|
659 |
|
|
block_child_signals (&prev_mask);
|
660 |
|
|
|
661 |
|
|
has_vforked = (inferior_thread ()->pending_follow.kind
|
662 |
|
|
== TARGET_WAITKIND_VFORKED);
|
663 |
|
|
parent_pid = ptid_get_lwp (inferior_ptid);
|
664 |
|
|
if (parent_pid == 0)
|
665 |
|
|
parent_pid = ptid_get_pid (inferior_ptid);
|
666 |
|
|
child_pid = PIDGET (inferior_thread ()->pending_follow.value.related_pid);
|
667 |
|
|
|
668 |
|
|
if (!detach_fork)
|
669 |
|
|
linux_enable_event_reporting (pid_to_ptid (child_pid));
|
670 |
|
|
|
671 |
|
|
if (has_vforked
|
672 |
|
|
&& !non_stop /* Non-stop always resumes both branches. */
|
673 |
|
|
&& (!target_is_async_p () || sync_execution)
|
674 |
|
|
&& !(follow_child || detach_fork || sched_multi))
|
675 |
|
|
{
|
676 |
|
|
/* The parent stays blocked inside the vfork syscall until the
|
677 |
|
|
child execs or exits. If we don't let the child run, then
|
678 |
|
|
the parent stays blocked. If we're telling the parent to run
|
679 |
|
|
in the foreground, the user will not be able to ctrl-c to get
|
680 |
|
|
back the terminal, effectively hanging the debug session. */
|
681 |
|
|
fprintf_filtered (gdb_stderr, _("\
|
682 |
|
|
Can not resume the parent process over vfork in the foreground while\n\
|
683 |
|
|
holding the child stopped. Try \"set detach-on-fork\" or \
|
684 |
|
|
\"set schedule-multiple\".\n"));
|
685 |
|
|
return 1;
|
686 |
|
|
}
|
687 |
|
|
|
688 |
|
|
if (! follow_child)
|
689 |
|
|
{
|
690 |
|
|
struct lwp_info *child_lp = NULL;
|
691 |
|
|
|
692 |
|
|
/* We're already attached to the parent, by default. */
|
693 |
|
|
|
694 |
|
|
/* Detach new forked process? */
|
695 |
|
|
if (detach_fork)
|
696 |
|
|
{
|
697 |
|
|
/* Before detaching from the child, remove all breakpoints
|
698 |
|
|
from it. If we forked, then this has already been taken
|
699 |
|
|
care of by infrun.c. If we vforked however, any
|
700 |
|
|
breakpoint inserted in the parent is visible in the
|
701 |
|
|
child, even those added while stopped in a vfork
|
702 |
|
|
catchpoint. This will remove the breakpoints from the
|
703 |
|
|
parent also, but they'll be reinserted below. */
|
704 |
|
|
if (has_vforked)
|
705 |
|
|
{
|
706 |
|
|
/* keep breakpoints list in sync. */
|
707 |
|
|
remove_breakpoints_pid (GET_PID (inferior_ptid));
|
708 |
|
|
}
|
709 |
|
|
|
710 |
|
|
if (info_verbose || debug_linux_nat)
|
711 |
|
|
{
|
712 |
|
|
target_terminal_ours ();
|
713 |
|
|
fprintf_filtered (gdb_stdlog,
|
714 |
|
|
"Detaching after fork from child process %d.\n",
|
715 |
|
|
child_pid);
|
716 |
|
|
}
|
717 |
|
|
|
718 |
|
|
ptrace (PTRACE_DETACH, child_pid, 0, 0);
|
719 |
|
|
}
|
720 |
|
|
else
|
721 |
|
|
{
|
722 |
|
|
struct inferior *parent_inf, *child_inf;
|
723 |
|
|
struct cleanup *old_chain;
|
724 |
|
|
|
725 |
|
|
/* Add process to GDB's tables. */
|
726 |
|
|
child_inf = add_inferior (child_pid);
|
727 |
|
|
|
728 |
|
|
parent_inf = current_inferior ();
|
729 |
|
|
child_inf->attach_flag = parent_inf->attach_flag;
|
730 |
|
|
copy_terminal_info (child_inf, parent_inf);
|
731 |
|
|
|
732 |
|
|
old_chain = save_inferior_ptid ();
|
733 |
|
|
save_current_program_space ();
|
734 |
|
|
|
735 |
|
|
inferior_ptid = ptid_build (child_pid, child_pid, 0);
|
736 |
|
|
add_thread (inferior_ptid);
|
737 |
|
|
child_lp = add_lwp (inferior_ptid);
|
738 |
|
|
child_lp->stopped = 1;
|
739 |
|
|
child_lp->resumed = 1;
|
740 |
|
|
|
741 |
|
|
/* If this is a vfork child, then the address-space is
|
742 |
|
|
shared with the parent. */
|
743 |
|
|
if (has_vforked)
|
744 |
|
|
{
|
745 |
|
|
child_inf->pspace = parent_inf->pspace;
|
746 |
|
|
child_inf->aspace = parent_inf->aspace;
|
747 |
|
|
|
748 |
|
|
/* The parent will be frozen until the child is done
|
749 |
|
|
with the shared region. Keep track of the
|
750 |
|
|
parent. */
|
751 |
|
|
child_inf->vfork_parent = parent_inf;
|
752 |
|
|
child_inf->pending_detach = 0;
|
753 |
|
|
parent_inf->vfork_child = child_inf;
|
754 |
|
|
parent_inf->pending_detach = 0;
|
755 |
|
|
}
|
756 |
|
|
else
|
757 |
|
|
{
|
758 |
|
|
child_inf->aspace = new_address_space ();
|
759 |
|
|
child_inf->pspace = add_program_space (child_inf->aspace);
|
760 |
|
|
child_inf->removable = 1;
|
761 |
|
|
set_current_program_space (child_inf->pspace);
|
762 |
|
|
clone_program_space (child_inf->pspace, parent_inf->pspace);
|
763 |
|
|
|
764 |
|
|
/* Let the shared library layer (solib-svr4) learn about
|
765 |
|
|
this new process, relocate the cloned exec, pull in
|
766 |
|
|
shared libraries, and install the solib event
|
767 |
|
|
breakpoint. If a "cloned-VM" event was propagated
|
768 |
|
|
better throughout the core, this wouldn't be
|
769 |
|
|
required. */
|
770 |
|
|
solib_create_inferior_hook (0);
|
771 |
|
|
}
|
772 |
|
|
|
773 |
|
|
/* Let the thread_db layer learn about this new process. */
|
774 |
|
|
check_for_thread_db ();
|
775 |
|
|
|
776 |
|
|
do_cleanups (old_chain);
|
777 |
|
|
}
|
778 |
|
|
|
779 |
|
|
if (has_vforked)
|
780 |
|
|
{
|
781 |
|
|
struct lwp_info *lp;
|
782 |
|
|
struct inferior *parent_inf;
|
783 |
|
|
|
784 |
|
|
parent_inf = current_inferior ();
|
785 |
|
|
|
786 |
|
|
/* If we detached from the child, then we have to be careful
|
787 |
|
|
to not insert breakpoints in the parent until the child
|
788 |
|
|
is done with the shared memory region. However, if we're
|
789 |
|
|
staying attached to the child, then we can and should
|
790 |
|
|
insert breakpoints, so that we can debug it. A
|
791 |
|
|
subsequent child exec or exit is enough to know when does
|
792 |
|
|
the child stops using the parent's address space. */
|
793 |
|
|
parent_inf->waiting_for_vfork_done = detach_fork;
|
794 |
|
|
parent_inf->pspace->breakpoints_not_allowed = detach_fork;
|
795 |
|
|
|
796 |
|
|
lp = find_lwp_pid (pid_to_ptid (parent_pid));
|
797 |
|
|
gdb_assert (linux_supports_tracefork_flag >= 0);
|
798 |
|
|
if (linux_supports_tracevforkdone (0))
|
799 |
|
|
{
|
800 |
|
|
if (debug_linux_nat)
|
801 |
|
|
fprintf_unfiltered (gdb_stdlog,
|
802 |
|
|
"LCFF: waiting for VFORK_DONE on %d\n",
|
803 |
|
|
parent_pid);
|
804 |
|
|
|
805 |
|
|
lp->stopped = 1;
|
806 |
|
|
lp->resumed = 1;
|
807 |
|
|
|
808 |
|
|
/* We'll handle the VFORK_DONE event like any other
|
809 |
|
|
event, in target_wait. */
|
810 |
|
|
}
|
811 |
|
|
else
|
812 |
|
|
{
|
813 |
|
|
/* We can't insert breakpoints until the child has
|
814 |
|
|
finished with the shared memory region. We need to
|
815 |
|
|
wait until that happens. Ideal would be to just
|
816 |
|
|
call:
|
817 |
|
|
- ptrace (PTRACE_SYSCALL, parent_pid, 0, 0);
|
818 |
|
|
- waitpid (parent_pid, &status, __WALL);
|
819 |
|
|
However, most architectures can't handle a syscall
|
820 |
|
|
being traced on the way out if it wasn't traced on
|
821 |
|
|
the way in.
|
822 |
|
|
|
823 |
|
|
We might also think to loop, continuing the child
|
824 |
|
|
until it exits or gets a SIGTRAP. One problem is
|
825 |
|
|
that the child might call ptrace with PTRACE_TRACEME.
|
826 |
|
|
|
827 |
|
|
There's no simple and reliable way to figure out when
|
828 |
|
|
the vforked child will be done with its copy of the
|
829 |
|
|
shared memory. We could step it out of the syscall,
|
830 |
|
|
two instructions, let it go, and then single-step the
|
831 |
|
|
parent once. When we have hardware single-step, this
|
832 |
|
|
would work; with software single-step it could still
|
833 |
|
|
be made to work but we'd have to be able to insert
|
834 |
|
|
single-step breakpoints in the child, and we'd have
|
835 |
|
|
to insert -just- the single-step breakpoint in the
|
836 |
|
|
parent. Very awkward.
|
837 |
|
|
|
838 |
|
|
In the end, the best we can do is to make sure it
|
839 |
|
|
runs for a little while. Hopefully it will be out of
|
840 |
|
|
range of any breakpoints we reinsert. Usually this
|
841 |
|
|
is only the single-step breakpoint at vfork's return
|
842 |
|
|
point. */
|
843 |
|
|
|
844 |
|
|
if (debug_linux_nat)
|
845 |
|
|
fprintf_unfiltered (gdb_stdlog,
|
846 |
|
|
"LCFF: no VFORK_DONE support, sleeping a bit\n");
|
847 |
|
|
|
848 |
|
|
usleep (10000);
|
849 |
|
|
|
850 |
|
|
/* Pretend we've seen a PTRACE_EVENT_VFORK_DONE event,
|
851 |
|
|
and leave it pending. The next linux_nat_resume call
|
852 |
|
|
will notice a pending event, and bypasses actually
|
853 |
|
|
resuming the inferior. */
|
854 |
|
|
lp->status = 0;
|
855 |
|
|
lp->waitstatus.kind = TARGET_WAITKIND_VFORK_DONE;
|
856 |
|
|
lp->stopped = 0;
|
857 |
|
|
lp->resumed = 1;
|
858 |
|
|
|
859 |
|
|
/* If we're in async mode, need to tell the event loop
|
860 |
|
|
there's something here to process. */
|
861 |
|
|
if (target_can_async_p ())
|
862 |
|
|
async_file_mark ();
|
863 |
|
|
}
|
864 |
|
|
}
|
865 |
|
|
}
|
866 |
|
|
else
|
867 |
|
|
{
|
868 |
|
|
struct inferior *parent_inf, *child_inf;
|
869 |
|
|
struct lwp_info *lp;
|
870 |
|
|
struct program_space *parent_pspace;
|
871 |
|
|
|
872 |
|
|
if (info_verbose || debug_linux_nat)
|
873 |
|
|
{
|
874 |
|
|
target_terminal_ours ();
|
875 |
|
|
if (has_vforked)
|
876 |
|
|
fprintf_filtered (gdb_stdlog, _("\
|
877 |
|
|
Attaching after process %d vfork to child process %d.\n"),
|
878 |
|
|
parent_pid, child_pid);
|
879 |
|
|
else
|
880 |
|
|
fprintf_filtered (gdb_stdlog, _("\
|
881 |
|
|
Attaching after process %d fork to child process %d.\n"),
|
882 |
|
|
parent_pid, child_pid);
|
883 |
|
|
}
|
884 |
|
|
|
885 |
|
|
/* Add the new inferior first, so that the target_detach below
|
886 |
|
|
doesn't unpush the target. */
|
887 |
|
|
|
888 |
|
|
child_inf = add_inferior (child_pid);
|
889 |
|
|
|
890 |
|
|
parent_inf = current_inferior ();
|
891 |
|
|
child_inf->attach_flag = parent_inf->attach_flag;
|
892 |
|
|
copy_terminal_info (child_inf, parent_inf);
|
893 |
|
|
|
894 |
|
|
parent_pspace = parent_inf->pspace;
|
895 |
|
|
|
896 |
|
|
/* If we're vforking, we want to hold on to the parent until the
|
897 |
|
|
child exits or execs. At child exec or exit time we can
|
898 |
|
|
remove the old breakpoints from the parent and detach or
|
899 |
|
|
resume debugging it. Otherwise, detach the parent now; we'll
|
900 |
|
|
want to reuse it's program/address spaces, but we can't set
|
901 |
|
|
them to the child before removing breakpoints from the
|
902 |
|
|
parent, otherwise, the breakpoints module could decide to
|
903 |
|
|
remove breakpoints from the wrong process (since they'd be
|
904 |
|
|
assigned to the same address space). */
|
905 |
|
|
|
906 |
|
|
if (has_vforked)
|
907 |
|
|
{
|
908 |
|
|
gdb_assert (child_inf->vfork_parent == NULL);
|
909 |
|
|
gdb_assert (parent_inf->vfork_child == NULL);
|
910 |
|
|
child_inf->vfork_parent = parent_inf;
|
911 |
|
|
child_inf->pending_detach = 0;
|
912 |
|
|
parent_inf->vfork_child = child_inf;
|
913 |
|
|
parent_inf->pending_detach = detach_fork;
|
914 |
|
|
parent_inf->waiting_for_vfork_done = 0;
|
915 |
|
|
}
|
916 |
|
|
else if (detach_fork)
|
917 |
|
|
target_detach (NULL, 0);
|
918 |
|
|
|
919 |
|
|
/* Note that the detach above makes PARENT_INF dangling. */
|
920 |
|
|
|
921 |
|
|
/* Add the child thread to the appropriate lists, and switch to
|
922 |
|
|
this new thread, before cloning the program space, and
|
923 |
|
|
informing the solib layer about this new process. */
|
924 |
|
|
|
925 |
|
|
inferior_ptid = ptid_build (child_pid, child_pid, 0);
|
926 |
|
|
add_thread (inferior_ptid);
|
927 |
|
|
lp = add_lwp (inferior_ptid);
|
928 |
|
|
lp->stopped = 1;
|
929 |
|
|
lp->resumed = 1;
|
930 |
|
|
|
931 |
|
|
/* If this is a vfork child, then the address-space is shared
|
932 |
|
|
with the parent. If we detached from the parent, then we can
|
933 |
|
|
reuse the parent's program/address spaces. */
|
934 |
|
|
if (has_vforked || detach_fork)
|
935 |
|
|
{
|
936 |
|
|
child_inf->pspace = parent_pspace;
|
937 |
|
|
child_inf->aspace = child_inf->pspace->aspace;
|
938 |
|
|
}
|
939 |
|
|
else
|
940 |
|
|
{
|
941 |
|
|
child_inf->aspace = new_address_space ();
|
942 |
|
|
child_inf->pspace = add_program_space (child_inf->aspace);
|
943 |
|
|
child_inf->removable = 1;
|
944 |
|
|
set_current_program_space (child_inf->pspace);
|
945 |
|
|
clone_program_space (child_inf->pspace, parent_pspace);
|
946 |
|
|
|
947 |
|
|
/* Let the shared library layer (solib-svr4) learn about
|
948 |
|
|
this new process, relocate the cloned exec, pull in
|
949 |
|
|
shared libraries, and install the solib event breakpoint.
|
950 |
|
|
If a "cloned-VM" event was propagated better throughout
|
951 |
|
|
the core, this wouldn't be required. */
|
952 |
|
|
solib_create_inferior_hook (0);
|
953 |
|
|
}
|
954 |
|
|
|
955 |
|
|
/* Let the thread_db layer learn about this new process. */
|
956 |
|
|
check_for_thread_db ();
|
957 |
|
|
}
|
958 |
|
|
|
959 |
|
|
restore_child_signals_mask (&prev_mask);
|
960 |
|
|
return 0;
|
961 |
|
|
}
|
962 |
|
|
|
963 |
|
|
|
964 |
|
|
static void
|
965 |
|
|
linux_child_insert_fork_catchpoint (int pid)
|
966 |
|
|
{
|
967 |
|
|
if (! linux_supports_tracefork (pid))
|
968 |
|
|
error (_("Your system does not support fork catchpoints."));
|
969 |
|
|
}
|
970 |
|
|
|
971 |
|
|
static void
|
972 |
|
|
linux_child_insert_vfork_catchpoint (int pid)
|
973 |
|
|
{
|
974 |
|
|
if (!linux_supports_tracefork (pid))
|
975 |
|
|
error (_("Your system does not support vfork catchpoints."));
|
976 |
|
|
}
|
977 |
|
|
|
978 |
|
|
static void
|
979 |
|
|
linux_child_insert_exec_catchpoint (int pid)
|
980 |
|
|
{
|
981 |
|
|
if (!linux_supports_tracefork (pid))
|
982 |
|
|
error (_("Your system does not support exec catchpoints."));
|
983 |
|
|
}
|
984 |
|
|
|
985 |
|
|
static int
|
986 |
|
|
linux_child_set_syscall_catchpoint (int pid, int needed, int any_count,
|
987 |
|
|
int table_size, int *table)
|
988 |
|
|
{
|
989 |
|
|
if (! linux_supports_tracesysgood (pid))
|
990 |
|
|
error (_("Your system does not support syscall catchpoints."));
|
991 |
|
|
/* On GNU/Linux, we ignore the arguments. It means that we only
|
992 |
|
|
enable the syscall catchpoints, but do not disable them.
|
993 |
|
|
|
994 |
|
|
Also, we do not use the `table' information because we do not
|
995 |
|
|
filter system calls here. We let GDB do the logic for us. */
|
996 |
|
|
return 0;
|
997 |
|
|
}
|
998 |
|
|
|
999 |
|
|
/* On GNU/Linux there are no real LWP's. The closest thing to LWP's
|
1000 |
|
|
are processes sharing the same VM space. A multi-threaded process
|
1001 |
|
|
is basically a group of such processes. However, such a grouping
|
1002 |
|
|
is almost entirely a user-space issue; the kernel doesn't enforce
|
1003 |
|
|
such a grouping at all (this might change in the future). In
|
1004 |
|
|
general, we'll rely on the threads library (i.e. the GNU/Linux
|
1005 |
|
|
Threads library) to provide such a grouping.
|
1006 |
|
|
|
1007 |
|
|
It is perfectly well possible to write a multi-threaded application
|
1008 |
|
|
without the assistance of a threads library, by using the clone
|
1009 |
|
|
system call directly. This module should be able to give some
|
1010 |
|
|
rudimentary support for debugging such applications if developers
|
1011 |
|
|
specify the CLONE_PTRACE flag in the clone system call, and are
|
1012 |
|
|
using the Linux kernel 2.4 or above.
|
1013 |
|
|
|
1014 |
|
|
Note that there are some peculiarities in GNU/Linux that affect
|
1015 |
|
|
this code:
|
1016 |
|
|
|
1017 |
|
|
- In general one should specify the __WCLONE flag to waitpid in
|
1018 |
|
|
order to make it report events for any of the cloned processes
|
1019 |
|
|
(and leave it out for the initial process). However, if a cloned
|
1020 |
|
|
process has exited the exit status is only reported if the
|
1021 |
|
|
__WCLONE flag is absent. Linux kernel 2.4 has a __WALL flag, but
|
1022 |
|
|
we cannot use it since GDB must work on older systems too.
|
1023 |
|
|
|
1024 |
|
|
- When a traced, cloned process exits and is waited for by the
|
1025 |
|
|
debugger, the kernel reassigns it to the original parent and
|
1026 |
|
|
keeps it around as a "zombie". Somehow, the GNU/Linux Threads
|
1027 |
|
|
library doesn't notice this, which leads to the "zombie problem":
|
1028 |
|
|
When debugged a multi-threaded process that spawns a lot of
|
1029 |
|
|
threads will run out of processes, even if the threads exit,
|
1030 |
|
|
because the "zombies" stay around. */
|
1031 |
|
|
|
1032 |
|
|
/* List of known LWPs. */
|
1033 |
|
|
struct lwp_info *lwp_list;
|
1034 |
|
|
|
1035 |
|
|
|
1036 |
|
|
/* Original signal mask. */
|
1037 |
|
|
static sigset_t normal_mask;
|
1038 |
|
|
|
1039 |
|
|
/* Signal mask for use with sigsuspend in linux_nat_wait, initialized in
|
1040 |
|
|
_initialize_linux_nat. */
|
1041 |
|
|
static sigset_t suspend_mask;
|
1042 |
|
|
|
1043 |
|
|
/* Signals to block to make that sigsuspend work. */
|
1044 |
|
|
static sigset_t blocked_mask;
|
1045 |
|
|
|
1046 |
|
|
/* SIGCHLD action. */
|
1047 |
|
|
struct sigaction sigchld_action;
|
1048 |
|
|
|
1049 |
|
|
/* Block child signals (SIGCHLD and linux threads signals), and store
|
1050 |
|
|
the previous mask in PREV_MASK. */
|
1051 |
|
|
|
1052 |
|
|
static void
|
1053 |
|
|
block_child_signals (sigset_t *prev_mask)
|
1054 |
|
|
{
|
1055 |
|
|
/* Make sure SIGCHLD is blocked. */
|
1056 |
|
|
if (!sigismember (&blocked_mask, SIGCHLD))
|
1057 |
|
|
sigaddset (&blocked_mask, SIGCHLD);
|
1058 |
|
|
|
1059 |
|
|
sigprocmask (SIG_BLOCK, &blocked_mask, prev_mask);
|
1060 |
|
|
}
|
1061 |
|
|
|
1062 |
|
|
/* Restore child signals mask, previously returned by
|
1063 |
|
|
block_child_signals. */
|
1064 |
|
|
|
1065 |
|
|
static void
|
1066 |
|
|
restore_child_signals_mask (sigset_t *prev_mask)
|
1067 |
|
|
{
|
1068 |
|
|
sigprocmask (SIG_SETMASK, prev_mask, NULL);
|
1069 |
|
|
}
|
1070 |
|
|
|
1071 |
|
|
|
1072 |
|
|
/* Prototypes for local functions. */
|
1073 |
|
|
static int stop_wait_callback (struct lwp_info *lp, void *data);
|
1074 |
|
|
static int linux_thread_alive (ptid_t ptid);
|
1075 |
|
|
static char *linux_child_pid_to_exec_file (int pid);
|
1076 |
|
|
static int cancel_breakpoint (struct lwp_info *lp);
|
1077 |
|
|
|
1078 |
|
|
|
1079 |
|
|
/* Convert wait status STATUS to a string. Used for printing debug
|
1080 |
|
|
messages only. */
|
1081 |
|
|
|
1082 |
|
|
static char *
|
1083 |
|
|
status_to_str (int status)
|
1084 |
|
|
{
|
1085 |
|
|
static char buf[64];
|
1086 |
|
|
|
1087 |
|
|
if (WIFSTOPPED (status))
|
1088 |
|
|
{
|
1089 |
|
|
if (WSTOPSIG (status) == SYSCALL_SIGTRAP)
|
1090 |
|
|
snprintf (buf, sizeof (buf), "%s (stopped at syscall)",
|
1091 |
|
|
strsignal (SIGTRAP));
|
1092 |
|
|
else
|
1093 |
|
|
snprintf (buf, sizeof (buf), "%s (stopped)",
|
1094 |
|
|
strsignal (WSTOPSIG (status)));
|
1095 |
|
|
}
|
1096 |
|
|
else if (WIFSIGNALED (status))
|
1097 |
|
|
snprintf (buf, sizeof (buf), "%s (terminated)",
|
1098 |
|
|
strsignal (WSTOPSIG (status)));
|
1099 |
|
|
else
|
1100 |
|
|
snprintf (buf, sizeof (buf), "%d (exited)", WEXITSTATUS (status));
|
1101 |
|
|
|
1102 |
|
|
return buf;
|
1103 |
|
|
}
|
1104 |
|
|
|
1105 |
|
|
/* Remove all LWPs belong to PID from the lwp list. */
|
1106 |
|
|
|
1107 |
|
|
static void
|
1108 |
|
|
purge_lwp_list (int pid)
|
1109 |
|
|
{
|
1110 |
|
|
struct lwp_info *lp, *lpprev, *lpnext;
|
1111 |
|
|
|
1112 |
|
|
lpprev = NULL;
|
1113 |
|
|
|
1114 |
|
|
for (lp = lwp_list; lp; lp = lpnext)
|
1115 |
|
|
{
|
1116 |
|
|
lpnext = lp->next;
|
1117 |
|
|
|
1118 |
|
|
if (ptid_get_pid (lp->ptid) == pid)
|
1119 |
|
|
{
|
1120 |
|
|
if (lp == lwp_list)
|
1121 |
|
|
lwp_list = lp->next;
|
1122 |
|
|
else
|
1123 |
|
|
lpprev->next = lp->next;
|
1124 |
|
|
|
1125 |
|
|
xfree (lp);
|
1126 |
|
|
}
|
1127 |
|
|
else
|
1128 |
|
|
lpprev = lp;
|
1129 |
|
|
}
|
1130 |
|
|
}
|
1131 |
|
|
|
1132 |
|
|
/* Return the number of known LWPs in the tgid given by PID. */
|
1133 |
|
|
|
1134 |
|
|
static int
|
1135 |
|
|
num_lwps (int pid)
|
1136 |
|
|
{
|
1137 |
|
|
int count = 0;
|
1138 |
|
|
struct lwp_info *lp;
|
1139 |
|
|
|
1140 |
|
|
for (lp = lwp_list; lp; lp = lp->next)
|
1141 |
|
|
if (ptid_get_pid (lp->ptid) == pid)
|
1142 |
|
|
count++;
|
1143 |
|
|
|
1144 |
|
|
return count;
|
1145 |
|
|
}
|
1146 |
|
|
|
1147 |
|
|
/* Add the LWP specified by PID to the list. Return a pointer to the
|
1148 |
|
|
structure describing the new LWP. The LWP should already be stopped
|
1149 |
|
|
(with an exception for the very first LWP). */
|
1150 |
|
|
|
1151 |
|
|
static struct lwp_info *
|
1152 |
|
|
add_lwp (ptid_t ptid)
|
1153 |
|
|
{
|
1154 |
|
|
struct lwp_info *lp;
|
1155 |
|
|
|
1156 |
|
|
gdb_assert (is_lwp (ptid));
|
1157 |
|
|
|
1158 |
|
|
lp = (struct lwp_info *) xmalloc (sizeof (struct lwp_info));
|
1159 |
|
|
|
1160 |
|
|
memset (lp, 0, sizeof (struct lwp_info));
|
1161 |
|
|
|
1162 |
|
|
lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
|
1163 |
|
|
|
1164 |
|
|
lp->ptid = ptid;
|
1165 |
|
|
lp->core = -1;
|
1166 |
|
|
|
1167 |
|
|
lp->next = lwp_list;
|
1168 |
|
|
lwp_list = lp;
|
1169 |
|
|
|
1170 |
|
|
if (num_lwps (GET_PID (ptid)) > 1 && linux_nat_new_thread != NULL)
|
1171 |
|
|
linux_nat_new_thread (ptid);
|
1172 |
|
|
|
1173 |
|
|
return lp;
|
1174 |
|
|
}
|
1175 |
|
|
|
1176 |
|
|
/* Remove the LWP specified by PID from the list. */
|
1177 |
|
|
|
1178 |
|
|
static void
|
1179 |
|
|
delete_lwp (ptid_t ptid)
|
1180 |
|
|
{
|
1181 |
|
|
struct lwp_info *lp, *lpprev;
|
1182 |
|
|
|
1183 |
|
|
lpprev = NULL;
|
1184 |
|
|
|
1185 |
|
|
for (lp = lwp_list; lp; lpprev = lp, lp = lp->next)
|
1186 |
|
|
if (ptid_equal (lp->ptid, ptid))
|
1187 |
|
|
break;
|
1188 |
|
|
|
1189 |
|
|
if (!lp)
|
1190 |
|
|
return;
|
1191 |
|
|
|
1192 |
|
|
if (lpprev)
|
1193 |
|
|
lpprev->next = lp->next;
|
1194 |
|
|
else
|
1195 |
|
|
lwp_list = lp->next;
|
1196 |
|
|
|
1197 |
|
|
xfree (lp);
|
1198 |
|
|
}
|
1199 |
|
|
|
1200 |
|
|
/* Return a pointer to the structure describing the LWP corresponding
|
1201 |
|
|
to PID. If no corresponding LWP could be found, return NULL. */
|
1202 |
|
|
|
1203 |
|
|
static struct lwp_info *
|
1204 |
|
|
find_lwp_pid (ptid_t ptid)
|
1205 |
|
|
{
|
1206 |
|
|
struct lwp_info *lp;
|
1207 |
|
|
int lwp;
|
1208 |
|
|
|
1209 |
|
|
if (is_lwp (ptid))
|
1210 |
|
|
lwp = GET_LWP (ptid);
|
1211 |
|
|
else
|
1212 |
|
|
lwp = GET_PID (ptid);
|
1213 |
|
|
|
1214 |
|
|
for (lp = lwp_list; lp; lp = lp->next)
|
1215 |
|
|
if (lwp == GET_LWP (lp->ptid))
|
1216 |
|
|
return lp;
|
1217 |
|
|
|
1218 |
|
|
return NULL;
|
1219 |
|
|
}
|
1220 |
|
|
|
1221 |
|
|
/* Call CALLBACK with its second argument set to DATA for every LWP in
|
1222 |
|
|
the list. If CALLBACK returns 1 for a particular LWP, return a
|
1223 |
|
|
pointer to the structure describing that LWP immediately.
|
1224 |
|
|
Otherwise return NULL. */
|
1225 |
|
|
|
1226 |
|
|
struct lwp_info *
|
1227 |
|
|
iterate_over_lwps (ptid_t filter,
|
1228 |
|
|
int (*callback) (struct lwp_info *, void *),
|
1229 |
|
|
void *data)
|
1230 |
|
|
{
|
1231 |
|
|
struct lwp_info *lp, *lpnext;
|
1232 |
|
|
|
1233 |
|
|
for (lp = lwp_list; lp; lp = lpnext)
|
1234 |
|
|
{
|
1235 |
|
|
lpnext = lp->next;
|
1236 |
|
|
|
1237 |
|
|
if (ptid_match (lp->ptid, filter))
|
1238 |
|
|
{
|
1239 |
|
|
if ((*callback) (lp, data))
|
1240 |
|
|
return lp;
|
1241 |
|
|
}
|
1242 |
|
|
}
|
1243 |
|
|
|
1244 |
|
|
return NULL;
|
1245 |
|
|
}
|
1246 |
|
|
|
1247 |
|
|
/* Update our internal state when changing from one checkpoint to
|
1248 |
|
|
another indicated by NEW_PTID. We can only switch single-threaded
|
1249 |
|
|
applications, so we only create one new LWP, and the previous list
|
1250 |
|
|
is discarded. */
|
1251 |
|
|
|
1252 |
|
|
void
|
1253 |
|
|
linux_nat_switch_fork (ptid_t new_ptid)
|
1254 |
|
|
{
|
1255 |
|
|
struct lwp_info *lp;
|
1256 |
|
|
|
1257 |
|
|
purge_lwp_list (GET_PID (inferior_ptid));
|
1258 |
|
|
|
1259 |
|
|
lp = add_lwp (new_ptid);
|
1260 |
|
|
lp->stopped = 1;
|
1261 |
|
|
|
1262 |
|
|
/* This changes the thread's ptid while preserving the gdb thread
|
1263 |
|
|
num. Also changes the inferior pid, while preserving the
|
1264 |
|
|
inferior num. */
|
1265 |
|
|
thread_change_ptid (inferior_ptid, new_ptid);
|
1266 |
|
|
|
1267 |
|
|
/* We've just told GDB core that the thread changed target id, but,
|
1268 |
|
|
in fact, it really is a different thread, with different register
|
1269 |
|
|
contents. */
|
1270 |
|
|
registers_changed ();
|
1271 |
|
|
}
|
1272 |
|
|
|
1273 |
|
|
/* Handle the exit of a single thread LP. */
|
1274 |
|
|
|
1275 |
|
|
static void
|
1276 |
|
|
exit_lwp (struct lwp_info *lp)
|
1277 |
|
|
{
|
1278 |
|
|
struct thread_info *th = find_thread_ptid (lp->ptid);
|
1279 |
|
|
|
1280 |
|
|
if (th)
|
1281 |
|
|
{
|
1282 |
|
|
if (print_thread_events)
|
1283 |
|
|
printf_unfiltered (_("[%s exited]\n"), target_pid_to_str (lp->ptid));
|
1284 |
|
|
|
1285 |
|
|
delete_thread (lp->ptid);
|
1286 |
|
|
}
|
1287 |
|
|
|
1288 |
|
|
delete_lwp (lp->ptid);
|
1289 |
|
|
}
|
1290 |
|
|
|
1291 |
|
|
/* Return an lwp's tgid, found in `/proc/PID/status'. */
|
1292 |
|
|
|
1293 |
|
|
int
|
1294 |
|
|
linux_proc_get_tgid (int lwpid)
|
1295 |
|
|
{
|
1296 |
|
|
FILE *status_file;
|
1297 |
|
|
char buf[100];
|
1298 |
|
|
int tgid = -1;
|
1299 |
|
|
|
1300 |
|
|
snprintf (buf, sizeof (buf), "/proc/%d/status", (int) lwpid);
|
1301 |
|
|
status_file = fopen (buf, "r");
|
1302 |
|
|
if (status_file != NULL)
|
1303 |
|
|
{
|
1304 |
|
|
while (fgets (buf, sizeof (buf), status_file))
|
1305 |
|
|
{
|
1306 |
|
|
if (strncmp (buf, "Tgid:", 5) == 0)
|
1307 |
|
|
{
|
1308 |
|
|
tgid = strtoul (buf + strlen ("Tgid:"), NULL, 10);
|
1309 |
|
|
break;
|
1310 |
|
|
}
|
1311 |
|
|
}
|
1312 |
|
|
|
1313 |
|
|
fclose (status_file);
|
1314 |
|
|
}
|
1315 |
|
|
|
1316 |
|
|
return tgid;
|
1317 |
|
|
}
|
1318 |
|
|
|
1319 |
|
|
/* Detect `T (stopped)' in `/proc/PID/status'.
