1 |
330 |
jeremybenn |
/* Renesas M32C target-dependent code for GDB, the GNU debugger.
|
2 |
|
|
|
3 |
|
|
Copyright 2004, 2005, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
|
4 |
|
|
|
5 |
|
|
This file is part of GDB.
|
6 |
|
|
|
7 |
|
|
This program is free software; you can redistribute it and/or modify
|
8 |
|
|
it under the terms of the GNU General Public License as published by
|
9 |
|
|
the Free Software Foundation; either version 3 of the License, or
|
10 |
|
|
(at your option) any later version.
|
11 |
|
|
|
12 |
|
|
This program is distributed in the hope that it will be useful,
|
13 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
14 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
15 |
|
|
GNU General Public License for more details.
|
16 |
|
|
|
17 |
|
|
You should have received a copy of the GNU General Public License
|
18 |
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
19 |
|
|
|
20 |
|
|
#include "defs.h"
|
21 |
|
|
|
22 |
|
|
#include <stdarg.h>
|
23 |
|
|
|
24 |
|
|
#if defined (HAVE_STRING_H)
|
25 |
|
|
#include <string.h>
|
26 |
|
|
#endif
|
27 |
|
|
|
28 |
|
|
#include "gdb_assert.h"
|
29 |
|
|
#include "elf-bfd.h"
|
30 |
|
|
#include "elf/m32c.h"
|
31 |
|
|
#include "gdb/sim-m32c.h"
|
32 |
|
|
#include "dis-asm.h"
|
33 |
|
|
#include "gdbtypes.h"
|
34 |
|
|
#include "regcache.h"
|
35 |
|
|
#include "arch-utils.h"
|
36 |
|
|
#include "frame.h"
|
37 |
|
|
#include "frame-unwind.h"
|
38 |
|
|
#include "dwarf2-frame.h"
|
39 |
|
|
#include "dwarf2expr.h"
|
40 |
|
|
#include "symtab.h"
|
41 |
|
|
#include "gdbcore.h"
|
42 |
|
|
#include "value.h"
|
43 |
|
|
#include "reggroups.h"
|
44 |
|
|
#include "prologue-value.h"
|
45 |
|
|
#include "target.h"
|
46 |
|
|
|
47 |
|
|
|
48 |
|
|
/* The m32c tdep structure. */
|
49 |
|
|
|
50 |
|
|
static struct reggroup *m32c_dma_reggroup;
|
51 |
|
|
|
52 |
|
|
struct m32c_reg;
|
53 |
|
|
|
54 |
|
|
/* The type of a function that moves the value of REG between CACHE or
|
55 |
|
|
BUF --- in either direction. */
|
56 |
|
|
typedef void (m32c_move_reg_t) (struct m32c_reg *reg,
|
57 |
|
|
struct regcache *cache,
|
58 |
|
|
void *buf);
|
59 |
|
|
|
60 |
|
|
struct m32c_reg
|
61 |
|
|
{
|
62 |
|
|
/* The name of this register. */
|
63 |
|
|
const char *name;
|
64 |
|
|
|
65 |
|
|
/* Its type. */
|
66 |
|
|
struct type *type;
|
67 |
|
|
|
68 |
|
|
/* The architecture this register belongs to. */
|
69 |
|
|
struct gdbarch *arch;
|
70 |
|
|
|
71 |
|
|
/* Its GDB register number. */
|
72 |
|
|
int num;
|
73 |
|
|
|
74 |
|
|
/* Its sim register number. */
|
75 |
|
|
int sim_num;
|
76 |
|
|
|
77 |
|
|
/* Its DWARF register number, or -1 if it doesn't have one. */
|
78 |
|
|
int dwarf_num;
|
79 |
|
|
|
80 |
|
|
/* Register group memberships. */
|
81 |
|
|
unsigned int general_p : 1;
|
82 |
|
|
unsigned int dma_p : 1;
|
83 |
|
|
unsigned int system_p : 1;
|
84 |
|
|
unsigned int save_restore_p : 1;
|
85 |
|
|
|
86 |
|
|
/* Functions to read its value from a regcache, and write its value
|
87 |
|
|
to a regcache. */
|
88 |
|
|
m32c_move_reg_t *read, *write;
|
89 |
|
|
|
90 |
|
|
/* Data for READ and WRITE functions. The exact meaning depends on
|
91 |
|
|
the specific functions selected; see the comments for those
|
92 |
|
|
functions. */
|
93 |
|
|
struct m32c_reg *rx, *ry;
|
94 |
|
|
int n;
|
95 |
|
|
};
|
96 |
|
|
|
97 |
|
|
|
98 |
|
|
/* An overestimate of the number of raw and pseudoregisters we will
|
99 |
|
|
have. The exact answer depends on the variant of the architecture
|
100 |
|
|
at hand, but we can use this to declare statically allocated
|
101 |
|
|
arrays, and bump it up when needed. */
|
102 |
|
|
#define M32C_MAX_NUM_REGS (75)
|
103 |
|
|
|
104 |
|
|
/* The largest assigned DWARF register number. */
|
105 |
|
|
#define M32C_MAX_DWARF_REGNUM (40)
|
106 |
|
|
|
107 |
|
|
|
108 |
|
|
struct gdbarch_tdep
|
109 |
|
|
{
|
110 |
|
|
/* All the registers for this variant, indexed by GDB register
|
111 |
|
|
number, and the number of registers present. */
|
112 |
|
|
struct m32c_reg regs[M32C_MAX_NUM_REGS];
|
113 |
|
|
|
114 |
|
|
/* The number of valid registers. */
|
115 |
|
|
int num_regs;
|
116 |
|
|
|
117 |
|
|
/* Interesting registers. These are pointers into REGS. */
|
118 |
|
|
struct m32c_reg *pc, *flg;
|
119 |
|
|
struct m32c_reg *r0, *r1, *r2, *r3, *a0, *a1;
|
120 |
|
|
struct m32c_reg *r2r0, *r3r2r1r0, *r3r1r2r0;
|
121 |
|
|
struct m32c_reg *sb, *fb, *sp;
|
122 |
|
|
|
123 |
|
|
/* A table indexed by DWARF register numbers, pointing into
|
124 |
|
|
REGS. */
|
125 |
|
|
struct m32c_reg *dwarf_regs[M32C_MAX_DWARF_REGNUM + 1];
|
126 |
|
|
|
127 |
|
|
/* Types for this architecture. We can't use the builtin_type_foo
|
128 |
|
|
types, because they're not initialized when building a gdbarch
|
129 |
|
|
structure. */
|
130 |
|
|
struct type *voyd, *ptr_voyd, *func_voyd;
|
131 |
|
|
struct type *uint8, *uint16;
|
132 |
|
|
struct type *int8, *int16, *int32, *int64;
|
133 |
|
|
|
134 |
|
|
/* The types for data address and code address registers. */
|
135 |
|
|
struct type *data_addr_reg_type, *code_addr_reg_type;
|
136 |
|
|
|
137 |
|
|
/* The number of bytes a return address pushed by a 'jsr' instruction
|
138 |
|
|
occupies on the stack. */
|
139 |
|
|
int ret_addr_bytes;
|
140 |
|
|
|
141 |
|
|
/* The number of bytes an address register occupies on the stack
|
142 |
|
|
when saved by an 'enter' or 'pushm' instruction. */
|
143 |
|
|
int push_addr_bytes;
|
144 |
|
|
};
|
145 |
|
|
|
146 |
|
|
|
147 |
|
|
/* Types. */
|
148 |
|
|
|
149 |
|
|
static void
|
150 |
|
|
make_types (struct gdbarch *arch)
|
151 |
|
|
{
|
152 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
|
153 |
|
|
unsigned long mach = gdbarch_bfd_arch_info (arch)->mach;
|
154 |
|
|
int data_addr_reg_bits, code_addr_reg_bits;
|
155 |
|
|
char type_name[50];
|
156 |
|
|
|
157 |
|
|
#if 0
|
158 |
|
|
/* This is used to clip CORE_ADDR values, so this value is
|
159 |
|
|
appropriate both on the m32c, where pointers are 32 bits long,
|
160 |
|
|
and on the m16c, where pointers are sixteen bits long, but there
|
161 |
|
|
may be code above the 64k boundary. */
|
162 |
|
|
set_gdbarch_addr_bit (arch, 24);
|
163 |
|
|
#else
|
164 |
|
|
/* GCC uses 32 bits for addrs in the dwarf info, even though
|
165 |
|
|
only 16/24 bits are used. Setting addr_bit to 24 causes
|
166 |
|
|
errors in reading the dwarf addresses. */
|
167 |
|
|
set_gdbarch_addr_bit (arch, 32);
|
168 |
|
|
#endif
|
169 |
|
|
|
170 |
|
|
set_gdbarch_int_bit (arch, 16);
|
171 |
|
|
switch (mach)
|
172 |
|
|
{
|
173 |
|
|
case bfd_mach_m16c:
|
174 |
|
|
data_addr_reg_bits = 16;
|
175 |
|
|
code_addr_reg_bits = 24;
|
176 |
|
|
set_gdbarch_ptr_bit (arch, 16);
|
177 |
|
|
tdep->ret_addr_bytes = 3;
|
178 |
|
|
tdep->push_addr_bytes = 2;
|
179 |
|
|
break;
|
180 |
|
|
|
181 |
|
|
case bfd_mach_m32c:
|
182 |
|
|
data_addr_reg_bits = 24;
|
183 |
|
|
code_addr_reg_bits = 24;
|
184 |
|
|
set_gdbarch_ptr_bit (arch, 32);
|
185 |
|
|
tdep->ret_addr_bytes = 4;
|
186 |
|
|
tdep->push_addr_bytes = 4;
|
187 |
|
|
break;
|
188 |
|
|
|
189 |
|
|
default:
|
190 |
|
|
gdb_assert (0);
|
191 |
|
|
}
|
192 |
|
|
|
193 |
|
|
/* The builtin_type_mumble variables are sometimes uninitialized when
|
194 |
|
|
this is called, so we avoid using them. */
|
195 |
|
|
tdep->voyd = arch_type (arch, TYPE_CODE_VOID, 1, "void");
|
196 |
|
|
tdep->ptr_voyd
|
197 |
|
|
= arch_type (arch, TYPE_CODE_PTR, gdbarch_ptr_bit (arch) / TARGET_CHAR_BIT,
|
198 |
|
|
NULL);
|
199 |
|
|
TYPE_TARGET_TYPE (tdep->ptr_voyd) = tdep->voyd;
|
200 |
|
|
TYPE_UNSIGNED (tdep->ptr_voyd) = 1;
|
201 |
|
|
tdep->func_voyd = lookup_function_type (tdep->voyd);
|
202 |
|
|
|
203 |
|
|
sprintf (type_name, "%s_data_addr_t",
|
204 |
|
|
gdbarch_bfd_arch_info (arch)->printable_name);
|
205 |
|
|
tdep->data_addr_reg_type
|
206 |
|
|
= arch_type (arch, TYPE_CODE_PTR, data_addr_reg_bits / TARGET_CHAR_BIT,
|
207 |
|
|
xstrdup (type_name));
|
208 |
|
|
TYPE_TARGET_TYPE (tdep->data_addr_reg_type) = tdep->voyd;
|
209 |
|
|
TYPE_UNSIGNED (tdep->data_addr_reg_type) = 1;
|
210 |
|
|
|
211 |
|
|
sprintf (type_name, "%s_code_addr_t",
|
212 |
|
|
gdbarch_bfd_arch_info (arch)->printable_name);
|
213 |
|
|
tdep->code_addr_reg_type
|
214 |
|
|
= arch_type (arch, TYPE_CODE_PTR, code_addr_reg_bits / TARGET_CHAR_BIT,
|
215 |
|
|
xstrdup (type_name));
|
216 |
|
|
TYPE_TARGET_TYPE (tdep->code_addr_reg_type) = tdep->func_voyd;
|
217 |
|
|
TYPE_UNSIGNED (tdep->code_addr_reg_type) = 1;
|
218 |
|
|
|
219 |
|
|
tdep->uint8 = arch_integer_type (arch, 8, 1, "uint8_t");
|
220 |
|
|
tdep->uint16 = arch_integer_type (arch, 16, 1, "uint16_t");
|
221 |
|
|
tdep->int8 = arch_integer_type (arch, 8, 0, "int8_t");
|
222 |
|
|
tdep->int16 = arch_integer_type (arch, 16, 0, "int16_t");
|
223 |
|
|
tdep->int32 = arch_integer_type (arch, 32, 0, "int32_t");
|
224 |
|
|
tdep->int64 = arch_integer_type (arch, 64, 0, "int64_t");
|
225 |
|
|
}
|
226 |
|
|
|
227 |
|
|
|
228 |
|
|
|
229 |
|
|
/* Register set. */
|
230 |
|
|
|
231 |
|
|
static const char *
|
232 |
|
|
m32c_register_name (struct gdbarch *gdbarch, int num)
|
233 |
|
|
{
|
234 |
|
|
return gdbarch_tdep (gdbarch)->regs[num].name;
|
235 |
|
|
}
|
236 |
|
|
|
237 |
|
|
|
238 |
|
|
static struct type *
|
239 |
|
|
m32c_register_type (struct gdbarch *arch, int reg_nr)
|
240 |
|
|
{
|
241 |
|
|
return gdbarch_tdep (arch)->regs[reg_nr].type;
|
242 |
|
|
}
|
243 |
|
|
|
244 |
|
|
|
245 |
|
|
static int
|
246 |
|
|
m32c_register_sim_regno (struct gdbarch *gdbarch, int reg_nr)
|
247 |
|
|
{
|
248 |
|
|
return gdbarch_tdep (gdbarch)->regs[reg_nr].sim_num;
|
249 |
|
|
}
|
250 |
|
|
|
251 |
|
|
|
252 |
|
|
static int
|
253 |
|
|
m32c_debug_info_reg_to_regnum (struct gdbarch *gdbarch, int reg_nr)
|
254 |
|
|
{
|
255 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
256 |
|
|
if (0 <= reg_nr && reg_nr <= M32C_MAX_DWARF_REGNUM
|
257 |
|
|
&& tdep->dwarf_regs[reg_nr])
|
258 |
|
|
return tdep->dwarf_regs[reg_nr]->num;
|
259 |
|
|
else
|
260 |
|
|
/* The DWARF CFI code expects to see -1 for invalid register
|
261 |
|
|
numbers. */
|
262 |
|
|
return -1;
|
263 |
|
|
}
|
264 |
|
|
|
265 |
|
|
|
266 |
|
|
static int
|
267 |
|
|
m32c_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
|
268 |
|
|
struct reggroup *group)
|
269 |
|
|
{
|
270 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
271 |
|
|
struct m32c_reg *reg = &tdep->regs[regnum];
|
272 |
|
|
|
273 |
|
|
/* The anonymous raw registers aren't in any groups. */
|
274 |
|
|
if (! reg->name)
|
275 |
|
|
return 0;
|
276 |
|
|
|
277 |
|
|
if (group == all_reggroup)
|
278 |
|
|
return 1;
|
279 |
|
|
|
280 |
|
|
if (group == general_reggroup
|
281 |
|
|
&& reg->general_p)
|
282 |
|
|
return 1;
|
283 |
|
|
|
284 |
|
|
if (group == m32c_dma_reggroup
|
285 |
|
|
&& reg->dma_p)
|
286 |
|
|
return 1;
|
287 |
|
|
|
288 |
|
|
if (group == system_reggroup
|
289 |
|
|
&& reg->system_p)
|
290 |
|
|
return 1;
|
291 |
|
|
|
292 |
|
|
/* Since the m32c DWARF register numbers refer to cooked registers, not
|
293 |
|
|
raw registers, and frame_pop depends on the save and restore groups
|
294 |
|
|
containing registers the DWARF CFI will actually mention, our save
|
295 |
|
|
and restore groups are cooked registers, not raw registers. (This is
|
296 |
|
|
why we can't use the default reggroup function.) */
|
297 |
|
|
if ((group == save_reggroup
|
298 |
|
|
|| group == restore_reggroup)
|
299 |
|
|
&& reg->save_restore_p)
|
300 |
|
|
return 1;
|
301 |
|
|
|
302 |
|
|
return 0;
|
303 |
|
|
}
|
304 |
|
|
|
305 |
|
|
|
306 |
|
|
/* Register move functions. We declare them here using
|
307 |
|
|
m32c_move_reg_t to check the types. */
|
308 |
|
|
static m32c_move_reg_t m32c_raw_read, m32c_raw_write;
|
309 |
|
|
static m32c_move_reg_t m32c_banked_read, m32c_banked_write;
|
310 |
|
|
static m32c_move_reg_t m32c_sb_read, m32c_sb_write;
|
311 |
|
|
static m32c_move_reg_t m32c_part_read, m32c_part_write;
|
312 |
|
|
static m32c_move_reg_t m32c_cat_read, m32c_cat_write;
|
313 |
|
|
static m32c_move_reg_t m32c_r3r2r1r0_read, m32c_r3r2r1r0_write;
|
314 |
|
|
|
315 |
|
|
|
316 |
|
|
/* Copy the value of the raw register REG from CACHE to BUF. */
|
317 |
|
|
static void
|
318 |
|
|
m32c_raw_read (struct m32c_reg *reg, struct regcache *cache, void *buf)
|
319 |
|
|
{
|
320 |
|
|
regcache_raw_read (cache, reg->num, buf);
|
321 |
|
|
}
|
322 |
|
|
|
323 |
|
|
|
324 |
|
|
/* Copy the value of the raw register REG from BUF to CACHE. */
|
325 |
|
|
static void
|
326 |
|
|
m32c_raw_write (struct m32c_reg *reg, struct regcache *cache, void *buf)
|
327 |
|
|
{
|
328 |
|
|
regcache_raw_write (cache, reg->num, (const void *) buf);
|
329 |
|
|
}
|
330 |
|
|
|
331 |
|
|
|
332 |
|
|
/* Return the value of the 'flg' register in CACHE. */
|
333 |
|
|
static int
|
334 |
|
|
m32c_read_flg (struct regcache *cache)
|
335 |
|
|
{
|
336 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (cache));
|
337 |
|
|
ULONGEST flg;
|
338 |
|
|
regcache_raw_read_unsigned (cache, tdep->flg->num, &flg);
|
339 |
|
|
return flg & 0xffff;
|
340 |
|
|
}
|
341 |
|
|
|
342 |
|
|
|
343 |
|
|
/* Evaluate the real register number of a banked register. */
|
344 |
|
|
static struct m32c_reg *
|
345 |
|
|
m32c_banked_register (struct m32c_reg *reg, struct regcache *cache)
|
346 |
|
|
{
|
347 |
|
|
return ((m32c_read_flg (cache) & reg->n) ? reg->ry : reg->rx);
|
348 |
|
|
}
|
349 |
|
|
|
350 |
|
|
|
351 |
|
|
/* Move the value of a banked register from CACHE to BUF.
