1 |
330 |
jeremybenn |
/* Implementation of the GDB variable objects API.
|
2 |
|
|
|
3 |
|
|
Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
|
4 |
|
|
2009, 2010 Free Software Foundation, Inc.
|
5 |
|
|
|
6 |
|
|
This program is free software; you can redistribute it and/or modify
|
7 |
|
|
it under the terms of the GNU General Public License as published by
|
8 |
|
|
the Free Software Foundation; either version 3 of the License, or
|
9 |
|
|
(at your option) any later version.
|
10 |
|
|
|
11 |
|
|
This program is distributed in the hope that it will be useful,
|
12 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
13 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
14 |
|
|
GNU General Public License for more details.
|
15 |
|
|
|
16 |
|
|
You should have received a copy of the GNU General Public License
|
17 |
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
18 |
|
|
|
19 |
|
|
#include "defs.h"
|
20 |
|
|
#include "exceptions.h"
|
21 |
|
|
#include "value.h"
|
22 |
|
|
#include "expression.h"
|
23 |
|
|
#include "frame.h"
|
24 |
|
|
#include "language.h"
|
25 |
|
|
#include "wrapper.h"
|
26 |
|
|
#include "gdbcmd.h"
|
27 |
|
|
#include "block.h"
|
28 |
|
|
#include "valprint.h"
|
29 |
|
|
|
30 |
|
|
#include "gdb_assert.h"
|
31 |
|
|
#include "gdb_string.h"
|
32 |
|
|
#include "gdb_regex.h"
|
33 |
|
|
|
34 |
|
|
#include "varobj.h"
|
35 |
|
|
#include "vec.h"
|
36 |
|
|
#include "gdbthread.h"
|
37 |
|
|
#include "inferior.h"
|
38 |
|
|
|
39 |
|
|
#if HAVE_PYTHON
|
40 |
|
|
#include "python/python.h"
|
41 |
|
|
#include "python/python-internal.h"
|
42 |
|
|
#else
|
43 |
|
|
typedef int PyObject;
|
44 |
|
|
#endif
|
45 |
|
|
|
46 |
|
|
/* Non-zero if we want to see trace of varobj level stuff. */
|
47 |
|
|
|
48 |
|
|
int varobjdebug = 0;
|
49 |
|
|
static void
|
50 |
|
|
show_varobjdebug (struct ui_file *file, int from_tty,
|
51 |
|
|
struct cmd_list_element *c, const char *value)
|
52 |
|
|
{
|
53 |
|
|
fprintf_filtered (file, _("Varobj debugging is %s.\n"), value);
|
54 |
|
|
}
|
55 |
|
|
|
56 |
|
|
/* String representations of gdb's format codes */
|
57 |
|
|
char *varobj_format_string[] =
|
58 |
|
|
{ "natural", "binary", "decimal", "hexadecimal", "octal" };
|
59 |
|
|
|
60 |
|
|
/* String representations of gdb's known languages */
|
61 |
|
|
char *varobj_language_string[] = { "unknown", "C", "C++", "Java" };
|
62 |
|
|
|
63 |
|
|
/* True if we want to allow Python-based pretty-printing. */
|
64 |
|
|
static int pretty_printing = 0;
|
65 |
|
|
|
66 |
|
|
void
|
67 |
|
|
varobj_enable_pretty_printing (void)
|
68 |
|
|
{
|
69 |
|
|
pretty_printing = 1;
|
70 |
|
|
}
|
71 |
|
|
|
72 |
|
|
/* Data structures */
|
73 |
|
|
|
74 |
|
|
/* Every root variable has one of these structures saved in its
|
75 |
|
|
varobj. Members which must be free'd are noted. */
|
76 |
|
|
struct varobj_root
|
77 |
|
|
{
|
78 |
|
|
|
79 |
|
|
/* Alloc'd expression for this parent. */
|
80 |
|
|
struct expression *exp;
|
81 |
|
|
|
82 |
|
|
/* Block for which this expression is valid */
|
83 |
|
|
struct block *valid_block;
|
84 |
|
|
|
85 |
|
|
/* The frame for this expression. This field is set iff valid_block is
|
86 |
|
|
not NULL. */
|
87 |
|
|
struct frame_id frame;
|
88 |
|
|
|
89 |
|
|
/* The thread ID that this varobj_root belong to. This field
|
90 |
|
|
is only valid if valid_block is not NULL.
|
91 |
|
|
When not 0, indicates which thread 'frame' belongs to.
|
92 |
|
|
When 0, indicates that the thread list was empty when the varobj_root
|
93 |
|
|
was created. */
|
94 |
|
|
int thread_id;
|
95 |
|
|
|
96 |
|
|
/* If 1, the -var-update always recomputes the value in the
|
97 |
|
|
current thread and frame. Otherwise, variable object is
|
98 |
|
|
always updated in the specific scope/thread/frame */
|
99 |
|
|
int floating;
|
100 |
|
|
|
101 |
|
|
/* Flag that indicates validity: set to 0 when this varobj_root refers
|
102 |
|
|
to symbols that do not exist anymore. */
|
103 |
|
|
int is_valid;
|
104 |
|
|
|
105 |
|
|
/* Language info for this variable and its children */
|
106 |
|
|
struct language_specific *lang;
|
107 |
|
|
|
108 |
|
|
/* The varobj for this root node. */
|
109 |
|
|
struct varobj *rootvar;
|
110 |
|
|
|
111 |
|
|
/* Next root variable */
|
112 |
|
|
struct varobj_root *next;
|
113 |
|
|
};
|
114 |
|
|
|
115 |
|
|
/* Every variable in the system has a structure of this type defined
|
116 |
|
|
for it. This structure holds all information necessary to manipulate
|
117 |
|
|
a particular object variable. Members which must be freed are noted. */
|
118 |
|
|
struct varobj
|
119 |
|
|
{
|
120 |
|
|
|
121 |
|
|
/* Alloc'd name of the variable for this object.. If this variable is a
|
122 |
|
|
child, then this name will be the child's source name.
|
123 |
|
|
(bar, not foo.bar) */
|
124 |
|
|
/* NOTE: This is the "expression" */
|
125 |
|
|
char *name;
|
126 |
|
|
|
127 |
|
|
/* Alloc'd expression for this child. Can be used to create a
|
128 |
|
|
root variable corresponding to this child. */
|
129 |
|
|
char *path_expr;
|
130 |
|
|
|
131 |
|
|
/* The alloc'd name for this variable's object. This is here for
|
132 |
|
|
convenience when constructing this object's children. */
|
133 |
|
|
char *obj_name;
|
134 |
|
|
|
135 |
|
|
/* Index of this variable in its parent or -1 */
|
136 |
|
|
int index;
|
137 |
|
|
|
138 |
|
|
/* The type of this variable. This can be NULL
|
139 |
|
|
for artifial variable objects -- currently, the "accessibility"
|
140 |
|
|
variable objects in C++. */
|
141 |
|
|
struct type *type;
|
142 |
|
|
|
143 |
|
|
/* The value of this expression or subexpression. A NULL value
|
144 |
|
|
indicates there was an error getting this value.
|
145 |
|
|
Invariant: if varobj_value_is_changeable_p (this) is non-zero,
|
146 |
|
|
the value is either NULL, or not lazy. */
|
147 |
|
|
struct value *value;
|
148 |
|
|
|
149 |
|
|
/* The number of (immediate) children this variable has */
|
150 |
|
|
int num_children;
|
151 |
|
|
|
152 |
|
|
/* If this object is a child, this points to its immediate parent. */
|
153 |
|
|
struct varobj *parent;
|
154 |
|
|
|
155 |
|
|
/* Children of this object. */
|
156 |
|
|
VEC (varobj_p) *children;
|
157 |
|
|
|
158 |
|
|
/* Whether the children of this varobj were requested. This field is
|
159 |
|
|
used to decide if dynamic varobj should recompute their children.
|
160 |
|
|
In the event that the frontend never asked for the children, we
|
161 |
|
|
can avoid that. */
|
162 |
|
|
int children_requested;
|
163 |
|
|
|
164 |
|
|
/* Description of the root variable. Points to root variable for children. */
|
165 |
|
|
struct varobj_root *root;
|
166 |
|
|
|
167 |
|
|
/* The format of the output for this object */
|
168 |
|
|
enum varobj_display_formats format;
|
169 |
|
|
|
170 |
|
|
/* Was this variable updated via a varobj_set_value operation */
|
171 |
|
|
int updated;
|
172 |
|
|
|
173 |
|
|
/* Last print value. */
|
174 |
|
|
char *print_value;
|
175 |
|
|
|
176 |
|
|
/* Is this variable frozen. Frozen variables are never implicitly
|
177 |
|
|
updated by -var-update *
|
178 |
|
|
or -var-update <direct-or-indirect-parent>. */
|
179 |
|
|
int frozen;
|
180 |
|
|
|
181 |
|
|
/* Is the value of this variable intentionally not fetched? It is
|
182 |
|
|
not fetched if either the variable is frozen, or any parents is
|
183 |
|
|
frozen. */
|
184 |
|
|
int not_fetched;
|
185 |
|
|
|
186 |
|
|
/* Sub-range of children which the MI consumer has requested. If
|
187 |
|
|
FROM < 0 or TO < 0, means that all children have been
|
188 |
|
|
requested. */
|
189 |
|
|
int from;
|
190 |
|
|
int to;
|
191 |
|
|
|
192 |
|
|
/* The pretty-printer constructor. If NULL, then the default
|
193 |
|
|
pretty-printer will be looked up. If None, then no
|
194 |
|
|
pretty-printer will be installed. */
|
195 |
|
|
PyObject *constructor;
|
196 |
|
|
|
197 |
|
|
/* The pretty-printer that has been constructed. If NULL, then a
|
198 |
|
|
new printer object is needed, and one will be constructed. */
|
199 |
|
|
PyObject *pretty_printer;
|
200 |
|
|
|
201 |
|
|
/* The iterator returned by the printer's 'children' method, or NULL
|
202 |
|
|
if not available. */
|
203 |
|
|
PyObject *child_iter;
|
204 |
|
|
|
205 |
|
|
/* We request one extra item from the iterator, so that we can
|
206 |
|
|
report to the caller whether there are more items than we have
|
207 |
|
|
already reported. However, we don't want to install this value
|
208 |
|
|
when we read it, because that will mess up future updates. So,
|
209 |
|
|
we stash it here instead. */
|
210 |
|
|
PyObject *saved_item;
|
211 |
|
|
};
|
212 |
|
|
|
213 |
|
|
struct cpstack
|
214 |
|
|
{
|
215 |
|
|
char *name;
|
216 |
|
|
struct cpstack *next;
|
217 |
|
|
};
|
218 |
|
|
|
219 |
|
|
/* A list of varobjs */
|
220 |
|
|
|
221 |
|
|
struct vlist
|
222 |
|
|
{
|
223 |
|
|
struct varobj *var;
|
224 |
|
|
struct vlist *next;
|
225 |
|
|
};
|
226 |
|
|
|
227 |
|
|
/* Private function prototypes */
|
228 |
|
|
|
229 |
|
|
/* Helper functions for the above subcommands. */
|
230 |
|
|
|
231 |
|
|
static int delete_variable (struct cpstack **, struct varobj *, int);
|
232 |
|
|
|
233 |
|
|
static void delete_variable_1 (struct cpstack **, int *,
|
234 |
|
|
struct varobj *, int, int);
|
235 |
|
|
|
236 |
|
|
static int install_variable (struct varobj *);
|
237 |
|
|
|
238 |
|
|
static void uninstall_variable (struct varobj *);
|
239 |
|
|
|
240 |
|
|
static struct varobj *create_child (struct varobj *, int, char *);
|
241 |
|
|
|
242 |
|
|
static struct varobj *
|
243 |
|
|
create_child_with_value (struct varobj *parent, int index, const char *name,
|
244 |
|
|
struct value *value);
|
245 |
|
|
|
246 |
|
|
/* Utility routines */
|
247 |
|
|
|
248 |
|
|
static struct varobj *new_variable (void);
|
249 |
|
|
|
250 |
|
|
static struct varobj *new_root_variable (void);
|
251 |
|
|
|
252 |
|
|
static void free_variable (struct varobj *var);
|
253 |
|
|
|
254 |
|
|
static struct cleanup *make_cleanup_free_variable (struct varobj *var);
|
255 |
|
|
|
256 |
|
|
static struct type *get_type (struct varobj *var);
|
257 |
|
|
|
258 |
|
|
static struct type *get_value_type (struct varobj *var);
|
259 |
|
|
|
260 |
|
|
static struct type *get_target_type (struct type *);
|
261 |
|
|
|
262 |
|
|
static enum varobj_display_formats variable_default_display (struct varobj *);
|
263 |
|
|
|
264 |
|
|
static void cppush (struct cpstack **pstack, char *name);
|
265 |
|
|
|
266 |
|
|
static char *cppop (struct cpstack **pstack);
|
267 |
|
|
|
268 |
|
|
static int install_new_value (struct varobj *var, struct value *value,
|
269 |
|
|
int initial);
|
270 |
|
|
|
271 |
|
|
/* Language-specific routines. */
|
272 |
|
|
|
273 |
|
|
static enum varobj_languages variable_language (struct varobj *var);
|
274 |
|
|
|
275 |
|
|
static int number_of_children (struct varobj *);
|
276 |
|
|
|
277 |
|
|
static char *name_of_variable (struct varobj *);
|
278 |
|
|
|
279 |
|
|
static char *name_of_child (struct varobj *, int);
|
280 |
|
|
|
281 |
|
|
static struct value *value_of_root (struct varobj **var_handle, int *);
|
282 |
|
|
|
283 |
|
|
static struct value *value_of_child (struct varobj *parent, int index);
|
284 |
|
|
|
285 |
|
|
static char *my_value_of_variable (struct varobj *var,
|
286 |
|
|
enum varobj_display_formats format);
|
287 |
|
|
|
288 |
|
|
static char *value_get_print_value (struct value *value,
|
289 |
|
|
enum varobj_display_formats format,
|
290 |
|
|
struct varobj *var);
|
291 |
|
|
|
292 |
|
|
static int varobj_value_is_changeable_p (struct varobj *var);
|
293 |
|
|
|
294 |
|
|
static int is_root_p (struct varobj *var);
|
295 |
|
|
|
296 |
|
|
#if HAVE_PYTHON
|
297 |
|
|
|
298 |
|
|
static struct varobj *
|
299 |
|
|
varobj_add_child (struct varobj *var, const char *name, struct value *value);
|
300 |
|
|
|
301 |
|
|
#endif /* HAVE_PYTHON */
|
302 |
|
|
|
303 |
|
|
/* C implementation */
|
304 |
|
|
|
305 |
|
|
static int c_number_of_children (struct varobj *var);
|
306 |
|
|
|
307 |
|
|
static char *c_name_of_variable (struct varobj *parent);
|
308 |
|
|
|
309 |
|
|
static char *c_name_of_child (struct varobj *parent, int index);
|
310 |
|
|
|
311 |
|
|
static char *c_path_expr_of_child (struct varobj *child);
|
312 |
|
|
|
313 |
|
|
static struct value *c_value_of_root (struct varobj **var_handle);
|
314 |
|
|
|
315 |
|
|
static struct value *c_value_of_child (struct varobj *parent, int index);
|
316 |
|
|
|
317 |
|
|
static struct type *c_type_of_child (struct varobj *parent, int index);
|
318 |
|
|
|
319 |
|
|
static char *c_value_of_variable (struct varobj *var,
|
320 |
|
|
enum varobj_display_formats format);
|
321 |
|
|
|
322 |
|
|
/* C++ implementation */
|
323 |
|
|
|
324 |
|
|
static int cplus_number_of_children (struct varobj *var);
|
325 |
|
|
|
326 |
|
|
static void cplus_class_num_children (struct type *type, int children[3]);
|
327 |
|
|
|
328 |
|
|
static char *cplus_name_of_variable (struct varobj *parent);
|
329 |
|
|
|
330 |
|
|
static char *cplus_name_of_child (struct varobj *parent, int index);
|
331 |
|
|
|
332 |
|
|
static char *cplus_path_expr_of_child (struct varobj *child);
|
333 |
|
|
|
334 |
|
|
static struct value *cplus_value_of_root (struct varobj **var_handle);
|
335 |
|
|
|
336 |
|
|
static struct value *cplus_value_of_child (struct varobj *parent, int index);
|
337 |
|
|
|
338 |
|
|
static struct type *cplus_type_of_child (struct varobj *parent, int index);
|
339 |
|
|
|
340 |
|
|
static char *cplus_value_of_variable (struct varobj *var,
|
341 |
|
|
enum varobj_display_formats format);
|
342 |
|
|
|
343 |
|
|
/* Java implementation */
|
344 |
|
|
|
345 |
|
|
static int java_number_of_children (struct varobj *var);
|
346 |
|
|
|
347 |
|
|
static char *java_name_of_variable (struct varobj *parent);
|
348 |
|
|
|
349 |
|
|
static char *java_name_of_child (struct varobj *parent, int index);
|
350 |
|
|
|
351 |
|
|
static char *java_path_expr_of_child (struct varobj *child);
|
352 |
|
|
|
353 |
|
|
static struct value *java_value_of_root (struct varobj **var_handle);
|
354 |
|
|
|
355 |
|
|
static struct value *java_value_of_child (struct varobj *parent, int index);
|
356 |
|
|
|
357 |
|
|
static struct type *java_type_of_child (struct varobj *parent, int index);
|
358 |
|
|
|
359 |
|
|
static char *java_value_of_variable (struct varobj *var,
|
360 |
|
|
enum varobj_display_formats format);
|
361 |
|
|
|
362 |
|
|
/* The language specific vector */
|
363 |
|
|
|
364 |
|
|
struct language_specific
|
365 |
|
|
{
|
366 |
|
|
|
367 |
|
|
/* The language of this variable */
|
368 |
|
|
enum varobj_languages language;
|
369 |
|
|
|
370 |
|
|
/* The number of children of PARENT. */
|
371 |
|
|
int (*number_of_children) (struct varobj * parent);
|
372 |
|
|
|
373 |
|
|
/* The name (expression) of a root varobj. */
|
374 |
|
|
char *(*name_of_variable) (struct varobj * parent);
|
375 |
|
|
|
376 |
|
|
/* The name of the INDEX'th child of PARENT. */
|
377 |
|
|
char *(*name_of_child) (struct varobj * parent, int index);
|
378 |
|
|
|
379 |
|
|
/* Returns the rooted expression of CHILD, which is a variable
|
380 |
|
|
obtain that has some parent. */
|
381 |
|
|
char *(*path_expr_of_child) (struct varobj * child);
|
382 |
|
|
|
383 |
|
|
/* The ``struct value *'' of the root variable ROOT. */
|
384 |
|
|
struct value *(*value_of_root) (struct varobj ** root_handle);
|
385 |
|
|
|
386 |
|
|
/* The ``struct value *'' of the INDEX'th child of PARENT. */
|
387 |
|
|
struct value *(*value_of_child) (struct varobj * parent, int index);
|
388 |
|
|
|
389 |
|
|
/* The type of the INDEX'th child of PARENT. */
|
390 |
|
|
struct type *(*type_of_child) (struct varobj * parent, int index);
|
391 |
|
|
|
392 |
|
|
/* The current value of VAR. */
|
393 |
|
|
char *(*value_of_variable) (struct varobj * var,
|
394 |
|
|
enum varobj_display_formats format);
|
395 |
|
|
};
|
396 |
|
|
|
397 |
|
|
/* Array of known source language routines. */
|
398 |
|
|
static struct language_specific languages[vlang_end] = {
|
399 |
|
|
/* Unknown (try treating as C */
|
400 |
|
|
{
|
401 |
|
|
vlang_unknown,
|
402 |
|
|
c_number_of_children,
|
403 |
|
|
c_name_of_variable,
|
404 |
|
|
c_name_of_child,
|
405 |
|
|
c_path_expr_of_child,
|
406 |
|
|
c_value_of_root,
|
407 |
|
|
c_value_of_child,
|
408 |
|
|
c_type_of_child,
|
409 |
|
|
c_value_of_variable}
|
410 |
|
|
,
|
411 |
|
|
/* C */
|
412 |
|
|
{
|
413 |
|
|
vlang_c,
|
414 |
|
|
c_number_of_children,
|
415 |
|
|
c_name_of_variable,
|
416 |
|
|
c_name_of_child,
|
417 |
|
|
c_path_expr_of_child,
|
418 |
|
|
c_value_of_root,
|
419 |
|
|
c_value_of_child,
|
420 |
|
|
c_type_of_child,
|
421 |
|
|
c_value_of_variable}
|
422 |
|
|
,
|
423 |
|
|
/* C++ */
|
424 |
|
|
{
|
425 |
|
|
vlang_cplus,
|
426 |
|
|
cplus_number_of_children,
|
427 |
|
|
cplus_name_of_variable,
|
428 |
|
|
cplus_name_of_child,
|
429 |
|
|
cplus_path_expr_of_child,
|
430 |
|
|
cplus_value_of_root,
|
431 |
|
|
cplus_value_of_child,
|
432 |
|
|
cplus_type_of_child,
|
433 |
|
|
cplus_value_of_variable}
|
434 |
|
|
,
|
435 |
|
|
/* Java */
|
436 |
|
|
{
|
437 |
|
|
vlang_java,
|
438 |
|
|
java_number_of_children,
|
439 |
|
|
java_name_of_variable,
|
440 |
|
|
java_name_of_child,
|
441 |
|
|
java_path_expr_of_child,
|
442 |
|
|
java_value_of_root,
|
443 |
|
|
java_value_of_child,
|
444 |
|
|
java_type_of_child,
|
445 |
|
|
java_value_of_variable}
|
446 |
|
|
};
|
447 |
|
|
|
448 |
|
|
/* A little convenience enum for dealing with C++/Java */
|
449 |
|
|
enum vsections
|
450 |
|
|
{
|
451 |
|
|
v_public = 0, v_private, v_protected
|
452 |
|
|
};
|
453 |
|
|
|
454 |
|
|
/* Private data */
|
455 |
|
|
|
456 |
|
|
/* Mappings of varobj_display_formats enums to gdb's format codes */
|
457 |
|
|
static int format_code[] = { 0, 't', 'd', 'x', 'o' };
|
458 |
|
|
|
459 |
|
|
/* Header of the list of root variable objects */
|
460 |
|
|
static struct varobj_root *rootlist;
|
461 |
|
|
|
462 |
|
|
/* Prime number indicating the number of buckets in the hash table */
|
463 |
|
|
/* A prime large enough to avoid too many colisions */
|
464 |
|
|
#define VAROBJ_TABLE_SIZE 227
|
465 |
|
|
|
466 |
|
|
/* Pointer to the varobj hash table (built at run time) */
|
467 |
|
|
static struct vlist **varobj_table;
|
468 |
|
|
|
469 |
|
|
/* Is the variable X one of our "fake" children? */
|
470 |
|
|
#define CPLUS_FAKE_CHILD(x) \
|
471 |
|
|
((x) != NULL && (x)->type == NULL && (x)->value == NULL)
|
472 |
|
|
|
473 |
|
|
|
474 |
|
|
/* API Implementation */
|
475 |
|
|
static int
|
476 |
|
|
is_root_p (struct varobj *var)
|
477 |
|
|
{
|
478 |
|
|
return (var->root->rootvar == var);
|
479 |
|
|
}
|
480 |
|
|
|
481 |
|
|
#ifdef HAVE_PYTHON
|
482 |
|
|
/* Helper function to install a Python environment suitable for
|
483 |
|
|
use during operations on VAR. */
|
484 |
|
|
struct cleanup *
|
485 |
|
|
varobj_ensure_python_env (struct varobj *var)
|
486 |
|
|
{
|
487 |
|
|
return ensure_python_env (var->root->exp->gdbarch,
|
488 |
|
|
var->root->exp->language_defn);
|
489 |
|
|
}
|
490 |
|
|
#endif
|
491 |
|
|
|
492 |
|
|
/* Creates a varobj (not its children) */
|
493 |
|
|
|
494 |
|
|
/* Return the full FRAME which corresponds to the given CORE_ADDR
|
495 |
|
|
or NULL if no FRAME on the chain corresponds to CORE_ADDR. */
|
496 |
|
|
|
497 |
|
|
static struct frame_info *
|
498 |
|
|
find_frame_addr_in_frame_chain (CORE_ADDR frame_addr)
|
499 |
|
|
{
|
500 |
|
|
struct frame_info *frame = NULL;
|
501 |
|
|
|
502 |
|
|
if (frame_addr == (CORE_ADDR) 0)
|
503 |
|
|
return NULL;
|
504 |
|
|
|
505 |
|
|
for (frame = get_current_frame ();
|
506 |
|
|
frame != NULL;
|
507 |
|
|
frame = get_prev_frame (frame))
|
508 |
|
|
{
|
509 |
|
|
/* The CORE_ADDR we get as argument was parsed from a string GDB
|
510 |
|
|
output as $fp. This output got truncated to gdbarch_addr_bit.