|
1320 |
|
|
Other states including `T (tracing stop)' are reported as false. */
|
1321 |
|
|
|
1322 |
|
|
static int
|
1323 |
|
|
pid_is_stopped (pid_t pid)
|
1324 |
|
|
{
|
1325 |
|
|
FILE *status_file;
|
1326 |
|
|
char buf[100];
|
1327 |
|
|
int retval = 0;
|
1328 |
|
|
|
1329 |
|
|
snprintf (buf, sizeof (buf), "/proc/%d/status", (int) pid);
|
1330 |
|
|
status_file = fopen (buf, "r");
|
1331 |
|
|
if (status_file != NULL)
|
1332 |
|
|
{
|
1333 |
|
|
int have_state = 0;
|
1334 |
|
|
|
1335 |
|
|
while (fgets (buf, sizeof (buf), status_file))
|
1336 |
|
|
{
|
1337 |
|
|
if (strncmp (buf, "State:", 6) == 0)
|
1338 |
|
|
{
|
1339 |
|
|
have_state = 1;
|
1340 |
|
|
break;
|
1341 |
|
|
}
|
1342 |
|
|
}
|
1343 |
|
|
if (have_state && strstr (buf, "T (stopped)") != NULL)
|
1344 |
|
|
retval = 1;
|
1345 |
|
|
fclose (status_file);
|
1346 |
|
|
}
|
1347 |
|
|
return retval;
|
1348 |
|
|
}
|
1349 |
|
|
|
1350 |
|
|
/* Wait for the LWP specified by LP, which we have just attached to.
|
1351 |
|
|
Returns a wait status for that LWP, to cache. */
|
1352 |
|
|
|
1353 |
|
|
static int
|
1354 |
|
|
linux_nat_post_attach_wait (ptid_t ptid, int first, int *cloned,
|
1355 |
|
|
int *signalled)
|
1356 |
|
|
{
|
1357 |
|
|
pid_t new_pid, pid = GET_LWP (ptid);
|
1358 |
|
|
int status;
|
1359 |
|
|
|
1360 |
|
|
if (pid_is_stopped (pid))
|
1361 |
|
|
{
|
1362 |
|
|
if (debug_linux_nat)
|
1363 |
|
|
fprintf_unfiltered (gdb_stdlog,
|
1364 |
|
|
"LNPAW: Attaching to a stopped process\n");
|
1365 |
|
|
|
1366 |
|
|
/* The process is definitely stopped. It is in a job control
|
1367 |
|
|
stop, unless the kernel predates the TASK_STOPPED /
|
1368 |
|
|
TASK_TRACED distinction, in which case it might be in a
|
1369 |
|
|
ptrace stop. Make sure it is in a ptrace stop; from there we
|
1370 |
|
|
can kill it, signal it, et cetera.
|
1371 |
|
|
|
1372 |
|
|
First make sure there is a pending SIGSTOP. Since we are
|
1373 |
|
|
already attached, the process can not transition from stopped
|
1374 |
|
|
to running without a PTRACE_CONT; so we know this signal will
|
1375 |
|
|
go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
|
1376 |
|
|
probably already in the queue (unless this kernel is old
|
1377 |
|
|
enough to use TASK_STOPPED for ptrace stops); but since SIGSTOP
|
1378 |
|
|
is not an RT signal, it can only be queued once. */
|
1379 |
|
|
kill_lwp (pid, SIGSTOP);
|
1380 |
|
|
|
1381 |
|
|
/* Finally, resume the stopped process. This will deliver the SIGSTOP
|
1382 |
|
|
(or a higher priority signal, just like normal PTRACE_ATTACH). */
|
1383 |
|
|
ptrace (PTRACE_CONT, pid, 0, 0);
|
1384 |
|
|
}
|
1385 |
|
|
|
1386 |
|
|
/* Make sure the initial process is stopped. The user-level threads
|
1387 |
|
|
layer might want to poke around in the inferior, and that won't
|
1388 |
|
|
work if things haven't stabilized yet. */
|
1389 |
|
|
new_pid = my_waitpid (pid, &status, 0);
|
1390 |
|
|
if (new_pid == -1 && errno == ECHILD)
|
1391 |
|
|
{
|
1392 |
|
|
if (first)
|
1393 |
|
|
warning (_("%s is a cloned process"), target_pid_to_str (ptid));
|
1394 |
|
|
|
1395 |
|
|
/* Try again with __WCLONE to check cloned processes. */
|
1396 |
|
|
new_pid = my_waitpid (pid, &status, __WCLONE);
|
1397 |
|
|
*cloned = 1;
|
1398 |
|
|
}
|
1399 |
|
|
|
1400 |
|
|
gdb_assert (pid == new_pid);
|
1401 |
|
|
|
1402 |
|
|
if (!WIFSTOPPED (status))
|
1403 |
|
|
{
|
1404 |
|
|
/* The pid we tried to attach has apparently just exited. */
|
1405 |
|
|
if (debug_linux_nat)
|
1406 |
|
|
fprintf_unfiltered (gdb_stdlog, "LNPAW: Failed to stop %d: %s",
|
1407 |
|
|
pid, status_to_str (status));
|
1408 |
|
|
return status;
|
1409 |
|
|
}
|
1410 |
|
|
|
1411 |
|
|
if (WSTOPSIG (status) != SIGSTOP)
|
1412 |
|
|
{
|
1413 |
|
|
*signalled = 1;
|
1414 |
|
|
if (debug_linux_nat)
|
1415 |
|
|
fprintf_unfiltered (gdb_stdlog,
|
1416 |
|
|
"LNPAW: Received %s after attaching\n",
|
1417 |
|
|
status_to_str (status));
|
1418 |
|
|
}
|
1419 |
|
|
|
1420 |
|
|
return status;
|
1421 |
|
|
}
|
1422 |
|
|
|
1423 |
|
|
/* Attach to the LWP specified by PID. Return 0 if successful or -1
|
1424 |
|
|
if the new LWP could not be attached. */
|
1425 |
|
|
|
1426 |
|
|
int
|
1427 |
|
|
lin_lwp_attach_lwp (ptid_t ptid)
|
1428 |
|
|
{
|
1429 |
|
|
struct lwp_info *lp;
|
1430 |
|
|
sigset_t prev_mask;
|
1431 |
|
|
|
1432 |
|
|
gdb_assert (is_lwp (ptid));
|
1433 |
|
|
|
1434 |
|
|
block_child_signals (&prev_mask);
|
1435 |
|
|
|
1436 |
|
|
lp = find_lwp_pid (ptid);
|
1437 |
|
|
|
1438 |
|
|
/* We assume that we're already attached to any LWP that has an id
|
1439 |
|
|
equal to the overall process id, and to any LWP that is already
|
1440 |
|
|
in our list of LWPs. If we're not seeing exit events from threads
|
1441 |
|
|
and we've had PID wraparound since we last tried to stop all threads,
|
1442 |
|
|
this assumption might be wrong; fortunately, this is very unlikely
|
1443 |
|
|
to happen. */
|
1444 |
|
|
if (GET_LWP (ptid) != GET_PID (ptid) && lp == NULL)
|
1445 |
|
|
{
|
1446 |
|
|
int status, cloned = 0, signalled = 0;
|
1447 |
|
|
|
1448 |
|
|
if (ptrace (PTRACE_ATTACH, GET_LWP (ptid), 0, 0) < 0)
|
1449 |
|
|
{
|
1450 |
|
|
/* If we fail to attach to the thread, issue a warning,
|
1451 |
|
|
but continue. One way this can happen is if thread
|
1452 |
|
|
creation is interrupted; as of Linux kernel 2.6.19, a
|
1453 |
|
|
bug may place threads in the thread list and then fail
|
1454 |
|
|
to create them. */
|
1455 |
|
|
warning (_("Can't attach %s: %s"), target_pid_to_str (ptid),
|
1456 |
|
|
safe_strerror (errno));
|
1457 |
|
|
restore_child_signals_mask (&prev_mask);
|
1458 |
|
|
return -1;
|
1459 |
|
|
}
|
1460 |
|
|
|
1461 |
|
|
if (debug_linux_nat)
|
1462 |
|
|
fprintf_unfiltered (gdb_stdlog,
|
1463 |
|
|
"LLAL: PTRACE_ATTACH %s, 0, 0 (OK)\n",
|
1464 |
|
|
target_pid_to_str (ptid));
|
1465 |
|
|
|
1466 |
|
|
status = linux_nat_post_attach_wait (ptid, 0, &cloned, &signalled);
|
1467 |
|
|
if (!WIFSTOPPED (status))
|
1468 |
|
|
return -1;
|
1469 |
|
|
|
1470 |
|
|
lp = add_lwp (ptid);
|
1471 |
|
|
lp->stopped = 1;
|
1472 |
|
|
lp->cloned = cloned;
|
1473 |
|
|
lp->signalled = signalled;
|
1474 |
|
|
if (WSTOPSIG (status) != SIGSTOP)
|
1475 |
|
|
{
|
1476 |
|
|
lp->resumed = 1;
|
1477 |
|
|
lp->status = status;
|
1478 |
|
|
}
|
1479 |
|
|
|
1480 |
|
|
target_post_attach (GET_LWP (lp->ptid));
|
1481 |
|
|
|
1482 |
|
|
if (debug_linux_nat)
|
1483 |
|
|
{
|
1484 |
|
|
fprintf_unfiltered (gdb_stdlog,
|
1485 |
|
|
"LLAL: waitpid %s received %s\n",
|
1486 |
|
|
target_pid_to_str (ptid),
|
1487 |
|
|
status_to_str (status));
|
1488 |
|
|
}
|
1489 |
|
|
}
|
1490 |
|
|
else
|
1491 |
|
|
{
|
1492 |
|
|
/* We assume that the LWP representing the original process is
|
1493 |
|
|
already stopped. Mark it as stopped in the data structure
|
1494 |
|
|
that the GNU/linux ptrace layer uses to keep track of
|
1495 |
|
|
threads. Note that this won't have already been done since
|
1496 |
|
|
the main thread will have, we assume, been stopped by an
|
1497 |
|
|
attach from a different layer. */
|
1498 |
|
|
if (lp == NULL)
|
1499 |
|
|
lp = add_lwp (ptid);
|
1500 |
|
|
lp->stopped = 1;
|
1501 |
|
|
}
|
1502 |
|
|
|
1503 |
|
|
restore_child_signals_mask (&prev_mask);
|
1504 |
|
|
return 0;
|
1505 |
|
|
}
|
1506 |
|
|
|
1507 |
|
|
static void
|
1508 |
|
|
linux_nat_create_inferior (struct target_ops *ops,
|
1509 |
|
|
char *exec_file, char *allargs, char **env,
|
1510 |
|
|
int from_tty)
|
1511 |
|
|
{
|
1512 |
|
|
#ifdef HAVE_PERSONALITY
|
1513 |
|
|
int personality_orig = 0, personality_set = 0;
|
1514 |
|
|
#endif /* HAVE_PERSONALITY */
|
1515 |
|
|
|
1516 |
|
|
/* The fork_child mechanism is synchronous and calls target_wait, so
|
1517 |
|
|
we have to mask the async mode. */
|
1518 |
|
|
|
1519 |
|
|
#ifdef HAVE_PERSONALITY
|
1520 |
|
|
if (disable_randomization)
|
1521 |
|
|
{
|
1522 |
|
|
errno = 0;
|
1523 |
|
|
personality_orig = personality (0xffffffff);
|
1524 |
|
|
if (errno == 0 && !(personality_orig & ADDR_NO_RANDOMIZE))
|
1525 |
|
|
{
|
1526 |
|
|
personality_set = 1;
|
1527 |
|
|
personality (personality_orig | ADDR_NO_RANDOMIZE);
|
1528 |
|
|
}
|
1529 |
|
|
if (errno != 0 || (personality_set
|
1530 |
|
|
&& !(personality (0xffffffff) & ADDR_NO_RANDOMIZE)))
|
1531 |
|
|
warning (_("Error disabling address space randomization: %s"),
|
1532 |
|
|
safe_strerror (errno));
|
1533 |
|
|
}
|
1534 |
|
|
#endif /* HAVE_PERSONALITY */
|
1535 |
|
|
|
1536 |
|
|
linux_ops->to_create_inferior (ops, exec_file, allargs, env, from_tty);
|
1537 |
|
|
|
1538 |
|
|
#ifdef HAVE_PERSONALITY
|
1539 |
|
|
if (personality_set)
|
1540 |
|
|
{
|
1541 |
|
|
errno = 0;
|
1542 |
|
|
personality (personality_orig);
|
1543 |
|
|
if (errno != 0)
|
1544 |
|
|
warning (_("Error restoring address space randomization: %s"),
|
1545 |
|
|
safe_strerror (errno));
|
1546 |
|
|
}
|
1547 |
|
|
#endif /* HAVE_PERSONALITY */
|
1548 |
|
|
}
|
1549 |
|
|
|
1550 |
|
|
static void
|
1551 |
|
|
linux_nat_attach (struct target_ops *ops, char *args, int from_tty)
|
1552 |
|
|
{
|
1553 |
|
|
struct lwp_info *lp;
|
1554 |
|
|
int status;
|
1555 |
|
|
ptid_t ptid;
|
1556 |
|
|
|
1557 |
|
|
linux_ops->to_attach (ops, args, from_tty);
|
1558 |
|
|
|
1559 |
|
|
/* The ptrace base target adds the main thread with (pid,0,0)
|
1560 |
|
|
format. Decorate it with lwp info. */
|
1561 |
|
|
ptid = BUILD_LWP (GET_PID (inferior_ptid), GET_PID (inferior_ptid));
|
1562 |
|
|
thread_change_ptid (inferior_ptid, ptid);
|
1563 |
|
|
|
1564 |
|
|
/* Add the initial process as the first LWP to the list. */
|
1565 |
|
|
lp = add_lwp (ptid);
|
1566 |
|
|
|
1567 |
|
|
status = linux_nat_post_attach_wait (lp->ptid, 1, &lp->cloned,
|
1568 |
|
|
&lp->signalled);
|
1569 |
|
|
if (!WIFSTOPPED (status))
|
1570 |
|
|
{
|
1571 |
|
|
if (WIFEXITED (status))
|
1572 |
|
|
{
|
1573 |
|
|
int exit_code = WEXITSTATUS (status);
|
1574 |
|
|
|
1575 |
|
|
target_terminal_ours ();
|
1576 |
|
|
target_mourn_inferior ();
|
1577 |
|
|
if (exit_code == 0)
|
1578 |
|
|
error (_("Unable to attach: program exited normally."));
|
1579 |
|
|
else
|
1580 |
|
|
error (_("Unable to attach: program exited with code %d."),
|
1581 |
|
|
exit_code);
|
1582 |
|
|
}
|
1583 |
|
|
else if (WIFSIGNALED (status))
|
1584 |
|
|
{
|
1585 |
|
|
enum target_signal signo;
|
1586 |
|
|
|
1587 |
|
|
target_terminal_ours ();
|
1588 |
|
|
target_mourn_inferior ();
|
1589 |
|
|
|
1590 |
|
|
signo = target_signal_from_host (WTERMSIG (status));
|
1591 |
|
|
error (_("Unable to attach: program terminated with signal "
|
1592 |
|
|
"%s, %s."),
|
1593 |
|
|
target_signal_to_name (signo),
|
1594 |
|
|
target_signal_to_string (signo));
|
1595 |
|
|
}
|
1596 |
|
|
|
1597 |
|
|
internal_error (__FILE__, __LINE__,
|
1598 |
|
|
_("unexpected status %d for PID %ld"),
|
1599 |
|
|
status, (long) GET_LWP (ptid));
|
1600 |
|
|
}
|
1601 |
|
|
|
1602 |
|
|
lp->stopped = 1;
|
1603 |
|
|
|
1604 |
|
|
/* Save the wait status to report later. */
|
1605 |
|
|
lp->resumed = 1;
|
1606 |
|
|
if (debug_linux_nat)
|
1607 |
|
|
fprintf_unfiltered (gdb_stdlog,
|
1608 |
|
|
"LNA: waitpid %ld, saving status %s\n",
|
1609 |
|
|
(long) GET_PID (lp->ptid), status_to_str (status));
|
1610 |
|
|
|
1611 |
|
|
lp->status = status;
|
1612 |
|
|
|
1613 |
|
|
if (target_can_async_p ())
|
1614 |
|
|
target_async (inferior_event_handler, 0);
|
1615 |
|
|
}
|
1616 |
|
|
|
1617 |
|
|
/* Get pending status of LP. */
|
1618 |
|
|
static int
|
1619 |
|
|
get_pending_status (struct lwp_info *lp, int *status)
|
1620 |
|
|
{
|
1621 |
|
|
enum target_signal signo = TARGET_SIGNAL_0;
|
1622 |
|
|
|
1623 |
|
|
/* If we paused threads momentarily, we may have stored pending
|
1624 |
|
|
events in lp->status or lp->waitstatus (see stop_wait_callback),
|
1625 |
|
|
and GDB core hasn't seen any signal for those threads.
|
1626 |
|
|
Otherwise, the last signal reported to the core is found in the
|
1627 |
|
|
thread object's stop_signal.
|
1628 |
|
|
|
1629 |
|
|
There's a corner case that isn't handled here at present. Only
|
1630 |
|
|
if the thread stopped with a TARGET_WAITKIND_STOPPED does
|
1631 |
|
|
stop_signal make sense as a real signal to pass to the inferior.
|
1632 |
|
|
Some catchpoint related events, like
|
1633 |
|
|
TARGET_WAITKIND_(V)FORK|EXEC|SYSCALL, have their stop_signal set
|
1634 |
|
|
to TARGET_SIGNAL_SIGTRAP when the catchpoint triggers. But,
|
1635 |
|
|
those traps are debug API (ptrace in our case) related and
|
1636 |
|
|
induced; the inferior wouldn't see them if it wasn't being
|
1637 |
|
|
traced. Hence, we should never pass them to the inferior, even
|
1638 |
|
|
when set to pass state. Since this corner case isn't handled by
|
1639 |
|
|
infrun.c when proceeding with a signal, for consistency, neither
|
1640 |
|
|
do we handle it here (or elsewhere in the file we check for
|
1641 |
|
|
signal pass state). Normally SIGTRAP isn't set to pass state, so
|
1642 |
|
|
this is really a corner case. */
|
1643 |
|
|
|
1644 |
|
|
if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
|
1645 |
|
|
signo = TARGET_SIGNAL_0; /* a pending ptrace event, not a real signal. */
|
1646 |
|
|
else if (lp->status)
|
1647 |
|
|
signo = target_signal_from_host (WSTOPSIG (lp->status));
|
1648 |
|
|
else if (non_stop && !is_executing (lp->ptid))
|
1649 |
|
|
{
|
1650 |
|
|
struct thread_info *tp = find_thread_ptid (lp->ptid);
|
1651 |
|
|
|
1652 |
|
|
signo = tp->stop_signal;
|
1653 |
|
|
}
|
1654 |
|
|
else if (!non_stop)
|
1655 |
|
|
{
|
1656 |
|
|
struct target_waitstatus last;
|
1657 |
|
|
ptid_t last_ptid;
|
1658 |
|
|
|
1659 |
|
|
get_last_target_status (&last_ptid, &last);
|
1660 |
|
|
|
1661 |
|
|
if (GET_LWP (lp->ptid) == GET_LWP (last_ptid))
|
1662 |
|
|
{
|
1663 |
|
|
struct thread_info *tp = find_thread_ptid (lp->ptid);
|
1664 |
|
|
|
1665 |
|
|
signo = tp->stop_signal;
|
1666 |
|
|
}
|
1667 |
|
|
}
|
1668 |
|
|
|
1669 |
|
|
*status = 0;
|
1670 |
|
|
|
1671 |
|
|
if (signo == TARGET_SIGNAL_0)
|
1672 |
|
|
{
|
1673 |
|
|
if (debug_linux_nat)
|
1674 |
|
|
fprintf_unfiltered (gdb_stdlog,
|
1675 |
|
|
"GPT: lwp %s has no pending signal\n",
|
1676 |
|
|
target_pid_to_str (lp->ptid));
|
1677 |
|
|
}
|
1678 |
|
|
else if (!signal_pass_state (signo))
|
1679 |
|
|
{
|
1680 |
|
|
if (debug_linux_nat)
|
1681 |
|
|
fprintf_unfiltered (gdb_stdlog, "\
|
1682 |
|
|
GPT: lwp %s had signal %s, but it is in no pass state\n",
|
1683 |
|
|
target_pid_to_str (lp->ptid),
|
1684 |
|
|
target_signal_to_string (signo));
|
1685 |
|
|
}
|
1686 |
|
|
else
|
1687 |
|
|
{
|
1688 |
|
|
*status = W_STOPCODE (target_signal_to_host (signo));
|
1689 |
|
|
|
1690 |
|
|
if (debug_linux_nat)
|
1691 |
|
|
fprintf_unfiltered (gdb_stdlog,
|
1692 |
|
|
"GPT: lwp %s has pending signal %s\n",
|
1693 |
|
|
target_pid_to_str (lp->ptid),
|
1694 |
|
|
target_signal_to_string (signo));
|
1695 |
|
|
}
|
1696 |
|
|
|
1697 |
|
|
return 0;
|
1698 |
|
|
}
|
1699 |
|
|
|
1700 |
|
|
static int
|
1701 |
|
|
detach_callback (struct lwp_info *lp, void *data)
|
1702 |
|
|
{
|
1703 |
|
|
gdb_assert (lp->status == 0 || WIFSTOPPED (lp->status));
|
1704 |
|
|
|
1705 |
|
|
if (debug_linux_nat && lp->status)
|
1706 |
|
|
fprintf_unfiltered (gdb_stdlog, "DC: Pending %s for %s on detach.\n",
|
1707 |
|
|
strsignal (WSTOPSIG (lp->status)),
|
1708 |
|
|
target_pid_to_str (lp->ptid));
|
1709 |
|
|
|
1710 |
|
|
/* If there is a pending SIGSTOP, get rid of it. */
|
1711 |
|
|
if (lp->signalled)
|
1712 |
|
|
{
|
1713 |
|
|
if (debug_linux_nat)
|
1714 |
|
|
fprintf_unfiltered (gdb_stdlog,
|
1715 |
|
|
"DC: Sending SIGCONT to %s\n",
|
1716 |
|
|
target_pid_to_str (lp->ptid));
|
1717 |
|
|
|
1718 |
|
|
kill_lwp (GET_LWP (lp->ptid), SIGCONT);
|
1719 |
|
|
lp->signalled = 0;
|
1720 |
|
|
}
|
1721 |
|
|
|
1722 |
|
|
/* We don't actually detach from the LWP that has an id equal to the
|
1723 |
|
|
overall process id just yet. */
|
1724 |
|
|
if (GET_LWP (lp->ptid) != GET_PID (lp->ptid))
|
1725 |
|
|
{
|
1726 |
|
|
int status = 0;
|
1727 |
|
|
|
1728 |
|
|
/* Pass on any pending signal for this LWP. */
|
1729 |
|
|
get_pending_status (lp, &status);
|
1730 |
|
|
|
1731 |
|
|
errno = 0;
|
1732 |
|
|
if (ptrace (PTRACE_DETACH, GET_LWP (lp->ptid), 0,
|
1733 |
|
|
WSTOPSIG (status)) < 0)
|
1734 |
|
|
error (_("Can't detach %s: %s"), target_pid_to_str (lp->ptid),
|
1735 |
|
|
safe_strerror (errno));
|
1736 |
|
|
|
1737 |
|
|
if (debug_linux_nat)
|
1738 |
|
|
fprintf_unfiltered (gdb_stdlog,
|
1739 |
|
|
"PTRACE_DETACH (%s, %s, 0) (OK)\n",
|
1740 |
|
|
target_pid_to_str (lp->ptid),
|
1741 |
|
|
strsignal (WSTOPSIG (status)));
|
1742 |
|
|
|
1743 |
|
|
delete_lwp (lp->ptid);
|
1744 |
|
|
}
|
1745 |
|
|
|
1746 |
|
|
return 0;
|
1747 |
|
|
}
|
1748 |
|
|
|
1749 |
|
|
static void
|
1750 |
|
|
linux_nat_detach (struct target_ops *ops, char *args, int from_tty)
|
1751 |
|
|
{
|
1752 |
|
|
int pid;
|
1753 |
|
|
int status;
|
1754 |
|
|
struct lwp_info *main_lwp;
|
1755 |
|
|
|
1756 |
|
|
pid = GET_PID (inferior_ptid);
|
1757 |
|
|
|
1758 |
|
|
if (target_can_async_p ())
|
1759 |
|
|
linux_nat_async (NULL, 0);
|
1760 |
|
|
|
1761 |
|
|
/* Stop all threads before detaching. ptrace requires that the
|
1762 |
|
|
thread is stopped to sucessfully detach. */
|
1763 |
|
|
iterate_over_lwps (pid_to_ptid (pid), stop_callback, NULL);
|
1764 |
|
|
/* ... and wait until all of them have reported back that
|
1765 |
|
|
they're no longer running. */
|
1766 |
|
|
iterate_over_lwps (pid_to_ptid (pid), stop_wait_callback, NULL);
|
1767 |
|
|
|
1768 |
|
|
iterate_over_lwps (pid_to_ptid (pid), detach_callback, NULL);
|
1769 |
|
|
|
1770 |
|
|
/* Only the initial process should be left right now. */
|
1771 |
|
|
gdb_assert (num_lwps (GET_PID (inferior_ptid)) == 1);
|
1772 |
|
|
|
1773 |
|
|
main_lwp = find_lwp_pid (pid_to_ptid (pid));
|
1774 |
|
|
|
1775 |
|
|
/* Pass on any pending signal for the last LWP. */
|
1776 |
|
|
if ((args == NULL || *args == '\0')
|
1777 |
|
|
&& get_pending_status (main_lwp, &status) != -1
|
1778 |
|
|
&& WIFSTOPPED (status))
|
1779 |
|
|
{
|
1780 |
|
|
/* Put the signal number in ARGS so that inf_ptrace_detach will
|
1781 |
|
|
pass it along with PTRACE_DETACH. */
|
1782 |
|
|
args = alloca (8);
|
1783 |
|
|
sprintf (args, "%d", (int) WSTOPSIG (status));
|
1784 |
|
|
if (debug_linux_nat)
|
1785 |
|
|
fprintf_unfiltered (gdb_stdlog,
|
1786 |
|
|
"LND: Sending signal %s to %s\n",
|
1787 |
|
|
args,
|
1788 |
|
|
target_pid_to_str (main_lwp->ptid));
|
1789 |
|
|
}
|
1790 |
|
|
|
1791 |
|
|
delete_lwp (main_lwp->ptid);
|
1792 |
|
|
|
1793 |
|
|
if (forks_exist_p ())
|
1794 |
|
|
{
|
1795 |
|
|
/* Multi-fork case. The current inferior_ptid is being detached
|
1796 |
|
|
from, but there are other viable forks to debug. Detach from
|
1797 |
|
|
the current fork, and context-switch to the first
|
1798 |
|
|
available. */
|
1799 |
|
|
linux_fork_detach (args, from_tty);
|
1800 |
|
|
|
1801 |
|
|
if (non_stop && target_can_async_p ())
|
1802 |
|
|
target_async (inferior_event_handler, 0);
|
1803 |
|
|
}
|
1804 |
|
|
else
|
1805 |
|
|
linux_ops->to_detach (ops, args, from_tty);
|
1806 |
|
|
}
|
1807 |
|
|
|
1808 |
|
|
/* Resume LP. */
|
1809 |
|
|
|
1810 |
|
|
static int
|
1811 |
|
|
resume_callback (struct lwp_info *lp, void *data)
|
1812 |
|
|
{
|
1813 |
|
|
struct inferior *inf = find_inferior_pid (GET_PID (lp->ptid));
|
1814 |
|
|
|
1815 |
|
|
if (lp->stopped && inf->vfork_child != NULL)
|
1816 |
|
|
{
|
1817 |
|
|
if (debug_linux_nat)
|
1818 |
|
|
fprintf_unfiltered (gdb_stdlog,
|
1819 |
|
|
"RC: Not resuming %s (vfork parent)\n",
|
1820 |
|
|
target_pid_to_str (lp->ptid));
|
1821 |
|
|
}
|
1822 |
|
|
else if (lp->stopped && lp->status == 0)
|
1823 |
|
|
{
|
1824 |
|
|
if (debug_linux_nat)
|
1825 |
|
|
fprintf_unfiltered (gdb_stdlog,
|
1826 |
|
|
"RC: PTRACE_CONT %s, 0, 0 (resuming sibling)\n",
|
1827 |
|
|
target_pid_to_str (lp->ptid));
|
1828 |
|
|
|
1829 |
|
|
linux_ops->to_resume (linux_ops,
|
1830 |
|
|
pid_to_ptid (GET_LWP (lp->ptid)),
|
1831 |
|
|
0, TARGET_SIGNAL_0);
|
1832 |
|
|
if (debug_linux_nat)
|
1833 |
|
|
fprintf_unfiltered (gdb_stdlog,
|
1834 |
|
|
"RC: PTRACE_CONT %s, 0, 0 (resume sibling)\n",
|
1835 |
|
|
target_pid_to_str (lp->ptid));
|
1836 |
|
|
lp->stopped = 0;
|
1837 |
|
|
lp->step = 0;
|
1838 |
|
|
memset (&lp->siginfo, 0, sizeof (lp->siginfo));
|
1839 |
|
|
lp->stopped_by_watchpoint = 0;
|
1840 |
|
|
}
|
1841 |
|
|
else if (lp->stopped && debug_linux_nat)
|
1842 |
|
|
fprintf_unfiltered (gdb_stdlog, "RC: Not resuming sibling %s (has pending)\n",
|
1843 |
|
|
target_pid_to_str (lp->ptid));
|
1844 |
|
|
else if (debug_linux_nat)
|
1845 |
|
|
fprintf_unfiltered (gdb_stdlog, "RC: Not resuming sibling %s (not stopped)\n",
|
1846 |
|
|
target_pid_to_str (lp->ptid));
|
1847 |
|
|
|
1848 |
|
|
return 0;
|
1849 |
|
|
}
|
1850 |
|
|
|
1851 |
|
|
static int
|
1852 |
|
|
resume_clear_callback (struct lwp_info *lp, void *data)
|
1853 |
|
|
{
|
1854 |
|
|
lp->resumed = 0;
|
1855 |
|
|
return 0;
|
1856 |
|
|
}
|
1857 |
|
|
|
1858 |
|
|
static int
|
1859 |
|
|
resume_set_callback (struct lwp_info *lp, void *data)
|
1860 |
|
|
{
|
1861 |
|
|
lp->resumed = 1;
|
1862 |
|
|
return 0;
|
1863 |
|
|
}
|
1864 |
|
|
|
1865 |
|
|
static void
|
1866 |
|
|
linux_nat_resume (struct target_ops *ops,
|
1867 |
|
|
ptid_t ptid, int step, enum target_signal signo)
|
1868 |
|
|
{
|
1869 |
|
|
sigset_t prev_mask;
|
1870 |
|
|
struct lwp_info *lp;
|
1871 |
|
|
int resume_many;
|
1872 |
|
|
|
1873 |
|
|
if (debug_linux_nat)
|
1874 |
|
|
fprintf_unfiltered (gdb_stdlog,
|
1875 |
|
|
"LLR: Preparing to %s %s, %s, inferior_ptid %s\n",
|
1876 |
|
|
step ? "step" : "resume",
|
1877 |
|
|
target_pid_to_str (ptid),
|
1878 |
|
|
signo ? strsignal (signo) : "0",
|
1879 |
|
|
target_pid_to_str (inferior_ptid));
|
1880 |
|
|
|
1881 |
|
|
block_child_signals (&prev_mask);
|
1882 |
|
|
|
1883 |
|
|
/* A specific PTID means `step only this process id'. */
|
1884 |
|
|
resume_many = (ptid_equal (minus_one_ptid, ptid)
|
1885 |
|
|
|| ptid_is_pid (ptid));
|
1886 |
|
|
|
1887 |
|
|
/* Mark the lwps we're resuming as resumed. */
|
1888 |
|
|
iterate_over_lwps (ptid, resume_set_callback, NULL);
|
1889 |
|
|
|
1890 |
|
|
/* See if it's the current inferior that should be handled
|
1891 |
|
|
specially. */
|
1892 |
|
|
if (resume_many)
|
1893 |
|
|
lp = find_lwp_pid (inferior_ptid);
|
1894 |
|
|
else
|
1895 |
|
|
lp = find_lwp_pid (ptid);
|
1896 |
|
|
gdb_assert (lp != NULL);
|
1897 |
|
|
|
1898 |
|
|
/* Remember if we're stepping. */
|
1899 |
|
|
lp->step = step;
|
1900 |
|
|
|
1901 |
|
|
/* If we have a pending wait status for this thread, there is no
|
1902 |
|
|
point in resuming the process. But first make sure that
|
1903 |
|
|
linux_nat_wait won't preemptively handle the event - we
|
1904 |
|
|
should never take this short-circuit if we are going to
|
1905 |
|
|
leave LP running, since we have skipped resuming all the
|
1906 |
|
|
other threads. This bit of code needs to be synchronized
|
1907 |
|
|
with linux_nat_wait. */
|
1908 |
|
|
|
1909 |
|
|
if (lp->status && WIFSTOPPED (lp->status))
|
1910 |
|
|
{
|
1911 |
|
|
int saved_signo;
|
1912 |
|
|
struct inferior *inf;
|
1913 |
|
|
|
1914 |
|
|
inf = find_inferior_pid (ptid_get_pid (lp->ptid));
|
1915 |
|
|
gdb_assert (inf);
|
1916 |
|
|
saved_signo = target_signal_from_host (WSTOPSIG (lp->status));
|
1917 |
|
|
|
1918 |
|
|
/* Defer to common code if we're gaining control of the
|
1919 |
|
|
inferior. */
|
1920 |
|
|
if (inf->stop_soon == NO_STOP_QUIETLY
|
1921 |
|
|
&& signal_stop_state (saved_signo) == 0
|
1922 |
|
|
&& signal_print_state (saved_signo) == 0
|
1923 |
|
|
&& signal_pass_state (saved_signo) == 1)
|
1924 |
|
|
{
|
1925 |
|
|
if (debug_linux_nat)
|
1926 |
|
|
fprintf_unfiltered (gdb_stdlog,
|
1927 |
|
|
"LLR: Not short circuiting for ignored "
|
1928 |
|
|
"status 0x%x\n", lp->status);
|
1929 |
|
|
|
1930 |
|
|
/* FIXME: What should we do if we are supposed to continue
|
1931 |
|
|
this thread with a signal? */
|
1932 |
|
|
gdb_assert (signo == TARGET_SIGNAL_0);
|
1933 |
|
|
signo = saved_signo;
|
1934 |
|
|
lp->status = 0;
|
1935 |
|
|
}
|
1936 |
|
|
}
|
1937 |
|
|
|
1938 |
|
|
if (lp->status || lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
|
1939 |
|
|
{
|
1940 |
|
|
/* FIXME: What should we do if we are supposed to continue
|
1941 |
|
|
this thread with a signal? */
|
1942 |
|
|
gdb_assert (signo == TARGET_SIGNAL_0);
|
1943 |
|
|
|
1944 |
|
|
if (debug_linux_nat)
|
1945 |
|
|
fprintf_unfiltered (gdb_stdlog,
|
1946 |
|
|
"LLR: Short circuiting for status 0x%x\n",
|
1947 |
|
|
lp->status);
|
1948 |
|
|
|
1949 |
|
|
restore_child_signals_mask (&prev_mask);
|
1950 |
|
|
if (target_can_async_p ())
|
1951 |
|
|
{
|
1952 |
|
|
target_async (inferior_event_handler, 0);
|
1953 |
|
|
/* Tell the event loop we have something to process. */
|
1954 |
|
|
async_file_mark ();
|
1955 |
|
|
}
|
1956 |
|
|
return;
|
1957 |
|
|
}
|
1958 |
|
|
|
1959 |
|
|
/* Mark LWP as not stopped to prevent it from being continued by
|
1960 |
|
|
resume_callback. */
|
1961 |
|
|
lp->stopped = 0;
|
1962 |
|
|
|
1963 |
|
|
if (resume_many)
|
1964 |
|
|
iterate_over_lwps (ptid, resume_callback, NULL);
|
1965 |
|
|
|
1966 |
|
|
/* Convert to something the lower layer understands. */
|
1967 |
|
|
ptid = pid_to_ptid (GET_LWP (lp->ptid));
|
1968 |
|
|
|
1969 |
|
|
linux_ops->to_resume (linux_ops, ptid, step, signo);
|
1970 |
|
|
memset (&lp->siginfo, 0, sizeof (lp->siginfo));
|
1971 |
|
|
lp->stopped_by_watchpoint = 0;
|
1972 |
|
|
|
1973 |
|
|
if (debug_linux_nat)
|
1974 |
|
|
fprintf_unfiltered (gdb_stdlog,
|
1975 |
|
|
"LLR: %s %s, %s (resume event thread)\n",
|
1976 |
|
|
step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
|
1977 |
|
|
target_pid_to_str (ptid),
|
1978 |
|
|
signo ? strsignal (signo) : "0");
|
1979 |
|
|
|
1980 |
|
|
restore_child_signals_mask (&prev_mask);
|
1981 |
|
|
if (target_can_async_p ())
|
1982 |
|
|
target_async (inferior_event_handler, 0);
|
1983 |
|
|
}
|
1984 |
|
|
|
1985 |
|
|
/* Send a signal to an LWP. */
|
1986 |
|
|
|
1987 |
|
|
static int
|
1988 |
|
|
kill_lwp (int lwpid, int signo)
|
1989 |
|
|
{
|
1990 |
|
|
/* Use tkill, if possible, in case we are using nptl threads. If tkill
|
1991 |
|
|
fails, then we are not using nptl threads and we should be using kill. */
|
1992 |
|
|
|
1993 |
|
|
#ifdef HAVE_TKILL_SYSCALL
|
1994 |
|
|
{
|
1995 |
|
|
static int tkill_failed;
|
1996 |
|
|
|
1997 |
|
|
if (!tkill_failed)
|
1998 |
|
|
{
|
1999 |
|
|
int ret;
|
2000 |
|
|
|
2001 |
|
|
errno = 0;
|
2002 |
|
|
ret = syscall (__NR_tkill, lwpid, signo);
|
2003 |
|
|
if (errno != ENOSYS)
|
2004 |
|
|
return ret;
|
2005 |
|
|
tkill_failed = 1;
|
2006 |
|
|
}
|
2007 |
|
|
}
|
2008 |
|
|
#endif
|
2009 |
|
|
|
2010 |
|
|
return kill (lwpid, signo);
|
2011 |
|
|
}
|
2012 |
|
|
|
2013 |
|
|
/* Handle a GNU/Linux syscall trap wait response. If we see a syscall
|
2014 |
|
|
event, check if the core is interested in it: if not, ignore the
|
2015 |
|
|
event, and keep waiting; otherwise, we need to toggle the LWP's
|
2016 |
|
|
syscall entry/exit status, since the ptrace event itself doesn't
|
2017 |
|
|
indicate it, and report the trap to higher layers. */
|
2018 |
|
|
|
2019 |
|
|
static int
|
2020 |
|
|
linux_handle_syscall_trap (struct lwp_info *lp, int stopping)
|
2021 |
|
|
{
|
2022 |
|
|
struct target_waitstatus *ourstatus = &lp->waitstatus;
|
2023 |
|
|
struct gdbarch *gdbarch = target_thread_architecture (lp->ptid);
|
2024 |
|
|
int syscall_number = (int) gdbarch_get_syscall_number (gdbarch, lp->ptid);
|
2025 |
|
|
|
2026 |
|
|
if (stopping)
|
2027 |
|
|
{
|
2028 |
|
|
/* If we're stopping threads, there's a SIGSTOP pending, which
|
2029 |
|
|
makes it so that the LWP reports an immediate syscall return,
|
2030 |
|
|
followed by the SIGSTOP. Skip seeing that "return" using
|
2031 |
|
|
PTRACE_CONT directly, and let stop_wait_callback collect the
|
2032 |
|
|
SIGSTOP. Later when the thread is resumed, a new syscall
|
2033 |
|
|
entry event. If we didn't do this (and returned 0), we'd
|
2034 |
|
|
leave a syscall entry pending, and our caller, by using
|
2035 |
|
|
PTRACE_CONT to collect the SIGSTOP, skips the syscall return
|
2036 |
|
|
itself. Later, when the user re-resumes this LWP, we'd see
|
2037 |
|
|
another syscall entry event and we'd mistake it for a return.
