1 |
330 |
jeremybenn |
/* frv exception and interrupt support
|
2 |
|
|
Copyright (C) 1999, 2000, 2001, 2007, 2008, 2009, 2010
|
3 |
|
|
Free Software Foundation, Inc.
|
4 |
|
|
Contributed by Red Hat.
|
5 |
|
|
|
6 |
|
|
This file is part of the GNU simulators.
|
7 |
|
|
|
8 |
|
|
This program is free software; you can redistribute it and/or modify
|
9 |
|
|
it under the terms of the GNU General Public License as published by
|
10 |
|
|
the Free Software Foundation; either version 3 of the License, or
|
11 |
|
|
(at your option) any later version.
|
12 |
|
|
|
13 |
|
|
This program is distributed in the hope that it will be useful,
|
14 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
15 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
16 |
|
|
GNU General Public License for more details.
|
17 |
|
|
|
18 |
|
|
You should have received a copy of the GNU General Public License
|
19 |
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
20 |
|
|
|
21 |
|
|
#define WANT_CPU frvbf
|
22 |
|
|
#define WANT_CPU_FRVBF
|
23 |
|
|
|
24 |
|
|
#include "sim-main.h"
|
25 |
|
|
#include "bfd.h"
|
26 |
|
|
|
27 |
|
|
/* FR-V Interrupt table.
|
28 |
|
|
Describes the interrupts supported by the FR-V.
|
29 |
|
|
This table *must* be maintained in order of interrupt priority as defined by
|
30 |
|
|
frv_interrupt_kind. */
|
31 |
|
|
#define DEFERRED 1
|
32 |
|
|
#define PRECISE 1
|
33 |
|
|
#define ITABLE_ENTRY(name, class, deferral, precision, offset) \
|
34 |
|
|
{FRV_##name, FRV_EC_##name, class, deferral, precision, offset}
|
35 |
|
|
|
36 |
|
|
struct frv_interrupt frv_interrupt_table[NUM_FRV_INTERRUPT_KINDS] =
|
37 |
|
|
{
|
38 |
|
|
/* External interrupts */
|
39 |
|
|
ITABLE_ENTRY(INTERRUPT_LEVEL_1, FRV_EXTERNAL_INTERRUPT, !DEFERRED, !PRECISE, 0x21),
|
40 |
|
|
ITABLE_ENTRY(INTERRUPT_LEVEL_2, FRV_EXTERNAL_INTERRUPT, !DEFERRED, !PRECISE, 0x22),
|
41 |
|
|
ITABLE_ENTRY(INTERRUPT_LEVEL_3, FRV_EXTERNAL_INTERRUPT, !DEFERRED, !PRECISE, 0x23),
|
42 |
|
|
ITABLE_ENTRY(INTERRUPT_LEVEL_4, FRV_EXTERNAL_INTERRUPT, !DEFERRED, !PRECISE, 0x24),
|
43 |
|
|
ITABLE_ENTRY(INTERRUPT_LEVEL_5, FRV_EXTERNAL_INTERRUPT, !DEFERRED, !PRECISE, 0x25),
|
44 |
|
|
ITABLE_ENTRY(INTERRUPT_LEVEL_6, FRV_EXTERNAL_INTERRUPT, !DEFERRED, !PRECISE, 0x26),
|
45 |
|
|
ITABLE_ENTRY(INTERRUPT_LEVEL_7, FRV_EXTERNAL_INTERRUPT, !DEFERRED, !PRECISE, 0x27),
|
46 |
|
|
ITABLE_ENTRY(INTERRUPT_LEVEL_8, FRV_EXTERNAL_INTERRUPT, !DEFERRED, !PRECISE, 0x28),
|
47 |
|
|
ITABLE_ENTRY(INTERRUPT_LEVEL_9, FRV_EXTERNAL_INTERRUPT, !DEFERRED, !PRECISE, 0x29),
|
48 |
|
|
ITABLE_ENTRY(INTERRUPT_LEVEL_10, FRV_EXTERNAL_INTERRUPT, !DEFERRED, !PRECISE, 0x2a),
