OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-stable/] [gdb-7.2/] [gdb/] [rs6000-aix-tdep.c] - Blame information for rev 853

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 330 jeremybenn
/* Native support code for PPC AIX, for GDB the GNU debugger.
2
 
3
   Copyright (C) 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
4
 
5
   Free Software Foundation, Inc.
6
 
7
   This file is part of GDB.
8
 
9
   This program is free software; you can redistribute it and/or modify
10
   it under the terms of the GNU General Public License as published by
11
   the Free Software Foundation; either version 3 of the License, or
12
   (at your option) any later version.
13
 
14
   This program is distributed in the hope that it will be useful,
15
   but WITHOUT ANY WARRANTY; without even the implied warranty of
16
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17
   GNU General Public License for more details.
18
 
19
   You should have received a copy of the GNU General Public License
20
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
21
 
22
#include "defs.h"
23
#include "gdb_string.h"
24
#include "gdb_assert.h"
25
#include "osabi.h"
26
#include "regcache.h"
27
#include "regset.h"
28
#include "gdbtypes.h"
29
#include "gdbcore.h"
30
#include "target.h"
31
#include "value.h"
32
#include "infcall.h"
33
#include "objfiles.h"
34
#include "breakpoint.h"
35
#include "rs6000-tdep.h"
36
#include "ppc-tdep.h"
37
#include "exceptions.h"
38
 
39
/* Hook for determining the TOC address when calling functions in the
40
   inferior under AIX. The initialization code in rs6000-nat.c sets
41
   this hook to point to find_toc_address.  */
42
 
43
CORE_ADDR (*rs6000_find_toc_address_hook) (CORE_ADDR) = NULL;
44
 
45
/* If the kernel has to deliver a signal, it pushes a sigcontext
46
   structure on the stack and then calls the signal handler, passing
47
   the address of the sigcontext in an argument register. Usually
48
   the signal handler doesn't save this register, so we have to
49
   access the sigcontext structure via an offset from the signal handler
50
   frame.
51
   The following constants were determined by experimentation on AIX 3.2.  */
52
#define SIG_FRAME_PC_OFFSET 96
53
#define SIG_FRAME_LR_OFFSET 108
54
#define SIG_FRAME_FP_OFFSET 284
55
 
56
 
57
/* Core file support.  */
58
 
59
static struct ppc_reg_offsets rs6000_aix32_reg_offsets =
60
{
61
  /* General-purpose registers.  */
62
  208, /* r0_offset */
63
  4,  /* gpr_size */
64
  4,  /* xr_size */
65
  24, /* pc_offset */
66
  28, /* ps_offset */
67
  32, /* cr_offset */
68
  36, /* lr_offset */
69
  40, /* ctr_offset */
70
  44, /* xer_offset */
71
  48, /* mq_offset */
72
 
73
  /* Floating-point registers.  */
74
  336, /* f0_offset */
75
  56, /* fpscr_offset */
76
  4,  /* fpscr_size */
77
 
78
  /* AltiVec registers.  */
79
  -1, /* vr0_offset */
80
  -1, /* vscr_offset */
81
  -1 /* vrsave_offset */
82
};
83
 
84
static struct ppc_reg_offsets rs6000_aix64_reg_offsets =
85
{
86
  /* General-purpose registers.  */
87
  0, /* r0_offset */
88
  8,  /* gpr_size */
89
  4,  /* xr_size */
90
  264, /* pc_offset */
91
  256, /* ps_offset */
92
  288, /* cr_offset */
93
  272, /* lr_offset */
94
  280, /* ctr_offset */
95
  292, /* xer_offset */
96
  -1, /* mq_offset */
97
 
98
  /* Floating-point registers.  */
99
  312, /* f0_offset */
100
  296, /* fpscr_offset */
101
  4,  /* fpscr_size */
102
 
103
  /* AltiVec registers.  */
104
  -1, /* vr0_offset */
105
  -1, /* vscr_offset */
106
  -1 /* vrsave_offset */
107
};
108
 
109
 
110
/* Supply register REGNUM in the general-purpose register set REGSET
111
   from the buffer specified by GREGS and LEN to register cache
112
   REGCACHE.  If REGNUM is -1, do this for all registers in REGSET.  */
113
 