|
2038 |
|
|
|
2039 |
|
|
If stop_wait_callback didn't force the SIGSTOP out of the LWP
|
2040 |
|
|
(leaving immediately with LWP->signalled set, without issuing
|
2041 |
|
|
a PTRACE_CONT), it would still be problematic to leave this
|
2042 |
|
|
syscall enter pending, as later when the thread is resumed,
|
2043 |
|
|
it would then see the same syscall exit mentioned above,
|
2044 |
|
|
followed by the delayed SIGSTOP, while the syscall didn't
|
2045 |
|
|
actually get to execute. It seems it would be even more
|
2046 |
|
|
confusing to the user. */
|
2047 |
|
|
|
2048 |
|
|
if (debug_linux_nat)
|
2049 |
|
|
fprintf_unfiltered (gdb_stdlog,
|
2050 |
|
|
"LHST: ignoring syscall %d "
|
2051 |
|
|
"for LWP %ld (stopping threads), "
|
2052 |
|
|
"resuming with PTRACE_CONT for SIGSTOP\n",
|
2053 |
|
|
syscall_number,
|
2054 |
|
|
GET_LWP (lp->ptid));
|
2055 |
|
|
|
2056 |
|
|
lp->syscall_state = TARGET_WAITKIND_IGNORE;
|
2057 |
|
|
ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
|
2058 |
|
|
return 1;
|
2059 |
|
|
}
|
2060 |
|
|
|
2061 |
|
|
if (catch_syscall_enabled ())
|
2062 |
|
|
{
|
2063 |
|
|
/* Always update the entry/return state, even if this particular
|
2064 |
|
|
syscall isn't interesting to the core now. In async mode,
|
2065 |
|
|
the user could install a new catchpoint for this syscall
|
2066 |
|
|
between syscall enter/return, and we'll need to know to
|
2067 |
|
|
report a syscall return if that happens. */
|
2068 |
|
|
lp->syscall_state = (lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
|
2069 |
|
|
? TARGET_WAITKIND_SYSCALL_RETURN
|
2070 |
|
|
: TARGET_WAITKIND_SYSCALL_ENTRY);
|
2071 |
|
|
|
2072 |
|
|
if (catching_syscall_number (syscall_number))
|
2073 |
|
|
{
|
2074 |
|
|
/* Alright, an event to report. */
|
2075 |
|
|
ourstatus->kind = lp->syscall_state;
|
2076 |
|
|
ourstatus->value.syscall_number = syscall_number;
|
2077 |
|
|
|
2078 |
|
|
if (debug_linux_nat)
|
2079 |
|
|
fprintf_unfiltered (gdb_stdlog,
|
2080 |
|
|
"LHST: stopping for %s of syscall %d"
|
2081 |
|
|
" for LWP %ld\n",
|
2082 |
|
|
lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
|
2083 |
|
|
? "entry" : "return",
|
2084 |
|
|
syscall_number,
|
2085 |
|
|
GET_LWP (lp->ptid));
|
2086 |
|
|
return 0;
|
2087 |
|
|
}
|
2088 |
|
|
|
2089 |
|
|
if (debug_linux_nat)
|
2090 |
|
|
fprintf_unfiltered (gdb_stdlog,
|
2091 |
|
|
"LHST: ignoring %s of syscall %d "
|
2092 |
|
|
"for LWP %ld\n",
|
2093 |
|
|
lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
|
2094 |
|
|
? "entry" : "return",
|
2095 |
|
|
syscall_number,
|
2096 |
|
|
GET_LWP (lp->ptid));
|
2097 |
|
|
}
|
2098 |
|
|
else
|
2099 |
|
|
{
|
2100 |
|
|
/* If we had been syscall tracing, and hence used PT_SYSCALL
|
2101 |
|
|
before on this LWP, it could happen that the user removes all
|
2102 |
|
|
syscall catchpoints before we get to process this event.
|
2103 |
|
|
There are two noteworthy issues here:
|
2104 |
|
|
|
2105 |
|
|
- When stopped at a syscall entry event, resuming with
|
2106 |
|
|
PT_STEP still resumes executing the syscall and reports a
|
2107 |
|
|
syscall return.
|
2108 |
|
|
|
2109 |
|
|
- Only PT_SYSCALL catches syscall enters. If we last
|
2110 |
|
|
single-stepped this thread, then this event can't be a
|
2111 |
|
|
syscall enter. If we last single-stepped this thread, this
|
2112 |
|
|
has to be a syscall exit.
|
2113 |
|
|
|
2114 |
|
|
The points above mean that the next resume, be it PT_STEP or
|
2115 |
|
|
PT_CONTINUE, can not trigger a syscall trace event. */
|
2116 |
|
|
if (debug_linux_nat)
|
2117 |
|
|
fprintf_unfiltered (gdb_stdlog,
|
2118 |
|
|
"LHST: caught syscall event with no syscall catchpoints."
|
2119 |
|
|
" %d for LWP %ld, ignoring\n",
|
2120 |
|
|
syscall_number,
|
2121 |
|
|
GET_LWP (lp->ptid));
|
2122 |
|
|
lp->syscall_state = TARGET_WAITKIND_IGNORE;
|
2123 |
|
|
}
|
2124 |
|
|
|
2125 |
|
|
/* The core isn't interested in this event. For efficiency, avoid
|
2126 |
|
|
stopping all threads only to have the core resume them all again.
|
2127 |
|
|
Since we're not stopping threads, if we're still syscall tracing
|
2128 |
|
|
and not stepping, we can't use PTRACE_CONT here, as we'd miss any
|
2129 |
|
|
subsequent syscall. Simply resume using the inf-ptrace layer,
|
2130 |
|
|
which knows when to use PT_SYSCALL or PT_CONTINUE. */
|
2131 |
|
|
|
2132 |
|
|
/* Note that gdbarch_get_syscall_number may access registers, hence
|
2133 |
|
|
fill a regcache. */
|
2134 |
|
|
registers_changed ();
|
2135 |
|
|
linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
|
2136 |
|
|
lp->step, TARGET_SIGNAL_0);
|
2137 |
|
|
return 1;
|
2138 |
|
|
}
|
2139 |
|
|
|
2140 |
|
|
/* Handle a GNU/Linux extended wait response. If we see a clone
|
2141 |
|
|
event, we need to add the new LWP to our list (and not report the
|
2142 |
|
|
trap to higher layers). This function returns non-zero if the
|
2143 |
|
|
event should be ignored and we should wait again. If STOPPING is
|
2144 |
|
|
true, the new LWP remains stopped, otherwise it is continued. */
|
2145 |
|
|
|
2146 |
|
|
static int
|
2147 |
|
|
linux_handle_extended_wait (struct lwp_info *lp, int status,
|
2148 |
|
|
int stopping)
|
2149 |
|
|
{
|
2150 |
|
|
int pid = GET_LWP (lp->ptid);
|
2151 |
|
|
struct target_waitstatus *ourstatus = &lp->waitstatus;
|
2152 |
|
|
struct lwp_info *new_lp = NULL;
|
2153 |
|
|
int event = status >> 16;
|
2154 |
|
|
|
2155 |
|
|
if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK
|
2156 |
|
|
|| event == PTRACE_EVENT_CLONE)
|
2157 |
|
|
{
|
2158 |
|
|
unsigned long new_pid;
|
2159 |
|
|
int ret;
|
2160 |
|
|
|
2161 |
|
|
ptrace (PTRACE_GETEVENTMSG, pid, 0, &new_pid);
|
2162 |
|
|
|
2163 |
|
|
/* If we haven't already seen the new PID stop, wait for it now. */
|
2164 |
|
|
if (! pull_pid_from_list (&stopped_pids, new_pid, &status))
|
2165 |
|
|
{
|
2166 |
|
|
/* The new child has a pending SIGSTOP. We can't affect it until it
|
2167 |
|
|
hits the SIGSTOP, but we're already attached. */
|
2168 |
|
|
ret = my_waitpid (new_pid, &status,
|
2169 |
|
|
(event == PTRACE_EVENT_CLONE) ? __WCLONE : 0);
|
2170 |
|
|
if (ret == -1)
|
2171 |
|
|
perror_with_name (_("waiting for new child"));
|
2172 |
|
|
else if (ret != new_pid)
|
2173 |
|
|
internal_error (__FILE__, __LINE__,
|
2174 |
|
|
_("wait returned unexpected PID %d"), ret);
|
2175 |
|
|
else if (!WIFSTOPPED (status))
|
2176 |
|
|
internal_error (__FILE__, __LINE__,
|
2177 |
|
|
_("wait returned unexpected status 0x%x"), status);
|
2178 |
|
|
}
|
2179 |
|
|
|
2180 |
|
|
ourstatus->value.related_pid = ptid_build (new_pid, new_pid, 0);
|
2181 |
|
|
|
2182 |
|
|
if (event == PTRACE_EVENT_FORK
|
2183 |
|
|
&& linux_fork_checkpointing_p (GET_PID (lp->ptid)))
|
2184 |
|
|
{
|
2185 |
|
|
struct fork_info *fp;
|
2186 |
|
|
|
2187 |
|
|
/* Handle checkpointing by linux-fork.c here as a special
|
2188 |
|
|
case. We don't want the follow-fork-mode or 'catch fork'
|
2189 |
|
|
to interfere with this. */
|
2190 |
|
|
|
2191 |
|
|
/* This won't actually modify the breakpoint list, but will
|
2192 |
|
|
physically remove the breakpoints from the child. */
|
2193 |
|
|
detach_breakpoints (new_pid);
|
2194 |
|
|
|
2195 |
|
|
/* Retain child fork in ptrace (stopped) state. */
|
2196 |
|
|
fp = find_fork_pid (new_pid);
|
2197 |
|
|
if (!fp)
|
2198 |
|
|
fp = add_fork (new_pid);
|
2199 |
|
|
|
2200 |
|
|
/* Report as spurious, so that infrun doesn't want to follow
|
2201 |
|
|
this fork. We're actually doing an infcall in
|
2202 |
|
|
linux-fork.c. */
|
2203 |
|
|
ourstatus->kind = TARGET_WAITKIND_SPURIOUS;
|
2204 |
|
|
linux_enable_event_reporting (pid_to_ptid (new_pid));
|
2205 |
|
|
|
2206 |
|
|
/* Report the stop to the core. */
|
2207 |
|
|
return 0;
|
2208 |
|
|
}
|
2209 |
|
|
|
2210 |
|
|
if (event == PTRACE_EVENT_FORK)
|
2211 |
|
|
ourstatus->kind = TARGET_WAITKIND_FORKED;
|
2212 |
|
|
else if (event == PTRACE_EVENT_VFORK)
|
2213 |
|
|
ourstatus->kind = TARGET_WAITKIND_VFORKED;
|
2214 |
|
|
else
|
2215 |
|
|
{
|
2216 |
|
|
ourstatus->kind = TARGET_WAITKIND_IGNORE;
|
2217 |
|
|
new_lp = add_lwp (BUILD_LWP (new_pid, GET_PID (lp->ptid)));
|
2218 |
|
|
new_lp->cloned = 1;
|
2219 |
|
|
new_lp->stopped = 1;
|
2220 |
|
|
|
2221 |
|
|
if (WSTOPSIG (status) != SIGSTOP)
|
2222 |
|
|
{
|
2223 |
|
|
/* This can happen if someone starts sending signals to
|
2224 |
|
|
the new thread before it gets a chance to run, which
|
2225 |
|
|
have a lower number than SIGSTOP (e.g. SIGUSR1).
|
2226 |
|
|
This is an unlikely case, and harder to handle for
|
2227 |
|
|
fork / vfork than for clone, so we do not try - but
|
2228 |
|
|
we handle it for clone events here. We'll send
|
2229 |
|
|
the other signal on to the thread below. */
|
2230 |
|
|
|
2231 |
|
|
new_lp->signalled = 1;
|
2232 |
|
|
}
|
2233 |
|
|
else
|
2234 |
|
|
status = 0;
|
2235 |
|
|
|
2236 |
|
|
if (non_stop)
|
2237 |
|
|
{
|
2238 |
|
|
/* Add the new thread to GDB's lists as soon as possible
|
2239 |
|
|
so that:
|
2240 |
|
|
|
2241 |
|
|
1) the frontend doesn't have to wait for a stop to
|
2242 |
|
|
display them, and,
|
2243 |
|
|
|
2244 |
|
|
2) we tag it with the correct running state. */
|
2245 |
|
|
|
2246 |
|
|
/* If the thread_db layer is active, let it know about
|
2247 |
|
|
this new thread, and add it to GDB's list. */
|
2248 |
|
|
if (!thread_db_attach_lwp (new_lp->ptid))
|
2249 |
|
|
{
|
2250 |
|
|
/* We're not using thread_db. Add it to GDB's
|
2251 |
|
|
list. */
|
2252 |
|
|
target_post_attach (GET_LWP (new_lp->ptid));
|
2253 |
|
|
add_thread (new_lp->ptid);
|
2254 |
|
|
}
|
2255 |
|
|
|
2256 |
|
|
if (!stopping)
|
2257 |
|
|
{
|
2258 |
|
|
set_running (new_lp->ptid, 1);
|
2259 |
|
|
set_executing (new_lp->ptid, 1);
|
2260 |
|
|
}
|
2261 |
|
|
}
|
2262 |
|
|
|
2263 |
|
|
/* Note the need to use the low target ops to resume, to
|
2264 |
|
|
handle resuming with PT_SYSCALL if we have syscall
|
2265 |
|
|
catchpoints. */
|
2266 |
|
|
if (!stopping)
|
2267 |
|
|
{
|
2268 |
|
|
int signo;
|
2269 |
|
|
|
2270 |
|
|
new_lp->stopped = 0;
|
2271 |
|
|
new_lp->resumed = 1;
|
2272 |
|
|
|
2273 |
|
|
signo = (status
|
2274 |
|
|
? target_signal_from_host (WSTOPSIG (status))
|
2275 |
|
|
: TARGET_SIGNAL_0);
|
2276 |
|
|
|
2277 |
|
|
linux_ops->to_resume (linux_ops, pid_to_ptid (new_pid),
|
2278 |
|
|
0, signo);
|
2279 |
|
|
}
|
2280 |
|
|
|
2281 |
|
|
if (debug_linux_nat)
|
2282 |
|
|
fprintf_unfiltered (gdb_stdlog,
|
2283 |
|
|
"LHEW: Got clone event from LWP %ld, resuming\n",
|
2284 |
|
|
GET_LWP (lp->ptid));
|
2285 |
|
|
linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
|
2286 |
|
|
0, TARGET_SIGNAL_0);
|
2287 |
|
|
|
2288 |
|
|
return 1;
|
2289 |
|
|
}
|
2290 |
|
|
|
2291 |
|
|
return 0;
|
2292 |
|
|
}
|
2293 |
|
|
|
2294 |
|
|
if (event == PTRACE_EVENT_EXEC)
|
2295 |
|
|
{
|
2296 |
|
|
if (debug_linux_nat)
|
2297 |
|
|
fprintf_unfiltered (gdb_stdlog,
|
2298 |
|
|
"LHEW: Got exec event from LWP %ld\n",
|
2299 |
|
|
GET_LWP (lp->ptid));
|
2300 |
|
|
|
2301 |
|
|
ourstatus->kind = TARGET_WAITKIND_EXECD;
|
2302 |
|
|
ourstatus->value.execd_pathname
|
2303 |
|
|
= xstrdup (linux_child_pid_to_exec_file (pid));
|
2304 |
|
|
|
2305 |
|
|
return 0;
|
2306 |
|
|
}
|
2307 |
|
|
|
2308 |
|
|
if (event == PTRACE_EVENT_VFORK_DONE)
|
2309 |
|
|
{
|
2310 |
|
|
if (current_inferior ()->waiting_for_vfork_done)
|
2311 |
|
|
{
|
2312 |
|
|
if (debug_linux_nat)
|
2313 |
|
|
fprintf_unfiltered (gdb_stdlog, "\
|
2314 |
|
|
LHEW: Got expected PTRACE_EVENT_VFORK_DONE from LWP %ld: stopping\n",
|
2315 |
|
|
GET_LWP (lp->ptid));
|
2316 |
|
|
|
2317 |
|
|
ourstatus->kind = TARGET_WAITKIND_VFORK_DONE;
|
2318 |
|
|
return 0;
|
2319 |
|
|
}
|
2320 |
|
|
|
2321 |
|
|
if (debug_linux_nat)
|
2322 |
|
|
fprintf_unfiltered (gdb_stdlog, "\
|
2323 |
|
|
LHEW: Got PTRACE_EVENT_VFORK_DONE from LWP %ld: resuming\n",
|
2324 |
|
|
GET_LWP (lp->ptid));
|
2325 |
|
|
ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
|
2326 |
|
|
return 1;
|
2327 |
|
|
}
|
2328 |
|
|
|
2329 |
|
|
internal_error (__FILE__, __LINE__,
|
2330 |
|
|
_("unknown ptrace event %d"), event);
|
2331 |
|
|
}
|
2332 |
|
|
|
2333 |
|
|
/* Wait for LP to stop. Returns the wait status, or 0 if the LWP has
|
2334 |
|
|
exited. */
|
2335 |
|
|
|
2336 |
|
|
static int
|
2337 |
|
|
wait_lwp (struct lwp_info *lp)
|
2338 |
|
|
{
|
2339 |
|
|
pid_t pid;
|
2340 |
|
|
int status;
|
2341 |
|
|
int thread_dead = 0;
|
2342 |
|
|
|
2343 |
|
|
gdb_assert (!lp->stopped);
|
2344 |
|
|
gdb_assert (lp->status == 0);
|
2345 |
|
|
|
2346 |
|
|
pid = my_waitpid (GET_LWP (lp->ptid), &status, 0);
|
2347 |
|
|
if (pid == -1 && errno == ECHILD)
|
2348 |
|
|
{
|
2349 |
|
|
pid = my_waitpid (GET_LWP (lp->ptid), &status, __WCLONE);
|
2350 |
|
|
if (pid == -1 && errno == ECHILD)
|
2351 |
|
|
{
|
2352 |
|
|
/* The thread has previously exited. We need to delete it
|
2353 |
|
|
now because, for some vendor 2.4 kernels with NPTL
|
2354 |
|
|
support backported, there won't be an exit event unless
|
2355 |
|
|
it is the main thread. 2.6 kernels will report an exit
|
2356 |
|
|
event for each thread that exits, as expected. */
|
2357 |
|
|
thread_dead = 1;
|
2358 |
|
|
if (debug_linux_nat)
|
2359 |
|
|
fprintf_unfiltered (gdb_stdlog, "WL: %s vanished.\n",
|
2360 |
|
|
target_pid_to_str (lp->ptid));
|
2361 |
|
|
}
|
2362 |
|
|
}
|
2363 |
|
|
|
2364 |
|
|
if (!thread_dead)
|
2365 |
|
|
{
|
2366 |
|
|
gdb_assert (pid == GET_LWP (lp->ptid));
|
2367 |
|
|
|
2368 |
|
|
if (debug_linux_nat)
|
2369 |
|
|
{
|
2370 |
|
|
fprintf_unfiltered (gdb_stdlog,
|
2371 |
|
|
"WL: waitpid %s received %s\n",
|
2372 |
|
|
target_pid_to_str (lp->ptid),
|
2373 |
|
|
status_to_str (status));
|
2374 |
|
|
}
|
2375 |
|
|
}
|
2376 |
|
|
|
2377 |
|
|
/* Check if the thread has exited. */
|
2378 |
|
|
if (WIFEXITED (status) || WIFSIGNALED (status))
|
2379 |
|
|
{
|
2380 |
|
|
thread_dead = 1;
|
2381 |
|
|
if (debug_linux_nat)
|
2382 |
|
|
fprintf_unfiltered (gdb_stdlog, "WL: %s exited.\n",
|
2383 |
|
|
target_pid_to_str (lp->ptid));
|
2384 |
|
|
}
|
2385 |
|
|
|
2386 |
|
|
if (thread_dead)
|
2387 |
|
|
{
|
2388 |
|
|
exit_lwp (lp);
|
2389 |
|
|
return 0;
|
2390 |
|
|
}
|
2391 |
|
|
|
2392 |
|
|
gdb_assert (WIFSTOPPED (status));
|
2393 |
|
|
|
2394 |
|
|
/* Handle GNU/Linux's syscall SIGTRAPs. */
|
2395 |
|
|
if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
|
2396 |
|
|
{
|
2397 |
|
|
/* No longer need the sysgood bit. The ptrace event ends up
|
2398 |
|
|
recorded in lp->waitstatus if we care for it. We can carry
|
2399 |
|
|
on handling the event like a regular SIGTRAP from here
|
2400 |
|
|
on. */
|
2401 |
|
|
status = W_STOPCODE (SIGTRAP);
|
2402 |
|
|
if (linux_handle_syscall_trap (lp, 1))
|
2403 |
|
|
return wait_lwp (lp);
|
2404 |
|
|
}
|
2405 |
|
|
|
2406 |
|
|
/* Handle GNU/Linux's extended waitstatus for trace events. */
|
2407 |
|
|
if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP && status >> 16 != 0)
|
2408 |
|
|
{
|
2409 |
|
|
if (debug_linux_nat)
|
2410 |
|
|
fprintf_unfiltered (gdb_stdlog,
|
2411 |
|
|
"WL: Handling extended status 0x%06x\n",
|
2412 |
|
|
status);
|
2413 |
|
|
if (linux_handle_extended_wait (lp, status, 1))
|
2414 |
|
|
return wait_lwp (lp);
|
2415 |
|
|
}
|
2416 |
|
|
|
2417 |
|
|
return status;
|
2418 |
|
|
}
|
2419 |
|
|
|
2420 |
|
|
/* Save the most recent siginfo for LP. This is currently only called
|
2421 |
|
|
for SIGTRAP; some ports use the si_addr field for
|
2422 |
|
|
target_stopped_data_address. In the future, it may also be used to
|
2423 |
|
|
restore the siginfo of requeued signals. */
|
2424 |
|
|
|
2425 |
|
|
static void
|
2426 |
|
|
save_siginfo (struct lwp_info *lp)
|
2427 |
|
|
{
|
2428 |
|
|
errno = 0;
|
2429 |
|
|
ptrace (PTRACE_GETSIGINFO, GET_LWP (lp->ptid),
|
2430 |
|
|
(PTRACE_TYPE_ARG3) 0, &lp->siginfo);
|
2431 |
|
|
|
2432 |
|
|
if (errno != 0)
|
2433 |
|
|
memset (&lp->siginfo, 0, sizeof (lp->siginfo));
|
2434 |
|
|
}
|
2435 |
|
|
|
2436 |
|
|
/* Send a SIGSTOP to LP. */
|
2437 |
|
|
|
2438 |
|
|
static int
|
2439 |
|
|
stop_callback (struct lwp_info *lp, void *data)
|
2440 |
|
|
{
|
2441 |
|
|
if (!lp->stopped && !lp->signalled)
|
2442 |
|
|
{
|
2443 |
|
|
int ret;
|
2444 |
|
|
|
2445 |
|
|
if (debug_linux_nat)
|
2446 |
|
|
{
|
2447 |
|
|
fprintf_unfiltered (gdb_stdlog,
|
2448 |
|
|
"SC: kill %s **<SIGSTOP>**\n",
|
2449 |
|
|
target_pid_to_str (lp->ptid));
|
2450 |
|
|
}
|
2451 |
|
|
errno = 0;
|
2452 |
|
|
ret = kill_lwp (GET_LWP (lp->ptid), SIGSTOP);
|
2453 |
|
|
if (debug_linux_nat)
|
2454 |
|
|
{
|
2455 |
|
|
fprintf_unfiltered (gdb_stdlog,
|
2456 |
|
|
"SC: lwp kill %d %s\n",
|
2457 |
|
|
ret,
|
2458 |
|
|
errno ? safe_strerror (errno) : "ERRNO-OK");
|
2459 |
|
|
}
|
2460 |
|
|
|
2461 |
|
|
lp->signalled = 1;
|
2462 |
|
|
gdb_assert (lp->status == 0);
|
2463 |
|
|
}
|
2464 |
|
|
|
2465 |
|
|
return 0;
|
2466 |
|
|
}
|
2467 |
|
|
|
2468 |
|
|
/* Return non-zero if LWP PID has a pending SIGINT. */
|
2469 |
|
|
|
2470 |
|
|
static int
|
2471 |
|
|
linux_nat_has_pending_sigint (int pid)
|
2472 |
|
|
{
|
2473 |
|
|
sigset_t pending, blocked, ignored;
|
2474 |
|
|
|
2475 |
|
|
linux_proc_pending_signals (pid, &pending, &blocked, &ignored);
|
2476 |
|
|
|
2477 |
|
|
if (sigismember (&pending, SIGINT)
|
2478 |
|
|
&& !sigismember (&ignored, SIGINT))
|
2479 |
|
|
return 1;
|
2480 |
|
|
|
2481 |
|
|
return 0;
|
2482 |
|
|
}
|
2483 |
|
|
|
2484 |
|
|
/* Set a flag in LP indicating that we should ignore its next SIGINT. */
|
2485 |
|
|
|
2486 |
|
|
static int
|
2487 |
|
|
set_ignore_sigint (struct lwp_info *lp, void *data)
|
2488 |
|
|
{
|
2489 |
|
|
/* If a thread has a pending SIGINT, consume it; otherwise, set a
|
2490 |
|
|
flag to consume the next one. */
|
2491 |
|
|
if (lp->stopped && lp->status != 0 && WIFSTOPPED (lp->status)
|
2492 |
|
|
&& WSTOPSIG (lp->status) == SIGINT)
|
2493 |
|
|
lp->status = 0;
|
2494 |
|
|
else
|
2495 |
|
|
lp->ignore_sigint = 1;
|
2496 |
|
|
|
2497 |
|
|
return 0;
|
2498 |
|
|
}
|
2499 |
|
|
|
2500 |
|
|
/* If LP does not have a SIGINT pending, then clear the ignore_sigint flag.
|
2501 |
|
|
This function is called after we know the LWP has stopped; if the LWP
|
2502 |
|
|
stopped before the expected SIGINT was delivered, then it will never have
|
2503 |
|
|
arrived. Also, if the signal was delivered to a shared queue and consumed
|
2504 |
|
|
by a different thread, it will never be delivered to this LWP. */
|
2505 |
|
|
|
2506 |
|
|
static void
|
2507 |
|
|
maybe_clear_ignore_sigint (struct lwp_info *lp)
|
2508 |
|
|
{
|
2509 |
|
|
if (!lp->ignore_sigint)
|
2510 |
|
|
return;
|
2511 |
|
|
|
2512 |
|
|
if (!linux_nat_has_pending_sigint (GET_LWP (lp->ptid)))
|
2513 |
|
|
{
|
2514 |
|
|
if (debug_linux_nat)
|
2515 |
|
|
fprintf_unfiltered (gdb_stdlog,
|
2516 |
|
|
"MCIS: Clearing bogus flag for %s\n",
|
2517 |
|
|
target_pid_to_str (lp->ptid));
|
2518 |
|
|
lp->ignore_sigint = 0;
|
2519 |
|
|
}
|
2520 |
|
|
}
|
2521 |
|
|
|
2522 |
|
|
/* Fetch the possible triggered data watchpoint info and store it in
|
2523 |
|
|
LP.
|
2524 |
|
|
|
2525 |
|
|
On some archs, like x86, that use debug registers to set
|
2526 |
|
|
watchpoints, it's possible that the way to know which watched
|
2527 |
|
|
address trapped, is to check the register that is used to select
|
2528 |
|
|
which address to watch. Problem is, between setting the watchpoint
|
2529 |
|
|
and reading back which data address trapped, the user may change
|
2530 |
|
|
the set of watchpoints, and, as a consequence, GDB changes the
|
2531 |
|
|
debug registers in the inferior. To avoid reading back a stale
|
2532 |
|
|
stopped-data-address when that happens, we cache in LP the fact
|
2533 |
|
|
that a watchpoint trapped, and the corresponding data address, as
|
2534 |
|
|
soon as we see LP stop with a SIGTRAP. If GDB changes the debug
|
2535 |
|
|
registers meanwhile, we have the cached data we can rely on. */
|
2536 |
|
|
|
2537 |
|
|
static void
|
2538 |
|
|
save_sigtrap (struct lwp_info *lp)
|
2539 |
|
|
{
|
2540 |
|
|
struct cleanup *old_chain;
|
2541 |
|
|
|
2542 |
|
|
if (linux_ops->to_stopped_by_watchpoint == NULL)
|
2543 |
|
|
{
|
2544 |
|
|
lp->stopped_by_watchpoint = 0;
|
2545 |
|
|
return;
|
2546 |
|
|
}
|
2547 |
|
|
|
2548 |
|
|
old_chain = save_inferior_ptid ();
|
2549 |
|
|
inferior_ptid = lp->ptid;
|
2550 |
|
|
|
2551 |
|
|
lp->stopped_by_watchpoint = linux_ops->to_stopped_by_watchpoint ();
|
2552 |
|
|
|
2553 |
|
|
if (lp->stopped_by_watchpoint)
|
2554 |
|
|
{
|
2555 |
|
|
if (linux_ops->to_stopped_data_address != NULL)
|
2556 |
|
|
lp->stopped_data_address_p =
|
2557 |
|
|
linux_ops->to_stopped_data_address (¤t_target,
|
2558 |
|
|
&lp->stopped_data_address);
|
2559 |
|
|
else
|
2560 |
|
|
lp->stopped_data_address_p = 0;
|
2561 |
|
|
}
|
2562 |
|
|
|
2563 |
|
|
do_cleanups (old_chain);
|
2564 |
|
|
}
|
2565 |
|
|
|
2566 |
|
|
/* See save_sigtrap. */
|
2567 |
|
|
|
2568 |
|
|
static int
|
2569 |
|
|
linux_nat_stopped_by_watchpoint (void)
|
2570 |
|
|
{
|
2571 |
|
|
struct lwp_info *lp = find_lwp_pid (inferior_ptid);
|
2572 |
|
|
|
2573 |
|
|
gdb_assert (lp != NULL);
|
2574 |
|
|
|
2575 |
|
|
return lp->stopped_by_watchpoint;
|
2576 |
|
|
}
|
2577 |
|
|
|
2578 |
|
|
static int
|
2579 |
|
|
linux_nat_stopped_data_address (struct target_ops *ops, CORE_ADDR *addr_p)
|
2580 |
|
|
{
|
2581 |
|
|
struct lwp_info *lp = find_lwp_pid (inferior_ptid);
|
2582 |
|
|
|
2583 |
|
|
gdb_assert (lp != NULL);
|
2584 |
|
|
|
2585 |
|
|
*addr_p = lp->stopped_data_address;
|
2586 |
|
|
|
2587 |
|
|
return lp->stopped_data_address_p;
|
2588 |
|
|
}
|
2589 |
|
|
|
2590 |
|
|
/* Wait until LP is stopped. */
|
2591 |
|
|
|
2592 |
|
|
static int
|
2593 |
|
|
stop_wait_callback (struct lwp_info *lp, void *data)
|
2594 |
|
|
{
|
2595 |
|
|
struct inferior *inf = find_inferior_pid (GET_PID (lp->ptid));
|
2596 |
|
|
|
2597 |
|
|
/* If this is a vfork parent, bail out, it is not going to report
|
2598 |
|
|
any SIGSTOP until the vfork is done with. */
|
2599 |
|
|
if (inf->vfork_child != NULL)
|
2600 |
|
|
return 0;
|
2601 |
|
|
|
2602 |
|
|
if (!lp->stopped)
|
2603 |
|
|
{
|
2604 |
|
|
int status;
|
2605 |
|
|
|
2606 |
|
|
status = wait_lwp (lp);
|
2607 |
|
|
if (status == 0)
|
2608 |
|
|
return 0;
|
2609 |
|
|
|
2610 |
|
|
if (lp->ignore_sigint && WIFSTOPPED (status)
|
2611 |
|
|
&& WSTOPSIG (status) == SIGINT)
|
2612 |
|
|
{
|
2613 |
|
|
lp->ignore_sigint = 0;
|
2614 |
|
|
|
2615 |
|
|
errno = 0;
|
2616 |
|
|
ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
|
2617 |
|
|
if (debug_linux_nat)
|
2618 |
|
|
fprintf_unfiltered (gdb_stdlog,
|
2619 |
|
|
"PTRACE_CONT %s, 0, 0 (%s) (discarding SIGINT)\n",
|
2620 |
|
|
target_pid_to_str (lp->ptid),
|
2621 |
|
|
errno ? safe_strerror (errno) : "OK");
|
2622 |
|
|
|
2623 |
|
|
return stop_wait_callback (lp, NULL);
|
2624 |
|
|
}
|
2625 |
|
|
|
2626 |
|
|
maybe_clear_ignore_sigint (lp);
|
2627 |
|
|
|
2628 |
|
|
if (WSTOPSIG (status) != SIGSTOP)
|
2629 |
|
|
{
|
2630 |
|
|
if (WSTOPSIG (status) == SIGTRAP)
|
2631 |
|
|
{
|
2632 |
|
|
/* If a LWP other than the LWP that we're reporting an
|
2633 |
|
|
event for has hit a GDB breakpoint (as opposed to
|
2634 |
|
|
some random trap signal), then just arrange for it to
|
2635 |
|
|
hit it again later. We don't keep the SIGTRAP status
|
2636 |
|
|
and don't forward the SIGTRAP signal to the LWP. We
|
2637 |
|
|
will handle the current event, eventually we will
|
2638 |
|
|
resume all LWPs, and this one will get its breakpoint
|
2639 |
|
|
trap again.
