1 |
330 |
jeremybenn |
/*
|
2 |
|
|
* (c) Copyright 1990-1996 OPEN SOFTWARE FOUNDATION, INC.
|
3 |
|
|
* (c) Copyright 1990-1996 HEWLETT-PACKARD COMPANY
|
4 |
|
|
* (c) Copyright 1990-1996 DIGITAL EQUIPMENT CORPORATION
|
5 |
|
|
* (c) Copyright 1991, 1992 Siemens-Nixdorf Information Systems
|
6 |
|
|
* To anyone who acknowledges that this file is provided "AS IS" without
|
7 |
|
|
* any express or implied warranty: permission to use, copy, modify, and
|
8 |
|
|
* distribute this file for any purpose is hereby granted without fee,
|
9 |
|
|
* provided that the above copyright notices and this notice appears in
|
10 |
|
|
* all source code copies, and that none of the names listed above be used
|
11 |
|
|
* in advertising or publicity pertaining to distribution of the software
|
12 |
|
|
* without specific, written prior permission. None of these organizations
|
13 |
|
|
* makes any representations about the suitability of this software for
|
14 |
|
|
* any purpose.
|
15 |
|
|
*/
|
16 |
|
|
/*
|
17 |
|
|
* Header file for priority scheduling
|
18 |
|
|
*/
|
19 |
|
|
|
20 |
|
|
|
21 |
|
|
#ifndef CMA_SCHED
|
22 |
|
|
#define CMA_SCHED
|
23 |
|
|
|
24 |
|
|
/*
|
25 |
|
|
* INCLUDE FILES
|
26 |
|
|
*/
|
27 |
|
|
|
28 |
|
|
/*
|
29 |
|
|
* CONSTANTS AND MACROS
|
30 |
|
|
*/
|
31 |
|
|
|
32 |
|
|
/*
|
33 |
|
|
* Scaling factor for integer priority calculations
|
34 |
|
|
*/
|
35 |
|
|
#define cma__c_prio_scale 8
|
36 |
|
|
|
37 |
|
|
#if _CMA_VENDOR_ == _CMA__APOLLO
|
38 |
|
|
/*
|
39 |
|
|
* FIX-ME: Apollo cc 6.8 blows contant folded "<<" and ">>"
|
40 |
|
|
*/
|
41 |
|
|
# define cma__scale_up(exp) ((exp) * 256)
|
42 |
|
|
# define cma__scale_dn(exp) ((exp) / 256)
|
43 |
|
|
#else
|
44 |
|
|
# define cma__scale_up(exp) ((exp) << cma__c_prio_scale)
|
45 |
|
|
# define cma__scale_dn(exp) ((exp) >> cma__c_prio_scale)
|
46 |
|
|
#endif
|
47 |
|
|
|
48 |
|
|
|
49 |
|
|
/*
|
50 |
|
|
* Min. num. of ticks between self-adjustments for priority adjusting policies.
|
51 |
|
|
*/
|
52 |
|
|
#define cma__c_prio_interval 10
|
53 |
|
|
|
54 |
|
|
|
55 |
|
|
/*
|
56 |
|
|
* Number of queues in each class of queues
|
57 |
|
|
*/
|
58 |
|
|
#define cma__c_prio_n_id 1 /* Very-low-priority class threads */
|
59 |
|
|
#define cma__c_prio_n_bg 8 /* Background class threads */
|
60 |
|
|
#define cma__c_prio_n_0 1 /* Very low priority throughput quartile */
|
61 |
|
|
#define cma__c_prio_n_1 2 /* Low priority throughput quartile */
|
62 |
|
|
#define cma__c_prio_n_2 3 /* Medium priority throughput quartile */
|
63 |
|
|
#define cma__c_prio_n_3 4 /* High priority throughput quartile */
|
64 |
|
|
#define cma__c_prio_n_rt 1 /* Real Time priority queues */
|
65 |
|
|
|
66 |
|
|
/*
|
67 |
|
|
* Number of queues to skip (offset) to get to the queues in this section of LA
|
68 |
|
|
*/
|
69 |
|
|
#define cma__c_prio_o_id 0
|
70 |
|
|
#define cma__c_prio_o_bg cma__c_prio_o_id + cma__c_prio_n_id
|
71 |
|
|
#define cma__c_prio_o_0 cma__c_prio_o_bg + cma__c_prio_n_bg
|
72 |
|
|
#define cma__c_prio_o_1 cma__c_prio_o_0 + cma__c_prio_n_0
|
73 |
|
|
#define cma__c_prio_o_2 cma__c_prio_o_1 + cma__c_prio_n_1
|
74 |
|
|
#define cma__c_prio_o_3 cma__c_prio_o_2 + cma__c_prio_n_2
|
75 |
|
|
#define cma__c_prio_o_rt cma__c_prio_o_3 + cma__c_prio_n_3
|
76 |
|
|
|
77 |
|
|
/*
|
78 |
|
|
* Ada_low: These threads are queued in the background queues, thus there
|
79 |
|
|
* must be enough queues to allow one queue for each Ada priority below the
|
80 |
|
|
* Ada default.