|
511 |
|
|
Truncate the frame base address in the same manner before
|
512 |
|
|
comparing it against our argument. */
|
513 |
|
|
CORE_ADDR frame_base = get_frame_base_address (frame);
|
514 |
|
|
int addr_bit = gdbarch_addr_bit (get_frame_arch (frame));
|
515 |
|
|
|
516 |
|
|
if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
|
517 |
|
|
frame_base &= ((CORE_ADDR) 1 << addr_bit) - 1;
|
518 |
|
|
|
519 |
|
|
if (frame_base == frame_addr)
|
520 |
|
|
return frame;
|
521 |
|
|
}
|
522 |
|
|
|
523 |
|
|
return NULL;
|
524 |
|
|
}
|
525 |
|
|
|
526 |
|
|
struct varobj *
|
527 |
|
|
varobj_create (char *objname,
|
528 |
|
|
char *expression, CORE_ADDR frame, enum varobj_type type)
|
529 |
|
|
{
|
530 |
|
|
struct varobj *var;
|
531 |
|
|
struct frame_info *fi;
|
532 |
|
|
struct frame_info *old_fi = NULL;
|
533 |
|
|
struct block *block;
|
534 |
|
|
struct cleanup *old_chain;
|
535 |
|
|
|
536 |
|
|
/* Fill out a varobj structure for the (root) variable being constructed. */
|
537 |
|
|
var = new_root_variable ();
|
538 |
|
|
old_chain = make_cleanup_free_variable (var);
|
539 |
|
|
|
540 |
|
|
if (expression != NULL)
|
541 |
|
|
{
|
542 |
|
|
char *p;
|
543 |
|
|
enum varobj_languages lang;
|
544 |
|
|
struct value *value = NULL;
|
545 |
|
|
|
546 |
|
|
/* Parse and evaluate the expression, filling in as much of the
|
547 |
|
|
variable's data as possible. */
|
548 |
|
|
|
549 |
|
|
if (has_stack_frames ())
|
550 |
|
|
{
|
551 |
|
|
/* Allow creator to specify context of variable */
|
552 |
|
|
if ((type == USE_CURRENT_FRAME) || (type == USE_SELECTED_FRAME))
|
553 |
|
|
fi = get_selected_frame (NULL);
|
554 |
|
|
else
|
555 |
|
|
/* FIXME: cagney/2002-11-23: This code should be doing a
|
556 |
|
|
lookup using the frame ID and not just the frame's
|
557 |
|
|
``address''. This, of course, means an interface
|
558 |
|
|
change. However, with out that interface change ISAs,
|
559 |
|
|
such as the ia64 with its two stacks, won't work.
|
560 |
|
|
Similar goes for the case where there is a frameless
|
561 |
|
|
function. */
|
562 |
|
|
fi = find_frame_addr_in_frame_chain (frame);
|
563 |
|
|
}
|
564 |
|
|
else
|
565 |
|
|
fi = NULL;
|
566 |
|
|
|
567 |
|
|
/* frame = -2 means always use selected frame */
|
568 |
|
|
if (type == USE_SELECTED_FRAME)
|
569 |
|
|
var->root->floating = 1;
|
570 |
|
|
|
571 |
|
|
block = NULL;
|
572 |
|
|
if (fi != NULL)
|
573 |
|
|
block = get_frame_block (fi, 0);
|
574 |
|
|
|
575 |
|
|
p = expression;
|
576 |
|
|
innermost_block = NULL;
|
577 |
|
|
/* Wrap the call to parse expression, so we can
|
578 |
|
|
return a sensible error. */
|
579 |
|
|
if (!gdb_parse_exp_1 (&p, block, 0, &var->root->exp))
|
580 |
|
|
{
|
581 |
|
|
return NULL;
|
582 |
|
|
}
|
583 |
|
|
|
584 |
|
|
/* Don't allow variables to be created for types. */
|
585 |
|
|
if (var->root->exp->elts[0].opcode == OP_TYPE)
|
586 |
|
|
{
|
587 |
|
|
do_cleanups (old_chain);
|
588 |
|
|
fprintf_unfiltered (gdb_stderr, "Attempt to use a type name"
|
589 |
|
|
" as an expression.\n");
|
590 |
|
|
return NULL;
|
591 |
|
|
}
|
592 |
|
|
|
593 |
|
|
var->format = variable_default_display (var);
|
594 |
|
|
var->root->valid_block = innermost_block;
|
595 |
|
|
var->name = xstrdup (expression);
|
596 |
|
|
/* For a root var, the name and the expr are the same. */
|
597 |
|
|
var->path_expr = xstrdup (expression);
|
598 |
|
|
|
599 |
|
|
/* When the frame is different from the current frame,
|
600 |
|
|
we must select the appropriate frame before parsing
|
601 |
|
|
the expression, otherwise the value will not be current.
|
602 |
|
|
Since select_frame is so benign, just call it for all cases. */
|
603 |
|
|
if (innermost_block)
|
604 |
|
|
{
|
605 |
|
|
/* User could specify explicit FRAME-ADDR which was not found but
|
606 |
|
|
EXPRESSION is frame specific and we would not be able to evaluate
|
607 |
|
|
it correctly next time. With VALID_BLOCK set we must also set
|
608 |
|
|
FRAME and THREAD_ID. */
|
609 |
|
|
if (fi == NULL)
|
610 |
|
|
error (_("Failed to find the specified frame"));
|
611 |
|
|
|
612 |
|
|
var->root->frame = get_frame_id (fi);
|
613 |
|
|
var->root->thread_id = pid_to_thread_id (inferior_ptid);
|
614 |
|
|
old_fi = get_selected_frame (NULL);
|
615 |
|
|
select_frame (fi);
|
616 |
|
|
}
|
617 |
|
|
|
618 |
|
|
/* We definitely need to catch errors here.
|
619 |
|
|
If evaluate_expression succeeds we got the value we wanted.
|
620 |
|
|
But if it fails, we still go on with a call to evaluate_type() */
|
621 |
|
|
if (!gdb_evaluate_expression (var->root->exp, &value))
|
622 |
|
|
{
|
623 |
|
|
/* Error getting the value. Try to at least get the
|
624 |
|
|
right type. */
|
625 |
|
|
struct value *type_only_value = evaluate_type (var->root->exp);
|
626 |
|
|
|
627 |
|
|
var->type = value_type (type_only_value);
|
628 |
|
|
}
|
629 |
|
|
else
|
630 |
|
|
var->type = value_type (value);
|
631 |
|
|
|
632 |
|
|
install_new_value (var, value, 1 /* Initial assignment */);
|
633 |
|
|
|
634 |
|
|
/* Set language info */
|
635 |
|
|
lang = variable_language (var);
|
636 |
|
|
var->root->lang = &languages[lang];
|
637 |
|
|
|
638 |
|
|
/* Set ourselves as our root */
|
639 |
|
|
var->root->rootvar = var;
|
640 |
|
|
|
641 |
|
|
/* Reset the selected frame */
|
642 |
|
|
if (old_fi != NULL)
|
643 |
|
|
select_frame (old_fi);
|
644 |
|
|
}
|
645 |
|
|
|
646 |
|
|
/* If the variable object name is null, that means this
|
647 |
|
|
is a temporary variable, so don't install it. */
|
648 |
|
|
|
649 |
|
|
if ((var != NULL) && (objname != NULL))
|
650 |
|
|
{
|
651 |
|
|
var->obj_name = xstrdup (objname);
|
652 |
|
|
|
653 |
|
|
/* If a varobj name is duplicated, the install will fail so
|
654 |
|
|
we must clenup */
|
655 |
|
|
if (!install_variable (var))
|
656 |
|
|
{
|
657 |
|
|
do_cleanups (old_chain);
|
658 |
|
|
return NULL;
|
659 |
|
|
}
|
660 |
|
|
}
|
661 |
|
|
|
662 |
|
|
discard_cleanups (old_chain);
|
663 |
|
|
return var;
|
664 |
|
|
}
|
665 |
|
|
|
666 |
|
|
/* Generates an unique name that can be used for a varobj */
|
667 |
|
|
|
668 |
|
|
char *
|
669 |
|
|
varobj_gen_name (void)
|
670 |
|
|
{
|
671 |
|
|
static int id = 0;
|
672 |
|
|
char *obj_name;
|
673 |
|
|
|
674 |
|
|
/* generate a name for this object */
|
675 |
|
|
id++;
|
676 |
|
|
obj_name = xstrprintf ("var%d", id);
|
677 |
|
|
|
678 |
|
|
return obj_name;
|
679 |
|
|
}
|
680 |
|
|
|
681 |
|
|
/* Given an OBJNAME, returns the pointer to the corresponding varobj. Call
|
682 |
|
|
error if OBJNAME cannot be found. */
|
683 |
|
|
|
684 |
|
|
struct varobj *
|
685 |
|
|
varobj_get_handle (char *objname)
|
686 |
|
|
{
|
687 |
|
|
struct vlist *cv;
|
688 |
|
|
const char *chp;
|
689 |
|
|
unsigned int index = 0;
|
690 |
|
|
unsigned int i = 1;
|
691 |
|
|
|
692 |
|
|
for (chp = objname; *chp; chp++)
|
693 |
|
|
{
|
694 |
|
|
index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
|
695 |
|
|
}
|
696 |
|
|
|
697 |
|
|
cv = *(varobj_table + index);
|
698 |
|
|
while ((cv != NULL) && (strcmp (cv->var->obj_name, objname) != 0))
|
699 |
|
|
cv = cv->next;
|
700 |
|
|
|
701 |
|
|
if (cv == NULL)
|
702 |
|
|
error (_("Variable object not found"));
|
703 |
|
|
|
704 |
|
|
return cv->var;
|
705 |
|
|
}
|
706 |
|
|
|
707 |
|
|
/* Given the handle, return the name of the object */
|
708 |
|
|
|
709 |
|
|
char *
|
710 |
|
|
varobj_get_objname (struct varobj *var)
|
711 |
|
|
{
|
712 |
|
|
return var->obj_name;
|
713 |
|
|
}
|
714 |
|
|
|
715 |
|
|
/* Given the handle, return the expression represented by the object */
|
716 |
|
|
|
717 |
|
|
char *
|
718 |
|
|
varobj_get_expression (struct varobj *var)
|
719 |
|
|
{
|
720 |
|
|
return name_of_variable (var);
|
721 |
|
|
}
|
722 |
|
|
|
723 |
|
|
/* Deletes a varobj and all its children if only_children == 0,
|
724 |
|
|
otherwise deletes only the children; returns a malloc'ed list of all the
|
725 |
|
|
(malloc'ed) names of the variables that have been deleted (NULL terminated) */
|
726 |
|
|
|
727 |
|
|
int
|
728 |
|
|
varobj_delete (struct varobj *var, char ***dellist, int only_children)
|
729 |
|
|
{
|
730 |
|
|
int delcount;
|
731 |
|
|
int mycount;
|
732 |
|
|
struct cpstack *result = NULL;
|
733 |
|
|
char **cp;
|
734 |
|
|
|
735 |
|
|
/* Initialize a stack for temporary results */
|
736 |
|
|
cppush (&result, NULL);
|
737 |
|
|
|
738 |
|
|
if (only_children)
|
739 |
|
|
/* Delete only the variable children */
|
740 |
|
|
delcount = delete_variable (&result, var, 1 /* only the children */ );
|
741 |
|
|
else
|
742 |
|
|
/* Delete the variable and all its children */
|
743 |
|
|
delcount = delete_variable (&result, var, 0 /* parent+children */ );
|
744 |
|
|
|
745 |
|
|
/* We may have been asked to return a list of what has been deleted */
|
746 |
|
|
if (dellist != NULL)
|
747 |
|
|
{
|
748 |
|
|
*dellist = xmalloc ((delcount + 1) * sizeof (char *));
|
749 |
|
|
|
750 |
|
|
cp = *dellist;
|
751 |
|
|
mycount = delcount;
|
752 |
|
|
*cp = cppop (&result);
|
753 |
|
|
while ((*cp != NULL) && (mycount > 0))
|
754 |
|
|
{
|
755 |
|
|
mycount--;
|
756 |
|
|
cp++;
|
757 |
|
|
*cp = cppop (&result);
|
758 |
|
|
}
|
759 |
|
|
|
760 |
|
|
if (mycount || (*cp != NULL))
|
761 |
|
|
warning (_("varobj_delete: assertion failed - mycount(=%d) <> 0"),
|
762 |
|
|
mycount);
|
763 |
|
|
}
|
764 |
|
|
|
765 |
|
|
return delcount;
|
766 |
|
|
}
|
767 |
|
|
|
768 |
|
|
#if HAVE_PYTHON
|
769 |
|
|
|
770 |
|
|
/* Convenience function for varobj_set_visualizer. Instantiate a
|
771 |
|
|
pretty-printer for a given value. */
|
772 |
|
|
static PyObject *
|
773 |
|
|
instantiate_pretty_printer (PyObject *constructor, struct value *value)
|
774 |
|
|
{
|
775 |
|
|
PyObject *val_obj = NULL;
|
776 |
|
|
PyObject *printer;
|
777 |
|
|
|
778 |
|
|
val_obj = value_to_value_object (value);
|
779 |
|
|
if (! val_obj)
|
780 |
|
|
return NULL;
|
781 |
|
|
|
782 |
|
|
printer = PyObject_CallFunctionObjArgs (constructor, val_obj, NULL);
|
783 |
|
|
Py_DECREF (val_obj);
|
784 |
|
|
return printer;
|
785 |
|
|
return NULL;
|
786 |
|
|
}
|
787 |
|
|
|
788 |
|
|
#endif
|
789 |
|
|
|
790 |
|
|
/* Set/Get variable object display format */
|
791 |
|
|
|
792 |
|
|
enum varobj_display_formats
|
793 |
|
|
varobj_set_display_format (struct varobj *var,
|
794 |
|
|
enum varobj_display_formats format)
|
795 |
|
|
{
|
796 |
|
|
switch (format)
|
797 |
|
|
{
|
798 |
|
|
case FORMAT_NATURAL:
|
799 |
|
|
case FORMAT_BINARY:
|
800 |
|
|
case FORMAT_DECIMAL:
|
801 |
|
|
case FORMAT_HEXADECIMAL:
|
802 |
|
|
case FORMAT_OCTAL:
|
803 |
|
|
var->format = format;
|
804 |
|
|
break;
|
805 |
|
|
|
806 |
|
|
default:
|
807 |
|
|
var->format = variable_default_display (var);
|
808 |
|
|
}
|
809 |
|
|
|
810 |
|
|
if (varobj_value_is_changeable_p (var)
|
811 |
|
|
&& var->value && !value_lazy (var->value))
|
812 |
|
|
{
|
813 |
|
|
xfree (var->print_value);
|
814 |
|
|
var->print_value = value_get_print_value (var->value, var->format, var);
|
815 |
|
|
}
|
816 |
|
|
|
817 |
|
|
return var->format;
|
818 |
|
|
}
|
819 |
|
|
|
820 |
|
|
enum varobj_display_formats
|
821 |
|
|
varobj_get_display_format (struct varobj *var)
|
822 |
|
|
{
|
823 |
|
|
return var->format;
|
824 |
|
|
}
|
825 |
|
|
|
826 |
|
|
char *
|
827 |
|
|
varobj_get_display_hint (struct varobj *var)
|
828 |
|
|
{
|
829 |
|
|
char *result = NULL;
|
830 |
|
|
|
831 |
|
|
#if HAVE_PYTHON
|
832 |
|
|
struct cleanup *back_to = varobj_ensure_python_env (var);
|
833 |
|
|
|
834 |
|
|
if (var->pretty_printer)
|
835 |
|
|
result = gdbpy_get_display_hint (var->pretty_printer);
|
836 |
|
|
|
837 |
|
|
do_cleanups (back_to);
|
838 |
|
|
#endif
|
839 |
|
|
|
840 |
|
|
return result;
|
841 |
|
|
}
|
842 |
|
|
|
843 |
|
|
/* Return true if the varobj has items after TO, false otherwise. */
|
844 |
|
|
|
845 |
|
|
int
|
846 |
|
|
varobj_has_more (struct varobj *var, int to)
|
847 |
|
|
{
|
848 |
|
|
if (VEC_length (varobj_p, var->children) > to)
|
849 |
|
|
return 1;
|
850 |
|
|
return ((to == -1 || VEC_length (varobj_p, var->children) == to)
|
851 |
|
|
&& var->saved_item != NULL);
|
852 |
|
|
}
|
853 |
|
|
|
854 |
|
|
/* If the variable object is bound to a specific thread, that
|
855 |
|
|
is its evaluation can always be done in context of a frame
|
856 |
|
|
inside that thread, returns GDB id of the thread -- which
|
857 |
|
|
is always positive. Otherwise, returns -1. */
|
858 |
|
|
int
|
859 |
|
|
varobj_get_thread_id (struct varobj *var)
|
860 |
|
|
{
|
861 |
|
|
if (var->root->valid_block && var->root->thread_id > 0)
|
862 |
|
|
return var->root->thread_id;
|
863 |
|
|
else
|
864 |
|
|
return -1;
|
865 |
|
|
}
|
866 |
|
|
|
867 |
|
|
void
|
868 |
|
|
varobj_set_frozen (struct varobj *var, int frozen)
|
869 |
|
|
{
|
870 |
|
|
/* When a variable is unfrozen, we don't fetch its value.
|
871 |
|
|
The 'not_fetched' flag remains set, so next -var-update
|
872 |
|
|
won't complain.