|
352 |
|
|
If the value of the 'flg' register in CACHE has any of the bits
|
353 |
|
|
masked in REG->n set, then read REG->ry. Otherwise, read
|
354 |
|
|
REG->rx. */
|
355 |
|
|
static void
|
356 |
|
|
m32c_banked_read (struct m32c_reg *reg, struct regcache *cache, void *buf)
|
357 |
|
|
{
|
358 |
|
|
struct m32c_reg *bank_reg = m32c_banked_register (reg, cache);
|
359 |
|
|
regcache_raw_read (cache, bank_reg->num, buf);
|
360 |
|
|
}
|
361 |
|
|
|
362 |
|
|
|
363 |
|
|
/* Move the value of a banked register from BUF to CACHE.
|
364 |
|
|
If the value of the 'flg' register in CACHE has any of the bits
|
365 |
|
|
masked in REG->n set, then write REG->ry. Otherwise, write
|
366 |
|
|
REG->rx. */
|
367 |
|
|
static void
|
368 |
|
|
m32c_banked_write (struct m32c_reg *reg, struct regcache *cache, void *buf)
|
369 |
|
|
{
|
370 |
|
|
struct m32c_reg *bank_reg = m32c_banked_register (reg, cache);
|
371 |
|
|
regcache_raw_write (cache, bank_reg->num, (const void *) buf);
|
372 |
|
|
}
|
373 |
|
|
|
374 |
|
|
|
375 |
|
|
/* Move the value of SB from CACHE to BUF. On bfd_mach_m32c, SB is a
|
376 |
|
|
banked register; on bfd_mach_m16c, it's not. */
|
377 |
|
|
static void
|
378 |
|
|
m32c_sb_read (struct m32c_reg *reg, struct regcache *cache, void *buf)
|
379 |
|
|
{
|
380 |
|
|
if (gdbarch_bfd_arch_info (reg->arch)->mach == bfd_mach_m16c)
|
381 |
|
|
m32c_raw_read (reg->rx, cache, buf);
|
382 |
|
|
else
|
383 |
|
|
m32c_banked_read (reg, cache, buf);
|
384 |
|
|
}
|
385 |
|
|
|
386 |
|
|
|
387 |
|
|
/* Move the value of SB from BUF to CACHE. On bfd_mach_m32c, SB is a
|
388 |
|
|
banked register; on bfd_mach_m16c, it's not. */
|
389 |
|
|
static void
|
390 |
|
|
m32c_sb_write (struct m32c_reg *reg, struct regcache *cache, void *buf)
|
391 |
|
|
{
|
392 |
|
|
if (gdbarch_bfd_arch_info (reg->arch)->mach == bfd_mach_m16c)
|
393 |
|
|
m32c_raw_write (reg->rx, cache, buf);
|
394 |
|
|
else
|
395 |
|
|
m32c_banked_write (reg, cache, buf);
|
396 |
|
|
}
|
397 |
|
|
|
398 |
|
|
|
399 |
|
|
/* Assuming REG uses m32c_part_read and m32c_part_write, set *OFFSET_P
|
400 |
|
|
and *LEN_P to the offset and length, in bytes, of the part REG
|
401 |
|
|
occupies in its underlying register. The offset is from the
|
402 |
|
|
lower-addressed end, regardless of the architecture's endianness.
|
403 |
|
|
(The M32C family is always little-endian, but let's keep those
|
404 |
|
|
assumptions out of here.) */
|
405 |
|
|
static void
|
406 |
|
|
m32c_find_part (struct m32c_reg *reg, int *offset_p, int *len_p)
|
407 |
|
|
{
|
408 |
|
|
/* The length of the containing register, of which REG is one part. */
|
409 |
|
|
int containing_len = TYPE_LENGTH (reg->rx->type);
|
410 |
|
|
|
411 |
|
|
/* The length of one "element" in our imaginary array. */
|
412 |
|
|
int elt_len = TYPE_LENGTH (reg->type);
|
413 |
|
|
|
414 |
|
|
/* The offset of REG's "element" from the least significant end of
|
415 |
|
|
the containing register. */
|
416 |
|
|
int elt_offset = reg->n * elt_len;
|
417 |
|
|
|
418 |
|
|
/* If we extend off the end, trim the length of the element. */
|
419 |
|
|
if (elt_offset + elt_len > containing_len)
|
420 |
|
|
{
|
421 |
|
|
elt_len = containing_len - elt_offset;
|
422 |
|
|
/* We shouldn't be declaring partial registers that go off the
|
423 |
|
|
end of their containing registers. */
|
424 |
|
|
gdb_assert (elt_len > 0);
|
425 |
|
|
}
|
426 |
|
|
|
427 |
|
|
/* Flip the offset around if we're big-endian. */
|
428 |
|
|
if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
|
429 |
|
|
elt_offset = TYPE_LENGTH (reg->rx->type) - elt_offset - elt_len;
|
430 |
|
|
|
431 |
|
|
*offset_p = elt_offset;
|
432 |
|
|
*len_p = elt_len;
|
433 |
|
|
}
|
434 |
|
|
|
435 |
|
|
|
436 |
|
|
/* Move the value of a partial register (r0h, intbl, etc.) from CACHE
|
437 |
|
|
to BUF. Treating the value of the register REG->rx as an array of
|
438 |
|
|
REG->type values, where higher indices refer to more significant
|
439 |
|
|
bits, read the value of the REG->n'th element. */
|
440 |
|
|
static void
|
441 |
|
|
m32c_part_read (struct m32c_reg *reg, struct regcache *cache, void *buf)
|
442 |
|
|
{
|
443 |
|
|
int offset, len;
|
444 |
|
|
memset (buf, 0, TYPE_LENGTH (reg->type));
|
445 |
|
|
m32c_find_part (reg, &offset, &len);
|
446 |
|
|
regcache_cooked_read_part (cache, reg->rx->num, offset, len, buf);
|
447 |
|
|
}
|
448 |
|
|
|
449 |
|
|
|
450 |
|
|
/* Move the value of a banked register from BUF to CACHE.
|
451 |
|
|
Treating the value of the register REG->rx as an array of REG->type
|
452 |
|
|
values, where higher indices refer to more significant bits, write
|
453 |
|
|
the value of the REG->n'th element. */
|
454 |
|
|
static void
|
455 |
|
|
m32c_part_write (struct m32c_reg *reg, struct regcache *cache, void *buf)
|
456 |
|
|
{
|
457 |
|
|
int offset, len;
|
458 |
|
|
m32c_find_part (reg, &offset, &len);
|
459 |
|
|
regcache_cooked_write_part (cache, reg->rx->num, offset, len, buf);
|
460 |
|
|
}
|
461 |
|
|
|
462 |
|
|
|
463 |
|
|
/* Move the value of REG from CACHE to BUF. REG's value is the
|
464 |
|
|
concatenation of the values of the registers REG->rx and REG->ry,
|
465 |
|
|
with REG->rx contributing the more significant bits. */
|
466 |
|
|
static void
|
467 |
|
|
m32c_cat_read (struct m32c_reg *reg, struct regcache *cache, void *buf)
|
468 |
|
|
{
|
469 |
|
|
int high_bytes = TYPE_LENGTH (reg->rx->type);
|
470 |
|
|
int low_bytes = TYPE_LENGTH (reg->ry->type);
|
471 |
|
|
/* For address arithmetic. */
|
472 |
|
|
unsigned char *cbuf = buf;
|
473 |
|
|
|
474 |
|
|
gdb_assert (TYPE_LENGTH (reg->type) == high_bytes + low_bytes);
|
475 |
|
|
|
476 |
|
|
if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
|
477 |
|
|
{
|
478 |
|
|
regcache_cooked_read (cache, reg->rx->num, cbuf);
|
479 |
|
|
regcache_cooked_read (cache, reg->ry->num, cbuf + high_bytes);
|
480 |
|
|
}
|
481 |
|
|
else
|
482 |
|
|
{
|
483 |
|
|
regcache_cooked_read (cache, reg->rx->num, cbuf + low_bytes);
|
484 |
|
|
regcache_cooked_read (cache, reg->ry->num, cbuf);
|
485 |
|
|
}
|
486 |
|
|
}
|
487 |
|
|
|
488 |
|
|
|
489 |
|
|
/* Move the value of REG from CACHE to BUF. REG's value is the
|
490 |
|
|
concatenation of the values of the registers REG->rx and REG->ry,
|
491 |
|
|
with REG->rx contributing the more significant bits. */
|
492 |
|
|
static void
|
493 |
|
|
m32c_cat_write (struct m32c_reg *reg, struct regcache *cache, void *buf)
|
494 |
|
|
{
|
495 |
|
|
int high_bytes = TYPE_LENGTH (reg->rx->type);
|
496 |
|
|
int low_bytes = TYPE_LENGTH (reg->ry->type);
|
497 |
|
|
/* For address arithmetic. */
|
498 |
|
|
unsigned char *cbuf = buf;
|
499 |
|
|
|
500 |
|
|
gdb_assert (TYPE_LENGTH (reg->type) == high_bytes + low_bytes);
|
501 |
|
|
|
502 |
|
|
if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
|
503 |
|
|
{
|
504 |
|
|
regcache_cooked_write (cache, reg->rx->num, cbuf);
|
505 |
|
|
regcache_cooked_write (cache, reg->ry->num, cbuf + high_bytes);
|
506 |
|
|
}
|
507 |
|
|
else
|
508 |
|
|
{
|
509 |
|
|
regcache_cooked_write (cache, reg->rx->num, cbuf + low_bytes);
|
510 |
|
|
regcache_cooked_write (cache, reg->ry->num, cbuf);
|
511 |
|
|
}
|
512 |
|
|
}
|
513 |
|
|
|
514 |
|
|
|
515 |
|
|
/* Copy the value of the raw register REG from CACHE to BUF. REG is
|
516 |
|
|
the concatenation (from most significant to least) of r3, r2, r1,
|
517 |
|
|
and r0. */
|
518 |
|
|
static void
|
519 |
|
|
m32c_r3r2r1r0_read (struct m32c_reg *reg, struct regcache *cache, void *buf)
|
520 |
|
|
{
|
521 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (reg->arch);
|
522 |
|
|
int len = TYPE_LENGTH (tdep->r0->type);
|
523 |
|
|
|
524 |
|
|
/* For address arithmetic. */
|
525 |
|
|
unsigned char *cbuf = buf;
|
526 |
|
|
|
527 |
|
|
if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
|
528 |
|
|
{
|
529 |
|
|
regcache_cooked_read (cache, tdep->r0->num, cbuf + len * 3);
|
530 |
|
|
regcache_cooked_read (cache, tdep->r1->num, cbuf + len * 2);
|
531 |
|
|
regcache_cooked_read (cache, tdep->r2->num, cbuf + len * 1);
|
532 |
|
|
regcache_cooked_read (cache, tdep->r3->num, cbuf);
|
533 |
|
|
}
|
534 |
|
|
else
|
535 |
|
|
{
|
536 |
|
|
regcache_cooked_read (cache, tdep->r0->num, cbuf);
|
537 |
|
|
regcache_cooked_read (cache, tdep->r1->num, cbuf + len * 1);
|
538 |
|
|
regcache_cooked_read (cache, tdep->r2->num, cbuf + len * 2);
|
539 |
|
|
regcache_cooked_read (cache, tdep->r3->num, cbuf + len * 3);
|
540 |
|
|
}
|
541 |
|
|
}
|
542 |
|
|
|
543 |
|
|
|
544 |
|
|
/* Copy the value of the raw register REG from BUF to CACHE. REG is
|
545 |
|
|
the concatenation (from most significant to least) of r3, r2, r1,
|
546 |
|
|
and r0. */
|
547 |
|
|
static void
|
548 |
|
|
m32c_r3r2r1r0_write (struct m32c_reg *reg, struct regcache *cache, void *buf)
|
549 |
|
|
{
|
550 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (reg->arch);
|
551 |
|
|
int len = TYPE_LENGTH (tdep->r0->type);
|
552 |
|
|
|
553 |
|
|
/* For address arithmetic. */
|
554 |
|
|
unsigned char *cbuf = buf;
|
555 |
|
|
|
556 |
|
|
if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
|
557 |
|
|
{
|
558 |
|
|
regcache_cooked_write (cache, tdep->r0->num, cbuf + len * 3);
|
559 |
|
|
regcache_cooked_write (cache, tdep->r1->num, cbuf + len * 2);
|
560 |
|
|
regcache_cooked_write (cache, tdep->r2->num, cbuf + len * 1);
|
561 |
|
|
regcache_cooked_write (cache, tdep->r3->num, cbuf);
|
562 |
|
|
}
|
563 |
|
|
else
|
564 |
|
|
{
|
565 |
|
|
regcache_cooked_write (cache, tdep->r0->num, cbuf);
|
566 |
|
|
regcache_cooked_write (cache, tdep->r1->num, cbuf + len * 1);
|
567 |
|
|
regcache_cooked_write (cache, tdep->r2->num, cbuf + len * 2);
|
568 |
|
|
regcache_cooked_write (cache, tdep->r3->num, cbuf + len * 3);
|
569 |
|
|
}
|
570 |
|
|
}
|
571 |
|
|
|
572 |
|
|
|
573 |
|
|
static void
|
574 |
|
|
m32c_pseudo_register_read (struct gdbarch *arch,
|
575 |
|
|
struct regcache *cache,
|
576 |
|
|
int cookednum,
|
577 |
|
|
gdb_byte *buf)
|
578 |
|
|
{
|
579 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
|
580 |
|
|
struct m32c_reg *reg;
|
581 |
|
|
|
582 |
|
|
gdb_assert (0 <= cookednum && cookednum < tdep->num_regs);
|
583 |
|
|
gdb_assert (arch == get_regcache_arch (cache));
|
584 |
|
|
gdb_assert (arch == tdep->regs[cookednum].arch);
|
585 |
|
|
reg = &tdep->regs[cookednum];
|
586 |
|
|
|
587 |
|
|
reg->read (reg, cache, buf);
|
588 |
|
|
}
|
589 |
|
|
|
590 |
|
|
|
591 |
|
|
static void
|
592 |
|
|
m32c_pseudo_register_write (struct gdbarch *arch,
|
593 |
|
|
struct regcache *cache,
|
594 |
|
|
int cookednum,
|
595 |
|
|
const gdb_byte *buf)
|
596 |
|
|
{
|
597 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
|
598 |
|
|
struct m32c_reg *reg;
|
599 |
|
|
|
600 |
|
|
gdb_assert (0 <= cookednum && cookednum < tdep->num_regs);
|
601 |
|
|
gdb_assert (arch == get_regcache_arch (cache));
|
602 |
|
|
gdb_assert (arch == tdep->regs[cookednum].arch);
|
603 |
|
|
reg = &tdep->regs[cookednum];
|
604 |
|
|
|
605 |
|
|
reg->write (reg, cache, (void *) buf);
|
606 |
|
|
}
|
607 |
|
|
|
608 |
|
|
|
609 |
|
|
/* Add a register with the given fields to the end of ARCH's table.
|
610 |
|
|
Return a pointer to the newly added register. */
|
611 |
|
|
static struct m32c_reg *
|
612 |
|
|
add_reg (struct gdbarch *arch,
|
613 |
|
|
const char *name,
|
614 |
|
|
struct type *type,
|
615 |
|
|
int sim_num,
|
616 |
|
|
m32c_move_reg_t *read,
|
617 |
|
|
m32c_move_reg_t *write,
|
618 |
|
|
struct m32c_reg *rx,
|
619 |
|
|
struct m32c_reg *ry,
|
620 |
|
|
int n)
|
621 |
|
|
{
|
622 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
|
623 |
|
|
struct m32c_reg *r = &tdep->regs[tdep->num_regs];
|
624 |
|
|
|
625 |
|
|
gdb_assert (tdep->num_regs < M32C_MAX_NUM_REGS);
|
626 |
|
|
|
627 |
|
|
r->name = name;
|
628 |
|
|
r->type = type;
|
629 |
|
|
r->arch = arch;
|
630 |
|
|
r->num = tdep->num_regs;
|
631 |
|
|
r->sim_num = sim_num;
|
632 |
|
|
r->dwarf_num = -1;
|
633 |
|
|
r->general_p = 0;
|
634 |
|
|
r->dma_p = 0;
|
635 |
|
|
r->system_p = 0;
|
636 |
|
|
r->save_restore_p = 0;
|
637 |
|
|
r->read = read;
|
638 |
|
|
r->write = write;
|
639 |
|
|
r->rx = rx;
|
640 |
|
|
r->ry = ry;
|
641 |
|
|
r->n = n;
|
642 |
|
|
|
643 |
|
|
tdep->num_regs++;
|
644 |
|
|
|
645 |
|
|
return r;
|
646 |
|
|
}
|
647 |
|
|
|
648 |
|
|
|
649 |
|
|
/* Record NUM as REG's DWARF register number. */
|
650 |
|
|
static void
|
651 |
|
|
set_dwarf_regnum (struct m32c_reg *reg, int num)
|
652 |
|
|
{
|
653 |
|
|
gdb_assert (num < M32C_MAX_NUM_REGS);
|
654 |
|
|
|
655 |
|
|
/* Update the reg->DWARF mapping. Only count the first number
|
656 |
|
|
assigned to this register. */
|
657 |
|
|
if (reg->dwarf_num == -1)
|
658 |
|
|
reg->dwarf_num = num;
|
659 |
|
|
|
660 |
|
|
/* Update the DWARF->reg mapping. */
|
661 |
|
|
gdbarch_tdep (reg->arch)->dwarf_regs[num] = reg;
|
662 |
|
|
}
|
663 |
|
|
|
664 |
|
|
|
665 |
|
|
/* Mark REG as a general-purpose register, and return it. */
|
666 |
|
|
static struct m32c_reg *
|
667 |
|
|
mark_general (struct m32c_reg *reg)
|
668 |
|
|
{
|
669 |
|
|
reg->general_p = 1;
|
670 |
|
|
return reg;
|
671 |
|
|
}
|
672 |
|
|
|
673 |
|
|
|
674 |
|
|
/* Mark REG as a DMA register, and return it. */
|
675 |
|
|
static struct m32c_reg *
|
676 |
|
|
mark_dma (struct m32c_reg *reg)
|
677 |
|
|
{
|
678 |
|
|
reg->dma_p = 1;
|
679 |
|
|
return reg;
|
680 |
|
|
}
|
681 |
|
|
|
682 |
|
|
|
683 |
|
|
/* Mark REG as a SYSTEM register, and return it. */
|
684 |
|
|
static struct m32c_reg *
|
685 |
|
|
mark_system (struct m32c_reg *reg)
|
686 |
|
|
{
|
687 |
|
|
reg->system_p = 1;
|
688 |
|
|
return reg;
|
689 |
|
|
}
|
690 |
|
|
|
691 |
|
|
|
692 |
|
|
/* Mark REG as a save-restore register, and return it. */
|
693 |
|
|
static struct m32c_reg *
|
694 |
|
|
mark_save_restore (struct m32c_reg *reg)
|
695 |
|
|
{
|
696 |
|
|
reg->save_restore_p = 1;
|
697 |
|
|
return reg;
|
698 |
|
|
}
|
699 |
|
|
|
700 |
|
|
|
701 |
|
|
#define FLAGBIT_B 0x0010
|
702 |
|
|
#define FLAGBIT_U 0x0080
|
703 |
|
|
|
704 |
|
|
/* Handy macros for declaring registers. These all evaluate to
|
705 |
|
|
pointers to the register declared. Macros that define two
|
706 |
|
|
registers evaluate to a pointer to the first. */
|
707 |
|
|
|
708 |
|
|
/* A raw register named NAME, with type TYPE and sim number SIM_NUM. */
|
709 |
|
|
#define R(name, type, sim_num) \
|
710 |
|
|
(add_reg (arch, (name), (type), (sim_num), \
|
711 |
|
|
m32c_raw_read, m32c_raw_write, NULL, NULL, 0))
|
712 |
|
|
|
713 |
|
|
/* The simulator register number for a raw register named NAME. */
|
714 |
|
|
#define SIM(name) (m32c_sim_reg_ ## name)
|
715 |
|
|
|
716 |
|
|
/* A raw unsigned 16-bit data register named NAME.