114
static void
115
rs6000_aix_supply_regset (const struct regset *regset,
116
                          struct regcache *regcache, int regnum,
117
                          const void *gregs, size_t len)
118
{
119
  ppc_supply_gregset (regset, regcache, regnum, gregs, len);
120
  ppc_supply_fpregset (regset, regcache, regnum, gregs, len);
121
}
122
 
123
/* Collect register REGNUM in the general-purpose register set
124
   REGSET. from register cache REGCACHE into the buffer specified by
125
   GREGS and LEN.  If REGNUM is -1, do this for all registers in
126
   REGSET.  */
127
 
128
static void
129
rs6000_aix_collect_regset (const struct regset *regset,
130
                           const struct regcache *regcache, int regnum,
131
                           void *gregs, size_t len)
132
{
133
  ppc_collect_gregset (regset, regcache, regnum, gregs, len);
134
  ppc_collect_fpregset (regset, regcache, regnum, gregs, len);
135
}
136
 
137
/* AIX register set.  */
138
 
139
static struct regset rs6000_aix32_regset =
140
{
141
  &rs6000_aix32_reg_offsets,
142
  rs6000_aix_supply_regset,
143
  rs6000_aix_collect_regset,
144
};
145
 
146
static struct regset rs6000_aix64_regset =
147
{
148
  &rs6000_aix64_reg_offsets,
149
  rs6000_aix_supply_regset,
150
  rs6000_aix_collect_regset,
151
};
152
 
153
/* Return the appropriate register set for the core section identified
154
   by SECT_NAME and SECT_SIZE.  */
155
 
156
static const struct regset *
157
rs6000_aix_regset_from_core_section (struct gdbarch *gdbarch,
158
                                     const char *sect_name, size_t sect_size)
159
{
160
  if (gdbarch_tdep (gdbarch)->wordsize == 4)
161
    {
162
      if (strcmp (sect_name, ".reg") == 0 && sect_size >= 592)
163
        return &rs6000_aix32_regset;
164
    }
165
  else
166
    {
167
      if (strcmp (sect_name, ".reg") == 0 && sect_size >= 576)
168
        return &rs6000_aix64_regset;
169
    }
170
 
171
  return NULL;
172
}
173
 
174
 
175
/* Pass the arguments in either registers, or in the stack. In RS/6000,
176
   the first eight words of the argument list (that might be less than
177
   eight parameters if some parameters occupy more than one word) are
178
   passed in r3..r10 registers.  float and double parameters are
179
   passed in fpr's, in addition to that.  Rest of the parameters if any
180
   are passed in user stack.  There might be cases in which half of the
181
   parameter is copied into registers, the other half is pushed into
182
   stack.
183
 
184
   Stack must be aligned on 64-bit boundaries when synthesizing
185
   function calls.
186
 
187
   If the function is returning a structure, then the return address is passed
188
   in r3, then the first 7 words of the parameters can be passed in registers,
189
   starting from r4.  */
190
 
191
static CORE_ADDR
192
rs6000_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
193
                        struct regcache *regcache, CORE_ADDR bp_addr,
194
                        int nargs, struct value **args, CORE_ADDR sp,
195
                        int struct_return, CORE_ADDR struct_addr)
196
{
197
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
198
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
199
  int ii;
200
  int len = 0;
201
  int argno;                    /* current argument number */
202
  int argbytes;                 /* current argument byte */
203
  gdb_byte tmp_buffer[50];
204
  int f_argno = 0;               /* current floating point argno */
205
  int wordsize = gdbarch_tdep (gdbarch)->wordsize;
206
  CORE_ADDR func_addr = find_function_addr (function, NULL);
207
 
208
  struct value *arg = 0;
209
  struct type *type;
210
 
211
  ULONGEST saved_sp;
212
 
213
  /* The calling convention this function implements assumes the
214
     processor has floating-point registers.  We shouldn't be using it
215
     on PPC variants that lack them.  */
216
  gdb_assert (ppc_floating_point_unit_p (gdbarch));
217
 
218
  /* The first eight words of ther arguments are passed in registers.
219
     Copy them appropriately.  */
220
  ii = 0;
221
 
222
  /* If the function is returning a `struct', then the first word
223
     (which will be passed in r3) is used for struct return address.
224
     In that case we should advance one word and start from r4
225
     register to copy parameters.  */
226
  if (struct_return)
227
    {
228
      regcache_raw_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
229
                                   struct_addr);
230
      ii++;
231
    }
232
 