|
873 |
|
|
|
874 |
|
|
We don't fetch the value, because for structures the client
|
875 |
|
|
should do -var-update anyway. It would be bad to have different
|
876 |
|
|
client-size logic for structure and other types. */
|
877 |
|
|
var->frozen = frozen;
|
878 |
|
|
}
|
879 |
|
|
|
880 |
|
|
int
|
881 |
|
|
varobj_get_frozen (struct varobj *var)
|
882 |
|
|
{
|
883 |
|
|
return var->frozen;
|
884 |
|
|
}
|
885 |
|
|
|
886 |
|
|
/* A helper function that restricts a range to what is actually
|
887 |
|
|
available in a VEC. This follows the usual rules for the meaning
|
888 |
|
|
of FROM and TO -- if either is negative, the entire range is
|
889 |
|
|
used. */
|
890 |
|
|
|
891 |
|
|
static void
|
892 |
|
|
restrict_range (VEC (varobj_p) *children, int *from, int *to)
|
893 |
|
|
{
|
894 |
|
|
if (*from < 0 || *to < 0)
|
895 |
|
|
{
|
896 |
|
|
*from = 0;
|
897 |
|
|
*to = VEC_length (varobj_p, children);
|
898 |
|
|
}
|
899 |
|
|
else
|
900 |
|
|
{
|
901 |
|
|
if (*from > VEC_length (varobj_p, children))
|
902 |
|
|
*from = VEC_length (varobj_p, children);
|
903 |
|
|
if (*to > VEC_length (varobj_p, children))
|
904 |
|
|
*to = VEC_length (varobj_p, children);
|
905 |
|
|
if (*from > *to)
|
906 |
|
|
*from = *to;
|
907 |
|
|
}
|
908 |
|
|
}
|
909 |
|
|
|
910 |
|
|
#if HAVE_PYTHON
|
911 |
|
|
|
912 |
|
|
/* A helper for update_dynamic_varobj_children that installs a new
|
913 |
|
|
child when needed. */
|
914 |
|
|
|
915 |
|
|
static void
|
916 |
|
|
install_dynamic_child (struct varobj *var,
|
917 |
|
|
VEC (varobj_p) **changed,
|
918 |
|
|
VEC (varobj_p) **new,
|
919 |
|
|
VEC (varobj_p) **unchanged,
|
920 |
|
|
int *cchanged,
|
921 |
|
|
int index,
|
922 |
|
|
const char *name,
|
923 |
|
|
struct value *value)
|
924 |
|
|
{
|
925 |
|
|
if (VEC_length (varobj_p, var->children) < index + 1)
|
926 |
|
|
{
|
927 |
|
|
/* There's no child yet. */
|
928 |
|
|
struct varobj *child = varobj_add_child (var, name, value);
|
929 |
|
|
|
930 |
|
|
if (new)
|
931 |
|
|
{
|
932 |
|
|
VEC_safe_push (varobj_p, *new, child);
|
933 |
|
|
*cchanged = 1;
|
934 |
|
|
}
|
935 |
|
|
}
|
936 |
|
|
else
|
937 |
|
|
{
|
938 |
|
|
varobj_p existing = VEC_index (varobj_p, var->children, index);
|
939 |
|
|
|
940 |
|
|
if (install_new_value (existing, value, 0))
|
941 |
|
|
{
|
942 |
|
|
if (changed)
|
943 |
|
|
VEC_safe_push (varobj_p, *changed, existing);
|
944 |
|
|
}
|
945 |
|
|
else if (unchanged)
|
946 |
|
|
VEC_safe_push (varobj_p, *unchanged, existing);
|
947 |
|
|
}
|
948 |
|
|
}
|
949 |
|
|
|
950 |
|
|
static int
|
951 |
|
|
dynamic_varobj_has_child_method (struct varobj *var)
|
952 |
|
|
{
|
953 |
|
|
struct cleanup *back_to;
|
954 |
|
|
PyObject *printer = var->pretty_printer;
|
955 |
|
|
int result;
|
956 |
|
|
|
957 |
|
|
back_to = varobj_ensure_python_env (var);
|
958 |
|
|
result = PyObject_HasAttr (printer, gdbpy_children_cst);
|
959 |
|
|
do_cleanups (back_to);
|
960 |
|
|
return result;
|
961 |
|
|
}
|
962 |
|
|
|
963 |
|
|
#endif
|
964 |
|
|
|
965 |
|
|
static int
|
966 |
|
|
update_dynamic_varobj_children (struct varobj *var,
|
967 |
|
|
VEC (varobj_p) **changed,
|
968 |
|
|
VEC (varobj_p) **new,
|
969 |
|
|
VEC (varobj_p) **unchanged,
|
970 |
|
|
int *cchanged,
|
971 |
|
|
int update_children,
|
972 |
|
|
int from,
|
973 |
|
|
int to)
|
974 |
|
|
{
|
975 |
|
|
#if HAVE_PYTHON
|
976 |
|
|
struct cleanup *back_to;
|
977 |
|
|
PyObject *children;
|
978 |
|
|
int i;
|
979 |
|
|
PyObject *printer = var->pretty_printer;
|
980 |
|
|
|
981 |
|
|
back_to = varobj_ensure_python_env (var);
|
982 |
|
|
|
983 |
|
|
*cchanged = 0;
|
984 |
|
|
if (!PyObject_HasAttr (printer, gdbpy_children_cst))
|
985 |
|
|
{
|
986 |
|
|
do_cleanups (back_to);
|
987 |
|
|
return 0;
|
988 |
|
|
}
|
989 |
|
|
|
990 |
|
|
if (update_children || !var->child_iter)
|
991 |
|
|
{
|
992 |
|
|
children = PyObject_CallMethodObjArgs (printer, gdbpy_children_cst,
|
993 |
|
|
NULL);
|
994 |
|
|
|
995 |
|
|
if (!children)
|
996 |
|
|
{
|
997 |
|
|
gdbpy_print_stack ();
|
998 |
|
|
error (_("Null value returned for children"));
|
999 |
|
|
}
|
1000 |
|
|
|
1001 |
|
|
make_cleanup_py_decref (children);
|
1002 |
|
|
|
1003 |
|
|
if (!PyIter_Check (children))
|
1004 |
|
|
error (_("Returned value is not iterable"));
|
1005 |
|
|
|
1006 |
|
|
Py_XDECREF (var->child_iter);
|
1007 |
|
|
var->child_iter = PyObject_GetIter (children);
|
1008 |
|
|
if (!var->child_iter)
|
1009 |
|
|
{
|
1010 |
|
|
gdbpy_print_stack ();
|
1011 |
|
|
error (_("Could not get children iterator"));
|
1012 |
|
|
}
|
1013 |
|
|
|
1014 |
|
|
Py_XDECREF (var->saved_item);
|
1015 |
|
|
var->saved_item = NULL;
|
1016 |
|
|
|
1017 |
|
|
i = 0;
|
1018 |
|
|
}
|
1019 |
|
|
else
|
1020 |
|
|
i = VEC_length (varobj_p, var->children);
|
1021 |
|
|
|
1022 |
|
|
/* We ask for one extra child, so that MI can report whether there
|
1023 |
|
|
are more children. */
|
1024 |
|
|
for (; to < 0 || i < to + 1; ++i)
|
1025 |
|
|
{
|
1026 |
|
|
PyObject *item;
|
1027 |
|
|
|
1028 |
|
|
/* See if there was a leftover from last time. */
|
1029 |
|
|
if (var->saved_item)
|
1030 |
|
|
{
|
1031 |
|
|
item = var->saved_item;
|
1032 |
|
|
var->saved_item = NULL;
|
1033 |
|
|
}
|
1034 |
|
|
else
|
1035 |
|
|
item = PyIter_Next (var->child_iter);
|
1036 |
|
|
|
1037 |
|
|
if (!item)
|
1038 |
|
|
break;
|
1039 |
|
|
|
1040 |
|
|
/* We don't want to push the extra child on any report list. */
|
1041 |
|
|
if (to < 0 || i < to)
|
1042 |
|
|
{
|
1043 |
|
|
PyObject *py_v;
|
1044 |
|
|
char *name;
|
1045 |
|
|
struct value *v;
|
1046 |
|
|
struct cleanup *inner;
|
1047 |
|
|
int can_mention = from < 0 || i >= from;
|
1048 |
|
|
|
1049 |
|
|
inner = make_cleanup_py_decref (item);
|
1050 |
|
|
|
1051 |
|
|
if (!PyArg_ParseTuple (item, "sO", &name, &py_v))
|
1052 |
|
|
error (_("Invalid item from the child list"));
|
1053 |
|
|
|
1054 |
|
|
v = convert_value_from_python (py_v);
|
1055 |
|
|
install_dynamic_child (var, can_mention ? changed : NULL,
|
1056 |
|
|
can_mention ? new : NULL,
|
1057 |
|
|
can_mention ? unchanged : NULL,
|
1058 |
|
|
can_mention ? cchanged : NULL, i, name, v);
|
1059 |
|
|
do_cleanups (inner);
|
1060 |
|
|
}
|
1061 |
|
|
else
|
1062 |
|
|
{
|
1063 |
|
|
Py_XDECREF (var->saved_item);
|
1064 |
|
|
var->saved_item = item;
|
1065 |
|
|
|
1066 |
|
|
/* We want to truncate the child list just before this
|
1067 |
|
|
element. */
|
1068 |
|
|
break;
|
1069 |
|
|
}
|
1070 |
|
|
}
|
1071 |
|
|
|
1072 |
|
|
if (i < VEC_length (varobj_p, var->children))
|
1073 |
|
|
{
|
1074 |
|
|
int j;
|
1075 |
|
|
|
1076 |
|
|
*cchanged = 1;
|
1077 |
|
|
for (j = i; j < VEC_length (varobj_p, var->children); ++j)
|
1078 |
|
|
varobj_delete (VEC_index (varobj_p, var->children, j), NULL, 0);
|
1079 |
|
|
VEC_truncate (varobj_p, var->children, i);
|
1080 |
|
|
}
|
1081 |
|
|
|
1082 |
|
|
/* If there are fewer children than requested, note that the list of
|
1083 |
|
|
children changed. */
|
1084 |
|
|
if (to >= 0 && VEC_length (varobj_p, var->children) < to)
|
1085 |
|
|
*cchanged = 1;
|
1086 |
|
|
|
1087 |
|
|
var->num_children = VEC_length (varobj_p, var->children);
|
1088 |
|
|
|
1089 |
|
|
do_cleanups (back_to);
|
1090 |
|
|
|
1091 |
|
|
return 1;
|
1092 |
|
|
#else
|
1093 |
|
|
gdb_assert (0 && "should never be called if Python is not enabled");
|
1094 |
|
|
#endif
|
1095 |
|
|
}
|
1096 |
|
|
|
1097 |
|
|
int
|
1098 |
|
|
varobj_get_num_children (struct varobj *var)
|
1099 |
|
|
{
|
1100 |
|
|
if (var->num_children == -1)
|
1101 |
|
|
{
|
1102 |
|
|
if (var->pretty_printer)
|
1103 |
|
|
{
|
1104 |
|
|
int dummy;
|
1105 |
|
|
|
1106 |
|
|
/* If we have a dynamic varobj, don't report -1 children.
|
1107 |
|
|
So, try to fetch some children first. */
|
1108 |
|
|
update_dynamic_varobj_children (var, NULL, NULL, NULL, &dummy,
|
1109 |
|
|
0, 0, 0);
|
1110 |
|
|
}
|
1111 |
|
|
else
|
1112 |
|
|
var->num_children = number_of_children (var);
|
1113 |
|
|
}
|
1114 |
|
|
|
1115 |
|
|
return var->num_children >= 0 ? var->num_children : 0;
|
1116 |
|
|
}
|
1117 |
|
|
|
1118 |
|
|
/* Creates a list of the immediate children of a variable object;
|
1119 |
|
|
the return code is the number of such children or -1 on error */
|
1120 |
|
|
|
1121 |
|
|
VEC (varobj_p)*
|
1122 |
|
|
varobj_list_children (struct varobj *var, int *from, int *to)
|
1123 |
|
|
{
|
1124 |
|
|
char *name;
|
1125 |
|
|
int i, children_changed;
|
1126 |
|
|
|
1127 |
|
|
var->children_requested = 1;
|
1128 |
|
|
|
1129 |
|
|
if (var->pretty_printer)
|
1130 |
|
|
{
|
1131 |
|
|
/* This, in theory, can result in the number of children changing without
|
1132 |
|
|
frontend noticing. But well, calling -var-list-children on the same
|
1133 |
|
|
varobj twice is not something a sane frontend would do. */
|
1134 |
|
|
update_dynamic_varobj_children (var, NULL, NULL, NULL, &children_changed,
|
1135 |
|
|
0, 0, *to);
|
1136 |
|
|
restrict_range (var->children, from, to);
|
1137 |
|
|
return var->children;
|
1138 |
|
|
}
|
1139 |
|
|
|
1140 |
|
|
if (var->num_children == -1)
|
1141 |
|
|
var->num_children = number_of_children (var);
|
1142 |
|
|
|
1143 |
|
|
/* If that failed, give up. */
|
1144 |
|
|
if (var->num_children == -1)
|
1145 |
|
|
return var->children;
|
1146 |
|
|
|
1147 |
|
|
/* If we're called when the list of children is not yet initialized,
|
1148 |
|
|
allocate enough elements in it. */
|
1149 |
|
|
while (VEC_length (varobj_p, var->children) < var->num_children)
|
1150 |
|
|
VEC_safe_push (varobj_p, var->children, NULL);
|
1151 |
|
|
|
1152 |
|
|
for (i = 0; i < var->num_children; i++)
|
1153 |
|
|
{
|
1154 |
|
|
varobj_p existing = VEC_index (varobj_p, var->children, i);
|
1155 |
|
|
|
1156 |
|
|
if (existing == NULL)
|
1157 |
|
|
{
|
1158 |
|
|
/* Either it's the first call to varobj_list_children for
|
1159 |
|
|
this variable object, and the child was never created,
|
1160 |
|
|
or it was explicitly deleted by the client. */
|
1161 |
|
|
name = name_of_child (var, i);
|
1162 |
|
|
existing = create_child (var, i, name);
|
1163 |
|
|
VEC_replace (varobj_p, var->children, i, existing);
|
1164 |
|
|
}
|
1165 |
|
|
}
|
1166 |
|
|
|
1167 |
|
|
restrict_range (var->children, from, to);
|
1168 |
|
|
return var->children;
|
1169 |
|
|
}
|
1170 |
|
|
|
1171 |
|
|
#if HAVE_PYTHON
|
1172 |
|
|
|
1173 |
|
|
static struct varobj *
|
1174 |
|
|
varobj_add_child (struct varobj *var, const char *name, struct value *value)
|
1175 |
|
|
{
|
1176 |
|
|
varobj_p v = create_child_with_value (var,
|
1177 |
|
|
VEC_length (varobj_p, var->children),
|
1178 |
|
|
name, value);
|
1179 |
|
|
|
1180 |
|
|
VEC_safe_push (varobj_p, var->children, v);
|
1181 |
|
|
return v;
|
1182 |
|
|
}
|
1183 |
|
|
|
1184 |
|
|
#endif /* HAVE_PYTHON */
|
1185 |
|
|
|
1186 |
|
|
/* Obtain the type of an object Variable as a string similar to the one gdb
|
1187 |
|
|
prints on the console */
|
1188 |
|
|
|
1189 |
|
|
char *
|
1190 |
|
|
varobj_get_type (struct varobj *var)
|
1191 |
|
|
{
|
1192 |
|
|
/* For the "fake" variables, do not return a type. (It's type is
|
1193 |
|
|
NULL, too.)
|
1194 |
|
|
Do not return a type for invalid variables as well. */
|
1195 |
|
|
if (CPLUS_FAKE_CHILD (var) || !var->root->is_valid)
|
1196 |
|
|
return NULL;
|
1197 |
|
|
|
1198 |
|
|
return type_to_string (var->type);
|
1199 |
|
|
}
|
1200 |
|
|
|
1201 |
|
|
/* Obtain the type of an object variable. */
|
1202 |
|
|
|
1203 |
|
|
struct type *
|
1204 |
|
|
varobj_get_gdb_type (struct varobj *var)
|
1205 |
|
|
{
|
1206 |
|
|
return var->type;
|
1207 |
|
|
}
|
1208 |
|
|
|
1209 |
|
|
/* Return a pointer to the full rooted expression of varobj VAR.
|
1210 |
|
|
If it has not been computed yet, compute it. */
|
1211 |
|
|
char *
|
1212 |
|
|
varobj_get_path_expr (struct varobj *var)
|
1213 |
|
|
{
|
1214 |
|
|
if (var->path_expr != NULL)
|
1215 |
|
|
return var->path_expr;
|
1216 |
|
|
else
|
1217 |
|
|
{
|
1218 |
|
|
/* For root varobjs, we initialize path_expr
|
1219 |
|
|
when creating varobj, so here it should be
|
1220 |
|
|
child varobj. */
|
1221 |
|
|
gdb_assert (!is_root_p (var));
|
1222 |
|
|
return (*var->root->lang->path_expr_of_child) (var);
|
1223 |
|
|
}
|
1224 |
|
|
}
|
1225 |
|
|
|
1226 |
|
|
enum varobj_languages
|
1227 |
|
|
varobj_get_language (struct varobj *var)
|
1228 |
|
|
{
|
1229 |
|
|
return variable_language (var);
|
1230 |
|
|
}
|
1231 |
|
|
|
1232 |
|
|
int
|
1233 |
|
|
varobj_get_attributes (struct varobj *var)
|
1234 |
|
|
{
|
1235 |
|
|
int attributes = 0;
|
1236 |
|
|
|
1237 |
|
|
if (varobj_editable_p (var))
|
1238 |
|
|
/* FIXME: define masks for attributes */
|
1239 |
|
|
attributes |= 0x00000001; /* Editable */
|
1240 |
|
|
|
1241 |
|
|
return attributes;
|
1242 |
|
|
}
|
1243 |
|
|
|
1244 |
|
|
int
|
1245 |
|
|
varobj_pretty_printed_p (struct varobj *var)
|
1246 |
|
|
{
|
1247 |
|
|
return var->pretty_printer != NULL;
|
1248 |
|
|
}
|
1249 |
|
|
|
1250 |
|
|
char *
|
1251 |
|
|
varobj_get_formatted_value (struct varobj *var,
|
1252 |
|
|
enum varobj_display_formats format)
|
1253 |
|
|
{
|
1254 |
|
|
return my_value_of_variable (var, format);
|
1255 |
|
|
}
|
1256 |
|
|
|
1257 |
|
|
char *
|
1258 |
|
|
varobj_get_value (struct varobj *var)
|
1259 |
|
|
{
|
1260 |
|
|
return my_value_of_variable (var, var->format);
|
1261 |
|
|
}
|
1262 |
|
|
|
1263 |
|
|
/* Set the value of an object variable (if it is editable) to the
|
1264 |
|
|
value of the given expression */
|
1265 |
|
|
/* Note: Invokes functions that can call error() */
|
1266 |
|
|
|
1267 |
|
|
int
|
1268 |
|
|
varobj_set_value (struct varobj *var, char *expression)
|
1269 |
|
|
{
|
1270 |
|
|
struct value *val;
|
1271 |
|
|
|
1272 |
|
|
/* The argument "expression" contains the variable's new value.
|
1273 |
|
|
We need to first construct a legal expression for this -- ugh! */
|
1274 |
|
|
/* Does this cover all the bases? */
|
1275 |
|
|
struct expression *exp;
|
1276 |
|
|
struct value *value;
|
1277 |
|
|
int saved_input_radix = input_radix;
|
1278 |
|
|
char *s = expression;
|
1279 |
|
|
|
1280 |
|
|
gdb_assert (varobj_editable_p (var));
|
1281 |
|
|
|
1282 |
|
|
input_radix = 10; /* ALWAYS reset to decimal temporarily */
|
1283 |
|
|
exp = parse_exp_1 (&s, 0, 0);
|
1284 |
|
|
if (!gdb_evaluate_expression (exp, &value))
|
1285 |
|
|
{
|
1286 |
|
|
/* We cannot proceed without a valid expression. */
|
1287 |
|
|
xfree (exp);
|
1288 |
|
|
return 0;
|
1289 |
|
|
}
|
1290 |
|
|
|
1291 |
|
|
/* All types that are editable must also be changeable. */
|
1292 |
|
|
gdb_assert (varobj_value_is_changeable_p (var));
|
1293 |
|
|
|
1294 |
|
|
/* The value of a changeable variable object must not be lazy. */
|
1295 |
|
|
gdb_assert (!value_lazy (var->value));
|
1296 |
|
|
|
1297 |
|
|
/* Need to coerce the input. We want to check if the
|
1298 |
|
|
value of the variable object will be different
|
1299 |
|
|
after assignment, and the first thing value_assign
|
1300 |
|
|
does is coerce the input.
|
1301 |
|
|
For example, if we are assigning an array to a pointer variable we
|
1302 |
|
|
should compare the pointer with the the array's address, not with the
|
1303 |
|
|
array's content. */
|
1304 |
|
|
value = coerce_array (value);
|
1305 |
|
|
|
1306 |
|
|
/* The new value may be lazy. gdb_value_assign, or
|
1307 |
|
|
rather value_contents, will take care of this.
|
1308 |
|
|
If fetching of the new value will fail, gdb_value_assign
|
1309 |
|
|
with catch the exception. */
|
1310 |
|
|
if (!gdb_value_assign (var->value, value, &val))
|
1311 |
|
|
return 0;
|
1312 |
|
|
|
1313 |
|
|
/* If the value has changed, record it, so that next -var-update can
|
1314 |
|
|
report this change. If a variable had a value of '1', we've set it
|
1315 |
|
|
to '333' and then set again to '1', when -var-update will report this
|
1316 |
|
|
variable as changed -- because the first assignment has set the
|
1317 |
|
|
'updated' flag. There's no need to optimize that, because return value
|
1318 |
|
|
of -var-update should be considered an approximation. */
|
1319 |
|
|
var->updated = install_new_value (var, val, 0 /* Compare values. */);
|
1320 |
|
|
input_radix = saved_input_radix;
|
1321 |
|
|
return 1;
|
1322 |
|
|
}
|
1323 |
|
|
|
1324 |
|
|
#if HAVE_PYTHON
|
1325 |
|
|
|
1326 |
|
|
/* A helper function to install a constructor function and visualizer
|
1327 |
|
|
in a varobj. */
|
1328 |
|
|
|
1329 |
|
|
static void
|
1330 |
|
|
install_visualizer (struct varobj *var, PyObject *constructor,
|
1331 |
|
|
PyObject *visualizer)
|
1332 |
|
|
{
|
1333 |
|
|
Py_XDECREF (var->constructor);
|
1334 |
|
|
var->constructor = constructor;
|
1335 |
|
|
|
1336 |
|
|
Py_XDECREF (var->pretty_printer);
|
1337 |
|
|
var->pretty_printer = visualizer;
|
1338 |
|
|
|
1339 |
|
|
Py_XDECREF (var->child_iter);
|
1340 |
|
|
var->child_iter = NULL;
|
1341 |
|
|
}
|
1342 |
|
|
|
1343 |
|
|
/* Install the default visualizer for VAR. */
|
1344 |
|
|
|
1345 |
|
|
static void
|
1346 |
|
|
install_default_visualizer (struct varobj *var)
|
1347 |
|
|
{
|
1348 |
|
|
if (pretty_printing)
|
1349 |
|
|
{
|
1350 |
|
|
PyObject *pretty_printer = NULL;
|
1351 |
|
|
|
1352 |
|
|
if (var->value)
|
1353 |
|
|
{
|
1354 |
|
|
pretty_printer = gdbpy_get_varobj_pretty_printer (var->value);
|
1355 |
|
|
if (! pretty_printer)
|
1356 |
|
|
{
|
1357 |
|
|
gdbpy_print_stack ();
|
1358 |
|
|
error (_("Cannot instantiate printer for default visualizer"));
|
1359 |
|
|
}
|
1360 |
|
|
}
|
1361 |
|
|
|
1362 |
|
|
if (pretty_printer == Py_None)
|
1363 |
|
|
{
|
1364 |
|
|
Py_DECREF (pretty_printer);
|
1365 |
|
|
pretty_printer = NULL;
|
1366 |
|
|
}
|
1367 |
|
|
|
1368 |
|
|
install_visualizer (var, NULL, pretty_printer);
|
1369 |
|
|
}
|
1370 |
|
|
}
|
1371 |
|
|
|
1372 |
|
|
/* Instantiate and install a visualizer for VAR using CONSTRUCTOR to
|
1373 |
|
|
make a new object. */
|
1374 |
|
|
|
1375 |
|
|
static void
|
1376 |
|
|
construct_visualizer (struct varobj *var, PyObject *constructor)
|
1377 |
|
|
{
|
1378 |
|
|
PyObject *pretty_printer;
|
1379 |
|
|
|
1380 |
|
|
Py_INCREF (constructor);
|
1381 |
|
|
if (constructor == Py_None)
|
1382 |
|
|
pretty_printer = NULL;
|
1383 |
|
|
else
|
1384 |
|
|
{
|
1385 |
|
|
pretty_printer = instantiate_pretty_printer (constructor, var->value);
|
1386 |
|
|
if (! pretty_printer)
|
1387 |
|
|
{
|
1388 |
|
|
gdbpy_print_stack ();
|
1389 |
|
|
Py_DECREF (constructor);
|
1390 |
|
|
constructor = Py_None;
|
1391 |
|
|
Py_INCREF (constructor);
|
1392 |
|
|
}
|
1393 |
|
|
|
1394 |
|
|
if (pretty_printer == Py_None)
|
1395 |
|
|
{
|
1396 |
|
|
Py_DECREF (pretty_printer);
|
1397 |
|
|
pretty_printer = NULL;
|
1398 |
|
|
}
|
1399 |
|
|
}
|
1400 |
|
|
|
1401 |
|
|
install_visualizer (var, constructor, pretty_printer);
|
1402 |
|
|
}
|
1403 |
|
|
|
1404 |
|
|
#endif /* HAVE_PYTHON */
|
1405 |
|
|
|
1406 |
|
|
/* A helper function for install_new_value. This creates and installs
|
1407 |
|
|
a visualizer for VAR, if appropriate. */
|
1408 |
|
|
|
1409 |
|
|
static void
|
1410 |
|
|
install_new_value_visualizer (struct varobj *var)
|
1411 |
|
|
{
|
1412 |
|
|
#if HAVE_PYTHON
|
1413 |
|
|
/* If the constructor is None, then we want the raw value. If VAR
|
1414 |
|
|
does not have a value, just skip this. */
|
1415 |
|
|
if (var->constructor != Py_None && var->value)
|
1416 |
|
|
{
|
1417 |
|
|
struct cleanup *cleanup;
|
1418 |
|
|
|
1419 |
|
|
cleanup = varobj_ensure_python_env (var);
|
1420 |
|
|
|
1421 |
|
|
if (!var->constructor)
|
1422 |
|
|
install_default_visualizer (var);
|
1423 |
|
|
else
|
1424 |
|
|
construct_visualizer (var, var->constructor);
|
1425 |
|
|
|
1426 |
|
|
do_cleanups (cleanup);
|
1427 |
|
|
}
|
1428 |
|
|
#else
|
1429 |
|
|
/* Do nothing. */
|
1430 |
|
|
#endif
|
1431 |
|
|
}
|
1432 |
|
|
|
1433 |
|
|
/* Assign a new value to a variable object. If INITIAL is non-zero,
|
1434 |
|
|
this is the first assignement after the variable object was just
|
1435 |
|
|
created, or changed type. In that case, just assign the value
|
1436 |
|
|
and return 0.