|
717 |
|
|
NAME should be an identifier, not a string. */
|
718 |
|
|
#define R16U(name) \
|
719 |
|
|
(R(#name, tdep->uint16, SIM (name)))
|
720 |
|
|
|
721 |
|
|
/* A raw data address register named NAME.
|
722 |
|
|
NAME should be an identifier, not a string. */
|
723 |
|
|
#define RA(name) \
|
724 |
|
|
(R(#name, tdep->data_addr_reg_type, SIM (name)))
|
725 |
|
|
|
726 |
|
|
/* A raw code address register named NAME. NAME should
|
727 |
|
|
be an identifier, not a string. */
|
728 |
|
|
#define RC(name) \
|
729 |
|
|
(R(#name, tdep->code_addr_reg_type, SIM (name)))
|
730 |
|
|
|
731 |
|
|
/* A pair of raw registers named NAME0 and NAME1, with type TYPE.
|
732 |
|
|
NAME should be an identifier, not a string. */
|
733 |
|
|
#define RP(name, type) \
|
734 |
|
|
(R(#name "0", (type), SIM (name ## 0)), \
|
735 |
|
|
R(#name "1", (type), SIM (name ## 1)) - 1)
|
736 |
|
|
|
737 |
|
|
/* A raw banked general-purpose data register named NAME.
|
738 |
|
|
NAME should be an identifier, not a string. */
|
739 |
|
|
#define RBD(name) \
|
740 |
|
|
(R(NULL, tdep->int16, SIM (name ## _bank0)), \
|
741 |
|
|
R(NULL, tdep->int16, SIM (name ## _bank1)) - 1)
|
742 |
|
|
|
743 |
|
|
/* A raw banked data address register named NAME.
|
744 |
|
|
NAME should be an identifier, not a string. */
|
745 |
|
|
#define RBA(name) \
|
746 |
|
|
(R(NULL, tdep->data_addr_reg_type, SIM (name ## _bank0)), \
|
747 |
|
|
R(NULL, tdep->data_addr_reg_type, SIM (name ## _bank1)) - 1)
|
748 |
|
|
|
749 |
|
|
/* A cooked register named NAME referring to a raw banked register
|
750 |
|
|
from the bank selected by the current value of FLG. RAW_PAIR
|
751 |
|
|
should be a pointer to the first register in the banked pair.
|
752 |
|
|
NAME must be an identifier, not a string. */
|
753 |
|
|
#define CB(name, raw_pair) \
|
754 |
|
|
(add_reg (arch, #name, (raw_pair)->type, 0, \
|
755 |
|
|
m32c_banked_read, m32c_banked_write, \
|
756 |
|
|
(raw_pair), (raw_pair + 1), FLAGBIT_B))
|
757 |
|
|
|
758 |
|
|
/* A pair of registers named NAMEH and NAMEL, of type TYPE, that
|
759 |
|
|
access the top and bottom halves of the register pointed to by
|
760 |
|
|
NAME. NAME should be an identifier. */
|
761 |
|
|
#define CHL(name, type) \
|
762 |
|
|
(add_reg (arch, #name "h", (type), 0, \
|
763 |
|
|
m32c_part_read, m32c_part_write, name, NULL, 1), \
|
764 |
|
|
add_reg (arch, #name "l", (type), 0, \
|
765 |
|
|
m32c_part_read, m32c_part_write, name, NULL, 0) - 1)
|
766 |
|
|
|
767 |
|
|
/* A register constructed by concatenating the two registers HIGH and
|
768 |
|
|
LOW, whose name is HIGHLOW and whose type is TYPE. */
|
769 |
|
|
#define CCAT(high, low, type) \
|
770 |
|
|
(add_reg (arch, #high #low, (type), 0, \
|
771 |
|
|
m32c_cat_read, m32c_cat_write, (high), (low), 0))
|
772 |
|
|
|
773 |
|
|
/* Abbreviations for marking register group membership. */
|
774 |
|
|
#define G(reg) (mark_general (reg))
|
775 |
|
|
#define S(reg) (mark_system (reg))
|
776 |
|
|
#define DMA(reg) (mark_dma (reg))
|
777 |
|
|
|
778 |
|
|
|
779 |
|
|
/* Construct the register set for ARCH. */
|
780 |
|
|
static void
|
781 |
|
|
make_regs (struct gdbarch *arch)
|
782 |
|
|
{
|
783 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
|
784 |
|
|
int mach = gdbarch_bfd_arch_info (arch)->mach;
|
785 |
|
|
int num_raw_regs;
|
786 |
|
|
int num_cooked_regs;
|
787 |
|
|
|
788 |
|
|
struct m32c_reg *r0;
|
789 |
|
|
struct m32c_reg *r1;
|
790 |
|
|
struct m32c_reg *r2;
|
791 |
|
|
struct m32c_reg *r3;
|
792 |
|
|
struct m32c_reg *a0;
|
793 |
|
|
struct m32c_reg *a1;
|
794 |
|
|
struct m32c_reg *fb;
|
795 |
|
|
struct m32c_reg *sb;
|
796 |
|
|
struct m32c_reg *sp;
|
797 |
|
|
struct m32c_reg *r0hl;
|
798 |
|
|
struct m32c_reg *r1hl;
|
799 |
|
|
struct m32c_reg *r2hl;
|
800 |
|
|
struct m32c_reg *r3hl;
|
801 |
|
|
struct m32c_reg *intbhl;
|
802 |
|
|
struct m32c_reg *r2r0;
|
803 |
|
|
struct m32c_reg *r3r1;
|
804 |
|
|
struct m32c_reg *r3r1r2r0;
|
805 |
|
|
struct m32c_reg *r3r2r1r0;
|
806 |
|
|
struct m32c_reg *a1a0;
|
807 |
|
|
|
808 |
|
|
struct m32c_reg *raw_r0_pair = RBD (r0);
|
809 |
|
|
struct m32c_reg *raw_r1_pair = RBD (r1);
|
810 |
|
|
struct m32c_reg *raw_r2_pair = RBD (r2);
|
811 |
|
|
struct m32c_reg *raw_r3_pair = RBD (r3);
|
812 |
|
|
struct m32c_reg *raw_a0_pair = RBA (a0);
|
813 |
|
|
struct m32c_reg *raw_a1_pair = RBA (a1);
|
814 |
|
|
struct m32c_reg *raw_fb_pair = RBA (fb);
|
815 |
|
|
|
816 |
|
|
/* sb is banked on the bfd_mach_m32c, but not on bfd_mach_m16c.
|
817 |
|
|
We always declare both raw registers, and deal with the distinction
|
818 |
|
|
in the pseudoregister. */
|
819 |
|
|
struct m32c_reg *raw_sb_pair = RBA (sb);
|
820 |
|
|
|
821 |
|
|
struct m32c_reg *usp = S (RA (usp));
|
822 |
|
|
struct m32c_reg *isp = S (RA (isp));
|
823 |
|
|
struct m32c_reg *intb = S (RC (intb));
|
824 |
|
|
struct m32c_reg *pc = G (RC (pc));
|
825 |
|
|
struct m32c_reg *flg = G (R16U (flg));
|
826 |
|
|
|
827 |
|
|
if (mach == bfd_mach_m32c)
|
828 |
|
|
{
|
829 |
|
|
struct m32c_reg *svf = S (R16U (svf));
|
830 |
|
|
struct m32c_reg *svp = S (RC (svp));
|
831 |
|
|
struct m32c_reg *vct = S (RC (vct));
|
832 |
|
|
|
833 |
|
|
struct m32c_reg *dmd01 = DMA (RP (dmd, tdep->uint8));
|
834 |
|
|
struct m32c_reg *dct01 = DMA (RP (dct, tdep->uint16));
|
835 |
|
|
struct m32c_reg *drc01 = DMA (RP (drc, tdep->uint16));
|
836 |
|
|
struct m32c_reg *dma01 = DMA (RP (dma, tdep->data_addr_reg_type));
|
837 |
|
|
struct m32c_reg *dsa01 = DMA (RP (dsa, tdep->data_addr_reg_type));
|
838 |
|
|
struct m32c_reg *dra01 = DMA (RP (dra, tdep->data_addr_reg_type));
|
839 |
|
|
}
|
840 |
|
|
|
841 |
|
|
num_raw_regs = tdep->num_regs;
|
842 |
|
|
|
843 |
|
|
r0 = G (CB (r0, raw_r0_pair));
|
844 |
|
|
r1 = G (CB (r1, raw_r1_pair));
|
845 |
|
|
r2 = G (CB (r2, raw_r2_pair));
|
846 |
|
|
r3 = G (CB (r3, raw_r3_pair));
|
847 |
|
|
a0 = G (CB (a0, raw_a0_pair));
|
848 |
|
|
a1 = G (CB (a1, raw_a1_pair));
|
849 |
|
|
fb = G (CB (fb, raw_fb_pair));
|
850 |
|
|
|
851 |
|
|
/* sb is banked on the bfd_mach_m32c, but not on bfd_mach_m16c.
|
852 |
|
|
Specify custom read/write functions that do the right thing. */
|
853 |
|
|
sb = G (add_reg (arch, "sb", raw_sb_pair->type, 0,
|
854 |
|
|
m32c_sb_read, m32c_sb_write,
|
855 |
|
|
raw_sb_pair, raw_sb_pair + 1, 0));
|
856 |
|
|
|
857 |
|
|
/* The current sp is either usp or isp, depending on the value of
|
858 |
|
|
the FLG register's U bit. */
|
859 |
|
|
sp = G (add_reg (arch, "sp", usp->type, 0,
|
860 |
|
|
m32c_banked_read, m32c_banked_write,
|
861 |
|
|
isp, usp, FLAGBIT_U));
|
862 |
|
|
|
863 |
|
|
r0hl = CHL (r0, tdep->int8);
|
864 |
|
|
r1hl = CHL (r1, tdep->int8);
|
865 |
|
|
r2hl = CHL (r2, tdep->int8);
|
866 |
|
|
r3hl = CHL (r3, tdep->int8);
|
867 |
|
|
intbhl = CHL (intb, tdep->int16);
|
868 |
|
|
|
869 |
|
|
r2r0 = CCAT (r2, r0, tdep->int32);
|
870 |
|
|
r3r1 = CCAT (r3, r1, tdep->int32);
|
871 |
|
|
r3r1r2r0 = CCAT (r3r1, r2r0, tdep->int64);
|
872 |
|
|
|
873 |
|
|
r3r2r1r0
|
874 |
|
|
= add_reg (arch, "r3r2r1r0", tdep->int64, 0,
|
875 |
|
|
m32c_r3r2r1r0_read, m32c_r3r2r1r0_write, NULL, NULL, 0);
|
876 |
|
|
|
877 |
|
|
if (mach == bfd_mach_m16c)
|
878 |
|
|
a1a0 = CCAT (a1, a0, tdep->int32);
|
879 |
|
|
else
|
880 |
|
|
a1a0 = NULL;
|
881 |
|
|
|
882 |
|
|
num_cooked_regs = tdep->num_regs - num_raw_regs;
|
883 |
|
|
|
884 |
|
|
tdep->pc = pc;
|
885 |
|
|
tdep->flg = flg;
|
886 |
|
|
tdep->r0 = r0;
|
887 |
|
|
tdep->r1 = r1;
|
888 |
|
|
tdep->r2 = r2;
|
889 |
|
|
tdep->r3 = r3;
|
890 |
|
|
tdep->r2r0 = r2r0;
|
891 |
|
|
tdep->r3r2r1r0 = r3r2r1r0;
|
892 |
|
|
tdep->r3r1r2r0 = r3r1r2r0;
|
893 |
|
|
tdep->a0 = a0;
|
894 |
|
|
tdep->a1 = a1;
|
895 |
|
|
tdep->sb = sb;
|
896 |
|
|
tdep->fb = fb;
|
897 |
|
|
tdep->sp = sp;
|
898 |
|
|
|
899 |
|
|
/* Set up the DWARF register table. */
|
900 |
|
|
memset (tdep->dwarf_regs, 0, sizeof (tdep->dwarf_regs));
|
901 |
|
|
set_dwarf_regnum (r0hl + 1, 0x01);
|
902 |
|
|
set_dwarf_regnum (r0hl + 0, 0x02);
|
903 |
|
|
set_dwarf_regnum (r1hl + 1, 0x03);
|
904 |
|
|
set_dwarf_regnum (r1hl + 0, 0x04);
|
905 |
|
|
set_dwarf_regnum (r0, 0x05);
|
906 |
|
|
set_dwarf_regnum (r1, 0x06);
|
907 |
|
|
set_dwarf_regnum (r2, 0x07);
|
908 |
|
|
set_dwarf_regnum (r3, 0x08);
|
909 |
|
|
set_dwarf_regnum (a0, 0x09);
|
910 |
|
|
set_dwarf_regnum (a1, 0x0a);
|
911 |
|
|
set_dwarf_regnum (fb, 0x0b);
|
912 |
|
|
set_dwarf_regnum (sp, 0x0c);
|
913 |
|
|
set_dwarf_regnum (pc, 0x0d); /* GCC's invention */
|
914 |
|
|
set_dwarf_regnum (sb, 0x13);
|
915 |
|
|
set_dwarf_regnum (r2r0, 0x15);
|
916 |
|
|
set_dwarf_regnum (r3r1, 0x16);
|
917 |
|
|
if (a1a0)
|
918 |
|
|
set_dwarf_regnum (a1a0, 0x17);
|
919 |
|
|
|
920 |
|
|
/* Enumerate the save/restore register group.
|
921 |
|
|
|
922 |
|
|
The regcache_save and regcache_restore functions apply their read
|
923 |
|
|
function to each register in this group.
|
924 |
|
|
|
925 |
|
|
Since frame_pop supplies frame_unwind_register as its read
|
926 |
|
|
function, the registers meaningful to the Dwarf unwinder need to
|
927 |
|
|
be in this group.
|
928 |
|
|
|
929 |
|
|
On the other hand, when we make inferior calls, save_inferior_status
|
930 |
|
|
and restore_inferior_status use them to preserve the current register
|
931 |
|
|
values across the inferior call. For this, you'd kind of like to
|
932 |
|
|
preserve all the raw registers, to protect the interrupted code from
|
933 |
|
|
any sort of bank switching the callee might have done. But we handle
|
934 |
|
|
those cases so badly anyway --- for example, it matters whether we
|
935 |
|
|
restore FLG before or after we restore the general-purpose registers,
|
936 |
|
|
but there's no way to express that --- that it isn't worth worrying
|
937 |
|
|
about.
|
938 |
|
|
|
939 |
|
|
We omit control registers like inthl: if you call a function that
|
940 |
|
|
changes those, it's probably because you wanted that change to be
|
941 |
|
|
visible to the interrupted code. */
|
942 |
|
|
mark_save_restore (r0);
|
943 |
|
|
mark_save_restore (r1);
|
944 |
|
|
mark_save_restore (r2);
|
945 |
|
|
mark_save_restore (r3);
|
946 |
|
|
mark_save_restore (a0);
|
947 |
|
|
mark_save_restore (a1);
|
948 |
|
|
mark_save_restore (sb);
|
949 |
|
|
mark_save_restore (fb);
|
950 |
|
|
mark_save_restore (sp);
|
951 |
|
|
mark_save_restore (pc);
|
952 |
|
|
mark_save_restore (flg);
|
953 |
|
|
|
954 |
|
|
set_gdbarch_num_regs (arch, num_raw_regs);
|
955 |
|
|
set_gdbarch_num_pseudo_regs (arch, num_cooked_regs);
|
956 |
|
|
set_gdbarch_pc_regnum (arch, pc->num);
|
957 |
|
|
set_gdbarch_sp_regnum (arch, sp->num);
|
958 |
|
|
set_gdbarch_register_name (arch, m32c_register_name);
|
959 |
|
|
set_gdbarch_register_type (arch, m32c_register_type);
|
960 |
|
|
set_gdbarch_pseudo_register_read (arch, m32c_pseudo_register_read);
|
961 |
|
|
set_gdbarch_pseudo_register_write (arch, m32c_pseudo_register_write);
|
962 |
|
|
set_gdbarch_register_sim_regno (arch, m32c_register_sim_regno);
|
963 |
|
|
set_gdbarch_stab_reg_to_regnum (arch, m32c_debug_info_reg_to_regnum);
|
964 |
|
|
set_gdbarch_dwarf2_reg_to_regnum (arch, m32c_debug_info_reg_to_regnum);
|
965 |
|
|
set_gdbarch_register_reggroup_p (arch, m32c_register_reggroup_p);
|
966 |
|
|
|
967 |
|
|
reggroup_add (arch, general_reggroup);
|
968 |
|
|
reggroup_add (arch, all_reggroup);
|
969 |
|
|
reggroup_add (arch, save_reggroup);
|
970 |
|
|
reggroup_add (arch, restore_reggroup);
|
971 |
|
|
reggroup_add (arch, system_reggroup);
|
972 |
|
|
reggroup_add (arch, m32c_dma_reggroup);
|
973 |
|
|
}
|
974 |
|
|
|
975 |
|
|
|
976 |
|
|
|
977 |
|
|
/* Breakpoints. */
|
978 |
|
|
|
979 |
|
|
static const unsigned char *
|
980 |
|
|
m32c_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
|
981 |
|
|
{
|
982 |
|
|
static unsigned char break_insn[] = { 0x00 }; /* brk */
|
983 |
|
|
|
984 |
|
|
*len = sizeof (break_insn);
|
985 |
|
|
return break_insn;
|
986 |
|
|
}
|
987 |
|
|
|
988 |
|
|
|
989 |
|
|
|
990 |
|
|
/* Prologue analysis. */
|
991 |
|
|
|
992 |
|
|
struct m32c_prologue
|
993 |
|
|
{
|
994 |
|
|
/* For consistency with the DWARF 2 .debug_frame info generated by
|
995 |
|
|
GCC, a frame's CFA is the address immediately after the saved
|
996 |
|
|
return address. */
|
997 |
|
|
|
998 |
|
|
/* The architecture for which we generated this prologue info. */
|
999 |
|
|
struct gdbarch *arch;
|
1000 |
|
|
|
1001 |
|
|
enum {
|
1002 |
|
|
/* This function uses a frame pointer. */
|
1003 |
|
|
prologue_with_frame_ptr,
|
1004 |
|
|
|
1005 |
|
|
/* This function has no frame pointer. */
|
1006 |
|
|
prologue_sans_frame_ptr,
|
1007 |
|
|
|
1008 |
|
|
/* This function sets up the stack, so its frame is the first
|
1009 |
|
|
frame on the stack. */
|
1010 |
|
|
prologue_first_frame
|
1011 |
|
|
|
1012 |
|
|
} kind;
|
1013 |
|
|
|
1014 |
|
|
/* If KIND is prologue_with_frame_ptr, this is the offset from the
|
1015 |
|
|
CFA to where the frame pointer points. This is always zero or
|
1016 |
|
|
negative. */
|
1017 |
|
|
LONGEST frame_ptr_offset;
|
1018 |
|
|
|
1019 |
|
|
/* If KIND is prologue_sans_frame_ptr, the offset from the CFA to
|
1020 |
|
|
the stack pointer --- always zero or negative.