|
2640 |
|
|
|
2641 |
|
|
If we do not do this, then we run the risk that the
|
2642 |
|
|
user will delete or disable the breakpoint, but the
|
2643 |
|
|
thread will have already tripped on it. */
|
2644 |
|
|
|
2645 |
|
|
/* Save the trap's siginfo in case we need it later. */
|
2646 |
|
|
save_siginfo (lp);
|
2647 |
|
|
|
2648 |
|
|
save_sigtrap (lp);
|
2649 |
|
|
|
2650 |
|
|
/* Now resume this LWP and get the SIGSTOP event. */
|
2651 |
|
|
errno = 0;
|
2652 |
|
|
ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
|
2653 |
|
|
if (debug_linux_nat)
|
2654 |
|
|
{
|
2655 |
|
|
fprintf_unfiltered (gdb_stdlog,
|
2656 |
|
|
"PTRACE_CONT %s, 0, 0 (%s)\n",
|
2657 |
|
|
target_pid_to_str (lp->ptid),
|
2658 |
|
|
errno ? safe_strerror (errno) : "OK");
|
2659 |
|
|
|
2660 |
|
|
fprintf_unfiltered (gdb_stdlog,
|
2661 |
|
|
"SWC: Candidate SIGTRAP event in %s\n",
|
2662 |
|
|
target_pid_to_str (lp->ptid));
|
2663 |
|
|
}
|
2664 |
|
|
/* Hold this event/waitstatus while we check to see if
|
2665 |
|
|
there are any more (we still want to get that SIGSTOP). */
|
2666 |
|
|
stop_wait_callback (lp, NULL);
|
2667 |
|
|
|
2668 |
|
|
/* Hold the SIGTRAP for handling by linux_nat_wait. If
|
2669 |
|
|
there's another event, throw it back into the
|
2670 |
|
|
queue. */
|
2671 |
|
|
if (lp->status)
|
2672 |
|
|
{
|
2673 |
|
|
if (debug_linux_nat)
|
2674 |
|
|
fprintf_unfiltered (gdb_stdlog,
|
2675 |
|
|
"SWC: kill %s, %s\n",
|
2676 |
|
|
target_pid_to_str (lp->ptid),
|
2677 |
|
|
status_to_str ((int) status));
|
2678 |
|
|
kill_lwp (GET_LWP (lp->ptid), WSTOPSIG (lp->status));
|
2679 |
|
|
}
|
2680 |
|
|
|
2681 |
|
|
/* Save the sigtrap event. */
|
2682 |
|
|
lp->status = status;
|
2683 |
|
|
return 0;
|
2684 |
|
|
}
|
2685 |
|
|
else
|
2686 |
|
|
{
|
2687 |
|
|
/* The thread was stopped with a signal other than
|
2688 |
|
|
SIGSTOP, and didn't accidentally trip a breakpoint. */
|
2689 |
|
|
|
2690 |
|
|
if (debug_linux_nat)
|
2691 |
|
|
{
|
2692 |
|
|
fprintf_unfiltered (gdb_stdlog,
|
2693 |
|
|
"SWC: Pending event %s in %s\n",
|
2694 |
|
|
status_to_str ((int) status),
|
2695 |
|
|
target_pid_to_str (lp->ptid));
|
2696 |
|
|
}
|
2697 |
|
|
/* Now resume this LWP and get the SIGSTOP event. */
|
2698 |
|
|
errno = 0;
|
2699 |
|
|
ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
|
2700 |
|
|
if (debug_linux_nat)
|
2701 |
|
|
fprintf_unfiltered (gdb_stdlog,
|
2702 |
|
|
"SWC: PTRACE_CONT %s, 0, 0 (%s)\n",
|
2703 |
|
|
target_pid_to_str (lp->ptid),
|
2704 |
|
|
errno ? safe_strerror (errno) : "OK");
|
2705 |
|
|
|
2706 |
|
|
/* Hold this event/waitstatus while we check to see if
|
2707 |
|
|
there are any more (we still want to get that SIGSTOP). */
|
2708 |
|
|
stop_wait_callback (lp, NULL);
|
2709 |
|
|
|
2710 |
|
|
/* If the lp->status field is still empty, use it to
|
2711 |
|
|
hold this event. If not, then this event must be
|
2712 |
|
|
returned to the event queue of the LWP. */
|
2713 |
|
|
if (lp->status)
|
2714 |
|
|
{
|
2715 |
|
|
if (debug_linux_nat)
|
2716 |
|
|
{
|
2717 |
|
|
fprintf_unfiltered (gdb_stdlog,
|
2718 |
|
|
"SWC: kill %s, %s\n",
|
2719 |
|
|
target_pid_to_str (lp->ptid),
|
2720 |
|
|
status_to_str ((int) status));
|
2721 |
|
|
}
|
2722 |
|
|
kill_lwp (GET_LWP (lp->ptid), WSTOPSIG (status));
|
2723 |
|
|
}
|
2724 |
|
|
else
|
2725 |
|
|
lp->status = status;
|
2726 |
|
|
return 0;
|
2727 |
|
|
}
|
2728 |
|
|
}
|
2729 |
|
|
else
|
2730 |
|
|
{
|
2731 |
|
|
/* We caught the SIGSTOP that we intended to catch, so
|
2732 |
|
|
there's no SIGSTOP pending. */
|
2733 |
|
|
lp->stopped = 1;
|
2734 |
|
|
lp->signalled = 0;
|
2735 |
|
|
}
|
2736 |
|
|
}
|
2737 |
|
|
|
2738 |
|
|
return 0;
|
2739 |
|
|
}
|
2740 |
|
|
|
2741 |
|
|
/* Return non-zero if LP has a wait status pending. */
|
2742 |
|
|
|
2743 |
|
|
static int
|
2744 |
|
|
status_callback (struct lwp_info *lp, void *data)
|
2745 |
|
|
{
|
2746 |
|
|
/* Only report a pending wait status if we pretend that this has
|
2747 |
|
|
indeed been resumed. */
|
2748 |
|
|
if (!lp->resumed)
|
2749 |
|
|
return 0;
|
2750 |
|
|
|
2751 |
|
|
if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
|
2752 |
|
|
{
|
2753 |
|
|
/* A ptrace event, like PTRACE_FORK|VFORK|EXEC, syscall event,
|
2754 |
|
|
or a a pending process exit. Note that `W_EXITCODE(0,0) ==
|
2755 |
|
|
0', so a clean process exit can not be stored pending in
|
2756 |
|
|
lp->status, it is indistinguishable from
|
2757 |
|
|
no-pending-status. */
|
2758 |
|
|
return 1;
|
2759 |
|
|
}
|
2760 |
|
|
|
2761 |
|
|
if (lp->status != 0)
|
2762 |
|
|
return 1;
|
2763 |
|
|
|
2764 |
|
|
return 0;
|
2765 |
|
|
}
|
2766 |
|
|
|
2767 |
|
|
/* Return non-zero if LP isn't stopped. */
|
2768 |
|
|
|
2769 |
|
|
static int
|
2770 |
|
|
running_callback (struct lwp_info *lp, void *data)
|
2771 |
|
|
{
|
2772 |
|
|
return (lp->stopped == 0 || (lp->status != 0 && lp->resumed));
|
2773 |
|
|
}
|
2774 |
|
|
|
2775 |
|
|
/* Count the LWP's that have had events. */
|
2776 |
|
|
|
2777 |
|
|
static int
|
2778 |
|
|
count_events_callback (struct lwp_info *lp, void *data)
|
2779 |
|
|
{
|
2780 |
|
|
int *count = data;
|
2781 |
|
|
|
2782 |
|
|
gdb_assert (count != NULL);
|
2783 |
|
|
|
2784 |
|
|
/* Count only resumed LWPs that have a SIGTRAP event pending. */
|
2785 |
|
|
if (lp->status != 0 && lp->resumed
|
2786 |
|
|
&& WIFSTOPPED (lp->status) && WSTOPSIG (lp->status) == SIGTRAP)
|
2787 |
|
|
(*count)++;
|
2788 |
|
|
|
2789 |
|
|
return 0;
|
2790 |
|
|
}
|
2791 |
|
|
|
2792 |
|
|
/* Select the LWP (if any) that is currently being single-stepped. */
|
2793 |
|
|
|
2794 |
|
|
static int
|
2795 |
|
|
select_singlestep_lwp_callback (struct lwp_info *lp, void *data)
|
2796 |
|
|
{
|
2797 |
|
|
if (lp->step && lp->status != 0)
|
2798 |
|
|
return 1;
|
2799 |
|
|
else
|
2800 |
|
|
return 0;
|
2801 |
|
|
}
|
2802 |
|
|
|
2803 |
|
|
/* Select the Nth LWP that has had a SIGTRAP event. */
|
2804 |
|
|
|
2805 |
|
|
static int
|
2806 |
|
|
select_event_lwp_callback (struct lwp_info *lp, void *data)
|
2807 |
|
|
{
|
2808 |
|
|
int *selector = data;
|
2809 |
|
|
|
2810 |
|
|
gdb_assert (selector != NULL);
|
2811 |
|
|
|
2812 |
|
|
/* Select only resumed LWPs that have a SIGTRAP event pending. */
|
2813 |
|
|
if (lp->status != 0 && lp->resumed
|
2814 |
|
|
&& WIFSTOPPED (lp->status) && WSTOPSIG (lp->status) == SIGTRAP)
|
2815 |
|
|
if ((*selector)-- == 0)
|
2816 |
|
|
return 1;
|
2817 |
|
|
|
2818 |
|
|
return 0;
|
2819 |
|
|
}
|
2820 |
|
|
|
2821 |
|
|
static int
|
2822 |
|
|
cancel_breakpoint (struct lwp_info *lp)
|
2823 |
|
|
{
|
2824 |
|
|
/* Arrange for a breakpoint to be hit again later. We don't keep
|
2825 |
|
|
the SIGTRAP status and don't forward the SIGTRAP signal to the
|
2826 |
|
|
LWP. We will handle the current event, eventually we will resume
|
2827 |
|
|
this LWP, and this breakpoint will trap again.
|
2828 |
|
|
|
2829 |
|
|
If we do not do this, then we run the risk that the user will
|
2830 |
|
|
delete or disable the breakpoint, but the LWP will have already
|
2831 |
|
|
tripped on it. */
|
2832 |
|
|
|
2833 |
|
|
struct regcache *regcache = get_thread_regcache (lp->ptid);
|
2834 |
|
|
struct gdbarch *gdbarch = get_regcache_arch (regcache);
|
2835 |
|
|
CORE_ADDR pc;
|
2836 |
|
|
|
2837 |
|
|
pc = regcache_read_pc (regcache) - gdbarch_decr_pc_after_break (gdbarch);
|
2838 |
|
|
if (breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
|
2839 |
|
|
{
|
2840 |
|
|
if (debug_linux_nat)
|
2841 |
|
|
fprintf_unfiltered (gdb_stdlog,
|
2842 |
|
|
"CB: Push back breakpoint for %s\n",
|
2843 |
|
|
target_pid_to_str (lp->ptid));
|
2844 |
|
|
|
2845 |
|
|
/* Back up the PC if necessary. */
|
2846 |
|
|
if (gdbarch_decr_pc_after_break (gdbarch))
|
2847 |
|
|
regcache_write_pc (regcache, pc);
|
2848 |
|
|
|
2849 |
|
|
return 1;
|
2850 |
|
|
}
|
2851 |
|
|
return 0;
|
2852 |
|
|
}
|
2853 |
|
|
|
2854 |
|
|
static int
|
2855 |
|
|
cancel_breakpoints_callback (struct lwp_info *lp, void *data)
|
2856 |
|
|
{
|
2857 |
|
|
struct lwp_info *event_lp = data;
|
2858 |
|
|
|
2859 |
|
|
/* Leave the LWP that has been elected to receive a SIGTRAP alone. */
|
2860 |
|
|
if (lp == event_lp)
|
2861 |
|
|
return 0;
|
2862 |
|
|
|
2863 |
|
|
/* If a LWP other than the LWP that we're reporting an event for has
|
2864 |
|
|
hit a GDB breakpoint (as opposed to some random trap signal),
|
2865 |
|
|
then just arrange for it to hit it again later. We don't keep
|
2866 |
|
|
the SIGTRAP status and don't forward the SIGTRAP signal to the
|
2867 |
|
|
LWP. We will handle the current event, eventually we will resume
|
2868 |
|
|
all LWPs, and this one will get its breakpoint trap again.
|
2869 |
|
|
|
2870 |
|
|
If we do not do this, then we run the risk that the user will
|
2871 |
|
|
delete or disable the breakpoint, but the LWP will have already
|
2872 |
|
|
tripped on it. */
|
2873 |
|
|
|
2874 |
|
|
if (lp->waitstatus.kind == TARGET_WAITKIND_IGNORE
|
2875 |
|
|
&& lp->status != 0
|
2876 |
|
|
&& WIFSTOPPED (lp->status) && WSTOPSIG (lp->status) == SIGTRAP
|
2877 |
|
|
&& cancel_breakpoint (lp))
|
2878 |
|
|
/* Throw away the SIGTRAP. */
|
2879 |
|
|
lp->status = 0;
|
2880 |
|
|
|
2881 |
|
|
return 0;
|
2882 |
|
|
}
|
2883 |
|
|
|
2884 |
|
|
/* Select one LWP out of those that have events pending. */
|
2885 |
|
|
|
2886 |
|
|
static void
|
2887 |
|
|
select_event_lwp (ptid_t filter, struct lwp_info **orig_lp, int *status)
|
2888 |
|
|
{
|
2889 |
|
|
int num_events = 0;
|
2890 |
|
|
int random_selector;
|
2891 |
|
|
struct lwp_info *event_lp;
|
2892 |
|
|
|
2893 |
|
|
/* Record the wait status for the original LWP. */
|
2894 |
|
|
(*orig_lp)->status = *status;
|
2895 |
|
|
|
2896 |
|
|
/* Give preference to any LWP that is being single-stepped. */
|
2897 |
|
|
event_lp = iterate_over_lwps (filter,
|
2898 |
|
|
select_singlestep_lwp_callback, NULL);
|
2899 |
|
|
if (event_lp != NULL)
|
2900 |
|
|
{
|
2901 |
|
|
if (debug_linux_nat)
|
2902 |
|
|
fprintf_unfiltered (gdb_stdlog,
|
2903 |
|
|
"SEL: Select single-step %s\n",
|
2904 |
|
|
target_pid_to_str (event_lp->ptid));
|
2905 |
|
|
}
|
2906 |
|
|
else
|
2907 |
|
|
{
|
2908 |
|
|
/* No single-stepping LWP. Select one at random, out of those
|
2909 |
|
|
which have had SIGTRAP events. */
|
2910 |
|
|
|
2911 |
|
|
/* First see how many SIGTRAP events we have. */
|
2912 |
|
|
iterate_over_lwps (filter, count_events_callback, &num_events);
|
2913 |
|
|
|
2914 |
|
|
/* Now randomly pick a LWP out of those that have had a SIGTRAP. */
|
2915 |
|
|
random_selector = (int)
|
2916 |
|
|
((num_events * (double) rand ()) / (RAND_MAX + 1.0));
|
2917 |
|
|
|
2918 |
|
|
if (debug_linux_nat && num_events > 1)
|
2919 |
|
|
fprintf_unfiltered (gdb_stdlog,
|
2920 |
|
|
"SEL: Found %d SIGTRAP events, selecting #%d\n",
|
2921 |
|
|
num_events, random_selector);
|
2922 |
|
|
|
2923 |
|
|
event_lp = iterate_over_lwps (filter,
|
2924 |
|
|
select_event_lwp_callback,
|
2925 |
|
|
&random_selector);
|
2926 |
|
|
}
|
2927 |
|
|
|
2928 |
|
|
if (event_lp != NULL)
|
2929 |
|
|
{
|
2930 |
|
|
/* Switch the event LWP. */
|
2931 |
|
|
*orig_lp = event_lp;
|
2932 |
|
|
*status = event_lp->status;
|
2933 |
|
|
}
|
2934 |
|
|
|
2935 |
|
|
/* Flush the wait status for the event LWP. */
|
2936 |
|
|
(*orig_lp)->status = 0;
|
2937 |
|
|
}
|
2938 |
|
|
|
2939 |
|
|
/* Return non-zero if LP has been resumed. */
|
2940 |
|
|
|
2941 |
|
|
static int
|
2942 |
|
|
resumed_callback (struct lwp_info *lp, void *data)
|
2943 |
|
|
{
|
2944 |
|
|
return lp->resumed;
|
2945 |
|
|
}
|
2946 |
|
|
|
2947 |
|
|
/* Stop an active thread, verify it still exists, then resume it. */
|
2948 |
|
|
|
2949 |
|
|
static int
|
2950 |
|
|
stop_and_resume_callback (struct lwp_info *lp, void *data)
|
2951 |
|
|
{
|
2952 |
|
|
struct lwp_info *ptr;
|
2953 |
|
|
|
2954 |
|
|
if (!lp->stopped && !lp->signalled)
|
2955 |
|
|
{
|
2956 |
|
|
stop_callback (lp, NULL);
|
2957 |
|
|
stop_wait_callback (lp, NULL);
|
2958 |
|
|
/* Resume if the lwp still exists. */
|
2959 |
|
|
for (ptr = lwp_list; ptr; ptr = ptr->next)
|
2960 |
|
|
if (lp == ptr)
|
2961 |
|
|
{
|
2962 |
|
|
resume_callback (lp, NULL);
|
2963 |
|
|
resume_set_callback (lp, NULL);
|
2964 |
|
|
}
|
2965 |
|
|
}
|
2966 |
|
|
return 0;
|
2967 |
|
|
}
|
2968 |
|
|
|
2969 |
|
|
/* Check if we should go on and pass this event to common code.
|
2970 |
|
|
Return the affected lwp if we are, or NULL otherwise. */
|
2971 |
|
|
static struct lwp_info *
|
2972 |
|
|
linux_nat_filter_event (int lwpid, int status, int options)
|
2973 |
|
|
{
|
2974 |
|
|
struct lwp_info *lp;
|
2975 |
|
|
|
2976 |
|
|
lp = find_lwp_pid (pid_to_ptid (lwpid));
|
2977 |
|
|
|
2978 |
|
|
/* Check for stop events reported by a process we didn't already
|
2979 |
|
|
know about - anything not already in our LWP list.
|
2980 |
|
|
|
2981 |
|
|
If we're expecting to receive stopped processes after
|
2982 |
|
|
fork, vfork, and clone events, then we'll just add the
|
2983 |
|
|
new one to our list and go back to waiting for the event
|
2984 |
|
|
to be reported - the stopped process might be returned
|
2985 |
|
|
from waitpid before or after the event is. */
|
2986 |
|
|
if (WIFSTOPPED (status) && !lp)
|
2987 |
|
|
{
|
2988 |
|
|
linux_record_stopped_pid (lwpid, status);
|
2989 |
|
|
return NULL;
|
2990 |
|
|
}
|
2991 |
|
|
|
2992 |
|
|
/* Make sure we don't report an event for the exit of an LWP not in
|
2993 |
|
|
our list, i.e. not part of the current process. This can happen
|
2994 |
|
|
if we detach from a program we original forked and then it
|
2995 |
|
|
exits. */
|
2996 |
|
|
if (!WIFSTOPPED (status) && !lp)
|
2997 |
|
|
return NULL;
|
2998 |
|
|
|
2999 |
|
|
/* NOTE drow/2003-06-17: This code seems to be meant for debugging
|
3000 |
|
|
CLONE_PTRACE processes which do not use the thread library -
|
3001 |
|
|
otherwise we wouldn't find the new LWP this way. That doesn't
|
3002 |
|
|
currently work, and the following code is currently unreachable
|
3003 |
|
|
due to the two blocks above. If it's fixed some day, this code
|
3004 |
|
|
should be broken out into a function so that we can also pick up
|
3005 |
|
|
LWPs from the new interface. */
|
3006 |
|
|
if (!lp)
|
3007 |
|
|
{
|
3008 |
|
|
lp = add_lwp (BUILD_LWP (lwpid, GET_PID (inferior_ptid)));
|
3009 |
|
|
if (options & __WCLONE)
|
3010 |
|
|
lp->cloned = 1;
|
3011 |
|
|
|
3012 |
|
|
gdb_assert (WIFSTOPPED (status)
|
3013 |
|
|
&& WSTOPSIG (status) == SIGSTOP);
|
3014 |
|
|
lp->signalled = 1;
|
3015 |
|
|
|
3016 |
|
|
if (!in_thread_list (inferior_ptid))
|
3017 |
|
|
{
|
3018 |
|
|
inferior_ptid = BUILD_LWP (GET_PID (inferior_ptid),
|
3019 |
|
|
GET_PID (inferior_ptid));
|
3020 |
|
|
add_thread (inferior_ptid);
|
3021 |
|
|
}
|
3022 |
|
|
|
3023 |
|
|
add_thread (lp->ptid);
|
3024 |
|
|
}
|
3025 |
|
|
|
3026 |
|
|
/* Handle GNU/Linux's syscall SIGTRAPs. */
|
3027 |
|
|
if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
|
3028 |
|
|
{
|
3029 |
|
|
/* No longer need the sysgood bit. The ptrace event ends up
|
3030 |
|
|
recorded in lp->waitstatus if we care for it. We can carry
|
3031 |
|
|
on handling the event like a regular SIGTRAP from here
|
3032 |
|
|
on. */
|
3033 |
|
|
status = W_STOPCODE (SIGTRAP);
|
3034 |
|
|
if (linux_handle_syscall_trap (lp, 0))
|
3035 |
|
|
return NULL;
|
3036 |
|
|
}
|
3037 |
|
|
|
3038 |
|
|
/* Handle GNU/Linux's extended waitstatus for trace events. */
|
3039 |
|
|
if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP && status >> 16 != 0)
|
3040 |
|
|
{
|
3041 |
|
|
if (debug_linux_nat)
|
3042 |
|
|
fprintf_unfiltered (gdb_stdlog,
|
3043 |
|
|
"LLW: Handling extended status 0x%06x\n",
|
3044 |
|
|
status);
|
3045 |
|
|
if (linux_handle_extended_wait (lp, status, 0))
|
3046 |
|
|
return NULL;
|
3047 |
|
|
}
|
3048 |
|
|
|
3049 |
|
|
if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP)
|
3050 |
|
|
{
|
3051 |
|
|
/* Save the trap's siginfo in case we need it later. */
|
3052 |
|
|
save_siginfo (lp);
|
3053 |
|
|
|
3054 |
|
|
save_sigtrap (lp);
|
3055 |
|
|
}
|
3056 |
|
|
|
3057 |
|
|
/* Check if the thread has exited. */
|
3058 |
|
|
if ((WIFEXITED (status) || WIFSIGNALED (status))
|
3059 |
|
|
&& num_lwps (GET_PID (lp->ptid)) > 1)
|
3060 |
|
|
{
|
3061 |
|
|
/* If this is the main thread, we must stop all threads and verify
|
3062 |
|
|
if they are still alive. This is because in the nptl thread model
|
3063 |
|
|
on Linux 2.4, there is no signal issued for exiting LWPs
|
3064 |
|
|
other than the main thread. We only get the main thread exit
|
3065 |
|
|
signal once all child threads have already exited. If we
|
3066 |
|
|
stop all the threads and use the stop_wait_callback to check
|
3067 |
|
|
if they have exited we can determine whether this signal
|
3068 |
|
|
should be ignored or whether it means the end of the debugged
|
3069 |
|
|
application, regardless of which threading model is being
|
3070 |
|
|
used. */
|
3071 |
|
|
if (GET_PID (lp->ptid) == GET_LWP (lp->ptid))
|
3072 |
|
|
{
|
3073 |
|
|
lp->stopped = 1;
|
3074 |
|
|
iterate_over_lwps (pid_to_ptid (GET_PID (lp->ptid)),
|
3075 |
|
|
stop_and_resume_callback, NULL);
|
3076 |
|
|
}
|
3077 |
|
|
|
3078 |
|
|
if (debug_linux_nat)
|
3079 |
|
|
fprintf_unfiltered (gdb_stdlog,
|
3080 |
|
|
"LLW: %s exited.\n",
|
3081 |
|
|
target_pid_to_str (lp->ptid));
|
3082 |
|
|
|
3083 |
|
|
if (num_lwps (GET_PID (lp->ptid)) > 1)
|
3084 |
|
|
{
|
3085 |
|
|
/* If there is at least one more LWP, then the exit signal
|
3086 |
|
|
was not the end of the debugged application and should be
|
3087 |
|
|
ignored. */
|
3088 |
|
|
exit_lwp (lp);
|
3089 |
|
|
return NULL;
|
3090 |
|
|
}
|
3091 |
|
|
}
|
3092 |
|
|
|
3093 |
|
|
/* Check if the current LWP has previously exited. In the nptl
|
3094 |
|
|
thread model, LWPs other than the main thread do not issue
|
3095 |
|
|
signals when they exit so we must check whenever the thread has
|
3096 |
|
|
stopped. A similar check is made in stop_wait_callback(). */
|
3097 |
|
|
if (num_lwps (GET_PID (lp->ptid)) > 1 && !linux_thread_alive (lp->ptid))
|
3098 |
|
|
{
|
3099 |
|
|
ptid_t ptid = pid_to_ptid (GET_PID (lp->ptid));
|
3100 |
|
|
|
3101 |
|
|
if (debug_linux_nat)
|
3102 |
|
|
fprintf_unfiltered (gdb_stdlog,
|
3103 |
|
|
"LLW: %s exited.\n",
|
3104 |
|
|
target_pid_to_str (lp->ptid));
|
3105 |
|
|
|
3106 |
|
|
exit_lwp (lp);
|
3107 |
|
|
|
3108 |
|
|
/* Make sure there is at least one thread running. */
|
3109 |
|
|
gdb_assert (iterate_over_lwps (ptid, running_callback, NULL));
|
3110 |
|
|
|
3111 |
|
|
/* Discard the event. */
|
3112 |
|
|
return NULL;
|
3113 |
|
|
}
|
3114 |
|
|
|
3115 |
|
|
/* Make sure we don't report a SIGSTOP that we sent ourselves in
|
3116 |
|
|
an attempt to stop an LWP. */
|
3117 |
|
|
if (lp->signalled
|
3118 |
|
|
&& WIFSTOPPED (status) && WSTOPSIG (status) == SIGSTOP)
|
3119 |
|
|
{
|
3120 |
|
|
if (debug_linux_nat)
|
3121 |
|
|
fprintf_unfiltered (gdb_stdlog,
|
3122 |
|
|
"LLW: Delayed SIGSTOP caught for %s.\n",
|
3123 |
|
|
target_pid_to_str (lp->ptid));
|
3124 |
|
|
|
3125 |
|
|
/* This is a delayed SIGSTOP. */
|
3126 |
|
|
lp->signalled = 0;
|
3127 |
|
|
|
3128 |
|
|
registers_changed ();
|
3129 |
|
|
|
3130 |
|
|
linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
|
3131 |
|
|
lp->step, TARGET_SIGNAL_0);
|
3132 |
|
|
if (debug_linux_nat)
|
3133 |
|
|
fprintf_unfiltered (gdb_stdlog,
|
3134 |
|
|
"LLW: %s %s, 0, 0 (discard SIGSTOP)\n",
|
3135 |
|
|
lp->step ?
|
3136 |
|
|
"PTRACE_SINGLESTEP" : "PTRACE_CONT",
|
3137 |
|
|
target_pid_to_str (lp->ptid));
|
3138 |
|
|
|
3139 |
|
|
lp->stopped = 0;
|
3140 |
|
|
gdb_assert (lp->resumed);
|
3141 |
|
|
|
3142 |
|
|
/* Discard the event. */
|
3143 |
|
|
return NULL;
|
3144 |
|
|
}
|
3145 |
|
|
|
3146 |
|
|
/* Make sure we don't report a SIGINT that we have already displayed
|
3147 |
|
|
for another thread. */
|
3148 |
|
|
if (lp->ignore_sigint
|
3149 |
|
|
&& WIFSTOPPED (status) && WSTOPSIG (status) == SIGINT)
|
3150 |
|
|
{
|
3151 |
|
|
if (debug_linux_nat)
|
3152 |
|
|
fprintf_unfiltered (gdb_stdlog,
|
3153 |
|
|
"LLW: Delayed SIGINT caught for %s.\n",
|
3154 |
|
|
target_pid_to_str (lp->ptid));
|
3155 |
|
|
|
3156 |
|
|
/* This is a delayed SIGINT. */
|
3157 |
|
|
lp->ignore_sigint = 0;
|
3158 |
|
|
|
3159 |
|
|
registers_changed ();
|
3160 |
|
|
linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
|
3161 |
|
|
lp->step, TARGET_SIGNAL_0);
|
3162 |
|
|
if (debug_linux_nat)
|
3163 |
|
|
fprintf_unfiltered (gdb_stdlog,
|
3164 |
|
|
"LLW: %s %s, 0, 0 (discard SIGINT)\n",
|
3165 |
|
|
lp->step ?
