OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-stable/] [gdb-7.2/] [gdb/] [progspace.c] - Blame information for rev 859

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 330 jeremybenn
/* Program and address space management, for GDB, the GNU debugger.
2
 
3
   Copyright (C) 2009, 2010 Free Software Foundation, Inc.
4
 
5
   This file is part of GDB.
6
 
7
   This program is free software; you can redistribute it and/or modify
8
   it under the terms of the GNU General Public License as published by
9
   the Free Software Foundation; either version 3 of the License, or
10
   (at your option) any later version.
11
 
12
   This program is distributed in the hope that it will be useful,
13
   but WITHOUT ANY WARRANTY; without even the implied warranty of
14
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15
   GNU General Public License for more details.
16
 
17
   You should have received a copy of the GNU General Public License
18
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
19
 
20
#include "defs.h"
21
#include "gdbcmd.h"
22
#include "objfiles.h"
23
#include "arch-utils.h"
24
#include "gdbcore.h"
25
#include "solib.h"
26
#include "gdbthread.h"
27
 
28
/* The last program space number assigned.  */
29
int last_program_space_num = 0;
30
 
31
/* The head of the program spaces list.  */
32
struct program_space *program_spaces;
33
 
34
/* Pointer to the current program space.  */
35
struct program_space *current_program_space;
36
 
37
/* The last address space number assigned.  */
38
static int highest_address_space_num;
39
 
40
/* Prototypes for local functions */
41
 
42
static void program_space_alloc_data (struct program_space *);
43
static void program_space_free_data (struct program_space *);
44
 
45
 
46
/* An address space.  Currently this is not used for much other than
47
   for comparing if pspaces/inferior/threads see the same address
48
   space.  */
49
 
50
struct address_space
51
{
52
  int num;
53
};
54
 
55
/* Create a new address space object, and add it to the list.  */
56
 
57
struct address_space *
58
new_address_space (void)
59
{
60
  struct address_space *aspace;
61
 
62
  aspace = XZALLOC (struct address_space);
63
  aspace->num = ++highest_address_space_num;
64
 
65
  return aspace;
66
}
67
 
68
/* Maybe create a new address space object, and add it to the list, or
69
   return a pointer to an existing address space, in case inferiors
70
   share an address space on this target system.  */
71
 
72
struct address_space *
73
maybe_new_address_space (void)
74
{
75
  int shared_aspace = gdbarch_has_shared_address_space (target_gdbarch);
76
 
77
  if (shared_aspace)
78
    {
79
      /* Just return the first in the list.  */
80
      return program_spaces->aspace;
81
    }
82
 
83
  return new_address_space ();
84
}
85
 
86
static void
87
free_address_space (struct address_space *aspace)
88
{
89
  xfree (aspace);
90
}
91
 
92
int
93
address_space_num (struct address_space *aspace)
94
{
95
  return aspace->num;
96
}
97
 
98
/* Start counting over from scratch.  */
99
 
100
static void
101
init_address_spaces (void)
102
{
103
  highest_address_space_num = 0;
104
}
105
 
106
 
107
 
108
/* Adds a new empty program space to the program space list, and binds
109
   it to ASPACE.  Returns the pointer to the new object.  */
110
 
111
struct program_space *
112
add_program_space (struct address_space *aspace)
113
{
114
  struct program_space *pspace;
115
 
116
  pspace = XZALLOC (struct program_space);
117
 
118
  pspace->num = ++last_program_space_num;
119
  pspace->aspace = aspace;
120
 
121
  program_space_alloc_data (pspace);
122
 
123
  pspace->next = program_spaces;
124
  program_spaces = pspace;
125
 
126
  return pspace;
127
}
128
 
129
/* Releases program space PSPACE, and all its contents (shared
130
   libraries, objfiles, and any other references to the PSPACE in
131
   other modules).  It is an internal error to call this when PSPACE
132
   is the current program space, since there should always be a
133
   program space.  */
134
 