|
1021 |
|
|
|
1022 |
|
|
Calling this a "size" is a bit misleading, but given that the
|
1023 |
|
|
stack grows downwards, using offsets for everything keeps one
|
1024 |
|
|
from going completely sign-crazy: you never change anything's
|
1025 |
|
|
sign for an ADD instruction; always change the second operand's
|
1026 |
|
|
sign for a SUB instruction; and everything takes care of
|
1027 |
|
|
itself.
|
1028 |
|
|
|
1029 |
|
|
Functions that use alloca don't have a constant frame size. But
|
1030 |
|
|
they always have frame pointers, so we must use that to find the
|
1031 |
|
|
CFA (and perhaps to unwind the stack pointer). */
|
1032 |
|
|
LONGEST frame_size;
|
1033 |
|
|
|
1034 |
|
|
/* The address of the first instruction at which the frame has been
|
1035 |
|
|
set up and the arguments are where the debug info says they are
|
1036 |
|
|
--- as best as we can tell. */
|
1037 |
|
|
CORE_ADDR prologue_end;
|
1038 |
|
|
|
1039 |
|
|
/* reg_offset[R] is the offset from the CFA at which register R is
|
1040 |
|
|
saved, or 1 if register R has not been saved. (Real values are
|
1041 |
|
|
always zero or negative.) */
|
1042 |
|
|
LONGEST reg_offset[M32C_MAX_NUM_REGS];
|
1043 |
|
|
};
|
1044 |
|
|
|
1045 |
|
|
|
1046 |
|
|
/* The longest I've seen, anyway. */
|
1047 |
|
|
#define M32C_MAX_INSN_LEN (9)
|
1048 |
|
|
|
1049 |
|
|
/* Processor state, for the prologue analyzer. */
|
1050 |
|
|
struct m32c_pv_state
|
1051 |
|
|
{
|
1052 |
|
|
struct gdbarch *arch;
|
1053 |
|
|
pv_t r0, r1, r2, r3;
|
1054 |
|
|
pv_t a0, a1;
|
1055 |
|
|
pv_t sb, fb, sp;
|
1056 |
|
|
pv_t pc;
|
1057 |
|
|
struct pv_area *stack;
|
1058 |
|
|
|
1059 |
|
|
/* Bytes from the current PC, the address they were read from,
|
1060 |
|
|
and the address of the next unconsumed byte. */
|
1061 |
|
|
gdb_byte insn[M32C_MAX_INSN_LEN];
|
1062 |
|
|
CORE_ADDR scan_pc, next_addr;
|
1063 |
|
|
};
|
1064 |
|
|
|
1065 |
|
|
|
1066 |
|
|
/* Push VALUE on STATE's stack, occupying SIZE bytes. Return zero if
|
1067 |
|
|
all went well, or non-zero if simulating the action would trash our
|
1068 |
|
|
state. */
|
1069 |
|
|
static int
|
1070 |
|
|
m32c_pv_push (struct m32c_pv_state *state, pv_t value, int size)
|
1071 |
|
|
{
|
1072 |
|
|
if (pv_area_store_would_trash (state->stack, state->sp))
|
1073 |
|
|
return 1;
|
1074 |
|
|
|
1075 |
|
|
state->sp = pv_add_constant (state->sp, -size);
|
1076 |
|
|
pv_area_store (state->stack, state->sp, size, value);
|
1077 |
|
|
|
1078 |
|
|
return 0;
|
1079 |
|
|
}
|
1080 |
|
|
|
1081 |
|
|
|
1082 |
|
|
/* A source or destination location for an m16c or m32c
|
1083 |
|
|
instruction. */
|
1084 |
|
|
struct srcdest
|
1085 |
|
|
{
|
1086 |
|
|
/* If srcdest_reg, the location is a register pointed to by REG.
|
1087 |
|
|
If srcdest_partial_reg, the location is part of a register pointed
|
1088 |
|
|
to by REG. We don't try to handle this too well.
|
1089 |
|
|
If srcdest_mem, the location is memory whose address is ADDR. */
|
1090 |
|
|
enum { srcdest_reg, srcdest_partial_reg, srcdest_mem } kind;
|
1091 |
|
|
pv_t *reg, addr;
|
1092 |
|
|
};
|
1093 |
|
|
|
1094 |
|
|
|
1095 |
|
|
/* Return the SIZE-byte value at LOC in STATE. */
|
1096 |
|
|
static pv_t
|
1097 |
|
|
m32c_srcdest_fetch (struct m32c_pv_state *state, struct srcdest loc, int size)
|
1098 |
|
|
{
|
1099 |
|
|
if (loc.kind == srcdest_mem)
|
1100 |
|
|
return pv_area_fetch (state->stack, loc.addr, size);
|
1101 |
|
|
else if (loc.kind == srcdest_partial_reg)
|
1102 |
|
|
return pv_unknown ();
|
1103 |
|
|
else
|
1104 |
|
|
return *loc.reg;
|
1105 |
|
|
}
|
1106 |
|
|
|
1107 |
|
|
|
1108 |
|
|
/* Write VALUE, a SIZE-byte value, to LOC in STATE. Return zero if
|
1109 |
|
|
all went well, or non-zero if simulating the store would trash our
|
1110 |
|
|
state. */
|
1111 |
|
|
static int
|
1112 |
|
|
m32c_srcdest_store (struct m32c_pv_state *state, struct srcdest loc,
|
1113 |
|
|
pv_t value, int size)
|
1114 |
|
|
{
|
1115 |
|
|
if (loc.kind == srcdest_mem)
|
1116 |
|
|
{
|
1117 |
|
|
if (pv_area_store_would_trash (state->stack, loc.addr))
|
1118 |
|
|
return 1;
|
1119 |
|
|
pv_area_store (state->stack, loc.addr, size, value);
|
1120 |
|
|
}
|
1121 |
|
|
else if (loc.kind == srcdest_partial_reg)
|
1122 |
|
|
*loc.reg = pv_unknown ();
|
1123 |
|
|
else
|
1124 |
|
|
*loc.reg = value;
|
1125 |
|
|
|
1126 |
|
|
return 0;
|
1127 |
|
|
}
|
1128 |
|
|
|
1129 |
|
|
|
1130 |
|
|
static int
|
1131 |
|
|
m32c_sign_ext (int v, int bits)
|
1132 |
|
|
{
|
1133 |
|
|
int mask = 1 << (bits - 1);
|
1134 |
|
|
return (v ^ mask) - mask;
|
1135 |
|
|
}
|
1136 |
|
|
|
1137 |
|
|
static unsigned int
|
1138 |
|
|
m32c_next_byte (struct m32c_pv_state *st)
|
1139 |
|
|
{
|
1140 |
|
|
gdb_assert (st->next_addr - st->scan_pc < sizeof (st->insn));
|
1141 |
|
|
return st->insn[st->next_addr++ - st->scan_pc];
|
1142 |
|
|
}
|
1143 |
|
|
|
1144 |
|
|
static int
|
1145 |
|
|
m32c_udisp8 (struct m32c_pv_state *st)
|
1146 |
|
|
{
|
1147 |
|
|
return m32c_next_byte (st);
|
1148 |
|
|
}
|
1149 |
|
|
|
1150 |
|
|
|
1151 |
|
|
static int
|
1152 |
|
|
m32c_sdisp8 (struct m32c_pv_state *st)
|
1153 |
|
|
{
|
1154 |
|
|
return m32c_sign_ext (m32c_next_byte (st), 8);
|
1155 |
|
|
}
|
1156 |
|
|
|
1157 |
|
|
|
1158 |
|
|
static int
|
1159 |
|
|
m32c_udisp16 (struct m32c_pv_state *st)
|
1160 |
|
|
{
|
1161 |
|
|
int low = m32c_next_byte (st);
|
1162 |
|
|
int high = m32c_next_byte (st);
|
1163 |
|
|
|
1164 |
|
|
return low + (high << 8);
|
1165 |
|
|
}
|
1166 |
|
|
|
1167 |
|
|
|
1168 |
|
|
static int
|
1169 |
|
|
m32c_sdisp16 (struct m32c_pv_state *st)
|
1170 |
|
|
{
|
1171 |
|
|
int low = m32c_next_byte (st);
|
1172 |
|
|
int high = m32c_next_byte (st);
|
1173 |
|
|
|
1174 |
|
|
return m32c_sign_ext (low + (high << 8), 16);
|
1175 |
|
|
}
|
1176 |
|
|
|
1177 |
|
|
|
1178 |
|
|
static int
|
1179 |
|
|
m32c_udisp24 (struct m32c_pv_state *st)
|
1180 |
|
|
{
|
1181 |
|
|
int low = m32c_next_byte (st);
|
1182 |
|
|
int mid = m32c_next_byte (st);
|
1183 |
|
|
int high = m32c_next_byte (st);
|
1184 |
|
|
|
1185 |
|
|
return low + (mid << 8) + (high << 16);
|
1186 |
|
|
}
|
1187 |
|
|
|
1188 |
|
|
|
1189 |
|
|
/* Extract the 'source' field from an m32c MOV.size:G-format instruction. */
|
1190 |
|
|
static int
|
1191 |
|
|
m32c_get_src23 (unsigned char *i)
|
1192 |
|
|
{
|
1193 |
|
|
return (((i[0] & 0x70) >> 2)
|
1194 |
|
|
| ((i[1] & 0x30) >> 4));
|
1195 |
|
|
}
|
1196 |
|
|
|
1197 |
|
|
|
1198 |
|
|
/* Extract the 'dest' field from an m32c MOV.size:G-format instruction. */
|
1199 |
|
|
static int
|
1200 |
|
|
m32c_get_dest23 (unsigned char *i)
|
1201 |
|
|
{
|
1202 |
|
|
return (((i[0] & 0x0e) << 1)
|
1203 |
|
|
| ((i[1] & 0xc0) >> 6));
|
1204 |
|
|
}
|
1205 |
|
|
|
1206 |
|
|
|
1207 |
|
|
static struct srcdest
|
1208 |
|
|
m32c_decode_srcdest4 (struct m32c_pv_state *st,
|
1209 |
|
|
int code, int size)
|
1210 |
|
|
{
|
1211 |
|
|
struct srcdest sd;
|
1212 |
|
|
|
1213 |
|
|
if (code < 6)
|
1214 |
|
|
sd.kind = (size == 2 ? srcdest_reg : srcdest_partial_reg);
|
1215 |
|
|
else
|
1216 |
|
|
sd.kind = srcdest_mem;
|
1217 |
|
|
|
1218 |
|
|
sd.addr = pv_unknown ();
|
1219 |
|
|
sd.reg = 0;
|
1220 |
|
|
|
1221 |
|
|
switch (code)
|
1222 |
|
|
{
|
1223 |
|
|
case 0x0: sd.reg = (size == 1 ? &st->r0 : &st->r0); break;
|
1224 |
|
|
case 0x1: sd.reg = (size == 1 ? &st->r0 : &st->r1); break;
|
1225 |
|
|
case 0x2: sd.reg = (size == 1 ? &st->r1 : &st->r2); break;
|
1226 |
|
|
case 0x3: sd.reg = (size == 1 ? &st->r1 : &st->r3); break;
|
1227 |
|
|
|
1228 |
|
|
case 0x4: sd.reg = &st->a0; break;
|
1229 |
|
|
case 0x5: sd.reg = &st->a1; break;
|
1230 |
|
|
|
1231 |
|
|
case 0x6: sd.addr = st->a0; break;
|
1232 |
|
|
case 0x7: sd.addr = st->a1; break;
|
1233 |
|
|
|
1234 |
|
|
case 0x8: sd.addr = pv_add_constant (st->a0, m32c_udisp8 (st)); break;
|
1235 |
|
|
case 0x9: sd.addr = pv_add_constant (st->a1, m32c_udisp8 (st)); break;
|
1236 |
|
|
case 0xa: sd.addr = pv_add_constant (st->sb, m32c_udisp8 (st)); break;
|
1237 |
|
|
case 0xb: sd.addr = pv_add_constant (st->fb, m32c_sdisp8 (st)); break;
|
1238 |
|
|
|
1239 |
|
|
case 0xc: sd.addr = pv_add_constant (st->a0, m32c_udisp16 (st)); break;
|
1240 |
|
|
case 0xd: sd.addr = pv_add_constant (st->a1, m32c_udisp16 (st)); break;
|
1241 |
|
|
case 0xe: sd.addr = pv_add_constant (st->sb, m32c_udisp16 (st)); break;
|
1242 |
|
|
case 0xf: sd.addr = pv_constant (m32c_udisp16 (st)); break;
|
1243 |
|
|
|
1244 |
|
|
default:
|
1245 |
|
|
gdb_assert (0);
|
1246 |
|
|
}
|
1247 |
|
|
|
1248 |
|
|
return sd;
|
1249 |
|
|
}
|
1250 |
|
|
|
1251 |
|
|
|
1252 |
|
|
static struct srcdest
|
1253 |
|
|
m32c_decode_sd23 (struct m32c_pv_state *st, int code, int size, int ind)
|
1254 |
|
|
{
|
1255 |
|
|
struct srcdest sd;
|
1256 |
|
|
|
1257 |
|
|
sd.addr = pv_unknown ();
|
1258 |
|
|
sd.reg = 0;
|
1259 |
|
|
|
1260 |
|
|
switch (code)
|
1261 |
|
|
{
|
1262 |
|
|
case 0x12:
|
1263 |
|
|
case 0x13:
|
1264 |
|
|
case 0x10:
|
1265 |
|
|
case 0x11:
|
1266 |
|
|
sd.kind = (size == 1) ? srcdest_partial_reg : srcdest_reg;
|
1267 |
|
|
break;
|
1268 |
|
|
|
1269 |
|
|
case 0x02:
|
1270 |
|
|
case 0x03:
|
1271 |
|
|
sd.kind = (size == 4) ? srcdest_reg : srcdest_partial_reg;
|
1272 |
|
|
break;
|
1273 |
|
|
|
1274 |
|
|
default:
|
1275 |
|
|
sd.kind = srcdest_mem;
|
1276 |
|
|
break;
|
1277 |
|
|
|
1278 |
|
|
}
|
1279 |
|
|
|
1280 |
|
|
switch (code)
|
1281 |
|
|
{
|
1282 |
|
|
case 0x12: sd.reg = &st->r0; break;
|
1283 |
|
|
case 0x13: sd.reg = &st->r1; break;
|
1284 |
|
|
case 0x10: sd.reg = ((size == 1) ? &st->r0 : &st->r2); break;
|
1285 |
|
|
case 0x11: sd.reg = ((size == 1) ? &st->r1 : &st->r3); break;
|
1286 |
|
|
case 0x02: sd.reg = &st->a0; break;
|
1287 |
|
|
case 0x03: sd.reg = &st->a1; break;
|
1288 |
|
|
|
1289 |
|
|
case 0x00: sd.addr = st->a0; break;
|
1290 |
|
|
case 0x01: sd.addr = st->a1; break;
|
1291 |
|
|
case 0x04: sd.addr = pv_add_constant (st->a0, m32c_udisp8 (st)); break;
|
1292 |
|
|
case 0x05: sd.addr = pv_add_constant (st->a1, m32c_udisp8 (st)); break;
|
1293 |
|
|
case 0x06: sd.addr = pv_add_constant (st->sb, m32c_udisp8 (st)); break;
|
1294 |
|
|
case 0x07: sd.addr = pv_add_constant (st->fb, m32c_sdisp8 (st)); break;
|
1295 |
|
|
case 0x08: sd.addr = pv_add_constant (st->a0, m32c_udisp16 (st)); break;
|
1296 |
|
|
case 0x09: sd.addr = pv_add_constant (st->a1, m32c_udisp16 (st)); break;
|
1297 |
|
|
case 0x0a: sd.addr = pv_add_constant (st->sb, m32c_udisp16 (st)); break;
|
1298 |
|
|
case 0x0b: sd.addr = pv_add_constant (st->fb, m32c_sdisp16 (st)); break;
|
1299 |
|
|
case 0x0c: sd.addr = pv_add_constant (st->a0, m32c_udisp24 (st)); break;
|
1300 |
|
|
case 0x0d: sd.addr = pv_add_constant (st->a1, m32c_udisp24 (st)); break;
|
1301 |
|
|
case 0x0f: sd.addr = pv_constant (m32c_udisp16 (st)); break;
|
1302 |
|
|
case 0x0e: sd.addr = pv_constant (m32c_udisp24 (st)); break;
|
1303 |
|
|
default:
|
1304 |
|
|
gdb_assert (0);
|
1305 |
|
|
}
|
1306 |
|
|
|
1307 |
|
|
if (ind)
|
1308 |
|
|
{
|
1309 |
|
|
sd.addr = m32c_srcdest_fetch (st, sd, 4);
|
1310 |
|
|
sd.kind = srcdest_mem;
|
1311 |
|
|
}
|
1312 |
|
|
|
1313 |
|
|
return sd;
|
1314 |
|
|
}
|
1315 |
|
|
|
1316 |
|
|
|
1317 |
|
|
/* The r16c and r32c machines have instructions with similar
|
1318 |
|
|
semantics, but completely different machine language encodings. So
|
1319 |
|
|
we break out the semantics into their own functions, and leave
|
1320 |
|
|
machine-specific decoding in m32c_analyze_prologue.
