| 1 |
330 |
jeremybenn |
/* Low level packing and unpacking of values for GDB, the GNU Debugger.
|
| 2 |
|
|
|
| 3 |
|
|
Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
|
| 4 |
|
|
1996, 1997, 1998, 1999, 2000, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
|
| 5 |
|
|
2009, 2010 Free Software Foundation, Inc.
|
| 6 |
|
|
|
| 7 |
|
|
This file is part of GDB.
|
| 8 |
|
|
|
| 9 |
|
|
This program is free software; you can redistribute it and/or modify
|
| 10 |
|
|
it under the terms of the GNU General Public License as published by
|
| 11 |
|
|
the Free Software Foundation; either version 3 of the License, or
|
| 12 |
|
|
(at your option) any later version.
|
| 13 |
|
|
|
| 14 |
|
|
This program is distributed in the hope that it will be useful,
|
| 15 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
| 16 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
| 17 |
|
|
GNU General Public License for more details.
|
| 18 |
|
|
|
| 19 |
|
|
You should have received a copy of the GNU General Public License
|
| 20 |
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
| 21 |
|
|
|
| 22 |
|
|
#include "defs.h"
|
| 23 |
|
|
#include "arch-utils.h"
|
| 24 |
|
|
#include "gdb_string.h"
|
| 25 |
|
|
#include "symtab.h"
|
| 26 |
|
|
#include "gdbtypes.h"
|
| 27 |
|
|
#include "value.h"
|
| 28 |
|
|
#include "gdbcore.h"
|
| 29 |
|
|
#include "command.h"
|
| 30 |
|
|
#include "gdbcmd.h"
|
| 31 |
|
|
#include "target.h"
|
| 32 |
|
|
#include "language.h"
|
| 33 |
|
|
#include "demangle.h"
|
| 34 |
|
|
#include "doublest.h"
|
| 35 |
|
|
#include "gdb_assert.h"
|
| 36 |
|
|
#include "regcache.h"
|
| 37 |
|
|
#include "block.h"
|
| 38 |
|
|
#include "dfp.h"
|
| 39 |
|
|
#include "objfiles.h"
|
| 40 |
|
|
#include "valprint.h"
|
| 41 |
|
|
#include "cli/cli-decode.h"
|
| 42 |
|
|
|
| 43 |
|
|
#include "python/python.h"
|
| 44 |
|
|
|
| 45 |
|
|
/* Prototypes for exported functions. */
|
| 46 |
|
|
|
| 47 |
|
|
void _initialize_values (void);
|
| 48 |
|
|
|
| 49 |
|
|
/* Definition of a user function. */
|
| 50 |
|
|
struct internal_function
|
| 51 |
|
|
{
|
| 52 |
|
|
/* The name of the function. It is a bit odd to have this in the
|
| 53 |
|
|
function itself -- the user might use a differently-named
|
| 54 |
|
|
convenience variable to hold the function. */
|
| 55 |
|
|
char *name;
|
| 56 |
|
|
|
| 57 |
|
|
/* The handler. */
|
| 58 |
|
|
internal_function_fn handler;
|
| 59 |
|
|
|
| 60 |
|
|
/* User data for the handler. */
|
| 61 |
|
|
void *cookie;
|
| 62 |
|
|
};
|
| 63 |
|
|
|
| 64 |
|
|
static struct cmd_list_element *functionlist;
|
| 65 |
|
|
|
| 66 |
|
|
struct value
|
| 67 |
|
|
{
|
| 68 |
|
|
/* Type of value; either not an lval, or one of the various
|
| 69 |
|
|
different possible kinds of lval. */
|
| 70 |
|
|
enum lval_type lval;
|
| 71 |
|
|
|
| 72 |
|
|
/* Is it modifiable? Only relevant if lval != not_lval. */
|
| 73 |
|
|
int modifiable;
|
| 74 |
|
|
|
| 75 |
|
|
/* Location of value (if lval). */
|
| 76 |
|
|
union
|
| 77 |
|
|
{
|
| 78 |
|
|
/* If lval == lval_memory, this is the address in the inferior.
|
| 79 |
|
|
If lval == lval_register, this is the byte offset into the
|
| 80 |
|
|
registers structure. */
|
| 81 |
|
|
CORE_ADDR address;
|
| 82 |
|
|
|
| 83 |
|
|
/* Pointer to internal variable. */
|
| 84 |
|
|
struct internalvar *internalvar;
|
| 85 |
|
|
|
| 86 |
|
|
/* If lval == lval_computed, this is a set of function pointers
|
| 87 |
|
|
to use to access and describe the value, and a closure pointer
|
| 88 |
|
|
for them to use. */
|
| 89 |
|
|
struct
|
| 90 |
|
|
{
|
| 91 |
|
|
struct lval_funcs *funcs; /* Functions to call. */
|
| 92 |
|
|
void *closure; /* Closure for those functions to use. */
|
| 93 |
|
|
} computed;
|
| 94 |
|
|
} location;
|
| 95 |
|
|
|
| 96 |
|
|
/* Describes offset of a value within lval of a structure in bytes.
|
| 97 |
|
|
If lval == lval_memory, this is an offset to the address. If
|
| 98 |
|
|
lval == lval_register, this is a further offset from
|
| 99 |
|
|
location.address within the registers structure. Note also the
|
| 100 |
|
|
member embedded_offset below. */
|
| 101 |
|
|
int offset;
|
| 102 |
|
|
|
| 103 |
|
|
/* Only used for bitfields; number of bits contained in them. */
|
| 104 |
|
|
int bitsize;
|
| 105 |
|
|
|
| 106 |
|
|
/* Only used for bitfields; position of start of field. For
|
| 107 |
|
|
gdbarch_bits_big_endian=0 targets, it is the position of the LSB. For
|
| 108 |
|
|
gdbarch_bits_big_endian=1 targets, it is the position of the MSB. */
|
| 109 |
|
|
int bitpos;
|
| 110 |
|
|
|
| 111 |
|
|
/* Only used for bitfields; the containing value. This allows a
|
| 112 |
|
|
single read from the target when displaying multiple
|
| 113 |
|
|
bitfields. */
|
| 114 |
|
|
struct value *parent;
|
| 115 |
|
|
|
| 116 |
|
|
/* Frame register value is relative to. This will be described in
|
| 117 |
|
|
the lval enum above as "lval_register". */
|
| 118 |
|
|
struct frame_id frame_id;
|
| 119 |
|
|
|
| 120 |
|
|
/* Type of the value. */
|
| 121 |
|
|
struct type *type;
|
| 122 |
|
|
|
| 123 |
|
|
/* If a value represents a C++ object, then the `type' field gives
|
| 124 |
|
|
the object's compile-time type. If the object actually belongs
|
| 125 |
|
|
to some class derived from `type', perhaps with other base
|
| 126 |
|
|
classes and additional members, then `type' is just a subobject
|
| 127 |
|
|
of the real thing, and the full object is probably larger than
|
| 128 |
|
|
`type' would suggest.
|
| 129 |
|
|
|
| 130 |
|
|
If `type' is a dynamic class (i.e. one with a vtable), then GDB
|
| 131 |
|
|
can actually determine the object's run-time type by looking at
|
| 132 |
|
|
the run-time type information in the vtable. When this
|
| 133 |
|
|
information is available, we may elect to read in the entire
|
| 134 |
|
|
object, for several reasons:
|
| 135 |
|
|
|
| 136 |
|
|
- When printing the value, the user would probably rather see the
|
| 137 |
|
|
full object, not just the limited portion apparent from the
|
| 138 |
|
|
compile-time type.
|
| 139 |
|
|
|
| 140 |
|
|
- If `type' has virtual base classes, then even printing `type'
|
| 141 |
|
|
alone may require reaching outside the `type' portion of the
|
| 142 |
|
|
object to wherever the virtual base class has been stored.
|
| 143 |
|
|
|
| 144 |
|
|
When we store the entire object, `enclosing_type' is the run-time
|
| 145 |
|
|
type -- the complete object -- and `embedded_offset' is the
|
| 146 |
|
|
offset of `type' within that larger type, in bytes. The
|
| 147 |
|
|
value_contents() macro takes `embedded_offset' into account, so
|
| 148 |
|
|
most GDB code continues to see the `type' portion of the value,
|
| 149 |
|
|
just as the inferior would.
|
| 150 |
|
|
|
| 151 |
|
|
If `type' is a pointer to an object, then `enclosing_type' is a
|
| 152 |
|
|
pointer to the object's run-time type, and `pointed_to_offset' is
|
| 153 |
|
|
the offset in bytes from the full object to the pointed-to object
|
| 154 |
|
|
-- that is, the value `embedded_offset' would have if we followed
|
| 155 |
|
|
the pointer and fetched the complete object. (I don't really see
|
| 156 |
|
|
the point. Why not just determine the run-time type when you
|
| 157 |
|
|
indirect, and avoid the special case? The contents don't matter
|
| 158 |
|
|
until you indirect anyway.)
|
| 159 |
|
|
|
| 160 |
|
|
If we're not doing anything fancy, `enclosing_type' is equal to
|
| 161 |
|
|
`type', and `embedded_offset' is zero, so everything works
|
| 162 |
|
|
normally. */
|
| 163 |
|
|
struct type *enclosing_type;
|
| 164 |
|
|
int embedded_offset;
|
| 165 |
|
|
int pointed_to_offset;
|
| 166 |
|
|
|
| 167 |
|
|
/* Values are stored in a chain, so that they can be deleted easily
|
| 168 |
|
|
over calls to the inferior. Values assigned to internal
|
| 169 |
|
|
variables, put into the value history or exposed to Python are
|
| 170 |
|
|
taken off this list. */
|
| 171 |
|
|
struct value *next;
|
| 172 |
|
|
|
| 173 |
|
|
/* Register number if the value is from a register. */
|
| 174 |
|
|
short regnum;
|
| 175 |
|
|
|
| 176 |
|
|
/* If zero, contents of this value are in the contents field. If
|
| 177 |
|
|
nonzero, contents are in inferior. If the lval field is lval_memory,
|
| 178 |
|
|
the contents are in inferior memory at location.address plus offset.
|
| 179 |
|
|
The lval field may also be lval_register.
|
| 180 |
|
|
|
| 181 |
|
|
WARNING: This field is used by the code which handles watchpoints
|
| 182 |
|
|
(see breakpoint.c) to decide whether a particular value can be
|
| 183 |
|
|
watched by hardware watchpoints. If the lazy flag is set for
|
| 184 |
|
|
some member of a value chain, it is assumed that this member of
|
| 185 |
|
|
the chain doesn't need to be watched as part of watching the
|
| 186 |
|
|
value itself. This is how GDB avoids watching the entire struct
|
| 187 |
|
|
or array when the user wants to watch a single struct member or
|
| 188 |
|
|
array element. If you ever change the way lazy flag is set and
|
| 189 |
|
|
reset, be sure to consider this use as well! */
|
| 190 |
|
|
char lazy;
|
| 191 |
|
|
|
| 192 |
|
|
/* If nonzero, this is the value of a variable which does not
|
| 193 |
|
|
actually exist in the program. */
|
| 194 |
|
|
char optimized_out;
|
| 195 |
|
|
|
| 196 |
|
|
/* If value is a variable, is it initialized or not. */
|
| 197 |
|
|
int initialized;
|
| 198 |
|
|
|
| 199 |
|
|
/* If value is from the stack. If this is set, read_stack will be
|
| 200 |
|
|
used instead of read_memory to enable extra caching. */
|
| 201 |
|
|
int stack;
|
| 202 |
|
|
|
| 203 |
|
|
/* Actual contents of the value. Target byte-order. NULL or not
|
| 204 |
|
|
valid if lazy is nonzero. */
|
| 205 |
|
|
gdb_byte *contents;
|
| 206 |
|
|
|
| 207 |
|
|
/* The number of references to this value. When a value is created,
|
| 208 |
|
|
the value chain holds a reference, so REFERENCE_COUNT is 1. If
|
| 209 |
|
|
release_value is called, this value is removed from the chain but
|
| 210 |
|
|
the caller of release_value now has a reference to this value.
|
| 211 |
|
|
The caller must arrange for a call to value_free later. */
|
| 212 |
|
|
int reference_count;
|
| 213 |
|
|
};
|
| 214 |
|
|
|
| 215 |
|
|
/* Prototypes for local functions. */
|
| 216 |
|
|
|
| 217 |
|
|
static void show_values (char *, int);
|
| 218 |
|
|
|
| 219 |
|
|
static void show_convenience (char *, int);
|
| 220 |
|
|
|
| 221 |
|
|
|
| 222 |
|
|
/* The value-history records all the values printed
|
| 223 |
|
|
by print commands during this session. Each chunk
|
| 224 |
|
|
records 60 consecutive values. The first chunk on
|
| 225 |
|
|
the chain records the most recent values.