|
49 |
|
|
ITABLE_ENTRY(INTERRUPT_LEVEL_11, FRV_EXTERNAL_INTERRUPT, !DEFERRED, !PRECISE, 0x2b),
|
50 |
|
|
ITABLE_ENTRY(INTERRUPT_LEVEL_12, FRV_EXTERNAL_INTERRUPT, !DEFERRED, !PRECISE, 0x2c),
|
51 |
|
|
ITABLE_ENTRY(INTERRUPT_LEVEL_13, FRV_EXTERNAL_INTERRUPT, !DEFERRED, !PRECISE, 0x2d),
|
52 |
|
|
ITABLE_ENTRY(INTERRUPT_LEVEL_14, FRV_EXTERNAL_INTERRUPT, !DEFERRED, !PRECISE, 0x2e),
|
53 |
|
|
ITABLE_ENTRY(INTERRUPT_LEVEL_15, FRV_EXTERNAL_INTERRUPT, !DEFERRED, !PRECISE, 0x2f),
|
54 |
|
|
/* Software interrupt */
|
55 |
|
|
ITABLE_ENTRY(TRAP_INSTRUCTION, FRV_SOFTWARE_INTERRUPT, !DEFERRED, !PRECISE, 0x80),
|
56 |
|
|
/* Program interrupts */
|
57 |
|
|
ITABLE_ENTRY(COMMIT_EXCEPTION, FRV_PROGRAM_INTERRUPT, !DEFERRED, !PRECISE, 0x19),
|
58 |
|
|
ITABLE_ENTRY(DIVISION_EXCEPTION, FRV_PROGRAM_INTERRUPT, !DEFERRED, !PRECISE, 0x17),
|
59 |
|
|
ITABLE_ENTRY(DATA_STORE_ERROR, FRV_PROGRAM_INTERRUPT, !DEFERRED, !PRECISE, 0x14),
|
60 |
|
|
ITABLE_ENTRY(DATA_ACCESS_EXCEPTION, FRV_PROGRAM_INTERRUPT, !DEFERRED, !PRECISE, 0x13),
|
61 |
|
|
ITABLE_ENTRY(DATA_ACCESS_MMU_MISS, FRV_PROGRAM_INTERRUPT, !DEFERRED, !PRECISE, 0x12),
|
62 |
|
|
ITABLE_ENTRY(DATA_ACCESS_ERROR, FRV_PROGRAM_INTERRUPT, !DEFERRED, !PRECISE, 0x11),
|
63 |
|
|
ITABLE_ENTRY(MP_EXCEPTION, FRV_PROGRAM_INTERRUPT, !DEFERRED, !PRECISE, 0x0e),
|
64 |
|
|
ITABLE_ENTRY(FP_EXCEPTION, FRV_PROGRAM_INTERRUPT, !DEFERRED, !PRECISE, 0x0d),
|
65 |
|
|
ITABLE_ENTRY(MEM_ADDRESS_NOT_ALIGNED, FRV_PROGRAM_INTERRUPT, !DEFERRED, !PRECISE, 0x10),
|
66 |
|
|
ITABLE_ENTRY(REGISTER_EXCEPTION, FRV_PROGRAM_INTERRUPT, !DEFERRED, PRECISE, 0x08),
|
67 |
|
|
ITABLE_ENTRY(MP_DISABLED, FRV_PROGRAM_INTERRUPT, !DEFERRED, PRECISE, 0x0b),
|
68 |
|
|
ITABLE_ENTRY(FP_DISABLED, FRV_PROGRAM_INTERRUPT, !DEFERRED, PRECISE, 0x0a),
|
69 |
|
|
ITABLE_ENTRY(PRIVILEGED_INSTRUCTION, FRV_PROGRAM_INTERRUPT, !DEFERRED, PRECISE, 0x06),
|
70 |
|
|
ITABLE_ENTRY(ILLEGAL_INSTRUCTION, FRV_PROGRAM_INTERRUPT, !DEFERRED, PRECISE, 0x07),
|
71 |
|
|
ITABLE_ENTRY(INSTRUCTION_ACCESS_EXCEPTION, FRV_PROGRAM_INTERRUPT, !DEFERRED, PRECISE, 0x03),
|
72 |
|
|
ITABLE_ENTRY(INSTRUCTION_ACCESS_ERROR, FRV_PROGRAM_INTERRUPT, !DEFERRED, PRECISE, 0x02),
|
73 |
|
|
ITABLE_ENTRY(INSTRUCTION_ACCESS_MMU_MISS, FRV_PROGRAM_INTERRUPT, !DEFERRED, PRECISE, 0x01),
|
74 |
|
|
ITABLE_ENTRY(COMPOUND_EXCEPTION, FRV_PROGRAM_INTERRUPT, !DEFERRED, !PRECISE, 0x20),
|
75 |
|
|
/* Break interrupt */
|
76 |
|
|
ITABLE_ENTRY(BREAK_EXCEPTION, FRV_BREAK_INTERRUPT, !DEFERRED, !PRECISE, 0xff),
|
77 |
|
|
/* Reset interrupt */
|
78 |
|
|
ITABLE_ENTRY(RESET, FRV_RESET_INTERRUPT, !DEFERRED, !PRECISE, 0x00)