|
1321 |
|
|
|
1322 |
|
|
The following functions all expect their arguments already decoded,
|
1323 |
|
|
and they all return zero if analysis should continue past this
|
1324 |
|
|
instruction, or non-zero if analysis should stop. */
|
1325 |
|
|
|
1326 |
|
|
|
1327 |
|
|
/* Simulate an 'enter SIZE' instruction in STATE. */
|
1328 |
|
|
static int
|
1329 |
|
|
m32c_pv_enter (struct m32c_pv_state *state, int size)
|
1330 |
|
|
{
|
1331 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (state->arch);
|
1332 |
|
|
|
1333 |
|
|
/* If simulating this store would require us to forget
|
1334 |
|
|
everything we know about the stack frame in the name of
|
1335 |
|
|
accuracy, it would be better to just quit now. */
|
1336 |
|
|
if (pv_area_store_would_trash (state->stack, state->sp))
|
1337 |
|
|
return 1;
|
1338 |
|
|
|
1339 |
|
|
if (m32c_pv_push (state, state->fb, tdep->push_addr_bytes))
|
1340 |
|
|
return 1;
|
1341 |
|
|
state->fb = state->sp;
|
1342 |
|
|
state->sp = pv_add_constant (state->sp, -size);
|
1343 |
|
|
|
1344 |
|
|
return 0;
|
1345 |
|
|
}
|
1346 |
|
|
|
1347 |
|
|
|
1348 |
|
|
static int
|
1349 |
|
|
m32c_pv_pushm_one (struct m32c_pv_state *state, pv_t reg,
|
1350 |
|
|
int bit, int src, int size)
|
1351 |
|
|
{
|
1352 |
|
|
if (bit & src)
|
1353 |
|
|
{
|
1354 |
|
|
if (m32c_pv_push (state, reg, size))
|
1355 |
|
|
return 1;
|
1356 |
|
|
}
|
1357 |
|
|
|
1358 |
|
|
return 0;
|
1359 |
|
|
}
|
1360 |
|
|
|
1361 |
|
|
|
1362 |
|
|
/* Simulate a 'pushm SRC' instruction in STATE. */
|
1363 |
|
|
static int
|
1364 |
|
|
m32c_pv_pushm (struct m32c_pv_state *state, int src)
|
1365 |
|
|
{
|
1366 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (state->arch);
|
1367 |
|
|
|
1368 |
|
|
/* The bits in SRC indicating which registers to save are:
|
1369 |
|
|
r0 r1 r2 r3 a0 a1 sb fb */
|
1370 |
|
|
return
|
1371 |
|
|
( m32c_pv_pushm_one (state, state->fb, 0x01, src, tdep->push_addr_bytes)
|
1372 |
|
|
|| m32c_pv_pushm_one (state, state->sb, 0x02, src, tdep->push_addr_bytes)
|
1373 |
|
|
|| m32c_pv_pushm_one (state, state->a1, 0x04, src, tdep->push_addr_bytes)
|
1374 |
|
|
|| m32c_pv_pushm_one (state, state->a0, 0x08, src, tdep->push_addr_bytes)
|
1375 |
|
|
|| m32c_pv_pushm_one (state, state->r3, 0x10, src, 2)
|
1376 |
|
|
|| m32c_pv_pushm_one (state, state->r2, 0x20, src, 2)
|
1377 |
|
|
|| m32c_pv_pushm_one (state, state->r1, 0x40, src, 2)
|
1378 |
|
|
|| m32c_pv_pushm_one (state, state->r0, 0x80, src, 2));
|
1379 |
|
|
}
|
1380 |
|
|
|
1381 |
|
|
/* Return non-zero if VALUE is the first incoming argument register. */
|
1382 |
|
|
|
1383 |
|
|
static int
|
1384 |
|
|
m32c_is_1st_arg_reg (struct m32c_pv_state *state, pv_t value)
|
1385 |
|
|
{
|
1386 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (state->arch);
|
1387 |
|
|
return (value.kind == pvk_register
|
1388 |
|
|
&& (gdbarch_bfd_arch_info (state->arch)->mach == bfd_mach_m16c
|
1389 |
|
|
? (value.reg == tdep->r1->num)
|
1390 |
|
|
: (value.reg == tdep->r0->num))
|
1391 |
|
|
&& value.k == 0);
|
1392 |
|
|
}
|
1393 |
|
|
|
1394 |
|
|
/* Return non-zero if VALUE is an incoming argument register. */
|
1395 |
|
|
|
1396 |
|
|
static int
|
1397 |
|
|
m32c_is_arg_reg (struct m32c_pv_state *state, pv_t value)
|
1398 |
|
|
{
|
1399 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (state->arch);
|
1400 |
|
|
return (value.kind == pvk_register
|
1401 |
|
|
&& (gdbarch_bfd_arch_info (state->arch)->mach == bfd_mach_m16c
|
1402 |
|
|
? (value.reg == tdep->r1->num || value.reg == tdep->r2->num)
|
1403 |
|
|
: (value.reg == tdep->r0->num))
|
1404 |
|
|
&& value.k == 0);
|
1405 |
|
|
}
|
1406 |
|
|
|
1407 |
|
|
/* Return non-zero if a store of VALUE to LOC is probably spilling an
|
1408 |
|
|
argument register to its stack slot in STATE. Such instructions
|
1409 |
|
|
should be included in the prologue, if possible.
|
1410 |
|
|
|
1411 |
|
|
The store is a spill if:
|
1412 |
|
|
- the value being stored is the original value of an argument register;
|
1413 |
|
|
- the value has not already been stored somewhere in STACK; and
|
1414 |
|
|
- LOC is a stack slot (e.g., a memory location whose address is
|
1415 |
|
|
relative to the original value of the SP). */
|
1416 |
|
|
|
1417 |
|
|
static int
|
1418 |
|
|
m32c_is_arg_spill (struct m32c_pv_state *st,
|
1419 |
|
|
struct srcdest loc,
|
1420 |
|
|
pv_t value)
|
1421 |
|
|
{
|
1422 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (st->arch);
|
1423 |
|
|
|
1424 |
|
|
return (m32c_is_arg_reg (st, value)
|
1425 |
|
|
&& loc.kind == srcdest_mem
|
1426 |
|
|
&& pv_is_register (loc.addr, tdep->sp->num)
|
1427 |
|
|
&& ! pv_area_find_reg (st->stack, st->arch, value.reg, 0));
|
1428 |
|
|
}
|
1429 |
|
|
|
1430 |
|
|
/* Return non-zero if a store of VALUE to LOC is probably
|
1431 |
|
|
copying the struct return address into an address register
|
1432 |
|
|
for immediate use. This is basically a "spill" into the
|
1433 |
|
|
address register, instead of onto the stack.
|
1434 |
|
|
|
1435 |
|
|
The prerequisites are:
|
1436 |
|
|
- value being stored is original value of the FIRST arg register;
|
1437 |
|
|
- value has not already been stored on stack; and
|
1438 |
|
|
- LOC is an address register (a0 or a1). */
|
1439 |
|
|
|
1440 |
|
|
static int
|
1441 |
|
|
m32c_is_struct_return (struct m32c_pv_state *st,
|
1442 |
|
|
struct srcdest loc,
|
1443 |
|
|
pv_t value)
|
1444 |
|
|
{
|
1445 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (st->arch);
|
1446 |
|
|
|
1447 |
|
|
return (m32c_is_1st_arg_reg (st, value)
|
1448 |
|
|
&& !pv_area_find_reg (st->stack, st->arch, value.reg, 0)
|
1449 |
|
|
&& loc.kind == srcdest_reg
|
1450 |
|
|
&& (pv_is_register (*loc.reg, tdep->a0->num)
|
1451 |
|
|
|| pv_is_register (*loc.reg, tdep->a1->num)));
|
1452 |
|
|
}
|
1453 |
|
|
|
1454 |
|
|
/* Return non-zero if a 'pushm' saving the registers indicated by SRC
|
1455 |
|
|
was a register save:
|
1456 |
|
|
- all the named registers should have their original values, and
|
1457 |
|
|
- the stack pointer should be at a constant offset from the
|
1458 |
|
|
original stack pointer. */
|
1459 |
|
|
static int
|
1460 |
|
|
m32c_pushm_is_reg_save (struct m32c_pv_state *st, int src)
|
1461 |
|
|
{
|
1462 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (st->arch);
|
1463 |
|
|
/* The bits in SRC indicating which registers to save are:
|
1464 |
|
|
r0 r1 r2 r3 a0 a1 sb fb */
|
1465 |
|
|
return
|
1466 |
|
|
(pv_is_register (st->sp, tdep->sp->num)
|
1467 |
|
|
&& (! (src & 0x01) || pv_is_register_k (st->fb, tdep->fb->num, 0))
|
1468 |
|
|
&& (! (src & 0x02) || pv_is_register_k (st->sb, tdep->sb->num, 0))
|
1469 |
|
|
&& (! (src & 0x04) || pv_is_register_k (st->a1, tdep->a1->num, 0))
|
1470 |
|
|
&& (! (src & 0x08) || pv_is_register_k (st->a0, tdep->a0->num, 0))
|
1471 |
|
|
&& (! (src & 0x10) || pv_is_register_k (st->r3, tdep->r3->num, 0))
|
1472 |
|
|
&& (! (src & 0x20) || pv_is_register_k (st->r2, tdep->r2->num, 0))
|
1473 |
|
|
&& (! (src & 0x40) || pv_is_register_k (st->r1, tdep->r1->num, 0))
|
1474 |
|
|
&& (! (src & 0x80) || pv_is_register_k (st->r0, tdep->r0->num, 0)));
|
1475 |
|
|
}
|
1476 |
|
|
|
1477 |
|
|
|
1478 |
|
|
/* Function for finding saved registers in a 'struct pv_area'; we pass
|
1479 |
|
|
this to pv_area_scan.
|
1480 |
|
|
|
1481 |
|
|
If VALUE is a saved register, ADDR says it was saved at a constant
|
1482 |
|
|
offset from the frame base, and SIZE indicates that the whole
|
1483 |
|
|
register was saved, record its offset in RESULT_UNTYPED. */
|
1484 |
|
|
static void
|
1485 |
|
|
check_for_saved (void *prologue_untyped, pv_t addr, CORE_ADDR size, pv_t value)
|
1486 |
|
|
{
|
1487 |
|
|
struct m32c_prologue *prologue = (struct m32c_prologue *) prologue_untyped;
|
1488 |
|
|
struct gdbarch *arch = prologue->arch;
|
1489 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
|
1490 |
|
|
|
1491 |
|
|
/* Is this the unchanged value of some register being saved on the
|
1492 |
|
|
stack? */
|
1493 |
|
|
if (value.kind == pvk_register
|
1494 |
|
|
&& value.k == 0
|
1495 |
|
|
&& pv_is_register (addr, tdep->sp->num))
|
1496 |
|
|
{
|
1497 |
|
|
/* Some registers require special handling: they're saved as a
|
1498 |
|
|
larger value than the register itself. */
|
1499 |
|
|
CORE_ADDR saved_size = register_size (arch, value.reg);
|
1500 |
|
|
|
1501 |
|
|
if (value.reg == tdep->pc->num)
|
1502 |
|
|
saved_size = tdep->ret_addr_bytes;
|
1503 |
|
|
else if (register_type (arch, value.reg)
|
1504 |
|
|
== tdep->data_addr_reg_type)
|
1505 |
|
|
saved_size = tdep->push_addr_bytes;
|
1506 |
|
|
|
1507 |
|
|
if (size == saved_size)
|
1508 |
|
|
{
|
1509 |
|
|
/* Find which end of the saved value corresponds to our
|
1510 |
|
|
register. */
|
1511 |
|
|
if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG)
|
1512 |
|
|
prologue->reg_offset[value.reg]
|
1513 |
|
|
= (addr.k + saved_size - register_size (arch, value.reg));
|
1514 |
|
|
else
|
1515 |
|
|
prologue->reg_offset[value.reg] = addr.k;
|
1516 |
|
|
}
|
1517 |
|
|
}
|
1518 |
|
|
}
|
1519 |
|
|
|
1520 |
|
|
|
1521 |
|
|
/* Analyze the function prologue for ARCH at START, going no further
|
1522 |
|
|
than LIMIT, and place a description of what we found in
|
1523 |
|
|
PROLOGUE. */
|
1524 |
|
|
static void
|
1525 |
|
|
m32c_analyze_prologue (struct gdbarch *arch,
|
1526 |
|
|
CORE_ADDR start, CORE_ADDR limit,
|
1527 |
|
|
struct m32c_prologue *prologue)
|
1528 |
|
|
{
|
1529 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
|
1530 |
|
|
unsigned long mach = gdbarch_bfd_arch_info (arch)->mach;
|
1531 |
|
|
CORE_ADDR after_last_frame_related_insn;
|
1532 |
|
|
struct cleanup *back_to;
|
1533 |
|
|
struct m32c_pv_state st;
|
1534 |
|
|
|
1535 |
|
|
st.arch = arch;
|
1536 |
|
|
st.r0 = pv_register (tdep->r0->num, 0);
|
1537 |
|
|
st.r1 = pv_register (tdep->r1->num, 0);
|
1538 |
|
|
st.r2 = pv_register (tdep->r2->num, 0);
|
1539 |
|
|
st.r3 = pv_register (tdep->r3->num, 0);
|
1540 |
|
|
st.a0 = pv_register (tdep->a0->num, 0);
|
1541 |
|
|
st.a1 = pv_register (tdep->a1->num, 0);
|
1542 |
|
|
st.sb = pv_register (tdep->sb->num, 0);
|
1543 |
|
|
st.fb = pv_register (tdep->fb->num, 0);
|
1544 |
|
|
st.sp = pv_register (tdep->sp->num, 0);
|
1545 |
|
|
st.pc = pv_register (tdep->pc->num, 0);
|
1546 |
|
|
st.stack = make_pv_area (tdep->sp->num, gdbarch_addr_bit (arch));
|
1547 |
|
|
back_to = make_cleanup_free_pv_area (st.stack);
|
1548 |
|
|
|
1549 |
|
|
/* Record that the call instruction has saved the return address on
|
1550 |
|
|
the stack. */
|
1551 |
|
|
m32c_pv_push (&st, st.pc, tdep->ret_addr_bytes);
|
1552 |
|
|
|
1553 |
|
|
memset (prologue, 0, sizeof (*prologue));
|
1554 |
|
|
prologue->arch = arch;
|
1555 |
|
|
{
|
1556 |
|
|
int i;
|
1557 |
|
|
for (i = 0; i < M32C_MAX_NUM_REGS; i++)
|
1558 |
|
|
prologue->reg_offset[i] = 1;
|
1559 |
|
|
}
|
1560 |
|
|
|
1561 |
|
|
st.scan_pc = after_last_frame_related_insn = start;
|
1562 |
|
|
|
1563 |
|
|
while (st.scan_pc < limit)
|
1564 |
|
|
{
|
1565 |
|
|
pv_t pre_insn_fb = st.fb;
|
1566 |
|
|
pv_t pre_insn_sp = st.sp;
|
1567 |
|
|
|
1568 |
|
|
/* In theory we could get in trouble by trying to read ahead
|
1569 |
|
|
here, when we only know we're expecting one byte. In
|
1570 |
|
|
practice I doubt anyone will care, and it makes the rest of
|
1571 |
|
|
the code easier. */
|
1572 |
|
|
if (target_read_memory (st.scan_pc, st.insn, sizeof (st.insn)))
|
1573 |
|
|
/* If we can't fetch the instruction from memory, stop here
|
1574 |
|
|
and hope for the best. */
|
1575 |
|
|
break;
|
1576 |
|
|
st.next_addr = st.scan_pc;
|
1577 |
|
|
|
1578 |
|
|
/* The assembly instructions are written as they appear in the
|
1579 |
|
|
section of the processor manuals that describe the
|
1580 |
|
|
instruction encodings.
|
1581 |
|
|
|
1582 |
|
|
When a single assembly language instruction has several
|
1583 |
|
|
different machine-language encodings, the manual
|
1584 |
|
|
distinguishes them by a number in parens, before the
|
1585 |
|
|
mnemonic. Those numbers are included, as well.
|
1586 |
|
|
|
1587 |
|
|
The srcdest decoding instructions have the same names as the
|
1588 |
|
|
analogous functions in the simulator. */
|
1589 |
|
|
if (mach == bfd_mach_m16c)
|
1590 |
|
|
{
|
1591 |
|
|
/* (1) ENTER #imm8 */
|
1592 |
|
|
if (st.insn[0] == 0x7c && st.insn[1] == 0xf2)
|
1593 |
|
|
{
|
1594 |
|
|
if (m32c_pv_enter (&st, st.insn[2]))
|
1595 |
|
|
break;
|
1596 |
|
|
st.next_addr += 3;
|
1597 |
|
|
}
|
1598 |
|
|
/* (1) PUSHM src */
|
1599 |
|
|
else if (st.insn[0] == 0xec)
|
1600 |
|
|
{
|
1601 |
|
|
int src = st.insn[1];
|
1602 |
|
|
if (m32c_pv_pushm (&st, src))
|
1603 |
|
|
break;
|
1604 |
|
|
st.next_addr += 2;
|
1605 |
|
|
|
1606 |
|
|
if (m32c_pushm_is_reg_save (&st, src))
|
1607 |
|
|
after_last_frame_related_insn = st.next_addr;
|
1608 |
|
|
}
|
1609 |
|
|
|
1610 |
|
|
/* (6) MOV.size:G src, dest */
|
1611 |
|
|
else if ((st.insn[0] & 0xfe) == 0x72)
|
1612 |
|
|
{
|
1613 |
|
|
int size = (st.insn[0] & 0x01) ? 2 : 1;
|
1614 |
|
|
struct srcdest src;
|
1615 |
|
|
struct srcdest dest;
|
1616 |
|
|
pv_t src_value;
|
1617 |
|
|
st.next_addr += 2;
|
1618 |
|
|
|
1619 |
|
|
src
|
1620 |
|
|
= m32c_decode_srcdest4 (&st, (st.insn[1] >> 4) & 0xf, size);
|
1621 |
|
|
dest
|
1622 |
|
|
= m32c_decode_srcdest4 (&st, st.insn[1] & 0xf, size);
|
1623 |
|
|
src_value = m32c_srcdest_fetch (&st, src, size);
|
1624 |
|
|
|
1625 |
|
|
if (m32c_is_arg_spill (&st, dest, src_value))
|
1626 |
|
|
after_last_frame_related_insn = st.next_addr;
|
1627 |
|
|
else if (m32c_is_struct_return (&st, dest, src_value))
|
1628 |
|
|
after_last_frame_related_insn = st.next_addr;
|
1629 |
|
|
|
1630 |
|
|
if (m32c_srcdest_store (&st, dest, src_value, size))
|
1631 |
|
|
break;
|
1632 |
|
|
}
|
1633 |
|
|
|
1634 |
|
|
/* (1) LDC #IMM16, sp */
|
1635 |
|
|
else if (st.insn[0] == 0xeb
|
1636 |
|
|
&& st.insn[1] == 0x50)
|
1637 |
|
|
{
|
1638 |
|
|
st.next_addr += 2;
|
1639 |
|
|
st.sp = pv_constant (m32c_udisp16 (&st));
|
1640 |
|
|
}
|
1641 |
|
|
|
1642 |
|
|
else
|
1643 |
|
|
/* We've hit some instruction we don't know how to simulate.