|
| 226 |
|
|
The total number of values is in value_history_count. */
|
| 227 |
|
|
|
| 228 |
|
|
#define VALUE_HISTORY_CHUNK 60
|
| 229 |
|
|
|
| 230 |
|
|
struct value_history_chunk
|
| 231 |
|
|
{
|
| 232 |
|
|
struct value_history_chunk *next;
|
| 233 |
|
|
struct value *values[VALUE_HISTORY_CHUNK];
|
| 234 |
|
|
};
|
| 235 |
|
|
|
| 236 |
|
|
/* Chain of chunks now in use. */
|
| 237 |
|
|
|
| 238 |
|
|
static struct value_history_chunk *value_history_chain;
|
| 239 |
|
|
|
| 240 |
|
|
static int value_history_count; /* Abs number of last entry stored */
|
| 241 |
|
|
|
| 242 |
|
|
|
| 243 |
|
|
/* List of all value objects currently allocated
|
| 244 |
|
|
(except for those released by calls to release_value)
|
| 245 |
|
|
This is so they can be freed after each command. */
|
| 246 |
|
|
|
| 247 |
|
|
static struct value *all_values;
|
| 248 |
|
|
|
| 249 |
|
|
/* Allocate a lazy value for type TYPE. Its actual content is
|
| 250 |
|
|
"lazily" allocated too: the content field of the return value is
|
| 251 |
|
|
NULL; it will be allocated when it is fetched from the target. */
|
| 252 |
|
|
|
| 253 |
|
|
struct value *
|
| 254 |
|
|
allocate_value_lazy (struct type *type)
|
| 255 |
|
|
{
|
| 256 |
|
|
struct value *val;
|
| 257 |
|
|
|
| 258 |
|
|
/* Call check_typedef on our type to make sure that, if TYPE
|
| 259 |
|
|
is a TYPE_CODE_TYPEDEF, its length is set to the length
|
| 260 |
|
|
of the target type instead of zero. However, we do not
|
| 261 |
|
|
replace the typedef type by the target type, because we want
|
| 262 |
|
|
to keep the typedef in order to be able to set the VAL's type
|
| 263 |
|
|
description correctly. */
|
| 264 |
|
|
check_typedef (type);
|
| 265 |
|
|
|
| 266 |
|
|
val = (struct value *) xzalloc (sizeof (struct value));
|
| 267 |
|
|
val->contents = NULL;
|
| 268 |
|
|
val->next = all_values;
|
| 269 |
|
|
all_values = val;
|
| 270 |
|
|
val->type = type;
|
| 271 |
|
|
val->enclosing_type = type;
|
| 272 |
|
|
VALUE_LVAL (val) = not_lval;
|
| 273 |
|
|
val->location.address = 0;
|
| 274 |
|
|
VALUE_FRAME_ID (val) = null_frame_id;
|
| 275 |
|
|
val->offset = 0;
|
| 276 |
|
|
val->bitpos = 0;
|
| 277 |
|
|
val->bitsize = 0;
|
| 278 |
|
|
VALUE_REGNUM (val) = -1;
|
| 279 |
|
|
val->lazy = 1;
|
| 280 |
|
|
val->optimized_out = 0;
|
| 281 |
|
|
val->embedded_offset = 0;
|
| 282 |
|
|
val->pointed_to_offset = 0;
|
| 283 |
|
|
val->modifiable = 1;
|
| 284 |
|
|
val->initialized = 1; /* Default to initialized. */
|
| 285 |
|
|
|
| 286 |
|
|
/* Values start out on the all_values chain. */
|
| 287 |
|
|
val->reference_count = 1;
|
| 288 |
|
|
|
| 289 |
|
|
return val;
|
| 290 |
|
|
}
|
| 291 |
|
|
|
| 292 |
|
|
/* Allocate the contents of VAL if it has not been allocated yet. */
|
| 293 |
|
|
|
| 294 |
|
|
void
|
| 295 |
|
|
allocate_value_contents (struct value *val)
|
| 296 |
|
|
{
|
| 297 |
|
|
if (!val->contents)
|
| 298 |
|
|
val->contents = (gdb_byte *) xzalloc (TYPE_LENGTH (val->enclosing_type));
|
| 299 |
|
|
}
|
| 300 |
|
|
|
| 301 |
|
|
/* Allocate a value and its contents for type TYPE. */
|
| 302 |
|
|
|
| 303 |
|
|
struct value *
|
| 304 |
|
|
allocate_value (struct type *type)
|
| 305 |
|
|
{
|
| 306 |
|
|
struct value *val = allocate_value_lazy (type);
|
| 307 |
|
|
|
| 308 |
|
|
allocate_value_contents (val);
|
| 309 |
|
|
val->lazy = 0;
|
| 310 |
|
|
return val;
|
| 311 |
|
|
}
|
| 312 |
|
|
|
| 313 |
|
|
/* Allocate a value that has the correct length
|
| 314 |
|
|
for COUNT repetitions of type TYPE. */
|
| 315 |
|
|
|
| 316 |
|
|
struct value *
|
| 317 |
|
|
allocate_repeat_value (struct type *type, int count)
|
| 318 |
|
|
{
|
| 319 |
|
|
int low_bound = current_language->string_lower_bound; /* ??? */
|
| 320 |
|
|
/* FIXME-type-allocation: need a way to free this type when we are
|
| 321 |
|
|
done with it. */
|
| 322 |
|
|
struct type *array_type
|
| 323 |
|
|
= lookup_array_range_type (type, low_bound, count + low_bound - 1);
|
| 324 |
|
|
|
| 325 |
|
|
return allocate_value (array_type);
|
| 326 |
|
|
}
|
| 327 |
|
|
|
| 328 |
|
|
struct value *
|
| 329 |
|
|
allocate_computed_value (struct type *type,
|
| 330 |
|
|
struct lval_funcs *funcs,
|
| 331 |
|
|
void *closure)
|
| 332 |
|
|
{
|
| 333 |
|
|
struct value *v = allocate_value (type);
|
| 334 |
|
|
|
| 335 |
|
|
VALUE_LVAL (v) = lval_computed;
|
| 336 |
|
|
v->location.computed.funcs = funcs;
|
| 337 |
|
|
v->location.computed.closure = closure;
|
| 338 |
|
|
set_value_lazy (v, 1);
|
| 339 |
|
|
|
| 340 |
|
|
return v;
|
| 341 |
|
|
}
|
| 342 |
|
|
|
| 343 |
|
|
/* Accessor methods. */
|
| 344 |
|
|
|
| 345 |
|
|
struct value *
|
| 346 |
|
|
value_next (struct value *value)
|
| 347 |
|
|
{
|
| 348 |
|
|
return value->next;
|
| 349 |
|
|
}
|
| 350 |
|
|
|
| 351 |
|
|
struct type *
|
| 352 |
|
|
value_type (const struct value *value)
|
| 353 |
|
|
{
|
| 354 |
|
|
return value->type;
|
| 355 |
|
|
}
|
| 356 |
|
|
void
|
| 357 |
|
|
deprecated_set_value_type (struct value *value, struct type *type)
|
| 358 |
|
|
{
|
| 359 |
|
|
value->type = type;
|
| 360 |
|
|
}
|
| 361 |
|
|
|
| 362 |
|
|
int
|
| 363 |
|
|
value_offset (const struct value *value)
|
| 364 |
|
|
{
|
| 365 |
|
|
return value->offset;
|
| 366 |
|
|
}
|
| 367 |
|
|
void
|
| 368 |
|
|
set_value_offset (struct value *value, int offset)
|
| 369 |
|
|
{
|
| 370 |
|
|
value->offset = offset;
|
| 371 |
|
|
}
|
| 372 |
|
|
|
| 373 |
|
|
int
|
| 374 |
|
|
value_bitpos (const struct value *value)
|
| 375 |
|
|
{
|
| 376 |
|
|
return value->bitpos;
|
| 377 |
|
|
}
|
| 378 |
|
|
void
|
| 379 |
|
|
set_value_bitpos (struct value *value, int bit)
|
| 380 |
|
|
{
|
| 381 |
|
|
value->bitpos = bit;
|
| 382 |
|
|
}
|
| 383 |
|
|
|
| 384 |
|
|
int
|
| 385 |
|
|
value_bitsize (const struct value *value)
|
| 386 |
|
|
{
|
| 387 |
|
|
return value->bitsize;
|
| 388 |
|
|
}
|
| 389 |
|
|
void
|
| 390 |
|
|
set_value_bitsize (struct value *value, int bit)
|
| 391 |
|
|
{
|
| 392 |
|
|
value->bitsize = bit;
|
| 393 |
|
|
}
|
| 394 |
|
|
|
| 395 |
|
|
struct value *
|
| 396 |
|
|
value_parent (struct value *value)
|
| 397 |
|
|
{
|
| 398 |
|
|
return value->parent;
|
| 399 |
|
|
}
|
| 400 |
|
|
|
| 401 |
|
|
gdb_byte *
|
| 402 |
|
|
value_contents_raw (struct value *value)
|
| 403 |
|
|
{
|
| 404 |
|
|
allocate_value_contents (value);
|
| 405 |
|
|
return value->contents + value->embedded_offset;
|
| 406 |
|
|
}
|
| 407 |
|
|
|
| 408 |
|
|
gdb_byte *
|
| 409 |
|
|
value_contents_all_raw (struct value *value)
|
| 410 |
|
|
{
|
| 411 |
|
|
allocate_value_contents (value);
|
| 412 |
|
|
return value->contents;
|
| 413 |
|
|
}
|
| 414 |
|
|
|
| 415 |
|
|
struct type *
|
| 416 |
|
|
value_enclosing_type (struct value *value)
|
| 417 |
|
|
{
|
| 418 |
|
|
return value->enclosing_type;
|
| 419 |
|
|
}
|
| 420 |
|
|
|
| 421 |
|
|
static void
|
| 422 |
|
|
require_not_optimized_out (struct value *value)
|
| 423 |
|
|
{
|
| 424 |
|
|
if (value->optimized_out)
|
| 425 |
|
|
error (_("value has been optimized out"));
|
| 426 |
|
|
}
|
| 427 |
|
|
|
| 428 |
|
|
const gdb_byte *
|
| 429 |
|
|
value_contents_for_printing (struct value *value)
|
| 430 |
|
|
{
|
| 431 |
|
|
if (value->lazy)
|
| 432 |
|
|
value_fetch_lazy (value);
|
| 433 |
|
|
return value->contents;
|
| 434 |
|
|
}
|
| 435 |
|
|
|
| 436 |
|
|
const gdb_byte *
|
| 437 |
|
|
value_contents_all (struct value *value)
|
| 438 |
|
|
{
|
| 439 |
|
|
const gdb_byte *result = value_contents_for_printing (value);
|
| 440 |
|
|
require_not_optimized_out (value);
|
| 441 |
|
|
return result;
|
| 442 |
|
|
}
|
| 443 |
|
|
|
| 444 |
|
|
int
|
| 445 |
|
|
value_lazy (struct value *value)
|
| 446 |
|
|
{
|
| 447 |
|
|
return value->lazy;
|
| 448 |
|
|
}
|
| 449 |
|
|
|
| 450 |
|
|
void
|
| 451 |
|
|
set_value_lazy (struct value *value, int val)
|
| 452 |
|
|
{
|
| 453 |
|
|
value->lazy = val;
|
| 454 |
|
|
}
|
| 455 |
|
|
|
| 456 |
|
|
int
|
| 457 |
|
|
value_stack (struct value *value)
|
| 458 |
|
|
{
|
| 459 |
|
|
return value->stack;
|
| 460 |
|
|
}
|
| 461 |
|
|
|
| 462 |
|
|
void
|
| 463 |
|
|
set_value_stack (struct value *value, int val)
|
| 464 |
|
|
{
|
| 465 |
|
|
value->stack = val;
|
| 466 |
|
|
}
|
| 467 |
|
|
|
| 468 |
|
|
const gdb_byte *
|
| 469 |
|
|
value_contents (struct value *value)
|
| 470 |
|
|
{
|
| 471 |
|
|
const gdb_byte *result = value_contents_writeable (value);
|
| 472 |
|
|
require_not_optimized_out (value);
|
| 473 |
|
|
return result;
|
| 474 |
|
|
}
|
| 475 |
|
|
|
| 476 |
|
|
gdb_byte *
|
| 477 |
|
|
value_contents_writeable (struct value *value)
|
| 478 |
|
|
{
|
| 479 |
|
|
if (value->lazy)
|
| 480 |
|
|
value_fetch_lazy (value);
|
| 481 |
|
|
return value_contents_raw (value);
|
| 482 |
|
|
}
|
| 483 |
|
|
|
| 484 |
|
|
/* Return non-zero if VAL1 and VAL2 have the same contents. Note that
|
| 485 |
|
|
this function is different from value_equal; in C the operator ==
|
| 486 |
|
|
can return 0 even if the two values being compared are equal. */
|
| 487 |
|
|
|
| 488 |
|
|
int
|
| 489 |
|
|
value_contents_equal (struct value *val1, struct value *val2)
|
| 490 |
|
|
{
|
| 491 |
|
|
struct type *type1;
|
| 492 |
|
|
struct type *type2;
|
| 493 |
|
|
int len;
|
| 494 |
|
|
|
| 495 |
|
|
type1 = check_typedef (value_type (val1));
|
| 496 |
|
|
type2 = check_typedef (value_type (val2));
|
| 497 |
|
|
len = TYPE_LENGTH (type1);
|
| 498 |
|
|
if (len != TYPE_LENGTH (type2))
|
| 499 |
|
|
return 0;
|
| 500 |
|
|
|
| 501 |
|
|
return (memcmp (value_contents (val1), value_contents (val2), len) == 0);
|
| 502 |
|
|
}
|
| 503 |
|
|
|
| 504 |
|
|
int
|
| 505 |
|
|
value_optimized_out (struct value *value)
|
| 506 |
|
|
{
|
| 507 |
|
|
return value->optimized_out;
|
| 508 |
|
|
}
|
| 509 |
|
|
|
| 510 |
|
|
void
|
| 511 |
|
|
set_value_optimized_out (struct value *value, int val)
|
| 512 |
|
|
{
|
| 513 |
|
|
value->optimized_out = val;
|
| 514 |
|
|
}
|
| 515 |
|
|
|
| 516 |
|
|
int
|
| 517 |
|
|
value_entirely_optimized_out (const struct value *value)
|
| 518 |
|
|
{
|
| 519 |
|
|
if (!value->optimized_out)
|
| 520 |
|
|
return 0;
|
| 521 |
|
|
if (value->lval != lval_computed
|
| 522 |
|
|
|| !value->location.computed.funcs->check_validity)
|
| 523 |
|
|
return 1;
|
| 524 |
|
|
return !value->location.computed.funcs->check_any_valid (value);
|
| 525 |
|
|
}
|
| 526 |
|
|
|
| 527 |
|
|
int
|
| 528 |
|
|
value_bits_valid (const struct value *value, int offset, int length)
|
| 529 |
|
|
{
|
| 530 |
|
|
if (value == NULL || !value->optimized_out)
|
| 531 |
|
|
return 1;
|
| 532 |
|
|
if (value->lval != lval_computed
|
| 533 |
|
|
|| !value->location.computed.funcs->check_validity)
|
| 534 |
|
|
return 0;
|
| 535 |
|
|
return value->location.computed.funcs->check_validity (value, offset,
|
| 536 |
|
|
length);
|
| 537 |
|
|
}
|
| 538 |
|
|
|
| 539 |
|
|
int
|
| 540 |
|
|
value_embedded_offset (struct value *value)
|
| 541 |
|
|
{
|
| 542 |
|
|
return value->embedded_offset;
|
| 543 |
|
|
}
|
| 544 |
|
|
|
| 545 |
|
|
void
|
| 546 |
|
|
set_value_embedded_offset (struct value *value, int val)
|
| 547 |
|
|
{
|
| 548 |
|
|
value->embedded_offset = val;
|
| 549 |
|
|
}
|
| 550 |
|
|
|
| 551 |
|
|
int
|
| 552 |
|
|
value_pointed_to_offset (struct value *value)
|
| 553 |
|
|
{
|
| 554 |
|
|
return value->pointed_to_offset;
|
| 555 |
|
|
}
|
| 556 |
|
|
|
| 557 |
|
|
void
|
| 558 |
|
|
set_value_pointed_to_offset (struct value *value, int val)
|
| 559 |
|
|
{
|
| 560 |
|
|
value->pointed_to_offset = val;
|
| 561 |
|
|
}
|
| 562 |
|
|
|
| 563 |
|
|
struct lval_funcs *
|
| 564 |
|
|
value_computed_funcs (struct value *v)
|
| 565 |
|
|
{
|
| 566 |
|
|
gdb_assert (VALUE_LVAL (v) == lval_computed);
|
| 567 |
|
|
|
| 568 |
|
|
return v->location.computed.funcs;
|
| 569 |
|
|
}
|
| 570 |
|
|
|
| 571 |
|
|
void *
|
| 572 |
|
|
value_computed_closure (const struct value *v)
|
| 573 |
|
|
{
|
| 574 |
|
|
gdb_assert (v->lval == lval_computed);
|
| 575 |
|
|
|
| 576 |
|
|
return v->location.computed.closure;
|
| 577 |
|
|
}
|
| 578 |
|
|
|
| 579 |
|
|
enum lval_type *
|
| 580 |
|
|
deprecated_value_lval_hack (struct value *value)
|
| 581 |
|
|
{
|
| 582 |
|
|
return &value->lval;
|
| 583 |
|
|
}
|
| 584 |
|
|
|
| 585 |
|
|
CORE_ADDR
|
| 586 |
|
|
value_address (struct value *value)
|
| 587 |
|
|
{
|
| 588 |
|
|
if (value->lval == lval_internalvar
|
| 589 |
|
|
|| value->lval == lval_internalvar_component)
|
| 590 |
|
|
return 0;
|
| 591 |
|
|
return value->location.address + value->offset;
|
| 592 |
|
|
}
|
| 593 |
|
|
|
| 594 |
|
|
CORE_ADDR
|
| 595 |
|
|
value_raw_address (struct value *value)
|
| 596 |
|
|
{
|
| 597 |
|
|
if (value->lval == lval_internalvar
|
| 598 |
|
|
|| value->lval == lval_internalvar_component)
|
| 599 |
|
|
return 0;
|
| 600 |
|
|
return value->location.address;
|
| 601 |
|
|
}
|
| 602 |
|
|
|
| 603 |
|
|
void
|
| 604 |
|
|
set_value_address (struct value *value, CORE_ADDR addr)
|
| 605 |
|
|
{
|
| 606 |
|
|
gdb_assert (value->lval != lval_internalvar
|
| 607 |
|
|
&& value->lval != lval_internalvar_component);
|
| 608 |
|
|
value->location.address = addr;
|
| 609 |
|
|
}
|
| 610 |
|
|
|
| 611 |
|
|
struct internalvar **
|
| 612 |
|
|
deprecated_value_internalvar_hack (struct value *value)
|
| 613 |
|
|
{
|
| 614 |
|
|
return &value->location.internalvar;
|
| 615 |
|
|
}
|
| 616 |
|
|
|
| 617 |
|
|
struct frame_id *
|
| 618 |
|
|
deprecated_value_frame_id_hack (struct value *value)
|
| 619 |
|
|
{
|
| 620 |
|
|
return &value->frame_id;
|
| 621 |
|
|
}
|
| 622 |
|
|
|
| 623 |
|
|
short *
|
| 624 |
|
|
deprecated_value_regnum_hack (struct value *value)
|
| 625 |
|
|
{
|
| 626 |
|
|
return &value->regnum;
|
| 627 |
|
|
}
|
| 628 |
|
|
|
| 629 |
|
|
int
|
| 630 |
|
|
deprecated_value_modifiable (struct value *value)
|
| 631 |
|
|
{
|
| 632 |
|
|
return value->modifiable;
|
| 633 |
|
|
}
|
| 634 |
|
|
void
|
| 635 |
|
|
deprecated_set_value_modifiable (struct value *value, int modifiable)
|
| 636 |
|
|
{
|
| 637 |
|
|
value->modifiable = modifiable;
|
| 638 |
|
|
}
|
| 639 |
|
|
|
| 640 |
|
|
/* Return a mark in the value chain. All values allocated after the
|
| 641 |
|
|
mark is obtained (except for those released) are subject to being freed
|
| 642 |
|
|
if a subsequent value_free_to_mark is passed the mark. */
|
| 643 |
|
|
struct value *
|
| 644 |
|
|
value_mark (void)
|
| 645 |
|
|
{
|
| 646 |
|
|
return all_values;
|
| 647 |
|
|
}
|
| 648 |
|
|
|
| 649 |
|
|
/* Take a reference to VAL. VAL will not be deallocated until all
|
| 650 |
|
|
references are released. */
|
| 651 |
|
|
|
| 652 |
|
|
void
|
| 653 |
|
|
value_incref (struct value *val)
|
| 654 |
|
|
{
|
| 655 |
|
|
val->reference_count++;
|
| 656 |
|
|
}
|
| 657 |
|
|
|
| 658 |
|
|
/* Release a reference to VAL, which was acquired with value_incref.