233
/*
234
   effectively indirect call... gcc does...
235
 
236
   return_val example( float, int);
237
 
238
   eabi:
239
   float in fp0, int in r3
240
   offset of stack on overflow 8/16
241
   for varargs, must go by type.
242
   power open:
243
   float in r3&r4, int in r5
244
   offset of stack on overflow different
245
   both:
246
   return in r3 or f0.  If no float, must study how gcc emulates floats;
247
   pay attention to arg promotion.
248
   User may have to cast\args to handle promotion correctly
249
   since gdb won't know if prototype supplied or not.
250
 */
251
 
252
  for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii)
253
    {
254
      int reg_size = register_size (gdbarch, ii + 3);
255
 
256
      arg = args[argno];
257
      type = check_typedef (value_type (arg));
258
      len = TYPE_LENGTH (type);
259
 
260
      if (TYPE_CODE (type) == TYPE_CODE_FLT)
261
        {
262
 
263
          /* Floating point arguments are passed in fpr's, as well as gpr's.
264
             There are 13 fpr's reserved for passing parameters. At this point
265
             there is no way we would run out of them.  */
266
 
267
          gdb_assert (len <= 8);
268
 
269
          regcache_cooked_write (regcache,
270
                                 tdep->ppc_fp0_regnum + 1 + f_argno,
271
                                 value_contents (arg));
272
          ++f_argno;
273
        }
274
 
275
      if (len > reg_size)
276
        {
277
 
278
          /* Argument takes more than one register.  */
279
          while (argbytes < len)
280
            {
281
              gdb_byte word[MAX_REGISTER_SIZE];
282
              memset (word, 0, reg_size);
283
              memcpy (word,
284
                      ((char *) value_contents (arg)) + argbytes,
285
                      (len - argbytes) > reg_size
286
                        ? reg_size : len - argbytes);
287
              regcache_cooked_write (regcache,
288
                                    tdep->ppc_gp0_regnum + 3 + ii,
289
                                    word);
290
              ++ii, argbytes += reg_size;
291
 
292
              if (ii >= 8)
293
                goto ran_out_of_registers_for_arguments;
294
            }
295
          argbytes = 0;
296
          --ii;
297
        }
298
      else
299
        {
300
          /* Argument can fit in one register.  No problem.  */
301
          int adj = gdbarch_byte_order (gdbarch)
302
                    == BFD_ENDIAN_BIG ? reg_size - len : 0;
303
          gdb_byte word[MAX_REGISTER_SIZE];
304
 
305
          memset (word, 0, reg_size);
306
          memcpy (word, value_contents (arg), len);
307
          regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3 +ii, word);
308
        }
309
      ++argno;
310
    }
311
 
312
ran_out_of_registers_for_arguments:
313
 
314
  regcache_cooked_read_unsigned (regcache,
315
                                 gdbarch_sp_regnum (gdbarch),
316
                                 &saved_sp);
317
 
318
  /* Location for 8 parameters are always reserved.  */
319
  sp -= wordsize * 8;
320
 
321
  /* Another six words for back chain, TOC register, link register, etc.  */
322
  sp -= wordsize * 6;
323
 
324
  /* Stack pointer must be quadword aligned.  */
325
  sp &= -16;
326
 
327
  /* If there are more arguments, allocate space for them in
328
     the stack, then push them starting from the ninth one.  */
329
 
330
  if ((argno < nargs) || argbytes)
331
    {
332
      int space = 0, jj;
333
 
334
      if (argbytes)
335
        {
336
          space += ((len - argbytes + 3) & -4);
337
          jj = argno + 1;
338
        }
339
      else
340
        jj = argno;
341
 
342
      for (; jj < nargs; ++jj)
343
        {
344
          struct value *val = args[jj];
345
          space += ((TYPE_LENGTH (value_type (val))) + 3) & -4;
346
        }
347
 
348
      /* Add location required for the rest of the parameters.  */
349
      space = (space + 15) & -16;
350
      sp -= space;
351
 
352
      /* This is another instance we need to be concerned about
353
         securing our stack space. If we write anything underneath %sp
354
         (r1), we might conflict with the kernel who thinks he is free
355
         to use this area.  So, update %sp first before doing anything
356
         else.  */
357
 
358
      regcache_raw_write_signed (regcache,
359
                                 gdbarch_sp_regnum (gdbarch), sp);
360
 