|
1437 |
|
|
Otherwise, assign the new value, and return 1 if the value is different
|
1438 |
|
|
from the current one, 0 otherwise. The comparison is done on textual
|
1439 |
|
|
representation of value. Therefore, some types need not be compared. E.g.
|
1440 |
|
|
for structures the reported value is always "{...}", so no comparison is
|
1441 |
|
|
necessary here. If the old value was NULL and new one is not, or vice versa,
|
1442 |
|
|
we always return 1.
|
1443 |
|
|
|
1444 |
|
|
The VALUE parameter should not be released -- the function will
|
1445 |
|
|
take care of releasing it when needed. */
|
1446 |
|
|
static int
|
1447 |
|
|
install_new_value (struct varobj *var, struct value *value, int initial)
|
1448 |
|
|
{
|
1449 |
|
|
int changeable;
|
1450 |
|
|
int need_to_fetch;
|
1451 |
|
|
int changed = 0;
|
1452 |
|
|
int intentionally_not_fetched = 0;
|
1453 |
|
|
char *print_value = NULL;
|
1454 |
|
|
|
1455 |
|
|
/* We need to know the varobj's type to decide if the value should
|
1456 |
|
|
be fetched or not. C++ fake children (public/protected/private) don't have
|
1457 |
|
|
a type. */
|
1458 |
|
|
gdb_assert (var->type || CPLUS_FAKE_CHILD (var));
|
1459 |
|
|
changeable = varobj_value_is_changeable_p (var);
|
1460 |
|
|
|
1461 |
|
|
/* If the type has custom visualizer, we consider it to be always
|
1462 |
|
|
changeable. FIXME: need to make sure this behaviour will not
|
1463 |
|
|
mess up read-sensitive values. */
|
1464 |
|
|
if (var->pretty_printer)
|
1465 |
|
|
changeable = 1;
|
1466 |
|
|
|
1467 |
|
|
need_to_fetch = changeable;
|
1468 |
|
|
|
1469 |
|
|
/* We are not interested in the address of references, and given
|
1470 |
|
|
that in C++ a reference is not rebindable, it cannot
|
1471 |
|
|
meaningfully change. So, get hold of the real value. */
|
1472 |
|
|
if (value)
|
1473 |
|
|
value = coerce_ref (value);
|
1474 |
|
|
|
1475 |
|
|
if (var->type && TYPE_CODE (var->type) == TYPE_CODE_UNION)
|
1476 |
|
|
/* For unions, we need to fetch the value implicitly because
|
1477 |
|
|
of implementation of union member fetch. When gdb
|
1478 |
|
|
creates a value for a field and the value of the enclosing
|
1479 |
|
|
structure is not lazy, it immediately copies the necessary
|
1480 |
|
|
bytes from the enclosing values. If the enclosing value is
|
1481 |
|
|
lazy, the call to value_fetch_lazy on the field will read
|
1482 |
|
|
the data from memory. For unions, that means we'll read the
|
1483 |
|
|
same memory more than once, which is not desirable. So
|
1484 |
|
|
fetch now. */
|
1485 |
|
|
need_to_fetch = 1;
|
1486 |
|
|
|
1487 |
|
|
/* The new value might be lazy. If the type is changeable,
|
1488 |
|
|
that is we'll be comparing values of this type, fetch the
|
1489 |
|
|
value now. Otherwise, on the next update the old value
|
1490 |
|
|
will be lazy, which means we've lost that old value. */
|
1491 |
|
|
if (need_to_fetch && value && value_lazy (value))
|
1492 |
|
|
{
|
1493 |
|
|
struct varobj *parent = var->parent;
|
1494 |
|
|
int frozen = var->frozen;
|
1495 |
|
|
|
1496 |
|
|
for (; !frozen && parent; parent = parent->parent)
|
1497 |
|
|
frozen |= parent->frozen;
|
1498 |
|
|
|
1499 |
|
|
if (frozen && initial)
|
1500 |
|
|
{
|
1501 |
|
|
/* For variables that are frozen, or are children of frozen
|
1502 |
|
|
variables, we don't do fetch on initial assignment.
|
1503 |
|
|
For non-initial assignemnt we do the fetch, since it means we're
|
1504 |
|
|
explicitly asked to compare the new value with the old one. */
|
1505 |
|
|
intentionally_not_fetched = 1;
|
1506 |
|
|
}
|
1507 |
|
|
else if (!gdb_value_fetch_lazy (value))
|
1508 |
|
|
{
|
1509 |
|
|
/* Set the value to NULL, so that for the next -var-update,
|
1510 |
|
|
we don't try to compare the new value with this value,
|
1511 |
|
|
that we couldn't even read. */
|
1512 |
|
|
value = NULL;
|
1513 |
|
|
}
|
1514 |
|
|
}
|
1515 |
|
|
|
1516 |
|
|
|
1517 |
|
|
/* Below, we'll be comparing string rendering of old and new
|
1518 |
|
|
values. Don't get string rendering if the value is
|
1519 |
|
|
lazy -- if it is, the code above has decided that the value
|
1520 |
|
|
should not be fetched. */
|
1521 |
|
|
if (value && !value_lazy (value) && !var->pretty_printer)
|
1522 |
|
|
print_value = value_get_print_value (value, var->format, var);
|
1523 |
|
|
|
1524 |
|
|
/* If the type is changeable, compare the old and the new values.
|
1525 |
|
|
If this is the initial assignment, we don't have any old value
|
1526 |
|
|
to compare with. */
|
1527 |
|
|
if (!initial && changeable)
|
1528 |
|
|
{
|
1529 |
|
|
/* If the value of the varobj was changed by -var-set-value, then the
|
1530 |
|
|
value in the varobj and in the target is the same. However, that value
|
1531 |
|
|
is different from the value that the varobj had after the previous
|
1532 |
|
|
-var-update. So need to the varobj as changed. */
|
1533 |
|
|
if (var->updated)
|
1534 |
|
|
{
|
1535 |
|
|
changed = 1;
|
1536 |
|
|
}
|
1537 |
|
|
else if (! var->pretty_printer)
|
1538 |
|
|
{
|
1539 |
|
|
/* Try to compare the values. That requires that both
|
1540 |
|
|
values are non-lazy. */
|
1541 |
|
|
if (var->not_fetched && value_lazy (var->value))
|
1542 |
|
|
{
|
1543 |
|
|
/* This is a frozen varobj and the value was never read.
|
1544 |
|
|
Presumably, UI shows some "never read" indicator.
|
1545 |
|
|
Now that we've fetched the real value, we need to report
|
1546 |
|
|
this varobj as changed so that UI can show the real
|
1547 |
|
|
value. */
|
1548 |
|
|
changed = 1;
|
1549 |
|
|
}
|
1550 |
|
|
else if (var->value == NULL && value == NULL)
|
1551 |
|
|
/* Equal. */
|
1552 |
|
|
;
|
1553 |
|
|
else if (var->value == NULL || value == NULL)
|
1554 |
|
|
{
|
1555 |
|
|
changed = 1;
|
1556 |
|
|
}
|
1557 |
|
|
else
|
1558 |
|
|
{
|
1559 |
|
|
gdb_assert (!value_lazy (var->value));
|
1560 |
|
|
gdb_assert (!value_lazy (value));
|
1561 |
|
|
|
1562 |
|
|
gdb_assert (var->print_value != NULL && print_value != NULL);
|
1563 |
|
|
if (strcmp (var->print_value, print_value) != 0)
|
1564 |
|
|
changed = 1;
|
1565 |
|
|
}
|
1566 |
|
|
}
|
1567 |
|
|
}
|
1568 |
|
|
|
1569 |
|
|
if (!initial && !changeable)
|
1570 |
|
|
{
|
1571 |
|
|
/* For values that are not changeable, we don't compare the values.
|
1572 |
|
|
However, we want to notice if a value was not NULL and now is NULL,
|
1573 |
|
|
or vise versa, so that we report when top-level varobjs come in scope
|
1574 |
|
|
and leave the scope. */
|
1575 |
|
|
changed = (var->value != NULL) != (value != NULL);
|
1576 |
|
|
}
|
1577 |
|
|
|
1578 |
|
|
/* We must always keep the new value, since children depend on it. */
|
1579 |
|
|
if (var->value != NULL && var->value != value)
|
1580 |
|
|
value_free (var->value);
|
1581 |
|
|
var->value = value;
|
1582 |
|
|
if (value != NULL)
|
1583 |
|
|
value_incref (value);
|
1584 |
|
|
if (value && value_lazy (value) && intentionally_not_fetched)
|
1585 |
|
|
var->not_fetched = 1;
|
1586 |
|
|
else
|
1587 |
|
|
var->not_fetched = 0;
|
1588 |
|
|
var->updated = 0;
|
1589 |
|
|
|
1590 |
|
|
install_new_value_visualizer (var);
|
1591 |
|
|
|
1592 |
|
|
/* If we installed a pretty-printer, re-compare the printed version
|
1593 |
|
|
to see if the variable changed. */
|
1594 |
|
|
if (var->pretty_printer)
|
1595 |
|
|
{
|
1596 |
|
|
xfree (print_value);
|
1597 |
|
|
print_value = value_get_print_value (var->value, var->format, var);
|
1598 |
|
|
if ((var->print_value == NULL && print_value != NULL)
|
1599 |
|
|
|| (var->print_value != NULL && print_value == NULL)
|
1600 |
|
|
|| (var->print_value != NULL && print_value != NULL
|
1601 |
|
|
&& strcmp (var->print_value, print_value) != 0))
|
1602 |
|
|
changed = 1;
|
1603 |
|
|
}
|
1604 |
|
|
if (var->print_value)
|
1605 |
|
|
xfree (var->print_value);
|
1606 |
|
|
var->print_value = print_value;
|
1607 |
|
|
|
1608 |
|
|
gdb_assert (!var->value || value_type (var->value));
|
1609 |
|
|
|
1610 |
|
|
return changed;
|
1611 |
|
|
}
|
1612 |
|
|
|
1613 |
|
|
/* Return the requested range for a varobj. VAR is the varobj. FROM
|
1614 |
|
|
and TO are out parameters; *FROM and *TO will be set to the
|
1615 |
|
|
selected sub-range of VAR. If no range was selected using
|
1616 |
|
|
-var-set-update-range, then both will be -1. */
|
1617 |
|
|
void
|
1618 |
|
|
varobj_get_child_range (struct varobj *var, int *from, int *to)
|
1619 |
|
|
{
|
1620 |
|
|
*from = var->from;
|
1621 |
|
|
*to = var->to;
|
1622 |
|
|
}
|
1623 |
|
|
|
1624 |
|
|
/* Set the selected sub-range of children of VAR to start at index
|
1625 |
|
|
FROM and end at index TO. If either FROM or TO is less than zero,
|
1626 |
|
|
this is interpreted as a request for all children. */
|
1627 |
|
|
void
|
1628 |
|
|
varobj_set_child_range (struct varobj *var, int from, int to)
|
1629 |
|
|
{
|
1630 |
|
|
var->from = from;
|
1631 |
|
|
var->to = to;
|
1632 |
|
|
}
|
1633 |
|
|
|
1634 |
|
|
void
|
1635 |
|
|
varobj_set_visualizer (struct varobj *var, const char *visualizer)
|
1636 |
|
|
{
|
1637 |
|
|
#if HAVE_PYTHON
|
1638 |
|
|
PyObject *mainmod, *globals, *constructor;
|
1639 |
|
|
struct cleanup *back_to;
|
1640 |
|
|
|
1641 |
|
|
back_to = varobj_ensure_python_env (var);
|
1642 |
|
|
|
1643 |
|
|
mainmod = PyImport_AddModule ("__main__");
|
1644 |
|
|
globals = PyModule_GetDict (mainmod);
|
1645 |
|
|
Py_INCREF (globals);
|
1646 |
|
|
make_cleanup_py_decref (globals);
|
1647 |
|
|
|
1648 |
|
|
constructor = PyRun_String (visualizer, Py_eval_input, globals, globals);
|
1649 |
|
|
|
1650 |
|
|
if (! constructor)
|
1651 |
|
|
{
|
1652 |
|
|
gdbpy_print_stack ();
|
1653 |
|
|
error (_("Could not evaluate visualizer expression: %s"), visualizer);
|
1654 |
|
|
}
|
1655 |
|
|
|
1656 |
|
|
construct_visualizer (var, constructor);
|
1657 |
|
|
Py_XDECREF (constructor);
|
1658 |
|
|
|
1659 |
|
|
/* If there are any children now, wipe them. */
|
1660 |
|
|
varobj_delete (var, NULL, 1 /* children only */);
|
1661 |
|
|
var->num_children = -1;
|
1662 |
|
|
|
1663 |
|
|
do_cleanups (back_to);
|
1664 |
|
|
#else
|
1665 |
|
|
error (_("Python support required"));
|
1666 |
|
|
#endif
|
1667 |
|
|
}
|
1668 |
|
|
|
1669 |
|
|
/* Update the values for a variable and its children. This is a
|
1670 |
|
|
two-pronged attack. First, re-parse the value for the root's
|
1671 |
|
|
expression to see if it's changed. Then go all the way
|
1672 |
|
|
through its children, reconstructing them and noting if they've
|
1673 |
|
|
changed.
|
1674 |
|
|
|
1675 |
|
|
The EXPLICIT parameter specifies if this call is result
|
1676 |
|
|
of MI request to update this specific variable, or
|
1677 |
|
|
result of implicit -var-update *. For implicit request, we don't
|
1678 |
|
|
update frozen variables.
|
1679 |
|
|
|
1680 |
|
|
NOTE: This function may delete the caller's varobj. If it
|
1681 |
|
|
returns TYPE_CHANGED, then it has done this and VARP will be modified
|
1682 |
|
|
to point to the new varobj. */
|
1683 |
|
|
|
1684 |
|
|
VEC(varobj_update_result) *varobj_update (struct varobj **varp, int explicit)
|
1685 |
|
|
{
|
1686 |
|
|
int changed = 0;
|
1687 |
|
|
int type_changed = 0;
|
1688 |
|
|
int i;
|
1689 |
|
|
struct value *new;
|
1690 |
|
|
VEC (varobj_update_result) *stack = NULL;
|
1691 |
|
|
VEC (varobj_update_result) *result = NULL;
|
1692 |
|
|
|
1693 |
|
|
/* Frozen means frozen -- we don't check for any change in
|
1694 |
|
|
this varobj, including its going out of scope, or
|
1695 |
|
|
changing type. One use case for frozen varobjs is
|
1696 |
|
|
retaining previously evaluated expressions, and we don't
|
1697 |
|
|
want them to be reevaluated at all. */
|
1698 |
|
|
if (!explicit && (*varp)->frozen)
|
1699 |
|
|
return result;
|
1700 |
|
|
|
1701 |
|
|
if (!(*varp)->root->is_valid)
|
1702 |
|
|
{
|
1703 |
|
|
varobj_update_result r = {0};
|
1704 |
|
|
|
1705 |
|
|
r.varobj = *varp;
|
1706 |
|
|
r.status = VAROBJ_INVALID;
|
1707 |
|
|
VEC_safe_push (varobj_update_result, result, &r);
|
1708 |
|
|
return result;
|
1709 |
|
|
}
|
1710 |
|
|
|
1711 |
|
|
if ((*varp)->root->rootvar == *varp)
|
1712 |
|
|
{
|
1713 |
|
|
varobj_update_result r = {0};
|
1714 |
|
|
|
1715 |
|
|
r.varobj = *varp;
|
1716 |
|
|
r.status = VAROBJ_IN_SCOPE;
|
1717 |
|
|
|
1718 |
|
|
/* Update the root variable. value_of_root can return NULL
|
1719 |
|
|
if the variable is no longer around, i.e. we stepped out of
|
1720 |
|
|
the frame in which a local existed. We are letting the
|
1721 |
|
|
value_of_root variable dispose of the varobj if the type
|
1722 |
|
|
has changed. */
|
1723 |
|
|
new = value_of_root (varp, &type_changed);
|
1724 |
|
|
r.varobj = *varp;
|
1725 |
|
|
|
1726 |
|
|
r.type_changed = type_changed;
|
1727 |
|
|
if (install_new_value ((*varp), new, type_changed))
|
1728 |
|
|
r.changed = 1;
|
1729 |
|
|
|
1730 |
|
|
if (new == NULL)
|
1731 |
|
|
r.status = VAROBJ_NOT_IN_SCOPE;
|
1732 |
|
|
r.value_installed = 1;
|
1733 |
|
|
|
1734 |
|
|
if (r.status == VAROBJ_NOT_IN_SCOPE)
|
1735 |
|
|
{
|
1736 |
|
|
if (r.type_changed || r.changed)
|
1737 |
|
|
VEC_safe_push (varobj_update_result, result, &r);
|
1738 |
|
|
return result;
|
1739 |
|
|
}
|
1740 |
|
|
|
1741 |
|
|
VEC_safe_push (varobj_update_result, stack, &r);
|
1742 |
|
|
}
|
1743 |
|
|
else
|
1744 |
|
|
{
|
1745 |
|
|
varobj_update_result r = {0};
|
1746 |
|
|
|
1747 |
|
|
r.varobj = *varp;
|
1748 |
|
|
VEC_safe_push (varobj_update_result, stack, &r);
|
1749 |
|
|
}
|
1750 |
|
|
|
1751 |
|
|
/* Walk through the children, reconstructing them all. */
|
1752 |
|
|
while (!VEC_empty (varobj_update_result, stack))
|
1753 |
|
|
{
|
1754 |
|
|
varobj_update_result r = *(VEC_last (varobj_update_result, stack));
|
1755 |
|
|
struct varobj *v = r.varobj;
|
1756 |
|
|
|
1757 |
|
|
VEC_pop (varobj_update_result, stack);
|
1758 |
|
|
|
1759 |
|
|
/* Update this variable, unless it's a root, which is already
|
1760 |
|
|
updated. */
|
1761 |
|
|
if (!r.value_installed)
|
1762 |
|
|
{
|
1763 |
|
|
new = value_of_child (v->parent, v->index);
|
1764 |
|
|
if (install_new_value (v, new, 0 /* type not changed */))
|
1765 |
|
|
{
|
1766 |
|
|
r.changed = 1;
|
1767 |
|
|
v->updated = 0;
|
1768 |
|
|
}
|
1769 |
|
|
}
|
1770 |
|
|
|
1771 |
|
|
/* We probably should not get children of a varobj that has a
|
1772 |
|
|
pretty-printer, but for which -var-list-children was never
|
1773 |
|
|
invoked. */
|
1774 |
|
|
if (v->pretty_printer)
|
1775 |
|
|
{
|
1776 |
|
|
VEC (varobj_p) *changed = 0, *new = 0, *unchanged = 0;
|
1777 |
|
|
int i, children_changed = 0;
|
1778 |
|
|
|
1779 |
|
|
if (v->frozen)
|
1780 |
|
|
continue;
|
1781 |
|
|
|
1782 |
|
|
if (!v->children_requested)
|
1783 |
|
|
{
|
1784 |
|
|
int dummy;
|
1785 |
|
|
|
1786 |
|
|
/* If we initially did not have potential children, but
|
1787 |
|
|
now we do, consider the varobj as changed.