|
3166 |
|
|
"PTRACE_SINGLESTEP" : "PTRACE_CONT",
|
3167 |
|
|
target_pid_to_str (lp->ptid));
|
3168 |
|
|
|
3169 |
|
|
lp->stopped = 0;
|
3170 |
|
|
gdb_assert (lp->resumed);
|
3171 |
|
|
|
3172 |
|
|
/* Discard the event. */
|
3173 |
|
|
return NULL;
|
3174 |
|
|
}
|
3175 |
|
|
|
3176 |
|
|
/* An interesting event. */
|
3177 |
|
|
gdb_assert (lp);
|
3178 |
|
|
lp->status = status;
|
3179 |
|
|
return lp;
|
3180 |
|
|
}
|
3181 |
|
|
|
3182 |
|
|
static ptid_t
|
3183 |
|
|
linux_nat_wait_1 (struct target_ops *ops,
|
3184 |
|
|
ptid_t ptid, struct target_waitstatus *ourstatus,
|
3185 |
|
|
int target_options)
|
3186 |
|
|
{
|
3187 |
|
|
static sigset_t prev_mask;
|
3188 |
|
|
struct lwp_info *lp = NULL;
|
3189 |
|
|
int options = 0;
|
3190 |
|
|
int status = 0;
|
3191 |
|
|
pid_t pid;
|
3192 |
|
|
|
3193 |
|
|
if (debug_linux_nat_async)
|
3194 |
|
|
fprintf_unfiltered (gdb_stdlog, "LLW: enter\n");
|
3195 |
|
|
|
3196 |
|
|
/* The first time we get here after starting a new inferior, we may
|
3197 |
|
|
not have added it to the LWP list yet - this is the earliest
|
3198 |
|
|
moment at which we know its PID. */
|
3199 |
|
|
if (ptid_is_pid (inferior_ptid))
|
3200 |
|
|
{
|
3201 |
|
|
/* Upgrade the main thread's ptid. */
|
3202 |
|
|
thread_change_ptid (inferior_ptid,
|
3203 |
|
|
BUILD_LWP (GET_PID (inferior_ptid),
|
3204 |
|
|
GET_PID (inferior_ptid)));
|
3205 |
|
|
|
3206 |
|
|
lp = add_lwp (inferior_ptid);
|
3207 |
|
|
lp->resumed = 1;
|
3208 |
|
|
}
|
3209 |
|
|
|
3210 |
|
|
/* Make sure SIGCHLD is blocked. */
|
3211 |
|
|
block_child_signals (&prev_mask);
|
3212 |
|
|
|
3213 |
|
|
if (ptid_equal (ptid, minus_one_ptid))
|
3214 |
|
|
pid = -1;
|
3215 |
|
|
else if (ptid_is_pid (ptid))
|
3216 |
|
|
/* A request to wait for a specific tgid. This is not possible
|
3217 |
|
|
with waitpid, so instead, we wait for any child, and leave
|
3218 |
|
|
children we're not interested in right now with a pending
|
3219 |
|
|
status to report later. */
|
3220 |
|
|
pid = -1;
|
3221 |
|
|
else
|
3222 |
|
|
pid = GET_LWP (ptid);
|
3223 |
|
|
|
3224 |
|
|
retry:
|
3225 |
|
|
lp = NULL;
|
3226 |
|
|
status = 0;
|
3227 |
|
|
|
3228 |
|
|
/* Make sure that of those LWPs we want to get an event from, there
|
3229 |
|
|
is at least one LWP that has been resumed. If there's none, just
|
3230 |
|
|
bail out. The core may just be flushing asynchronously all
|
3231 |
|
|
events. */
|
3232 |
|
|
if (iterate_over_lwps (ptid, resumed_callback, NULL) == NULL)
|
3233 |
|
|
{
|
3234 |
|
|
ourstatus->kind = TARGET_WAITKIND_IGNORE;
|
3235 |
|
|
|
3236 |
|
|
if (debug_linux_nat_async)
|
3237 |
|
|
fprintf_unfiltered (gdb_stdlog, "LLW: exit (no resumed LWP)\n");
|
3238 |
|
|
|
3239 |
|
|
restore_child_signals_mask (&prev_mask);
|
3240 |
|
|
return minus_one_ptid;
|
3241 |
|
|
}
|
3242 |
|
|
|
3243 |
|
|
/* First check if there is a LWP with a wait status pending. */
|
3244 |
|
|
if (pid == -1)
|
3245 |
|
|
{
|
3246 |
|
|
/* Any LWP that's been resumed will do. */
|
3247 |
|
|
lp = iterate_over_lwps (ptid, status_callback, NULL);
|
3248 |
|
|
if (lp)
|
3249 |
|
|
{
|
3250 |
|
|
if (debug_linux_nat && lp->status)
|
3251 |
|
|
fprintf_unfiltered (gdb_stdlog,
|
3252 |
|
|
"LLW: Using pending wait status %s for %s.\n",
|
3253 |
|
|
status_to_str (lp->status),
|
3254 |
|
|
target_pid_to_str (lp->ptid));
|
3255 |
|
|
}
|
3256 |
|
|
|
3257 |
|
|
/* But if we don't find one, we'll have to wait, and check both
|
3258 |
|
|
cloned and uncloned processes. We start with the cloned
|
3259 |
|
|
processes. */
|
3260 |
|
|
options = __WCLONE | WNOHANG;
|
3261 |
|
|
}
|
3262 |
|
|
else if (is_lwp (ptid))
|
3263 |
|
|
{
|
3264 |
|
|
if (debug_linux_nat)
|
3265 |
|
|
fprintf_unfiltered (gdb_stdlog,
|
3266 |
|
|
"LLW: Waiting for specific LWP %s.\n",
|
3267 |
|
|
target_pid_to_str (ptid));
|
3268 |
|
|
|
3269 |
|
|
/* We have a specific LWP to check. */
|
3270 |
|
|
lp = find_lwp_pid (ptid);
|
3271 |
|
|
gdb_assert (lp);
|
3272 |
|
|
|
3273 |
|
|
if (debug_linux_nat && lp->status)
|
3274 |
|
|
fprintf_unfiltered (gdb_stdlog,
|
3275 |
|
|
"LLW: Using pending wait status %s for %s.\n",
|
3276 |
|
|
status_to_str (lp->status),
|
3277 |
|
|
target_pid_to_str (lp->ptid));
|
3278 |
|
|
|
3279 |
|
|
/* If we have to wait, take into account whether PID is a cloned
|
3280 |
|
|
process or not. And we have to convert it to something that
|
3281 |
|
|
the layer beneath us can understand. */
|
3282 |
|
|
options = lp->cloned ? __WCLONE : 0;
|
3283 |
|
|
pid = GET_LWP (ptid);
|
3284 |
|
|
|
3285 |
|
|
/* We check for lp->waitstatus in addition to lp->status,
|
3286 |
|
|
because we can have pending process exits recorded in
|
3287 |
|
|
lp->status and W_EXITCODE(0,0) == 0. We should probably have
|
3288 |
|
|
an additional lp->status_p flag. */
|
3289 |
|
|
if (lp->status == 0 && lp->waitstatus.kind == TARGET_WAITKIND_IGNORE)
|
3290 |
|
|
lp = NULL;
|
3291 |
|
|
}
|
3292 |
|
|
|
3293 |
|
|
if (lp && lp->signalled)
|
3294 |
|
|
{
|
3295 |
|
|
/* A pending SIGSTOP may interfere with the normal stream of
|
3296 |
|
|
events. In a typical case where interference is a problem,
|
3297 |
|
|
we have a SIGSTOP signal pending for LWP A while
|
3298 |
|
|
single-stepping it, encounter an event in LWP B, and take the
|
3299 |
|
|
pending SIGSTOP while trying to stop LWP A. After processing
|
3300 |
|
|
the event in LWP B, LWP A is continued, and we'll never see
|
3301 |
|
|
the SIGTRAP associated with the last time we were
|
3302 |
|
|
single-stepping LWP A. */
|
3303 |
|
|
|
3304 |
|
|
/* Resume the thread. It should halt immediately returning the
|
3305 |
|
|
pending SIGSTOP. */
|
3306 |
|
|
registers_changed ();
|
3307 |
|
|
linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
|
3308 |
|
|
lp->step, TARGET_SIGNAL_0);
|
3309 |
|
|
if (debug_linux_nat)
|
3310 |
|
|
fprintf_unfiltered (gdb_stdlog,
|
3311 |
|
|
"LLW: %s %s, 0, 0 (expect SIGSTOP)\n",
|
3312 |
|
|
lp->step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
|
3313 |
|
|
target_pid_to_str (lp->ptid));
|
3314 |
|
|
lp->stopped = 0;
|
3315 |
|
|
gdb_assert (lp->resumed);
|
3316 |
|
|
|
3317 |
|
|
/* Catch the pending SIGSTOP. */
|
3318 |
|
|
status = lp->status;
|
3319 |
|
|
lp->status = 0;
|
3320 |
|
|
|
3321 |
|
|
stop_wait_callback (lp, NULL);
|
3322 |
|
|
|
3323 |
|
|
/* If the lp->status field isn't empty, we caught another signal
|
3324 |
|
|
while flushing the SIGSTOP. Return it back to the event
|
3325 |
|
|
queue of the LWP, as we already have an event to handle. */
|
3326 |
|
|
if (lp->status)
|
3327 |
|
|
{
|
3328 |
|
|
if (debug_linux_nat)
|
3329 |
|
|
fprintf_unfiltered (gdb_stdlog,
|
3330 |
|
|
"LLW: kill %s, %s\n",
|
3331 |
|
|
target_pid_to_str (lp->ptid),
|
3332 |
|
|
status_to_str (lp->status));
|
3333 |
|
|
kill_lwp (GET_LWP (lp->ptid), WSTOPSIG (lp->status));
|
3334 |
|
|
}
|
3335 |
|
|
|
3336 |
|
|
lp->status = status;
|
3337 |
|
|
}
|
3338 |
|
|
|
3339 |
|
|
if (!target_can_async_p ())
|
3340 |
|
|
{
|
3341 |
|
|
/* Causes SIGINT to be passed on to the attached process. */
|
3342 |
|
|
set_sigint_trap ();
|
3343 |
|
|
}
|
3344 |
|
|
|
3345 |
|
|
/* Translate generic target_wait options into waitpid options. */
|
3346 |
|
|
if (target_options & TARGET_WNOHANG)
|
3347 |
|
|
options |= WNOHANG;
|
3348 |
|
|
|
3349 |
|
|
while (lp == NULL)
|
3350 |
|
|
{
|
3351 |
|
|
pid_t lwpid;
|
3352 |
|
|
|
3353 |
|
|
lwpid = my_waitpid (pid, &status, options);
|
3354 |
|
|
|
3355 |
|
|
if (lwpid > 0)
|
3356 |
|
|
{
|
3357 |
|
|
gdb_assert (pid == -1 || lwpid == pid);
|
3358 |
|
|
|
3359 |
|
|
if (debug_linux_nat)
|
3360 |
|
|
{
|
3361 |
|
|
fprintf_unfiltered (gdb_stdlog,
|
3362 |
|
|
"LLW: waitpid %ld received %s\n",
|
3363 |
|
|
(long) lwpid, status_to_str (status));
|
3364 |
|
|
}
|
3365 |
|
|
|
3366 |
|
|
lp = linux_nat_filter_event (lwpid, status, options);
|
3367 |
|
|
|
3368 |
|
|
if (lp
|
3369 |
|
|
&& ptid_is_pid (ptid)
|
3370 |
|
|
&& ptid_get_pid (lp->ptid) != ptid_get_pid (ptid))
|
3371 |
|
|
{
|
3372 |
|
|
gdb_assert (lp->resumed);
|
3373 |
|
|
|
3374 |
|
|
if (debug_linux_nat)
|
3375 |
|
|
fprintf (stderr, "LWP %ld got an event %06x, leaving pending.\n",
|
3376 |
|
|
ptid_get_lwp (lp->ptid), status);
|
3377 |
|
|
|
3378 |
|
|
if (WIFSTOPPED (lp->status))
|
3379 |
|
|
{
|
3380 |
|
|
if (WSTOPSIG (lp->status) != SIGSTOP)
|
3381 |
|
|
{
|
3382 |
|
|
/* Cancel breakpoint hits. The breakpoint may
|
3383 |
|
|
be removed before we fetch events from this
|
3384 |
|
|
process to report to the core. It is best
|
3385 |
|
|
not to assume the moribund breakpoints
|
3386 |
|
|
heuristic always handles these cases --- it
|
3387 |
|
|
could be too many events go through to the
|
3388 |
|
|
core before this one is handled. All-stop
|
3389 |
|
|
always cancels breakpoint hits in all
|
3390 |
|
|
threads. */
|
3391 |
|
|
if (non_stop
|
3392 |
|
|
&& lp->waitstatus.kind == TARGET_WAITKIND_IGNORE
|
3393 |
|
|
&& WSTOPSIG (lp->status) == SIGTRAP
|
3394 |
|
|
&& cancel_breakpoint (lp))
|
3395 |
|
|
{
|
3396 |
|
|
/* Throw away the SIGTRAP. */
|
3397 |
|
|
lp->status = 0;
|
3398 |
|
|
|
3399 |
|
|
if (debug_linux_nat)
|
3400 |
|
|
fprintf (stderr,
|
3401 |
|
|
"LLW: LWP %ld hit a breakpoint while waiting "
|
3402 |
|
|
"for another process; cancelled it\n",
|
3403 |
|
|
ptid_get_lwp (lp->ptid));
|
3404 |
|
|
}
|
3405 |
|
|
lp->stopped = 1;
|
3406 |
|
|
}
|
3407 |
|
|
else
|
3408 |
|
|
{
|
3409 |
|
|
lp->stopped = 1;
|
3410 |
|
|
lp->signalled = 0;
|
3411 |
|
|
}
|
3412 |
|
|
}
|
3413 |
|
|
else if (WIFEXITED (status) || WIFSIGNALED (status))
|
3414 |
|
|
{
|
3415 |
|
|
if (debug_linux_nat)
|
3416 |
|
|
fprintf (stderr, "Process %ld exited while stopping LWPs\n",
|
3417 |
|
|
ptid_get_lwp (lp->ptid));
|
3418 |
|
|
|
3419 |
|
|
/* This was the last lwp in the process. Since
|
3420 |
|
|
events are serialized to GDB core, and we can't
|
3421 |
|
|
report this one right now, but GDB core and the
|
3422 |
|
|
other target layers will want to be notified
|
3423 |
|
|
about the exit code/signal, leave the status
|
3424 |
|
|
pending for the next time we're able to report
|
3425 |
|
|
it. */
|
3426 |
|
|
|
3427 |
|
|
/* Prevent trying to stop this thread again. We'll
|
3428 |
|
|
never try to resume it because it has a pending
|
3429 |
|
|
status. */
|
3430 |
|
|
lp->stopped = 1;
|
3431 |
|
|
|
3432 |
|
|
/* Dead LWP's aren't expected to reported a pending
|
3433 |
|
|
sigstop. */
|
3434 |
|
|
lp->signalled = 0;
|
3435 |
|
|
|
3436 |
|
|
/* Store the pending event in the waitstatus as
|
3437 |
|
|
well, because W_EXITCODE(0,0) == 0. */
|
3438 |
|
|
store_waitstatus (&lp->waitstatus, lp->status);
|
3439 |
|
|
}
|
3440 |
|
|
|
3441 |
|
|
/* Keep looking. */
|
3442 |
|
|
lp = NULL;
|
3443 |
|
|
continue;
|
3444 |
|
|
}
|
3445 |
|
|
|
3446 |
|
|
if (lp)
|
3447 |
|
|
break;
|
3448 |
|
|
else
|
3449 |
|
|
{
|
3450 |
|
|
if (pid == -1)
|
3451 |
|
|
{
|
3452 |
|
|
/* waitpid did return something. Restart over. */
|
3453 |
|
|
options |= __WCLONE;
|
3454 |
|
|
}
|
3455 |
|
|
continue;
|
3456 |
|
|
}
|
3457 |
|
|
}
|
3458 |
|
|
|
3459 |
|
|
if (pid == -1)
|
3460 |
|
|
{
|
3461 |
|
|
/* Alternate between checking cloned and uncloned processes. */
|
3462 |
|
|
options ^= __WCLONE;
|
3463 |
|
|
|
3464 |
|
|
/* And every time we have checked both:
|
3465 |
|
|
In async mode, return to event loop;
|
3466 |
|
|
In sync mode, suspend waiting for a SIGCHLD signal. */
|
3467 |
|
|
if (options & __WCLONE)
|
3468 |
|
|
{
|
3469 |
|
|
if (target_options & TARGET_WNOHANG)
|
3470 |
|
|
{
|
3471 |
|
|
/* No interesting event. */
|
3472 |
|
|
ourstatus->kind = TARGET_WAITKIND_IGNORE;
|
3473 |
|
|
|
3474 |
|
|
if (debug_linux_nat_async)
|
3475 |
|
|
fprintf_unfiltered (gdb_stdlog, "LLW: exit (ignore)\n");
|
3476 |
|
|
|
3477 |
|
|
restore_child_signals_mask (&prev_mask);
|
3478 |
|
|
return minus_one_ptid;
|
3479 |
|
|
}
|
3480 |
|
|
|
3481 |
|
|
sigsuspend (&suspend_mask);
|
3482 |
|
|
}
|
3483 |
|
|
}
|
3484 |
|
|
else if (target_options & TARGET_WNOHANG)
|
3485 |
|
|
{
|
3486 |
|
|
/* No interesting event for PID yet. */
|
3487 |
|
|
ourstatus->kind = TARGET_WAITKIND_IGNORE;
|
3488 |
|
|
|
3489 |
|
|
if (debug_linux_nat_async)
|
3490 |
|
|
fprintf_unfiltered (gdb_stdlog, "LLW: exit (ignore)\n");
|
3491 |
|
|
|
3492 |
|
|
restore_child_signals_mask (&prev_mask);
|
3493 |
|
|
return minus_one_ptid;
|
3494 |
|
|
}
|
3495 |
|
|
|
3496 |
|
|
/* We shouldn't end up here unless we want to try again. */
|
3497 |
|
|
gdb_assert (lp == NULL);
|
3498 |
|
|
}
|
3499 |
|
|
|
3500 |
|
|
if (!target_can_async_p ())
|
3501 |
|
|
clear_sigint_trap ();
|
3502 |
|
|
|
3503 |
|
|
gdb_assert (lp);
|
3504 |
|
|
|
3505 |
|
|
status = lp->status;
|
3506 |
|
|
lp->status = 0;
|
3507 |
|
|
|
3508 |
|
|
/* Don't report signals that GDB isn't interested in, such as
|
3509 |
|
|
signals that are neither printed nor stopped upon. Stopping all
|
3510 |
|
|
threads can be a bit time-consuming so if we want decent
|
3511 |
|
|
performance with heavily multi-threaded programs, especially when
|
3512 |
|
|
they're using a high frequency timer, we'd better avoid it if we
|
3513 |
|
|
can. */
|
3514 |
|
|
|
3515 |
|
|
if (WIFSTOPPED (status))
|
3516 |
|
|
{
|
3517 |
|
|
int signo = target_signal_from_host (WSTOPSIG (status));
|
3518 |
|
|
struct inferior *inf;
|
3519 |
|
|
|
3520 |
|
|
inf = find_inferior_pid (ptid_get_pid (lp->ptid));
|
3521 |
|
|
gdb_assert (inf);
|
3522 |
|
|
|
3523 |
|
|
/* Defer to common code if we get a signal while
|
3524 |
|
|
single-stepping, since that may need special care, e.g. to
|
3525 |
|
|
skip the signal handler, or, if we're gaining control of the
|
3526 |
|
|
inferior. */
|
3527 |
|
|
if (!lp->step
|
3528 |
|
|
&& inf->stop_soon == NO_STOP_QUIETLY
|
3529 |
|
|
&& signal_stop_state (signo) == 0
|
3530 |
|
|
&& signal_print_state (signo) == 0
|
3531 |
|
|
&& signal_pass_state (signo) == 1)
|
3532 |
|
|
{
|
3533 |
|
|
/* FIMXE: kettenis/2001-06-06: Should we resume all threads
|
3534 |
|
|
here? It is not clear we should. GDB may not expect
|
3535 |
|
|
other threads to run. On the other hand, not resuming
|
3536 |
|
|
newly attached threads may cause an unwanted delay in
|
3537 |
|
|
getting them running. */
|
3538 |
|
|
registers_changed ();
|
3539 |
|
|
linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
|
3540 |
|
|
lp->step, signo);
|
3541 |
|
|
if (debug_linux_nat)
|
3542 |
|
|
fprintf_unfiltered (gdb_stdlog,
|
3543 |
|
|
"LLW: %s %s, %s (preempt 'handle')\n",
|
3544 |
|
|
lp->step ?
|
3545 |
|
|
"PTRACE_SINGLESTEP" : "PTRACE_CONT",
|
3546 |
|
|
target_pid_to_str (lp->ptid),
|
3547 |
|
|
signo ? strsignal (signo) : "0");
|
3548 |
|
|
lp->stopped = 0;
|
3549 |
|
|
goto retry;
|
3550 |
|
|
}
|
3551 |
|
|
|
3552 |
|
|
if (!non_stop)
|
3553 |
|
|
{
|
3554 |
|
|
/* Only do the below in all-stop, as we currently use SIGINT
|
3555 |
|
|
to implement target_stop (see linux_nat_stop) in
|
3556 |
|
|
non-stop. */
|
3557 |
|
|
if (signo == TARGET_SIGNAL_INT && signal_pass_state (signo) == 0)
|
3558 |
|
|
{
|
3559 |
|
|
/* If ^C/BREAK is typed at the tty/console, SIGINT gets
|
3560 |
|
|
forwarded to the entire process group, that is, all LWPs
|
3561 |
|
|
will receive it - unless they're using CLONE_THREAD to
|
3562 |
|
|
share signals. Since we only want to report it once, we
|
3563 |
|
|
mark it as ignored for all LWPs except this one. */
|
3564 |
|
|
iterate_over_lwps (pid_to_ptid (ptid_get_pid (ptid)),
|
3565 |
|
|
set_ignore_sigint, NULL);
|
3566 |
|
|
lp->ignore_sigint = 0;
|
3567 |
|
|
}
|
3568 |
|
|
else
|
3569 |
|
|
maybe_clear_ignore_sigint (lp);
|
3570 |
|
|
}
|
3571 |
|
|
}
|
3572 |
|
|
|
3573 |
|
|
/* This LWP is stopped now. */
|
3574 |
|
|
lp->stopped = 1;
|
3575 |
|
|
|
3576 |
|
|
if (debug_linux_nat)
|
3577 |
|
|
fprintf_unfiltered (gdb_stdlog, "LLW: Candidate event %s in %s.\n",
|
3578 |
|
|
status_to_str (status), target_pid_to_str (lp->ptid));
|
3579 |
|
|
|
3580 |
|
|
if (!non_stop)
|
3581 |
|
|
{
|
3582 |
|
|
/* Now stop all other LWP's ... */
|
3583 |
|
|
iterate_over_lwps (minus_one_ptid, stop_callback, NULL);
|
3584 |
|
|
|
3585 |
|
|
/* ... and wait until all of them have reported back that
|
3586 |
|
|
they're no longer running. */
|
3587 |
|
|
iterate_over_lwps (minus_one_ptid, stop_wait_callback, NULL);
|
3588 |
|
|
|
3589 |
|
|
/* If we're not waiting for a specific LWP, choose an event LWP
|
3590 |
|
|
from among those that have had events. Giving equal priority
|
3591 |
|
|
to all LWPs that have had events helps prevent
|
3592 |
|
|
starvation. */
|
3593 |
|
|
if (pid == -1)
|
3594 |
|
|
select_event_lwp (ptid, &lp, &status);
|
3595 |
|
|
|
3596 |
|
|
/* Now that we've selected our final event LWP, cancel any
|
3597 |
|
|
breakpoints in other LWPs that have hit a GDB breakpoint.
|
3598 |
|
|
See the comment in cancel_breakpoints_callback to find out
|
3599 |
|
|
why. */
|
3600 |
|
|
iterate_over_lwps (minus_one_ptid, cancel_breakpoints_callback, lp);
|
3601 |
|
|
|
3602 |
|
|
/* In all-stop, from the core's perspective, all LWPs are now
|
3603 |
|
|
stopped until a new resume action is sent over. */
|
3604 |
|
|
iterate_over_lwps (minus_one_ptid, resume_clear_callback, NULL);
|
3605 |
|
|
}
|
3606 |
|
|
else
|
3607 |
|
|
lp->resumed = 0;
|
3608 |
|
|
|
3609 |
|
|
if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP)
|
3610 |
|
|
{
|
3611 |
|
|
if (debug_linux_nat)
|
3612 |
|
|
fprintf_unfiltered (gdb_stdlog,
|
3613 |
|
|
"LLW: trap ptid is %s.\n",
|
3614 |
|
|
target_pid_to_str (lp->ptid));
|
3615 |
|
|
}
|
3616 |
|
|
|
3617 |
|
|
if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
|
3618 |
|
|
{
|
3619 |
|
|
*ourstatus = lp->waitstatus;
|
3620 |
|
|
lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
|
3621 |
|
|
}
|
3622 |
|
|
else
|
3623 |
|
|
store_waitstatus (ourstatus, status);
|
3624 |
|
|
|
3625 |
|
|
if (debug_linux_nat_async)
|
3626 |
|
|
fprintf_unfiltered (gdb_stdlog, "LLW: exit\n");
|
3627 |
|
|
|
3628 |
|
|
restore_child_signals_mask (&prev_mask);
|
3629 |
|
|
|
3630 |
|
|
if (ourstatus->kind == TARGET_WAITKIND_EXITED
|
3631 |
|
|
|| ourstatus->kind == TARGET_WAITKIND_SIGNALLED)
|
3632 |
|
|
lp->core = -1;
|
3633 |
|
|
else
|
3634 |
|
|
lp->core = linux_nat_core_of_thread_1 (lp->ptid);
|
3635 |
|
|
|
3636 |
|
|
return lp->ptid;
|
3637 |
|
|
}
|
3638 |
|
|
|
3639 |
|
|
/* Resume LWPs that are currently stopped without any pending status
|
3640 |
|
|
to report, but are resumed from the core's perspective. */
|
3641 |
|
|
|
3642 |
|
|
static int
|
3643 |
|
|
resume_stopped_resumed_lwps (struct lwp_info *lp, void *data)
|
3644 |
|
|
{
|
3645 |
|
|
ptid_t *wait_ptid_p = data;
|
3646 |
|
|
|
3647 |
|
|
if (lp->stopped
|
3648 |
|
|
&& lp->resumed
|
3649 |
|
|
&& lp->status == 0
|
3650 |
|
|
&& lp->waitstatus.kind == TARGET_WAITKIND_IGNORE)
|
3651 |
|
|
{
|
3652 |
|
|
gdb_assert (is_executing (lp->ptid));
|
3653 |
|
|
|
3654 |
|
|
/* Don't bother if there's a breakpoint at PC that we'd hit
|
3655 |
|
|
immediately, and we're not waiting for this LWP. */
|
3656 |
|
|
if (!ptid_match (lp->ptid, *wait_ptid_p))
|
3657 |
|
|
{
|
3658 |
|
|
struct regcache *regcache = get_thread_regcache (lp->ptid);
|
3659 |
|
|
CORE_ADDR pc = regcache_read_pc (regcache);
|
3660 |
|
|
|
3661 |
|
|
if (breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
|
3662 |
|
|
return 0;
|
3663 |
|
|
}
|
3664 |
|
|
|
3665 |
|
|
if (debug_linux_nat)
|
3666 |
|
|
fprintf_unfiltered (gdb_stdlog,
|
3667 |
|
|
"RSRL: resuming stopped-resumed LWP %s\n",
|
3668 |
|
|
target_pid_to_str (lp->ptid));
|
3669 |
|
|
|
3670 |
|
|
linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
|
3671 |
|
|
lp->step, TARGET_SIGNAL_0);
|
3672 |
|
|
lp->stopped = 0;
|
3673 |
|
|
memset (&lp->siginfo, 0, sizeof (lp->siginfo));
|
3674 |
|
|
lp->stopped_by_watchpoint = 0;
|
3675 |
|
|
}
|
3676 |
|
|
|
3677 |
|
|
return 0;
|
3678 |
|
|
}
|
3679 |
|
|
|
3680 |
|
|
static ptid_t
|
3681 |
|
|
linux_nat_wait (struct target_ops *ops,
|
3682 |
|
|
ptid_t ptid, struct target_waitstatus *ourstatus,
|
3683 |
|
|
int target_options)
|
3684 |
|
|
{
|
3685 |
|
|
ptid_t event_ptid;
|
3686 |
|
|
|
3687 |
|
|
if (debug_linux_nat)
|
3688 |
|
|
fprintf_unfiltered (gdb_stdlog, "linux_nat_wait: [%s]\n", target_pid_to_str (ptid));
|
3689 |
|
|
|
3690 |
|
|
/* Flush the async file first. */
|
3691 |
|
|
if (target_can_async_p ())
|
3692 |
|
|
async_file_flush ();
|
3693 |
|
|
|
3694 |
|
|
/* Resume LWPs that are currently stopped without any pending status
|
3695 |
|
|
to report, but are resumed from the core's perspective. LWPs get
|
3696 |
|
|
in this state if we find them stopping at a time we're not
|
3697 |
|
|
interested in reporting the event (target_wait on a
|
3698 |
|
|
specific_process, for example, see linux_nat_wait_1), and
|
3699 |
|
|
meanwhile the event became uninteresting. Don't bother resuming
|
3700 |
|
|
LWPs we're not going to wait for if they'd stop immediately. */
|
3701 |
|
|
if (non_stop)
|
3702 |
|
|
iterate_over_lwps (minus_one_ptid, resume_stopped_resumed_lwps, &ptid);
|
3703 |
|
|
|
3704 |
|
|
event_ptid = linux_nat_wait_1 (ops, ptid, ourstatus, target_options);
|
3705 |
|
|
|
3706 |
|
|
/* If we requested any event, and something came out, assume there
|
3707 |
|
|
may be more. If we requested a specific lwp or process, also
|
3708 |
|
|
assume there may be more. */
|
3709 |
|
|
if (target_can_async_p ()
|
3710 |
|
|
&& (ourstatus->kind != TARGET_WAITKIND_IGNORE
|
3711 |
|
|
|| !ptid_equal (ptid, minus_one_ptid)))
|
3712 |
|
|
async_file_mark ();
|
3713 |
|
|
|
3714 |
|
|
/* Get ready for the next event. */
|
3715 |
|
|
if (target_can_async_p ())
|
3716 |
|
|
target_async (inferior_event_handler, 0);
|
3717 |
|
|
|
3718 |
|
|
return event_ptid;
|
3719 |
|
|
}
|
3720 |
|
|
|
3721 |
|
|
static int
|
3722 |
|
|
kill_callback (struct lwp_info *lp, void *data)
|
3723 |
|
|
{
|
3724 |
|
|
errno = 0;
|
3725 |
|
|
ptrace (PTRACE_KILL, GET_LWP (lp->ptid), 0, 0);
|
3726 |
|
|
if (debug_linux_nat)
|
3727 |
|
|
fprintf_unfiltered (gdb_stdlog,
|
3728 |
|
|
"KC: PTRACE_KILL %s, 0, 0 (%s)\n",
|
3729 |
|
|
target_pid_to_str (lp->ptid),
|
3730 |
|
|
errno ? safe_strerror (errno) : "OK");
|
3731 |
|
|
|
3732 |
|
|
return 0;
|
3733 |
|
|
}
|
3734 |
|
|
|
3735 |
|
|
static int
|
3736 |
|
|
kill_wait_callback (struct lwp_info *lp, void *data)
|
3737 |
|
|
{
|
3738 |
|
|
pid_t pid;
|
3739 |
|
|
|
3740 |
|
|
/* We must make sure that there are no pending events (delayed
|
3741 |
|
|
SIGSTOPs, pending SIGTRAPs, etc.) to make sure the current
|
3742 |
|
|
program doesn't interfere with any following debugging session. */
|
3743 |
|
|
|
3744 |
|
|
/* For cloned processes we must check both with __WCLONE and
|
3745 |
|
|
without, since the exit status of a cloned process isn't reported
|
3746 |
|
|
with __WCLONE. */
|
3747 |
|
|
if (lp->cloned)
|
3748 |
|
|
{
|
3749 |
|
|
do
|
3750 |
|
|
{
|
3751 |
|
|
pid = my_waitpid (GET_LWP (lp->ptid), NULL, __WCLONE);
|
3752 |
|
|
if (pid != (pid_t) -1)
|
3753 |
|
|
{
|
3754 |
|
|
if (debug_linux_nat)
|
3755 |
|
|
fprintf_unfiltered (gdb_stdlog,
|
3756 |
|
|
"KWC: wait %s received unknown.\n",
|
3757 |
|
|
target_pid_to_str (lp->ptid));
|
3758 |
|
|
/* The Linux kernel sometimes fails to kill a thread
|
3759 |
|
|
completely after PTRACE_KILL; that goes from the stop
|
3760 |
|
|
point in do_fork out to the one in
|
3761 |
|
|
get_signal_to_deliever and waits again. So kill it
|
3762 |
|
|
again. */
|
3763 |
|
|
kill_callback (lp, NULL);
|
3764 |
|
|
}
|
3765 |
|
|
}
|
3766 |
|
|
while (pid == GET_LWP (lp->ptid));
|
3767 |
|
|
|
3768 |
|
|
gdb_assert (pid == -1 && errno == ECHILD);
|
3769 |
|
|
}
|
3770 |
|
|
|
3771 |
|
|
do
|
3772 |
|
|
{
|
3773 |
|
|
pid = my_waitpid (GET_LWP (lp->ptid), NULL, 0);
|
3774 |
|
|
if (pid != (pid_t) -1)
|
3775 |
|
|
{
|
3776 |
|
|
if (debug_linux_nat)
|
3777 |
|
|
fprintf_unfiltered (gdb_stdlog,
|
3778 |
|
|
"KWC: wait %s received unk.\n",
|
3779 |
|
|
target_pid_to_str (lp->ptid));
|
3780 |
|
|
/* See the call to kill_callback above. */
|
3781 |
|
|
kill_callback (lp, NULL);
|
3782 |
|
|
}
|
3783 |
|
|
}
|
3784 |
|
|
while (pid == GET_LWP (lp->ptid));
|
3785 |
|
|
|
3786 |
|
|
gdb_assert (pid == -1 && errno == ECHILD);
|
3787 |
|
|
return 0;
|
3788 |
|
|
}
|
3789 |
|
|
|
3790 |
|
|
static void
|
3791 |
|
|
linux_nat_kill (struct target_ops *ops)
|
3792 |
|
|
{
|
3793 |
|
|
struct target_waitstatus last;
|
3794 |
|
|
ptid_t last_ptid;
|
3795 |
|
|
int status;
|
3796 |
|
|
|
3797 |
|
|
/* If we're stopped while forking and we haven't followed yet,
|
3798 |
|
|
kill the other task. We need to do this first because the
|
3799 |
|
|
parent will be sleeping if this is a vfork. */
|
3800 |
|
|
|
3801 |
|
|
get_last_target_status (&last_ptid, &last);
|
3802 |
|
|
|
3803 |
|
|
if (last.kind == TARGET_WAITKIND_FORKED
|
3804 |
|
|
|| last.kind == TARGET_WAITKIND_VFORKED)
|
3805 |
|
|
{
|
3806 |
|
|
ptrace (PT_KILL, PIDGET (last.value.related_pid), 0, 0);
|
3807 |
|
|
wait (&status);
|
3808 |
|
|
}
|
3809 |
|
|
|
3810 |
|
|
if (forks_exist_p ())
|
3811 |
|
|
linux_fork_killall ();
|
3812 |
|
|
else
|
3813 |
|
|
{
|
3814 |
|
|
ptid_t ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
|
3815 |
|
|
|
3816 |
|
|
/* Stop all threads before killing them, since ptrace requires
|
3817 |
|
|
that the thread is stopped to sucessfully PTRACE_KILL. */
|
3818 |
|
|
iterate_over_lwps (ptid, stop_callback, NULL);
|
3819 |
|
|
/* ... and wait until all of them have reported back that
|
3820 |
|
|
they're no longer running. */
|
3821 |
|
|
iterate_over_lwps (ptid, stop_wait_callback, NULL);
|
3822 |
|
|
|
3823 |
|
|
/* Kill all LWP's ... */
|
3824 |
|
|
iterate_over_lwps (ptid, kill_callback, NULL);
|
3825 |
|
|
|
3826 |
|
|
/* ... and wait until we've flushed all events. */
|
3827 |
|
|
iterate_over_lwps (ptid, kill_wait_callback, NULL);
|
3828 |
|
|
}
|
3829 |
|
|
|
3830 |
|
|
target_mourn_inferior ();
|
3831 |
|
|
}
|
3832 |
|
|
|
3833 |
|
|
static void
|
3834 |
|
|
linux_nat_mourn_inferior (struct target_ops *ops)
|
3835 |
|
|
{
|
3836 |
|
|
purge_lwp_list (ptid_get_pid (inferior_ptid));
|
3837 |
|
|
|
3838 |
|
|
if (! forks_exist_p ())
|
3839 |
|
|
/* Normal case, no other forks available. */
|
3840 |
|
|
linux_ops->to_mourn_inferior (ops);
|
3841 |
|
|
else
|
3842 |
|
|
/* Multi-fork case. The current inferior_ptid has exited, but
|
3843 |
|
|
there are other viable forks to debug. Delete the exiting
|
3844 |
|
|
one and context-switch to the first available. */
|
3845 |
|
|
linux_fork_mourn_inferior ();
|
3846 |
|
|
}
|
3847 |
|
|
|
3848 |
|
|
/* Convert a native/host siginfo object, into/from the siginfo in the
|
3849 |
|
|
layout of the inferiors' architecture. */
|
3850 |
|
|
|
3851 |
|
|
static void
|
3852 |
|
|
siginfo_fixup (struct siginfo *siginfo, gdb_byte *inf_siginfo, int direction)
|
3853 |
|
|
{
|
3854 |
|
|
int done = 0;
|
3855 |
|
|
|
3856 |
|
|
if (linux_nat_siginfo_fixup != NULL)
|
3857 |
|
|
done = linux_nat_siginfo_fixup (siginfo, inf_siginfo, direction);
|
3858 |
|
|
|
3859 |
|
|
/* If there was no callback, or the callback didn't do anything,
|
3860 |
|
|
then just do a straight memcpy. */
|
3861 |
|
|
if (!done)
|
3862 |
|
|
{
|
3863 |
|
|
if (direction == 1)
|
3864 |
|
|
memcpy (siginfo, inf_siginfo, sizeof (struct siginfo));
|
3865 |
|
|
else
|
3866 |
|
|
memcpy (inf_siginfo, siginfo, sizeof (struct siginfo));
|
3867 |
|
|
}
|
3868 |
|
|
}
|
3869 |
|
|
|
3870 |
|
|
static LONGEST
|
3871 |
|
|
linux_xfer_siginfo (struct target_ops *ops, enum target_object object,
|
3872 |
|
|
const char *annex, gdb_byte *readbuf,
|
3873 |
|
|
const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
|
3874 |
|
|
{
|
3875 |
|
|
int pid;
|
3876 |
|
|
struct siginfo siginfo;
|
3877 |
|
|
gdb_byte inf_siginfo[sizeof (struct siginfo)];
|
3878 |
|
|
|
3879 |
|
|
gdb_assert (object == TARGET_OBJECT_SIGNAL_INFO);
|
3880 |
|
|
gdb_assert (readbuf || writebuf);
|
3881 |
|
|
|
3882 |
|
|
pid = GET_LWP (inferior_ptid);
|
3883 |
|
|
if (pid == 0)
|
3884 |
|
|
pid = GET_PID (inferior_ptid);
|
3885 |
|
|
|
3886 |
|
|
if (offset > sizeof (siginfo))
|
3887 |
|
|
return -1;
|
3888 |
|
|
|
3889 |
|
|
errno = 0;
|
3890 |
|
|
ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
|
3891 |
|
|
if (errno != 0)
|
3892 |
|
|
return -1;
|
3893 |
|
|
|
3894 |
|
|
/* When GDB is built as a 64-bit application, ptrace writes into
|
3895 |
|
|
SIGINFO an object with 64-bit layout. Since debugging a 32-bit
|
3896 |
|
|
inferior with a 64-bit GDB should look the same as debugging it
|
3897 |
|
|
with a 32-bit GDB, we need to convert it. GDB core always sees
|
3898 |
|
|
the converted layout, so any read/write will have to be done
|
3899 |
|
|
post-conversion. */
|
3900 |
|
|
siginfo_fixup (&siginfo, inf_siginfo, 0);
|
3901 |
|
|
|
3902 |
|
|
if (offset + len > sizeof (siginfo))
|
3903 |
|
|
len = sizeof (siginfo) - offset;
|
3904 |
|
|
|
3905 |
|
|
if (readbuf != NULL)
|
3906 |
|
|
memcpy (readbuf, inf_siginfo + offset, len);
|
3907 |
|
|
else
|
3908 |
|
|
{
|
3909 |
|
|
memcpy (inf_siginfo + offset, writebuf, len);
|
3910 |
|
|
|
3911 |
|
|
/* Convert back to ptrace layout before flushing it out. */
|
3912 |
|
|
siginfo_fixup (&siginfo, inf_siginfo, 1);
|
3913 |
|
|
|
3914 |
|
|
errno = 0;
|
3915 |
|
|
ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
|
3916 |
|
|
if (errno != 0)
|
3917 |
|
|
return -1;
|
3918 |
|
|
}
|
3919 |
|
|
|
3920 |
|
|
return len;
|
3921 |
|
|
}
|
3922 |
|
|
|
3923 |
|
|
static LONGEST
|
3924 |
|
|
linux_nat_xfer_partial (struct target_ops *ops, enum target_object object,
|
3925 |
|
|
const char *annex, gdb_byte *readbuf,
|
3926 |
|
|
const gdb_byte *writebuf,
|
3927 |
|
|
ULONGEST offset, LONGEST len)
|
3928 |
|
|
{
|
3929 |
|
|
struct cleanup *old_chain;
|
3930 |
|
|
LONGEST xfer;
|
3931 |
|
|
|
3932 |
|
|
if (object == TARGET_OBJECT_SIGNAL_INFO)
|
3933 |
|
|
return linux_xfer_siginfo (ops, object, annex, readbuf, writebuf,
|
3934 |
|
|
offset, len);
|
3935 |
|
|
|
3936 |
|
|
/* The target is connected but no live inferior is selected. Pass
|
3937 |
|
|
this request down to a lower stratum (e.g., the executable
|
3938 |
|
|
file). */
|
3939 |
|
|
if (object == TARGET_OBJECT_MEMORY && ptid_equal (inferior_ptid, null_ptid))
|
3940 |
|
|
return 0;
|
3941 |
|
|
|
3942 |
|
|
old_chain = save_inferior_ptid ();
|
3943 |
|
|
|
3944 |
|
|
if (is_lwp (inferior_ptid))
|
3945 |
|
|
inferior_ptid = pid_to_ptid (GET_LWP (inferior_ptid));
|
3946 |
|
|
|
3947 |
|
|
xfer = linux_ops->to_xfer_partial (ops, object, annex, readbuf, writebuf,
|
3948 |
|
|
offset, len);
|
3949 |
|
|
|
3950 |
|
|
do_cleanups (old_chain);
|
3951 |
|
|
return xfer;
|
3952 |
|
|
}
|
3953 |
|
|
|
3954 |
|
|
static int
|
3955 |
|
|
linux_thread_alive (ptid_t ptid)
|
3956 |
|
|
{
|
3957 |
|
|
int err;
|
3958 |
|
|
|
3959 |
|
|
gdb_assert (is_lwp (ptid));
|
3960 |
|
|
|
3961 |
|
|
/* Send signal 0 instead of anything ptrace, because ptracing a
|
3962 |
|
|
running thread errors out claiming that the thread doesn't
|
3963 |
|
|
exist. */
|
3964 |
|
|
err = kill_lwp (GET_LWP (ptid), 0);
|
3965 |
|
|
|
3966 |
|
|
if (debug_linux_nat)
|
3967 |
|
|
fprintf_unfiltered (gdb_stdlog,
|
3968 |
|
|
"LLTA: KILL(SIG0) %s (%s)\n",
|
3969 |
|
|
target_pid_to_str (ptid),
|
3970 |
|
|
err ? safe_strerror (err) : "OK");
|
3971 |
|
|
|
3972 |
|
|
if (err != 0)
|
3973 |
|
|
return 0;
|
3974 |
|
|
|
3975 |
|
|
return 1;
|
3976 |
|
|
}
|
3977 |
|
|
|
3978 |
|
|
static int
|
3979 |
|
|
linux_nat_thread_alive (struct target_ops *ops, ptid_t ptid)
|
3980 |
|
|
{
|
3981 |
|
|
return linux_thread_alive (ptid);
|
3982 |
|
|
}
|
3983 |
|
|
|
3984 |
|
|
static char *
|
3985 |
|
|
linux_nat_pid_to_str (struct target_ops *ops, ptid_t ptid)
|
3986 |
|
|
{
|
3987 |
|
|
static char buf[64];
|
3988 |
|
|
|
3989 |
|
|
if (is_lwp (ptid)
|
3990 |
|
|
&& (GET_PID (ptid) != GET_LWP (ptid)
|
3991 |
|
|
|| num_lwps (GET_PID (ptid)) > 1))
|
3992 |
|
|
{
|
3993 |
|
|
snprintf (buf, sizeof (buf), "LWP %ld", GET_LWP (ptid));
|
3994 |
|
|
return buf;
|
3995 |
|
|
}
|
3996 |
|
|
|
3997 |
|
|
return normal_pid_to_str (ptid);
|
3998 |
|
|
}
|
3999 |
|
|
|
4000 |
|
|
/* Accepts an integer PID; Returns a string representing a file that
|
4001 |
|
|
can be opened to get the symbols for the child process. */
|
4002 |
|
|
|
4003 |
|
|
static char *
|
4004 |
|
|
linux_child_pid_to_exec_file (int pid)
|
4005 |
|
|
{
|
4006 |
|
|
char *name1, *name2;
|
4007 |
|
|
|
4008 |
|
|
name1 = xmalloc (MAXPATHLEN);
|
4009 |
|
|
name2 = xmalloc (MAXPATHLEN);
|
4010 |
|
|
make_cleanup (xfree, name1);
|
4011 |
|
|
make_cleanup (xfree, name2);
|
4012 |
|
|
memset (name2, 0, MAXPATHLEN);
|
4013 |
|
|
|
4014 |
|
|
sprintf (name1, "/proc/%d/exe", pid);
|
4015 |
|
|
if (readlink (name1, name2, MAXPATHLEN) > 0)
|
4016 |
|
|
return name2;
|
4017 |
|
|
else
|
4018 |
|
|
return name1;
|
4019 |
|
|
}
|
4020 |
|
|
|
4021 |
|
|
/* Service function for corefiles and info proc. */
|
4022 |
|
|
|
4023 |
|
|
static int
|
4024 |
|
|
read_mapping (FILE *mapfile,
|
4025 |
|
|
long long *addr,
|
4026 |
|
|
long long *endaddr,
|
4027 |
|
|
char *permissions,
|
4028 |
|
|
long long *offset,
|
4029 |
|
|
char *device, long long *inode, char *filename)
|
4030 |
|
|
{
|
4031 |
|
|
int ret = fscanf (mapfile, "%llx-%llx %s %llx %s %llx",
|
4032 |
|
|
addr, endaddr, permissions, offset, device, inode);
|
4033 |
|
|
|
4034 |
|
|
filename[0] = '\0';
|
4035 |
|
|
if (ret > 0 && ret != EOF)
|
4036 |
|
|
{
|
4037 |
|
|
/* Eat everything up to EOL for the filename. This will prevent
|
4038 |
|
|
weird filenames (such as one with embedded whitespace) from
|
4039 |
|
|
confusing this code. It also makes this code more robust in
|
4040 |
|
|
respect to annotations the kernel may add after the filename.