361
      /* If the last argument copied into the registers didn't fit there
362
         completely, push the rest of it into stack.  */
363
 
364
      if (argbytes)
365
        {
366
          write_memory (sp + 24 + (ii * 4),
367
                        value_contents (arg) + argbytes,
368
                        len - argbytes);
369
          ++argno;
370
          ii += ((len - argbytes + 3) & -4) / 4;
371
        }
372
 
373
      /* Push the rest of the arguments into stack.  */
374
      for (; argno < nargs; ++argno)
375
        {
376
 
377
          arg = args[argno];
378
          type = check_typedef (value_type (arg));
379
          len = TYPE_LENGTH (type);
380
 
381
 
382
          /* Float types should be passed in fpr's, as well as in the
383
             stack.  */
384
          if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13)
385
            {
386
 
387
              gdb_assert (len <= 8);
388
 
389
              regcache_cooked_write (regcache,
390
                                     tdep->ppc_fp0_regnum + 1 + f_argno,
391
                                     value_contents (arg));
392
              ++f_argno;
393
            }
394
 
395
          write_memory (sp + 24 + (ii * 4), value_contents (arg), len);
396
          ii += ((len + 3) & -4) / 4;
397
        }
398
    }
399
 
400
  /* Set the stack pointer.  According to the ABI, the SP is meant to
401
     be set _before_ the corresponding stack space is used.  On AIX,
402
     this even applies when the target has been completely stopped!
403
     Not doing this can lead to conflicts with the kernel which thinks
404
     that it still has control over this not-yet-allocated stack
405
     region.  */
406
  regcache_raw_write_signed (regcache, gdbarch_sp_regnum (gdbarch), sp);
407
 
408
  /* Set back chain properly.  */
409
  store_unsigned_integer (tmp_buffer, wordsize, byte_order, saved_sp);
410
  write_memory (sp, tmp_buffer, wordsize);
411
 
412
  /* Point the inferior function call's return address at the dummy's
413
     breakpoint.  */
414
  regcache_raw_write_signed (regcache, tdep->ppc_lr_regnum, bp_addr);
415
 
416
  /* Set the TOC register, get the value from the objfile reader
417
     which, in turn, gets it from the VMAP table.  */
418
  if (rs6000_find_toc_address_hook != NULL)
419
    {
420
      CORE_ADDR tocvalue = (*rs6000_find_toc_address_hook) (func_addr);
421
      regcache_raw_write_signed (regcache, tdep->ppc_toc_regnum, tocvalue);
422
    }
423
 
424
  target_store_registers (regcache, -1);
425
  return sp;
426
}
427
 
428
static enum return_value_convention
429
rs6000_return_value (struct gdbarch *gdbarch, struct type *func_type,
430
                     struct type *valtype, struct regcache *regcache,
431
                     gdb_byte *readbuf, const gdb_byte *writebuf)
432
{
433
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
434
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
435
  gdb_byte buf[8];
436
 
437
  /* The calling convention this function implements assumes the
438
     processor has floating-point registers.  We shouldn't be using it
439
     on PowerPC variants that lack them.  */
440
  gdb_assert (ppc_floating_point_unit_p (gdbarch));
441
 
442
  /* AltiVec extension: Functions that declare a vector data type as a
443
     return value place that return value in VR2.  */
444
  if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY && TYPE_VECTOR (valtype)
445
      && TYPE_LENGTH (valtype) == 16)
446
    {
447
      if (readbuf)
448
        regcache_cooked_read (regcache, tdep->ppc_vr0_regnum + 2, readbuf);
449
      if (writebuf)
450
        regcache_cooked_write (regcache, tdep->ppc_vr0_regnum + 2, writebuf);
451
 
452
      return RETURN_VALUE_REGISTER_CONVENTION;
453
    }
454
 
455
  /* If the called subprogram returns an aggregate, there exists an
456
     implicit first argument, whose value is the address of a caller-
457
     allocated buffer into which the callee is assumed to store its
458
     return value. All explicit parameters are appropriately
459
     relabeled.  */
460
  if (TYPE_CODE (valtype) == TYPE_CODE_STRUCT
461
      || TYPE_CODE (valtype) == TYPE_CODE_UNION
462
      || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
463
    return RETURN_VALUE_STRUCT_CONVENTION;
464
 