|
1788 |
|
|
Otherwise, if children were never requested, consider
|
1789 |
|
|
it as unchanged -- presumably, such varobj is not yet
|
1790 |
|
|
expanded in the UI, so we need not bother getting
|
1791 |
|
|
it. */
|
1792 |
|
|
if (!varobj_has_more (v, 0))
|
1793 |
|
|
{
|
1794 |
|
|
update_dynamic_varobj_children (v, NULL, NULL, NULL,
|
1795 |
|
|
&dummy, 0, 0, 0);
|
1796 |
|
|
if (varobj_has_more (v, 0))
|
1797 |
|
|
r.changed = 1;
|
1798 |
|
|
}
|
1799 |
|
|
|
1800 |
|
|
if (r.changed)
|
1801 |
|
|
VEC_safe_push (varobj_update_result, result, &r);
|
1802 |
|
|
|
1803 |
|
|
continue;
|
1804 |
|
|
}
|
1805 |
|
|
|
1806 |
|
|
/* If update_dynamic_varobj_children returns 0, then we have
|
1807 |
|
|
a non-conforming pretty-printer, so we skip it. */
|
1808 |
|
|
if (update_dynamic_varobj_children (v, &changed, &new, &unchanged,
|
1809 |
|
|
&children_changed, 1,
|
1810 |
|
|
v->from, v->to))
|
1811 |
|
|
{
|
1812 |
|
|
if (children_changed || new)
|
1813 |
|
|
{
|
1814 |
|
|
r.children_changed = 1;
|
1815 |
|
|
r.new = new;
|
1816 |
|
|
}
|
1817 |
|
|
/* Push in reverse order so that the first child is
|
1818 |
|
|
popped from the work stack first, and so will be
|
1819 |
|
|
added to result first. This does not affect
|
1820 |
|
|
correctness, just "nicer". */
|
1821 |
|
|
for (i = VEC_length (varobj_p, changed) - 1; i >= 0; --i)
|
1822 |
|
|
{
|
1823 |
|
|
varobj_p tmp = VEC_index (varobj_p, changed, i);
|
1824 |
|
|
varobj_update_result r = {0};
|
1825 |
|
|
|
1826 |
|
|
r.varobj = tmp;
|
1827 |
|
|
r.changed = 1;
|
1828 |
|
|
r.value_installed = 1;
|
1829 |
|
|
VEC_safe_push (varobj_update_result, stack, &r);
|
1830 |
|
|
}
|
1831 |
|
|
for (i = VEC_length (varobj_p, unchanged) - 1; i >= 0; --i)
|
1832 |
|
|
{
|
1833 |
|
|
varobj_p tmp = VEC_index (varobj_p, unchanged, i);
|
1834 |
|
|
|
1835 |
|
|
if (!tmp->frozen)
|
1836 |
|
|
{
|
1837 |
|
|
varobj_update_result r = {0};
|
1838 |
|
|
|
1839 |
|
|
r.varobj = tmp;
|
1840 |
|
|
r.value_installed = 1;
|
1841 |
|
|
VEC_safe_push (varobj_update_result, stack, &r);
|
1842 |
|
|
}
|
1843 |
|
|
}
|
1844 |
|
|
if (r.changed || r.children_changed)
|
1845 |
|
|
VEC_safe_push (varobj_update_result, result, &r);
|
1846 |
|
|
|
1847 |
|
|
/* Free CHANGED and UNCHANGED, but not NEW, because NEW
|
1848 |
|
|
has been put into the result vector. */
|
1849 |
|
|
VEC_free (varobj_p, changed);
|
1850 |
|
|
VEC_free (varobj_p, unchanged);
|
1851 |
|
|
|
1852 |
|
|
continue;
|
1853 |
|
|
}
|
1854 |
|
|
}
|
1855 |
|
|
|
1856 |
|
|
/* Push any children. Use reverse order so that the first
|
1857 |
|
|
child is popped from the work stack first, and so
|
1858 |
|
|
will be added to result first. This does not
|
1859 |
|
|
affect correctness, just "nicer". */
|
1860 |
|
|
for (i = VEC_length (varobj_p, v->children)-1; i >= 0; --i)
|
1861 |
|
|
{
|
1862 |
|
|
varobj_p c = VEC_index (varobj_p, v->children, i);
|
1863 |
|
|
|
1864 |
|
|
/* Child may be NULL if explicitly deleted by -var-delete. */
|
1865 |
|
|
if (c != NULL && !c->frozen)
|
1866 |
|
|
{
|
1867 |
|
|
varobj_update_result r = {0};
|
1868 |
|
|
|
1869 |
|
|
r.varobj = c;
|
1870 |
|
|
VEC_safe_push (varobj_update_result, stack, &r);
|
1871 |
|
|
}
|
1872 |
|
|
}
|
1873 |
|
|
|
1874 |
|
|
if (r.changed || r.type_changed)
|
1875 |
|
|
VEC_safe_push (varobj_update_result, result, &r);
|
1876 |
|
|
}
|
1877 |
|
|
|
1878 |
|
|
VEC_free (varobj_update_result, stack);
|
1879 |
|
|
|
1880 |
|
|
return result;
|
1881 |
|
|
}
|
1882 |
|
|
|
1883 |
|
|
|
1884 |
|
|
/* Helper functions */
|
1885 |
|
|
|
1886 |
|
|
/*
|
1887 |
|
|
* Variable object construction/destruction
|
1888 |
|
|
*/
|
1889 |
|
|
|
1890 |
|
|
static int
|
1891 |
|
|
delete_variable (struct cpstack **resultp, struct varobj *var,
|
1892 |
|
|
int only_children_p)
|
1893 |
|
|
{
|
1894 |
|
|
int delcount = 0;
|
1895 |
|
|
|
1896 |
|
|
delete_variable_1 (resultp, &delcount, var,
|
1897 |
|
|
only_children_p, 1 /* remove_from_parent_p */ );
|
1898 |
|
|
|
1899 |
|
|
return delcount;
|
1900 |
|
|
}
|
1901 |
|
|
|
1902 |
|
|
/* Delete the variable object VAR and its children */
|
1903 |
|
|
/* IMPORTANT NOTE: If we delete a variable which is a child
|
1904 |
|
|
and the parent is not removed we dump core. It must be always
|
1905 |
|
|
initially called with remove_from_parent_p set */
|
1906 |
|
|
static void
|
1907 |
|
|
delete_variable_1 (struct cpstack **resultp, int *delcountp,
|
1908 |
|
|
struct varobj *var, int only_children_p,
|
1909 |
|
|
int remove_from_parent_p)
|
1910 |
|
|
{
|
1911 |
|
|
int i;
|
1912 |
|
|
|
1913 |
|
|
/* Delete any children of this variable, too. */
|
1914 |
|
|
for (i = 0; i < VEC_length (varobj_p, var->children); ++i)
|
1915 |
|
|
{
|
1916 |
|
|
varobj_p child = VEC_index (varobj_p, var->children, i);
|
1917 |
|
|
|
1918 |
|
|
if (!child)
|
1919 |
|
|
continue;
|
1920 |
|
|
if (!remove_from_parent_p)
|
1921 |
|
|
child->parent = NULL;
|
1922 |
|
|
delete_variable_1 (resultp, delcountp, child, 0, only_children_p);
|
1923 |
|
|
}
|
1924 |
|
|
VEC_free (varobj_p, var->children);
|
1925 |
|
|
|
1926 |
|
|
/* if we were called to delete only the children we are done here */
|
1927 |
|
|
if (only_children_p)
|
1928 |
|
|
return;
|
1929 |
|
|
|
1930 |
|
|
/* Otherwise, add it to the list of deleted ones and proceed to do so */
|
1931 |
|
|
/* If the name is null, this is a temporary variable, that has not
|
1932 |
|
|
yet been installed, don't report it, it belongs to the caller... */
|
1933 |
|
|
if (var->obj_name != NULL)
|
1934 |
|
|
{
|
1935 |
|
|
cppush (resultp, xstrdup (var->obj_name));
|
1936 |
|
|
*delcountp = *delcountp + 1;
|
1937 |
|
|
}
|
1938 |
|
|
|
1939 |
|
|
/* If this variable has a parent, remove it from its parent's list */
|
1940 |
|
|
/* OPTIMIZATION: if the parent of this variable is also being deleted,
|
1941 |
|
|
(as indicated by remove_from_parent_p) we don't bother doing an
|
1942 |
|
|
expensive list search to find the element to remove when we are
|
1943 |
|
|
discarding the list afterwards */
|
1944 |
|
|
if ((remove_from_parent_p) && (var->parent != NULL))
|
1945 |
|
|
{
|
1946 |
|
|
VEC_replace (varobj_p, var->parent->children, var->index, NULL);
|
1947 |
|
|
}
|
1948 |
|
|
|
1949 |
|
|
if (var->obj_name != NULL)
|
1950 |
|
|
uninstall_variable (var);
|
1951 |
|
|
|
1952 |
|
|
/* Free memory associated with this variable */
|
1953 |
|
|
free_variable (var);
|
1954 |
|
|
}
|
1955 |
|
|
|
1956 |
|
|
/* Install the given variable VAR with the object name VAR->OBJ_NAME. */
|
1957 |
|
|
static int
|
1958 |
|
|
install_variable (struct varobj *var)
|
1959 |
|
|
{
|
1960 |
|
|
struct vlist *cv;
|
1961 |
|
|
struct vlist *newvl;
|
1962 |
|
|
const char *chp;
|
1963 |
|
|
unsigned int index = 0;
|
1964 |
|
|
unsigned int i = 1;
|
1965 |
|
|
|
1966 |
|
|
for (chp = var->obj_name; *chp; chp++)
|
1967 |
|
|
{
|
1968 |
|
|
index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
|
1969 |
|
|
}
|
1970 |
|
|
|
1971 |
|
|
cv = *(varobj_table + index);
|
1972 |
|
|
while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
|
1973 |
|
|
cv = cv->next;
|
1974 |
|
|
|
1975 |
|
|
if (cv != NULL)
|
1976 |
|
|
error (_("Duplicate variable object name"));
|
1977 |
|
|
|
1978 |
|
|
/* Add varobj to hash table */
|
1979 |
|
|
newvl = xmalloc (sizeof (struct vlist));
|
1980 |
|
|
newvl->next = *(varobj_table + index);
|
1981 |
|
|
newvl->var = var;
|
1982 |
|
|
*(varobj_table + index) = newvl;
|
1983 |
|
|
|
1984 |
|
|
/* If root, add varobj to root list */
|
1985 |
|
|
if (is_root_p (var))
|
1986 |
|
|
{
|
1987 |
|
|
/* Add to list of root variables */
|
1988 |
|
|
if (rootlist == NULL)
|
1989 |
|
|
var->root->next = NULL;
|
1990 |
|
|
else
|
1991 |
|
|
var->root->next = rootlist;
|
1992 |
|
|
rootlist = var->root;
|
1993 |
|
|
}
|
1994 |
|
|
|
1995 |
|
|
return 1; /* OK */
|
1996 |
|
|
}
|
1997 |
|
|
|
1998 |
|
|
/* Unistall the object VAR. */
|
1999 |
|
|
static void
|
2000 |
|
|
uninstall_variable (struct varobj *var)
|
2001 |
|
|
{
|
2002 |
|
|
struct vlist *cv;
|
2003 |
|
|
struct vlist *prev;
|
2004 |
|
|
struct varobj_root *cr;
|
2005 |
|
|
struct varobj_root *prer;
|
2006 |
|
|
const char *chp;
|
2007 |
|
|
unsigned int index = 0;
|
2008 |
|
|
unsigned int i = 1;
|
2009 |
|
|
|
2010 |
|
|
/* Remove varobj from hash table */
|
2011 |
|
|
for (chp = var->obj_name; *chp; chp++)
|
2012 |
|
|
{
|
2013 |
|
|
index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
|
2014 |
|
|
}
|
2015 |
|
|
|
2016 |
|
|
cv = *(varobj_table + index);
|
2017 |
|
|
prev = NULL;
|
2018 |
|
|
while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
|
2019 |
|
|
{
|
2020 |
|
|
prev = cv;
|
2021 |
|
|
cv = cv->next;
|
2022 |
|
|
}
|
2023 |
|
|
|
2024 |
|
|
if (varobjdebug)
|
2025 |
|
|
fprintf_unfiltered (gdb_stdlog, "Deleting %s\n", var->obj_name);
|
2026 |
|
|
|
2027 |
|
|
if (cv == NULL)
|
2028 |
|
|
{
|
2029 |
|
|
warning
|
2030 |
|
|
("Assertion failed: Could not find variable object \"%s\" to delete",
|
2031 |
|
|
var->obj_name);
|
2032 |
|
|
return;
|
2033 |
|
|
}
|
2034 |
|
|
|
2035 |
|
|
if (prev == NULL)
|
2036 |
|
|
*(varobj_table + index) = cv->next;
|
2037 |
|
|
else
|
2038 |
|
|
prev->next = cv->next;
|
2039 |
|
|
|
2040 |
|
|
xfree (cv);
|
2041 |
|
|
|
2042 |
|
|
/* If root, remove varobj from root list */
|
2043 |
|
|
if (is_root_p (var))
|
2044 |
|
|
{
|
2045 |
|
|
/* Remove from list of root variables */
|
2046 |
|
|
if (rootlist == var->root)
|
2047 |
|
|
rootlist = var->root->next;
|
2048 |
|
|
else
|
2049 |
|
|
{
|
2050 |
|
|
prer = NULL;
|
2051 |
|
|
cr = rootlist;
|
2052 |
|
|
while ((cr != NULL) && (cr->rootvar != var))
|
2053 |
|
|
{
|
2054 |
|
|
prer = cr;
|
2055 |
|
|
cr = cr->next;
|
2056 |
|
|
}
|
2057 |
|
|
if (cr == NULL)
|
2058 |
|
|
{
|
2059 |
|
|
warning
|
2060 |
|
|
("Assertion failed: Could not find varobj \"%s\" in root list",
|
2061 |
|
|
var->obj_name);
|
2062 |
|
|
return;
|
2063 |
|
|
}
|
2064 |
|
|
if (prer == NULL)
|
2065 |
|
|
rootlist = NULL;
|
2066 |
|
|
else
|
2067 |
|
|
prer->next = cr->next;
|
2068 |
|
|
}
|
2069 |
|
|
}
|
2070 |
|
|
|
2071 |
|
|
}
|
2072 |
|
|
|
2073 |
|
|
/* Create and install a child of the parent of the given name */
|
2074 |
|
|
static struct varobj *
|
2075 |
|
|
create_child (struct varobj *parent, int index, char *name)
|
2076 |
|
|
{
|
2077 |
|
|
return create_child_with_value (parent, index, name,
|
2078 |
|
|
value_of_child (parent, index));
|
2079 |
|
|
}
|
2080 |
|
|
|
2081 |
|
|
static struct varobj *
|
2082 |
|
|
create_child_with_value (struct varobj *parent, int index, const char *name,
|
2083 |
|
|
struct value *value)
|
2084 |
|
|
{
|
2085 |
|
|
struct varobj *child;
|
2086 |
|
|
char *childs_name;
|
2087 |
|
|
|
2088 |
|
|
child = new_variable ();
|
2089 |
|
|
|
2090 |
|
|
/* name is allocated by name_of_child */
|
2091 |
|
|
/* FIXME: xstrdup should not be here. */
|
2092 |
|
|
child->name = xstrdup (name);
|
2093 |
|
|
child->index = index;
|
2094 |
|
|
child->parent = parent;
|
2095 |
|
|
child->root = parent->root;
|
2096 |
|
|
childs_name = xstrprintf ("%s.%s", parent->obj_name, name);
|
2097 |
|
|
child->obj_name = childs_name;
|
2098 |
|
|
install_variable (child);
|
2099 |
|
|
|
2100 |
|
|
/* Compute the type of the child. Must do this before
|
2101 |
|
|
calling install_new_value. */
|
2102 |
|
|
if (value != NULL)
|
2103 |
|
|
/* If the child had no evaluation errors, var->value
|
2104 |
|
|
will be non-NULL and contain a valid type. */
|
2105 |
|
|
child->type = value_type (value);
|
2106 |
|
|
else
|
2107 |
|
|
/* Otherwise, we must compute the type. */
|
2108 |
|
|
child->type = (*child->root->lang->type_of_child) (child->parent,
|
2109 |
|
|
child->index);
|
2110 |
|
|
install_new_value (child, value, 1);
|
2111 |
|
|
|
2112 |
|
|
return child;
|
2113 |
|
|
}
|
2114 |
|
|
|
2115 |
|
|
|
2116 |
|
|
/*
|
2117 |
|
|
* Miscellaneous utility functions.
|
2118 |
|
|
*/
|
2119 |
|
|
|
2120 |
|
|
/* Allocate memory and initialize a new variable */
|
2121 |
|
|
static struct varobj *
|
2122 |
|
|
new_variable (void)
|
2123 |
|
|
{
|
2124 |
|
|
struct varobj *var;
|
2125 |
|
|
|
2126 |
|
|
var = (struct varobj *) xmalloc (sizeof (struct varobj));
|
2127 |
|
|
var->name = NULL;
|
2128 |
|
|
var->path_expr = NULL;
|
2129 |
|
|
var->obj_name = NULL;
|
2130 |
|
|
var->index = -1;
|
2131 |
|
|
var->type = NULL;
|
2132 |
|
|
var->value = NULL;
|
2133 |
|
|
var->num_children = -1;
|
2134 |
|
|
var->parent = NULL;
|
2135 |
|
|
var->children = NULL;
|
2136 |
|
|
var->format = 0;
|
2137 |
|
|
var->root = NULL;
|
2138 |
|
|
var->updated = 0;
|
2139 |
|
|
var->print_value = NULL;
|
2140 |
|
|
var->frozen = 0;
|
2141 |
|
|
var->not_fetched = 0;
|
2142 |
|
|
var->children_requested = 0;
|
2143 |
|
|
var->from = -1;
|
2144 |
|
|
var->to = -1;
|
2145 |
|
|
var->constructor = 0;
|
2146 |
|
|
var->pretty_printer = 0;
|
2147 |
|
|
var->child_iter = 0;
|
2148 |
|
|
var->saved_item = 0;
|
2149 |
|
|
|
2150 |
|
|
return var;
|
2151 |
|
|
}
|
2152 |
|
|
|
2153 |
|
|
/* Allocate memory and initialize a new root variable */
|
2154 |
|
|
static struct varobj *
|
2155 |
|
|
new_root_variable (void)
|
2156 |
|
|
{
|
2157 |
|
|
struct varobj *var = new_variable ();
|
2158 |
|
|
|
2159 |
|
|
var->root = (struct varobj_root *) xmalloc (sizeof (struct varobj_root));;
|
2160 |
|
|
var->root->lang = NULL;
|
2161 |
|
|
var->root->exp = NULL;
|
2162 |
|
|
var->root->valid_block = NULL;
|
2163 |
|
|
var->root->frame = null_frame_id;
|
2164 |
|
|
var->root->floating = 0;
|
2165 |
|
|
var->root->rootvar = NULL;
|
2166 |
|
|
var->root->is_valid = 1;
|
2167 |
|
|
|
2168 |
|
|
return var;
|
2169 |
|
|
}
|
2170 |
|
|
|
2171 |
|
|
/* Free any allocated memory associated with VAR. */
|
2172 |
|
|
static void
|
2173 |
|
|
free_variable (struct varobj *var)
|
2174 |
|
|
{
|
2175 |
|
|
#if HAVE_PYTHON
|
2176 |
|
|
if (var->pretty_printer)
|
2177 |
|
|
{
|
2178 |
|
|
struct cleanup *cleanup = varobj_ensure_python_env (var);
|
2179 |
|
|
Py_XDECREF (var->constructor);
|
2180 |
|
|
Py_XDECREF (var->pretty_printer);
|
2181 |
|
|
Py_XDECREF (var->child_iter);
|
2182 |
|
|
Py_XDECREF (var->saved_item);
|
2183 |
|
|
do_cleanups (cleanup);
|
2184 |
|
|
}
|
2185 |
|
|
#endif
|
2186 |
|
|
|
2187 |
|
|
value_free (var->value);
|
2188 |
|
|
|
2189 |
|
|
/* Free the expression if this is a root variable. */
|
2190 |
|
|
if (is_root_p (var))
|
2191 |
|
|
{
|
2192 |
|
|
xfree (var->root->exp);
|
2193 |
|
|
xfree (var->root);
|
2194 |
|
|
}
|
2195 |
|
|
|
2196 |
|
|
xfree (var->name);
|
2197 |
|
|
xfree (var->obj_name);
|
2198 |
|
|
xfree (var->print_value);
|
2199 |
|
|
xfree (var->path_expr);
|
2200 |
|
|
xfree (var);
|
2201 |
|
|
}
|
2202 |
|
|
|
2203 |
|
|
static void
|
2204 |
|
|
do_free_variable_cleanup (void *var)
|
2205 |
|
|
{
|
2206 |
|
|
free_variable (var);
|
2207 |
|
|
}
|
2208 |
|
|
|
2209 |
|
|
static struct cleanup *
|
2210 |
|
|
make_cleanup_free_variable (struct varobj *var)
|
2211 |
|
|
{
|
2212 |
|
|
return make_cleanup (do_free_variable_cleanup, var);
|
2213 |
|
|
}
|
2214 |
|
|
|
2215 |
|
|
/* This returns the type of the variable. It also skips past typedefs
|
2216 |
|
|
to return the real type of the variable.
|
2217 |
|
|
|
2218 |
|
|
NOTE: TYPE_TARGET_TYPE should NOT be used anywhere in this file
|
2219 |
|
|
except within get_target_type and get_type. */
|
2220 |
|
|
static struct type *
|
2221 |
|
|
get_type (struct varobj *var)
|
2222 |
|
|
{
|
2223 |
|
|
struct type *type;
|
2224 |
|
|
|
2225 |
|
|
type = var->type;
|
2226 |
|
|
if (type != NULL)
|
2227 |
|
|
type = check_typedef (type);
|
2228 |
|
|
|
2229 |
|
|
return type;
|
2230 |
|
|
}
|
2231 |
|
|
|
2232 |
|
|
/* Return the type of the value that's stored in VAR,
|
2233 |
|
|
or that would have being stored there if the
|
2234 |
|
|
value were accessible.
|
2235 |
|
|
|
2236 |
|
|
This differs from VAR->type in that VAR->type is always
|
2237 |
|
|
the true type of the expession in the source language.