|
81 |
|
|
*/
|
82 |
|
|
#define cma__c_prio_o_al cma__c_prio_o_bg
|
83 |
|
|
|
84 |
|
|
/*
|
85 |
|
|
* Total number of ready queues, for declaration purposes
|
86 |
|
|
*/
|
87 |
|
|
#define cma__c_prio_n_tot \
|
88 |
|
|
cma__c_prio_n_id + cma__c_prio_n_bg + cma__c_prio_n_rt \
|
89 |
|
|
+ cma__c_prio_n_0 + cma__c_prio_n_1 + cma__c_prio_n_2 + cma__c_prio_n_3
|
90 |
|
|
|
91 |
|
|
/*
|
92 |
|
|
* Formulae for determining a thread's priority. Variable priorities (such
|
93 |
|
|
* as foreground and background) are scaled values.
|
94 |
|
|
*/
|
95 |
|
|
#define cma__sched_priority(tcb) \
|
96 |
|
|
((tcb)->sched.class == cma__c_class_fore ? cma__sched_prio_fore (tcb) \
|
97 |
|
|
:((tcb)->sched.class == cma__c_class_back ? cma__sched_prio_back (tcb) \
|
98 |
|
|
:((tcb)->sched.class == cma__c_class_rt ? cma__sched_prio_rt (tcb) \
|
99 |
|
|
:((tcb)->sched.class == cma__c_class_idle ? cma__sched_prio_idle (tcb) \
|
100 |
|
|
:(cma__bugcheck ("cma__sched_priority: unrecognized class"), 0) ))))
|
101 |
|
|
|
102 |
|
|
#define cma__sched_prio_fore(tcb) cma__sched_prio_fore_var (tcb)
|
103 |
|
|
#define cma__sched_prio_back(tcb) ((tcb)->sched.fixed_prio \
|
104 |
|
|
? cma__sched_prio_back_fix (tcb) : cma__sched_prio_back_var (tcb) )
|
105 |
|
|
#define cma__sched_prio_rt(tcb) ((tcb)->sched.priority)
|
106 |
|
|
#define cma__sched_prio_idle(tcb) ((tcb)->sched.priority)
|
107 |
|
|
|
108 |
|
|
#define cma__sched_prio_back_fix(tcb) \
|
109 |
|
|
(cma__g_prio_bg_min + (cma__g_prio_bg_max - cma__g_prio_bg_min) \
|
110 |
|
|
* ((tcb)->sched.priority + cma__c_prio_o_al - cma__c_prio_o_bg) \
|
111 |
|
|
/ cma__c_prio_n_bg)
|
112 |
|
|
|
113 |
|
|
/*
|
114 |
|
|
* FIX-ME: Enable after modeling (if we like it)
|
115 |
|
|
*/
|
116 |
|
|
#if 1
|
117 |
|
|
# define cma__sched_prio_fore_var(tcb) \
|
118 |
|
|
((cma__g_prio_fg_max + cma__g_prio_fg_min)/2)
|
119 |
|
|
# define cma__sched_prio_back_var(tcb) \
|
120 |
|
|
((cma__g_prio_bg_max + cma__g_prio_bg_min)/2)
|
121 |
|
|
#else
|
122 |
|
|
# define cma__sched_prio_back_var(tcb) cma__sched_prio_fore_var (tcb)
|
123 |
|
|
|
124 |
|
|
# if 1
|
125 |
|
|
/*
|
126 |
|
|
* Re-scale, since the division removes the scale factor.
|
127 |
|
|
* Scale and multiply before dividing to avoid loss of precision.