465
  /* Scalar floating-point values are returned in FPR1 for float or
466
     double, and in FPR1:FPR2 for quadword precision.  Fortran
467
     complex*8 and complex*16 are returned in FPR1:FPR2, and
468
     complex*32 is returned in FPR1:FPR4.  */
469
  if (TYPE_CODE (valtype) == TYPE_CODE_FLT
470
      && (TYPE_LENGTH (valtype) == 4 || TYPE_LENGTH (valtype) == 8))
471
    {
472
      struct type *regtype = register_type (gdbarch, tdep->ppc_fp0_regnum);
473
      gdb_byte regval[8];
474
 
475
      /* FIXME: kettenis/2007-01-01: Add support for quadword
476
         precision and complex.  */
477
 
478
      if (readbuf)
479
        {
480
          regcache_cooked_read (regcache, tdep->ppc_fp0_regnum + 1, regval);
481
          convert_typed_floating (regval, regtype, readbuf, valtype);
482
        }
483
      if (writebuf)
484
        {
485
          convert_typed_floating (writebuf, valtype, regval, regtype);
486
          regcache_cooked_write (regcache, tdep->ppc_fp0_regnum + 1, regval);
487
        }
488
 
489
      return RETURN_VALUE_REGISTER_CONVENTION;
490
  }
491
 
492
  /* Values of the types int, long, short, pointer, and char (length
493
     is less than or equal to four bytes), as well as bit values of
494
     lengths less than or equal to 32 bits, must be returned right
495
     justified in GPR3 with signed values sign extended and unsigned
496
     values zero extended, as necessary.  */
497
  if (TYPE_LENGTH (valtype) <= tdep->wordsize)
498
    {
499
      if (readbuf)
500
        {
501
          ULONGEST regval;
502
 
503
          /* For reading we don't have to worry about sign extension.  */
504
          regcache_cooked_read_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
505
                                         &regval);
506
          store_unsigned_integer (readbuf, TYPE_LENGTH (valtype), byte_order,
507
                                  regval);
508
        }
509
      if (writebuf)
510
        {
511
          /* For writing, use unpack_long since that should handle any
512
             required sign extension.  */
513
          regcache_cooked_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
514
                                          unpack_long (valtype, writebuf));
515
        }
516
 
517
      return RETURN_VALUE_REGISTER_CONVENTION;
518
    }
519
 
520
  /* Eight-byte non-floating-point scalar values must be returned in
521
     GPR3:GPR4.  */
522
 
523
  if (TYPE_LENGTH (valtype) == 8)
524
    {
525
      gdb_assert (TYPE_CODE (valtype) != TYPE_CODE_FLT);
526
      gdb_assert (tdep->wordsize == 4);
527
 
528
      if (readbuf)
529
        {
530
          gdb_byte regval[8];
531
 
532
          regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 3, regval);
533
          regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 4,
534
                                regval + 4);
535
          memcpy (readbuf, regval, 8);
536
        }
537
      if (writebuf)
538
        {
539
          regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3, writebuf);
540
          regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 4,
541
                                 writebuf + 4);
542
        }
543
 
544
      return RETURN_VALUE_REGISTER_CONVENTION;
545
    }
546
 
547
  return RETURN_VALUE_STRUCT_CONVENTION;
548
}
549
 
550
/* Support for CONVERT_FROM_FUNC_PTR_ADDR (ARCH, ADDR, TARG).
551
 
552
   Usually a function pointer's representation is simply the address
553
   of the function. On the RS/6000 however, a function pointer is
554
   represented by a pointer to an OPD entry. This OPD entry contains
555
   three words, the first word is the address of the function, the
556
   second word is the TOC pointer (r2), and the third word is the
557
   static chain value.  Throughout GDB it is currently assumed that a
558
   function pointer contains the address of the function, which is not
559
   easy to fix.  In addition, the conversion of a function address to
560
   a function pointer would require allocation of an OPD entry in the
561
   inferior's memory space, with all its drawbacks.  To be able to
562
   call C++ virtual methods in the inferior (which are called via
563
   function pointers), find_function_addr uses this function to get the
564
   function address from a function pointer.  */
565
 
566
/* Return real function address if ADDR (a function pointer) is in the data
567
   space and is therefore a special function pointer.  */
568
 
569
static CORE_ADDR
570
rs6000_convert_from_func_ptr_addr (struct gdbarch *gdbarch,
571
                                   CORE_ADDR addr,
572
                                   struct target_ops *targ)
573
{
574
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
575
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
576
  struct obj_section *s;
577
 