|
2238 |
|
|
The return value of this function is the type we're
|
2239 |
|
|
actually storing in varobj, and using for displaying
|
2240 |
|
|
the values and for comparing previous and new values.
|
2241 |
|
|
|
2242 |
|
|
For example, top-level references are always stripped. */
|
2243 |
|
|
static struct type *
|
2244 |
|
|
get_value_type (struct varobj *var)
|
2245 |
|
|
{
|
2246 |
|
|
struct type *type;
|
2247 |
|
|
|
2248 |
|
|
if (var->value)
|
2249 |
|
|
type = value_type (var->value);
|
2250 |
|
|
else
|
2251 |
|
|
type = var->type;
|
2252 |
|
|
|
2253 |
|
|
type = check_typedef (type);
|
2254 |
|
|
|
2255 |
|
|
if (TYPE_CODE (type) == TYPE_CODE_REF)
|
2256 |
|
|
type = get_target_type (type);
|
2257 |
|
|
|
2258 |
|
|
type = check_typedef (type);
|
2259 |
|
|
|
2260 |
|
|
return type;
|
2261 |
|
|
}
|
2262 |
|
|
|
2263 |
|
|
/* This returns the target type (or NULL) of TYPE, also skipping
|
2264 |
|
|
past typedefs, just like get_type ().
|
2265 |
|
|
|
2266 |
|
|
NOTE: TYPE_TARGET_TYPE should NOT be used anywhere in this file
|
2267 |
|
|
except within get_target_type and get_type. */
|
2268 |
|
|
static struct type *
|
2269 |
|
|
get_target_type (struct type *type)
|
2270 |
|
|
{
|
2271 |
|
|
if (type != NULL)
|
2272 |
|
|
{
|
2273 |
|
|
type = TYPE_TARGET_TYPE (type);
|
2274 |
|
|
if (type != NULL)
|
2275 |
|
|
type = check_typedef (type);
|
2276 |
|
|
}
|
2277 |
|
|
|
2278 |
|
|
return type;
|
2279 |
|
|
}
|
2280 |
|
|
|
2281 |
|
|
/* What is the default display for this variable? We assume that
|
2282 |
|
|
everything is "natural". Any exceptions? */
|
2283 |
|
|
static enum varobj_display_formats
|
2284 |
|
|
variable_default_display (struct varobj *var)
|
2285 |
|
|
{
|
2286 |
|
|
return FORMAT_NATURAL;
|
2287 |
|
|
}
|
2288 |
|
|
|
2289 |
|
|
/* FIXME: The following should be generic for any pointer */
|
2290 |
|
|
static void
|
2291 |
|
|
cppush (struct cpstack **pstack, char *name)
|
2292 |
|
|
{
|
2293 |
|
|
struct cpstack *s;
|
2294 |
|
|
|
2295 |
|
|
s = (struct cpstack *) xmalloc (sizeof (struct cpstack));
|
2296 |
|
|
s->name = name;
|
2297 |
|
|
s->next = *pstack;
|
2298 |
|
|
*pstack = s;
|
2299 |
|
|
}
|
2300 |
|
|
|
2301 |
|
|
/* FIXME: The following should be generic for any pointer */
|
2302 |
|
|
static char *
|
2303 |
|
|
cppop (struct cpstack **pstack)
|
2304 |
|
|
{
|
2305 |
|
|
struct cpstack *s;
|
2306 |
|
|
char *v;
|
2307 |
|
|
|
2308 |
|
|
if ((*pstack)->name == NULL && (*pstack)->next == NULL)
|
2309 |
|
|
return NULL;
|
2310 |
|
|
|
2311 |
|
|
s = *pstack;
|
2312 |
|
|
v = s->name;
|
2313 |
|
|
*pstack = (*pstack)->next;
|
2314 |
|
|
xfree (s);
|
2315 |
|
|
|
2316 |
|
|
return v;
|
2317 |
|
|
}
|
2318 |
|
|
|
2319 |
|
|
/*
|
2320 |
|
|
* Language-dependencies
|
2321 |
|
|
*/
|
2322 |
|
|
|
2323 |
|
|
/* Common entry points */
|
2324 |
|
|
|
2325 |
|
|
/* Get the language of variable VAR. */
|
2326 |
|
|
static enum varobj_languages
|
2327 |
|
|
variable_language (struct varobj *var)
|
2328 |
|
|
{
|
2329 |
|
|
enum varobj_languages lang;
|
2330 |
|
|
|
2331 |
|
|
switch (var->root->exp->language_defn->la_language)
|
2332 |
|
|
{
|
2333 |
|
|
default:
|
2334 |
|
|
case language_c:
|
2335 |
|
|
lang = vlang_c;
|
2336 |
|
|
break;
|
2337 |
|
|
case language_cplus:
|
2338 |
|
|
lang = vlang_cplus;
|
2339 |
|
|
break;
|
2340 |
|
|
case language_java:
|
2341 |
|
|
lang = vlang_java;
|
2342 |
|
|
break;
|
2343 |
|
|
}
|
2344 |
|
|
|
2345 |
|
|
return lang;
|
2346 |
|
|
}
|
2347 |
|
|
|
2348 |
|
|
/* Return the number of children for a given variable.
|
2349 |
|
|
The result of this function is defined by the language
|
2350 |
|
|
implementation. The number of children returned by this function
|
2351 |
|
|
is the number of children that the user will see in the variable
|
2352 |
|
|
display. */
|
2353 |
|
|
static int
|
2354 |
|
|
number_of_children (struct varobj *var)
|
2355 |
|
|
{
|
2356 |
|
|
return (*var->root->lang->number_of_children) (var);;
|
2357 |
|
|
}
|
2358 |
|
|
|
2359 |
|
|
/* What is the expression for the root varobj VAR? Returns a malloc'd string. */
|
2360 |
|
|
static char *
|
2361 |
|
|
name_of_variable (struct varobj *var)
|
2362 |
|
|
{
|
2363 |
|
|
return (*var->root->lang->name_of_variable) (var);
|
2364 |
|
|
}
|
2365 |
|
|
|
2366 |
|
|
/* What is the name of the INDEX'th child of VAR? Returns a malloc'd string. */
|
2367 |
|
|
static char *
|
2368 |
|
|
name_of_child (struct varobj *var, int index)
|
2369 |
|
|
{
|
2370 |
|
|
return (*var->root->lang->name_of_child) (var, index);
|
2371 |
|
|
}
|
2372 |
|
|
|
2373 |
|
|
/* What is the ``struct value *'' of the root variable VAR?
|
2374 |
|
|
For floating variable object, evaluation can get us a value
|
2375 |
|
|
of different type from what is stored in varobj already. In
|
2376 |
|
|
that case:
|
2377 |
|
|
- *type_changed will be set to 1
|
2378 |
|
|
- old varobj will be freed, and new one will be
|
2379 |
|
|
created, with the same name.
|
2380 |
|
|
- *var_handle will be set to the new varobj
|
2381 |
|
|
Otherwise, *type_changed will be set to 0. */
|
2382 |
|
|
static struct value *
|
2383 |
|
|
value_of_root (struct varobj **var_handle, int *type_changed)
|
2384 |
|
|
{
|
2385 |
|
|
struct varobj *var;
|
2386 |
|
|
|
2387 |
|
|
if (var_handle == NULL)
|
2388 |
|
|
return NULL;
|
2389 |
|
|
|
2390 |
|
|
var = *var_handle;
|
2391 |
|
|
|
2392 |
|
|
/* This should really be an exception, since this should
|
2393 |
|
|
only get called with a root variable. */
|
2394 |
|
|
|
2395 |
|
|
if (!is_root_p (var))
|
2396 |
|
|
return NULL;
|
2397 |
|
|
|
2398 |
|
|
if (var->root->floating)
|
2399 |
|
|
{
|
2400 |
|
|
struct varobj *tmp_var;
|
2401 |
|
|
char *old_type, *new_type;
|
2402 |
|
|
|
2403 |
|
|
tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
|
2404 |
|
|
USE_SELECTED_FRAME);
|
2405 |
|
|
if (tmp_var == NULL)
|
2406 |
|
|
{
|
2407 |
|
|
return NULL;
|
2408 |
|
|
}
|
2409 |
|
|
old_type = varobj_get_type (var);
|
2410 |
|
|
new_type = varobj_get_type (tmp_var);
|
2411 |
|
|
if (strcmp (old_type, new_type) == 0)
|
2412 |
|
|
{
|
2413 |
|
|
/* The expression presently stored inside var->root->exp
|
2414 |
|
|
remembers the locations of local variables relatively to
|
2415 |
|
|
the frame where the expression was created (in DWARF location
|
2416 |
|
|
button, for example). Naturally, those locations are not
|
2417 |
|
|
correct in other frames, so update the expression. */
|
2418 |
|
|
|
2419 |
|
|
struct expression *tmp_exp = var->root->exp;
|
2420 |
|
|
|
2421 |
|
|
var->root->exp = tmp_var->root->exp;
|
2422 |
|
|
tmp_var->root->exp = tmp_exp;
|
2423 |
|
|
|
2424 |
|
|
varobj_delete (tmp_var, NULL, 0);
|
2425 |
|
|
*type_changed = 0;
|
2426 |
|
|
}
|
2427 |
|
|
else
|
2428 |
|
|
{
|
2429 |
|
|
tmp_var->obj_name = xstrdup (var->obj_name);
|
2430 |
|
|
tmp_var->from = var->from;
|
2431 |
|
|
tmp_var->to = var->to;
|
2432 |
|
|
varobj_delete (var, NULL, 0);
|
2433 |
|
|
|
2434 |
|
|
install_variable (tmp_var);
|
2435 |
|
|
*var_handle = tmp_var;
|
2436 |
|
|
var = *var_handle;
|
2437 |
|
|
*type_changed = 1;
|
2438 |
|
|
}
|
2439 |
|
|
xfree (old_type);
|
2440 |
|
|
xfree (new_type);
|
2441 |
|
|
}
|
2442 |
|
|
else
|
2443 |
|
|
{
|
2444 |
|
|
*type_changed = 0;
|
2445 |
|
|
}
|
2446 |
|
|
|
2447 |
|
|
return (*var->root->lang->value_of_root) (var_handle);
|
2448 |
|
|
}
|
2449 |
|
|
|
2450 |
|
|
/* What is the ``struct value *'' for the INDEX'th child of PARENT? */
|
2451 |
|
|
static struct value *
|
2452 |
|
|
value_of_child (struct varobj *parent, int index)
|
2453 |
|
|
{
|
2454 |
|
|
struct value *value;
|
2455 |
|
|
|
2456 |
|
|
value = (*parent->root->lang->value_of_child) (parent, index);
|
2457 |
|
|
|
2458 |
|
|
return value;
|
2459 |
|
|
}
|
2460 |
|
|
|
2461 |
|
|
/* GDB already has a command called "value_of_variable". Sigh. */
|
2462 |
|
|
static char *
|
2463 |
|
|
my_value_of_variable (struct varobj *var, enum varobj_display_formats format)
|
2464 |
|
|
{
|
2465 |
|
|
if (var->root->is_valid)
|
2466 |
|
|
{
|
2467 |
|
|
if (var->pretty_printer)
|
2468 |
|
|
return value_get_print_value (var->value, var->format, var);
|
2469 |
|
|
return (*var->root->lang->value_of_variable) (var, format);
|
2470 |
|
|
}
|
2471 |
|
|
else
|
2472 |
|
|
return NULL;
|
2473 |
|
|
}
|
2474 |
|
|
|
2475 |
|
|
static char *
|
2476 |
|
|
value_get_print_value (struct value *value, enum varobj_display_formats format,
|
2477 |
|
|
struct varobj *var)
|
2478 |
|
|
{
|
2479 |
|
|
struct ui_file *stb;
|
2480 |
|
|
struct cleanup *old_chain;
|
2481 |
|
|
gdb_byte *thevalue = NULL;
|
2482 |
|
|
struct value_print_options opts;
|
2483 |
|
|
struct type *type = NULL;
|
2484 |
|
|
long len = 0;
|
2485 |
|
|
char *encoding = NULL;
|
2486 |
|
|
struct gdbarch *gdbarch = NULL;
|
2487 |
|
|
|
2488 |
|
|
if (value == NULL)
|
2489 |
|
|
return NULL;
|
2490 |
|
|
|
2491 |
|
|
gdbarch = get_type_arch (value_type (value));
|
2492 |
|
|
#if HAVE_PYTHON
|
2493 |
|
|
{
|
2494 |
|
|
struct cleanup *back_to = varobj_ensure_python_env (var);
|
2495 |
|
|
PyObject *value_formatter = var->pretty_printer;
|
2496 |
|
|
|
2497 |
|
|
if (value_formatter)
|
2498 |
|
|
{
|
2499 |
|
|
/* First check to see if we have any children at all. If so,
|
2500 |
|
|
we simply return {...}. */
|
2501 |
|
|
if (dynamic_varobj_has_child_method (var))
|
2502 |
|
|
return xstrdup ("{...}");
|
2503 |
|
|
|
2504 |
|
|
if (PyObject_HasAttr (value_formatter, gdbpy_to_string_cst))
|
2505 |
|
|
{
|
2506 |
|
|
char *hint;
|
2507 |
|
|
struct value *replacement;
|
2508 |
|
|
int string_print = 0;
|
2509 |
|
|
PyObject *output = NULL;
|
2510 |
|
|
|
2511 |
|
|
hint = gdbpy_get_display_hint (value_formatter);
|
2512 |
|
|
if (hint)
|
2513 |
|
|
{
|
2514 |
|
|
if (!strcmp (hint, "string"))
|
2515 |
|
|
string_print = 1;
|
2516 |
|
|
xfree (hint);
|
2517 |
|
|
}
|
2518 |
|
|
|
2519 |
|
|
output = apply_varobj_pretty_printer (value_formatter,
|
2520 |
|
|
&replacement);
|
2521 |
|
|
if (output)
|
2522 |
|
|
{
|
2523 |
|
|
if (gdbpy_is_lazy_string (output))
|
2524 |
|
|
{
|
2525 |
|
|
thevalue = gdbpy_extract_lazy_string (output, &type,
|
2526 |
|
|
&len, &encoding);
|
2527 |
|
|
string_print = 1;
|
2528 |
|
|
}
|
2529 |
|
|
else
|
2530 |
|
|
{
|
2531 |
|
|
PyObject *py_str
|
2532 |
|
|
= python_string_to_target_python_string (output);
|
2533 |
|
|
|
2534 |
|
|
if (py_str)
|
2535 |
|
|
{
|
2536 |
|
|
char *s = PyString_AsString (py_str);
|
2537 |
|
|
|
2538 |
|
|
len = PyString_Size (py_str);
|
2539 |
|
|
thevalue = xmemdup (s, len + 1, len + 1);
|
2540 |
|
|
type = builtin_type (gdbarch)->builtin_char;
|
2541 |
|
|
Py_DECREF (py_str);
|
2542 |
|
|
}
|
2543 |
|
|
}
|
2544 |
|
|
Py_DECREF (output);
|
2545 |
|
|
}
|
2546 |
|
|
if (thevalue && !string_print)
|
2547 |
|
|
{
|
2548 |
|
|
do_cleanups (back_to);
|
2549 |
|
|
xfree (encoding);
|
2550 |
|
|
return thevalue;
|
2551 |
|
|
}
|
2552 |
|
|
if (replacement)
|
2553 |
|
|
value = replacement;
|
2554 |
|
|
}
|
2555 |
|
|
}
|
2556 |
|
|
do_cleanups (back_to);
|
2557 |
|
|
}
|
2558 |
|
|
#endif
|
2559 |
|
|
|
2560 |
|
|
stb = mem_fileopen ();
|
2561 |
|
|
old_chain = make_cleanup_ui_file_delete (stb);
|
2562 |
|
|
|
2563 |
|
|
get_formatted_print_options (&opts, format_code[(int) format]);
|
2564 |
|
|
opts.deref_ref = 0;
|
2565 |
|
|
opts.raw = 1;
|
2566 |
|
|
if (thevalue)
|
2567 |
|
|
{
|
2568 |
|
|
make_cleanup (xfree, thevalue);
|
2569 |
|
|
make_cleanup (xfree, encoding);
|
2570 |
|
|
LA_PRINT_STRING (stb, type, thevalue, len, encoding, 0, &opts);
|
2571 |
|
|
}
|
2572 |
|
|
else
|
2573 |
|
|
common_val_print (value, stb, 0, &opts, current_language);
|
2574 |
|
|
thevalue = ui_file_xstrdup (stb, NULL);
|
2575 |
|
|
|
2576 |
|
|
do_cleanups (old_chain);
|
2577 |
|
|
return thevalue;
|
2578 |
|
|
}
|
2579 |
|
|
|
2580 |
|
|
int
|
2581 |
|
|
varobj_editable_p (struct varobj *var)
|
2582 |
|
|
{
|
2583 |
|
|
struct type *type;
|
2584 |
|
|
|
2585 |
|
|
if (!(var->root->is_valid && var->value && VALUE_LVAL (var->value)))
|
2586 |
|
|
return 0;
|
2587 |
|
|
|
2588 |
|
|
type = get_value_type (var);
|
2589 |
|
|
|
2590 |
|
|
switch (TYPE_CODE (type))
|
2591 |
|
|
{
|
2592 |
|
|
case TYPE_CODE_STRUCT:
|
2593 |
|
|
case TYPE_CODE_UNION:
|
2594 |
|
|
case TYPE_CODE_ARRAY:
|
2595 |
|
|
case TYPE_CODE_FUNC:
|
2596 |
|
|
case TYPE_CODE_METHOD:
|
2597 |
|
|
return 0;
|
2598 |
|
|
break;
|
2599 |
|
|
|
2600 |
|
|
default:
|
2601 |
|
|
return 1;
|
2602 |
|
|
break;
|
2603 |
|
|
}
|
2604 |
|
|
}
|
2605 |
|
|
|
2606 |
|
|
/* Return non-zero if changes in value of VAR
|
2607 |
|
|
must be detected and reported by -var-update.
|
2608 |
|
|
Return zero is -var-update should never report
|
2609 |
|
|
changes of such values. This makes sense for structures
|
2610 |
|
|
(since the changes in children values will be reported separately),
|
2611 |
|
|
or for artifical objects (like 'public' pseudo-field in C++).
|
2612 |
|
|
|
2613 |
|
|
Return value of 0 means that gdb need not call value_fetch_lazy
|
2614 |
|
|
for the value of this variable object. */
|
2615 |
|
|
static int
|
2616 |
|
|
varobj_value_is_changeable_p (struct varobj *var)
|
2617 |
|
|
{
|
2618 |
|
|
int r;
|
2619 |
|
|
struct type *type;
|
2620 |
|
|
|
2621 |
|
|
if (CPLUS_FAKE_CHILD (var))
|
2622 |
|
|
return 0;
|
2623 |
|
|
|
2624 |
|
|
type = get_value_type (var);
|
2625 |
|
|
|
2626 |
|
|
switch (TYPE_CODE (type))
|
2627 |
|
|
{
|
2628 |
|
|
case TYPE_CODE_STRUCT:
|
2629 |
|
|
case TYPE_CODE_UNION:
|
2630 |
|
|
case TYPE_CODE_ARRAY:
|
2631 |
|
|
r = 0;
|
2632 |
|
|
break;
|
2633 |
|
|
|
2634 |
|
|
default:
|
2635 |
|
|
r = 1;
|
2636 |
|
|
}
|
2637 |
|
|
|
2638 |
|
|
return r;
|
2639 |
|
|
}
|
2640 |
|
|
|
2641 |
|
|
/* Return 1 if that varobj is floating, that is is always evaluated in the
|
2642 |
|
|
selected frame, and not bound to thread/frame. Such variable objects
|
2643 |
|
|
are created using '@' as frame specifier to -var-create. */
|
2644 |
|
|
int
|
2645 |
|
|
varobj_floating_p (struct varobj *var)
|
2646 |
|
|
{
|
2647 |
|
|
return var->root->floating;
|
2648 |
|
|
}
|
2649 |
|
|
|
2650 |
|
|
/* Given the value and the type of a variable object,
|
2651 |
|
|
adjust the value and type to those necessary
|
2652 |
|
|
for getting children of the variable object.
|
2653 |
|
|
This includes dereferencing top-level references
|
2654 |
|
|
to all types and dereferencing pointers to
|
2655 |
|
|
structures.
|
2656 |
|
|
|
2657 |
|
|
Both TYPE and *TYPE should be non-null. VALUE
|
2658 |
|
|
can be null if we want to only translate type.
|
2659 |
|
|
*VALUE can be null as well -- if the parent
|
2660 |
|
|
value is not known.