|
128 |
|
|
*/
|
129 |
|
|
# define cma__sched_prio_fore_var(tcb) \
|
130 |
|
|
((cma__g_vp_count * cma__scale_up((tcb)->sched.tot_time)) \
|
131 |
|
|
/ (tcb)->sched.cpu_time)
|
132 |
|
|
# else
|
133 |
|
|
/*
|
134 |
|
|
* Re-scale, since the division removes the scale factor.
|
135 |
|
|
* Scale and multiply before dividing to avoid loss of precision.
|
136 |
|
|
* Left shift the numerator to multiply by two.
|
137 |
|
|
*/
|
138 |
|
|
# define cma__sched_prio_fore_var(tcb) \
|
139 |
|
|
(((cma__g_vp_count * cma__scale_up((tcb)->sched.tot_time) \
|
140 |
|
|
* (tcb)->sched.priority * cma__g_init_frac_sum) << 1) \
|
141 |
|
|
/ ((tcb)->sched.cpu_time * (tcb)->sched.priority * cma__g_init_frac_sum \
|
142 |
|
|
+ (tcb)->sched.tot_time))
|
143 |
|
|
# endif
|
144 |
|
|
#endif
|
145 |
|
|
|
146 |
|
|
/*
|
147 |
|
|
* Update weighted-averaged, scaled tick counters
|
148 |
|
|
*/
|
149 |
|
|
#define cma__sched_update_time(ave, new) \
|
150 |
|
|
(ave) = (ave) - ((cma__scale_dn((ave)) - (new)) << (cma__c_prio_scale - 4))
|
151 |
|
|
|
152 |
|
|
#define cma__sched_parameterize(tcb, policy) { \
|
153 |
|
|
switch (policy) { \
|
154 |
|
|
case cma_c_sched_fifo : { \
|
155 |
|
|
(tcb)->sched.rtb = cma_c_true; \
|
156 |
|
|
(tcb)->sched.spp = cma_c_true; \
|
157 |
|
|
(tcb)->sched.fixed_prio = cma_c_true; \
|
158 |
|
|
(tcb)->sched.class = cma__c_class_rt; \
|
159 |
|
|
break; \
|
160 |
|
|
} \
|
161 |
|
|
case cma_c_sched_rr : { \
|
162 |
|
|
(tcb)->sched.rtb = cma_c_false; \
|
163 |
|
|
(tcb)->sched.spp = cma_c_true; \
|
164 |
|
|
(tcb)->sched.fixed_prio = cma_c_true; \
|
165 |
|
|
(tcb)->sched.class = cma__c_class_rt; \
|
166 |
|
|
break; \
|
167 |
|
|
} \
|
168 |
|
|
case cma_c_sched_throughput : { \
|
169 |
|
|
(tcb)->sched.rtb = cma_c_false; \
|
170 |
|
|
(tcb)->sched.spp = cma_c_false; \
|
171 |
|
|
(tcb)->sched.fixed_prio = cma_c_false; \
|
172 |
|
|
(tcb)->sched.class = cma__c_class_fore; \
|
173 |
|
|
break; \
|
174 |
|
|
} \
|
175 |
|
|
case cma_c_sched_background : { \
|
176 |
|
|
(tcb)->sched.rtb = cma_c_false; \
|
177 |
|
|
(tcb)->sched.spp = cma_c_false; \
|
178 |
|
|
(tcb)->sched.fixed_prio = cma_c_false; \
|
179 |
|
|
(tcb)->sched.class = cma__c_class_back; \
|
180 |
|
|
break; \
|
181 |
|
|
} \
|
182 |
|
|
case cma_c_sched_ada_low : { \
|
183 |
|
|
(tcb)->sched.rtb = cma_c_false; \
|
184 |
|
|
(tcb)->sched.spp = cma_c_true; \
|
185 |
|
|
(tcb)->sched.fixed_prio = cma_c_true; \
|
186 |
|
|
(tcb)->sched.class = cma__c_class_back; \
|
187 |
|
|
break; \
|
188 |
|
|
} \
|
189 |
|
|
case cma_c_sched_idle : { \
|
190 |
|
|
(tcb)->sched.rtb = cma_c_false; \
|
191 |
|
|
(tcb)->sched.spp = cma_c_false; \
|
192 |
|
|
(tcb)->sched.fixed_prio = cma_c_false; \
|
193 |
|
|
(tcb)->sched.class = cma__c_class_idle; \
|
194 |
|
|
break; \
|
195 |
|
|
} \
|
196 |
|
|
default : { \
|
197 |
|
|
cma__bugcheck ("cma__sched_parameterize: bad scheduling Policy"); \
|
198 |
|
|
break; \
|
199 |
|
|
} \
|
200 |
|
|
} \
|
201 |
|
|
}
|
202 |
|
|
|
203 |
|
|
/*
|
204 |
|
|
* TYPEDEFS
|
205 |
|
|
*/
|
206 |
|
|
|
207 |
|
|
/*
|
208 |
|
|
* Scheduling classes
|
209 |
|
|
*/
|
210 |
|
|
typedef enum CMA__T_SCHED_CLASS {
|
211 |
|
|
cma__c_class_rt,
|
212 |
|
|
cma__c_class_fore,
|
213 |
|
|
cma__c_class_back,
|
214 |
|
|
cma__c_class_idle
|
215 |
|
|
} cma__t_sched_class;
|
216 |
|
|
|
217 |
|
|
/*
|
218 |
|
|
* GLOBAL DATA
|
219 |
|
|
*/
|
220 |
|
|
|
221 |
|
|
/*
|
222 |
|
|
* Minimuma and maximum prioirities, for foreground and background threads,
|
223 |
|
|
* as of the last time the scheduler ran. (Scaled once.)