|
1644 |
|
|
Strictly speaking, we should set every value we're
|
1645 |
|
|
tracking to "unknown". But we'll be optimistic, assume
|
1646 |
|
|
that we have enough information already, and stop
|
1647 |
|
|
analysis here. */
|
1648 |
|
|
break;
|
1649 |
|
|
}
|
1650 |
|
|
else
|
1651 |
|
|
{
|
1652 |
|
|
int src_indirect = 0;
|
1653 |
|
|
int dest_indirect = 0;
|
1654 |
|
|
int i = 0;
|
1655 |
|
|
|
1656 |
|
|
gdb_assert (mach == bfd_mach_m32c);
|
1657 |
|
|
|
1658 |
|
|
/* Check for prefix bytes indicating indirect addressing. */
|
1659 |
|
|
if (st.insn[0] == 0x41)
|
1660 |
|
|
{
|
1661 |
|
|
src_indirect = 1;
|
1662 |
|
|
i++;
|
1663 |
|
|
}
|
1664 |
|
|
else if (st.insn[0] == 0x09)
|
1665 |
|
|
{
|
1666 |
|
|
dest_indirect = 1;
|
1667 |
|
|
i++;
|
1668 |
|
|
}
|
1669 |
|
|
else if (st.insn[0] == 0x49)
|
1670 |
|
|
{
|
1671 |
|
|
src_indirect = dest_indirect = 1;
|
1672 |
|
|
i++;
|
1673 |
|
|
}
|
1674 |
|
|
|
1675 |
|
|
/* (1) ENTER #imm8 */
|
1676 |
|
|
if (st.insn[i] == 0xec)
|
1677 |
|
|
{
|
1678 |
|
|
if (m32c_pv_enter (&st, st.insn[i + 1]))
|
1679 |
|
|
break;
|
1680 |
|
|
st.next_addr += 2;
|
1681 |
|
|
}
|
1682 |
|
|
|
1683 |
|
|
/* (1) PUSHM src */
|
1684 |
|
|
else if (st.insn[i] == 0x8f)
|
1685 |
|
|
{
|
1686 |
|
|
int src = st.insn[i + 1];
|
1687 |
|
|
if (m32c_pv_pushm (&st, src))
|
1688 |
|
|
break;
|
1689 |
|
|
st.next_addr += 2;
|
1690 |
|
|
|
1691 |
|
|
if (m32c_pushm_is_reg_save (&st, src))
|
1692 |
|
|
after_last_frame_related_insn = st.next_addr;
|
1693 |
|
|
}
|
1694 |
|
|
|
1695 |
|
|
/* (7) MOV.size:G src, dest */
|
1696 |
|
|
else if ((st.insn[i] & 0x80) == 0x80
|
1697 |
|
|
&& (st.insn[i + 1] & 0x0f) == 0x0b
|
1698 |
|
|
&& m32c_get_src23 (&st.insn[i]) < 20
|
1699 |
|
|
&& m32c_get_dest23 (&st.insn[i]) < 20)
|
1700 |
|
|
{
|
1701 |
|
|
struct srcdest src;
|
1702 |
|
|
struct srcdest dest;
|
1703 |
|
|
pv_t src_value;
|
1704 |
|
|
int bw = st.insn[i] & 0x01;
|
1705 |
|
|
int size = bw ? 2 : 1;
|
1706 |
|
|
st.next_addr += 2;
|
1707 |
|
|
|
1708 |
|
|
src
|
1709 |
|
|
= m32c_decode_sd23 (&st, m32c_get_src23 (&st.insn[i]),
|
1710 |
|
|
size, src_indirect);
|
1711 |
|
|
dest
|
1712 |
|
|
= m32c_decode_sd23 (&st, m32c_get_dest23 (&st.insn[i]),
|
1713 |
|
|
size, dest_indirect);
|
1714 |
|
|
src_value = m32c_srcdest_fetch (&st, src, size);
|
1715 |
|
|
|
1716 |
|
|
if (m32c_is_arg_spill (&st, dest, src_value))
|
1717 |
|
|
after_last_frame_related_insn = st.next_addr;
|
1718 |
|
|
|
1719 |
|
|
if (m32c_srcdest_store (&st, dest, src_value, size))
|
1720 |
|
|
break;
|
1721 |
|
|
}
|
1722 |
|
|
/* (2) LDC #IMM24, sp */
|
1723 |
|
|
else if (st.insn[i] == 0xd5
|
1724 |
|
|
&& st.insn[i + 1] == 0x29)
|
1725 |
|
|
{
|
1726 |
|
|
st.next_addr += 2;
|
1727 |
|
|
st.sp = pv_constant (m32c_udisp24 (&st));
|
1728 |
|
|
}
|
1729 |
|
|
else
|
1730 |
|
|
/* We've hit some instruction we don't know how to simulate.
|
1731 |
|
|
Strictly speaking, we should set every value we're
|
1732 |
|
|
tracking to "unknown". But we'll be optimistic, assume
|
1733 |
|
|
that we have enough information already, and stop
|
1734 |
|
|
analysis here. */
|
1735 |
|
|
break;
|
1736 |
|
|
}
|
1737 |
|
|
|
1738 |
|
|
/* If this instruction changed the FB or decreased the SP (i.e.,
|
1739 |
|
|
allocated more stack space), then this may be a good place to
|
1740 |
|
|
declare the prologue finished. However, there are some
|
1741 |
|
|
exceptions:
|
1742 |
|
|
|
1743 |
|
|
- If the instruction just changed the FB back to its original
|
1744 |
|
|
value, then that's probably a restore instruction. The
|
1745 |
|
|
prologue should definitely end before that.
|
1746 |
|
|
|
1747 |
|
|
- If the instruction increased the value of the SP (that is,
|
1748 |
|
|
shrunk the frame), then it's probably part of a frame
|
1749 |
|
|
teardown sequence, and the prologue should end before
|
1750 |
|
|
that. */
|
1751 |
|
|
|
1752 |
|
|
if (! pv_is_identical (st.fb, pre_insn_fb))
|
1753 |
|
|
{
|
1754 |
|
|
if (! pv_is_register_k (st.fb, tdep->fb->num, 0))
|
1755 |
|
|
after_last_frame_related_insn = st.next_addr;
|
1756 |
|
|
}
|
1757 |
|
|
else if (! pv_is_identical (st.sp, pre_insn_sp))
|
1758 |
|
|
{
|
1759 |
|
|
/* The comparison of the constants looks odd, there, because
|
1760 |
|
|
.k is unsigned. All it really means is that the SP is
|
1761 |
|
|
lower than it was before the instruction. */
|
1762 |
|
|
if ( pv_is_register (pre_insn_sp, tdep->sp->num)
|
1763 |
|
|
&& pv_is_register (st.sp, tdep->sp->num)
|
1764 |
|
|
&& ((pre_insn_sp.k - st.sp.k) < (st.sp.k - pre_insn_sp.k)))
|
1765 |
|
|
after_last_frame_related_insn = st.next_addr;
|
1766 |
|
|
}
|
1767 |
|
|
|
1768 |
|
|
st.scan_pc = st.next_addr;
|
1769 |
|
|
}
|
1770 |
|
|
|
1771 |
|
|
/* Did we load a constant value into the stack pointer? */
|
1772 |
|
|
if (pv_is_constant (st.sp))
|
1773 |
|
|
prologue->kind = prologue_first_frame;
|
1774 |
|
|
|
1775 |
|
|
/* Alternatively, did we initialize the frame pointer? Remember
|
1776 |
|
|
that the CFA is the address after the return address. */
|
1777 |
|
|
if (pv_is_register (st.fb, tdep->sp->num))
|
1778 |
|
|
{
|
1779 |
|
|
prologue->kind = prologue_with_frame_ptr;
|
1780 |
|
|
prologue->frame_ptr_offset = st.fb.k;
|
1781 |
|
|
}
|
1782 |
|
|
|
1783 |
|
|
/* Is the frame size a known constant? Remember that frame_size is
|
1784 |
|
|
actually the offset from the CFA to the SP (i.e., a negative
|
1785 |
|
|
value). */
|
1786 |
|
|
else if (pv_is_register (st.sp, tdep->sp->num))
|
1787 |
|
|
{
|
1788 |
|
|
prologue->kind = prologue_sans_frame_ptr;
|
1789 |
|
|
prologue->frame_size = st.sp.k;
|
1790 |
|
|
}
|
1791 |
|
|
|
1792 |
|
|
/* We haven't been able to make sense of this function's frame. Treat
|
1793 |
|
|
it as the first frame. */
|
1794 |
|
|
else
|
1795 |
|
|
prologue->kind = prologue_first_frame;
|
1796 |
|
|
|
1797 |
|
|
/* Record where all the registers were saved. */
|
1798 |
|
|
pv_area_scan (st.stack, check_for_saved, (void *) prologue);
|
1799 |
|
|
|
1800 |
|
|
prologue->prologue_end = after_last_frame_related_insn;
|
1801 |
|
|
|
1802 |
|
|
do_cleanups (back_to);
|
1803 |
|
|
}
|
1804 |
|
|
|
1805 |
|
|
|
1806 |
|
|
static CORE_ADDR
|
1807 |
|
|
m32c_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR ip)
|
1808 |
|
|
{
|
1809 |
|
|
char *name;
|
1810 |
|
|
CORE_ADDR func_addr, func_end, sal_end;
|
1811 |
|
|
struct m32c_prologue p;
|
1812 |
|
|
|
1813 |
|
|
/* Try to find the extent of the function that contains IP. */
|
1814 |
|
|
if (! find_pc_partial_function (ip, &name, &func_addr, &func_end))
|
1815 |
|
|
return ip;
|
1816 |
|
|
|
1817 |
|
|
/* Find end by prologue analysis. */
|
1818 |
|
|
m32c_analyze_prologue (gdbarch, ip, func_end, &p);
|
1819 |
|
|
/* Find end by line info. */
|
1820 |
|
|
sal_end = skip_prologue_using_sal (gdbarch, ip);
|
1821 |
|
|
/* Return whichever is lower. */
|
1822 |
|
|
if (sal_end != 0 && sal_end != ip && sal_end < p.prologue_end)
|
1823 |
|
|
return sal_end;
|
1824 |
|
|
else
|
1825 |
|
|
return p.prologue_end;
|
1826 |
|
|
}
|
1827 |
|
|
|
1828 |
|
|
|
1829 |
|
|
|
1830 |
|
|
/* Stack unwinding. */
|
1831 |
|
|
|
1832 |
|
|
static struct m32c_prologue *
|
1833 |
|
|
m32c_analyze_frame_prologue (struct frame_info *this_frame,
|
1834 |
|
|
void **this_prologue_cache)
|
1835 |
|
|
{
|
1836 |
|
|
if (! *this_prologue_cache)
|
1837 |
|
|
{
|
1838 |
|
|
CORE_ADDR func_start = get_frame_func (this_frame);
|
1839 |
|
|
CORE_ADDR stop_addr = get_frame_pc (this_frame);
|
1840 |
|
|
|
1841 |
|
|
/* If we couldn't find any function containing the PC, then
|
1842 |
|
|
just initialize the prologue cache, but don't do anything. */
|
1843 |
|
|
if (! func_start)
|
1844 |
|
|
stop_addr = func_start;
|
1845 |
|
|
|
1846 |
|
|
*this_prologue_cache = FRAME_OBSTACK_ZALLOC (struct m32c_prologue);
|
1847 |
|
|
m32c_analyze_prologue (get_frame_arch (this_frame),
|
1848 |
|
|
func_start, stop_addr, *this_prologue_cache);
|
1849 |
|
|
}
|
1850 |
|
|
|
1851 |
|
|
return *this_prologue_cache;
|
1852 |
|
|
}
|
1853 |
|
|
|
1854 |
|
|
|
1855 |
|
|
static CORE_ADDR
|
1856 |
|
|
m32c_frame_base (struct frame_info *this_frame,
|
1857 |
|
|
void **this_prologue_cache)
|
1858 |
|
|
{
|
1859 |
|
|
struct m32c_prologue *p
|
1860 |
|
|
= m32c_analyze_frame_prologue (this_frame, this_prologue_cache);
|
1861 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
|
1862 |
|
|
|
1863 |
|
|
/* In functions that use alloca, the distance between the stack
|
1864 |
|
|
pointer and the frame base varies dynamically, so we can't use
|
1865 |
|
|
the SP plus static information like prologue analysis to find the
|
1866 |
|
|
frame base. However, such functions must have a frame pointer,
|
1867 |
|
|
to be able to restore the SP on exit. So whenever we do have a
|
1868 |
|
|
frame pointer, use that to find the base. */
|
1869 |
|
|
switch (p->kind)
|
1870 |
|
|
{
|
1871 |
|
|
case prologue_with_frame_ptr:
|
1872 |
|
|
{
|
1873 |
|
|
CORE_ADDR fb
|
1874 |
|
|
= get_frame_register_unsigned (this_frame, tdep->fb->num);
|
1875 |
|
|
return fb - p->frame_ptr_offset;
|
1876 |
|
|
}
|
1877 |
|
|
|
1878 |
|
|
case prologue_sans_frame_ptr:
|
1879 |
|
|
{
|
1880 |
|
|
CORE_ADDR sp
|
1881 |
|
|
= get_frame_register_unsigned (this_frame, tdep->sp->num);
|
1882 |
|
|
return sp - p->frame_size;
|
1883 |
|
|
}
|
1884 |
|
|
|
1885 |
|
|
case prologue_first_frame:
|
1886 |
|
|
return 0;
|
1887 |
|
|
|
1888 |
|
|
default:
|
1889 |
|
|
gdb_assert (0);
|
1890 |
|
|
}
|
1891 |
|
|
}
|
1892 |
|
|
|
1893 |
|
|
|
1894 |
|
|
static void
|
1895 |
|
|
m32c_this_id (struct frame_info *this_frame,
|
1896 |
|
|
void **this_prologue_cache,
|
1897 |
|
|
struct frame_id *this_id)
|
1898 |
|
|
{
|
1899 |
|
|
CORE_ADDR base = m32c_frame_base (this_frame, this_prologue_cache);
|
1900 |
|
|
|
1901 |
|
|
if (base)
|
1902 |
|
|
*this_id = frame_id_build (base, get_frame_func (this_frame));
|
1903 |
|
|
/* Otherwise, leave it unset, and that will terminate the backtrace. */
|
1904 |
|
|
}
|
1905 |
|
|
|
1906 |
|
|
|
1907 |
|
|
static struct value *
|
1908 |
|
|
m32c_prev_register (struct frame_info *this_frame,
|
1909 |
|
|
void **this_prologue_cache, int regnum)
|
1910 |
|
|
{
|
1911 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
|
1912 |
|
|
struct m32c_prologue *p
|
1913 |
|
|
= m32c_analyze_frame_prologue (this_frame, this_prologue_cache);
|
1914 |
|
|
CORE_ADDR frame_base = m32c_frame_base (this_frame, this_prologue_cache);
|
1915 |
|
|
int reg_size = register_size (get_frame_arch (this_frame), regnum);
|
1916 |
|
|
|
1917 |
|
|
if (regnum == tdep->sp->num)
|
1918 |
|
|
return frame_unwind_got_constant (this_frame, regnum, frame_base);
|
1919 |
|
|
|
1920 |
|
|
/* If prologue analysis says we saved this register somewhere,
|
1921 |
|
|
return a description of the stack slot holding it. */
|
1922 |
|
|
if (p->reg_offset[regnum] != 1)
|
1923 |
|
|
return frame_unwind_got_memory (this_frame, regnum,
|
1924 |
|
|
frame_base + p->reg_offset[regnum]);
|
1925 |
|
|
|
1926 |
|
|
/* Otherwise, presume we haven't changed the value of this
|
1927 |
|
|
register, and get it from the next frame. */
|
1928 |
|
|
return frame_unwind_got_register (this_frame, regnum, regnum);
|
1929 |
|
|
}
|
1930 |
|
|
|
1931 |
|
|
|
1932 |
|
|
static const struct frame_unwind m32c_unwind = {
|
1933 |
|
|
NORMAL_FRAME,
|
1934 |
|
|
m32c_this_id,
|
1935 |
|
|
m32c_prev_register,
|
1936 |
|
|
NULL,
|
1937 |
|
|
default_frame_sniffer
|
1938 |
|
|
};
|
1939 |
|
|
|
1940 |
|
|
|
1941 |
|
|
static CORE_ADDR
|
1942 |
|
|
m32c_unwind_pc (struct gdbarch *arch, struct frame_info *next_frame)
|
1943 |
|
|
{
|
1944 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
|
1945 |
|
|
return frame_unwind_register_unsigned (next_frame, tdep->pc->num);
|
1946 |
|
|
}
|
1947 |
|
|
|
1948 |
|
|
|
1949 |
|
|
static CORE_ADDR
|
1950 |
|
|
m32c_unwind_sp (struct gdbarch *arch, struct frame_info *next_frame)
|
1951 |
|
|
{
|
1952 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
|
1953 |
|
|
return frame_unwind_register_unsigned (next_frame, tdep->sp->num);
|
1954 |
|
|
}
|
1955 |
|
|
|
1956 |
|
|
|
1957 |
|
|
/* Inferior calls. */
|
1958 |
|
|
|
1959 |
|
|
/* The calling conventions, according to GCC:
|
1960 |
|
|
|
1961 |
|
|
r8c, m16c
|
1962 |
|
|
---------
|
1963 |
|
|
First arg may be passed in r1l or r1 if it (1) fits (QImode or
|
1964 |
|
|
HImode), (2) is named, and (3) is an integer or pointer type (no
|
1965 |
|
|
structs, floats, etc). Otherwise, it's passed on the stack.
|
1966 |
|
|
|
1967 |
|
|
Second arg may be passed in r2, same restrictions (but not QImode),
|
1968 |
|
|
even if the first arg is passed on the stack.
|
1969 |
|
|
|
1970 |
|
|
Third and further args are passed on the stack. No padding is
|
1971 |
|
|
used, stack "alignment" is 8 bits.
|
1972 |
|
|
|
1973 |
|
|
m32cm, m32c
|
1974 |
|
|
-----------
|
1975 |
|
|
|
1976 |
|
|
First arg may be passed in r0l or r0, same restrictions as above.