|
2661 |
|
|
|
2662 |
|
|
If WAS_PTR is not NULL, set *WAS_PTR to 0 or 1
|
2663 |
|
|
depending on whether pointer was dereferenced
|
2664 |
|
|
in this function. */
|
2665 |
|
|
static void
|
2666 |
|
|
adjust_value_for_child_access (struct value **value,
|
2667 |
|
|
struct type **type,
|
2668 |
|
|
int *was_ptr)
|
2669 |
|
|
{
|
2670 |
|
|
gdb_assert (type && *type);
|
2671 |
|
|
|
2672 |
|
|
if (was_ptr)
|
2673 |
|
|
*was_ptr = 0;
|
2674 |
|
|
|
2675 |
|
|
*type = check_typedef (*type);
|
2676 |
|
|
|
2677 |
|
|
/* The type of value stored in varobj, that is passed
|
2678 |
|
|
to us, is already supposed to be
|
2679 |
|
|
reference-stripped. */
|
2680 |
|
|
|
2681 |
|
|
gdb_assert (TYPE_CODE (*type) != TYPE_CODE_REF);
|
2682 |
|
|
|
2683 |
|
|
/* Pointers to structures are treated just like
|
2684 |
|
|
structures when accessing children. Don't
|
2685 |
|
|
dererences pointers to other types. */
|
2686 |
|
|
if (TYPE_CODE (*type) == TYPE_CODE_PTR)
|
2687 |
|
|
{
|
2688 |
|
|
struct type *target_type = get_target_type (*type);
|
2689 |
|
|
if (TYPE_CODE (target_type) == TYPE_CODE_STRUCT
|
2690 |
|
|
|| TYPE_CODE (target_type) == TYPE_CODE_UNION)
|
2691 |
|
|
{
|
2692 |
|
|
if (value && *value)
|
2693 |
|
|
{
|
2694 |
|
|
int success = gdb_value_ind (*value, value);
|
2695 |
|
|
|
2696 |
|
|
if (!success)
|
2697 |
|
|
*value = NULL;
|
2698 |
|
|
}
|
2699 |
|
|
*type = target_type;
|
2700 |
|
|
if (was_ptr)
|
2701 |
|
|
*was_ptr = 1;
|
2702 |
|
|
}
|
2703 |
|
|
}
|
2704 |
|
|
|
2705 |
|
|
/* The 'get_target_type' function calls check_typedef on
|
2706 |
|
|
result, so we can immediately check type code. No
|
2707 |
|
|
need to call check_typedef here. */
|
2708 |
|
|
}
|
2709 |
|
|
|
2710 |
|
|
/* C */
|
2711 |
|
|
static int
|
2712 |
|
|
c_number_of_children (struct varobj *var)
|
2713 |
|
|
{
|
2714 |
|
|
struct type *type = get_value_type (var);
|
2715 |
|
|
int children = 0;
|
2716 |
|
|
struct type *target;
|
2717 |
|
|
|
2718 |
|
|
adjust_value_for_child_access (NULL, &type, NULL);
|
2719 |
|
|
target = get_target_type (type);
|
2720 |
|
|
|
2721 |
|
|
switch (TYPE_CODE (type))
|
2722 |
|
|
{
|
2723 |
|
|
case TYPE_CODE_ARRAY:
|
2724 |
|
|
if (TYPE_LENGTH (type) > 0 && TYPE_LENGTH (target) > 0
|
2725 |
|
|
&& !TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))
|
2726 |
|
|
children = TYPE_LENGTH (type) / TYPE_LENGTH (target);
|
2727 |
|
|
else
|
2728 |
|
|
/* If we don't know how many elements there are, don't display
|
2729 |
|
|
any. */
|
2730 |
|
|
children = 0;
|
2731 |
|
|
break;
|
2732 |
|
|
|
2733 |
|
|
case TYPE_CODE_STRUCT:
|
2734 |
|
|
case TYPE_CODE_UNION:
|
2735 |
|
|
children = TYPE_NFIELDS (type);
|
2736 |
|
|
break;
|
2737 |
|
|
|
2738 |
|
|
case TYPE_CODE_PTR:
|
2739 |
|
|
/* The type here is a pointer to non-struct. Typically, pointers
|
2740 |
|
|
have one child, except for function ptrs, which have no children,
|
2741 |
|
|
and except for void*, as we don't know what to show.
|
2742 |
|
|
|
2743 |
|
|
We can show char* so we allow it to be dereferenced. If you decide
|
2744 |
|
|
to test for it, please mind that a little magic is necessary to
|
2745 |
|
|
properly identify it: char* has TYPE_CODE == TYPE_CODE_INT and
|
2746 |
|
|
TYPE_NAME == "char" */
|
2747 |
|
|
if (TYPE_CODE (target) == TYPE_CODE_FUNC
|
2748 |
|
|
|| TYPE_CODE (target) == TYPE_CODE_VOID)
|
2749 |
|
|
children = 0;
|
2750 |
|
|
else
|
2751 |
|
|
children = 1;
|
2752 |
|
|
break;
|
2753 |
|
|
|
2754 |
|
|
default:
|
2755 |
|
|
/* Other types have no children */
|
2756 |
|
|
break;
|
2757 |
|
|
}
|
2758 |
|
|
|
2759 |
|
|
return children;
|
2760 |
|
|
}
|
2761 |
|
|
|
2762 |
|
|
static char *
|
2763 |
|
|
c_name_of_variable (struct varobj *parent)
|
2764 |
|
|
{
|
2765 |
|
|
return xstrdup (parent->name);
|
2766 |
|
|
}
|
2767 |
|
|
|
2768 |
|
|
/* Return the value of element TYPE_INDEX of a structure
|
2769 |
|
|
value VALUE. VALUE's type should be a structure,
|
2770 |
|
|
or union, or a typedef to struct/union.
|
2771 |
|
|
|
2772 |
|
|
Returns NULL if getting the value fails. Never throws. */
|
2773 |
|
|
static struct value *
|
2774 |
|
|
value_struct_element_index (struct value *value, int type_index)
|
2775 |
|
|
{
|
2776 |
|
|
struct value *result = NULL;
|
2777 |
|
|
volatile struct gdb_exception e;
|
2778 |
|
|
struct type *type = value_type (value);
|
2779 |
|
|
|
2780 |
|
|
type = check_typedef (type);
|
2781 |
|
|
|
2782 |
|
|
gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
|
2783 |
|
|
|| TYPE_CODE (type) == TYPE_CODE_UNION);
|
2784 |
|
|
|
2785 |
|
|
TRY_CATCH (e, RETURN_MASK_ERROR)
|
2786 |
|
|
{
|
2787 |
|
|
if (field_is_static (&TYPE_FIELD (type, type_index)))
|
2788 |
|
|
result = value_static_field (type, type_index);
|
2789 |
|
|
else
|
2790 |
|
|
result = value_primitive_field (value, 0, type_index, type);
|
2791 |
|
|
}
|
2792 |
|
|
if (e.reason < 0)
|
2793 |
|
|
{
|
2794 |
|
|
return NULL;
|
2795 |
|
|
}
|
2796 |
|
|
else
|
2797 |
|
|
{
|
2798 |
|
|
return result;
|
2799 |
|
|
}
|
2800 |
|
|
}
|
2801 |
|
|
|
2802 |
|
|
/* Obtain the information about child INDEX of the variable
|
2803 |
|
|
object PARENT.
|
2804 |
|
|
If CNAME is not null, sets *CNAME to the name of the child relative
|
2805 |
|
|
to the parent.
|
2806 |
|
|
If CVALUE is not null, sets *CVALUE to the value of the child.
|
2807 |
|
|
If CTYPE is not null, sets *CTYPE to the type of the child.
|
2808 |
|
|
|
2809 |
|
|
If any of CNAME, CVALUE, or CTYPE is not null, but the corresponding
|
2810 |
|
|
information cannot be determined, set *CNAME, *CVALUE, or *CTYPE
|
2811 |
|
|
to NULL. */
|
2812 |
|
|
static void
|
2813 |
|
|
c_describe_child (struct varobj *parent, int index,
|
2814 |
|
|
char **cname, struct value **cvalue, struct type **ctype,
|
2815 |
|
|
char **cfull_expression)
|
2816 |
|
|
{
|
2817 |
|
|
struct value *value = parent->value;
|
2818 |
|
|
struct type *type = get_value_type (parent);
|
2819 |
|
|
char *parent_expression = NULL;
|
2820 |
|
|
int was_ptr;
|
2821 |
|
|
|
2822 |
|
|
if (cname)
|
2823 |
|
|
*cname = NULL;
|
2824 |
|
|
if (cvalue)
|
2825 |
|
|
*cvalue = NULL;
|
2826 |
|
|
if (ctype)
|
2827 |
|
|
*ctype = NULL;
|
2828 |
|
|
if (cfull_expression)
|
2829 |
|
|
{
|
2830 |
|
|
*cfull_expression = NULL;
|
2831 |
|
|
parent_expression = varobj_get_path_expr (parent);
|
2832 |
|
|
}
|
2833 |
|
|
adjust_value_for_child_access (&value, &type, &was_ptr);
|
2834 |
|
|
|
2835 |
|
|
switch (TYPE_CODE (type))
|
2836 |
|
|
{
|
2837 |
|
|
case TYPE_CODE_ARRAY:
|
2838 |
|
|
if (cname)
|
2839 |
|
|
*cname = xstrdup (int_string (index
|
2840 |
|
|
+ TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)),
|
2841 |
|
|
10, 1, 0, 0));
|
2842 |
|
|
|
2843 |
|
|
if (cvalue && value)
|
2844 |
|
|
{
|
2845 |
|
|
int real_index = index + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type));
|
2846 |
|
|
|
2847 |
|
|
gdb_value_subscript (value, real_index, cvalue);
|
2848 |
|
|
}
|
2849 |
|
|
|
2850 |
|
|
if (ctype)
|
2851 |
|
|
*ctype = get_target_type (type);
|
2852 |
|
|
|
2853 |
|
|
if (cfull_expression)
|
2854 |
|
|
*cfull_expression =
|
2855 |
|
|
xstrprintf ("(%s)[%s]", parent_expression,
|
2856 |
|
|
int_string (index
|
2857 |
|
|
+ TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)),
|
2858 |
|
|
10, 1, 0, 0));
|
2859 |
|
|
|
2860 |
|
|
|
2861 |
|
|
break;
|
2862 |
|
|
|
2863 |
|
|
case TYPE_CODE_STRUCT:
|
2864 |
|
|
case TYPE_CODE_UNION:
|
2865 |
|
|
if (cname)
|
2866 |
|
|
*cname = xstrdup (TYPE_FIELD_NAME (type, index));
|
2867 |
|
|
|
2868 |
|
|
if (cvalue && value)
|
2869 |
|
|
{
|
2870 |
|
|
/* For C, varobj index is the same as type index. */
|
2871 |
|
|
*cvalue = value_struct_element_index (value, index);
|
2872 |
|
|
}
|
2873 |
|
|
|
2874 |
|
|
if (ctype)
|
2875 |
|
|
*ctype = TYPE_FIELD_TYPE (type, index);
|
2876 |
|
|
|
2877 |
|
|
if (cfull_expression)
|
2878 |
|
|
{
|
2879 |
|
|
char *join = was_ptr ? "->" : ".";
|
2880 |
|
|
|
2881 |
|
|
*cfull_expression = xstrprintf ("(%s)%s%s", parent_expression, join,
|
2882 |
|
|
TYPE_FIELD_NAME (type, index));
|
2883 |
|
|
}
|
2884 |
|
|
|
2885 |
|
|
break;
|
2886 |
|
|
|
2887 |
|
|
case TYPE_CODE_PTR:
|
2888 |
|
|
if (cname)
|
2889 |
|
|
*cname = xstrprintf ("*%s", parent->name);
|
2890 |
|
|
|
2891 |
|
|
if (cvalue && value)
|
2892 |
|
|
{
|
2893 |
|
|
int success = gdb_value_ind (value, cvalue);
|
2894 |
|
|
|
2895 |
|
|
if (!success)
|
2896 |
|
|
*cvalue = NULL;
|
2897 |
|
|
}
|
2898 |
|
|
|
2899 |
|
|
/* Don't use get_target_type because it calls
|
2900 |
|
|
check_typedef and here, we want to show the true
|
2901 |
|
|
declared type of the variable. */
|
2902 |
|
|
if (ctype)
|
2903 |
|
|
*ctype = TYPE_TARGET_TYPE (type);
|
2904 |
|
|
|
2905 |
|
|
if (cfull_expression)
|
2906 |
|
|
*cfull_expression = xstrprintf ("*(%s)", parent_expression);
|
2907 |
|
|
|
2908 |
|
|
break;
|
2909 |
|
|
|
2910 |
|
|
default:
|
2911 |
|
|
/* This should not happen */
|
2912 |
|
|
if (cname)
|
2913 |
|
|
*cname = xstrdup ("???");
|
2914 |
|
|
if (cfull_expression)
|
2915 |
|
|
*cfull_expression = xstrdup ("???");
|
2916 |
|
|
/* Don't set value and type, we don't know then. */
|
2917 |
|
|
}
|
2918 |
|
|
}
|
2919 |
|
|
|
2920 |
|
|
static char *
|
2921 |
|
|
c_name_of_child (struct varobj *parent, int index)
|
2922 |
|
|
{
|
2923 |
|
|
char *name;
|
2924 |
|
|
|
2925 |
|
|
c_describe_child (parent, index, &name, NULL, NULL, NULL);
|
2926 |
|
|
return name;
|
2927 |
|
|
}
|
2928 |
|
|
|
2929 |
|
|
static char *
|
2930 |
|
|
c_path_expr_of_child (struct varobj *child)
|
2931 |
|
|
{
|
2932 |
|
|
c_describe_child (child->parent, child->index, NULL, NULL, NULL,
|
2933 |
|
|
&child->path_expr);
|
2934 |
|
|
return child->path_expr;
|
2935 |
|
|
}
|
2936 |
|
|
|
2937 |
|
|
/* If frame associated with VAR can be found, switch
|
2938 |
|
|
to it and return 1. Otherwise, return 0. */
|
2939 |
|
|
static int
|
2940 |
|
|
check_scope (struct varobj *var)
|
2941 |
|
|
{
|
2942 |
|
|
struct frame_info *fi;
|
2943 |
|
|
int scope;
|
2944 |
|
|
|
2945 |
|
|
fi = frame_find_by_id (var->root->frame);
|
2946 |
|
|
scope = fi != NULL;
|
2947 |
|
|
|
2948 |
|
|
if (fi)
|
2949 |
|
|
{
|
2950 |
|
|
CORE_ADDR pc = get_frame_pc (fi);
|
2951 |
|
|
|
2952 |
|
|
if (pc < BLOCK_START (var->root->valid_block) ||
|
2953 |
|
|
pc >= BLOCK_END (var->root->valid_block))
|
2954 |
|
|
scope = 0;
|
2955 |
|
|
else
|
2956 |
|
|
select_frame (fi);
|
2957 |
|
|
}
|
2958 |
|
|
return scope;
|
2959 |
|
|
}
|
2960 |
|
|
|
2961 |
|
|
static struct value *
|
2962 |
|
|
c_value_of_root (struct varobj **var_handle)
|
2963 |
|
|
{
|
2964 |
|
|
struct value *new_val = NULL;
|
2965 |
|
|
struct varobj *var = *var_handle;
|
2966 |
|
|
int within_scope = 0;
|
2967 |
|
|
struct cleanup *back_to;
|
2968 |
|
|
|
2969 |
|
|
/* Only root variables can be updated... */
|
2970 |
|
|
if (!is_root_p (var))
|
2971 |
|
|
/* Not a root var */
|
2972 |
|
|
return NULL;
|
2973 |
|
|
|
2974 |
|
|
back_to = make_cleanup_restore_current_thread ();
|
2975 |
|
|
|
2976 |
|
|
/* Determine whether the variable is still around. */
|
2977 |
|
|
if (var->root->valid_block == NULL || var->root->floating)
|
2978 |
|
|
within_scope = 1;
|
2979 |
|
|
else if (var->root->thread_id == 0)
|
2980 |
|
|
{
|
2981 |
|
|
/* The program was single-threaded when the variable object was
|
2982 |
|
|
created. Technically, it's possible that the program became
|
2983 |
|
|
multi-threaded since then, but we don't support such
|
2984 |
|
|
scenario yet. */
|
2985 |
|
|
within_scope = check_scope (var);
|
2986 |
|
|
}
|
2987 |
|
|
else
|
2988 |
|
|
{
|
2989 |
|
|
ptid_t ptid = thread_id_to_pid (var->root->thread_id);
|
2990 |
|
|
if (in_thread_list (ptid))
|
2991 |
|
|
{
|
2992 |
|
|
switch_to_thread (ptid);
|
2993 |
|
|
within_scope = check_scope (var);
|
2994 |
|
|
}
|
2995 |
|
|
}
|
2996 |
|
|
|
2997 |
|
|
if (within_scope)
|
2998 |
|
|
{
|
2999 |
|
|
/* We need to catch errors here, because if evaluate
|
3000 |
|
|
expression fails we want to just return NULL. */
|
3001 |
|
|
gdb_evaluate_expression (var->root->exp, &new_val);
|
3002 |
|
|
return new_val;
|
3003 |
|
|
}
|
3004 |
|
|
|
3005 |
|
|
do_cleanups (back_to);
|
3006 |
|
|
|
3007 |
|
|
return NULL;
|
3008 |
|
|
}
|
3009 |
|
|
|
3010 |
|
|
static struct value *
|
3011 |
|
|
c_value_of_child (struct varobj *parent, int index)
|
3012 |
|
|
{
|
3013 |
|
|
struct value *value = NULL;
|
3014 |
|
|
|
3015 |
|
|
c_describe_child (parent, index, NULL, &value, NULL, NULL);
|
3016 |
|
|
return value;
|
3017 |
|
|
}
|
3018 |
|
|
|
3019 |
|
|
static struct type *
|
3020 |
|
|
c_type_of_child (struct varobj *parent, int index)
|
3021 |
|
|
{
|
3022 |
|
|
struct type *type = NULL;
|
3023 |
|
|
|
3024 |
|
|
c_describe_child (parent, index, NULL, NULL, &type, NULL);
|
3025 |
|
|
return type;
|
3026 |
|
|
}
|
3027 |
|
|
|
3028 |
|
|
static char *
|
3029 |
|
|
c_value_of_variable (struct varobj *var, enum varobj_display_formats format)
|
3030 |
|
|
{
|
3031 |
|
|
/* BOGUS: if val_print sees a struct/class, or a reference to one,
|
3032 |
|
|
it will print out its children instead of "{...}". So we need to
|
3033 |
|
|
catch that case explicitly. */
|
3034 |
|
|
struct type *type = get_type (var);
|
3035 |
|
|
|
3036 |
|
|
/* If we have a custom formatter, return whatever string it has
|
3037 |
|
|
produced. */
|
3038 |
|
|
if (var->pretty_printer && var->print_value)
|
3039 |
|
|
return xstrdup (var->print_value);
|
3040 |
|
|
|
3041 |
|
|
/* Strip top-level references. */
|
3042 |
|
|
while (TYPE_CODE (type) == TYPE_CODE_REF)
|
3043 |
|
|
type = check_typedef (TYPE_TARGET_TYPE (type));
|
3044 |
|
|
|
3045 |
|
|
switch (TYPE_CODE (type))
|
3046 |
|
|
{
|
3047 |
|
|
case TYPE_CODE_STRUCT:
|
3048 |
|
|
case TYPE_CODE_UNION:
|
3049 |
|
|
return xstrdup ("{...}");
|
3050 |
|
|
/* break; */
|
3051 |
|
|
|
3052 |
|
|
case TYPE_CODE_ARRAY:
|
3053 |
|
|
{
|
3054 |
|
|
char *number;
|
3055 |
|
|
|
3056 |
|
|
number = xstrprintf ("[%d]", var->num_children);
|
3057 |
|
|
return (number);
|
3058 |
|
|
}
|
3059 |
|
|
/* break; */
|
3060 |
|
|
|
3061 |
|
|
default:
|
3062 |
|
|
{
|
3063 |
|
|
if (var->value == NULL)
|
3064 |
|
|
{
|
3065 |
|
|
/* This can happen if we attempt to get the value of a struct
|
3066 |
|
|
member when the parent is an invalid pointer. This is an
|
3067 |
|
|
error condition, so we should tell the caller. */
|
3068 |
|
|
return NULL;
|
3069 |
|
|
}
|
3070 |
|
|
else
|
3071 |
|
|
{
|
3072 |
|
|
if (var->not_fetched && value_lazy (var->value))
|
3073 |
|
|
/* Frozen variable and no value yet. We don't
|
3074 |
|
|
implicitly fetch the value. MI response will
|
3075 |
|
|
use empty string for the value, which is OK. */
|
3076 |
|
|
return NULL;
|
3077 |
|
|
|
3078 |
|
|
gdb_assert (varobj_value_is_changeable_p (var));
|
3079 |
|
|
gdb_assert (!value_lazy (var->value));
|
3080 |
|
|
|
3081 |
|
|
/* If the specified format is the current one,
|
3082 |
|
|
we can reuse print_value */
|
3083 |
|
|
if (format == var->format)
|
3084 |
|
|
return xstrdup (var->print_value);
|
3085 |
|
|
else
|
3086 |
|
|
return value_get_print_value (var->value, format, var);
|
3087 |
|
|
}
|
3088 |
|
|
}
|
3089 |
|
|
}
|
3090 |
|
|
}
|
3091 |
|
|
|
3092 |
|
|
|
3093 |
|
|
/* C++ */
|
3094 |
|
|
|
3095 |
|
|
static int
|
3096 |
|
|
cplus_number_of_children (struct varobj *var)
|
3097 |
|
|
{
|
3098 |
|
|
struct type *type;
|
3099 |
|
|
int children, dont_know;
|
3100 |
|
|
|
3101 |
|
|
dont_know = 1;
|
3102 |
|
|
children = 0;
|
3103 |
|
|
|
3104 |
|
|
if (!CPLUS_FAKE_CHILD (var))
|
3105 |
|
|
{
|
3106 |
|
|
type = get_value_type (var);
|
3107 |
|
|
adjust_value_for_child_access (NULL, &type, NULL);
|
3108 |
|
|
|
3109 |
|
|
if (((TYPE_CODE (type)) == TYPE_CODE_STRUCT) ||
|
3110 |
|
|
((TYPE_CODE (type)) == TYPE_CODE_UNION))
|
3111 |
|
|
{
|
3112 |
|
|
int kids[3];
|
3113 |
|
|
|
3114 |
|
|
cplus_class_num_children (type, kids);
|
3115 |
|
|
if (kids[v_public] != 0)
|
3116 |
|
|
children++;
|
3117 |
|
|
if (kids[v_private] != 0)
|
3118 |
|
|
children++;
|
3119 |
|
|
if (kids[v_protected] != 0)
|
3120 |
|
|
children++;
|
3121 |
|
|
|
3122 |
|
|
/* Add any baseclasses */
|
3123 |
|
|
children += TYPE_N_BASECLASSES (type);
|
3124 |
|
|
dont_know = 0;
|
3125 |
|
|
|
3126 |
|
|
/* FIXME: save children in var */
|
3127 |
|
|
}
|
3128 |
|
|
}
|
3129 |
|
|
else
|
3130 |
|
|
{
|
3131 |
|
|
int kids[3];
|
3132 |
|
|
|
3133 |
|
|
type = get_value_type (var->parent);
|
3134 |
|
|
adjust_value_for_child_access (NULL, &type, NULL);
|
3135 |
|
|
|
3136 |
|
|
cplus_class_num_children (type, kids);
|
3137 |
|
|
if (strcmp (var->name, "public") == 0)
|
3138 |
|
|
children = kids[v_public];
|
3139 |
|
|
else if (strcmp (var->name, "private") == 0)
|
3140 |
|
|
children = kids[v_private];
|
3141 |
|
|
else
|
3142 |
|
|
children = kids[v_protected];
|
3143 |
|
|
dont_know = 0;
|
3144 |
|
|
}
|
3145 |
|
|
|
3146 |
|
|
if (dont_know)
|
3147 |
|
|
children = c_number_of_children (var);
|
3148 |
|
|
|
3149 |
|
|
return children;
|
3150 |
|
|
}
|
3151 |
|
|
|
3152 |
|
|
/* Compute # of public, private, and protected variables in this class.