135
static void
136
release_program_space (struct program_space *pspace)
137
{
138
  struct cleanup *old_chain = save_current_program_space ();
139
 
140
  gdb_assert (pspace != current_program_space);
141
 
142
  set_current_program_space (pspace);
143
 
144
  breakpoint_program_space_exit (pspace);
145
  no_shared_libraries (NULL, 0);
146
  exec_close ();
147
  free_all_objfiles ();
148
  if (!gdbarch_has_shared_address_space (target_gdbarch))
149
    free_address_space (pspace->aspace);
150
  resize_section_table (&pspace->target_sections,
151
                        -resize_section_table (&pspace->target_sections, 0));
152
    /* Discard any data modules have associated with the PSPACE.  */
153
  program_space_free_data (pspace);
154
  xfree (pspace);
155
 
156
  do_cleanups (old_chain);
157
}
158
 
159
/* Unlinks PSPACE from the pspace list, and releases it.  */
160
 
161
void
162
remove_program_space (struct program_space *pspace)
163
{
164
  struct program_space *ss, **ss_link;
165
 
166
  ss = program_spaces;
167
  ss_link = &program_spaces;
168
  while (ss)
169
    {
170
      if (ss != pspace)
171
        {
172
          ss_link = &ss->next;
173
          ss = *ss_link;
174
          continue;
175
        }
176
 
177
      *ss_link = ss->next;
178
      release_program_space (ss);
179
      ss = *ss_link;
180
    }
181
}
182
 
183
/* Copies program space SRC to DEST.  Copies the main executable file,
184
   and the main symbol file.  Returns DEST.  */
185
 
186
struct program_space *
187
clone_program_space (struct program_space *dest, struct program_space *src)
188
{
189
  struct cleanup *old_chain;
190
 
191
  old_chain = save_current_program_space ();
192
 
193
  set_current_program_space (dest);
194
 
195
  if (src->ebfd != NULL)
196
    exec_file_attach (bfd_get_filename (src->ebfd), 0);
197
 
198
  if (src->symfile_object_file != NULL)
199
    symbol_file_add_main (src->symfile_object_file->name, 0);
200
 
201
  do_cleanups (old_chain);
202
  return dest;
203
}
204
 
205
/* Sets PSPACE as the current program space.  It is the caller's
206
   responsibility to make sure that the currently selected
207
   inferior/thread matches the selected program space.  */
208
 
209
void
210
set_current_program_space (struct program_space *pspace)
211
{
212
  if (current_program_space == pspace)
213
    return;
214
 
215
  gdb_assert (pspace != NULL);
216
 
217
  current_program_space = pspace;
218
 
219
  /* Different symbols change our view of the frame chain.  */
220
  reinit_frame_cache ();
221
}
222
 
223
/* A cleanups callback, helper for save_current_program_space
224
   below.  */
225
 
226
static void
227
restore_program_space (void *arg)
228
{
229
  struct program_space *saved_pspace = arg;
230
 
231
  set_current_program_space (saved_pspace);
232
}
233
 
234
/* Save the current program space so that it may be restored by a later
235
   call to do_cleanups.  Returns the struct cleanup pointer needed for
236
   later doing the cleanup.  */
237
 
238
struct cleanup *
239
save_current_program_space (void)
240
{
241
  struct cleanup *old_chain = make_cleanup (restore_program_space,
242
                                            current_program_space);
243
 
244
  return old_chain;
245
}
246
 
247
/* Returns true iff there's no inferior bound to PSPACE.  */
248
 
249
static int
250
pspace_empty_p (struct program_space *pspace)
251
{
252
  if (find_inferior_for_program_space (pspace) != NULL)
253
      return 0;
254
 
255
  return 1;
256
}
257
 
258
/* Prune away automatically added program spaces that aren't required
259
   anymore.  */
260
 