|
224 |
|
|
*/
|
225 |
|
|
extern cma_t_integer cma__g_prio_fg_min;
|
226 |
|
|
extern cma_t_integer cma__g_prio_fg_max;
|
227 |
|
|
extern cma_t_integer cma__g_prio_bg_min;
|
228 |
|
|
extern cma_t_integer cma__g_prio_bg_max;
|
229 |
|
|
|
230 |
|
|
/*
|
231 |
|
|
* The "m" values are the slopes of the four sections of linear approximation.
|
232 |
|
|
*
|
233 |
|
|
* cma__g_prio_m_I = 4*N(I)/cma__g_prio_range (Scaled once.)
|
234 |
|
|
*/
|
235 |
|
|
extern cma_t_integer cma__g_prio_m_0,
|
236 |
|
|
cma__g_prio_m_1,
|
237 |
|
|
cma__g_prio_m_2,
|
238 |
|
|
cma__g_prio_m_3;
|
239 |
|
|
|
240 |
|
|
/*
|
241 |
|
|
* The "b" values are the intercepts of the four sections of linear approx.
|
242 |
|
|
* (Not scaled.)
|
243 |
|
|
*
|
244 |
|
|
* cma__g_prio_b_I = -N(I)*(I*prio_max + (4-I)*prio_min)/prio_range + prio_o_I
|
245 |
|
|
*/
|
246 |
|
|
extern cma_t_integer cma__g_prio_b_0,
|
247 |
|
|
cma__g_prio_b_1,
|
248 |
|
|
cma__g_prio_b_2,
|
249 |
|
|
cma__g_prio_b_3;
|
250 |
|
|
|
251 |
|
|
/*
|
252 |
|
|
* The "p" values are the end points of the four sections of linear approx.
|
253 |
|
|
*
|
254 |
|
|
* cma__g_prio_p_I = cma__g_prio_fg_min + (I/4)*cma__g_prio_range
|
255 |
|
|
*
|
256 |
|
|
* [cma__g_prio_p_0 is not defined since it is not used (also, it is the same
|
257 |
|
|
* as cma__g_prio_fg_min).] (Scaled once.)
|
258 |
|
|
*/
|
259 |
|
|
extern cma_t_integer cma__g_prio_p_1,
|
260 |
|
|
cma__g_prio_p_2,
|
261 |
|
|
cma__g_prio_p_3;
|
262 |
|
|
|
263 |
|
|
/*
|
264 |
|
|
* Points to the next queue for the dispatcher to check for ready threads.
|
265 |
|
|
*/
|
266 |
|
|
extern cma_t_integer cma__g_next_ready_queue;
|
267 |
|
|
|
268 |
|
|
/*
|
269 |
|
|
* Points to the queues of virtual processors (for preempt victim search)
|
270 |
|
|
*/
|
271 |
|
|
extern cma__t_queue cma__g_run_vps;
|
272 |
|
|
extern cma__t_queue cma__g_susp_vps;
|
273 |
|
|
extern cma_t_integer cma__g_vp_count;
|
274 |
|
|
|
275 |
|
|
/*
|
276 |
|
|
* INTERNAL INTERFACES
|
277 |
|
|
*/
|
278 |
|
|
|
279 |
|
|
#endif
|