|
4041 |
|
|
|
4042 |
|
|
Note the filename is used for informational purposes
|
4043 |
|
|
only. */
|
4044 |
|
|
ret += fscanf (mapfile, "%[^\n]\n", filename);
|
4045 |
|
|
}
|
4046 |
|
|
|
4047 |
|
|
return (ret != 0 && ret != EOF);
|
4048 |
|
|
}
|
4049 |
|
|
|
4050 |
|
|
/* Fills the "to_find_memory_regions" target vector. Lists the memory
|
4051 |
|
|
regions in the inferior for a corefile. */
|
4052 |
|
|
|
4053 |
|
|
static int
|
4054 |
|
|
linux_nat_find_memory_regions (int (*func) (CORE_ADDR,
|
4055 |
|
|
unsigned long,
|
4056 |
|
|
int, int, int, void *), void *obfd)
|
4057 |
|
|
{
|
4058 |
|
|
int pid = PIDGET (inferior_ptid);
|
4059 |
|
|
char mapsfilename[MAXPATHLEN];
|
4060 |
|
|
FILE *mapsfile;
|
4061 |
|
|
long long addr, endaddr, size, offset, inode;
|
4062 |
|
|
char permissions[8], device[8], filename[MAXPATHLEN];
|
4063 |
|
|
int read, write, exec;
|
4064 |
|
|
struct cleanup *cleanup;
|
4065 |
|
|
|
4066 |
|
|
/* Compose the filename for the /proc memory map, and open it. */
|
4067 |
|
|
sprintf (mapsfilename, "/proc/%d/maps", pid);
|
4068 |
|
|
if ((mapsfile = fopen (mapsfilename, "r")) == NULL)
|
4069 |
|
|
error (_("Could not open %s."), mapsfilename);
|
4070 |
|
|
cleanup = make_cleanup_fclose (mapsfile);
|
4071 |
|
|
|
4072 |
|
|
if (info_verbose)
|
4073 |
|
|
fprintf_filtered (gdb_stdout,
|
4074 |
|
|
"Reading memory regions from %s\n", mapsfilename);
|
4075 |
|
|
|
4076 |
|
|
/* Now iterate until end-of-file. */
|
4077 |
|
|
while (read_mapping (mapsfile, &addr, &endaddr, &permissions[0],
|
4078 |
|
|
&offset, &device[0], &inode, &filename[0]))
|
4079 |
|
|
{
|
4080 |
|
|
size = endaddr - addr;
|
4081 |
|
|
|
4082 |
|
|
/* Get the segment's permissions. */
|
4083 |
|
|
read = (strchr (permissions, 'r') != 0);
|
4084 |
|
|
write = (strchr (permissions, 'w') != 0);
|
4085 |
|
|
exec = (strchr (permissions, 'x') != 0);
|
4086 |
|
|
|
4087 |
|
|
if (info_verbose)
|
4088 |
|
|
{
|
4089 |
|
|
fprintf_filtered (gdb_stdout,
|
4090 |
|
|
"Save segment, %s bytes at %s (%c%c%c)",
|
4091 |
|
|
plongest (size), paddress (target_gdbarch, addr),
|
4092 |
|
|
read ? 'r' : ' ',
|
4093 |
|
|
write ? 'w' : ' ', exec ? 'x' : ' ');
|
4094 |
|
|
if (filename[0])
|
4095 |
|
|
fprintf_filtered (gdb_stdout, " for %s", filename);
|
4096 |
|
|
fprintf_filtered (gdb_stdout, "\n");
|
4097 |
|
|
}
|
4098 |
|
|
|
4099 |
|
|
/* Invoke the callback function to create the corefile
|
4100 |
|
|
segment. */
|
4101 |
|
|
func (addr, size, read, write, exec, obfd);
|
4102 |
|
|
}
|
4103 |
|
|
do_cleanups (cleanup);
|
4104 |
|
|
return 0;
|
4105 |
|
|
}
|
4106 |
|
|
|
4107 |
|
|
static int
|
4108 |
|
|
find_signalled_thread (struct thread_info *info, void *data)
|
4109 |
|
|
{
|
4110 |
|
|
if (info->stop_signal != TARGET_SIGNAL_0
|
4111 |
|
|
&& ptid_get_pid (info->ptid) == ptid_get_pid (inferior_ptid))
|
4112 |
|
|
return 1;
|
4113 |
|
|
|
4114 |
|
|
return 0;
|
4115 |
|
|
}
|
4116 |
|
|
|
4117 |
|
|
static enum target_signal
|
4118 |
|
|
find_stop_signal (void)
|
4119 |
|
|
{
|
4120 |
|
|
struct thread_info *info =
|
4121 |
|
|
iterate_over_threads (find_signalled_thread, NULL);
|
4122 |
|
|
|
4123 |
|
|
if (info)
|
4124 |
|
|
return info->stop_signal;
|
4125 |
|
|
else
|
4126 |
|
|
return TARGET_SIGNAL_0;
|
4127 |
|
|
}
|
4128 |
|
|
|
4129 |
|
|
/* Records the thread's register state for the corefile note
|
4130 |
|
|
section. */
|
4131 |
|
|
|
4132 |
|
|
static char *
|
4133 |
|
|
linux_nat_do_thread_registers (bfd *obfd, ptid_t ptid,
|
4134 |
|
|
char *note_data, int *note_size,
|
4135 |
|
|
enum target_signal stop_signal)
|
4136 |
|
|
{
|
4137 |
|
|
unsigned long lwp = ptid_get_lwp (ptid);
|
4138 |
|
|
struct gdbarch *gdbarch = target_gdbarch;
|
4139 |
|
|
struct regcache *regcache = get_thread_arch_regcache (ptid, gdbarch);
|
4140 |
|
|
const struct regset *regset;
|
4141 |
|
|
int core_regset_p;
|
4142 |
|
|
struct cleanup *old_chain;
|
4143 |
|
|
struct core_regset_section *sect_list;
|
4144 |
|
|
char *gdb_regset;
|
4145 |
|
|
|
4146 |
|
|
old_chain = save_inferior_ptid ();
|
4147 |
|
|
inferior_ptid = ptid;
|
4148 |
|
|
target_fetch_registers (regcache, -1);
|
4149 |
|
|
do_cleanups (old_chain);
|
4150 |
|
|
|
4151 |
|
|
core_regset_p = gdbarch_regset_from_core_section_p (gdbarch);
|
4152 |
|
|
sect_list = gdbarch_core_regset_sections (gdbarch);
|
4153 |
|
|
|
4154 |
|
|
/* The loop below uses the new struct core_regset_section, which stores
|
4155 |
|
|
the supported section names and sizes for the core file. Note that
|
4156 |
|
|
note PRSTATUS needs to be treated specially. But the other notes are
|
4157 |
|
|
structurally the same, so they can benefit from the new struct. */
|
4158 |
|
|
if (core_regset_p && sect_list != NULL)
|
4159 |
|
|
while (sect_list->sect_name != NULL)
|
4160 |
|
|
{
|
4161 |
|
|
regset = gdbarch_regset_from_core_section (gdbarch,
|
4162 |
|
|
sect_list->sect_name,
|
4163 |
|
|
sect_list->size);
|
4164 |
|
|
gdb_assert (regset && regset->collect_regset);
|
4165 |
|
|
gdb_regset = xmalloc (sect_list->size);
|
4166 |
|
|
regset->collect_regset (regset, regcache, -1,
|
4167 |
|
|
gdb_regset, sect_list->size);
|
4168 |
|
|
|
4169 |
|
|
if (strcmp (sect_list->sect_name, ".reg") == 0)
|
4170 |
|
|
note_data = (char *) elfcore_write_prstatus
|
4171 |
|
|
(obfd, note_data, note_size,
|
4172 |
|
|
lwp, stop_signal, gdb_regset);
|
4173 |
|
|
else
|
4174 |
|
|
note_data = (char *) elfcore_write_register_note
|
4175 |
|
|
(obfd, note_data, note_size,
|
4176 |
|
|
sect_list->sect_name, gdb_regset,
|
4177 |
|
|
sect_list->size);
|
4178 |
|
|
xfree (gdb_regset);
|
4179 |
|
|
sect_list++;
|
4180 |
|
|
}
|
4181 |
|
|
|
4182 |
|
|
/* For architectures that does not have the struct core_regset_section
|
4183 |
|
|
implemented, we use the old method. When all the architectures have
|
4184 |
|
|
the new support, the code below should be deleted. */
|
4185 |
|
|
else
|
4186 |
|
|
{
|
4187 |
|
|
gdb_gregset_t gregs;
|
4188 |
|
|
gdb_fpregset_t fpregs;
|
4189 |
|
|
|
4190 |
|
|
if (core_regset_p
|
4191 |
|
|
&& (regset = gdbarch_regset_from_core_section (gdbarch, ".reg",
|
4192 |
|
|
sizeof (gregs))) != NULL
|
4193 |
|
|
&& regset->collect_regset != NULL)
|
4194 |
|
|
regset->collect_regset (regset, regcache, -1,
|
4195 |
|
|
&gregs, sizeof (gregs));
|
4196 |
|
|
else
|
4197 |
|
|
fill_gregset (regcache, &gregs, -1);
|
4198 |
|
|
|
4199 |
|
|
note_data = (char *) elfcore_write_prstatus (obfd,
|
4200 |
|
|
note_data,
|
4201 |
|
|
note_size,
|
4202 |
|
|
lwp,
|
4203 |
|
|
stop_signal, &gregs);
|
4204 |
|
|
|
4205 |
|
|
if (core_regset_p
|
4206 |
|
|
&& (regset = gdbarch_regset_from_core_section (gdbarch, ".reg2",
|
4207 |
|
|
sizeof (fpregs))) != NULL
|
4208 |
|
|
&& regset->collect_regset != NULL)
|
4209 |
|
|
regset->collect_regset (regset, regcache, -1,
|
4210 |
|
|
&fpregs, sizeof (fpregs));
|
4211 |
|
|
else
|
4212 |
|
|
fill_fpregset (regcache, &fpregs, -1);
|
4213 |
|
|
|
4214 |
|
|
note_data = (char *) elfcore_write_prfpreg (obfd,
|
4215 |
|
|
note_data,
|
4216 |
|
|
note_size,
|
4217 |
|
|
&fpregs, sizeof (fpregs));
|
4218 |
|
|
}
|
4219 |
|
|
|
4220 |
|
|
return note_data;
|
4221 |
|
|
}
|
4222 |
|
|
|
4223 |
|
|
struct linux_nat_corefile_thread_data
|
4224 |
|
|
{
|
4225 |
|
|
bfd *obfd;
|
4226 |
|
|
char *note_data;
|
4227 |
|
|
int *note_size;
|
4228 |
|
|
int num_notes;
|
4229 |
|
|
enum target_signal stop_signal;
|
4230 |
|
|
};
|
4231 |
|
|
|
4232 |
|
|
/* Called by gdbthread.c once per thread. Records the thread's
|
4233 |
|
|
register state for the corefile note section. */
|
4234 |
|
|
|
4235 |
|
|
static int
|
4236 |
|
|
linux_nat_corefile_thread_callback (struct lwp_info *ti, void *data)
|
4237 |
|
|
{
|
4238 |
|
|
struct linux_nat_corefile_thread_data *args = data;
|
4239 |
|
|
|
4240 |
|
|
args->note_data = linux_nat_do_thread_registers (args->obfd,
|
4241 |
|
|
ti->ptid,
|
4242 |
|
|
args->note_data,
|
4243 |
|
|
args->note_size,
|
4244 |
|
|
args->stop_signal);
|
4245 |
|
|
args->num_notes++;
|
4246 |
|
|
|
4247 |
|
|
return 0;
|
4248 |
|
|
}
|
4249 |
|
|
|
4250 |
|
|
/* Enumerate spufs IDs for process PID. */
|
4251 |
|
|
|
4252 |
|
|
static void
|
4253 |
|
|
iterate_over_spus (int pid, void (*callback) (void *, int), void *data)
|
4254 |
|
|
{
|
4255 |
|
|
char path[128];
|
4256 |
|
|
DIR *dir;
|
4257 |
|
|
struct dirent *entry;
|
4258 |
|
|
|
4259 |
|
|
xsnprintf (path, sizeof path, "/proc/%d/fd", pid);
|
4260 |
|
|
dir = opendir (path);
|
4261 |
|
|
if (!dir)
|
4262 |
|
|
return;
|
4263 |
|
|
|
4264 |
|
|
rewinddir (dir);
|
4265 |
|
|
while ((entry = readdir (dir)) != NULL)
|
4266 |
|
|
{
|
4267 |
|
|
struct stat st;
|
4268 |
|
|
struct statfs stfs;
|
4269 |
|
|
int fd;
|
4270 |
|
|
|
4271 |
|
|
fd = atoi (entry->d_name);
|
4272 |
|
|
if (!fd)
|
4273 |
|
|
continue;
|
4274 |
|
|
|
4275 |
|
|
xsnprintf (path, sizeof path, "/proc/%d/fd/%d", pid, fd);
|
4276 |
|
|
if (stat (path, &st) != 0)
|
4277 |
|
|
continue;
|
4278 |
|
|
if (!S_ISDIR (st.st_mode))
|
4279 |
|
|
continue;
|
4280 |
|
|
|
4281 |
|
|
if (statfs (path, &stfs) != 0)
|
4282 |
|
|
continue;
|
4283 |
|
|
if (stfs.f_type != SPUFS_MAGIC)
|
4284 |
|
|
continue;
|
4285 |
|
|
|
4286 |
|
|
callback (data, fd);
|
4287 |
|
|
}
|
4288 |
|
|
|
4289 |
|
|
closedir (dir);
|
4290 |
|
|
}
|
4291 |
|
|
|
4292 |
|
|
/* Generate corefile notes for SPU contexts. */
|
4293 |
|
|
|
4294 |
|
|
struct linux_spu_corefile_data
|
4295 |
|
|
{
|
4296 |
|
|
bfd *obfd;
|
4297 |
|
|
char *note_data;
|
4298 |
|
|
int *note_size;
|
4299 |
|
|
};
|
4300 |
|
|
|
4301 |
|
|
static void
|
4302 |
|
|
linux_spu_corefile_callback (void *data, int fd)
|
4303 |
|
|
{
|
4304 |
|
|
struct linux_spu_corefile_data *args = data;
|
4305 |
|
|
int i;
|
4306 |
|
|
|
4307 |
|
|
static const char *spu_files[] =
|
4308 |
|
|
{
|
4309 |
|
|
"object-id",
|
4310 |
|
|
"mem",
|
4311 |
|
|
"regs",
|
4312 |
|
|
"fpcr",
|
4313 |
|
|
"lslr",
|
4314 |
|
|
"decr",
|
4315 |
|
|
"decr_status",
|
4316 |
|
|
"signal1",
|
4317 |
|
|
"signal1_type",
|
4318 |
|
|
"signal2",
|
4319 |
|
|
"signal2_type",
|
4320 |
|
|
"event_mask",
|
4321 |
|
|
"event_status",
|
4322 |
|
|
"mbox_info",
|
4323 |
|
|
"ibox_info",
|
4324 |
|
|
"wbox_info",
|
4325 |
|
|
"dma_info",
|
4326 |
|
|
"proxydma_info",
|
4327 |
|
|
};
|
4328 |
|
|
|
4329 |
|
|
for (i = 0; i < sizeof (spu_files) / sizeof (spu_files[0]); i++)
|
4330 |
|
|
{
|
4331 |
|
|
char annex[32], note_name[32];
|
4332 |
|
|
gdb_byte *spu_data;
|
4333 |
|
|
LONGEST spu_len;
|
4334 |
|
|
|
4335 |
|
|
xsnprintf (annex, sizeof annex, "%d/%s", fd, spu_files[i]);
|
4336 |
|
|
spu_len = target_read_alloc (¤t_target, TARGET_OBJECT_SPU,
|
4337 |
|
|
annex, &spu_data);
|
4338 |
|
|
if (spu_len > 0)
|
4339 |
|
|
{
|
4340 |
|
|
xsnprintf (note_name, sizeof note_name, "SPU/%s", annex);
|
4341 |
|
|
args->note_data = elfcore_write_note (args->obfd, args->note_data,
|
4342 |
|
|
args->note_size, note_name,
|
4343 |
|
|
NT_SPU, spu_data, spu_len);
|
4344 |
|
|
xfree (spu_data);
|
4345 |
|
|
}
|
4346 |
|
|
}
|
4347 |
|
|
}
|
4348 |
|
|
|
4349 |
|
|
static char *
|
4350 |
|
|
linux_spu_make_corefile_notes (bfd *obfd, char *note_data, int *note_size)
|
4351 |
|
|
{
|
4352 |
|
|
struct linux_spu_corefile_data args;
|
4353 |
|
|
|
4354 |
|
|
args.obfd = obfd;
|
4355 |
|
|
args.note_data = note_data;
|
4356 |
|
|
args.note_size = note_size;
|
4357 |
|
|
|
4358 |
|
|
iterate_over_spus (PIDGET (inferior_ptid),
|
4359 |
|
|
linux_spu_corefile_callback, &args);
|
4360 |
|
|
|
4361 |
|
|
return args.note_data;
|
4362 |
|
|
}
|
4363 |
|
|
|
4364 |
|
|
/* Fills the "to_make_corefile_note" target vector. Builds the note
|
4365 |
|
|
section for a corefile, and returns it in a malloc buffer. */
|
4366 |
|
|
|
4367 |
|
|
static char *
|
4368 |
|
|
linux_nat_make_corefile_notes (bfd *obfd, int *note_size)
|
4369 |
|
|
{
|
4370 |
|
|
struct linux_nat_corefile_thread_data thread_args;
|
4371 |
|
|
/* The variable size must be >= sizeof (prpsinfo_t.pr_fname). */
|
4372 |
|
|
char fname[16] = { '\0' };
|
4373 |
|
|
/* The variable size must be >= sizeof (prpsinfo_t.pr_psargs). */
|
4374 |
|
|
char psargs[80] = { '\0' };
|
4375 |
|
|
char *note_data = NULL;
|
4376 |
|
|
ptid_t filter = pid_to_ptid (ptid_get_pid (inferior_ptid));
|
4377 |
|
|
gdb_byte *auxv;
|
4378 |
|
|
int auxv_len;
|
4379 |
|
|
|
4380 |
|
|
if (get_exec_file (0))
|
4381 |
|
|
{
|
4382 |
|
|
strncpy (fname, strrchr (get_exec_file (0), '/') + 1, sizeof (fname));
|
4383 |
|
|
strncpy (psargs, get_exec_file (0), sizeof (psargs));
|
4384 |
|
|
if (get_inferior_args ())
|
4385 |
|
|
{
|
4386 |
|
|
char *string_end;
|
4387 |
|
|
char *psargs_end = psargs + sizeof (psargs);
|
4388 |
|
|
|
4389 |
|
|
/* linux_elfcore_write_prpsinfo () handles zero unterminated
|
4390 |
|
|
strings fine. */
|
4391 |
|
|
string_end = memchr (psargs, 0, sizeof (psargs));
|
4392 |
|
|
if (string_end != NULL)
|
4393 |
|
|
{
|
4394 |
|
|
*string_end++ = ' ';
|
4395 |
|
|
strncpy (string_end, get_inferior_args (),
|
4396 |
|
|
psargs_end - string_end);
|
4397 |
|
|
}
|
4398 |
|
|
}
|
4399 |
|
|
note_data = (char *) elfcore_write_prpsinfo (obfd,
|
4400 |
|
|
note_data,
|
4401 |
|
|
note_size, fname, psargs);
|
4402 |
|
|
}
|
4403 |
|
|
|
4404 |
|
|
/* Dump information for threads. */
|
4405 |
|
|
thread_args.obfd = obfd;
|
4406 |
|
|
thread_args.note_data = note_data;
|
4407 |
|
|
thread_args.note_size = note_size;
|
4408 |
|
|
thread_args.num_notes = 0;
|
4409 |
|
|
thread_args.stop_signal = find_stop_signal ();
|
4410 |
|
|
iterate_over_lwps (filter, linux_nat_corefile_thread_callback, &thread_args);
|
4411 |
|
|
gdb_assert (thread_args.num_notes != 0);
|
4412 |
|
|
note_data = thread_args.note_data;
|
4413 |
|
|
|
4414 |
|
|
auxv_len = target_read_alloc (¤t_target, TARGET_OBJECT_AUXV,
|
4415 |
|
|
NULL, &auxv);
|
4416 |
|
|
if (auxv_len > 0)
|
4417 |
|
|
{
|
4418 |
|
|
note_data = elfcore_write_note (obfd, note_data, note_size,
|
4419 |
|
|
"CORE", NT_AUXV, auxv, auxv_len);
|
4420 |
|
|
xfree (auxv);
|
4421 |
|
|
}
|
4422 |
|
|
|
4423 |
|
|
note_data = linux_spu_make_corefile_notes (obfd, note_data, note_size);
|
4424 |
|
|
|
4425 |
|
|
make_cleanup (xfree, note_data);
|
4426 |
|
|
return note_data;
|
4427 |
|
|
}
|
4428 |
|
|
|
4429 |
|
|
/* Implement the "info proc" command. */
|
4430 |
|
|
|
4431 |
|
|
static void
|
4432 |
|
|
linux_nat_info_proc_cmd (char *args, int from_tty)
|
4433 |
|
|
{
|
4434 |
|
|
/* A long is used for pid instead of an int to avoid a loss of precision
|
4435 |
|
|
compiler warning from the output of strtoul. */
|
4436 |
|
|
long pid = PIDGET (inferior_ptid);
|
4437 |
|
|
FILE *procfile;
|
4438 |
|
|
char **argv = NULL;
|
4439 |
|
|
char buffer[MAXPATHLEN];
|
4440 |
|
|
char fname1[MAXPATHLEN], fname2[MAXPATHLEN];
|
4441 |
|
|
int cmdline_f = 1;
|
4442 |
|
|
int cwd_f = 1;
|
4443 |
|
|
int exe_f = 1;
|
4444 |
|
|
int mappings_f = 0;
|
4445 |
|
|
int status_f = 0;
|
4446 |
|
|
int stat_f = 0;
|
4447 |
|
|
int all = 0;
|
4448 |
|
|
struct stat dummy;
|
4449 |
|
|
|
4450 |
|
|
if (args)
|
4451 |
|
|
{
|
4452 |
|
|
/* Break up 'args' into an argv array. */
|
4453 |
|
|
argv = gdb_buildargv (args);
|
4454 |
|
|
make_cleanup_freeargv (argv);
|
4455 |
|
|
}
|
4456 |
|
|
while (argv != NULL && *argv != NULL)
|
4457 |
|
|
{
|
4458 |
|
|
if (isdigit (argv[0][0]))
|
4459 |
|
|
{
|
4460 |
|
|
pid = strtoul (argv[0], NULL, 10);
|
4461 |
|
|
}
|
4462 |
|
|
else if (strncmp (argv[0], "mappings", strlen (argv[0])) == 0)
|
4463 |
|
|
{
|
4464 |
|
|
mappings_f = 1;
|
4465 |
|
|
}
|
4466 |
|
|
else if (strcmp (argv[0], "status") == 0)
|
4467 |
|
|
{
|
4468 |
|
|
status_f = 1;
|
4469 |
|
|
}
|
4470 |
|
|
else if (strcmp (argv[0], "stat") == 0)
|
4471 |
|
|
{
|
4472 |
|
|
stat_f = 1;
|
4473 |
|
|
}
|
4474 |
|
|
else if (strcmp (argv[0], "cmd") == 0)
|
4475 |
|
|
{
|
4476 |
|
|
cmdline_f = 1;
|
4477 |
|
|
}
|
4478 |
|
|
else if (strncmp (argv[0], "exe", strlen (argv[0])) == 0)
|
4479 |
|
|
{
|
4480 |
|
|
exe_f = 1;
|
4481 |
|
|
}
|
4482 |
|
|
else if (strcmp (argv[0], "cwd") == 0)
|
4483 |
|
|
{
|
4484 |
|
|
cwd_f = 1;
|
4485 |
|
|
}
|
4486 |
|
|
else if (strncmp (argv[0], "all", strlen (argv[0])) == 0)
|
4487 |
|
|
{
|
4488 |
|
|
all = 1;
|
4489 |
|
|
}
|
4490 |
|
|
else
|
4491 |
|
|
{
|
4492 |
|
|
/* [...] (future options here) */
|
4493 |
|
|
}
|
4494 |
|
|
argv++;
|
4495 |
|
|
}
|
4496 |
|
|
if (pid == 0)
|
4497 |
|
|
error (_("No current process: you must name one."));
|
4498 |
|
|
|
4499 |
|
|
sprintf (fname1, "/proc/%ld", pid);
|
4500 |
|
|
if (stat (fname1, &dummy) != 0)
|
4501 |
|
|
error (_("No /proc directory: '%s'"), fname1);
|
4502 |
|
|
|
4503 |
|
|
printf_filtered (_("process %ld\n"), pid);
|
4504 |
|
|
if (cmdline_f || all)
|
4505 |
|
|
{
|
4506 |
|
|
sprintf (fname1, "/proc/%ld/cmdline", pid);
|
4507 |
|
|
if ((procfile = fopen (fname1, "r")) != NULL)
|
4508 |
|
|
{
|
4509 |
|
|
struct cleanup *cleanup = make_cleanup_fclose (procfile);
|
4510 |
|
|
|
4511 |
|
|
if (fgets (buffer, sizeof (buffer), procfile))
|
4512 |
|
|
printf_filtered ("cmdline = '%s'\n", buffer);
|
4513 |
|
|
else
|
4514 |
|
|
warning (_("unable to read '%s'"), fname1);
|
4515 |
|
|
do_cleanups (cleanup);
|
4516 |
|
|
}
|
4517 |
|
|
else
|
4518 |
|
|
warning (_("unable to open /proc file '%s'"), fname1);
|
4519 |
|
|
}
|
4520 |
|
|
if (cwd_f || all)
|
4521 |
|
|
{
|
4522 |
|
|
sprintf (fname1, "/proc/%ld/cwd", pid);
|
4523 |
|
|
memset (fname2, 0, sizeof (fname2));
|
4524 |
|
|
if (readlink (fname1, fname2, sizeof (fname2)) > 0)
|
4525 |
|
|
printf_filtered ("cwd = '%s'\n", fname2);
|
4526 |
|
|
else
|
4527 |
|
|
warning (_("unable to read link '%s'"), fname1);
|
4528 |
|
|
}
|
4529 |
|
|
if (exe_f || all)
|
4530 |
|
|
{
|
4531 |
|
|
sprintf (fname1, "/proc/%ld/exe", pid);
|
4532 |
|
|
memset (fname2, 0, sizeof (fname2));
|
4533 |
|
|
if (readlink (fname1, fname2, sizeof (fname2)) > 0)
|
4534 |
|
|
printf_filtered ("exe = '%s'\n", fname2);
|
4535 |
|
|
else
|
4536 |
|
|
warning (_("unable to read link '%s'"), fname1);
|
4537 |
|
|
}
|
4538 |
|
|
if (mappings_f || all)
|
4539 |
|
|
{
|
4540 |
|
|
sprintf (fname1, "/proc/%ld/maps", pid);
|
4541 |
|
|
if ((procfile = fopen (fname1, "r")) != NULL)
|
4542 |
|
|
{
|
4543 |
|
|
long long addr, endaddr, size, offset, inode;
|
4544 |
|
|
char permissions[8], device[8], filename[MAXPATHLEN];
|
4545 |
|
|
struct cleanup *cleanup;
|
4546 |
|
|
|
4547 |
|
|
cleanup = make_cleanup_fclose (procfile);
|
4548 |
|
|
printf_filtered (_("Mapped address spaces:\n\n"));
|
4549 |
|
|
if (gdbarch_addr_bit (target_gdbarch) == 32)
|
4550 |
|
|
{
|
4551 |
|
|
printf_filtered ("\t%10s %10s %10s %10s %7s\n",
|
4552 |
|
|
"Start Addr",
|
4553 |
|
|
" End Addr",
|
4554 |
|
|
" Size", " Offset", "objfile");
|
4555 |
|
|
}
|
4556 |
|
|
else
|
4557 |
|
|
{
|
4558 |
|
|
printf_filtered (" %18s %18s %10s %10s %7s\n",
|
4559 |
|
|
"Start Addr",
|
4560 |
|
|
" End Addr",
|
4561 |
|
|
" Size", " Offset", "objfile");
|
4562 |
|
|
}
|
4563 |
|
|
|
4564 |
|
|
while (read_mapping (procfile, &addr, &endaddr, &permissions[0],
|
4565 |
|
|
&offset, &device[0], &inode, &filename[0]))
|
4566 |
|
|
{
|
4567 |
|
|
size = endaddr - addr;
|
4568 |
|
|
|
4569 |
|
|
/* FIXME: carlton/2003-08-27: Maybe the printf_filtered
|
4570 |
|
|
calls here (and possibly above) should be abstracted
|
4571 |
|
|
out into their own functions? Andrew suggests using
|
4572 |
|
|
a generic local_address_string instead to print out
|
4573 |
|
|
the addresses; that makes sense to me, too. */
|
4574 |
|
|
|
4575 |
|
|
if (gdbarch_addr_bit (target_gdbarch) == 32)
|
4576 |
|
|
{
|
4577 |
|
|
printf_filtered ("\t%#10lx %#10lx %#10x %#10x %7s\n",
|
4578 |
|
|
(unsigned long) addr, /* FIXME: pr_addr */
|
4579 |
|
|
(unsigned long) endaddr,
|
4580 |
|
|
(int) size,
|
4581 |
|
|
(unsigned int) offset,
|
4582 |
|
|
filename[0] ? filename : "");
|
4583 |
|
|
}
|
4584 |
|
|
else
|
4585 |
|