|
| 659 |
|
|
This function is also called to deallocate values from the value
|
| 660 |
|
|
chain. */
|
| 661 |
|
|
|
| 662 |
|
|
void
|
| 663 |
|
|
value_free (struct value *val)
|
| 664 |
|
|
{
|
| 665 |
|
|
if (val)
|
| 666 |
|
|
{
|
| 667 |
|
|
gdb_assert (val->reference_count > 0);
|
| 668 |
|
|
val->reference_count--;
|
| 669 |
|
|
if (val->reference_count > 0)
|
| 670 |
|
|
return;
|
| 671 |
|
|
|
| 672 |
|
|
/* If there's an associated parent value, drop our reference to
|
| 673 |
|
|
it. */
|
| 674 |
|
|
if (val->parent != NULL)
|
| 675 |
|
|
value_free (val->parent);
|
| 676 |
|
|
|
| 677 |
|
|
if (VALUE_LVAL (val) == lval_computed)
|
| 678 |
|
|
{
|
| 679 |
|
|
struct lval_funcs *funcs = val->location.computed.funcs;
|
| 680 |
|
|
|
| 681 |
|
|
if (funcs->free_closure)
|
| 682 |
|
|
funcs->free_closure (val);
|
| 683 |
|
|
}
|
| 684 |
|
|
|
| 685 |
|
|
xfree (val->contents);
|
| 686 |
|
|
}
|
| 687 |
|
|
xfree (val);
|
| 688 |
|
|
}
|
| 689 |
|
|
|
| 690 |
|
|
/* Free all values allocated since MARK was obtained by value_mark
|
| 691 |
|
|
(except for those released). */
|
| 692 |
|
|
void
|
| 693 |
|
|
value_free_to_mark (struct value *mark)
|
| 694 |
|
|
{
|
| 695 |
|
|
struct value *val;
|
| 696 |
|
|
struct value *next;
|
| 697 |
|
|
|
| 698 |
|
|
for (val = all_values; val && val != mark; val = next)
|
| 699 |
|
|
{
|
| 700 |
|
|
next = val->next;
|
| 701 |
|
|
value_free (val);
|
| 702 |
|
|
}
|
| 703 |
|
|
all_values = val;
|
| 704 |
|
|
}
|
| 705 |
|
|
|
| 706 |
|
|
/* Free all the values that have been allocated (except for those released).
|
| 707 |
|
|
Call after each command, successful or not.
|
| 708 |
|
|
In practice this is called before each command, which is sufficient. */
|
| 709 |
|
|
|
| 710 |
|
|
void
|
| 711 |
|
|
free_all_values (void)
|
| 712 |
|
|
{
|
| 713 |
|
|
struct value *val;
|
| 714 |
|
|
struct value *next;
|
| 715 |
|
|
|
| 716 |
|
|
for (val = all_values; val; val = next)
|
| 717 |
|
|
{
|
| 718 |
|
|
next = val->next;
|
| 719 |
|
|
value_free (val);
|
| 720 |
|
|
}
|
| 721 |
|
|
|
| 722 |
|
|
all_values = 0;
|
| 723 |
|
|
}
|
| 724 |
|
|
|
| 725 |
|
|
/* Frees all the elements in a chain of values. */
|
| 726 |
|
|
|
| 727 |
|
|
void
|
| 728 |
|
|
free_value_chain (struct value *v)
|
| 729 |
|
|
{
|
| 730 |
|
|
struct value *next;
|
| 731 |
|
|
|
| 732 |
|
|
for (; v; v = next)
|
| 733 |
|
|
{
|
| 734 |
|
|
next = value_next (v);
|
| 735 |
|
|
value_free (v);
|
| 736 |
|
|
}
|
| 737 |
|
|
}
|
| 738 |
|
|
|
| 739 |
|
|
/* Remove VAL from the chain all_values
|
| 740 |
|
|
so it will not be freed automatically. */
|
| 741 |
|
|
|
| 742 |
|
|
void
|
| 743 |
|
|
release_value (struct value *val)
|
| 744 |
|
|
{
|
| 745 |
|
|
struct value *v;
|
| 746 |
|
|
|
| 747 |
|
|
if (all_values == val)
|
| 748 |
|
|
{
|
| 749 |
|
|
all_values = val->next;
|
| 750 |
|
|
return;
|
| 751 |
|
|
}
|
| 752 |
|
|
|
| 753 |
|
|
for (v = all_values; v; v = v->next)
|
| 754 |
|
|
{
|
| 755 |
|
|
if (v->next == val)
|
| 756 |
|
|
{
|
| 757 |
|
|
v->next = val->next;
|
| 758 |
|
|
break;
|
| 759 |
|
|
}
|
| 760 |
|
|
}
|
| 761 |
|
|
}
|
| 762 |
|
|
|
| 763 |
|
|
/* Release all values up to mark */
|
| 764 |
|
|
struct value *
|
| 765 |
|
|
value_release_to_mark (struct value *mark)
|
| 766 |
|
|
{
|
| 767 |
|
|
struct value *val;
|
| 768 |
|
|
struct value *next;
|
| 769 |
|
|
|
| 770 |
|
|
for (val = next = all_values; next; next = next->next)
|
| 771 |
|
|
if (next->next == mark)
|
| 772 |
|
|
{
|
| 773 |
|
|
all_values = next->next;
|
| 774 |
|
|
next->next = NULL;
|
| 775 |
|
|
return val;
|
| 776 |
|
|
}
|
| 777 |
|
|
all_values = 0;
|
| 778 |
|
|
return val;
|
| 779 |
|
|
}
|
| 780 |
|
|
|
| 781 |
|
|
/* Return a copy of the value ARG.
|
| 782 |
|
|
It contains the same contents, for same memory address,
|
| 783 |
|
|
but it's a different block of storage. */
|
| 784 |
|
|
|
| 785 |
|
|
struct value *
|
| 786 |
|
|
value_copy (struct value *arg)
|
| 787 |
|
|
{
|
| 788 |
|
|
struct type *encl_type = value_enclosing_type (arg);
|
| 789 |
|
|
struct value *val;
|
| 790 |
|
|
|
| 791 |
|
|
if (value_lazy (arg))
|
| 792 |
|
|
val = allocate_value_lazy (encl_type);
|
| 793 |
|
|
else
|
| 794 |
|
|
val = allocate_value (encl_type);
|
| 795 |
|
|
val->type = arg->type;
|
| 796 |
|
|
VALUE_LVAL (val) = VALUE_LVAL (arg);
|
| 797 |
|
|
val->location = arg->location;
|
| 798 |
|
|
val->offset = arg->offset;
|
| 799 |
|
|
val->bitpos = arg->bitpos;
|
| 800 |
|
|
val->bitsize = arg->bitsize;
|
| 801 |
|
|
VALUE_FRAME_ID (val) = VALUE_FRAME_ID (arg);
|
| 802 |
|
|
VALUE_REGNUM (val) = VALUE_REGNUM (arg);
|
| 803 |
|
|
val->lazy = arg->lazy;
|
| 804 |
|
|
val->optimized_out = arg->optimized_out;
|
| 805 |
|
|
val->embedded_offset = value_embedded_offset (arg);
|
| 806 |
|
|
val->pointed_to_offset = arg->pointed_to_offset;
|
| 807 |
|
|
val->modifiable = arg->modifiable;
|
| 808 |
|
|
if (!value_lazy (val))
|
| 809 |
|
|
{
|
| 810 |
|
|
memcpy (value_contents_all_raw (val), value_contents_all_raw (arg),
|
| 811 |
|
|
TYPE_LENGTH (value_enclosing_type (arg)));
|
| 812 |
|
|
|
| 813 |
|
|
}
|
| 814 |
|
|
val->parent = arg->parent;
|
| 815 |
|
|
if (val->parent)
|
| 816 |
|
|
value_incref (val->parent);
|
| 817 |
|
|
if (VALUE_LVAL (val) == lval_computed)
|
| 818 |
|
|
{
|
| 819 |
|
|
struct lval_funcs *funcs = val->location.computed.funcs;
|
| 820 |
|
|
|
| 821 |
|
|
if (funcs->copy_closure)
|
| 822 |
|
|
val->location.computed.closure = funcs->copy_closure (val);
|
| 823 |
|
|
}
|
| 824 |
|
|
return val;
|
| 825 |
|
|
}
|
| 826 |
|
|
|
| 827 |
|
|
void
|
| 828 |
|
|
set_value_component_location (struct value *component,
|
| 829 |
|
|
const struct value *whole)
|
| 830 |
|
|
{
|
| 831 |
|
|
if (whole->lval == lval_internalvar)
|
| 832 |
|
|
VALUE_LVAL (component) = lval_internalvar_component;
|
| 833 |
|
|
else
|
| 834 |
|
|
VALUE_LVAL (component) = whole->lval;
|
| 835 |
|
|
|
| 836 |
|
|
component->location = whole->location;
|
| 837 |
|
|
if (whole->lval == lval_computed)
|
| 838 |
|
|
{
|
| 839 |
|
|
struct lval_funcs *funcs = whole->location.computed.funcs;
|
| 840 |
|
|
|
| 841 |
|
|
if (funcs->copy_closure)
|
| 842 |
|
|
component->location.computed.closure = funcs->copy_closure (whole);
|
| 843 |
|
|
}
|
| 844 |
|
|
}
|
| 845 |
|
|
|
| 846 |
|
|
|
| 847 |
|
|
/* Access to the value history. */
|
| 848 |
|
|
|
| 849 |
|
|
/* Record a new value in the value history.
|
| 850 |
|
|
Returns the absolute history index of the entry.
|
| 851 |
|
|
Result of -1 indicates the value was not saved; otherwise it is the
|
| 852 |
|
|
value history index of this new item. */
|
| 853 |
|
|
|
| 854 |
|
|
int
|
| 855 |
|
|
record_latest_value (struct value *val)
|
| 856 |
|
|
{
|
| 857 |
|
|
int i;
|
| 858 |
|
|
|
| 859 |
|
|
/* We don't want this value to have anything to do with the inferior anymore.
|
| 860 |
|
|
In particular, "set $1 = 50" should not affect the variable from which
|
| 861 |
|
|
the value was taken, and fast watchpoints should be able to assume that
|
| 862 |
|
|
a value on the value history never changes. */
|
| 863 |
|
|
if (value_lazy (val))
|
| 864 |
|
|
value_fetch_lazy (val);
|
| 865 |
|
|
/* We preserve VALUE_LVAL so that the user can find out where it was fetched
|
| 866 |
|
|
from. This is a bit dubious, because then *&$1 does not just return $1
|
| 867 |
|
|
but the current contents of that location. c'est la vie... */
|
| 868 |
|
|
val->modifiable = 0;
|
| 869 |
|
|
release_value (val);
|
| 870 |
|
|
|
| 871 |
|
|
/* Here we treat value_history_count as origin-zero
|
| 872 |
|
|
and applying to the value being stored now. */
|
| 873 |
|
|
|
| 874 |
|
|
i = value_history_count % VALUE_HISTORY_CHUNK;
|
| 875 |
|
|
if (i == 0)
|
| 876 |
|
|
{
|
| 877 |
|
|
struct value_history_chunk *new
|
| 878 |
|
|
= (struct value_history_chunk *)
|
| 879 |
|
|
|
| 880 |
|
|
xmalloc (sizeof (struct value_history_chunk));
|
| 881 |
|
|
memset (new->values, 0, sizeof new->values);
|
| 882 |
|
|
new->next = value_history_chain;
|
| 883 |
|
|
value_history_chain = new;
|
| 884 |
|
|
}
|
| 885 |
|
|
|
| 886 |
|
|
value_history_chain->values[i] = val;
|
| 887 |
|
|
|
| 888 |
|
|
/* Now we regard value_history_count as origin-one
|
| 889 |
|
|
and applying to the value just stored. */
|
| 890 |
|
|
|
| 891 |
|
|
return ++value_history_count;
|
| 892 |
|
|
}
|
| 893 |
|
|
|
| 894 |
|
|
/* Return a copy of the value in the history with sequence number NUM. */
|
| 895 |
|
|
|
| 896 |
|
|
struct value *
|
| 897 |
|
|
access_value_history (int num)
|
| 898 |
|
|
{
|
| 899 |
|
|
struct value_history_chunk *chunk;
|
| 900 |
|
|
int i;
|
| 901 |
|
|
int absnum = num;
|
| 902 |
|
|
|
| 903 |
|
|
if (absnum <= 0)
|
| 904 |
|
|
absnum += value_history_count;
|
| 905 |
|
|
|
| 906 |
|
|
if (absnum <= 0)
|
| 907 |
|
|
{
|
| 908 |
|
|
if (num == 0)
|
| 909 |
|
|
error (_("The history is empty."));
|
| 910 |
|
|
else if (num == 1)
|
| 911 |
|
|
error (_("There is only one value in the history."));
|
| 912 |
|
|
else
|
| 913 |
|
|
error (_("History does not go back to $$%d."), -num);
|
| 914 |
|
|
}
|
| 915 |
|
|
if (absnum > value_history_count)
|
| 916 |
|
|
error (_("History has not yet reached $%d."), absnum);
|
| 917 |
|
|
|
| 918 |
|
|
absnum--;
|
| 919 |
|
|
|
| 920 |
|
|
/* Now absnum is always absolute and origin zero. */
|
| 921 |
|
|
|
| 922 |
|
|
chunk = value_history_chain;
|
| 923 |
|
|
for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK;
|
| 924 |
|
|
i > 0; i--)
|
| 925 |
|
|
chunk = chunk->next;
|
| 926 |
|
|
|
| 927 |
|
|
return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
|
| 928 |
|
|
}
|
| 929 |
|
|
|
| 930 |
|
|
static void
|
| 931 |
|
|
show_values (char *num_exp, int from_tty)
|
| 932 |
|
|
{
|
| 933 |
|
|
int i;
|
| 934 |
|
|
struct value *val;
|
| 935 |
|
|
static int num = 1;
|
| 936 |
|
|
|
| 937 |
|
|
if (num_exp)
|
| 938 |
|
|
{
|
| 939 |
|
|
/* "show values +" should print from the stored position.
|
| 940 |
|
|
"show values <exp>" should print around value number <exp>. */
|
| 941 |
|
|
if (num_exp[0] != '+' || num_exp[1] != '\0')
|
| 942 |
|
|
num = parse_and_eval_long (num_exp) - 5;
|
| 943 |
|
|
}
|
| 944 |
|
|
else
|
| 945 |
|
|
{
|
| 946 |
|
|
/* "show values" means print the last 10 values. */
|
| 947 |
|
|
num = value_history_count - 9;
|
| 948 |
|
|
}
|
| 949 |
|
|
|
| 950 |
|
|
if (num <= 0)
|
| 951 |
|
|
num = 1;
|
| 952 |
|
|
|
| 953 |
|
|
for (i = num; i < num + 10 && i <= value_history_count; i++)
|
| 954 |
|
|
{
|
| 955 |
|
|
struct value_print_options opts;
|
| 956 |
|
|
|
| 957 |
|
|
val = access_value_history (i);
|
| 958 |
|
|
printf_filtered (("$%d = "), i);
|
| 959 |
|
|
get_user_print_options (&opts);
|
| 960 |
|
|
value_print (val, gdb_stdout, &opts);
|
| 961 |
|
|
printf_filtered (("\n"));
|
| 962 |
|
|
}
|
| 963 |
|
|
|
| 964 |
|
|
/* The next "show values +" should start after what we just printed. */
|
| 965 |
|
|
num += 10;
|
| 966 |
|
|
|
| 967 |
|
|
/* Hitting just return after this command should do the same thing as
|
| 968 |
|
|
"show values +". If num_exp is null, this is unnecessary, since
|
| 969 |
|
|
"show values +" is not useful after "show values". */
|
| 970 |
|
|
if (from_tty && num_exp)
|
| 971 |
|
|
{
|
| 972 |
|
|
num_exp[0] = '+';
|
| 973 |
|
|
num_exp[1] = '\0';
|
| 974 |
|
|
}
|
| 975 |
|
|
}
|
| 976 |
|
|
|
| 977 |
|
|
/* Internal variables. These are variables within the debugger
|
| 978 |
|
|
that hold values assigned by debugger commands.
|
| 979 |
|
|
The user refers to them with a '$' prefix
|
| 980 |
|
|
that does not appear in the variable names stored internally. */
|
| 981 |
|
|
|
| 982 |
|
|
struct internalvar
|
| 983 |
|
|
{
|
| 984 |
|
|
struct internalvar *next;
|
| 985 |
|
|
char *name;
|
| 986 |
|
|
|
| 987 |
|
|
/* We support various different kinds of content of an internal variable.