578
  s = find_pc_section (addr);
579
 
580
  /* Normally, functions live inside a section that is executable.
581
     So, if ADDR points to a non-executable section, then treat it
582
     as a function descriptor and return the target address iff
583
     the target address itself points to a section that is executable.  */
584
  if (s && (s->the_bfd_section->flags & SEC_CODE) == 0)
585
    {
586
      CORE_ADDR pc = 0;
587
      struct obj_section *pc_section;
588
      struct gdb_exception e;
589
 
590
      TRY_CATCH (e, RETURN_MASK_ERROR)
591
        {
592
          pc = read_memory_unsigned_integer (addr, tdep->wordsize, byte_order);
593
        }
594
      if (e.reason < 0)
595
        {
596
          /* An error occured during reading.  Probably a memory error
597
             due to the section not being loaded yet.  This address
598
             cannot be a function descriptor.  */
599
          return addr;
600
        }
601
      pc_section = find_pc_section (pc);
602
 
603
      if (pc_section && (pc_section->the_bfd_section->flags & SEC_CODE))
604
        return pc;
605
    }
606
 
607
  return addr;
608
}
609
 
610
 
611
/* Calculate the destination of a branch/jump.  Return -1 if not a branch.  */
612
 
613
static CORE_ADDR
614
branch_dest (struct frame_info *frame, int opcode, int instr,
615
             CORE_ADDR pc, CORE_ADDR safety)
616
{
617
  struct gdbarch *gdbarch = get_frame_arch (frame);
618
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
619
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
620
  CORE_ADDR dest;
621
  int immediate;
622
  int absolute;
623
  int ext_op;
624
 
625
  absolute = (int) ((instr >> 1) & 1);
626
 
627
  switch (opcode)
628
    {
629
    case 18:
630
      immediate = ((instr & ~3) << 6) >> 6;     /* br unconditional */
631
      if (absolute)
632
        dest = immediate;
633
      else
634
        dest = pc + immediate;
635
      break;
636
 
637
    case 16:
638
      immediate = ((instr & ~3) << 16) >> 16;   /* br conditional */
639
      if (absolute)
640
        dest = immediate;
641
      else
642
        dest = pc + immediate;
643
      break;
644
 
645
    case 19:
646
      ext_op = (instr >> 1) & 0x3ff;
647
 
648
      if (ext_op == 16)         /* br conditional register */
649
        {
650
          dest = get_frame_register_unsigned (frame, tdep->ppc_lr_regnum) & ~3;
651
 
652
          /* If we are about to return from a signal handler, dest is
653
             something like 0x3c90.  The current frame is a signal handler
654
             caller frame, upon completion of the sigreturn system call
655
             execution will return to the saved PC in the frame.  */
656
          if (dest < AIX_TEXT_SEGMENT_BASE)
657
            dest = read_memory_unsigned_integer
658
                     (get_frame_base (frame) + SIG_FRAME_PC_OFFSET,
659
                      tdep->wordsize, byte_order);
660
        }
661
 
662
      else if (ext_op == 528)   /* br cond to count reg */
663
        {
664
          dest = get_frame_register_unsigned (frame, tdep->ppc_ctr_regnum) & ~3;
665
 
666
          /* If we are about to execute a system call, dest is something
667
             like 0x22fc or 0x3b00.  Upon completion the system call
668
             will return to the address in the link register.  */
669
          if (dest < AIX_TEXT_SEGMENT_BASE)
670
            dest = get_frame_register_unsigned (frame, tdep->ppc_lr_regnum) & ~3;
671
        }
672
      else
673
        return -1;
674
      break;
675
 
676
    default:
677
      return -1;
678
    }
679
  return (dest < AIX_TEXT_SEGMENT_BASE) ? safety : dest;
680
}
681
 
682
/* AIX does not support PT_STEP.  Simulate it.  */
683
 
684
static int
685
rs6000_software_single_step (struct frame_info *frame)
686
{
687
  struct gdbarch *gdbarch = get_frame_arch (frame);
688
  struct address_space *aspace = get_frame_address_space (frame);
689
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
690
  int ii, insn;
691
  CORE_ADDR loc;
692
  CORE_ADDR breaks[2];
693
  int opcode;
694
 