261
void
262
prune_program_spaces (void)
263
{
264
  struct program_space *ss, **ss_link;
265
  struct program_space *current = current_program_space;
266
 
267
  ss = program_spaces;
268
  ss_link = &program_spaces;
269
  while (ss)
270
    {
271
      if (ss == current || !pspace_empty_p (ss))
272
        {
273
          ss_link = &ss->next;
274
          ss = *ss_link;
275
          continue;
276
        }
277
 
278
      *ss_link = ss->next;
279
      release_program_space (ss);
280
      ss = *ss_link;
281
    }
282
}
283
 
284
/* Prints the list of program spaces and their details on UIOUT.  If
285
   REQUESTED is not -1, it's the ID of the pspace that should be
286
   printed.  Otherwise, all spaces are printed.  */
287
 
288
static void
289
print_program_space (struct ui_out *uiout, int requested)
290
{
291
  struct program_space *pspace;
292
  int count = 0;
293
  struct cleanup *old_chain;
294
 
295
  /* Might as well prune away unneeded ones, so the user doesn't even
296
     seem them.  */
297
  prune_program_spaces ();
298
 
299
  /* Compute number of pspaces we will print.  */
300
  ALL_PSPACES (pspace)
301
    {
302
      if (requested != -1 && pspace->num != requested)
303
        continue;
304
 
305
      ++count;
306
    }
307
 
308
  /* There should always be at least one.  */
309
  gdb_assert (count > 0);
310
 
311
  old_chain = make_cleanup_ui_out_table_begin_end (uiout, 3, count, "pspaces");
312
  ui_out_table_header (uiout, 1, ui_left, "current", "");
313
  ui_out_table_header (uiout, 4, ui_left, "id", "Id");
314
  ui_out_table_header (uiout, 17, ui_left, "exec", "Executable");
315
  ui_out_table_body (uiout);
316
 
317
  ALL_PSPACES (pspace)
318
    {
319
      struct cleanup *chain2;
320
      struct inferior *inf;
321
      int printed_header;
322
 
323
      if (requested != -1 && requested != pspace->num)
324
        continue;
325
 
326
      chain2 = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
327
 
328
      if (pspace == current_program_space)
329
        ui_out_field_string (uiout, "current", "*");
330
      else
331
        ui_out_field_skip (uiout, "current");
332
 
333
      ui_out_field_int (uiout, "id", pspace->num);
334
 
335
      if (pspace->ebfd)
336
        ui_out_field_string (uiout, "exec",
337
                             bfd_get_filename (pspace->ebfd));
338
      else
339
        ui_out_field_skip (uiout, "exec");
340
 
341
      /* Print extra info that doesn't really fit in tabular form.
342
         Currently, we print the list of inferiors bound to a pspace.
343
         There can be more than one inferior bound to the same pspace,
344
         e.g., both parent/child inferiors in a vfork, or, on targets
345
         that share pspaces between inferiors.  */
346
      printed_header = 0;
347
      for (inf = inferior_list; inf; inf = inf->next)
348
        if (inf->pspace == pspace)
349
          {
350
            if (!printed_header)
351
              {
352
                printed_header = 1;
353
                printf_filtered ("\n\tBound inferiors: ID %d (%s)",
354
                                 inf->num,
355
                                 target_pid_to_str (pid_to_ptid (inf->pid)));
356
              }
357
            else
358
              printf_filtered (", ID %d (%s)",
359
                               inf->num,
360
                               target_pid_to_str (pid_to_ptid (inf->pid)));
361
          }
362
 
363
      ui_out_text (uiout, "\n");
364
      do_cleanups (chain2);
365
    }
366
 
367
  do_cleanups (old_chain);
368
}
369
 
370
/* Boolean test for an already-known program space id.  */
371
 
372
static int
373
valid_program_space_id (int num)
374
{
375
  struct program_space *pspace;
376
 