|
{
|
4586 |
|
|
printf_filtered (" %#18lx %#18lx %#10x %#10x %7s\n",
|
4587 |
|
|
(unsigned long) addr, /* FIXME: pr_addr */
|
4588 |
|
|
(unsigned long) endaddr,
|
4589 |
|
|
(int) size,
|
4590 |
|
|
(unsigned int) offset,
|
4591 |
|
|
filename[0] ? filename : "");
|
4592 |
|
|
}
|
4593 |
|
|
}
|
4594 |
|
|
|
4595 |
|
|
do_cleanups (cleanup);
|
4596 |
|
|
}
|
4597 |
|
|
else
|
4598 |
|
|
warning (_("unable to open /proc file '%s'"), fname1);
|
4599 |
|
|
}
|
4600 |
|
|
if (status_f || all)
|
4601 |
|
|
{
|
4602 |
|
|
sprintf (fname1, "/proc/%ld/status", pid);
|
4603 |
|
|
if ((procfile = fopen (fname1, "r")) != NULL)
|
4604 |
|
|
{
|
4605 |
|
|
struct cleanup *cleanup = make_cleanup_fclose (procfile);
|
4606 |
|
|
|
4607 |
|
|
while (fgets (buffer, sizeof (buffer), procfile) != NULL)
|
4608 |
|
|
puts_filtered (buffer);
|
4609 |
|
|
do_cleanups (cleanup);
|
4610 |
|
|
}
|
4611 |
|
|
else
|
4612 |
|
|
warning (_("unable to open /proc file '%s'"), fname1);
|
4613 |
|
|
}
|
4614 |
|
|
if (stat_f || all)
|
4615 |
|
|
{
|
4616 |
|
|
sprintf (fname1, "/proc/%ld/stat", pid);
|
4617 |
|
|
if ((procfile = fopen (fname1, "r")) != NULL)
|
4618 |
|
|
{
|
4619 |
|
|
int itmp;
|
4620 |
|
|
char ctmp;
|
4621 |
|
|
long ltmp;
|
4622 |
|
|
struct cleanup *cleanup = make_cleanup_fclose (procfile);
|
4623 |
|
|
|
4624 |
|
|
if (fscanf (procfile, "%d ", &itmp) > 0)
|
4625 |
|
|
printf_filtered (_("Process: %d\n"), itmp);
|
4626 |
|
|
if (fscanf (procfile, "(%[^)]) ", &buffer[0]) > 0)
|
4627 |
|
|
printf_filtered (_("Exec file: %s\n"), buffer);
|
4628 |
|
|
if (fscanf (procfile, "%c ", &ctmp) > 0)
|
4629 |
|
|
printf_filtered (_("State: %c\n"), ctmp);
|
4630 |
|
|
if (fscanf (procfile, "%d ", &itmp) > 0)
|
4631 |
|
|
printf_filtered (_("Parent process: %d\n"), itmp);
|
4632 |
|
|
if (fscanf (procfile, "%d ", &itmp) > 0)
|
4633 |
|
|
printf_filtered (_("Process group: %d\n"), itmp);
|
4634 |
|
|
if (fscanf (procfile, "%d ", &itmp) > 0)
|
4635 |
|
|
printf_filtered (_("Session id: %d\n"), itmp);
|
4636 |
|
|
if (fscanf (procfile, "%d ", &itmp) > 0)
|
4637 |
|
|
printf_filtered (_("TTY: %d\n"), itmp);
|
4638 |
|
|
if (fscanf (procfile, "%d ", &itmp) > 0)
|
4639 |
|
|
printf_filtered (_("TTY owner process group: %d\n"), itmp);
|
4640 |
|
|
if (fscanf (procfile, "%lu ", <mp) > 0)
|
4641 |
|
|
printf_filtered (_("Flags: 0x%lx\n"), ltmp);
|
4642 |
|
|
if (fscanf (procfile, "%lu ", <mp) > 0)
|
4643 |
|
|
printf_filtered (_("Minor faults (no memory page): %lu\n"),
|
4644 |
|
|
(unsigned long) ltmp);
|
4645 |
|
|
if (fscanf (procfile, "%lu ", <mp) > 0)
|
4646 |
|
|
printf_filtered (_("Minor faults, children: %lu\n"),
|
4647 |
|
|
(unsigned long) ltmp);
|
4648 |
|
|
if (fscanf (procfile, "%lu ", <mp) > 0)
|
4649 |
|
|
printf_filtered (_("Major faults (memory page faults): %lu\n"),
|
4650 |
|
|
(unsigned long) ltmp);
|
4651 |
|
|
if (fscanf (procfile, "%lu ", <mp) > 0)
|
4652 |
|
|
printf_filtered (_("Major faults, children: %lu\n"),
|
4653 |
|
|
(unsigned long) ltmp);
|
4654 |
|
|
if (fscanf (procfile, "%ld ", <mp) > 0)
|
4655 |
|
|
printf_filtered (_("utime: %ld\n"), ltmp);
|
4656 |
|
|
if (fscanf (procfile, "%ld ", <mp) > 0)
|
4657 |
|
|
printf_filtered (_("stime: %ld\n"), ltmp);
|
4658 |
|
|
if (fscanf (procfile, "%ld ", <mp) > 0)
|
4659 |
|
|
printf_filtered (_("utime, children: %ld\n"), ltmp);
|
4660 |
|
|
if (fscanf (procfile, "%ld ", <mp) > 0)
|
4661 |
|
|
printf_filtered (_("stime, children: %ld\n"), ltmp);
|
4662 |
|
|
if (fscanf (procfile, "%ld ", <mp) > 0)
|
4663 |
|
|
printf_filtered (_("jiffies remaining in current time slice: %ld\n"),
|
4664 |
|
|
ltmp);
|
4665 |
|
|
if (fscanf (procfile, "%ld ", <mp) > 0)
|
4666 |
|
|
printf_filtered (_("'nice' value: %ld\n"), ltmp);
|
4667 |
|
|
if (fscanf (procfile, "%lu ", <mp) > 0)
|
4668 |
|
|
printf_filtered (_("jiffies until next timeout: %lu\n"),
|
4669 |
|
|
(unsigned long) ltmp);
|
4670 |
|
|
if (fscanf (procfile, "%lu ", <mp) > 0)
|
4671 |
|
|
printf_filtered (_("jiffies until next SIGALRM: %lu\n"),
|
4672 |
|
|
(unsigned long) ltmp);
|
4673 |
|
|
if (fscanf (procfile, "%ld ", <mp) > 0)
|
4674 |
|
|
printf_filtered (_("start time (jiffies since system boot): %ld\n"),
|
4675 |
|
|
ltmp);
|
4676 |
|
|
if (fscanf (procfile, "%lu ", <mp) > 0)
|
4677 |
|
|
printf_filtered (_("Virtual memory size: %lu\n"),
|
4678 |
|
|
(unsigned long) ltmp);
|
4679 |
|
|
if (fscanf (procfile, "%lu ", <mp) > 0)
|
4680 |
|
|
printf_filtered (_("Resident set size: %lu\n"), (unsigned long) ltmp);
|
4681 |
|
|
if (fscanf (procfile, "%lu ", <mp) > 0)
|
4682 |
|
|
printf_filtered (_("rlim: %lu\n"), (unsigned long) ltmp);
|
4683 |
|
|
if (fscanf (procfile, "%lu ", <mp) > 0)
|
4684 |
|
|
printf_filtered (_("Start of text: 0x%lx\n"), ltmp);
|
4685 |
|
|
if (fscanf (procfile, "%lu ", <mp) > 0)
|
4686 |
|
|
printf_filtered (_("End of text: 0x%lx\n"), ltmp);
|
4687 |
|
|
if (fscanf (procfile, "%lu ", <mp) > 0)
|
4688 |
|
|
printf_filtered (_("Start of stack: 0x%lx\n"), ltmp);
|
4689 |
|
|
#if 0 /* Don't know how architecture-dependent the rest is...
|
4690 |
|
|
Anyway the signal bitmap info is available from "status". */
|
4691 |
|
|
if (fscanf (procfile, "%lu ", <mp) > 0) /* FIXME arch? */
|
4692 |
|
|
printf_filtered (_("Kernel stack pointer: 0x%lx\n"), ltmp);
|
4693 |
|
|
if (fscanf (procfile, "%lu ", <mp) > 0) /* FIXME arch? */
|
4694 |
|
|
printf_filtered (_("Kernel instr pointer: 0x%lx\n"), ltmp);
|
4695 |
|
|
if (fscanf (procfile, "%ld ", <mp) > 0)
|
4696 |
|
|
printf_filtered (_("Pending signals bitmap: 0x%lx\n"), ltmp);
|
4697 |
|
|
if (fscanf (procfile, "%ld ", <mp) > 0)
|
4698 |
|
|
printf_filtered (_("Blocked signals bitmap: 0x%lx\n"), ltmp);
|
4699 |
|
|
if (fscanf (procfile, "%ld ", <mp) > 0)
|
4700 |
|
|
printf_filtered (_("Ignored signals bitmap: 0x%lx\n"), ltmp);
|
4701 |
|
|
if (fscanf (procfile, "%ld ", <mp) > 0)
|
4702 |
|
|
printf_filtered (_("Catched signals bitmap: 0x%lx\n"), ltmp);
|
4703 |
|
|
if (fscanf (procfile, "%lu ", <mp) > 0) /* FIXME arch? */
|
4704 |
|
|
printf_filtered (_("wchan (system call): 0x%lx\n"), ltmp);
|
4705 |
|
|
#endif
|
4706 |
|
|
do_cleanups (cleanup);
|
4707 |
|
|
}
|
4708 |
|
|
else
|
4709 |
|
|
warning (_("unable to open /proc file '%s'"), fname1);
|
4710 |
|
|
}
|
4711 |
|
|
}
|
4712 |
|
|
|
4713 |
|
|
/* Implement the to_xfer_partial interface for memory reads using the /proc
|
4714 |
|
|
filesystem. Because we can use a single read() call for /proc, this
|
4715 |
|
|
can be much more efficient than banging away at PTRACE_PEEKTEXT,
|
4716 |
|
|
but it doesn't support writes. */
|
4717 |
|
|
|
4718 |
|
|
static LONGEST
|
4719 |
|
|
linux_proc_xfer_partial (struct target_ops *ops, enum target_object object,
|
4720 |
|
|
const char *annex, gdb_byte *readbuf,
|
4721 |
|
|
const gdb_byte *writebuf,
|
4722 |
|
|
ULONGEST offset, LONGEST len)
|
4723 |
|
|
{
|
4724 |
|
|
LONGEST ret;
|
4725 |
|
|
int fd;
|
4726 |
|
|
char filename[64];
|
4727 |
|
|
|
4728 |
|
|
if (object != TARGET_OBJECT_MEMORY || !readbuf)
|
4729 |
|
|
return 0;
|
4730 |
|
|
|
4731 |
|
|
/* Don't bother for one word. */
|
4732 |
|
|
if (len < 3 * sizeof (long))
|
4733 |
|
|
return 0;
|
4734 |
|
|
|
4735 |
|
|
/* We could keep this file open and cache it - possibly one per
|
4736 |
|
|
thread. That requires some juggling, but is even faster. */
|
4737 |
|
|
sprintf (filename, "/proc/%d/mem", PIDGET (inferior_ptid));
|
4738 |
|
|
fd = open (filename, O_RDONLY | O_LARGEFILE);
|
4739 |
|
|
if (fd == -1)
|
4740 |
|
|
return 0;
|
4741 |
|
|
|
4742 |
|
|
/* If pread64 is available, use it. It's faster if the kernel
|
4743 |
|
|
supports it (only one syscall), and it's 64-bit safe even on
|
4744 |
|
|
32-bit platforms (for instance, SPARC debugging a SPARC64
|
4745 |
|
|
application). */
|
4746 |
|
|
#ifdef HAVE_PREAD64
|
4747 |
|
|
if (pread64 (fd, readbuf, len, offset) != len)
|
4748 |
|
|
#else
|
4749 |
|
|
if (lseek (fd, offset, SEEK_SET) == -1 || read (fd, readbuf, len) != len)
|
4750 |
|
|
#endif
|
4751 |
|
|
ret = 0;
|
4752 |
|
|
else
|
4753 |
|
|
ret = len;
|
4754 |
|
|
|
4755 |
|
|
close (fd);
|
4756 |
|
|
return ret;
|
4757 |
|
|
}
|
4758 |
|
|
|
4759 |
|
|
|
4760 |
|
|
/* Enumerate spufs IDs for process PID. */
|
4761 |
|
|
static LONGEST
|
4762 |
|
|
spu_enumerate_spu_ids (int pid, gdb_byte *buf, ULONGEST offset, LONGEST len)
|
4763 |
|
|
{
|
4764 |
|
|
enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
|
4765 |
|
|
LONGEST pos = 0;
|
4766 |
|
|
LONGEST written = 0;
|
4767 |
|
|
char path[128];
|
4768 |
|
|
DIR *dir;
|
4769 |
|
|
struct dirent *entry;
|
4770 |
|
|
|
4771 |
|
|
xsnprintf (path, sizeof path, "/proc/%d/fd", pid);
|
4772 |
|
|
dir = opendir (path);
|
4773 |
|
|
if (!dir)
|
4774 |
|
|
return -1;
|
4775 |
|
|
|
4776 |
|
|
rewinddir (dir);
|
4777 |
|
|
while ((entry = readdir (dir)) != NULL)
|
4778 |
|
|
{
|
4779 |
|
|
struct stat st;
|
4780 |
|
|
struct statfs stfs;
|
4781 |
|
|
int fd;
|
4782 |
|
|
|
4783 |
|
|
fd = atoi (entry->d_name);
|
4784 |
|
|
if (!fd)
|
4785 |
|
|
continue;
|
4786 |
|
|
|
4787 |
|
|
xsnprintf (path, sizeof path, "/proc/%d/fd/%d", pid, fd);
|
4788 |
|
|
if (stat (path, &st) != 0)
|
4789 |
|
|
continue;
|
4790 |
|
|
if (!S_ISDIR (st.st_mode))
|
4791 |
|
|
continue;
|
4792 |
|
|
|
4793 |
|
|
if (statfs (path, &stfs) != 0)
|
4794 |
|
|
continue;
|
4795 |
|
|
if (stfs.f_type != SPUFS_MAGIC)
|
4796 |
|
|
continue;
|
4797 |
|
|
|
4798 |
|
|
if (pos >= offset && pos + 4 <= offset + len)
|
4799 |
|
|
{
|
4800 |
|
|
store_unsigned_integer (buf + pos - offset, 4, byte_order, fd);
|
4801 |
|
|
written += 4;
|
4802 |
|
|
}
|
4803 |
|
|
pos += 4;
|
4804 |
|
|
}
|
4805 |
|
|
|
4806 |
|
|
closedir (dir);
|
4807 |
|
|
return written;
|
4808 |
|
|
}
|
4809 |
|
|
|
4810 |
|
|
/* Implement the to_xfer_partial interface for the TARGET_OBJECT_SPU
|
4811 |
|
|
object type, using the /proc file system. */
|
4812 |
|
|
static LONGEST
|
4813 |
|
|
linux_proc_xfer_spu (struct target_ops *ops, enum target_object object,
|
4814 |
|
|
const char *annex, gdb_byte *readbuf,
|
4815 |
|
|
const gdb_byte *writebuf,
|
4816 |
|
|
ULONGEST offset, LONGEST len)
|
4817 |
|
|
{
|
4818 |
|
|
char buf[128];
|
4819 |
|
|
int fd = 0;
|
4820 |
|
|
int ret = -1;
|
4821 |
|
|
int pid = PIDGET (inferior_ptid);
|
4822 |
|
|
|
4823 |
|
|
if (!annex)
|
4824 |
|
|
{
|
4825 |
|
|
if (!readbuf)
|
4826 |
|
|
return -1;
|
4827 |
|
|
else
|
4828 |
|
|
return spu_enumerate_spu_ids (pid, readbuf, offset, len);
|
4829 |
|
|
}
|
4830 |
|
|
|
4831 |
|
|
xsnprintf (buf, sizeof buf, "/proc/%d/fd/%s", pid, annex);
|
4832 |
|
|
fd = open (buf, writebuf? O_WRONLY : O_RDONLY);
|
4833 |
|
|
if (fd <= 0)
|
4834 |
|
|
return -1;
|
4835 |
|
|
|
4836 |
|
|
if (offset != 0
|
4837 |
|
|
&& lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
|
4838 |
|
|
{
|
4839 |
|
|
close (fd);
|
4840 |
|
|
return 0;
|
4841 |
|
|
}
|
4842 |
|
|
|
4843 |
|
|
if (writebuf)
|
4844 |
|
|
ret = write (fd, writebuf, (size_t) len);
|
4845 |
|
|
else if (readbuf)
|
4846 |
|
|
ret = read (fd, readbuf, (size_t) len);
|
4847 |
|
|
|
4848 |
|
|
close (fd);
|
4849 |
|
|
return ret;
|
4850 |
|
|
}
|
4851 |
|
|
|
4852 |
|
|
|
4853 |
|
|
/* Parse LINE as a signal set and add its set bits to SIGS. */
|
4854 |
|
|
|
4855 |
|
|
static void
|
4856 |
|
|
add_line_to_sigset (const char *line, sigset_t *sigs)
|
4857 |
|
|
{
|
4858 |
|
|
int len = strlen (line) - 1;
|
4859 |
|
|
const char *p;
|
4860 |
|
|
int signum;
|
4861 |
|
|
|
4862 |
|
|
if (line[len] != '\n')
|
4863 |
|
|
error (_("Could not parse signal set: %s"), line);
|
4864 |
|
|
|
4865 |
|
|
p = line;
|
4866 |
|
|
signum = len * 4;
|
4867 |
|
|
while (len-- > 0)
|
4868 |
|
|
{
|
4869 |
|
|
int digit;
|
4870 |
|
|
|
4871 |
|
|
if (*p >= '0' && *p <= '9')
|
4872 |
|
|
digit = *p - '0';
|
4873 |
|
|
else if (*p >= 'a' && *p <= 'f')
|
4874 |
|
|
digit = *p - 'a' + 10;
|
4875 |
|
|
else
|
4876 |
|
|
error (_("Could not parse signal set: %s"), line);
|
4877 |
|
|
|
4878 |
|
|
signum -= 4;
|
4879 |
|
|
|
4880 |
|
|
if (digit & 1)
|
4881 |
|
|
sigaddset (sigs, signum + 1);
|
4882 |
|
|
if (digit & 2)
|
4883 |
|
|
sigaddset (sigs, signum + 2);
|
4884 |
|
|
if (digit & 4)
|
4885 |
|
|
sigaddset (sigs, signum + 3);
|
4886 |
|
|
if (digit & 8)
|
4887 |
|
|
sigaddset (sigs, signum + 4);
|
4888 |
|
|
|
4889 |
|
|
p++;
|
4890 |
|
|
}
|
4891 |
|
|
}
|
4892 |
|
|
|
4893 |
|
|
/* Find process PID's pending signals from /proc/pid/status and set
|
4894 |
|
|
SIGS to match. */
|
4895 |
|
|
|
4896 |
|
|
void
|
4897 |
|
|
linux_proc_pending_signals (int pid, sigset_t *pending, sigset_t *blocked, sigset_t *ignored)
|
4898 |
|
|
{
|
4899 |
|
|
FILE *procfile;
|
4900 |
|
|
char buffer[MAXPATHLEN], fname[MAXPATHLEN];
|
4901 |
|
|
struct cleanup *cleanup;
|
4902 |
|
|
|
4903 |
|
|
sigemptyset (pending);
|
4904 |
|
|
sigemptyset (blocked);
|
4905 |
|
|
sigemptyset (ignored);
|
4906 |
|
|
sprintf (fname, "/proc/%d/status", pid);
|
4907 |
|
|
procfile = fopen (fname, "r");
|
4908 |
|
|
if (procfile == NULL)
|
4909 |
|
|
error (_("Could not open %s"), fname);
|
4910 |
|
|
cleanup = make_cleanup_fclose (procfile);
|
4911 |
|
|
|
4912 |
|
|
while (fgets (buffer, MAXPATHLEN, procfile) != NULL)
|
4913 |
|
|
{
|
4914 |
|
|
/* Normal queued signals are on the SigPnd line in the status
|
4915 |
|
|
file. However, 2.6 kernels also have a "shared" pending
|
4916 |
|
|
queue for delivering signals to a thread group, so check for
|
4917 |
|
|
a ShdPnd line also.
|
4918 |
|
|
|
4919 |
|
|
Unfortunately some Red Hat kernels include the shared pending
|
4920 |
|
|
queue but not the ShdPnd status field. */
|
4921 |
|
|
|
4922 |
|
|
if (strncmp (buffer, "SigPnd:\t", 8) == 0)
|
4923 |
|
|
add_line_to_sigset (buffer + 8, pending);
|
4924 |
|
|
else if (strncmp (buffer, "ShdPnd:\t", 8) == 0)
|
4925 |
|
|
add_line_to_sigset (buffer + 8, pending);
|
4926 |
|
|
else if (strncmp (buffer, "SigBlk:\t", 8) == 0)
|
4927 |
|
|
add_line_to_sigset (buffer + 8, blocked);
|
4928 |
|
|
else if (strncmp (buffer, "SigIgn:\t", 8) == 0)
|
4929 |
|
|
add_line_to_sigset (buffer + 8, ignored);
|
4930 |
|
|
}
|
4931 |
|
|
|
4932 |
|
|
do_cleanups (cleanup);
|
4933 |
|
|
}
|
4934 |
|
|
|
4935 |
|
|
static LONGEST
|
4936 |
|
|
linux_nat_xfer_osdata (struct target_ops *ops, enum target_object object,
|
4937 |
|
|
const char *annex, gdb_byte *readbuf,
|
4938 |
|
|
const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
|
4939 |
|
|
{
|
4940 |
|
|
/* We make the process list snapshot when the object starts to be
|
4941 |
|
|
read. */
|
4942 |
|
|
static const char *buf;
|
4943 |
|
|
static LONGEST len_avail = -1;
|
4944 |
|
|
static struct obstack obstack;
|
4945 |
|
|
|
4946 |
|
|
DIR *dirp;
|
4947 |
|
|
|
4948 |
|
|
gdb_assert (object == TARGET_OBJECT_OSDATA);
|
4949 |
|
|
|
4950 |
|
|
if (!annex)
|
4951 |
|
|
{
|
4952 |
|
|
if (offset == 0)
|
4953 |
|
|
{
|
4954 |
|
|
if (len_avail != -1 && len_avail != 0)
|
4955 |
|
|
obstack_free (&obstack, NULL);
|
4956 |
|
|
len_avail = 0;
|
4957 |
|
|
buf = NULL;
|
4958 |
|
|
obstack_init (&obstack);
|
4959 |
|
|
obstack_grow_str (&obstack, "<osdata type=\"types\">\n");
|
4960 |
|
|
|
4961 |
|
|
obstack_xml_printf (
|
4962 |
|
|
&obstack,
|
4963 |
|
|
"<item>"
|
4964 |
|
|
"<column name=\"Type\">processes</column>"
|
4965 |
|
|
"<column name=\"Description\">Listing of all processes</column>"
|
4966 |
|
|
"</item>");
|
4967 |
|
|
|
4968 |
|
|
obstack_grow_str0 (&obstack, "</osdata>\n");
|
4969 |
|
|
buf = obstack_finish (&obstack);
|
4970 |
|
|
len_avail = strlen (buf);
|
4971 |
|
|
}
|
4972 |
|
|
|
4973 |
|
|
if (offset >= len_avail)
|
4974 |
|
|
{
|
4975 |
|
|
/* Done. Get rid of the obstack. */
|
4976 |
|
|
obstack_free (&obstack, NULL);
|
4977 |
|
|
buf = NULL;
|
4978 |
|
|
len_avail = 0;
|
4979 |
|
|
return 0;
|
4980 |
|
|
}
|
4981 |
|
|
|
4982 |
|
|
if (len > len_avail - offset)
|
4983 |
|
|
len = len_avail - offset;
|
4984 |
|
|
memcpy (readbuf, buf + offset, len);
|
4985 |
|
|
|
4986 |
|
|
return len;
|
4987 |
|
|
}
|
4988 |
|
|
|
4989 |
|
|
if (strcmp (annex, "processes") != 0)
|
4990 |
|
|
return 0;
|
4991 |
|
|
|
4992 |
|
|
gdb_assert (readbuf && !writebuf);
|
4993 |
|
|
|
4994 |
|
|
if (offset == 0)
|
4995 |
|
|
{
|
4996 |
|
|
if (len_avail != -1 && len_avail != 0)
|
4997 |
|
|
obstack_free (&obstack, NULL);
|
4998 |
|
|
len_avail = 0;
|
4999 |
|
|
buf = NULL;
|
5000 |
|
|
obstack_init (&obstack);
|
5001 |
|
|
obstack_grow_str (&obstack, "<osdata type=\"processes\">\n");
|
5002 |
|
|
|
5003 |
|
|
dirp = opendir ("/proc");
|
5004 |
|
|
if (dirp)
|
5005 |
|
|
{
|
5006 |
|
|
struct dirent *dp;
|
5007 |
|
|
|
5008 |
|
|
while ((dp = readdir (dirp)) != NULL)
|
5009 |
|
|
{
|
5010 |
|
|
struct stat statbuf;
|
5011 |
|
|
char procentry[sizeof ("/proc/4294967295")];
|
5012 |
|
|
|
5013 |
|
|
if (!isdigit (dp->d_name[0])
|
5014 |
|
|
|| NAMELEN (dp) > sizeof ("4294967295") - 1)
|
5015 |
|
|
continue;
|
5016 |
|
|
|
5017 |
|
|
sprintf (procentry, "/proc/%s", dp->d_name);
|
5018 |
|
|
if (stat (procentry, &statbuf) == 0
|
5019 |
|
|
&& S_ISDIR (statbuf.st_mode))
|
5020 |
|
|
{
|
5021 |
|
|
char *pathname;
|
5022 |
|
|
FILE *f;
|
5023 |
|
|
char cmd[MAXPATHLEN + 1];
|
5024 |
|
|
struct passwd *entry;
|
5025 |
|
|
|
5026 |
|
|
pathname = xstrprintf ("/proc/%s/cmdline", dp->d_name);
|
5027 |
|
|
entry = getpwuid (statbuf.st_uid);
|
5028 |
|
|
|
5029 |
|
|
if ((f = fopen (pathname, "r")) != NULL)
|
5030 |
|
|
{
|
5031 |
|
|
size_t len = fread (cmd, 1, sizeof (cmd) - 1, f);
|
5032 |
|
|
|
5033 |
|
|
if (len > 0)
|
5034 |
|
|
{
|
5035 |
|
|
int i;
|
5036 |
|
|
|
5037 |
|
|
for (i = 0; i < len; i++)
|
5038 |
|
|
if (cmd[i] == '\0')
|
5039 |
|
|
cmd[i] = ' ';
|
5040 |
|
|
cmd[len] = '\0';
|
5041 |
|
|
|
5042 |
|
|
obstack_xml_printf (
|
5043 |
|
|
&obstack,
|
5044 |
|
|
"<item>"
|
5045 |
|
|
"<column name=\"pid\">%s</column>"
|
5046 |
|
|
"<column name=\"user\">%s</column>"
|
5047 |
|
|
"<column name=\"command\">%s</column>"
|
5048 |
|
|
"</item>",
|
5049 |
|
|
dp->d_name,
|
5050 |
|
|
entry ? entry->pw_name : "?",
|
5051 |
|
|
cmd);
|
5052 |
|
|
}
|
5053 |
|
|
fclose (f);
|
5054 |
|
|
}
|
5055 |
|
|
|
5056 |
|
|
xfree (pathname);
|
5057 |
|
|
}
|
5058 |
|
|
}
|
5059 |
|
|
|
5060 |
|
|
closedir (dirp);
|
5061 |
|
|
}
|
5062 |
|
|
|
5063 |
|
|
obstack_grow_str0 (&obstack, "</osdata>\n");
|
5064 |
|
|
buf = obstack_finish (&obstack);
|
5065 |
|
|
len_avail = strlen (buf);
|
5066 |
|
|
}
|
5067 |
|
|
|
5068 |
|
|
if (offset >= len_avail)
|
5069 |
|
|
{
|
5070 |
|
|
/* Done. Get rid of the obstack. */
|
5071 |
|
|
obstack_free (&obstack, NULL);
|
5072 |
|
|
buf = NULL;
|
5073 |
|
|
len_avail = 0;
|
5074 |
|
|
return 0;
|
5075 |
|
|
}
|
5076 |
|
|
|
5077 |
|
|
if (len > len_avail - offset)
|
5078 |
|
|
len = len_avail - offset;
|
5079 |
|
|
memcpy (readbuf, buf + offset, len);
|
5080 |
|
|
|
5081 |
|
|
return len;
|
5082 |
|
|
}
|
5083 |
|
|
|
5084 |
|
|
static LONGEST
|
5085 |
|
|
linux_xfer_partial (struct target_ops *ops, enum target_object object,
|
5086 |
|
|
const char *annex, gdb_byte *readbuf,
|
5087 |
|
|
const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
|
5088 |
|
|
{
|
5089 |
|
|
LONGEST xfer;
|
5090 |
|
|
|
5091 |
|
|
if (object == TARGET_OBJECT_AUXV)
|
5092 |
|
|
return memory_xfer_auxv (ops, object, annex, readbuf, writebuf,
|
5093 |
|
|
offset, len);
|
5094 |
|
|
|
5095 |
|
|
if (object == TARGET_OBJECT_OSDATA)
|
5096 |
|
|
return linux_nat_xfer_osdata (ops, object, annex, readbuf, writebuf,
|
5097 |
|
|
offset, len);
|
5098 |
|
|
|
5099 |
|
|
if (object == TARGET_OBJECT_SPU)
|
5100 |
|
|
return linux_proc_xfer_spu (ops, object, annex, readbuf, writebuf,
|
5101 |
|
|
offset, len);
|
5102 |
|
|
|
5103 |
|
|
/* GDB calculates all the addresses in possibly larget width of the address.
|
5104 |
|
|
Address width needs to be masked before its final use - either by
|
5105 |
|
|
linux_proc_xfer_partial or inf_ptrace_xfer_partial.