695
  loc = get_frame_pc (frame);
696
 
697
  insn = read_memory_integer (loc, 4, byte_order);
698
 
699
  if (ppc_deal_with_atomic_sequence (frame))
700
    return 1;
701
 
702
  breaks[0] = loc + PPC_INSN_SIZE;
703
  opcode = insn >> 26;
704
  breaks[1] = branch_dest (frame, opcode, insn, loc, breaks[0]);
705
 
706
  /* Don't put two breakpoints on the same address. */
707
  if (breaks[1] == breaks[0])
708
    breaks[1] = -1;
709
 
710
  for (ii = 0; ii < 2; ++ii)
711
    {
712
      /* ignore invalid breakpoint. */
713
      if (breaks[ii] == -1)
714
        continue;
715
      insert_single_step_breakpoint (gdbarch, aspace, breaks[ii]);
716
    }
717
 
718
  errno = 0;                     /* FIXME, don't ignore errors! */
719
  /* What errors?  {read,write}_memory call error().  */
720
  return 1;
721
}
722
 
723
static enum gdb_osabi
724
rs6000_aix_osabi_sniffer (bfd *abfd)
725
{
726
 
727
  if (bfd_get_flavour (abfd) == bfd_target_xcoff_flavour);
728
    return GDB_OSABI_AIX;
729
 
730
  return GDB_OSABI_UNKNOWN;
731
}
732
 
733
static void
734
rs6000_aix_init_osabi (struct gdbarch_info info, struct gdbarch *gdbarch)
735
{
736
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
737
 
738
  /* RS6000/AIX does not support PT_STEP.  Has to be simulated.  */
739
  set_gdbarch_software_single_step (gdbarch, rs6000_software_single_step);
740
 
741
  /* Displaced stepping is currently not supported in combination with
742
     software single-stepping.  */
743
  set_gdbarch_displaced_step_copy_insn (gdbarch, NULL);
744
  set_gdbarch_displaced_step_fixup (gdbarch, NULL);
745
  set_gdbarch_displaced_step_free_closure (gdbarch, NULL);
746
  set_gdbarch_displaced_step_location (gdbarch, NULL);
747
 
748
  set_gdbarch_push_dummy_call (gdbarch, rs6000_push_dummy_call);
749
  set_gdbarch_return_value (gdbarch, rs6000_return_value);
750
  set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
751
 
752
  /* Handle RS/6000 function pointers (which are really function
753
     descriptors).  */
754
  set_gdbarch_convert_from_func_ptr_addr
755
    (gdbarch, rs6000_convert_from_func_ptr_addr);
756
 
757
  /* Core file support.  */
758
  set_gdbarch_regset_from_core_section
759
    (gdbarch, rs6000_aix_regset_from_core_section);
760
 
761
  if (tdep->wordsize == 8)
762
    tdep->lr_frame_offset = 16;
763
  else
764
    tdep->lr_frame_offset = 8;
765
 
766
  if (tdep->wordsize == 4)
767
    /* PowerOpen / AIX 32 bit.  The saved area or red zone consists of
768
       19 4 byte GPRS + 18 8 byte FPRs giving a total of 220 bytes.
769
       Problem is, 220 isn't frame (16 byte) aligned.  Round it up to
770
       224.  */
771
    set_gdbarch_frame_red_zone_size (gdbarch, 224);
772
  else
773
    set_gdbarch_frame_red_zone_size (gdbarch, 0);
774
}
775
 
776
/* Provide a prototype to silence -Wmissing-prototypes.  */
777
extern initialize_file_ftype _initialize_rs6000_aix_tdep;
778
 
779
void
780
_initialize_rs6000_aix_tdep (void)
781
{
782
  gdbarch_register_osabi_sniffer (bfd_arch_rs6000,
783
                                  bfd_target_xcoff_flavour,
784
                                  rs6000_aix_osabi_sniffer);
785
  gdbarch_register_osabi_sniffer (bfd_arch_powerpc,
786
                                  bfd_target_xcoff_flavour,
787
                                  rs6000_aix_osabi_sniffer);
788
 
789
  gdbarch_register_osabi (bfd_arch_rs6000, 0, GDB_OSABI_AIX,
790
                          rs6000_aix_init_osabi);
791
  gdbarch_register_osabi (bfd_arch_powerpc, 0, GDB_OSABI_AIX,
792
                          rs6000_aix_init_osabi);
793
}
794
 

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.