377
  ALL_PSPACES (pspace)
378
    if (pspace->num == num)
379
      return 1;
380
 
381
  return 0;
382
}
383
 
384
/* If ARGS is NULL or empty, print information about all program
385
   spaces.  Otherwise, ARGS is a text representation of a LONG
386
   indicating which the program space to print information about.  */
387
 
388
static void
389
maintenance_info_program_spaces_command (char *args, int from_tty)
390
{
391
  int requested = -1;
392
 
393
  if (args && *args)
394
    {
395
      requested = parse_and_eval_long (args);
396
      if (!valid_program_space_id (requested))
397
        error (_("program space ID %d not known."), requested);
398
    }
399
 
400
  print_program_space (uiout, requested);
401
}
402
 
403
/* Simply returns the count of program spaces.  */
404
 
405
int
406
number_of_program_spaces (void)
407
{
408
  struct program_space *pspace;
409
  int count = 0;
410
 
411
  ALL_PSPACES (pspace)
412
    count++;
413
 
414
  return count;
415
}
416
 
417
/* Update all program spaces matching to address spaces.  The user may
418
   have created several program spaces, and loaded executables into
419
   them before connecting to the target interface that will create the
420
   inferiors.  All that happens before GDB has a chance to know if the
421
   inferiors will share an address space or not.  Call this after
422
   having connected to the target interface and having fetched the
423
   target description, to fixup the program/address spaces mappings.
424
 
425
   It is assumed that there are no bound inferiors yet, otherwise,
426
   they'd be left with stale referenced to released aspaces.  */
427
 
428
void
429
update_address_spaces (void)
430
{
431
  int shared_aspace = gdbarch_has_shared_address_space (target_gdbarch);
432
  struct program_space *pspace;
433
  struct inferior *inf;
434
 
435
  init_address_spaces ();
436
 
437
  if (shared_aspace)
438
    {
439
      struct address_space *aspace = new_address_space ();
440
 
441
      free_address_space (current_program_space->aspace);
442
      ALL_PSPACES (pspace)
443
        pspace->aspace = aspace;
444
    }
445
  else
446
    ALL_PSPACES (pspace)
447
      {
448
        free_address_space (pspace->aspace);
449
        pspace->aspace = new_address_space ();
450
      }
451
 
452
  for (inf = inferior_list; inf; inf = inf->next)
453
    if (gdbarch_has_global_solist (target_gdbarch))
454
      inf->aspace = maybe_new_address_space ();
455
    else
456
      inf->aspace = inf->pspace->aspace;
457
}
458
 
459
/* Save the current program space so that it may be restored by a later
460
   call to do_cleanups.  Returns the struct cleanup pointer needed for
461
   later doing the cleanup.  */
462
 
463
struct cleanup *
464
save_current_space_and_thread (void)
465
{
466
  struct cleanup *old_chain;
467
 
468
  /* If restoring to null thread, we need to restore the pspace as
469
     well, hence, we need to save the current program space first.  */
470
  old_chain = save_current_program_space ();
471
  save_current_inferior ();
472
  make_cleanup_restore_current_thread ();
473
 
474
  return old_chain;
475
}
476
 
477
/* Switches full context to program space PSPACE.  Switches to the
478
   first thread found bound to PSPACE.  */
479
 
480
void
481
switch_to_program_space_and_thread (struct program_space *pspace)
482
{
483
  struct inferior *inf;
484
 
485
  inf = find_inferior_for_program_space (pspace);
486
  if (inf != NULL)
487
    {
488
      struct thread_info *tp;
489
 
490
      tp = any_live_thread_of_process (inf->pid);
491
      if (tp != NULL)
492
        {
493
          switch_to_thread (tp->ptid);
494
          /* Switching thread switches pspace implicitly.  We're
495
             done.  */
496
          return;
497
        }
498
    }
499
 
500
  switch_to_thread (null_ptid);
501
  set_current_program_space (pspace);
502
}
503
 