|
| 988 |
|
|
enum internalvar_kind specifies the kind, and union internalvar_data
|
| 989 |
|
|
provides the data associated with this particular kind. */
|
| 990 |
|
|
|
| 991 |
|
|
enum internalvar_kind
|
| 992 |
|
|
{
|
| 993 |
|
|
/* The internal variable is empty. */
|
| 994 |
|
|
INTERNALVAR_VOID,
|
| 995 |
|
|
|
| 996 |
|
|
/* The value of the internal variable is provided directly as
|
| 997 |
|
|
a GDB value object. */
|
| 998 |
|
|
INTERNALVAR_VALUE,
|
| 999 |
|
|
|
| 1000 |
|
|
/* A fresh value is computed via a call-back routine on every
|
| 1001 |
|
|
access to the internal variable. */
|
| 1002 |
|
|
INTERNALVAR_MAKE_VALUE,
|
| 1003 |
|
|
|
| 1004 |
|
|
/* The internal variable holds a GDB internal convenience function. */
|
| 1005 |
|
|
INTERNALVAR_FUNCTION,
|
| 1006 |
|
|
|
| 1007 |
|
|
/* The variable holds an integer value. */
|
| 1008 |
|
|
INTERNALVAR_INTEGER,
|
| 1009 |
|
|
|
| 1010 |
|
|
/* The variable holds a pointer value. */
|
| 1011 |
|
|
INTERNALVAR_POINTER,
|
| 1012 |
|
|
|
| 1013 |
|
|
/* The variable holds a GDB-provided string. */
|
| 1014 |
|
|
INTERNALVAR_STRING,
|
| 1015 |
|
|
|
| 1016 |
|
|
} kind;
|
| 1017 |
|
|
|
| 1018 |
|
|
union internalvar_data
|
| 1019 |
|
|
{
|
| 1020 |
|
|
/* A value object used with INTERNALVAR_VALUE. */
|
| 1021 |
|
|
struct value *value;
|
| 1022 |
|
|
|
| 1023 |
|
|
/* The call-back routine used with INTERNALVAR_MAKE_VALUE. */
|
| 1024 |
|
|
internalvar_make_value make_value;
|
| 1025 |
|
|
|
| 1026 |
|
|
/* The internal function used with INTERNALVAR_FUNCTION. */
|
| 1027 |
|
|
struct
|
| 1028 |
|
|
{
|
| 1029 |
|
|
struct internal_function *function;
|
| 1030 |
|
|
/* True if this is the canonical name for the function. */
|
| 1031 |
|
|
int canonical;
|
| 1032 |
|
|
} fn;
|
| 1033 |
|
|
|
| 1034 |
|
|
/* An integer value used with INTERNALVAR_INTEGER. */
|
| 1035 |
|
|
struct
|
| 1036 |
|
|
{
|
| 1037 |
|
|
/* If type is non-NULL, it will be used as the type to generate
|
| 1038 |
|
|
a value for this internal variable. If type is NULL, a default
|
| 1039 |
|
|
integer type for the architecture is used. */
|
| 1040 |
|
|
struct type *type;
|
| 1041 |
|
|
LONGEST val;
|
| 1042 |
|
|
} integer;
|
| 1043 |
|
|
|
| 1044 |
|
|
/* A pointer value used with INTERNALVAR_POINTER. */
|
| 1045 |
|
|
struct
|
| 1046 |
|
|
{
|
| 1047 |
|
|
struct type *type;
|
| 1048 |
|
|
CORE_ADDR val;
|
| 1049 |
|
|
} pointer;
|
| 1050 |
|
|
|
| 1051 |
|
|
/* A string value used with INTERNALVAR_STRING. */
|
| 1052 |
|
|
char *string;
|
| 1053 |
|
|
} u;
|
| 1054 |
|
|
};
|
| 1055 |
|
|
|
| 1056 |
|
|
static struct internalvar *internalvars;
|
| 1057 |
|
|
|
| 1058 |
|
|
/* If the variable does not already exist create it and give it the value given.
|
| 1059 |
|
|
If no value is given then the default is zero. */
|
| 1060 |
|
|
static void
|
| 1061 |
|
|
init_if_undefined_command (char* args, int from_tty)
|
| 1062 |
|
|
{
|
| 1063 |
|
|
struct internalvar* intvar;
|
| 1064 |
|
|
|
| 1065 |
|
|
/* Parse the expression - this is taken from set_command(). */
|
| 1066 |
|
|
struct expression *expr = parse_expression (args);
|
| 1067 |
|
|
register struct cleanup *old_chain =
|
| 1068 |
|
|
make_cleanup (free_current_contents, &expr);
|
| 1069 |
|
|
|
| 1070 |
|
|
/* Validate the expression.
|
| 1071 |
|
|
Was the expression an assignment?
|
| 1072 |
|
|
Or even an expression at all? */
|
| 1073 |
|
|
if (expr->nelts == 0 || expr->elts[0].opcode != BINOP_ASSIGN)
|
| 1074 |
|
|
error (_("Init-if-undefined requires an assignment expression."));
|
| 1075 |
|
|
|
| 1076 |
|
|
/* Extract the variable from the parsed expression.
|
| 1077 |
|
|
In the case of an assign the lvalue will be in elts[1] and elts[2]. */
|
| 1078 |
|
|
if (expr->elts[1].opcode != OP_INTERNALVAR)
|
| 1079 |
|
|
error (_("The first parameter to init-if-undefined should be a GDB variable."));
|
| 1080 |
|
|
intvar = expr->elts[2].internalvar;
|
| 1081 |
|
|
|
| 1082 |
|
|
/* Only evaluate the expression if the lvalue is void.
|
| 1083 |
|
|
This may still fail if the expresssion is invalid. */
|
| 1084 |
|
|
if (intvar->kind == INTERNALVAR_VOID)
|
| 1085 |
|
|
evaluate_expression (expr);
|
| 1086 |
|
|
|
| 1087 |
|
|
do_cleanups (old_chain);
|
| 1088 |
|
|
}
|
| 1089 |
|
|
|
| 1090 |
|
|
|
| 1091 |
|
|
/* Look up an internal variable with name NAME. NAME should not
|
| 1092 |
|
|
normally include a dollar sign.
|
| 1093 |
|
|
|
| 1094 |
|
|
If the specified internal variable does not exist,
|
| 1095 |
|
|
the return value is NULL. */
|
| 1096 |
|
|
|
| 1097 |
|
|
struct internalvar *
|
| 1098 |
|
|
lookup_only_internalvar (const char *name)
|
| 1099 |
|
|
{
|
| 1100 |
|
|
struct internalvar *var;
|
| 1101 |
|
|
|
| 1102 |
|
|
for (var = internalvars; var; var = var->next)
|
| 1103 |
|
|
if (strcmp (var->name, name) == 0)
|
| 1104 |
|
|
return var;
|
| 1105 |
|
|
|
| 1106 |
|
|
return NULL;
|
| 1107 |
|
|
}
|
| 1108 |
|
|
|
| 1109 |
|
|
|
| 1110 |
|
|
/* Create an internal variable with name NAME and with a void value.
|
| 1111 |
|
|
NAME should not normally include a dollar sign. */
|
| 1112 |
|
|
|
| 1113 |
|
|
struct internalvar *
|
| 1114 |
|
|
create_internalvar (const char *name)
|
| 1115 |
|
|
{
|
| 1116 |
|
|
struct internalvar *var;
|
| 1117 |
|
|
|
| 1118 |
|
|
var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
|
| 1119 |
|
|
var->name = concat (name, (char *)NULL);
|
| 1120 |
|
|
var->kind = INTERNALVAR_VOID;
|
| 1121 |
|
|
var->next = internalvars;
|
| 1122 |
|
|
internalvars = var;
|
| 1123 |
|
|
return var;
|
| 1124 |
|
|
}
|
| 1125 |
|
|
|
| 1126 |
|
|
/* Create an internal variable with name NAME and register FUN as the
|
| 1127 |
|
|
function that value_of_internalvar uses to create a value whenever
|
| 1128 |
|
|
this variable is referenced. NAME should not normally include a
|
| 1129 |
|
|
dollar sign. */
|
| 1130 |
|
|
|
| 1131 |
|
|
struct internalvar *
|
| 1132 |
|
|
create_internalvar_type_lazy (char *name, internalvar_make_value fun)
|
| 1133 |
|
|
{
|
| 1134 |
|
|
struct internalvar *var = create_internalvar (name);
|
| 1135 |
|
|
|
| 1136 |
|
|
var->kind = INTERNALVAR_MAKE_VALUE;
|
| 1137 |
|
|
var->u.make_value = fun;
|
| 1138 |
|
|
return var;
|
| 1139 |
|
|
}
|
| 1140 |
|
|
|
| 1141 |
|
|
/* Look up an internal variable with name NAME. NAME should not
|
| 1142 |
|
|
normally include a dollar sign.
|
| 1143 |
|
|
|
| 1144 |
|
|
If the specified internal variable does not exist,
|
| 1145 |
|
|
one is created, with a void value. */
|
| 1146 |
|
|
|
| 1147 |
|
|
struct internalvar *
|
| 1148 |
|
|
lookup_internalvar (const char *name)
|
| 1149 |
|
|
{
|
| 1150 |
|
|
struct internalvar *var;
|
| 1151 |
|
|
|
| 1152 |
|
|
var = lookup_only_internalvar (name);
|
| 1153 |
|
|
if (var)
|
| 1154 |
|
|
return var;
|
| 1155 |
|
|
|
| 1156 |
|
|
return create_internalvar (name);
|
| 1157 |
|
|
}
|
| 1158 |
|
|
|
| 1159 |
|
|
/* Return current value of internal variable VAR. For variables that
|
| 1160 |
|
|
are not inherently typed, use a value type appropriate for GDBARCH. */
|
| 1161 |
|
|
|
| 1162 |
|
|
struct value *
|
| 1163 |
|
|
value_of_internalvar (struct gdbarch *gdbarch, struct internalvar *var)
|
| 1164 |
|
|
{
|
| 1165 |
|
|
struct value *val;
|
| 1166 |
|
|
|
| 1167 |
|
|
switch (var->kind)
|
| 1168 |
|
|
{
|
| 1169 |
|
|
case INTERNALVAR_VOID:
|
| 1170 |
|
|
val = allocate_value (builtin_type (gdbarch)->builtin_void);
|
| 1171 |
|
|
break;
|
| 1172 |
|
|
|
| 1173 |
|
|
case INTERNALVAR_FUNCTION:
|
| 1174 |
|
|
val = allocate_value (builtin_type (gdbarch)->internal_fn);
|
| 1175 |
|
|
break;
|
| 1176 |
|
|
|
| 1177 |
|
|
case INTERNALVAR_INTEGER:
|
| 1178 |
|
|
if (!var->u.integer.type)
|
| 1179 |
|
|
val = value_from_longest (builtin_type (gdbarch)->builtin_int,
|
| 1180 |
|
|
var->u.integer.val);
|
| 1181 |
|
|
else
|
| 1182 |
|
|
val = value_from_longest (var->u.integer.type, var->u.integer.val);
|
| 1183 |
|
|
break;
|
| 1184 |
|
|
|
| 1185 |
|
|
case INTERNALVAR_POINTER:
|
| 1186 |
|
|
val = value_from_pointer (var->u.pointer.type, var->u.pointer.val);
|
| 1187 |
|
|
break;
|
| 1188 |
|
|
|
| 1189 |
|
|
case INTERNALVAR_STRING:
|
| 1190 |
|
|
val = value_cstring (var->u.string, strlen (var->u.string),
|
| 1191 |
|
|
builtin_type (gdbarch)->builtin_char);
|
| 1192 |
|
|
break;
|
| 1193 |
|
|
|
| 1194 |
|
|
case INTERNALVAR_VALUE:
|
| 1195 |
|
|
val = value_copy (var->u.value);
|
| 1196 |
|
|
if (value_lazy (val))
|
| 1197 |
|
|
value_fetch_lazy (val);
|
| 1198 |
|
|
break;
|
| 1199 |
|
|
|
| 1200 |
|
|
case INTERNALVAR_MAKE_VALUE:
|
| 1201 |
|
|
val = (*var->u.make_value) (gdbarch, var);
|
| 1202 |
|
|
break;
|
| 1203 |
|
|
|
| 1204 |
|
|
default:
|
| 1205 |
|
|
internal_error (__FILE__, __LINE__, "bad kind");
|
| 1206 |
|
|
}
|
| 1207 |
|
|
|
| 1208 |
|
|
/* Change the VALUE_LVAL to lval_internalvar so that future operations
|
| 1209 |
|
|
on this value go back to affect the original internal variable.
|
| 1210 |
|
|
|
| 1211 |
|
|
Do not do this for INTERNALVAR_MAKE_VALUE variables, as those have
|
| 1212 |
|
|
no underlying modifyable state in the internal variable.
|
| 1213 |
|
|
|
| 1214 |
|
|
Likewise, if the variable's value is a computed lvalue, we want
|
| 1215 |
|
|
references to it to produce another computed lvalue, where
|
| 1216 |
|
|
references and assignments actually operate through the
|
| 1217 |
|
|
computed value's functions.
|
| 1218 |
|
|
|
| 1219 |
|
|
This means that internal variables with computed values
|
| 1220 |
|
|
behave a little differently from other internal variables:
|
| 1221 |
|
|
assignments to them don't just replace the previous value
|
| 1222 |
|
|
altogether. At the moment, this seems like the behavior we
|
| 1223 |
|
|
want. */
|
| 1224 |
|
|
|
| 1225 |
|
|
if (var->kind != INTERNALVAR_MAKE_VALUE
|
| 1226 |
|
|
&& val->lval != lval_computed)
|
| 1227 |
|
|
{
|
| 1228 |
|
|
VALUE_LVAL (val) = lval_internalvar;
|
| 1229 |
|
|
VALUE_INTERNALVAR (val) = var;
|
| 1230 |
|
|
}
|
| 1231 |
|
|
|
| 1232 |
|
|
return val;
|
| 1233 |
|
|
}
|
| 1234 |
|
|
|
| 1235 |
|
|
int
|
| 1236 |
|
|
get_internalvar_integer (struct internalvar *var, LONGEST *result)
|
| 1237 |
|
|
{
|
| 1238 |
|
|
switch (var->kind)
|
| 1239 |
|
|
{
|
| 1240 |
|
|
case INTERNALVAR_INTEGER:
|
| 1241 |
|
|
*result = var->u.integer.val;
|
| 1242 |
|
|
return 1;
|
| 1243 |
|
|
|
| 1244 |
|
|
default:
|
| 1245 |
|
|
return 0;
|
| 1246 |
|
|
}
|
| 1247 |
|
|
}
|
| 1248 |
|
|
|
| 1249 |
|
|
static int
|
| 1250 |
|
|
get_internalvar_function (struct internalvar *var,
|
| 1251 |
|
|
struct internal_function **result)
|
| 1252 |
|
|
{
|
| 1253 |
|
|
switch (var->kind)
|
| 1254 |
|
|
{
|
| 1255 |
|
|
case INTERNALVAR_FUNCTION:
|
| 1256 |
|
|
*result = var->u.fn.function;
|
| 1257 |
|
|
return 1;
|
| 1258 |
|
|
|
| 1259 |
|
|
default:
|
| 1260 |
|
|
return 0;
|
| 1261 |
|
|
}
|
| 1262 |
|
|
}
|
| 1263 |
|
|
|
| 1264 |
|
|
void
|
| 1265 |
|
|
set_internalvar_component (struct internalvar *var, int offset, int bitpos,
|
| 1266 |
|
|
int bitsize, struct value *newval)
|
| 1267 |
|
|
{
|
| 1268 |
|
|
gdb_byte *addr;
|
| 1269 |
|
|
|
| 1270 |
|
|
switch (var->kind)
|
| 1271 |
|
|
{
|
| 1272 |
|
|
case INTERNALVAR_VALUE:
|
| 1273 |
|
|
addr = value_contents_writeable (var->u.value);
|
| 1274 |
|
|
|
| 1275 |
|
|
if (bitsize)
|
| 1276 |
|
|
modify_field (value_type (var->u.value), addr + offset,
|
| 1277 |
|
|
value_as_long (newval), bitpos, bitsize);
|
| 1278 |
|
|
else
|
| 1279 |
|
|
memcpy (addr + offset, value_contents (newval),
|
| 1280 |
|
|
TYPE_LENGTH (value_type (newval)));
|
| 1281 |
|
|
break;
|
| 1282 |
|
|
|
| 1283 |
|
|
default:
|
| 1284 |
|
|
/* We can never get a component of any other kind. */
|
| 1285 |
|
|
internal_error (__FILE__, __LINE__, "set_internalvar_component");
|
| 1286 |
|
|
}
|
| 1287 |
|
|
}
|
| 1288 |
|
|
|
| 1289 |
|
|
void
|
| 1290 |
|
|
set_internalvar (struct internalvar *var, struct value *val)
|
| 1291 |
|
|
{
|
| 1292 |
|
|
enum internalvar_kind new_kind;
|
| 1293 |
|
|
union internalvar_data new_data = { 0 };
|
| 1294 |
|
|
|
| 1295 |
|
|
if (var->kind == INTERNALVAR_FUNCTION && var->u.fn.canonical)
|
| 1296 |
|
|
error (_("Cannot overwrite convenience function %s"), var->name);
|
| 1297 |
|
|
|
| 1298 |
|
|
/* Prepare new contents. */
|
| 1299 |
|
|
switch (TYPE_CODE (check_typedef (value_type (val))))
|
| 1300 |
|
|
{
|
| 1301 |
|
|
case TYPE_CODE_VOID:
|
| 1302 |
|
|
new_kind = INTERNALVAR_VOID;
|
| 1303 |
|
|
break;
|
| 1304 |
|
|
|
| 1305 |
|
|
case TYPE_CODE_INTERNAL_FUNCTION:
|
| 1306 |
|
|
gdb_assert (VALUE_LVAL (val) == lval_internalvar);
|
| 1307 |