|
1977 |
|
|
|
1978 |
|
|
Second and further args are passed on the stack. Padding is used
|
1979 |
|
|
after QImode parameters (i.e. lower-addressed byte is the value,
|
1980 |
|
|
higher-addressed byte is the padding), stack "alignment" is 16
|
1981 |
|
|
bits. */
|
1982 |
|
|
|
1983 |
|
|
|
1984 |
|
|
/* Return true if TYPE is a type that can be passed in registers. (We
|
1985 |
|
|
ignore the size, and pay attention only to the type code;
|
1986 |
|
|
acceptable sizes depends on which register is being considered to
|
1987 |
|
|
hold it.) */
|
1988 |
|
|
static int
|
1989 |
|
|
m32c_reg_arg_type (struct type *type)
|
1990 |
|
|
{
|
1991 |
|
|
enum type_code code = TYPE_CODE (type);
|
1992 |
|
|
|
1993 |
|
|
return (code == TYPE_CODE_INT
|
1994 |
|
|
|| code == TYPE_CODE_ENUM
|
1995 |
|
|
|| code == TYPE_CODE_PTR
|
1996 |
|
|
|| code == TYPE_CODE_REF
|
1997 |
|
|
|| code == TYPE_CODE_BOOL
|
1998 |
|
|
|| code == TYPE_CODE_CHAR);
|
1999 |
|
|
}
|
2000 |
|
|
|
2001 |
|
|
|
2002 |
|
|
static CORE_ADDR
|
2003 |
|
|
m32c_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
|
2004 |
|
|
struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
|
2005 |
|
|
struct value **args, CORE_ADDR sp, int struct_return,
|
2006 |
|
|
CORE_ADDR struct_addr)
|
2007 |
|
|
{
|
2008 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
2009 |
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
2010 |
|
|
unsigned long mach = gdbarch_bfd_arch_info (gdbarch)->mach;
|
2011 |
|
|
CORE_ADDR cfa;
|
2012 |
|
|
int i;
|
2013 |
|
|
|
2014 |
|
|
/* The number of arguments given in this function's prototype, or
|
2015 |
|
|
zero if it has a non-prototyped function type. The m32c ABI
|
2016 |
|
|
passes arguments mentioned in the prototype differently from
|
2017 |
|
|
those in the ellipsis of a varargs function, or from those passed
|
2018 |
|
|
to a non-prototyped function. */
|
2019 |
|
|
int num_prototyped_args = 0;
|
2020 |
|
|
|
2021 |
|
|
{
|
2022 |
|
|
struct type *func_type = value_type (function);
|
2023 |
|
|
|
2024 |
|
|
/* Dereference function pointer types. */
|
2025 |
|
|
if (TYPE_CODE (func_type) == TYPE_CODE_PTR)
|
2026 |
|
|
func_type = TYPE_TARGET_TYPE (func_type);
|
2027 |
|
|
|
2028 |
|
|
gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC ||
|
2029 |
|
|
TYPE_CODE (func_type) == TYPE_CODE_METHOD);
|
2030 |
|
|
|
2031 |
|
|
#if 0
|
2032 |
|
|
/* The ABI description in gcc/config/m32c/m32c.abi says that
|
2033 |
|
|
we need to handle prototyped and non-prototyped functions
|
2034 |
|
|
separately, but the code in GCC doesn't actually do so. */
|
2035 |
|
|
if (TYPE_PROTOTYPED (func_type))
|
2036 |
|
|
#endif
|
2037 |
|
|
num_prototyped_args = TYPE_NFIELDS (func_type);
|
2038 |
|
|
}
|
2039 |
|
|
|
2040 |
|
|
/* First, if the function returns an aggregate by value, push a
|
2041 |
|
|
pointer to a buffer for it. This doesn't affect the way
|
2042 |
|
|
subsequent arguments are allocated to registers. */
|
2043 |
|
|
if (struct_return)
|
2044 |
|
|
{
|
2045 |
|
|
int ptr_len = TYPE_LENGTH (tdep->ptr_voyd);
|
2046 |
|
|
sp -= ptr_len;
|
2047 |
|
|
write_memory_unsigned_integer (sp, ptr_len, byte_order, struct_addr);
|
2048 |
|
|
}
|
2049 |
|
|
|
2050 |
|
|
/* Push the arguments. */
|
2051 |
|
|
for (i = nargs - 1; i >= 0; i--)
|
2052 |
|
|
{
|
2053 |
|
|
struct value *arg = args[i];
|
2054 |
|
|
const gdb_byte *arg_bits = value_contents (arg);
|
2055 |
|
|
struct type *arg_type = value_type (arg);
|
2056 |
|
|
ULONGEST arg_size = TYPE_LENGTH (arg_type);
|
2057 |
|
|
|
2058 |
|
|
/* Can it go in r1 or r1l (for m16c) or r0 or r0l (for m32c)? */
|
2059 |
|
|
if (i == 0
|
2060 |
|
|
&& arg_size <= 2
|
2061 |
|
|
&& i < num_prototyped_args
|
2062 |
|
|
&& m32c_reg_arg_type (arg_type))
|
2063 |
|
|
{
|
2064 |
|
|
/* Extract and re-store as an integer as a terse way to make
|
2065 |
|
|
sure it ends up in the least significant end of r1. (GDB
|
2066 |
|
|
should avoid assuming endianness, even on uni-endian
|
2067 |
|
|
processors.) */
|
2068 |
|
|
ULONGEST u = extract_unsigned_integer (arg_bits, arg_size,
|
2069 |
|
|
byte_order);
|
2070 |
|
|
struct m32c_reg *reg = (mach == bfd_mach_m16c) ? tdep->r1 : tdep->r0;
|
2071 |
|
|
regcache_cooked_write_unsigned (regcache, reg->num, u);
|
2072 |
|
|
}
|
2073 |
|
|
|
2074 |
|
|
/* Can it go in r2? */
|
2075 |
|
|
else if (mach == bfd_mach_m16c
|
2076 |
|
|
&& i == 1
|
2077 |
|
|
&& arg_size == 2
|
2078 |
|
|
&& i < num_prototyped_args
|
2079 |
|
|
&& m32c_reg_arg_type (arg_type))
|
2080 |
|
|
regcache_cooked_write (regcache, tdep->r2->num, arg_bits);
|
2081 |
|
|
|
2082 |
|
|
/* Everything else goes on the stack. */
|
2083 |
|
|
else
|
2084 |
|
|
{
|
2085 |
|
|
sp -= arg_size;
|
2086 |
|
|
|
2087 |
|
|
/* Align the stack. */
|
2088 |
|
|
if (mach == bfd_mach_m32c)
|
2089 |
|
|
sp &= ~1;
|
2090 |
|
|
|
2091 |
|
|
write_memory (sp, arg_bits, arg_size);
|
2092 |
|
|
}
|
2093 |
|
|
}
|
2094 |
|
|
|
2095 |
|
|
/* This is the CFA we use to identify the dummy frame. */
|
2096 |
|
|
cfa = sp;
|
2097 |
|
|
|
2098 |
|
|
/* Push the return address. */
|
2099 |
|
|
sp -= tdep->ret_addr_bytes;
|
2100 |
|
|
write_memory_unsigned_integer (sp, tdep->ret_addr_bytes, byte_order,
|
2101 |
|
|
bp_addr);
|
2102 |
|
|
|
2103 |
|
|
/* Update the stack pointer. */
|
2104 |
|
|
regcache_cooked_write_unsigned (regcache, tdep->sp->num, sp);
|
2105 |
|
|
|
2106 |
|
|
/* We need to borrow an odd trick from the i386 target here.
|
2107 |
|
|
|
2108 |
|
|
The value we return from this function gets used as the stack
|
2109 |
|
|
address (the CFA) for the dummy frame's ID. The obvious thing is
|
2110 |
|
|
to return the new TOS. However, that points at the return
|
2111 |
|
|
address, saved on the stack, which is inconsistent with the CFA's
|
2112 |
|
|
described by GCC's DWARF 2 .debug_frame information: DWARF 2
|
2113 |
|
|
.debug_frame info uses the address immediately after the saved
|
2114 |
|
|
return address. So you end up with a dummy frame whose CFA
|
2115 |
|
|
points at the return address, but the frame for the function
|
2116 |
|
|
being called has a CFA pointing after the return address: the
|
2117 |
|
|
younger CFA is *greater than* the older CFA. The sanity checks
|
2118 |
|
|
in frame.c don't like that.
|
2119 |
|
|
|
2120 |
|
|
So we try to be consistent with the CFA's used by DWARF 2.
|
2121 |
|
|
Having a dummy frame and a real frame with the *same* CFA is
|
2122 |
|
|
tolerable. */
|
2123 |
|
|
return cfa;
|
2124 |
|
|
}
|
2125 |
|
|
|
2126 |
|
|
|
2127 |
|
|
static struct frame_id
|
2128 |
|
|
m32c_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
|
2129 |
|
|
{
|
2130 |
|
|
/* This needs to return a frame ID whose PC is the return address
|
2131 |
|
|
passed to m32c_push_dummy_call, and whose stack_addr is the SP
|
2132 |
|
|
m32c_push_dummy_call returned.
|
2133 |
|
|
|
2134 |
|
|
m32c_unwind_sp gives us the CFA, which is the value the SP had
|
2135 |
|
|
before the return address was pushed. */
|
2136 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
2137 |
|
|
CORE_ADDR sp = get_frame_register_unsigned (this_frame, tdep->sp->num);
|
2138 |
|
|
return frame_id_build (sp, get_frame_pc (this_frame));
|
2139 |
|
|
}
|
2140 |
|
|
|
2141 |
|
|
|
2142 |
|
|
|
2143 |
|
|
/* Return values. */
|
2144 |
|
|
|
2145 |
|
|
/* Return value conventions, according to GCC:
|
2146 |
|
|
|
2147 |
|
|
r8c, m16c
|
2148 |
|
|
---------
|
2149 |
|
|
|
2150 |
|
|
QImode in r0l
|
2151 |
|
|
HImode in r0
|
2152 |
|
|
SImode in r2r0
|
2153 |
|
|
near pointer in r0
|
2154 |
|
|
far pointer in r2r0
|
2155 |
|
|
|
2156 |
|
|
Aggregate values (regardless of size) are returned by pushing a
|
2157 |
|
|
pointer to a temporary area on the stack after the args are pushed.
|
2158 |
|
|
The function fills in this area with the value. Note that this
|
2159 |
|
|
pointer on the stack does not affect how register arguments, if any,
|
2160 |
|
|
are configured.
|
2161 |
|
|
|
2162 |
|
|
m32cm, m32c
|
2163 |
|
|
-----------
|
2164 |
|
|
Same. */
|
2165 |
|
|
|
2166 |
|
|
/* Return non-zero if values of type TYPE are returned by storing them
|
2167 |
|
|
in a buffer whose address is passed on the stack, ahead of the
|
2168 |
|
|
other arguments. */
|
2169 |
|
|
static int
|
2170 |
|
|
m32c_return_by_passed_buf (struct type *type)
|
2171 |
|
|
{
|
2172 |
|
|
enum type_code code = TYPE_CODE (type);
|
2173 |
|
|
|
2174 |
|
|
return (code == TYPE_CODE_STRUCT
|
2175 |
|
|
|| code == TYPE_CODE_UNION);
|
2176 |
|
|
}
|
2177 |
|
|
|
2178 |
|
|
static enum return_value_convention
|
2179 |
|
|
m32c_return_value (struct gdbarch *gdbarch,
|
2180 |
|
|
struct type *func_type,
|
2181 |
|
|
struct type *valtype,
|
2182 |
|
|
struct regcache *regcache,
|
2183 |
|
|
gdb_byte *readbuf,
|
2184 |
|
|
const gdb_byte *writebuf)
|
2185 |
|
|
{
|
2186 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
2187 |
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
2188 |
|
|
enum return_value_convention conv;
|
2189 |
|
|
ULONGEST valtype_len = TYPE_LENGTH (valtype);
|
2190 |
|
|
|
2191 |
|
|
if (m32c_return_by_passed_buf (valtype))
|
2192 |
|
|
conv = RETURN_VALUE_STRUCT_CONVENTION;
|
2193 |
|
|
else
|
2194 |
|
|
conv = RETURN_VALUE_REGISTER_CONVENTION;
|
2195 |
|
|
|
2196 |
|
|
if (readbuf)
|
2197 |
|
|
{
|
2198 |
|
|
/* We should never be called to find values being returned by
|
2199 |
|
|
RETURN_VALUE_STRUCT_CONVENTION. Those can't be located,
|
2200 |
|
|
unless we made the call ourselves. */
|
2201 |
|
|
gdb_assert (conv == RETURN_VALUE_REGISTER_CONVENTION);
|
2202 |
|
|
|
2203 |
|
|
gdb_assert (valtype_len <= 8);
|
2204 |
|
|
|
2205 |
|
|
/* Anything that fits in r0 is returned there. */
|
2206 |
|
|
if (valtype_len <= TYPE_LENGTH (tdep->r0->type))
|
2207 |
|
|
{
|
2208 |
|
|
ULONGEST u;
|
2209 |
|
|
regcache_cooked_read_unsigned (regcache, tdep->r0->num, &u);
|
2210 |
|
|
store_unsigned_integer (readbuf, valtype_len, byte_order, u);
|
2211 |
|
|
}
|
2212 |
|
|
else
|
2213 |
|
|
{
|
2214 |
|
|
/* Everything else is passed in mem0, using as many bytes as
|
2215 |
|
|
needed. This is not what the Renesas tools do, but it's
|
2216 |
|
|
what GCC does at the moment. */
|
2217 |
|
|
struct minimal_symbol *mem0
|
2218 |
|
|
= lookup_minimal_symbol ("mem0", NULL, NULL);
|
2219 |
|
|
|
2220 |
|
|
if (! mem0)
|
2221 |
|
|
error ("The return value is stored in memory at 'mem0', "
|
2222 |
|
|
"but GDB cannot find\n"
|
2223 |
|
|
"its address.");
|
2224 |
|
|
read_memory (SYMBOL_VALUE_ADDRESS (mem0), readbuf, valtype_len);
|
2225 |
|
|
}
|
2226 |
|
|
}
|
2227 |
|
|
|
2228 |
|
|
if (writebuf)
|
2229 |
|
|
{
|
2230 |
|
|
/* We should never be called to store values to be returned
|
2231 |
|
|
using RETURN_VALUE_STRUCT_CONVENTION. We have no way of
|
2232 |
|
|
finding the buffer, unless we made the call ourselves. */
|
2233 |
|
|
gdb_assert (conv == RETURN_VALUE_REGISTER_CONVENTION);
|
2234 |
|
|
|
2235 |
|
|
gdb_assert (valtype_len <= 8);
|
2236 |
|
|
|
2237 |
|
|
/* Anything that fits in r0 is returned there. */
|
2238 |
|
|
if (valtype_len <= TYPE_LENGTH (tdep->r0->type))
|
2239 |
|
|
{
|
2240 |
|
|
ULONGEST u = extract_unsigned_integer (writebuf, valtype_len,
|
2241 |
|
|
byte_order);
|
2242 |
|
|
regcache_cooked_write_unsigned (regcache, tdep->r0->num, u);
|
2243 |
|
|
}
|
2244 |
|
|
else
|
2245 |
|
|
{
|
2246 |
|
|
/* Everything else is passed in mem0, using as many bytes as
|
2247 |
|
|
needed. This is not what the Renesas tools do, but it's
|
2248 |
|
|
what GCC does at the moment. */
|
2249 |
|
|
struct minimal_symbol *mem0
|
2250 |
|
|
= lookup_minimal_symbol ("mem0", NULL, NULL);
|
2251 |
|
|
|
2252 |
|
|
if (! mem0)
|
2253 |
|
|
error ("The return value is stored in memory at 'mem0', "
|
2254 |
|
|
"but GDB cannot find\n"
|
2255 |
|
|
" its address.");
|
2256 |
|
|
write_memory (SYMBOL_VALUE_ADDRESS (mem0),
|
2257 |
|
|
(char *) writebuf, valtype_len);
|
2258 |
|
|
}
|
2259 |
|
|
}
|
2260 |
|
|
|
2261 |
|
|
return conv;
|
2262 |
|
|
}
|
2263 |
|
|
|
2264 |
|
|
|
2265 |
|
|
|
2266 |
|
|
/* Trampolines. */
|
2267 |
|
|
|
2268 |
|
|
/* The m16c and m32c use a trampoline function for indirect function
|
2269 |
|
|
calls. An indirect call looks like this:
|
2270 |
|
|
|
2271 |
|
|
... push arguments ...
|
2272 |
|
|
... push target function address ...
|
2273 |
|
|
jsr.a m32c_jsri16
|
2274 |
|
|
|
2275 |
|
|
The code for m32c_jsri16 looks like this:
|
2276 |
|
|
|
2277 |
|
|
m32c_jsri16:
|
2278 |
|
|
|
2279 |
|
|
# Save return address.
|
2280 |
|
|
pop.w m32c_jsri_ret
|
2281 |
|
|
pop.b m32c_jsri_ret+2
|
2282 |
|
|
|
2283 |
|
|
# Store target function address.
|
2284 |
|
|
pop.w m32c_jsri_addr
|
2285 |
|
|
|
2286 |
|
|
# Re-push return address.
|
2287 |
|
|
push.b m32c_jsri_ret+2
|
2288 |
|
|
push.w m32c_jsri_ret
|
2289 |
|
|
|
2290 |
|
|
# Call the target function.
|
2291 |
|
|
jmpi.a m32c_jsri_addr
|
2292 |
|
|
|
2293 |
|
|
Without further information, GDB will treat calls to m32c_jsri16
|
2294 |
|
|
like calls to any other function. Since m32c_jsri16 doesn't have
|
2295 |
|
|
debugging information, that normally means that GDB sets a step-
|
2296 |
|
|
resume breakpoint and lets the program continue --- which is not
|
2297 |
|
|
what the user wanted. (Giving the trampoline debugging info
|
2298 |
|
|
doesn't help: the user expects the program to stop in the function
|
2299 |
|
|
their program is calling, not in some trampoline code they've never
|
2300 |
|
|
seen before.)
|
2301 |
|
|
|
2302 |
|
|
The gdbarch_skip_trampoline_code method tells GDB how to step
|
2303 |
|
|
through such trampoline functions transparently to the user. When
|
2304 |
|
|
given the address of a trampoline function's first instruction,
|
2305 |
|
|
gdbarch_skip_trampoline_code should return the address of the first
|
2306 |
|
|
instruction of the function really being called. If GDB decides it
|
2307 |
|
|
wants to step into that function, it will set a breakpoint there
|
2308 |
|
|
and silently continue to it.
|
2309 |
|
|
|
2310 |
|
|
We recognize the trampoline by name, and extract the target address
|
2311 |
|
|
directly from the stack. This isn't great, but recognizing by its
|
2312 |
|
|
code sequence seems more fragile. */
|
2313 |
|
|
|
2314 |
|
|
static CORE_ADDR
|
2315 |
|
|
m32c_skip_trampoline_code (struct frame_info *frame, CORE_ADDR stop_pc)
|
2316 |
|
|
{
|
2317 |
|
|
struct gdbarch *gdbarch = get_frame_arch (frame);
|
2318 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
2319 |
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
2320 |
|
|
|
2321 |
|
|
/* It would be nicer to simply look up the addresses of known
|
2322 |
|
|
trampolines once, and then compare stop_pc with them. However,
|
2323 |
|
|
we'd need to ensure that that cached address got invalidated when
|
2324 |
|
|
someone loaded a new executable, and I'm not quite sure of the
|
2325 |
|
|
best way to do that. find_pc_partial_function does do some
|
2326 |
|
|
caching, so we'll see how this goes. */
|
2327 |
|
|
char *name;
|
2328 |
|
|
CORE_ADDR start, end;
|
2329 |
|
|
|
2330 |
|
|
if (find_pc_partial_function (stop_pc, &name, &start, &end))
|
2331 |
|
|
{
|
2332 |
|
|
/* Are we stopped at the beginning of the trampoline function? */
|
2333 |
|
|
if (strcmp (name, "m32c_jsri16") == 0
|
2334 |
|
|
&& stop_pc == start)
|
2335 |
|
|
{
|
2336 |
|
|
/* Get the stack pointer. The return address is at the top,
|
2337 |
|
|
and the target function's address is just below that. We
|
2338 |
|
|
know it's a two-byte address, since the trampoline is
|
2339 |
|
|
m32c_jsri*16*. */
|
2340 |
|
|
CORE_ADDR sp = get_frame_sp (get_current_frame ());
|
2341 |
|
|
CORE_ADDR target
|
2342 |
|
|
= read_memory_unsigned_integer (sp + tdep->ret_addr_bytes,
|
2343 |
|
|
2, byte_order);
|
2344 |
|
|
|
2345 |
|
|
/* What we have now is the address of a jump instruction.
|
2346 |
|
|
What we need is the destination of that jump.
|
2347 |
|
|
The opcode is 1 byte, and the destination is the next 3 bytes.