504
 
505
 
506
/* Keep a registry of per-program_space data-pointers required by other GDB
507
   modules.  */
508
 
509
struct program_space_data
510
{
511
  unsigned index;
512
  void (*cleanup) (struct program_space *, void *);
513
};
514
 
515
struct program_space_data_registration
516
{
517
  struct program_space_data *data;
518
  struct program_space_data_registration *next;
519
};
520
 
521
struct program_space_data_registry
522
{
523
  struct program_space_data_registration *registrations;
524
  unsigned num_registrations;
525
};
526
 
527
static struct program_space_data_registry program_space_data_registry
528
  = { NULL, 0 };
529
 
530
const struct program_space_data *
531
register_program_space_data_with_cleanup
532
  (void (*cleanup) (struct program_space *, void *))
533
{
534
  struct program_space_data_registration **curr;
535
 
536
  /* Append new registration.  */
537
  for (curr = &program_space_data_registry.registrations;
538
       *curr != NULL; curr = &(*curr)->next);
539
 
540
  *curr = XMALLOC (struct program_space_data_registration);
541
  (*curr)->next = NULL;
542
  (*curr)->data = XMALLOC (struct program_space_data);
543
  (*curr)->data->index = program_space_data_registry.num_registrations++;
544
  (*curr)->data->cleanup = cleanup;
545
 
546
  return (*curr)->data;
547
}
548
 
549
const struct program_space_data *
550
register_program_space_data (void)
551
{
552
  return register_program_space_data_with_cleanup (NULL);
553
}
554
 
555
static void
556
program_space_alloc_data (struct program_space *pspace)
557
{
558
  gdb_assert (pspace->data == NULL);
559
  pspace->num_data = program_space_data_registry.num_registrations;
560
  pspace->data = XCALLOC (pspace->num_data, void *);
561
}
562
 
563
static void
564
program_space_free_data (struct program_space *pspace)
565
{
566
  gdb_assert (pspace->data != NULL);
567
  clear_program_space_data (pspace);
568
  xfree (pspace->data);
569
  pspace->data = NULL;
570
}
571
 
572
void
573
clear_program_space_data (struct program_space *pspace)
574
{
575
  struct program_space_data_registration *registration;
576
  int i;
577
 
578
  gdb_assert (pspace->data != NULL);
579
 
580
  for (registration = program_space_data_registry.registrations, i = 0;
581
       i < pspace->num_data;
582
       registration = registration->next, i++)
583
    if (pspace->data[i] != NULL && registration->data->cleanup)
584
      registration->data->cleanup (pspace, pspace->data[i]);
585
 
586
  memset (pspace->data, 0, pspace->num_data * sizeof (void *));
587
}
588
 
589
void
590
set_program_space_data (struct program_space *pspace,
591
                       const struct program_space_data *data,
592
                       void *value)
593
{
594
  gdb_assert (data->index < pspace->num_data);
595
  pspace->data[data->index] = value;
596
}
597
 
598
void *
599
program_space_data (struct program_space *pspace, const struct program_space_data *data)
600
{
601
  gdb_assert (data->index < pspace->num_data);
602
  return pspace->data[data->index];
603
}
604
 
605
 
606
 
607
void
608
initialize_progspace (void)
609
{
610
  add_cmd ("program-spaces", class_maintenance,
611
           maintenance_info_program_spaces_command, _("\
612
Info about currently known program spaces."),
613
           &maintenanceinfolist);
614
 
615
  /* There's always one program space.  Note that this function isn't
616
     an automatic _initialize_foo function, since other
617
     _initialize_foo routines may need to install their per-pspace
618
     data keys.  We can only allocate a progspace when all those
619
     modules have done that.  Do this before
620
     initialize_current_architecture, because that accesses exec_bfd,
621
     which in turn dereferences current_program_space.  */
622
  current_program_space = add_program_space (new_address_space ());
623
}

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.