|
|
new_kind = INTERNALVAR_FUNCTION;
|
| 1308 |
|
|
get_internalvar_function (VALUE_INTERNALVAR (val),
|
| 1309 |
|
|
&new_data.fn.function);
|
| 1310 |
|
|
/* Copies created here are never canonical. */
|
| 1311 |
|
|
break;
|
| 1312 |
|
|
|
| 1313 |
|
|
case TYPE_CODE_INT:
|
| 1314 |
|
|
new_kind = INTERNALVAR_INTEGER;
|
| 1315 |
|
|
new_data.integer.type = value_type (val);
|
| 1316 |
|
|
new_data.integer.val = value_as_long (val);
|
| 1317 |
|
|
break;
|
| 1318 |
|
|
|
| 1319 |
|
|
case TYPE_CODE_PTR:
|
| 1320 |
|
|
new_kind = INTERNALVAR_POINTER;
|
| 1321 |
|
|
new_data.pointer.type = value_type (val);
|
| 1322 |
|
|
new_data.pointer.val = value_as_address (val);
|
| 1323 |
|
|
break;
|
| 1324 |
|
|
|
| 1325 |
|
|
default:
|
| 1326 |
|
|
new_kind = INTERNALVAR_VALUE;
|
| 1327 |
|
|
new_data.value = value_copy (val);
|
| 1328 |
|
|
new_data.value->modifiable = 1;
|
| 1329 |
|
|
|
| 1330 |
|
|
/* Force the value to be fetched from the target now, to avoid problems
|
| 1331 |
|
|
later when this internalvar is referenced and the target is gone or
|
| 1332 |
|
|
has changed. */
|
| 1333 |
|
|
if (value_lazy (new_data.value))
|
| 1334 |
|
|
value_fetch_lazy (new_data.value);
|
| 1335 |
|
|
|
| 1336 |
|
|
/* Release the value from the value chain to prevent it from being
|
| 1337 |
|
|
deleted by free_all_values. From here on this function should not
|
| 1338 |
|
|
call error () until new_data is installed into the var->u to avoid
|
| 1339 |
|
|
leaking memory. */
|
| 1340 |
|
|
release_value (new_data.value);
|
| 1341 |
|
|
break;
|
| 1342 |
|
|
}
|
| 1343 |
|
|
|
| 1344 |
|
|
/* Clean up old contents. */
|
| 1345 |
|
|
clear_internalvar (var);
|
| 1346 |
|
|
|
| 1347 |
|
|
/* Switch over. */
|
| 1348 |
|
|
var->kind = new_kind;
|
| 1349 |
|
|
var->u = new_data;
|
| 1350 |
|
|
/* End code which must not call error(). */
|
| 1351 |
|
|
}
|
| 1352 |
|
|
|
| 1353 |
|
|
void
|
| 1354 |
|
|
set_internalvar_integer (struct internalvar *var, LONGEST l)
|
| 1355 |
|
|
{
|
| 1356 |
|
|
/* Clean up old contents. */
|
| 1357 |
|
|
clear_internalvar (var);
|
| 1358 |
|
|
|
| 1359 |
|
|
var->kind = INTERNALVAR_INTEGER;
|
| 1360 |
|
|
var->u.integer.type = NULL;
|
| 1361 |
|
|
var->u.integer.val = l;
|
| 1362 |
|
|
}
|
| 1363 |
|
|
|
| 1364 |
|
|
void
|
| 1365 |
|
|
set_internalvar_string (struct internalvar *var, const char *string)
|
| 1366 |
|
|
{
|
| 1367 |
|
|
/* Clean up old contents. */
|
| 1368 |
|
|
clear_internalvar (var);
|
| 1369 |
|
|
|
| 1370 |
|
|
var->kind = INTERNALVAR_STRING;
|
| 1371 |
|
|
var->u.string = xstrdup (string);
|
| 1372 |
|
|
}
|
| 1373 |
|
|
|
| 1374 |
|
|
static void
|
| 1375 |
|
|
set_internalvar_function (struct internalvar *var, struct internal_function *f)
|
| 1376 |
|
|
{
|
| 1377 |
|
|
/* Clean up old contents. */
|
| 1378 |
|
|
clear_internalvar (var);
|
| 1379 |
|
|
|
| 1380 |
|
|
var->kind = INTERNALVAR_FUNCTION;
|
| 1381 |
|
|
var->u.fn.function = f;
|
| 1382 |
|
|
var->u.fn.canonical = 1;
|
| 1383 |
|
|
/* Variables installed here are always the canonical version. */
|
| 1384 |
|
|
}
|
| 1385 |
|
|
|
| 1386 |
|
|
void
|
| 1387 |
|
|
clear_internalvar (struct internalvar *var)
|
| 1388 |
|
|
{
|
| 1389 |
|
|
/* Clean up old contents. */
|
| 1390 |
|
|
switch (var->kind)
|
| 1391 |
|
|
{
|
| 1392 |
|
|
case INTERNALVAR_VALUE:
|
| 1393 |
|
|
value_free (var->u.value);
|
| 1394 |
|
|
break;
|
| 1395 |
|
|
|
| 1396 |
|
|
case INTERNALVAR_STRING:
|
| 1397 |
|
|
xfree (var->u.string);
|
| 1398 |
|
|
break;
|
| 1399 |
|
|
|
| 1400 |
|
|
default:
|
| 1401 |
|
|
break;
|
| 1402 |
|
|
}
|
| 1403 |
|
|
|
| 1404 |
|
|
/* Reset to void kind. */
|
| 1405 |
|
|
var->kind = INTERNALVAR_VOID;
|
| 1406 |
|
|
}
|
| 1407 |
|
|
|
| 1408 |
|
|
char *
|
| 1409 |
|
|
internalvar_name (struct internalvar *var)
|
| 1410 |
|
|
{
|
| 1411 |
|
|
return var->name;
|
| 1412 |
|
|
}
|
| 1413 |
|
|
|
| 1414 |
|
|
static struct internal_function *
|
| 1415 |
|
|
create_internal_function (const char *name,
|
| 1416 |
|
|
internal_function_fn handler, void *cookie)
|
| 1417 |
|
|
{
|
| 1418 |
|
|
struct internal_function *ifn = XNEW (struct internal_function);
|
| 1419 |
|
|
|
| 1420 |
|
|
ifn->name = xstrdup (name);
|
| 1421 |
|
|
ifn->handler = handler;
|
| 1422 |
|
|
ifn->cookie = cookie;
|
| 1423 |
|
|
return ifn;
|
| 1424 |
|
|
}
|
| 1425 |
|
|
|
| 1426 |
|
|
char *
|
| 1427 |
|
|
value_internal_function_name (struct value *val)
|
| 1428 |
|
|
{
|
| 1429 |
|
|
struct internal_function *ifn;
|
| 1430 |
|
|
int result;
|
| 1431 |
|
|
|
| 1432 |
|
|
gdb_assert (VALUE_LVAL (val) == lval_internalvar);
|
| 1433 |
|
|
result = get_internalvar_function (VALUE_INTERNALVAR (val), &ifn);
|
| 1434 |
|
|
gdb_assert (result);
|
| 1435 |
|
|
|
| 1436 |
|
|
return ifn->name;
|
| 1437 |
|
|
}
|
| 1438 |
|
|
|
| 1439 |
|
|
struct value *
|
| 1440 |
|
|
call_internal_function (struct gdbarch *gdbarch,
|
| 1441 |
|
|
const struct language_defn *language,
|
| 1442 |
|
|
struct value *func, int argc, struct value **argv)
|
| 1443 |
|
|
{
|
| 1444 |
|
|
struct internal_function *ifn;
|
| 1445 |
|
|
int result;
|
| 1446 |
|
|
|
| 1447 |
|
|
gdb_assert (VALUE_LVAL (func) == lval_internalvar);
|
| 1448 |
|
|
result = get_internalvar_function (VALUE_INTERNALVAR (func), &ifn);
|
| 1449 |
|
|
gdb_assert (result);
|
| 1450 |
|
|
|
| 1451 |
|
|
return (*ifn->handler) (gdbarch, language, ifn->cookie, argc, argv);
|
| 1452 |
|
|
}
|
| 1453 |
|
|
|
| 1454 |
|
|
/* The 'function' command. This does nothing -- it is just a
|
| 1455 |
|
|
placeholder to let "help function NAME" work. This is also used as
|
| 1456 |
|
|
the implementation of the sub-command that is created when
|
| 1457 |
|
|
registering an internal function. */
|
| 1458 |
|
|
static void
|
| 1459 |
|
|
function_command (char *command, int from_tty)
|
| 1460 |
|
|
{
|
| 1461 |
|
|
/* Do nothing. */
|
| 1462 |
|
|
}
|
| 1463 |
|
|
|
| 1464 |
|
|
/* Clean up if an internal function's command is destroyed. */
|
| 1465 |
|
|
static void
|
| 1466 |
|
|
function_destroyer (struct cmd_list_element *self, void *ignore)
|
| 1467 |
|
|
{
|
| 1468 |
|
|
xfree (self->name);
|
| 1469 |
|
|
xfree (self->doc);
|
| 1470 |
|
|
}
|
| 1471 |
|
|
|
| 1472 |
|
|
/* Add a new internal function. NAME is the name of the function; DOC
|
| 1473 |
|
|
is a documentation string describing the function. HANDLER is
|
| 1474 |
|
|
called when the function is invoked. COOKIE is an arbitrary
|
| 1475 |
|
|
pointer which is passed to HANDLER and is intended for "user
|
| 1476 |
|
|
data". */
|
| 1477 |
|
|
void
|
| 1478 |
|
|
add_internal_function (const char *name, const char *doc,
|
| 1479 |
|
|
internal_function_fn handler, void *cookie)
|
| 1480 |
|
|
{
|
| 1481 |
|
|
struct cmd_list_element *cmd;
|
| 1482 |
|
|
struct internal_function *ifn;
|
| 1483 |
|
|
struct internalvar *var = lookup_internalvar (name);
|
| 1484 |
|
|
|
| 1485 |
|
|
ifn = create_internal_function (name, handler, cookie);
|
| 1486 |
|
|
set_internalvar_function (var, ifn);
|
| 1487 |
|
|
|
| 1488 |
|
|
cmd = add_cmd (xstrdup (name), no_class, function_command, (char *) doc,
|
| 1489 |
|
|
&functionlist);
|
| 1490 |
|
|
cmd->destroyer = function_destroyer;
|
| 1491 |
|
|
}
|
| 1492 |
|
|
|
| 1493 |
|
|
/* Update VALUE before discarding OBJFILE. COPIED_TYPES is used to
|
| 1494 |
|
|
prevent cycles / duplicates. */
|
| 1495 |
|
|
|
| 1496 |
|
|
void
|
| 1497 |
|
|
preserve_one_value (struct value *value, struct objfile *objfile,
|
| 1498 |
|
|
htab_t copied_types)
|
| 1499 |
|
|
{
|
| 1500 |
|
|
if (TYPE_OBJFILE (value->type) == objfile)
|
| 1501 |
|
|
value->type = copy_type_recursive (objfile, value->type, copied_types);
|
| 1502 |
|
|
|
| 1503 |
|
|
if (TYPE_OBJFILE (value->enclosing_type) == objfile)
|
| 1504 |
|
|
value->enclosing_type = copy_type_recursive (objfile,
|
| 1505 |
|
|
value->enclosing_type,
|
| 1506 |
|
|
copied_types);
|
| 1507 |
|
|
}
|
| 1508 |
|
|
|
| 1509 |
|
|
/* Likewise for internal variable VAR. */
|
| 1510 |
|
|
|
| 1511 |
|
|
static void
|
| 1512 |
|
|
preserve_one_internalvar (struct internalvar *var, struct objfile *objfile,
|
| 1513 |
|
|
htab_t copied_types)
|
| 1514 |
|
|
{
|
| 1515 |
|
|
switch (var->kind)
|
| 1516 |
|
|
{
|
| 1517 |
|
|
case INTERNALVAR_INTEGER:
|
| 1518 |
|
|
if (var->u.integer.type && TYPE_OBJFILE (var->u.integer.type) == objfile)
|
| 1519 |
|
|
var->u.integer.type
|
| 1520 |
|
|
= copy_type_recursive (objfile, var->u.integer.type, copied_types);
|
| 1521 |
|
|
break;
|
| 1522 |
|
|
|
| 1523 |
|
|
case INTERNALVAR_POINTER:
|
| 1524 |
|
|
if (TYPE_OBJFILE (var->u.pointer.type) == objfile)
|
| 1525 |
|
|
var->u.pointer.type
|
| 1526 |
|
|
= copy_type_recursive (objfile, var->u.pointer.type, copied_types);
|
| 1527 |
|
|
break;
|
| 1528 |
|
|
|
| 1529 |
|
|
case INTERNALVAR_VALUE:
|
| 1530 |
|
|
preserve_one_value (var->u.value, objfile, copied_types);
|
| 1531 |
|
|
break;
|
| 1532 |
|
|
}
|
| 1533 |
|
|
}
|
| 1534 |
|
|
|
| 1535 |
|
|
/* Update the internal variables and value history when OBJFILE is
|
| 1536 |
|
|
discarded; we must copy the types out of the objfile. New global types
|
| 1537 |
|
|
will be created for every convenience variable which currently points to
|
| 1538 |
|
|
this objfile's types, and the convenience variables will be adjusted to
|
| 1539 |
|
|
use the new global types. */
|
| 1540 |
|
|
|
| 1541 |
|
|
void
|
| 1542 |
|
|
preserve_values (struct objfile *objfile)
|
| 1543 |
|
|
{
|
| 1544 |
|
|
htab_t copied_types;
|
| 1545 |
|
|
struct value_history_chunk *cur;
|
| 1546 |
|
|
struct internalvar *var;
|
| 1547 |
|
|
int i;
|
| 1548 |
|
|
|
| 1549 |
|
|
/* Create the hash table. We allocate on the objfile's obstack, since
|
| 1550 |
|
|
it is soon to be deleted. */
|
| 1551 |
|
|
copied_types = create_copied_types_hash (objfile);
|
| 1552 |
|
|
|
| 1553 |
|
|
for (cur = value_history_chain; cur; cur = cur->next)
|
| 1554 |
|
|
for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
|
| 1555 |
|
|
if (cur->values[i])
|
| 1556 |
|
|
preserve_one_value (cur->values[i], objfile, copied_types);
|
| 1557 |
|
|
|
| 1558 |
|
|
for (var = internalvars; var; var = var->next)
|
| 1559 |
|
|
preserve_one_internalvar (var, objfile, copied_types);
|
| 1560 |
|
|
|
| 1561 |
|
|
preserve_python_values (objfile, copied_types);
|
| 1562 |
|
|
|
| 1563 |
|
|
htab_delete (copied_types);
|
| 1564 |
|
|
}
|
| 1565 |
|
|
|
| 1566 |
|
|
static void
|
| 1567 |
|
|
show_convenience (char *ignore, int from_tty)
|
| 1568 |
|
|
{
|
| 1569 |
|
|
struct gdbarch *gdbarch = get_current_arch ();
|
| 1570 |
|
|
struct internalvar *var;
|
| 1571 |
|
|
int varseen = 0;
|
| 1572 |
|
|
struct value_print_options opts;
|
| 1573 |
|
|
|
| 1574 |
|
|
get_user_print_options (&opts);
|
| 1575 |
|
|
for (var = internalvars; var; var = var->next)
|
| 1576 |
|
|
{
|
| 1577 |
|
|
if (!varseen)
|
| 1578 |
|
|
{
|
| 1579 |
|
|
varseen = 1;
|
| 1580 |
|
|
}
|
| 1581 |
|
|
printf_filtered (("$%s = "), var->name);
|
| 1582 |
|
|
value_print (value_of_internalvar (gdbarch, var), gdb_stdout,
|
| 1583 |
|
|
&opts);
|
| 1584 |
|
|
printf_filtered (("\n"));
|
| 1585 |
|
|
}
|
| 1586 |
|
|
if (!varseen)
|
| 1587 |
|
|
printf_unfiltered (_("\
|
| 1588 |
|
|
No debugger convenience variables now defined.\n\
|
| 1589 |
|
|
Convenience variables have names starting with \"$\";\n\
|
| 1590 |
|
|
use \"set\" as in \"set $foo = 5\" to define them.\n"));
|
| 1591 |
|
|
}
|
| 1592 |
|
|
|
| 1593 |
|
|
/* Extract a value as a C number (either long or double).
|
| 1594 |
|
|
Knows how to convert fixed values to double, or
|
| 1595 |
|
|
floating values to long.
|
| 1596 |
|
|
Does not deallocate the value. */
|
| 1597 |
|
|
|
| 1598 |
|
|
LONGEST
|
| 1599 |
|
|
value_as_long (struct value *val)
|
| 1600 |
|
|
{
|
| 1601 |
|
|
/* This coerces arrays and functions, which is necessary (e.g.
|
| 1602 |
|
|
in disassemble_command). It also dereferences references, which
|
| 1603 |
|
|
I suspect is the most logical thing to do. */
|
| 1604 |
|
|
val = coerce_array (val);
|
| 1605 |
|
|
return unpack_long (value_type (val), value_contents (val));
|
| 1606 |
|
|
}
|
| 1607 |
|
|
|
| 1608 |
|
|
DOUBLEST
|
| 1609 |
|
|
value_as_double (struct value *val)
|
| 1610 |
|
|
{
|
| 1611 |
|
|
DOUBLEST foo;
|
| 1612 |
|
|
int inv;
|
| 1613 |
|
|
|
| 1614 |
|
|
foo = unpack_double (value_type (val), value_contents (val), &inv);
|
| 1615 |
|
|
if (inv)
|
| 1616 |
|
|
error (_("Invalid floating value found in program."));
|
| 1617 |
|
|
return foo;
|
| 1618 |
|
|
}
|
| 1619 |
|
|
|
| 1620 |
|
|
/* Extract a value as a C pointer. Does not deallocate the value.