|
3153 |
|
|
That means we need to descend into all baseclasses and find out
|
3154 |
|
|
how many are there, too. */
|
3155 |
|
|
static void
|
3156 |
|
|
cplus_class_num_children (struct type *type, int children[3])
|
3157 |
|
|
{
|
3158 |
|
|
int i, vptr_fieldno;
|
3159 |
|
|
struct type *basetype = NULL;
|
3160 |
|
|
|
3161 |
|
|
children[v_public] = 0;
|
3162 |
|
|
children[v_private] = 0;
|
3163 |
|
|
children[v_protected] = 0;
|
3164 |
|
|
|
3165 |
|
|
vptr_fieldno = get_vptr_fieldno (type, &basetype);
|
3166 |
|
|
for (i = TYPE_N_BASECLASSES (type); i < TYPE_NFIELDS (type); i++)
|
3167 |
|
|
{
|
3168 |
|
|
/* If we have a virtual table pointer, omit it. Even if virtual
|
3169 |
|
|
table pointers are not specifically marked in the debug info,
|
3170 |
|
|
they should be artificial. */
|
3171 |
|
|
if ((type == basetype && i == vptr_fieldno)
|
3172 |
|
|
|| TYPE_FIELD_ARTIFICIAL (type, i))
|
3173 |
|
|
continue;
|
3174 |
|
|
|
3175 |
|
|
if (TYPE_FIELD_PROTECTED (type, i))
|
3176 |
|
|
children[v_protected]++;
|
3177 |
|
|
else if (TYPE_FIELD_PRIVATE (type, i))
|
3178 |
|
|
children[v_private]++;
|
3179 |
|
|
else
|
3180 |
|
|
children[v_public]++;
|
3181 |
|
|
}
|
3182 |
|
|
}
|
3183 |
|
|
|
3184 |
|
|
static char *
|
3185 |
|
|
cplus_name_of_variable (struct varobj *parent)
|
3186 |
|
|
{
|
3187 |
|
|
return c_name_of_variable (parent);
|
3188 |
|
|
}
|
3189 |
|
|
|
3190 |
|
|
enum accessibility { private_field, protected_field, public_field };
|
3191 |
|
|
|
3192 |
|
|
/* Check if field INDEX of TYPE has the specified accessibility.
|
3193 |
|
|
Return 0 if so and 1 otherwise. */
|
3194 |
|
|
static int
|
3195 |
|
|
match_accessibility (struct type *type, int index, enum accessibility acc)
|
3196 |
|
|
{
|
3197 |
|
|
if (acc == private_field && TYPE_FIELD_PRIVATE (type, index))
|
3198 |
|
|
return 1;
|
3199 |
|
|
else if (acc == protected_field && TYPE_FIELD_PROTECTED (type, index))
|
3200 |
|
|
return 1;
|
3201 |
|
|
else if (acc == public_field && !TYPE_FIELD_PRIVATE (type, index)
|
3202 |
|
|
&& !TYPE_FIELD_PROTECTED (type, index))
|
3203 |
|
|
return 1;
|
3204 |
|
|
else
|
3205 |
|
|
return 0;
|
3206 |
|
|
}
|
3207 |
|
|
|
3208 |
|
|
static void
|
3209 |
|
|
cplus_describe_child (struct varobj *parent, int index,
|
3210 |
|
|
char **cname, struct value **cvalue, struct type **ctype,
|
3211 |
|
|
char **cfull_expression)
|
3212 |
|
|
{
|
3213 |
|
|
struct value *value;
|
3214 |
|
|
struct type *type;
|
3215 |
|
|
int was_ptr;
|
3216 |
|
|
char *parent_expression = NULL;
|
3217 |
|
|
|
3218 |
|
|
if (cname)
|
3219 |
|
|
*cname = NULL;
|
3220 |
|
|
if (cvalue)
|
3221 |
|
|
*cvalue = NULL;
|
3222 |
|
|
if (ctype)
|
3223 |
|
|
*ctype = NULL;
|
3224 |
|
|
if (cfull_expression)
|
3225 |
|
|
*cfull_expression = NULL;
|
3226 |
|
|
|
3227 |
|
|
if (CPLUS_FAKE_CHILD (parent))
|
3228 |
|
|
{
|
3229 |
|
|
value = parent->parent->value;
|
3230 |
|
|
type = get_value_type (parent->parent);
|
3231 |
|
|
if (cfull_expression)
|
3232 |
|
|
parent_expression = varobj_get_path_expr (parent->parent);
|
3233 |
|
|
}
|
3234 |
|
|
else
|
3235 |
|
|
{
|
3236 |
|
|
value = parent->value;
|
3237 |
|
|
type = get_value_type (parent);
|
3238 |
|
|
if (cfull_expression)
|
3239 |
|
|
parent_expression = varobj_get_path_expr (parent);
|
3240 |
|
|
}
|
3241 |
|
|
|
3242 |
|
|
adjust_value_for_child_access (&value, &type, &was_ptr);
|
3243 |
|
|
|
3244 |
|
|
if (TYPE_CODE (type) == TYPE_CODE_STRUCT
|
3245 |
|
|
|| TYPE_CODE (type) == TYPE_CODE_UNION)
|
3246 |
|
|
{
|
3247 |
|
|
char *join = was_ptr ? "->" : ".";
|
3248 |
|
|
|
3249 |
|
|
if (CPLUS_FAKE_CHILD (parent))
|
3250 |
|
|
{
|
3251 |
|
|
/* The fields of the class type are ordered as they
|
3252 |
|
|
appear in the class. We are given an index for a
|
3253 |
|
|
particular access control type ("public","protected",
|
3254 |
|
|
or "private"). We must skip over fields that don't
|
3255 |
|
|
have the access control we are looking for to properly
|
3256 |
|
|
find the indexed field. */
|
3257 |
|
|
int type_index = TYPE_N_BASECLASSES (type);
|
3258 |
|
|
enum accessibility acc = public_field;
|
3259 |
|
|
int vptr_fieldno;
|
3260 |
|
|
struct type *basetype = NULL;
|
3261 |
|
|
|
3262 |
|
|
vptr_fieldno = get_vptr_fieldno (type, &basetype);
|
3263 |
|
|
if (strcmp (parent->name, "private") == 0)
|
3264 |
|
|
acc = private_field;
|
3265 |
|
|
else if (strcmp (parent->name, "protected") == 0)
|
3266 |
|
|
acc = protected_field;
|
3267 |
|
|
|
3268 |
|
|
while (index >= 0)
|
3269 |
|
|
{
|
3270 |
|
|
if ((type == basetype && type_index == vptr_fieldno)
|
3271 |
|
|
|| TYPE_FIELD_ARTIFICIAL (type, type_index))
|
3272 |
|
|
; /* ignore vptr */
|
3273 |
|
|
else if (match_accessibility (type, type_index, acc))
|
3274 |
|
|
--index;
|
3275 |
|
|
++type_index;
|
3276 |
|
|
}
|
3277 |
|
|
--type_index;
|
3278 |
|
|
|
3279 |
|
|
if (cname)
|
3280 |
|
|
*cname = xstrdup (TYPE_FIELD_NAME (type, type_index));
|
3281 |
|
|
|
3282 |
|
|
if (cvalue && value)
|
3283 |
|
|
*cvalue = value_struct_element_index (value, type_index);
|
3284 |
|
|
|
3285 |
|
|
if (ctype)
|
3286 |
|
|
*ctype = TYPE_FIELD_TYPE (type, type_index);
|
3287 |
|
|
|
3288 |
|
|
if (cfull_expression)
|
3289 |
|
|
*cfull_expression = xstrprintf ("((%s)%s%s)", parent_expression,
|
3290 |
|
|
join,
|
3291 |
|
|
TYPE_FIELD_NAME (type, type_index));
|
3292 |
|
|
}
|
3293 |
|
|
else if (index < TYPE_N_BASECLASSES (type))
|
3294 |
|
|
{
|
3295 |
|
|
/* This is a baseclass. */
|
3296 |
|
|
if (cname)
|
3297 |
|
|
*cname = xstrdup (TYPE_FIELD_NAME (type, index));
|
3298 |
|
|
|
3299 |
|
|
if (cvalue && value)
|
3300 |
|
|
*cvalue = value_cast (TYPE_FIELD_TYPE (type, index), value);
|
3301 |
|
|
|
3302 |
|
|
if (ctype)
|
3303 |
|
|
{
|
3304 |
|
|
*ctype = TYPE_FIELD_TYPE (type, index);
|
3305 |
|
|
}
|
3306 |
|
|
|
3307 |
|
|
if (cfull_expression)
|
3308 |
|
|
{
|
3309 |
|
|
char *ptr = was_ptr ? "*" : "";
|
3310 |
|
|
|
3311 |
|
|
/* Cast the parent to the base' type. Note that in gdb,
|
3312 |
|
|
expression like
|
3313 |
|
|
(Base1)d
|
3314 |
|
|
will create an lvalue, for all appearences, so we don't
|
3315 |
|
|
need to use more fancy:
|
3316 |
|
|
*(Base1*)(&d)
|
3317 |
|
|
construct. */
|
3318 |
|
|
*cfull_expression = xstrprintf ("(%s(%s%s) %s)",
|
3319 |
|
|
ptr,
|
3320 |
|
|
TYPE_FIELD_NAME (type, index),
|
3321 |
|
|
ptr,
|
3322 |
|
|
parent_expression);
|
3323 |
|
|
}
|
3324 |
|
|
}
|
3325 |
|
|
else
|
3326 |
|
|
{
|
3327 |
|
|
char *access = NULL;
|
3328 |
|
|
int children[3];
|
3329 |
|
|
|
3330 |
|
|
cplus_class_num_children (type, children);
|
3331 |
|
|
|
3332 |
|
|
/* Everything beyond the baseclasses can
|
3333 |
|
|
only be "public", "private", or "protected"
|
3334 |
|
|
|
3335 |
|
|
The special "fake" children are always output by varobj in
|
3336 |
|
|
this order. So if INDEX == 2, it MUST be "protected". */
|
3337 |
|
|
index -= TYPE_N_BASECLASSES (type);
|
3338 |
|
|
switch (index)
|
3339 |
|
|
{
|
3340 |
|
|
case 0:
|
3341 |
|
|
if (children[v_public] > 0)
|
3342 |
|
|
access = "public";
|
3343 |
|
|
else if (children[v_private] > 0)
|
3344 |
|
|
access = "private";
|
3345 |
|
|
else
|
3346 |
|
|
access = "protected";
|
3347 |
|
|
break;
|
3348 |
|
|
case 1:
|
3349 |
|
|
if (children[v_public] > 0)
|
3350 |
|
|
{
|
3351 |
|
|
if (children[v_private] > 0)
|
3352 |
|
|
access = "private";
|
3353 |
|
|
else
|
3354 |
|
|
access = "protected";
|
3355 |
|
|
}
|
3356 |
|
|
else if (children[v_private] > 0)
|
3357 |
|
|
access = "protected";
|
3358 |
|
|
break;
|
3359 |
|
|
case 2:
|
3360 |
|
|
/* Must be protected */
|
3361 |
|
|
access = "protected";
|
3362 |
|
|
break;
|
3363 |
|
|
default:
|
3364 |
|
|
/* error! */
|
3365 |
|
|
break;
|
3366 |
|
|
}
|
3367 |
|
|
|
3368 |
|
|
gdb_assert (access);
|
3369 |
|
|
if (cname)
|
3370 |
|
|
*cname = xstrdup (access);
|
3371 |
|
|
|
3372 |
|
|
/* Value and type and full expression are null here. */
|
3373 |
|
|
}
|
3374 |
|
|
}
|
3375 |
|
|
else
|
3376 |
|
|
{
|
3377 |
|
|
c_describe_child (parent, index, cname, cvalue, ctype, cfull_expression);
|
3378 |
|
|
}
|
3379 |
|
|
}
|
3380 |
|
|
|
3381 |
|
|
static char *
|
3382 |
|
|
cplus_name_of_child (struct varobj *parent, int index)
|
3383 |
|
|
{
|
3384 |
|
|
char *name = NULL;
|
3385 |
|
|
|
3386 |
|
|
cplus_describe_child (parent, index, &name, NULL, NULL, NULL);
|
3387 |
|
|
return name;
|
3388 |
|
|
}
|
3389 |
|
|
|
3390 |
|
|
static char *
|
3391 |
|
|
cplus_path_expr_of_child (struct varobj *child)
|
3392 |
|
|
{
|
3393 |
|
|
cplus_describe_child (child->parent, child->index, NULL, NULL, NULL,
|
3394 |
|
|
&child->path_expr);
|
3395 |
|
|
return child->path_expr;
|
3396 |
|
|
}
|
3397 |
|
|
|
3398 |
|
|
static struct value *
|
3399 |
|
|
cplus_value_of_root (struct varobj **var_handle)
|
3400 |
|
|
{
|
3401 |
|
|
return c_value_of_root (var_handle);
|
3402 |
|
|
}
|
3403 |
|
|
|
3404 |
|
|
static struct value *
|
3405 |
|
|
cplus_value_of_child (struct varobj *parent, int index)
|
3406 |
|
|
{
|
3407 |
|
|
struct value *value = NULL;
|
3408 |
|
|
|
3409 |
|
|
cplus_describe_child (parent, index, NULL, &value, NULL, NULL);
|
3410 |
|
|
return value;
|
3411 |
|
|
}
|
3412 |
|
|
|
3413 |
|
|
static struct type *
|
3414 |
|
|
cplus_type_of_child (struct varobj *parent, int index)
|
3415 |
|
|
{
|
3416 |
|
|
struct type *type = NULL;
|
3417 |
|
|
|
3418 |
|
|
cplus_describe_child (parent, index, NULL, NULL, &type, NULL);
|
3419 |
|
|
return type;
|
3420 |
|
|
}
|
3421 |
|
|
|
3422 |
|
|
static char *
|
3423 |
|
|
cplus_value_of_variable (struct varobj *var,
|
3424 |
|
|
enum varobj_display_formats format)
|
3425 |
|
|
{
|
3426 |
|
|
|
3427 |
|
|
/* If we have one of our special types, don't print out
|
3428 |
|
|
any value. */
|
3429 |
|
|
if (CPLUS_FAKE_CHILD (var))
|
3430 |
|
|
return xstrdup ("");
|
3431 |
|
|
|
3432 |
|
|
return c_value_of_variable (var, format);
|
3433 |
|
|
}
|
3434 |
|
|
|
3435 |
|
|
/* Java */
|
3436 |
|
|
|
3437 |
|
|
static int
|
3438 |
|
|
java_number_of_children (struct varobj *var)
|
3439 |
|
|
{
|
3440 |
|
|
return cplus_number_of_children (var);
|
3441 |
|
|
}
|
3442 |
|
|
|
3443 |
|
|
static char *
|
3444 |
|
|
java_name_of_variable (struct varobj *parent)
|
3445 |
|
|
{
|
3446 |
|
|
char *p, *name;
|
3447 |
|
|
|
3448 |
|
|
name = cplus_name_of_variable (parent);
|
3449 |
|
|
/* If the name has "-" in it, it is because we
|
3450 |
|
|
needed to escape periods in the name... */
|
3451 |
|
|
p = name;
|
3452 |
|
|
|
3453 |
|
|
while (*p != '\000')
|
3454 |
|
|
{
|
3455 |
|
|
if (*p == '-')
|
3456 |
|
|
*p = '.';
|
3457 |
|
|
p++;
|
3458 |
|
|
}
|
3459 |
|
|
|
3460 |
|
|
return name;
|
3461 |
|
|
}
|
3462 |
|
|
|
3463 |
|
|
static char *
|
3464 |
|
|
java_name_of_child (struct varobj *parent, int index)
|
3465 |
|
|
{
|
3466 |
|
|
char *name, *p;
|
3467 |
|
|
|
3468 |
|
|
name = cplus_name_of_child (parent, index);
|
3469 |
|
|
/* Escape any periods in the name... */
|
3470 |
|
|
p = name;
|
3471 |
|
|
|
3472 |
|
|
while (*p != '\000')
|
3473 |
|
|
{
|
3474 |
|
|
if (*p == '.')
|
3475 |
|
|
*p = '-';
|
3476 |
|
|
p++;
|
3477 |
|
|
}
|
3478 |
|
|
|
3479 |
|
|
return name;
|
3480 |
|
|
}
|
3481 |
|
|
|
3482 |
|
|
static char *
|
3483 |
|
|
java_path_expr_of_child (struct varobj *child)
|
3484 |
|
|
{
|
3485 |
|
|
return NULL;
|
3486 |
|
|
}
|
3487 |
|
|
|
3488 |
|
|
static struct value *
|
3489 |
|
|
java_value_of_root (struct varobj **var_handle)
|
3490 |
|
|
{
|
3491 |
|
|
return cplus_value_of_root (var_handle);
|
3492 |
|
|
}
|
3493 |
|
|
|
3494 |
|
|
static struct value *
|
3495 |
|
|
java_value_of_child (struct varobj *parent, int index)
|
3496 |
|
|
{
|
3497 |
|
|
return cplus_value_of_child (parent, index);
|
3498 |
|
|
}
|
3499 |
|
|
|
3500 |
|
|
static struct type *
|
3501 |
|
|
java_type_of_child (struct varobj *parent, int index)
|
3502 |
|
|
{
|
3503 |
|
|
return cplus_type_of_child (parent, index);
|
3504 |
|
|
}
|
3505 |
|
|
|
3506 |
|
|
static char *
|
3507 |
|
|
java_value_of_variable (struct varobj *var, enum varobj_display_formats format)
|
3508 |
|
|
{
|
3509 |
|
|
return cplus_value_of_variable (var, format);
|
3510 |
|
|
}
|
3511 |
|
|
|
3512 |
|
|
/* Iterate all the existing _root_ VAROBJs and call the FUNC callback for them
|
3513 |
|
|
with an arbitrary caller supplied DATA pointer. */
|
3514 |
|
|
|
3515 |
|
|
void
|
3516 |
|
|
all_root_varobjs (void (*func) (struct varobj *var, void *data), void *data)
|
3517 |
|
|
{
|
3518 |
|
|
struct varobj_root *var_root, *var_root_next;
|
3519 |
|
|
|
3520 |
|
|
/* Iterate "safely" - handle if the callee deletes its passed VAROBJ. */
|
3521 |
|
|
|
3522 |
|
|
for (var_root = rootlist; var_root != NULL; var_root = var_root_next)
|
3523 |
|
|
{
|
3524 |
|
|
var_root_next = var_root->next;
|
3525 |
|
|
|
3526 |
|
|
(*func) (var_root->rootvar, data);
|
3527 |
|
|
}
|
3528 |
|
|
}
|
3529 |
|
|
|
3530 |
|
|
extern void _initialize_varobj (void);
|
3531 |
|
|
void
|
3532 |
|
|
_initialize_varobj (void)
|
3533 |
|
|
{
|
3534 |
|
|
int sizeof_table = sizeof (struct vlist *) * VAROBJ_TABLE_SIZE;
|
3535 |
|
|
|
3536 |
|
|
varobj_table = xmalloc (sizeof_table);
|
3537 |
|
|
memset (varobj_table, 0, sizeof_table);
|
3538 |
|
|
|
3539 |
|
|
add_setshow_zinteger_cmd ("debugvarobj", class_maintenance,
|
3540 |
|
|
&varobjdebug, _("\
|
3541 |
|
|
Set varobj debugging."), _("\
|
3542 |
|
|
Show varobj debugging."), _("\
|
3543 |
|
|
When non-zero, varobj debugging is enabled."),
|
3544 |
|
|
NULL,
|
3545 |
|
|
show_varobjdebug,
|
3546 |
|
|
&setlist, &showlist);
|
3547 |
|
|
}
|
3548 |
|
|
|
3549 |
|
|
/* Invalidate varobj VAR if it is tied to locals and re-create it if it is
|
3550 |
|
|
defined on globals. It is a helper for varobj_invalidate. */
|
3551 |
|
|
|
3552 |
|
|
static void
|
3553 |
|
|
varobj_invalidate_iter (struct varobj *var, void *unused)
|
3554 |
|
|
{
|
3555 |
|
|
/* Floating varobjs are reparsed on each stop, so we don't care if the
|
3556 |
|
|
presently parsed expression refers to something that's gone. */
|
3557 |
|
|
if (var->root->floating)
|
3558 |
|
|
return;
|
3559 |
|
|
|
3560 |
|
|
/* global var must be re-evaluated. */
|
3561 |
|
|
if (var->root->valid_block == NULL)
|
3562 |
|
|
{
|
3563 |
|
|
struct varobj *tmp_var;
|
3564 |
|
|
|
3565 |
|
|
/* Try to create a varobj with same expression. If we succeed
|
3566 |
|
|
replace the old varobj, otherwise invalidate it. */
|
3567 |
|
|
tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
|
3568 |
|
|
USE_CURRENT_FRAME);
|
3569 |
|
|
if (tmp_var != NULL)
|
3570 |
|
|
{
|
3571 |
|
|
tmp_var->obj_name = xstrdup (var->obj_name);
|
3572 |
|
|
varobj_delete (var, NULL, 0);
|
3573 |
|
|
install_variable (tmp_var);
|
3574 |
|
|
}
|
3575 |
|
|
else
|
3576 |
|
|
var->root->is_valid = 0;
|
3577 |
|
|
}
|
3578 |
|
|
else /* locals must be invalidated. */
|
3579 |
|
|
var->root->is_valid = 0;
|
3580 |
|
|
}
|
3581 |
|
|
|
3582 |
|
|
/* Invalidate the varobjs that are tied to locals and re-create the ones that
|
3583 |
|
|
are defined on globals.
|
3584 |
|
|
Invalidated varobjs will be always printed in_scope="invalid". */
|
3585 |
|
|
|
3586 |
|
|
void
|
3587 |
|
|
varobj_invalidate (void)
|
3588 |
|
|
{
|
3589 |
|
|
all_root_varobjs (varobj_invalidate_iter, NULL);
|
3590 |
|
|
}
|