|
5106 |
|
|
|
5107 |
|
|
Compare ADDR_BIT first to avoid a compiler warning on shift overflow. */
|
5108 |
|
|
|
5109 |
|
|
if (object == TARGET_OBJECT_MEMORY)
|
5110 |
|
|
{
|
5111 |
|
|
int addr_bit = gdbarch_addr_bit (target_gdbarch);
|
5112 |
|
|
|
5113 |
|
|
if (addr_bit < (sizeof (ULONGEST) * HOST_CHAR_BIT))
|
5114 |
|
|
offset &= ((ULONGEST) 1 << addr_bit) - 1;
|
5115 |
|
|
}
|
5116 |
|
|
|
5117 |
|
|
xfer = linux_proc_xfer_partial (ops, object, annex, readbuf, writebuf,
|
5118 |
|
|
offset, len);
|
5119 |
|
|
if (xfer != 0)
|
5120 |
|
|
return xfer;
|
5121 |
|
|
|
5122 |
|
|
return super_xfer_partial (ops, object, annex, readbuf, writebuf,
|
5123 |
|
|
offset, len);
|
5124 |
|
|
}
|
5125 |
|
|
|
5126 |
|
|
/* Create a prototype generic GNU/Linux target. The client can override
|
5127 |
|
|
it with local methods. */
|
5128 |
|
|
|
5129 |
|
|
static void
|
5130 |
|
|
linux_target_install_ops (struct target_ops *t)
|
5131 |
|
|
{
|
5132 |
|
|
t->to_insert_fork_catchpoint = linux_child_insert_fork_catchpoint;
|
5133 |
|
|
t->to_insert_vfork_catchpoint = linux_child_insert_vfork_catchpoint;
|
5134 |
|
|
t->to_insert_exec_catchpoint = linux_child_insert_exec_catchpoint;
|
5135 |
|
|
t->to_set_syscall_catchpoint = linux_child_set_syscall_catchpoint;
|
5136 |
|
|
t->to_pid_to_exec_file = linux_child_pid_to_exec_file;
|
5137 |
|
|
t->to_post_startup_inferior = linux_child_post_startup_inferior;
|
5138 |
|
|
t->to_post_attach = linux_child_post_attach;
|
5139 |
|
|
t->to_follow_fork = linux_child_follow_fork;
|
5140 |
|
|
t->to_find_memory_regions = linux_nat_find_memory_regions;
|
5141 |
|
|
t->to_make_corefile_notes = linux_nat_make_corefile_notes;
|
5142 |
|
|
|
5143 |
|
|
super_xfer_partial = t->to_xfer_partial;
|
5144 |
|
|
t->to_xfer_partial = linux_xfer_partial;
|
5145 |
|
|
}
|
5146 |
|
|
|
5147 |
|
|
struct target_ops *
|
5148 |
|
|
linux_target (void)
|
5149 |
|
|
{
|
5150 |
|
|
struct target_ops *t;
|
5151 |
|
|
|
5152 |
|
|
t = inf_ptrace_target ();
|
5153 |
|
|
linux_target_install_ops (t);
|
5154 |
|
|
|
5155 |
|
|
return t;
|
5156 |
|
|
}
|
5157 |
|
|
|
5158 |
|
|
struct target_ops *
|
5159 |
|
|
linux_trad_target (CORE_ADDR (*register_u_offset)(struct gdbarch *, int, int))
|
5160 |
|
|
{
|
5161 |
|
|
struct target_ops *t;
|
5162 |
|
|
|
5163 |
|
|
t = inf_ptrace_trad_target (register_u_offset);
|
5164 |
|
|
linux_target_install_ops (t);
|
5165 |
|
|
|
5166 |
|
|
return t;
|
5167 |
|
|
}
|
5168 |
|
|
|
5169 |
|
|
/* target_is_async_p implementation. */
|
5170 |
|
|
|
5171 |
|
|
static int
|
5172 |
|
|
linux_nat_is_async_p (void)
|
5173 |
|
|
{
|
5174 |
|
|
/* NOTE: palves 2008-03-21: We're only async when the user requests
|
5175 |
|
|
it explicitly with the "set target-async" command.
|
5176 |
|
|
Someday, linux will always be async. */
|
5177 |
|
|
if (!target_async_permitted)
|
5178 |
|
|
return 0;
|
5179 |
|
|
|
5180 |
|
|
/* See target.h/target_async_mask. */
|
5181 |
|
|
return linux_nat_async_mask_value;
|
5182 |
|
|
}
|
5183 |
|
|
|
5184 |
|
|
/* target_can_async_p implementation. */
|
5185 |
|
|
|
5186 |
|
|
static int
|
5187 |
|
|
linux_nat_can_async_p (void)
|
5188 |
|
|
{
|
5189 |
|
|
/* NOTE: palves 2008-03-21: We're only async when the user requests
|
5190 |
|
|
it explicitly with the "set target-async" command.
|
5191 |
|
|
Someday, linux will always be async. */
|
5192 |
|
|
if (!target_async_permitted)
|
5193 |
|
|
return 0;
|
5194 |
|
|
|
5195 |
|
|
/* See target.h/target_async_mask. */
|
5196 |
|
|
return linux_nat_async_mask_value;
|
5197 |
|
|
}
|
5198 |
|
|
|
5199 |
|
|
static int
|
5200 |
|
|
linux_nat_supports_non_stop (void)
|
5201 |
|
|
{
|
5202 |
|
|
return 1;
|
5203 |
|
|
}
|
5204 |
|
|
|
5205 |
|
|
/* True if we want to support multi-process. To be removed when GDB
|
5206 |
|
|
supports multi-exec. */
|
5207 |
|
|
|
5208 |
|
|
int linux_multi_process = 1;
|
5209 |
|
|
|
5210 |
|
|
static int
|
5211 |
|
|
linux_nat_supports_multi_process (void)
|
5212 |
|
|
{
|
5213 |
|
|
return linux_multi_process;
|
5214 |
|
|
}
|
5215 |
|
|
|
5216 |
|
|
/* target_async_mask implementation. */
|
5217 |
|
|
|
5218 |
|
|
static int
|
5219 |
|
|
linux_nat_async_mask (int new_mask)
|
5220 |
|
|
{
|
5221 |
|
|
int curr_mask = linux_nat_async_mask_value;
|
5222 |
|
|
|
5223 |
|
|
if (curr_mask != new_mask)
|
5224 |
|
|
{
|
5225 |
|
|
if (new_mask == 0)
|
5226 |
|
|
{
|
5227 |
|
|
linux_nat_async (NULL, 0);
|
5228 |
|
|
linux_nat_async_mask_value = new_mask;
|
5229 |
|
|
}
|
5230 |
|
|
else
|
5231 |
|
|
{
|
5232 |
|
|
linux_nat_async_mask_value = new_mask;
|
5233 |
|
|
|
5234 |
|
|
/* If we're going out of async-mask in all-stop, then the
|
5235 |
|
|
inferior is stopped. The next resume will call
|
5236 |
|
|
target_async. In non-stop, the target event source
|
5237 |
|
|
should be always registered in the event loop. Do so
|
5238 |
|
|
now. */
|
5239 |
|
|
if (non_stop)
|
5240 |
|
|
linux_nat_async (inferior_event_handler, 0);
|
5241 |
|
|
}
|
5242 |
|
|
}
|
5243 |
|
|
|
5244 |
|
|
return curr_mask;
|
5245 |
|
|
}
|
5246 |
|
|
|
5247 |
|
|
static int async_terminal_is_ours = 1;
|
5248 |
|
|
|
5249 |
|
|
/* target_terminal_inferior implementation. */
|
5250 |
|
|
|
5251 |
|
|
static void
|
5252 |
|
|
linux_nat_terminal_inferior (void)
|
5253 |
|
|
{
|
5254 |
|
|
if (!target_is_async_p ())
|
5255 |
|
|
{
|
5256 |
|
|
/* Async mode is disabled. */
|
5257 |
|
|
terminal_inferior ();
|
5258 |
|
|
return;
|
5259 |
|
|
}
|
5260 |
|
|
|
5261 |
|
|
terminal_inferior ();
|
5262 |
|
|
|
5263 |
|
|
/* Calls to target_terminal_*() are meant to be idempotent. */
|
5264 |
|
|
if (!async_terminal_is_ours)
|
5265 |
|
|
return;
|
5266 |
|
|
|
5267 |
|
|
delete_file_handler (input_fd);
|
5268 |
|
|
async_terminal_is_ours = 0;
|
5269 |
|
|
set_sigint_trap ();
|
5270 |
|
|
}
|
5271 |
|
|
|
5272 |
|
|
/* target_terminal_ours implementation. */
|
5273 |
|
|
|
5274 |
|
|
static void
|
5275 |
|
|
linux_nat_terminal_ours (void)
|
5276 |
|
|
{
|
5277 |
|
|
if (!target_is_async_p ())
|
5278 |
|
|
{
|
5279 |
|
|
/* Async mode is disabled. */
|
5280 |
|
|
terminal_ours ();
|
5281 |
|
|
return;
|
5282 |
|
|
}
|
5283 |
|
|
|
5284 |
|
|
/* GDB should never give the terminal to the inferior if the
|
5285 |
|
|
inferior is running in the background (run&, continue&, etc.),
|
5286 |
|
|
but claiming it sure should. */
|
5287 |
|
|
terminal_ours ();
|
5288 |
|
|
|
5289 |
|
|
if (async_terminal_is_ours)
|
5290 |
|
|
return;
|
5291 |
|
|
|
5292 |
|
|
clear_sigint_trap ();
|
5293 |
|
|
add_file_handler (input_fd, stdin_event_handler, 0);
|
5294 |
|
|
async_terminal_is_ours = 1;
|
5295 |
|
|
}
|
5296 |
|
|
|
5297 |
|
|
static void (*async_client_callback) (enum inferior_event_type event_type,
|
5298 |
|
|
void *context);
|
5299 |
|
|
static void *async_client_context;
|
5300 |
|
|
|
5301 |
|
|
/* SIGCHLD handler that serves two purposes: In non-stop/async mode,
|
5302 |
|
|
so we notice when any child changes state, and notify the
|
5303 |
|
|
event-loop; it allows us to use sigsuspend in linux_nat_wait_1
|
5304 |
|
|
above to wait for the arrival of a SIGCHLD. */
|
5305 |
|
|
|
5306 |
|
|
static void
|
5307 |
|
|
sigchld_handler (int signo)
|
5308 |
|
|
{
|
5309 |
|
|
int old_errno = errno;
|
5310 |
|
|
|
5311 |
|
|
if (debug_linux_nat_async)
|
5312 |
|
|
fprintf_unfiltered (gdb_stdlog, "sigchld\n");
|
5313 |
|
|
|
5314 |
|
|
if (signo == SIGCHLD
|
5315 |
|
|
&& linux_nat_event_pipe[0] != -1)
|
5316 |
|
|
async_file_mark (); /* Let the event loop know that there are
|
5317 |
|
|
events to handle. */
|
5318 |
|
|
|
5319 |
|
|
errno = old_errno;
|
5320 |
|
|
}
|
5321 |
|
|
|
5322 |
|
|
/* Callback registered with the target events file descriptor. */
|
5323 |
|
|
|
5324 |
|
|
static void
|
5325 |
|
|
handle_target_event (int error, gdb_client_data client_data)
|
5326 |
|
|
{
|
5327 |
|
|
(*async_client_callback) (INF_REG_EVENT, async_client_context);
|
5328 |
|
|
}
|
5329 |
|
|
|
5330 |
|
|
/* Create/destroy the target events pipe. Returns previous state. */
|
5331 |
|
|
|
5332 |
|
|
static int
|
5333 |
|
|
linux_async_pipe (int enable)
|
5334 |
|
|
{
|
5335 |
|
|
int previous = (linux_nat_event_pipe[0] != -1);
|
5336 |
|
|
|
5337 |
|
|
if (previous != enable)
|
5338 |
|
|
{
|
5339 |
|
|
sigset_t prev_mask;
|
5340 |
|
|
|
5341 |
|
|
block_child_signals (&prev_mask);
|
5342 |
|
|
|
5343 |
|
|
if (enable)
|
5344 |
|
|
{
|
5345 |
|
|
if (pipe (linux_nat_event_pipe) == -1)
|
5346 |
|
|
internal_error (__FILE__, __LINE__,
|
5347 |
|
|
"creating event pipe failed.");
|
5348 |
|
|
|
5349 |
|
|
fcntl (linux_nat_event_pipe[0], F_SETFL, O_NONBLOCK);
|
5350 |
|
|
fcntl (linux_nat_event_pipe[1], F_SETFL, O_NONBLOCK);
|
5351 |
|
|
}
|
5352 |
|
|
else
|
5353 |
|
|
{
|
5354 |
|
|
close (linux_nat_event_pipe[0]);
|
5355 |
|
|
close (linux_nat_event_pipe[1]);
|
5356 |
|
|
linux_nat_event_pipe[0] = -1;
|
5357 |
|
|
linux_nat_event_pipe[1] = -1;
|
5358 |
|
|
}
|
5359 |
|
|
|
5360 |
|
|
restore_child_signals_mask (&prev_mask);
|
5361 |
|
|
}
|
5362 |
|
|
|
5363 |
|
|
return previous;
|
5364 |
|
|
}
|
5365 |
|
|
|
5366 |
|
|
/* target_async implementation. */
|
5367 |
|
|
|
5368 |
|
|
static void
|
5369 |
|
|
linux_nat_async (void (*callback) (enum inferior_event_type event_type,
|
5370 |
|
|
void *context), void *context)
|
5371 |
|
|
{
|
5372 |
|
|
if (linux_nat_async_mask_value == 0 || !target_async_permitted)
|
5373 |
|
|
internal_error (__FILE__, __LINE__,
|
5374 |
|
|
"Calling target_async when async is masked");
|
5375 |
|
|
|
5376 |
|
|
if (callback != NULL)
|
5377 |
|
|
{
|
5378 |
|
|
async_client_callback = callback;
|
5379 |
|
|
async_client_context = context;
|
5380 |
|
|
if (!linux_async_pipe (1))
|
5381 |
|
|
{
|
5382 |
|
|
add_file_handler (linux_nat_event_pipe[0],
|
5383 |
|
|
handle_target_event, NULL);
|
5384 |
|
|
/* There may be pending events to handle. Tell the event loop
|
5385 |
|
|
to poll them. */
|
5386 |
|
|
async_file_mark ();
|
5387 |
|
|
}
|
5388 |
|
|
}
|
5389 |
|
|
else
|
5390 |
|
|
{
|
5391 |
|
|
async_client_callback = callback;
|
5392 |
|
|
async_client_context = context;
|
5393 |
|
|
delete_file_handler (linux_nat_event_pipe[0]);
|
5394 |
|
|
linux_async_pipe (0);
|
5395 |
|
|
}
|
5396 |
|
|
return;
|
5397 |
|
|
}
|
5398 |
|
|
|
5399 |
|
|
/* Stop an LWP, and push a TARGET_SIGNAL_0 stop status if no other
|
5400 |
|
|
event came out. */
|
5401 |
|
|
|
5402 |
|
|
static int
|
5403 |
|
|
linux_nat_stop_lwp (struct lwp_info *lwp, void *data)
|
5404 |
|
|
{
|
5405 |
|
|
if (!lwp->stopped)
|
5406 |
|
|
{
|
5407 |
|
|
ptid_t ptid = lwp->ptid;
|
5408 |
|
|
|
5409 |
|
|
if (debug_linux_nat)
|
5410 |
|
|
fprintf_unfiltered (gdb_stdlog,
|
5411 |
|
|
"LNSL: running -> suspending %s\n",
|
5412 |
|
|
target_pid_to_str (lwp->ptid));
|
5413 |
|
|
|
5414 |
|
|
|
5415 |
|
|
stop_callback (lwp, NULL);
|
5416 |
|
|
stop_wait_callback (lwp, NULL);
|
5417 |
|
|
|
5418 |
|
|
/* If the lwp exits while we try to stop it, there's nothing
|
5419 |
|
|
else to do. */
|
5420 |
|
|
lwp = find_lwp_pid (ptid);
|
5421 |
|
|
if (lwp == NULL)
|
5422 |
|
|
return 0;
|
5423 |
|
|
|
5424 |
|
|
/* If we didn't collect any signal other than SIGSTOP while
|
5425 |
|
|
stopping the LWP, push a SIGNAL_0 event. In either case, the
|
5426 |
|
|
event-loop will end up calling target_wait which will collect
|
5427 |
|
|
these. */
|
5428 |
|
|
if (lwp->status == 0)
|
5429 |
|
|
lwp->status = W_STOPCODE (0);
|
5430 |
|
|
async_file_mark ();
|
5431 |
|
|
}
|
5432 |
|
|
else
|
5433 |
|
|
{
|
5434 |
|
|
/* Already known to be stopped; do nothing. */
|
5435 |
|
|
|
5436 |
|
|
if (debug_linux_nat)
|
5437 |
|
|
{
|
5438 |
|
|
if (find_thread_ptid (lwp->ptid)->stop_requested)
|
5439 |
|
|
fprintf_unfiltered (gdb_stdlog, "\
|
5440 |
|
|
LNSL: already stopped/stop_requested %s\n",
|
5441 |
|
|
target_pid_to_str (lwp->ptid));
|
5442 |
|
|
else
|
5443 |
|
|
fprintf_unfiltered (gdb_stdlog, "\
|
5444 |
|
|
LNSL: already stopped/no stop_requested yet %s\n",
|
5445 |
|
|
target_pid_to_str (lwp->ptid));
|
5446 |
|
|
}
|
5447 |
|
|
}
|
5448 |
|
|
return 0;
|
5449 |
|
|
}
|
5450 |
|
|
|
5451 |
|
|
static void
|
5452 |
|
|
linux_nat_stop (ptid_t ptid)
|
5453 |
|
|
{
|
5454 |
|
|
if (non_stop)
|
5455 |
|
|
iterate_over_lwps (ptid, linux_nat_stop_lwp, NULL);
|
5456 |
|
|
else
|
5457 |
|
|
linux_ops->to_stop (ptid);
|
5458 |
|
|
}
|
5459 |
|
|
|
5460 |
|
|
static void
|
5461 |
|
|
linux_nat_close (int quitting)
|
5462 |
|
|
{
|
5463 |
|
|
/* Unregister from the event loop. */
|
5464 |
|
|
if (target_is_async_p ())
|
5465 |
|
|
target_async (NULL, 0);
|
5466 |
|
|
|
5467 |
|
|
/* Reset the async_masking. */
|
5468 |
|
|
linux_nat_async_mask_value = 1;
|
5469 |
|
|
|
5470 |
|
|
if (linux_ops->to_close)
|
5471 |
|
|
linux_ops->to_close (quitting);
|
5472 |
|
|
}
|
5473 |
|
|
|
5474 |
|
|
/* When requests are passed down from the linux-nat layer to the
|
5475 |
|
|
single threaded inf-ptrace layer, ptids of (lwpid,0,0) form are
|
5476 |
|
|
used. The address space pointer is stored in the inferior object,
|
5477 |
|
|
but the common code that is passed such ptid can't tell whether
|
5478 |
|
|
lwpid is a "main" process id or not (it assumes so). We reverse
|
5479 |
|
|
look up the "main" process id from the lwp here. */
|
5480 |
|
|
|
5481 |
|
|
struct address_space *
|
5482 |
|
|
linux_nat_thread_address_space (struct target_ops *t, ptid_t ptid)
|
5483 |
|
|
{
|
5484 |
|
|
struct lwp_info *lwp;
|
5485 |
|
|
struct inferior *inf;
|
5486 |
|
|
int pid;
|
5487 |
|
|
|
5488 |
|
|
pid = GET_LWP (ptid);
|
5489 |
|
|
if (GET_LWP (ptid) == 0)
|
5490 |
|
|
{
|
5491 |
|
|
/* An (lwpid,0,0) ptid. Look up the lwp object to get at the
|
5492 |
|
|
tgid. */
|
5493 |
|
|
lwp = find_lwp_pid (ptid);
|
5494 |
|
|
pid = GET_PID (lwp->ptid);
|
5495 |
|
|
}
|
5496 |
|
|
else
|
5497 |
|
|
{
|
5498 |
|
|
/* A (pid,lwpid,0) ptid. */
|
5499 |
|
|
pid = GET_PID (ptid);
|
5500 |
|
|
}
|
5501 |
|
|
|
5502 |
|
|
inf = find_inferior_pid (pid);
|
5503 |
|
|
gdb_assert (inf != NULL);
|
5504 |
|
|
return inf->aspace;
|
5505 |
|
|
}
|
5506 |
|
|
|
5507 |
|
|
int
|
5508 |
|
|
linux_nat_core_of_thread_1 (ptid_t ptid)
|
5509 |
|
|
{
|
5510 |
|
|
struct cleanup *back_to;
|
5511 |
|
|
char *filename;
|
5512 |
|
|
FILE *f;
|
5513 |
|
|
char *content = NULL;
|
5514 |
|
|
char *p;
|
5515 |
|
|
char *ts = 0;
|
5516 |
|
|
int content_read = 0;
|
5517 |
|
|
int i;
|
5518 |
|
|
int core;
|
5519 |
|
|
|
5520 |
|
|
filename = xstrprintf ("/proc/%d/task/%ld/stat",
|
5521 |
|
|
GET_PID (ptid), GET_LWP (ptid));
|
5522 |
|
|
back_to = make_cleanup (xfree, filename);
|
5523 |
|
|
|
5524 |
|
|
f = fopen (filename, "r");
|
5525 |
|
|
if (!f)
|
5526 |
|
|
{
|
5527 |
|
|
do_cleanups (back_to);
|
5528 |
|
|
return -1;
|
5529 |
|
|
}
|
5530 |
|
|
|
5531 |
|
|
make_cleanup_fclose (f);
|
5532 |
|
|
|
5533 |
|
|
for (;;)
|
5534 |
|
|
{
|
5535 |
|
|
int n;
|
5536 |
|
|
|
5537 |
|
|
content = xrealloc (content, content_read + 1024);
|
5538 |
|
|
n = fread (content + content_read, 1, 1024, f);
|
5539 |
|
|
content_read += n;
|
5540 |
|
|
if (n < 1024)
|
5541 |
|
|
{
|
5542 |
|
|
content[content_read] = '\0';
|
5543 |
|
|
break;
|
5544 |
|
|
}
|
5545 |
|
|
}
|
5546 |
|
|
|
5547 |
|
|
make_cleanup (xfree, content);
|
5548 |
|
|
|
5549 |
|
|
p = strchr (content, '(');
|
5550 |
|
|
|
5551 |
|
|
/* Skip ")". */
|
5552 |
|
|
if (p != NULL)
|
5553 |
|
|
p = strchr (p, ')');
|
5554 |
|
|
if (p != NULL)
|
5555 |
|
|
p++;
|
5556 |
|
|
|
5557 |
|
|
/* If the first field after program name has index 0, then core number is
|
5558 |
|
|
the field with index 36. There's no constant for that anywhere. */
|
5559 |
|
|
if (p != NULL)
|
5560 |
|
|
p = strtok_r (p, " ", &ts);
|
5561 |
|
|
for (i = 0; p != NULL && i != 36; ++i)
|
5562 |
|
|
p = strtok_r (NULL, " ", &ts);
|
5563 |
|
|
|
5564 |
|
|
if (p == NULL || sscanf (p, "%d", &core) == 0)
|
5565 |
|
|
core = -1;
|
5566 |
|
|
|
5567 |
|
|
do_cleanups (back_to);
|
5568 |
|
|
|
5569 |
|
|
return core;
|
5570 |
|
|
}
|
5571 |
|
|
|
5572 |
|
|
/* Return the cached value of the processor core for thread PTID. */
|
5573 |
|
|
|
5574 |
|
|
int
|
5575 |
|
|
linux_nat_core_of_thread (struct target_ops *ops, ptid_t ptid)
|
5576 |
|
|
{
|
5577 |
|
|
struct lwp_info *info = find_lwp_pid (ptid);
|
5578 |
|
|
|
5579 |
|
|
if (info)
|
5580 |
|
|
return info->core;
|
5581 |
|
|
return -1;
|
5582 |
|
|
}
|
5583 |
|
|
|
5584 |
|
|
void
|
5585 |
|
|
linux_nat_add_target (struct target_ops *t)
|
5586 |
|
|
{
|
5587 |
|
|
/* Save the provided single-threaded target. We save this in a separate
|
5588 |
|
|
variable because another target we've inherited from (e.g. inf-ptrace)
|
5589 |
|
|
may have saved a pointer to T; we want to use it for the final
|
5590 |
|
|
process stratum target. */
|
5591 |
|
|
linux_ops_saved = *t;
|
5592 |
|
|
linux_ops = &linux_ops_saved;
|
5593 |
|
|
|
5594 |
|
|
/* Override some methods for multithreading. */
|
5595 |
|
|
t->to_create_inferior = linux_nat_create_inferior;
|
5596 |
|
|
t->to_attach = linux_nat_attach;
|
5597 |
|
|
t->to_detach = linux_nat_detach;
|
5598 |
|
|
t->to_resume = linux_nat_resume;
|
5599 |
|
|
t->to_wait = linux_nat_wait;
|
5600 |
|
|
t->to_xfer_partial = linux_nat_xfer_partial;
|
5601 |
|
|
t->to_kill = linux_nat_kill;
|
5602 |
|
|
t->to_mourn_inferior = linux_nat_mourn_inferior;
|
5603 |
|
|
t->to_thread_alive = linux_nat_thread_alive;
|
5604 |
|
|
t->to_pid_to_str = linux_nat_pid_to_str;
|
5605 |
|
|
t->to_has_thread_control = tc_schedlock;
|
5606 |
|
|
t->to_thread_address_space = linux_nat_thread_address_space;
|
5607 |
|
|
t->to_stopped_by_watchpoint = linux_nat_stopped_by_watchpoint;
|
5608 |
|
|
t->to_stopped_data_address = linux_nat_stopped_data_address;
|
5609 |
|
|
|
5610 |
|
|
t->to_can_async_p = linux_nat_can_async_p;
|
5611 |
|
|
t->to_is_async_p = linux_nat_is_async_p;
|
5612 |
|
|
t->to_supports_non_stop = linux_nat_supports_non_stop;
|
5613 |
|
|
t->to_async = linux_nat_async;
|
5614 |
|
|
t->to_async_mask = linux_nat_async_mask;
|
5615 |
|
|
t->to_terminal_inferior = linux_nat_terminal_inferior;
|
5616 |
|
|
t->to_terminal_ours = linux_nat_terminal_ours;
|
5617 |
|
|
t->to_close = linux_nat_close;
|
5618 |
|
|
|
5619 |
|
|
/* Methods for non-stop support. */
|
5620 |
|
|
t->to_stop = linux_nat_stop;
|
5621 |
|
|
|
5622 |
|
|
t->to_supports_multi_process = linux_nat_supports_multi_process;
|
5623 |
|
|
|
5624 |
|
|
t->to_core_of_thread = linux_nat_core_of_thread;
|
5625 |
|
|
|
5626 |
|
|
/* We don't change the stratum; this target will sit at
|
5627 |
|
|
process_stratum and thread_db will set at thread_stratum. This
|
5628 |
|
|
is a little strange, since this is a multi-threaded-capable
|
5629 |
|
|
target, but we want to be on the stack below thread_db, and we
|
5630 |
|
|
also want to be used for single-threaded processes. */
|
5631 |
|
|
|
5632 |
|
|
add_target (t);
|
5633 |
|
|
}
|
5634 |
|
|
|
5635 |
|
|
/* Register a method to call whenever a new thread is attached. */
|
5636 |
|
|
void
|
5637 |
|
|
linux_nat_set_new_thread (struct target_ops *t, void (*new_thread) (ptid_t))
|
5638 |
|
|
{
|
5639 |
|
|
/* Save the pointer. We only support a single registered instance
|
5640 |
|
|
of the GNU/Linux native target, so we do not need to map this to
|
5641 |
|
|
T. */
|
5642 |
|
|
linux_nat_new_thread = new_thread;
|
5643 |
|
|
}
|
5644 |
|
|
|
5645 |
|
|
/* Register a method that converts a siginfo object between the layout
|
5646 |
|
|
that ptrace returns, and the layout in the architecture of the
|
5647 |
|
|
inferior. */
|
5648 |
|
|
void
|
5649 |
|
|
linux_nat_set_siginfo_fixup (struct target_ops *t,
|
5650 |
|
|
int (*siginfo_fixup) (struct siginfo *,
|
5651 |
|
|
gdb_byte *,
|
5652 |
|
|
int))
|
5653 |
|
|
{
|
5654 |
|
|
/* Save the pointer. */
|
5655 |
|
|
linux_nat_siginfo_fixup = siginfo_fixup;
|
5656 |
|
|
}
|
5657 |
|
|
|
5658 |
|
|
/* Return the saved siginfo associated with PTID. */
|
5659 |
|
|
struct siginfo *
|
5660 |
|
|
linux_nat_get_siginfo (ptid_t ptid)
|
5661 |
|
|
{
|
5662 |
|
|
struct lwp_info *lp = find_lwp_pid (ptid);
|
5663 |
|
|
|
5664 |
|
|
gdb_assert (lp != NULL);
|
5665 |
|
|
|
5666 |
|
|
return &lp->siginfo;
|
5667 |
|
|
}
|
5668 |
|
|
|
5669 |
|
|
/* Provide a prototype to silence -Wmissing-prototypes. */
|
5670 |
|
|
extern initialize_file_ftype _initialize_linux_nat;
|
5671 |
|
|
|
5672 |
|
|
void
|
5673 |
|
|
_initialize_linux_nat (void)
|
5674 |
|
|
{
|
5675 |
|
|
add_info ("proc", linux_nat_info_proc_cmd, _("\
|
5676 |
|
|
Show /proc process information about any running process.\n\
|
5677 |
|
|
Specify any process id, or use the program being debugged by default.\n\
|
5678 |
|
|
Specify any of the following keywords for detailed info:\n\
|
5679 |
|
|
mappings -- list of mapped memory regions.\n\
|
5680 |
|
|
stat -- list a bunch of random process info.\n\
|
5681 |
|
|
status -- list a different bunch of random process info.\n\
|
5682 |
|
|
all -- list all available /proc info."));
|
5683 |
|
|
|
5684 |
|
|
add_setshow_zinteger_cmd ("lin-lwp", class_maintenance,
|
5685 |
|
|
&debug_linux_nat, _("\
|
5686 |
|
|
Set debugging of GNU/Linux lwp module."), _("\
|
5687 |
|
|
Show debugging of GNU/Linux lwp module."), _("\
|
5688 |
|
|
Enables printf debugging output."),
|
5689 |
|
|
NULL,
|
5690 |
|
|
show_debug_linux_nat,
|
5691 |
|
|
&setdebuglist, &showdebuglist);
|
5692 |
|
|
|
5693 |
|
|
add_setshow_zinteger_cmd ("lin-lwp-async", class_maintenance,
|
5694 |
|
|
&debug_linux_nat_async, _("\
|
5695 |
|
|
Set debugging of GNU/Linux async lwp module."), _("\
|
5696 |
|
|
Show debugging of GNU/Linux async lwp module."), _("\
|
5697 |
|
|
Enables printf debugging output."),
|
5698 |
|
|
NULL,
|
5699 |
|
|
show_debug_linux_nat_async,
|
5700 |
|
|
&setdebuglist, &showdebuglist);
|
5701 |
|
|
|
5702 |
|
|
/* Save this mask as the default. */
|
5703 |
|
|
sigprocmask (SIG_SETMASK, NULL, &normal_mask);
|
5704 |
|
|
|
5705 |
|
|
/* Install a SIGCHLD handler. */
|
5706 |
|
|
sigchld_action.sa_handler = sigchld_handler;
|
5707 |
|
|
sigemptyset (&sigchld_action.sa_mask);
|
5708 |
|
|
sigchld_action.sa_flags = SA_RESTART;
|
5709 |
|
|
|
5710 |
|
|
/* Make it the default. */
|
5711 |
|
|
sigaction (SIGCHLD, &sigchld_action, NULL);
|
5712 |
|
|
|
5713 |
|
|
/* Make sure we don't block SIGCHLD during a sigsuspend. */
|
5714 |
|
|
sigprocmask (SIG_SETMASK, NULL, &suspend_mask);
|
5715 |
|
|
sigdelset (&suspend_mask, SIGCHLD);
|
5716 |
|
|
|
5717 |
|
|
sigemptyset (&blocked_mask);
|
5718 |
|
|
|
5719 |
|
|
add_setshow_boolean_cmd ("disable-randomization", class_support,
|
5720 |
|
|
&disable_randomization, _("\
|
5721 |
|
|
Set disabling of debuggee's virtual address space randomization."), _("\
|
5722 |
|
|
Show disabling of debuggee's virtual address space randomization."), _("\
|
5723 |
|
|
When this mode is on (which is the default), randomization of the virtual\n\
|
5724 |
|
|
address space is disabled. Standalone programs run with the randomization\n\
|
5725 |
|
|
enabled by default on some platforms."),
|
5726 |
|
|
&set_disable_randomization,
|
5727 |
|
|
&show_disable_randomization,
|
5728 |
|
|
&setlist, &showlist);
|
5729 |
|
|
}
|
5730 |
|
|
|
5731 |
|
|
|
5732 |
|
|
/* FIXME: kettenis/2000-08-26: The stuff on this page is specific to
|
5733 |
|
|
the GNU/Linux Threads library and therefore doesn't really belong
|
5734 |
|
|
here. */
|
5735 |
|
|
|
5736 |
|
|
/* Read variable NAME in the target and return its value if found.
|
5737 |
|
|
Otherwise return zero. It is assumed that the type of the variable
|
5738 |
|
|
is `int'. */
|
5739 |
|
|
|
5740 |
|
|
static int
|
5741 |
|
|
get_signo (const char *name)
|
5742 |
|
|
{
|
5743 |
|
|
struct minimal_symbol *ms;
|
5744 |
|
|
int signo;
|
5745 |
|
|
|
5746 |
|
|
ms = lookup_minimal_symbol (name, NULL, NULL);
|
5747 |
|
|
if (ms == NULL)
|
5748 |
|
|
return 0;
|
5749 |
|
|
|
5750 |
|
|
if (target_read_memory (SYMBOL_VALUE_ADDRESS (ms), (gdb_byte *) &signo,
|
5751 |
|
|
sizeof (signo)) != 0)
|
5752 |
|
|
return 0;
|
5753 |
|
|
|
5754 |
|
|
return signo;
|
5755 |
|
|
}
|
5756 |
|
|
|
5757 |
|
|
/* Return the set of signals used by the threads library in *SET. */
|
5758 |
|
|
|
5759 |
|
|
void
|
5760 |
|
|
lin_thread_get_thread_signals (sigset_t *set)
|
5761 |
|
|
{
|
5762 |
|
|
struct sigaction action;
|
5763 |
|
|
int restart, cancel;
|
5764 |
|
|
|
5765 |
|
|
sigemptyset (&blocked_mask);
|
5766 |
|
|
sigemptyset (set);
|
5767 |
|
|
|
5768 |
|
|
restart = get_signo ("__pthread_sig_restart");
|
5769 |
|
|
cancel = get_signo ("__pthread_sig_cancel");
|
5770 |
|
|
|
5771 |
|
|
/* LinuxThreads normally uses the first two RT signals, but in some legacy
|
5772 |
|
|
cases may use SIGUSR1/SIGUSR2. NPTL always uses RT signals, but does
|
5773 |
|
|
not provide any way for the debugger to query the signal numbers -
|
5774 |
|
|
fortunately they don't change! */
|
5775 |
|
|
|
5776 |
|
|
if (restart == 0)
|
5777 |
|
|
restart = __SIGRTMIN;
|
5778 |
|
|
|
5779 |
|
|
if (cancel == 0)
|
5780 |
|
|
cancel = __SIGRTMIN + 1;
|
5781 |
|
|
|
5782 |
|
|
sigaddset (set, restart);
|
5783 |
|
|
sigaddset (set, cancel);
|
5784 |
|
|
|
5785 |
|
|
/* The GNU/Linux Threads library makes terminating threads send a
|
5786 |
|
|
special "cancel" signal instead of SIGCHLD. Make sure we catch
|
5787 |
|
|
those (to prevent them from terminating GDB itself, which is
|
5788 |
|
|
likely to be their default action) and treat them the same way as
|
5789 |
|
|
SIGCHLD. */
|
5790 |
|
|
|
5791 |
|
|
action.sa_handler = sigchld_handler;
|
5792 |
|
|
sigemptyset (&action.sa_mask);
|
5793 |
|
|
action.sa_flags = SA_RESTART;
|
5794 |
|
|
sigaction (cancel, &action, NULL);
|
5795 |
|
|
|
5796 |
|
|
/* We block the "cancel" signal throughout this code ... */
|
5797 |
|
|
sigaddset (&blocked_mask, cancel);
|
5798 |
|
|
sigprocmask (SIG_BLOCK, &blocked_mask, NULL);
|
5799 |
|
|
|
5800 |
|
|
/* ... except during a sigsuspend. */
|
5801 |
|
|
sigdelset (&suspend_mask, cancel);
|
5802 |
|
|
}
|