|
| 1621 |
|
|
Note that val's type may not actually be a pointer; value_as_long
|
| 1622 |
|
|
handles all the cases. */
|
| 1623 |
|
|
CORE_ADDR
|
| 1624 |
|
|
value_as_address (struct value *val)
|
| 1625 |
|
|
{
|
| 1626 |
|
|
struct gdbarch *gdbarch = get_type_arch (value_type (val));
|
| 1627 |
|
|
|
| 1628 |
|
|
/* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
|
| 1629 |
|
|
whether we want this to be true eventually. */
|
| 1630 |
|
|
#if 0
|
| 1631 |
|
|
/* gdbarch_addr_bits_remove is wrong if we are being called for a
|
| 1632 |
|
|
non-address (e.g. argument to "signal", "info break", etc.), or
|
| 1633 |
|
|
for pointers to char, in which the low bits *are* significant. */
|
| 1634 |
|
|
return gdbarch_addr_bits_remove (gdbarch, value_as_long (val));
|
| 1635 |
|
|
#else
|
| 1636 |
|
|
|
| 1637 |
|
|
/* There are several targets (IA-64, PowerPC, and others) which
|
| 1638 |
|
|
don't represent pointers to functions as simply the address of
|
| 1639 |
|
|
the function's entry point. For example, on the IA-64, a
|
| 1640 |
|
|
function pointer points to a two-word descriptor, generated by
|
| 1641 |
|
|
the linker, which contains the function's entry point, and the
|
| 1642 |
|
|
value the IA-64 "global pointer" register should have --- to
|
| 1643 |
|
|
support position-independent code. The linker generates
|
| 1644 |
|
|
descriptors only for those functions whose addresses are taken.
|
| 1645 |
|
|
|
| 1646 |
|
|
On such targets, it's difficult for GDB to convert an arbitrary
|
| 1647 |
|
|
function address into a function pointer; it has to either find
|
| 1648 |
|
|
an existing descriptor for that function, or call malloc and
|
| 1649 |
|
|
build its own. On some targets, it is impossible for GDB to
|
| 1650 |
|
|
build a descriptor at all: the descriptor must contain a jump
|
| 1651 |
|
|
instruction; data memory cannot be executed; and code memory
|
| 1652 |
|
|
cannot be modified.
|
| 1653 |
|
|
|
| 1654 |
|
|
Upon entry to this function, if VAL is a value of type `function'
|
| 1655 |
|
|
(that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
|
| 1656 |
|
|
value_address (val) is the address of the function. This is what
|
| 1657 |
|
|
you'll get if you evaluate an expression like `main'. The call
|
| 1658 |
|
|
to COERCE_ARRAY below actually does all the usual unary
|
| 1659 |
|
|
conversions, which includes converting values of type `function'
|
| 1660 |
|
|
to `pointer to function'. This is the challenging conversion
|
| 1661 |
|
|
discussed above. Then, `unpack_long' will convert that pointer
|
| 1662 |
|
|
back into an address.
|
| 1663 |
|
|
|
| 1664 |
|
|
So, suppose the user types `disassemble foo' on an architecture
|
| 1665 |
|
|
with a strange function pointer representation, on which GDB
|
| 1666 |
|
|
cannot build its own descriptors, and suppose further that `foo'
|
| 1667 |
|
|
has no linker-built descriptor. The address->pointer conversion
|
| 1668 |
|
|
will signal an error and prevent the command from running, even
|
| 1669 |
|
|
though the next step would have been to convert the pointer
|
| 1670 |
|
|
directly back into the same address.
|
| 1671 |
|
|
|
| 1672 |
|
|
The following shortcut avoids this whole mess. If VAL is a
|
| 1673 |
|
|
function, just return its address directly. */
|
| 1674 |
|
|
if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
|
| 1675 |
|
|
|| TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD)
|
| 1676 |
|
|
return value_address (val);
|
| 1677 |
|
|
|
| 1678 |
|
|
val = coerce_array (val);
|
| 1679 |
|
|
|
| 1680 |
|
|
/* Some architectures (e.g. Harvard), map instruction and data
|
| 1681 |
|
|
addresses onto a single large unified address space. For
|
| 1682 |
|
|
instance: An architecture may consider a large integer in the
|
| 1683 |
|
|
range 0x10000000 .. 0x1000ffff to already represent a data
|
| 1684 |
|
|
addresses (hence not need a pointer to address conversion) while
|
| 1685 |
|
|
a small integer would still need to be converted integer to
|
| 1686 |
|
|
pointer to address. Just assume such architectures handle all
|
| 1687 |
|
|
integer conversions in a single function. */
|
| 1688 |
|
|
|
| 1689 |
|
|
/* JimB writes:
|
| 1690 |
|
|
|
| 1691 |
|
|
I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
|
| 1692 |
|
|
must admonish GDB hackers to make sure its behavior matches the
|
| 1693 |
|
|
compiler's, whenever possible.
|
| 1694 |
|
|
|
| 1695 |
|
|
In general, I think GDB should evaluate expressions the same way
|
| 1696 |
|
|
the compiler does. When the user copies an expression out of
|
| 1697 |
|
|
their source code and hands it to a `print' command, they should
|
| 1698 |
|
|
get the same value the compiler would have computed. Any
|
| 1699 |
|
|
deviation from this rule can cause major confusion and annoyance,
|
| 1700 |
|
|
and needs to be justified carefully. In other words, GDB doesn't
|
| 1701 |
|
|
really have the freedom to do these conversions in clever and
|
| 1702 |
|
|
useful ways.
|
| 1703 |
|
|
|
| 1704 |
|
|
AndrewC pointed out that users aren't complaining about how GDB
|
| 1705 |
|
|
casts integers to pointers; they are complaining that they can't
|
| 1706 |
|
|
take an address from a disassembly listing and give it to `x/i'.
|
| 1707 |
|
|
This is certainly important.
|
| 1708 |
|
|
|
| 1709 |
|
|
Adding an architecture method like integer_to_address() certainly
|
| 1710 |
|
|
makes it possible for GDB to "get it right" in all circumstances
|
| 1711 |
|
|
--- the target has complete control over how things get done, so
|
| 1712 |
|
|
people can Do The Right Thing for their target without breaking
|
| 1713 |
|
|
anyone else. The standard doesn't specify how integers get
|
| 1714 |
|
|
converted to pointers; usually, the ABI doesn't either, but
|
| 1715 |
|
|
ABI-specific code is a more reasonable place to handle it. */
|
| 1716 |
|
|
|
| 1717 |
|
|
if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR
|
| 1718 |
|
|
&& TYPE_CODE (value_type (val)) != TYPE_CODE_REF
|
| 1719 |
|
|
&& gdbarch_integer_to_address_p (gdbarch))
|
| 1720 |
|
|
return gdbarch_integer_to_address (gdbarch, value_type (val),
|
| 1721 |
|
|
value_contents (val));
|
| 1722 |
|
|
|
| 1723 |
|
|
return unpack_long (value_type (val), value_contents (val));
|
| 1724 |
|
|
#endif
|
| 1725 |
|
|
}
|
| 1726 |
|
|
|
| 1727 |
|
|
/* Unpack raw data (copied from debugee, target byte order) at VALADDR
|
| 1728 |
|
|
as a long, or as a double, assuming the raw data is described
|
| 1729 |
|
|
by type TYPE. Knows how to convert different sizes of values
|
| 1730 |
|
|
and can convert between fixed and floating point. We don't assume
|
| 1731 |
|
|
any alignment for the raw data. Return value is in host byte order.
|
| 1732 |
|
|
|
| 1733 |
|
|
If you want functions and arrays to be coerced to pointers, and
|
| 1734 |
|
|
references to be dereferenced, call value_as_long() instead.
|
| 1735 |
|
|
|
| 1736 |
|
|
C++: It is assumed that the front-end has taken care of
|
| 1737 |
|
|
all matters concerning pointers to members. A pointer
|
| 1738 |
|
|
to member which reaches here is considered to be equivalent
|
| 1739 |
|
|
to an INT (or some size). After all, it is only an offset. */
|
| 1740 |
|
|
|
| 1741 |
|
|
LONGEST
|
| 1742 |
|
|
unpack_long (struct type *type, const gdb_byte *valaddr)
|
| 1743 |
|
|
{
|
| 1744 |
|
|
enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
|
| 1745 |
|
|
enum type_code code = TYPE_CODE (type);
|
| 1746 |
|
|
int len = TYPE_LENGTH (type);
|
| 1747 |
|
|
int nosign = TYPE_UNSIGNED (type);
|
| 1748 |
|
|
|
| 1749 |
|
|
switch (code)
|
| 1750 |
|
|
{
|
| 1751 |
|
|
case TYPE_CODE_TYPEDEF:
|
| 1752 |
|
|
return unpack_long (check_typedef (type), valaddr);
|
| 1753 |
|
|
case TYPE_CODE_ENUM:
|
| 1754 |
|
|
case TYPE_CODE_FLAGS:
|
| 1755 |
|
|
case TYPE_CODE_BOOL:
|
| 1756 |
|
|
case TYPE_CODE_INT:
|
| 1757 |
|
|
case TYPE_CODE_CHAR:
|
| 1758 |
|
|
case TYPE_CODE_RANGE:
|
| 1759 |
|
|
case TYPE_CODE_MEMBERPTR:
|
| 1760 |
|
|
if (nosign)
|
| 1761 |
|
|
return extract_unsigned_integer (valaddr, len, byte_order);
|
| 1762 |
|
|
else
|
| 1763 |
|
|
return extract_signed_integer (valaddr, len, byte_order);
|
| 1764 |
|
|
|
| 1765 |
|
|
case TYPE_CODE_FLT:
|
| 1766 |
|
|
return extract_typed_floating (valaddr, type);
|
| 1767 |
|
|
|
| 1768 |
|
|
case TYPE_CODE_DECFLOAT:
|
| 1769 |
|
|
/* libdecnumber has a function to convert from decimal to integer, but
|
| 1770 |
|
|
it doesn't work when the decimal number has a fractional part. */
|
| 1771 |
|
|
return decimal_to_doublest (valaddr, len, byte_order);
|
| 1772 |
|
|
|
| 1773 |
|
|
case TYPE_CODE_PTR:
|
| 1774 |
|
|
case TYPE_CODE_REF:
|
| 1775 |
|
|
/* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
|
| 1776 |
|
|
whether we want this to be true eventually. */
|
| 1777 |
|
|
return extract_typed_address (valaddr, type);
|
| 1778 |
|
|
|
| 1779 |
|
|
default:
|
| 1780 |
|
|
error (_("Value can't be converted to integer."));
|
| 1781 |
|
|
}
|
| 1782 |
|
|
return 0; /* Placate lint. */
|
| 1783 |
|
|
}
|
| 1784 |
|
|
|
| 1785 |
|
|
/* Return a double value from the specified type and address.
|
| 1786 |
|
|
INVP points to an int which is set to 0 for valid value,
|
| 1787 |
|
|
1 for invalid value (bad float format). In either case,
|
| 1788 |
|
|
the returned double is OK to use. Argument is in target
|
| 1789 |
|
|
format, result is in host format. */
|
| 1790 |
|
|
|
| 1791 |
|
|
DOUBLEST
|
| 1792 |
|
|
unpack_double (struct type *type, const gdb_byte *valaddr, int *invp)
|
| 1793 |
|
|
{
|
| 1794 |
|
|
enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
|
| 1795 |
|
|
enum type_code code;
|
| 1796 |
|
|
int len;
|
| 1797 |
|
|
int nosign;
|
| 1798 |
|
|
|
| 1799 |
|
|
*invp = 0; /* Assume valid. */
|
| 1800 |
|
|
CHECK_TYPEDEF (type);
|
| 1801 |
|
|
code = TYPE_CODE (type);
|
| 1802 |
|
|
len = TYPE_LENGTH (type);
|
| 1803 |
|
|
nosign = TYPE_UNSIGNED (type);
|
| 1804 |
|
|
if (code == TYPE_CODE_FLT)
|
| 1805 |
|
|
{
|
| 1806 |
|
|
/* NOTE: cagney/2002-02-19: There was a test here to see if the
|
| 1807 |
|
|
floating-point value was valid (using the macro
|
| 1808 |
|
|
INVALID_FLOAT). That test/macro have been removed.
|
| 1809 |
|
|
|
| 1810 |
|
|
It turns out that only the VAX defined this macro and then
|
| 1811 |
|
|
only in a non-portable way. Fixing the portability problem
|
| 1812 |
|
|
wouldn't help since the VAX floating-point code is also badly
|
| 1813 |
|
|
bit-rotten. The target needs to add definitions for the
|
| 1814 |
|
|
methods gdbarch_float_format and gdbarch_double_format - these
|
| 1815 |
|
|
exactly describe the target floating-point format. The
|
| 1816 |
|
|
problem here is that the corresponding floatformat_vax_f and
|
| 1817 |
|
|
floatformat_vax_d values these methods should be set to are
|
| 1818 |
|
|
also not defined either. Oops!
|
| 1819 |
|
|
|
| 1820 |
|
|
Hopefully someone will add both the missing floatformat
|
| 1821 |
|
|
definitions and the new cases for floatformat_is_valid (). */
|
| 1822 |
|
|
|
| 1823 |
|
|
if (!floatformat_is_valid (floatformat_from_type (type), valaddr))
|
| 1824 |
|
|
{
|
| 1825 |
|
|
*invp = 1;
|
| 1826 |
|
|
return 0.0;
|
| 1827 |
|
|
}
|
| 1828 |
|
|
|
| 1829 |
|
|
return extract_typed_floating (valaddr, type);
|
| 1830 |
|
|
}
|
| 1831 |
|
|
else if (code == TYPE_CODE_DECFLOAT)
|
| 1832 |
|
|
return decimal_to_doublest (valaddr, len, byte_order);
|
| 1833 |
|
|
else if (nosign)
|
| 1834 |
|
|
{
|
| 1835 |
|
|
/* Unsigned -- be sure we compensate for signed LONGEST. */
|
| 1836 |
|
|
return (ULONGEST) unpack_long (type, valaddr);
|
| 1837 |
|
|
}
|
| 1838 |
|
|
else
|
| 1839 |
|
|
{
|
| 1840 |
|
|
/* Signed -- we are OK with unpack_long. */
|
| 1841 |
|
|
return unpack_long (type, valaddr);
|
| 1842 |
|
|
}
|
| 1843 |
|
|
}
|
| 1844 |
|
|
|
| 1845 |
|
|
/* Unpack raw data (copied from debugee, target byte order) at VALADDR
|
| 1846 |
|
|
as a CORE_ADDR, assuming the raw data is described by type TYPE.
|
| 1847 |
|
|
We don't assume any alignment for the raw data. Return value is in
|
| 1848 |
|
|
host byte order.
|
| 1849 |
|
|
|
| 1850 |
|
|
If you want functions and arrays to be coerced to pointers, and
|
| 1851 |
|
|
references to be dereferenced, call value_as_address() instead.
|
| 1852 |
|
|
|
| 1853 |
|
|
C++: It is assumed that the front-end has taken care of
|
| 1854 |
|
|
all matters concerning pointers to members. A pointer
|
| 1855 |
|
|
to member which reaches here is considered to be equivalent
|
| 1856 |
|
|
to an INT (or some size). After all, it is only an offset. */
|
| 1857 |
|
|
|
| 1858 |
|
|
CORE_ADDR
|
| 1859 |
|
|
unpack_pointer (struct type *type, const gdb_byte *valaddr)
|
| 1860 |
|
|
{
|
| 1861 |
|
|
/* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
|
| 1862 |
|
|
whether we want this to be true eventually. */
|
| 1863 |
|
|
return unpack_long (type, valaddr);
|
| 1864 |
|
|
}
|
| 1865 |
|
|
|
| 1866 |
|
|
|
| 1867 |
|
|
/* Get the value of the FIELDNO'th field (which must be static) of
|
| 1868 |
|
|
TYPE. Return NULL if the field doesn't exist or has been
|
| 1869 |
|
|
optimized out. */
|
| 1870 |
|
|
|
| 1871 |
|
|
struct value *
|
| 1872 |
|
|
value_static_field (struct type *type, int fieldno)
|
| 1873 |
|
|
{
|
| 1874 |
|
|
struct value *retval;
|
| 1875 |
|
|
|
| 1876 |
|
|
switch (TYPE_FIELD_LOC_KIND (type, fieldno))
|
| 1877 |
|
|
{
|
| 1878 |
|
|
case FIELD_LOC_KIND_PHYSADDR:
|
| 1879 |
|
|
retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
|
| 1880 |
|
|
TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
|
| 1881 |
|
|
break;
|
| 1882 |
|
|
case FIELD_LOC_KIND_PHYSNAME:
|
| 1883 |
|
|
{
|
| 1884 |
|
|
char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
|
| 1885 |
|
|
/*TYPE_FIELD_NAME (type, fieldno);*/
|
| 1886 |
|
|
struct symbol *sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0);
|
| 1887 |
|
|
|
| 1888 |
|
|
if (sym == NULL)
|
| 1889 |
|
|
{
|
| 1890 |
|
|
/* With some compilers, e.g. HP aCC, static data members are
|
| 1891 |
|
|
reported as non-debuggable symbols */
|
| 1892 |
|
|
struct minimal_symbol *msym = lookup_minimal_symbol (phys_name,
|
| 1893 |
|
|
NULL, NULL);
|
| 1894 |
|
|
|
| 1895 |
|
|
if (!msym)
|
| 1896 |
|
|
return NULL;
|
| 1897 |
|
|
else
|
| 1898 |
|
|
{
|
| 1899 |
|
|
retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
|
| 1900 |
|
|
SYMBOL_VALUE_ADDRESS (msym));
|
| 1901 |
|
|
}
|
| 1902 |
|
|
}
|
| 1903 |
|
|
else
|
| 1904 |
|
|
{
|
| 1905 |
|
|
/* SYM should never have a SYMBOL_CLASS which will require
|
| 1906 |
|
|
read_var_value to use the FRAME parameter. */
|
| 1907 |
|
|
if (symbol_read_needs_frame (sym))
|
| 1908 |
|
|
warning (_("static field's value depends on the current "
|
| 1909 |
|
|
"frame - bad debug info?"));
|
| 1910 |
|
|
retval = read_var_value (sym, NULL);
|
| 1911 |
|
|
}
|
| 1912 |
|
|
if (retval && VALUE_LVAL (retval) == lval_memory)
|
| 1913 |
|
|
SET_FIELD_PHYSADDR (TYPE_FIELD (type, fieldno),
|
| 1914 |
|
|
value_address (retval));
|
| 1915 |
|
|
break;
|
| 1916 |
|
|
}
|
| 1917 |
|
|
default:
|
| 1918 |
|
|
gdb_assert (0);
|
| 1919 |
|
|
}
|
| 1920 |
|
|
|
| 1921 |
|
|
return retval;
|
| 1922 |
|
|
}
|
| 1923 |
|
|
|
| 1924 |
|
|
/* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
|
| 1925 |
|
|
You have to be careful here, since the size of the data area for the value
|
| 1926 |
|
|
is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
|
| 1927 |
|
|
than the old enclosing type, you have to allocate more space for the data.