|
2348 |
|
|
*/
|
2349 |
|
|
target = read_memory_unsigned_integer (target + 1, 3, byte_order);
|
2350 |
|
|
return target;
|
2351 |
|
|
}
|
2352 |
|
|
}
|
2353 |
|
|
|
2354 |
|
|
return 0;
|
2355 |
|
|
}
|
2356 |
|
|
|
2357 |
|
|
|
2358 |
|
|
/* Address/pointer conversions. */
|
2359 |
|
|
|
2360 |
|
|
/* On the m16c, there is a 24-bit address space, but only a very few
|
2361 |
|
|
instructions can generate addresses larger than 0xffff: jumps,
|
2362 |
|
|
jumps to subroutines, and the lde/std (load/store extended)
|
2363 |
|
|
instructions.
|
2364 |
|
|
|
2365 |
|
|
Since GCC can only support one size of pointer, we can't have
|
2366 |
|
|
distinct 'near' and 'far' pointer types; we have to pick one size
|
2367 |
|
|
for everything. If we wanted to use 24-bit pointers, then GCC
|
2368 |
|
|
would have to use lde and ste for all memory references, which
|
2369 |
|
|
would be terrible for performance and code size. So the GNU
|
2370 |
|
|
toolchain uses 16-bit pointers for everything, and gives up the
|
2371 |
|
|
ability to have pointers point outside the first 64k of memory.
|
2372 |
|
|
|
2373 |
|
|
However, as a special hack, we let the linker place functions at
|
2374 |
|
|
addresses above 0xffff, as long as it also places a trampoline in
|
2375 |
|
|
the low 64k for every function whose address is taken. Each
|
2376 |
|
|
trampoline consists of a single jmp.a instruction that jumps to the
|
2377 |
|
|
function's real entry point. Pointers to functions can be 16 bits
|
2378 |
|
|
long, even though the functions themselves are at higher addresses:
|
2379 |
|
|
the pointers refer to the trampolines, not the functions.
|
2380 |
|
|
|
2381 |
|
|
This complicates things for GDB, however: given the address of a
|
2382 |
|
|
function (from debug info or linker symbols, say) which could be
|
2383 |
|
|
anywhere in the 24-bit address space, how can we find an
|
2384 |
|
|
appropriate 16-bit value to use as a pointer to it?
|
2385 |
|
|
|
2386 |
|
|
If the linker has not generated a trampoline for the function,
|
2387 |
|
|
we're out of luck. Well, I guess we could malloc some space and
|
2388 |
|
|
write a jmp.a instruction to it, but I'm not going to get into that
|
2389 |
|
|
at the moment.
|
2390 |
|
|
|
2391 |
|
|
If the linker has generated a trampoline for the function, then it
|
2392 |
|
|
also emitted a symbol for the trampoline: if the function's linker
|
2393 |
|
|
symbol is named NAME, then the function's trampoline's linker
|
2394 |
|
|
symbol is named NAME.plt.
|
2395 |
|
|
|
2396 |
|
|
So, given a code address:
|
2397 |
|
|
- We try to find a linker symbol at that address.
|
2398 |
|
|
- If we find such a symbol named NAME, we look for a linker symbol
|
2399 |
|
|
named NAME.plt.
|
2400 |
|
|
- If we find such a symbol, we assume it is a trampoline, and use
|
2401 |
|
|
its address as the pointer value.
|
2402 |
|
|
|
2403 |
|
|
And, given a function pointer:
|
2404 |
|
|
- We try to find a linker symbol at that address named NAME.plt.
|
2405 |
|
|
- If we find such a symbol, we look for a linker symbol named NAME.
|
2406 |
|
|
- If we find that, we provide that as the function's address.
|
2407 |
|
|
- If any of the above steps fail, we return the original address
|
2408 |
|
|
unchanged; it might really be a function in the low 64k.
|
2409 |
|
|
|
2410 |
|
|
See? You *knew* there was a reason you wanted to be a computer
|
2411 |
|
|
programmer! :) */
|
2412 |
|
|
|
2413 |
|
|
static void
|
2414 |
|
|
m32c_m16c_address_to_pointer (struct gdbarch *gdbarch,
|
2415 |
|
|
struct type *type, gdb_byte *buf, CORE_ADDR addr)
|
2416 |
|
|
{
|
2417 |
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
2418 |
|
|
enum type_code target_code;
|
2419 |
|
|
gdb_assert (TYPE_CODE (type) == TYPE_CODE_PTR ||
|
2420 |
|
|
TYPE_CODE (type) == TYPE_CODE_REF);
|
2421 |
|
|
|
2422 |
|
|
target_code = TYPE_CODE (TYPE_TARGET_TYPE (type));
|
2423 |
|
|
|
2424 |
|
|
if (target_code == TYPE_CODE_FUNC || target_code == TYPE_CODE_METHOD)
|
2425 |
|
|
{
|
2426 |
|
|
char *func_name;
|
2427 |
|
|
char *tramp_name;
|
2428 |
|
|
struct minimal_symbol *tramp_msym;
|
2429 |
|
|
|
2430 |
|
|
/* Try to find a linker symbol at this address. */
|
2431 |
|
|
struct minimal_symbol *func_msym = lookup_minimal_symbol_by_pc (addr);
|
2432 |
|
|
|
2433 |
|
|
if (! func_msym)
|
2434 |
|
|
error (_("Cannot convert code address %s to function pointer:\n"
|
2435 |
|
|
"couldn't find a symbol at that address, to find trampoline."),
|
2436 |
|
|
paddress (gdbarch, addr));
|
2437 |
|
|
|
2438 |
|
|
func_name = SYMBOL_LINKAGE_NAME (func_msym);
|
2439 |
|
|
tramp_name = xmalloc (strlen (func_name) + 5);
|
2440 |
|
|
strcpy (tramp_name, func_name);
|
2441 |
|
|
strcat (tramp_name, ".plt");
|
2442 |
|
|
|
2443 |
|
|
/* Try to find a linker symbol for the trampoline. */
|
2444 |
|
|
tramp_msym = lookup_minimal_symbol (tramp_name, NULL, NULL);
|
2445 |
|
|
|
2446 |
|
|
/* We've either got another copy of the name now, or don't need
|
2447 |
|
|
the name any more. */
|
2448 |
|
|
xfree (tramp_name);
|
2449 |
|
|
|
2450 |
|
|
if (! tramp_msym)
|
2451 |
|
|
{
|
2452 |
|
|
CORE_ADDR ptrval;
|
2453 |
|
|
|
2454 |
|
|
/* No PLT entry found. Mask off the upper bits of the address
|
2455 |
|
|
to make a pointer. As noted in the warning to the user
|
2456 |
|
|
below, this value might be useful if converted back into
|
2457 |
|
|
an address by GDB, but will otherwise, almost certainly,
|
2458 |
|
|
be garbage.
|
2459 |
|
|
|
2460 |
|
|
Using this masked result does seem to be useful
|
2461 |
|
|
in gdb.cp/cplusfuncs.exp in which ~40 FAILs turn into
|
2462 |
|
|
PASSes. These results appear to be correct as well.
|
2463 |
|
|
|
2464 |
|
|
We print a warning here so that the user can make a
|
2465 |
|
|
determination about whether the result is useful or not. */
|
2466 |
|
|
ptrval = addr & 0xffff;
|
2467 |
|
|
|
2468 |
|
|
warning (_("Cannot convert code address %s to function pointer:\n"
|
2469 |
|
|
"couldn't find trampoline named '%s.plt'.\n"
|
2470 |
|
|
"Returning pointer value %s instead; this may produce\n"
|
2471 |
|
|
"a useful result if converted back into an address by GDB,\n"
|
2472 |
|
|
"but will most likely not be useful otherwise.\n"),
|
2473 |
|
|
paddress (gdbarch, addr), func_name,
|
2474 |
|
|
paddress (gdbarch, ptrval));
|
2475 |
|
|
|
2476 |
|
|
addr = ptrval;
|
2477 |
|
|
|
2478 |
|
|
}
|
2479 |
|
|
else
|
2480 |
|
|
{
|
2481 |
|
|
/* The trampoline's address is our pointer. */
|
2482 |
|
|
addr = SYMBOL_VALUE_ADDRESS (tramp_msym);
|
2483 |
|
|
}
|
2484 |
|
|
}
|
2485 |
|
|
|
2486 |
|
|
store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order, addr);
|
2487 |
|
|
}
|
2488 |
|
|
|
2489 |
|
|
|
2490 |
|
|
static CORE_ADDR
|
2491 |
|
|
m32c_m16c_pointer_to_address (struct gdbarch *gdbarch,
|
2492 |
|
|
struct type *type, const gdb_byte *buf)
|
2493 |
|
|
{
|
2494 |
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
2495 |
|
|
CORE_ADDR ptr;
|
2496 |
|
|
enum type_code target_code;
|
2497 |
|
|
|
2498 |
|
|
gdb_assert (TYPE_CODE (type) == TYPE_CODE_PTR ||
|
2499 |
|
|
TYPE_CODE (type) == TYPE_CODE_REF);
|
2500 |
|
|
|
2501 |
|
|
ptr = extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order);
|
2502 |
|
|
|
2503 |
|
|
target_code = TYPE_CODE (TYPE_TARGET_TYPE (type));
|
2504 |
|
|
|
2505 |
|
|
if (target_code == TYPE_CODE_FUNC || target_code == TYPE_CODE_METHOD)
|
2506 |
|
|
{
|
2507 |
|
|
/* See if there is a minimal symbol at that address whose name is
|
2508 |
|
|
"NAME.plt". */
|
2509 |
|
|
struct minimal_symbol *ptr_msym = lookup_minimal_symbol_by_pc (ptr);
|
2510 |
|
|
|
2511 |
|
|
if (ptr_msym)
|
2512 |
|
|
{
|
2513 |
|
|
char *ptr_msym_name = SYMBOL_LINKAGE_NAME (ptr_msym);
|
2514 |
|
|
int len = strlen (ptr_msym_name);
|
2515 |
|
|
|
2516 |
|
|
if (len > 4
|
2517 |
|
|
&& strcmp (ptr_msym_name + len - 4, ".plt") == 0)
|
2518 |
|
|
{
|
2519 |
|
|
struct minimal_symbol *func_msym;
|
2520 |
|
|
/* We have a .plt symbol; try to find the symbol for the
|
2521 |
|
|
corresponding function.
|
2522 |
|
|
|
2523 |
|
|
Since the trampoline contains a jump instruction, we
|
2524 |
|
|
could also just extract the jump's target address. I
|
2525 |
|
|
don't see much advantage one way or the other. */
|
2526 |
|
|
char *func_name = xmalloc (len - 4 + 1);
|
2527 |
|
|
memcpy (func_name, ptr_msym_name, len - 4);
|
2528 |
|
|
func_name[len - 4] = '\0';
|
2529 |
|
|
func_msym
|
2530 |
|
|
= lookup_minimal_symbol (func_name, NULL, NULL);
|
2531 |
|
|
|
2532 |
|
|
/* If we do have such a symbol, return its value as the
|
2533 |
|
|
function's true address. */
|
2534 |
|
|
if (func_msym)
|
2535 |
|
|
ptr = SYMBOL_VALUE_ADDRESS (func_msym);
|
2536 |
|
|
}
|
2537 |
|
|
}
|
2538 |
|
|
else
|
2539 |
|
|
{
|
2540 |
|
|
int aspace;
|
2541 |
|
|
|
2542 |
|
|
for (aspace = 1; aspace <= 15; aspace++)
|
2543 |
|
|
{
|
2544 |
|
|
ptr_msym = lookup_minimal_symbol_by_pc ((aspace << 16) | ptr);
|
2545 |
|
|
|
2546 |
|
|
if (ptr_msym)
|
2547 |
|
|
ptr |= aspace << 16;
|
2548 |
|
|
}
|
2549 |
|
|
}
|
2550 |
|
|
}
|
2551 |
|
|
|
2552 |
|
|
return ptr;
|
2553 |
|
|
}
|
2554 |
|
|
|
2555 |
|
|
static void
|
2556 |
|
|
m32c_virtual_frame_pointer (struct gdbarch *gdbarch, CORE_ADDR pc,
|
2557 |
|
|
int *frame_regnum,
|
2558 |
|
|
LONGEST *frame_offset)
|
2559 |
|
|
{
|
2560 |
|
|
char *name;
|
2561 |
|
|
CORE_ADDR func_addr, func_end, sal_end;
|
2562 |
|
|
struct m32c_prologue p;
|
2563 |
|
|
|
2564 |
|
|
struct regcache *regcache = get_current_regcache ();
|
2565 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
2566 |
|
|
|
2567 |
|
|
if (!find_pc_partial_function (pc, &name, &func_addr, &func_end))
|
2568 |
|
|
internal_error (__FILE__, __LINE__, _("No virtual frame pointer available"));
|
2569 |
|
|
|
2570 |
|
|
m32c_analyze_prologue (gdbarch, func_addr, pc, &p);
|
2571 |
|
|
switch (p.kind)
|
2572 |
|
|
{
|
2573 |
|
|
case prologue_with_frame_ptr:
|
2574 |
|
|
*frame_regnum = m32c_banked_register (tdep->fb, regcache)->num;
|
2575 |
|
|
*frame_offset = p.frame_ptr_offset;
|
2576 |
|
|
break;
|
2577 |
|
|
case prologue_sans_frame_ptr:
|
2578 |
|
|
*frame_regnum = m32c_banked_register (tdep->sp, regcache)->num;
|
2579 |
|
|
*frame_offset = p.frame_size;
|
2580 |
|
|
break;
|
2581 |
|
|
default:
|
2582 |
|
|
*frame_regnum = m32c_banked_register (tdep->sp, regcache)->num;
|
2583 |
|
|
*frame_offset = 0;
|
2584 |
|
|
break;
|
2585 |
|
|
}
|
2586 |
|
|
/* Sanity check */
|
2587 |
|
|
if (*frame_regnum > gdbarch_num_regs (gdbarch))
|
2588 |
|
|
internal_error (__FILE__, __LINE__, _("No virtual frame pointer available"));
|
2589 |
|
|
}
|
2590 |
|
|
|
2591 |
|
|
|
2592 |
|
|
/* Initialization. */
|
2593 |
|
|
|
2594 |
|
|
static struct gdbarch *
|
2595 |
|
|
m32c_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
|
2596 |
|
|
{
|
2597 |
|
|
struct gdbarch *arch;
|
2598 |
|
|
struct gdbarch_tdep *tdep;
|
2599 |
|
|
unsigned long mach = info.bfd_arch_info->mach;
|
2600 |
|
|
|
2601 |
|
|
/* Find a candidate among the list of architectures we've created
|
2602 |
|
|
already. */
|
2603 |
|
|
for (arches = gdbarch_list_lookup_by_info (arches, &info);
|
2604 |
|
|
arches != NULL;
|
2605 |
|
|
arches = gdbarch_list_lookup_by_info (arches->next, &info))
|
2606 |
|
|
return arches->gdbarch;
|
2607 |
|
|
|
2608 |
|
|
tdep = xcalloc (1, sizeof (*tdep));
|
2609 |
|
|
arch = gdbarch_alloc (&info, tdep);
|
2610 |
|
|
|
2611 |
|
|
/* Essential types. */
|
2612 |
|
|
make_types (arch);
|
2613 |
|
|
|
2614 |
|
|
/* Address/pointer conversions. */
|
2615 |
|
|
if (mach == bfd_mach_m16c)
|
2616 |
|
|
{
|
2617 |
|
|
set_gdbarch_address_to_pointer (arch, m32c_m16c_address_to_pointer);
|
2618 |
|
|
set_gdbarch_pointer_to_address (arch, m32c_m16c_pointer_to_address);
|
2619 |
|
|
}
|
2620 |
|
|
|
2621 |
|
|
/* Register set. */
|
2622 |
|
|
make_regs (arch);
|
2623 |
|
|
|
2624 |
|
|
/* Disassembly. */
|
2625 |
|
|
set_gdbarch_print_insn (arch, print_insn_m32c);
|
2626 |
|
|
|
2627 |
|
|
/* Breakpoints. */
|
2628 |
|
|
set_gdbarch_breakpoint_from_pc (arch, m32c_breakpoint_from_pc);
|
2629 |
|
|
|
2630 |
|
|
/* Prologue analysis and unwinding. */
|
2631 |
|
|
set_gdbarch_inner_than (arch, core_addr_lessthan);
|
2632 |
|
|
set_gdbarch_skip_prologue (arch, m32c_skip_prologue);
|
2633 |
|
|
set_gdbarch_unwind_pc (arch, m32c_unwind_pc);
|
2634 |
|
|
set_gdbarch_unwind_sp (arch, m32c_unwind_sp);
|
2635 |
|
|
#if 0
|
2636 |
|
|
/* I'm dropping the dwarf2 sniffer because it has a few problems.
|
2637 |
|
|
They may be in the dwarf2 cfi code in GDB, or they may be in
|
2638 |
|
|
the debug info emitted by the upstream toolchain. I don't
|
2639 |
|
|
know which, but I do know that the prologue analyzer works better.
|
2640 |
|
|
MVS 04/13/06
|
2641 |
|
|
*/
|
2642 |
|
|
dwarf2_append_sniffers (arch);
|
2643 |
|
|
#endif
|
2644 |
|
|
frame_unwind_append_unwinder (arch, &m32c_unwind);
|
2645 |
|
|
|
2646 |
|
|
/* Inferior calls. */
|
2647 |
|
|
set_gdbarch_push_dummy_call (arch, m32c_push_dummy_call);
|
2648 |
|
|
set_gdbarch_return_value (arch, m32c_return_value);
|
2649 |
|
|
set_gdbarch_dummy_id (arch, m32c_dummy_id);
|
2650 |
|
|
|
2651 |
|
|
/* Trampolines. */
|
2652 |
|
|
set_gdbarch_skip_trampoline_code (arch, m32c_skip_trampoline_code);
|
2653 |
|
|
|
2654 |
|
|
set_gdbarch_virtual_frame_pointer (arch, m32c_virtual_frame_pointer);
|
2655 |
|
|
|
2656 |
|
|
/* m32c function boundary addresses are not necessarily even.
|
2657 |
|
|
Therefore, the `vbit', which indicates a pointer to a virtual
|
2658 |
|
|
member function, is stored in the delta field, rather than as
|
2659 |
|
|
the low bit of a function pointer address.
|
2660 |
|
|
|
2661 |
|
|
In order to verify this, see the definition of
|
2662 |
|
|
TARGET_PTRMEMFUNC_VBIT_LOCATION in gcc/defaults.h along with the
|
2663 |
|
|
definition of FUNCTION_BOUNDARY in gcc/config/m32c/m32c.h. */
|
2664 |
|
|
set_gdbarch_vbit_in_delta (arch, 1);
|
2665 |
|
|
|
2666 |
|
|
return arch;
|
2667 |
|
|
}
|
2668 |
|
|
|
2669 |
|
|
/* Provide a prototype to silence -Wmissing-prototypes. */
|
2670 |
|
|
extern initialize_file_ftype _initialize_m32c_tdep;
|
2671 |
|
|
|
2672 |
|
|
void
|
2673 |
|
|
_initialize_m32c_tdep (void)
|
2674 |
|
|
{
|
2675 |
|
|
register_gdbarch_init (bfd_arch_m32c, m32c_gdbarch_init);
|
2676 |
|
|
|
2677 |
|
|
m32c_dma_reggroup = reggroup_new ("dma", USER_REGGROUP);
|
2678 |
|
|
}
|