|
| 1928 |
|
|
The return value is a pointer to the new version of this value structure. */
|
| 1929 |
|
|
|
| 1930 |
|
|
struct value *
|
| 1931 |
|
|
value_change_enclosing_type (struct value *val, struct type *new_encl_type)
|
| 1932 |
|
|
{
|
| 1933 |
|
|
if (TYPE_LENGTH (new_encl_type) > TYPE_LENGTH (value_enclosing_type (val)))
|
| 1934 |
|
|
val->contents =
|
| 1935 |
|
|
(gdb_byte *) xrealloc (val->contents, TYPE_LENGTH (new_encl_type));
|
| 1936 |
|
|
|
| 1937 |
|
|
val->enclosing_type = new_encl_type;
|
| 1938 |
|
|
return val;
|
| 1939 |
|
|
}
|
| 1940 |
|
|
|
| 1941 |
|
|
/* Given a value ARG1 (offset by OFFSET bytes)
|
| 1942 |
|
|
of a struct or union type ARG_TYPE,
|
| 1943 |
|
|
extract and return the value of one of its (non-static) fields.
|
| 1944 |
|
|
FIELDNO says which field. */
|
| 1945 |
|
|
|
| 1946 |
|
|
struct value *
|
| 1947 |
|
|
value_primitive_field (struct value *arg1, int offset,
|
| 1948 |
|
|
int fieldno, struct type *arg_type)
|
| 1949 |
|
|
{
|
| 1950 |
|
|
struct value *v;
|
| 1951 |
|
|
struct type *type;
|
| 1952 |
|
|
|
| 1953 |
|
|
CHECK_TYPEDEF (arg_type);
|
| 1954 |
|
|
type = TYPE_FIELD_TYPE (arg_type, fieldno);
|
| 1955 |
|
|
|
| 1956 |
|
|
/* Call check_typedef on our type to make sure that, if TYPE
|
| 1957 |
|
|
is a TYPE_CODE_TYPEDEF, its length is set to the length
|
| 1958 |
|
|
of the target type instead of zero. However, we do not
|
| 1959 |
|
|
replace the typedef type by the target type, because we want
|
| 1960 |
|
|
to keep the typedef in order to be able to print the type
|
| 1961 |
|
|
description correctly. */
|
| 1962 |
|
|
check_typedef (type);
|
| 1963 |
|
|
|
| 1964 |
|
|
/* Handle packed fields */
|
| 1965 |
|
|
|
| 1966 |
|
|
if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
|
| 1967 |
|
|
{
|
| 1968 |
|
|
/* Create a new value for the bitfield, with bitpos and bitsize
|
| 1969 |
|
|
set. If possible, arrange offset and bitpos so that we can
|
| 1970 |
|
|
do a single aligned read of the size of the containing type.
|
| 1971 |
|
|
Otherwise, adjust offset to the byte containing the first
|
| 1972 |
|
|
bit. Assume that the address, offset, and embedded offset
|
| 1973 |
|
|
are sufficiently aligned. */
|
| 1974 |
|
|
int bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno);
|
| 1975 |
|
|
int container_bitsize = TYPE_LENGTH (type) * 8;
|
| 1976 |
|
|
|
| 1977 |
|
|
v = allocate_value_lazy (type);
|
| 1978 |
|
|
v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
|
| 1979 |
|
|
if ((bitpos % container_bitsize) + v->bitsize <= container_bitsize
|
| 1980 |
|
|
&& TYPE_LENGTH (type) <= (int) sizeof (LONGEST))
|
| 1981 |
|
|
v->bitpos = bitpos % container_bitsize;
|
| 1982 |
|
|
else
|
| 1983 |
|
|
v->bitpos = bitpos % 8;
|
| 1984 |
|
|
v->offset = value_embedded_offset (arg1)
|
| 1985 |
|
|
+ (bitpos - v->bitpos) / 8;
|
| 1986 |
|
|
v->parent = arg1;
|
| 1987 |
|
|
value_incref (v->parent);
|
| 1988 |
|
|
if (!value_lazy (arg1))
|
| 1989 |
|
|
value_fetch_lazy (v);
|
| 1990 |
|
|
}
|
| 1991 |
|
|
else if (fieldno < TYPE_N_BASECLASSES (arg_type))
|
| 1992 |
|
|
{
|
| 1993 |
|
|
/* This field is actually a base subobject, so preserve the
|
| 1994 |
|
|
entire object's contents for later references to virtual
|
| 1995 |
|
|
bases, etc. */
|
| 1996 |
|
|
|
| 1997 |
|
|
/* Lazy register values with offsets are not supported. */
|
| 1998 |
|
|
if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
|
| 1999 |
|
|
value_fetch_lazy (arg1);
|
| 2000 |
|
|
|
| 2001 |
|
|
if (value_lazy (arg1))
|
| 2002 |
|
|
v = allocate_value_lazy (value_enclosing_type (arg1));
|
| 2003 |
|
|
else
|
| 2004 |
|
|
{
|
| 2005 |
|
|
v = allocate_value (value_enclosing_type (arg1));
|
| 2006 |
|
|
memcpy (value_contents_all_raw (v), value_contents_all_raw (arg1),
|
| 2007 |
|
|
TYPE_LENGTH (value_enclosing_type (arg1)));
|
| 2008 |
|
|
}
|
| 2009 |
|
|
v->type = type;
|
| 2010 |
|
|
v->offset = value_offset (arg1);
|
| 2011 |
|
|
v->embedded_offset = (offset + value_embedded_offset (arg1)
|
| 2012 |
|
|
+ TYPE_FIELD_BITPOS (arg_type, fieldno) / 8);
|
| 2013 |
|
|
}
|
| 2014 |
|
|
else
|
| 2015 |
|
|
{
|
| 2016 |
|
|
/* Plain old data member */
|
| 2017 |
|
|
offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
|
| 2018 |
|
|
|
| 2019 |
|
|
/* Lazy register values with offsets are not supported. */
|
| 2020 |
|
|
if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
|
| 2021 |
|
|
value_fetch_lazy (arg1);
|
| 2022 |
|
|
|
| 2023 |
|
|
if (value_lazy (arg1))
|
| 2024 |
|
|
v = allocate_value_lazy (type);
|
| 2025 |
|
|
else
|
| 2026 |
|
|
{
|
| 2027 |
|
|
v = allocate_value (type);
|
| 2028 |
|
|
memcpy (value_contents_raw (v),
|
| 2029 |
|
|
value_contents_raw (arg1) + offset,
|
| 2030 |
|
|
TYPE_LENGTH (type));
|
| 2031 |
|
|
}
|
| 2032 |
|
|
v->offset = (value_offset (arg1) + offset
|
| 2033 |
|
|
+ value_embedded_offset (arg1));
|
| 2034 |
|
|
}
|
| 2035 |
|
|
set_value_component_location (v, arg1);
|
| 2036 |
|
|
VALUE_REGNUM (v) = VALUE_REGNUM (arg1);
|
| 2037 |
|
|
VALUE_FRAME_ID (v) = VALUE_FRAME_ID (arg1);
|
| 2038 |
|
|
return v;
|
| 2039 |
|
|
}
|
| 2040 |
|
|
|
| 2041 |
|
|
/* Given a value ARG1 of a struct or union type,
|
| 2042 |
|
|
extract and return the value of one of its (non-static) fields.
|
| 2043 |
|
|
FIELDNO says which field. */
|
| 2044 |
|
|
|
| 2045 |
|
|
struct value *
|
| 2046 |
|
|
value_field (struct value *arg1, int fieldno)
|
| 2047 |
|
|
{
|
| 2048 |
|
|
return value_primitive_field (arg1, 0, fieldno, value_type (arg1));
|
| 2049 |
|
|
}
|
| 2050 |
|
|
|
| 2051 |
|
|
/* Return a non-virtual function as a value.
|
| 2052 |
|
|
F is the list of member functions which contains the desired method.
|
| 2053 |
|
|
J is an index into F which provides the desired method.
|
| 2054 |
|
|
|
| 2055 |
|
|
We only use the symbol for its address, so be happy with either a
|
| 2056 |
|
|
full symbol or a minimal symbol.
|
| 2057 |
|
|
*/
|
| 2058 |
|
|
|
| 2059 |
|
|
struct value *
|
| 2060 |
|
|
value_fn_field (struct value **arg1p, struct fn_field *f, int j, struct type *type,
|
| 2061 |
|
|
int offset)
|
| 2062 |
|
|
{
|
| 2063 |
|
|
struct value *v;
|
| 2064 |
|
|
struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
|
| 2065 |
|
|
char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
|
| 2066 |
|
|
struct symbol *sym;
|
| 2067 |
|
|
struct minimal_symbol *msym;
|
| 2068 |
|
|
|
| 2069 |
|
|
sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0);
|
| 2070 |
|
|
if (sym != NULL)
|
| 2071 |
|
|
{
|
| 2072 |
|
|
msym = NULL;
|
| 2073 |
|
|
}
|
| 2074 |
|
|
else
|
| 2075 |
|
|
{
|
| 2076 |
|
|
gdb_assert (sym == NULL);
|
| 2077 |
|
|
msym = lookup_minimal_symbol (physname, NULL, NULL);
|
| 2078 |
|
|
if (msym == NULL)
|
| 2079 |
|
|
return NULL;
|
| 2080 |
|
|
}
|
| 2081 |
|
|
|
| 2082 |
|
|
v = allocate_value (ftype);
|
| 2083 |
|
|
if (sym)
|
| 2084 |
|
|
{
|
| 2085 |
|
|
set_value_address (v, BLOCK_START (SYMBOL_BLOCK_VALUE (sym)));
|
| 2086 |
|
|
}
|
| 2087 |
|
|
else
|
| 2088 |
|
|
{
|
| 2089 |
|
|
/* The minimal symbol might point to a function descriptor;
|
| 2090 |
|
|
resolve it to the actual code address instead. */
|
| 2091 |
|
|
struct objfile *objfile = msymbol_objfile (msym);
|
| 2092 |
|
|
struct gdbarch *gdbarch = get_objfile_arch (objfile);
|
| 2093 |
|
|
|
| 2094 |
|
|
set_value_address (v,
|
| 2095 |
|
|
gdbarch_convert_from_func_ptr_addr
|
| 2096 |
|
|
(gdbarch, SYMBOL_VALUE_ADDRESS (msym), ¤t_target));
|
| 2097 |
|
|
}
|
| 2098 |
|
|
|
| 2099 |
|
|
if (arg1p)
|
| 2100 |
|
|
{
|
| 2101 |
|
|
if (type != value_type (*arg1p))
|
| 2102 |
|
|
*arg1p = value_ind (value_cast (lookup_pointer_type (type),
|
| 2103 |
|
|
value_addr (*arg1p)));
|
| 2104 |
|
|
|
| 2105 |
|
|
/* Move the `this' pointer according to the offset.
|
| 2106 |
|
|
VALUE_OFFSET (*arg1p) += offset;
|
| 2107 |
|
|
*/
|
| 2108 |
|
|
}
|
| 2109 |
|
|
|
| 2110 |
|
|
return v;
|
| 2111 |
|
|
}
|
| 2112 |
|
|
|
| 2113 |
|
|
|
| 2114 |
|
|
/* Unpack a bitfield of the specified FIELD_TYPE, from the anonymous
|
| 2115 |
|
|
object at VALADDR. The bitfield starts at BITPOS bits and contains
|
| 2116 |
|
|
BITSIZE bits.
|
| 2117 |
|
|
|
| 2118 |
|
|
Extracting bits depends on endianness of the machine. Compute the
|
| 2119 |
|
|
number of least significant bits to discard. For big endian machines,
|
| 2120 |
|
|
we compute the total number of bits in the anonymous object, subtract
|
| 2121 |
|
|
off the bit count from the MSB of the object to the MSB of the
|
| 2122 |
|
|
bitfield, then the size of the bitfield, which leaves the LSB discard
|
| 2123 |
|
|
count. For little endian machines, the discard count is simply the
|
| 2124 |
|
|
number of bits from the LSB of the anonymous object to the LSB of the
|
| 2125 |
|
|
bitfield.
|
| 2126 |
|
|
|
| 2127 |
|
|
If the field is signed, we also do sign extension. */
|
| 2128 |
|
|
|
| 2129 |
|
|
LONGEST
|
| 2130 |
|
|
unpack_bits_as_long (struct type *field_type, const gdb_byte *valaddr,
|
| 2131 |
|
|
int bitpos, int bitsize)
|
| 2132 |
|
|
{
|
| 2133 |
|
|
enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (field_type));
|
| 2134 |
|
|
ULONGEST val;
|
| 2135 |
|
|
ULONGEST valmask;
|
| 2136 |
|
|
int lsbcount;
|
| 2137 |
|
|
int bytes_read;
|
| 2138 |
|
|
|
| 2139 |
|
|
/* Read the minimum number of bytes required; there may not be
|
| 2140 |
|
|
enough bytes to read an entire ULONGEST. */
|
| 2141 |
|
|
CHECK_TYPEDEF (field_type);
|
| 2142 |
|
|
if (bitsize)
|
| 2143 |
|
|
bytes_read = ((bitpos % 8) + bitsize + 7) / 8;
|
| 2144 |
|
|
else
|
| 2145 |
|
|
bytes_read = TYPE_LENGTH (field_type);
|
| 2146 |
|
|
|
| 2147 |
|
|
val = extract_unsigned_integer (valaddr + bitpos / 8,
|
| 2148 |
|
|
bytes_read, byte_order);
|
| 2149 |
|
|
|
| 2150 |
|
|
/* Extract bits. See comment above. */
|
| 2151 |
|
|
|
| 2152 |
|
|
if (gdbarch_bits_big_endian (get_type_arch (field_type)))
|
| 2153 |
|
|
lsbcount = (bytes_read * 8 - bitpos % 8 - bitsize);
|
| 2154 |
|
|
else
|
| 2155 |
|
|
lsbcount = (bitpos % 8);
|
| 2156 |
|
|
val >>= lsbcount;
|
| 2157 |
|
|
|
| 2158 |
|
|
/* If the field does not entirely fill a LONGEST, then zero the sign bits.
|
| 2159 |
|
|
If the field is signed, and is negative, then sign extend. */
|
| 2160 |
|
|
|
| 2161 |
|
|
if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
|
| 2162 |
|
|
{
|
| 2163 |
|
|
valmask = (((ULONGEST) 1) << bitsize) - 1;
|
| 2164 |
|
|
val &= valmask;
|
| 2165 |
|
|
if (!TYPE_UNSIGNED (field_type))
|
| 2166 |
|
|
{
|
| 2167 |
|
|
if (val & (valmask ^ (valmask >> 1)))
|
| 2168 |
|
|
{
|
| 2169 |
|
|
val |= ~valmask;
|
| 2170 |
|
|
}
|
| 2171 |
|
|
}
|
| 2172 |
|
|
}
|
| 2173 |
|
|
return (val);
|
| 2174 |
|
|
}
|
| 2175 |
|
|
|
| 2176 |
|
|
/* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at
|
| 2177 |
|
|
VALADDR. See unpack_bits_as_long for more details. */
|
| 2178 |
|
|
|
| 2179 |
|
|
LONGEST
|
| 2180 |
|
|
unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno)
|
| 2181 |
|
|
{
|
| 2182 |
|
|
int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
|
| 2183 |
|
|
int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
|
| 2184 |
|
|
struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
|
| 2185 |
|
|
|
| 2186 |
|
|
return unpack_bits_as_long (field_type, valaddr, bitpos, bitsize);
|
| 2187 |
|
|
}
|
| 2188 |
|
|
|
| 2189 |
|
|
/* Modify the value of a bitfield. ADDR points to a block of memory in
|
| 2190 |
|
|
target byte order; the bitfield starts in the byte pointed to. FIELDVAL
|
| 2191 |
|
|
is the desired value of the field, in host byte order. BITPOS and BITSIZE
|
| 2192 |
|
|
indicate which bits (in target bit order) comprise the bitfield.
|
| 2193 |
|
|
Requires 0 < BITSIZE <= lbits, 0 <= BITPOS+BITSIZE <= lbits, and
|
| 2194 |
|
|
|
| 2195 |
|
|
|
| 2196 |
|
|
void
|
| 2197 |
|
|
modify_field (struct type *type, gdb_byte *addr,
|
| 2198 |
|
|
LONGEST fieldval, int bitpos, int bitsize)
|
| 2199 |
|
|
{
|
| 2200 |
|
|
enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
|
| 2201 |
|
|
ULONGEST oword;
|
| 2202 |
|
|
ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
|
| 2203 |
|
|
|
| 2204 |
|
|
/* If a negative fieldval fits in the field in question, chop
|
| 2205 |
|
|
off the sign extension bits. */
|
| 2206 |
|
|
if ((~fieldval & ~(mask >> 1)) == 0)
|
| 2207 |
|
|
fieldval &= mask;
|
| 2208 |
|
|
|
| 2209 |
|
|
/* Warn if value is too big to fit in the field in question. */
|
| 2210 |
|
|
if (0 != (fieldval & ~mask))
|
| 2211 |
|
|
{
|
| 2212 |
|
|
/* FIXME: would like to include fieldval in the message, but
|
| 2213 |
|
|
we don't have a sprintf_longest. */
|
| 2214 |
|
|
warning (_("Value does not fit in %d bits."), bitsize);
|
| 2215 |
|
|
|
| 2216 |
|
|
/* Truncate it, otherwise adjoining fields may be corrupted. */
|
| 2217 |
|
|
fieldval &= mask;
|
| 2218 |
|
|
}
|
| 2219 |
|
|
|
| 2220 |
|
|
oword = extract_unsigned_integer (addr, sizeof oword, byte_order);
|
| 2221 |
|
|
|
| 2222 |
|
|
/* Shifting for bit field depends on endianness of the target machine. */
|
| 2223 |
|
|
if (gdbarch_bits_big_endian (get_type_arch (type)))
|
| 2224 |
|
|
bitpos = sizeof (oword) * 8 - bitpos - bitsize;
|
| 2225 |
|
|
|
| 2226 |
|
|
oword &= ~(mask << bitpos);
|
| 2227 |
|
|
oword |= fieldval << bitpos;
|
| 2228 |
|
|
|
| 2229 |
|
|
store_unsigned_integer (addr, sizeof oword, byte_order, oword);
|
| 2230 |
|
|
}
|
| 2231 |
|
|
|
| 2232 |
|
|
/* Pack NUM into BUF using a target format of TYPE. */
|
| 2233 |
|
|
|
| 2234 |
|
|
void
|
| 2235 |
|
|
pack_long (gdb_byte *buf, struct type *type, LONGEST num)
|
| 2236 |
|
|
{
|
| 2237 |
|
|
enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
|
| 2238 |
|
|
int len;
|
| 2239 |
|
|
|
| 2240 |
|
|
type = check_typedef (type);
|
| 2241 |
|
|
len = TYPE_LENGTH (type);
|
| 2242 |
|
|
|
| 2243 |
|
|
switch (TYPE_CODE (type))
|
| 2244 |
|
|
{
|
| 2245 |
|
|
case TYPE_CODE_INT:
|
| 2246 |
|
|
case TYPE_CODE_CHAR:
|
| 2247 |
|
|
case TYPE_CODE_ENUM:
|
| 2248 |
|
|
case TYPE_CODE_FLAGS:
|
| 2249 |
|
|
case TYPE_CODE_BOOL:
|
| 2250 |
|
|
case TYPE_CODE_RANGE:
|
| 2251 |
|
|
case TYPE_CODE_MEMBERPTR:
|
| 2252 |
|
|
store_signed_integer (buf, len, byte_order, num);
|
| 2253 |
|
|
break;
|
| 2254 |
|
|
|
| 2255 |
|
|
case TYPE_CODE_REF:
|
| 2256 |
|
|
case TYPE_CODE_PTR:
|
| 2257 |
|
|
store_typed_address (buf, type, (CORE_ADDR) num);
|
| 2258 |
|
|
break;
|
| 2259 |
|
|
|
| 2260 |
|
|
default:
|
| 2261 |
|
|
error (_("Unexpected type (%d) encountered for integer constant."),
|
| 2262 |
|
|
TYPE_CODE (type));
|
| 2263 |
|
|
}
|
| 2264 |
|
|
}
|
| 2265 |
|
|
|
| 2266 |
|
|
|
| 2267 |
|
|
/* Pack NUM into BUF using a target format of TYPE. */
|
| 2268 |
|
|
|
| 2269 |
|
|
void
|
| 2270 |
|
|
pack_unsigned_long (gdb_byte *buf, struct type *type, ULONGEST num)
|
| 2271 |
|
|
{
|
| 2272 |
|
|
int len;
|
| 2273 |
|
|
enum bfd_endian byte_order;
|
| 2274 |
|
|
|
| 2275 |
|
|
type = check_typedef (type);
|
| 2276 |
|
|
len = TYPE_LENGTH (type);
|
| 2277 |
|
|
byte_order = gdbarch_byte_order (get_type_arch (type));
|
| 2278 |
|
|
|
| 2279 |
|
|
switch (TYPE_CODE (type))
|
| 2280 |
|
|
{
|
| 2281 |
|
|
case TYPE_CODE_INT:
|
| 2282 |
|
|
case TYPE_CODE_CHAR:
|
| 2283 |
|
|
case TYPE_CODE_ENUM:
|
| 2284 |
|
|
case TYPE_CODE_FLAGS:
|
| 2285 |
|
|
case TYPE_CODE_BOOL:
|
| 2286 |
|
|
case TYPE_CODE_RANGE:
|
| 2287 |
|
|
case TYPE_CODE_MEMBERPTR:
|
| 2288 |
|
|
store_unsigned_integer (buf, len, byte_order, num);
|
| 2289 |
|
|
break;
|
| 2290 |
|
|
|
| 2291 |
|
|
case TYPE_CODE_REF:
|
| 2292 |
|
|
case TYPE_CODE_PTR:
|
| 2293 |
|
|
store_typed_address (buf, type, (CORE_ADDR) num);
|
| 2294 |
|
|
break;
|
| 2295 |
|
|
|
| 2296 |
|
|
default:
|
| 2297 |
|
|
error (_("\
|
| 2298 |
|
|
Unexpected type (%d) encountered for unsigned integer constant."),
|
| 2299 |
|
|
TYPE_CODE (type));
|
| 2300 |
|
|
}
|
| 2301 |
|
|
}
|
| 2302 |
|
|
|
| 2303 |
|
|
|
| 2304 |
|
|
/* Convert C numbers into newly allocated values. */
|
| 2305 |
|
|
|
| 2306 |
|
|
struct value *
|
| 2307 |
|
|
value_from_longest (struct type *type, LONGEST num)
|
| 2308 |
|
|
{
|
| 2309 |
|
|
struct value *val = allocate_value (type);
|
| 2310 |
|
|
|
| 2311 |
|
|
pack_long (value_contents_raw (val), type, num);
|
| 2312 |
|
|
return val;
|
| 2313 |
|
|
}
|
| 2314 |
|
|
|
| 2315 |
|
|
|
| 2316 |
|
|
/* Convert C unsigned numbers into newly allocated values. */
|
| 2317 |
|
|
|
| 2318 |
|
|
struct value *
|
| 2319 |
|
|
value_from_ulongest (struct type *type, ULONGEST num)
|
| 2320 |
|
|
{
|
| 2321 |
|
|
struct value *val = allocate_value (type);
|
| 2322 |
|
|
|
| 2323 |
|
|
pack_unsigned_long (value_contents_raw (val), type, num);
|
| 2324 |
|
|
|
| 2325 |
|
|
return val;
|
| 2326 |
|
|
}
|
| 2327 |
|
|
|
| 2328 |
|
|
|
| 2329 |
|
|
/* Create a value representing a pointer of type TYPE to the address
|
| 2330 |
|
|
ADDR. */
|
| 2331 |
|
|
struct value *
|
| 2332 |
|
|
value_from_pointer (struct type *type, CORE_ADDR addr)
|
| 2333 |
|
|
{
|
| 2334 |
|
|
struct value *val = allocate_value (type);
|
| 2335 |
|
|
|
| 2336 |
|
|
store_typed_address (value_contents_raw (val), check_typedef (type), addr);
|
| 2337 |
|
|
return val;
|
| 2338 |
|
|
}
|
| 2339 |
|
|
|
| 2340 |
|
|
|
| 2341 |
|
|
/* Create a value of type TYPE whose contents come from VALADDR, if it
|
| 2342 |
|
|
is non-null, and whose memory address (in the inferior) is
|
| 2343 |
|
|
ADDRESS. */
|
| 2344 |
|
|
|
| 2345 |
|
|
struct value *
|
| 2346 |
|
|
value_from_contents_and_address (struct type *type,
|
| 2347 |
|
|
const gdb_byte *valaddr,
|
| 2348 |
|
|
CORE_ADDR address)
|
| 2349 |
|
|
{
|
| 2350 |
|
|
struct value *v = allocate_value (type);
|
| 2351 |
|
|
|
| 2352 |
|
|
if (valaddr == NULL)
|
| 2353 |
|
|
set_value_lazy (v, 1);
|
| 2354 |
|
|
else
|
| 2355 |
|
|
memcpy (value_contents_raw (v), valaddr, TYPE_LENGTH (type));
|
| 2356 |
|
|
set_value_address (v, address);
|
| 2357 |
|
|
VALUE_LVAL (v) = lval_memory;
|
| 2358 |
|
|
return v;
|
| 2359 |
|
|
}
|
| 2360 |
|
|
|
| 2361 |
|
|
struct value *
|
| 2362 |
|
|
value_from_double (struct type *type, DOUBLEST num)
|
| 2363 |
|
|
{
|
| 2364 |
|
|
struct value *val = allocate_value (type);
|
| 2365 |
|
|
struct type *base_type = check_typedef (type);
|
| 2366 |
|
|
enum type_code code = TYPE_CODE (base_type);
|
| 2367 |
|
|
|
| 2368 |
|
|
if (code == TYPE_CODE_FLT)
|
| 2369 |
|
|
{
|
| 2370 |
|
|
store_typed_floating (value_contents_raw (val), base_type, num);
|
| 2371 |
|
|
}
|
| 2372 |
|
|
else
|
| 2373 |
|
|
error (_("Unexpected type encountered for floating constant."));
|
| 2374 |
|
|
|
| 2375 |
|
|
return val;
|
| 2376 |
|
|
}
|
| 2377 |
|
|
|
| 2378 |
|
|
struct value *
|
| 2379 |
|
|
value_from_decfloat (struct type *type, const gdb_byte *dec)
|
| 2380 |
|
|
{
|
| 2381 |
|
|
struct value *val = allocate_value (type);
|
| 2382 |
|
|
|
| 2383 |
|
|
memcpy (value_contents_raw (val), dec, TYPE_LENGTH (type));
|
| 2384 |
|
|
return val;
|
| 2385 |
|
|
}
|
| 2386 |
|
|
|
| 2387 |
|
|
struct value *
|
| 2388 |
|
|
coerce_ref (struct value *arg)
|
| 2389 |
|
|
{
|
| 2390 |
|
|
struct type *value_type_arg_tmp = check_typedef (value_type (arg));
|
| 2391 |
|
|
|
| 2392 |
|
|
if (TYPE_CODE (value_type_arg_tmp) == TYPE_CODE_REF)
|
| 2393 |
|
|
arg = value_at_lazy (TYPE_TARGET_TYPE (value_type_arg_tmp),
|
| 2394 |
|
|
unpack_pointer (value_type (arg),
|
| 2395 |
|
|
value_contents (arg)));
|
| 2396 |
|
|
return arg;
|
| 2397 |
|
|
}
|
| 2398 |
|
|
|
| 2399 |
|
|
struct value *
|
| 2400 |
|
|
coerce_array (struct value *arg)
|
| 2401 |
|
|
{
|
| 2402 |
|
|
struct type *type;
|
| 2403 |
|
|
|
| 2404 |
|
|
arg = coerce_ref (arg);
|
| 2405 |
|
|
type = check_typedef (value_type (arg));
|
| 2406 |
|
|
|
| 2407 |
|
|
switch (TYPE_CODE (type))
|
| 2408 |
|
|
{
|
| 2409 |
|
|
case TYPE_CODE_ARRAY:
|
| 2410 |
|
|
if (current_language->c_style_arrays)
|
| 2411 |
|
|
arg = value_coerce_array (arg);
|
| 2412 |
|
|
break;
|
| 2413 |
|
|
case TYPE_CODE_FUNC:
|
| 2414 |
|
|
arg = value_coerce_function (arg);
|
| 2415 |
|
|
break;
|
| 2416 |
|
|
}
|
| 2417 |
|
|
return arg;
|
| 2418 |
|
|
}
|
| 2419 |
|
|
|
| 2420 |
|
|
|
| 2421 |
|
|
/* Return true if the function returning the specified type is using
|
| 2422 |
|
|
the convention of returning structures in memory (passing in the
|
| 2423 |
|
|
address as a hidden first parameter). */
|
| 2424 |
|
|
|
| 2425 |
|
|
int
|
| 2426 |
|
|
using_struct_return (struct gdbarch *gdbarch,
|
| 2427 |
|
|
struct type *func_type, struct type *value_type)
|
| 2428 |
|
|
{
|
| 2429 |
|
|
enum type_code code = TYPE_CODE (value_type);
|
| 2430 |
|
|
|
| 2431 |
|
|
if (code == TYPE_CODE_ERROR)
|
| 2432 |
|
|
error (_("Function return type unknown."));
|
| 2433 |
|
|
|
| 2434 |
|
|
if (code == TYPE_CODE_VOID)
|
| 2435 |
|
|
/* A void return value is never in memory. See also corresponding
|
| 2436 |
|
|
code in "print_return_value". */
|
| 2437 |
|
|
return 0;
|
| 2438 |
|
|
|
| 2439 |
|
|
/* Probe the architecture for the return-value convention. */
|
| 2440 |
|
|
return (gdbarch_return_value (gdbarch, func_type, value_type,
|
| 2441 |
|
|
NULL, NULL, NULL)
|
| 2442 |
|
|
!= RETURN_VALUE_REGISTER_CONVENTION);
|
| 2443 |
|
|
}
|
| 2444 |
|
|
|
| 2445 |
|
|
/* Set the initialized field in a value struct. */
|
| 2446 |
|
|
|
| 2447 |
|
|
void
|
| 2448 |
|
|
set_value_initialized (struct value *val, int status)
|
| 2449 |
|
|
{
|
| 2450 |
|
|
val->initialized = status;
|
| 2451 |
|
|
}
|
| 2452 |
|
|
|
| 2453 |
|
|
/* Return the initialized field in a value struct. */
|
| 2454 |
|
|
|
| 2455 |
|
|
int
|
| 2456 |
|
|
value_initialized (struct value *val)
|
| 2457 |
|
|
{
|
| 2458 |
|
|
return val->initialized;
|
| 2459 |
|
|
}
|
| 2460 |
|
|
|
| 2461 |
|
|
void
|
| 2462 |
|
|
_initialize_values (void)
|
| 2463 |
|
|
{
|
| 2464 |
|
|
add_cmd ("convenience", no_class, show_convenience, _("\
|
| 2465 |
|
|
Debugger convenience (\"$foo\") variables.\n\
|
| 2466 |
|
|
These variables are created when you assign them values;\n\
|
| 2467 |
|
|
thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\
|
| 2468 |
|
|
\n\
|
| 2469 |
|
|
A few convenience variables are given values automatically:\n\
|
| 2470 |
|
|
\"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
|
| 2471 |
|
|
\"$__\" holds the contents of the last address examined with \"x\"."),
|
| 2472 |
|
|
&showlist);
|
| 2473 |
|
|
|
| 2474 |
|
|
add_cmd ("values", no_class, show_values,
|
| 2475 |
|
|
_("Elements of value history around item number IDX (or last ten)."),
|
| 2476 |
|
|
&showlist);
|
| 2477 |
|
|
|
| 2478 |
|
|
add_com ("init-if-undefined", class_vars, init_if_undefined_command, _("\
|
| 2479 |
|
|
Initialize a convenience variable if necessary.\n\
|
| 2480 |
|
|
init-if-undefined VARIABLE = EXPRESSION\n\
|
| 2481 |
|
|
Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\
|
| 2482 |
|
|
exist or does not contain a value. The EXPRESSION is not evaluated if the\n\
|
| 2483 |
|
|
VARIABLE is already initialized."));
|
| 2484 |
|
|
|
| 2485 |
|
|
add_prefix_cmd ("function", no_class, function_command, _("\
|
| 2486 |
|
|
Placeholder command for showing help on convenience functions."),
|
| 2487 |
|
|
&functionlist, "function ", 0, &cmdlist);
|
| 2488 |
|
|
}
|