|
79 |
|
|
};
|
80 |
|
|
|
81 |
|
|
/* The current interrupt state. */
|
82 |
|
|
struct frv_interrupt_state frv_interrupt_state;
|
83 |
|
|
|
84 |
|
|
/* maintain the address of the start of the previous VLIW insn sequence. */
|
85 |
|
|
IADDR previous_vliw_pc;
|
86 |
|
|
|
87 |
|
|
/* Add a break interrupt to the interrupt queue. */
|
88 |
|
|
struct frv_interrupt_queue_element *
|
89 |
|
|
frv_queue_break_interrupt (SIM_CPU *current_cpu)
|
90 |
|
|
{
|
91 |
|
|
return frv_queue_interrupt (current_cpu, FRV_BREAK_EXCEPTION);
|
92 |
|
|
}
|
93 |
|
|
|
94 |
|
|
/* Add a software interrupt to the interrupt queue. */
|
95 |
|
|
struct frv_interrupt_queue_element *
|
96 |
|
|
frv_queue_software_interrupt (SIM_CPU *current_cpu, SI offset)
|
97 |
|
|
{
|
98 |
|
|
struct frv_interrupt_queue_element *new_element
|
99 |
|
|
= frv_queue_interrupt (current_cpu, FRV_TRAP_INSTRUCTION);
|
100 |
|
|
|
101 |
|
|
struct frv_interrupt *interrupt = & frv_interrupt_table[new_element->kind];
|
102 |
|
|
interrupt->handler_offset = offset;
|
103 |
|
|
|
104 |
|
|
return new_element;
|
105 |
|
|
}
|
106 |
|
|
|
107 |
|
|
/* Add a program interrupt to the interrupt queue. */
|
108 |
|
|
struct frv_interrupt_queue_element *
|
109 |
|
|
frv_queue_program_interrupt (
|
110 |
|
|
SIM_CPU *current_cpu, enum frv_interrupt_kind kind
|
111 |
|
|
)
|
112 |
|
|
{
|
113 |
|
|
return frv_queue_interrupt (current_cpu, kind);
|
114 |
|
|
}
|
115 |
|
|
|
116 |
|
|
/* Add an external interrupt to the interrupt queue. */
|
117 |
|
|
struct frv_interrupt_queue_element *
|
118 |
|
|
frv_queue_external_interrupt (
|
119 |
|
|
SIM_CPU *current_cpu, enum frv_interrupt_kind kind
|
120 |
|
|
)
|
121 |
|
|
{
|
122 |
|
|
if (! GET_H_PSR_ET ()
|
123 |
|
|
|| (kind != FRV_INTERRUPT_LEVEL_15 && kind < GET_H_PSR_PIL ()))
|
124 |
|
|
return NULL; /* Leave it for later. */
|
125 |
|
|
|
126 |
|
|
return frv_queue_interrupt (current_cpu, kind);
|
127 |
|
|
}
|
128 |
|
|
|
129 |
|
|
/* Add any interrupt to the interrupt queue. It will be added in reverse
|
130 |
|
|
priority order. This makes it easy to find the highest priority interrupt
|
131 |
|
|
at the end of the queue and to remove it after processing. */
|
132 |
|
|
struct frv_interrupt_queue_element *
|
133 |
|
|
frv_queue_interrupt (SIM_CPU *current_cpu, enum frv_interrupt_kind kind)
|
134 |
|
|
{
|
135 |
|
|
int i;
|
136 |
|
|
int j;
|
137 |
|
|
int limit = frv_interrupt_state.queue_index;
|
138 |
|
|
struct frv_interrupt_queue_element *new_element;
|
139 |
|
|
enum frv_interrupt_class iclass;
|
140 |
|
|
|
141 |
|
|
if (limit >= FRV_INTERRUPT_QUEUE_SIZE)
|
142 |
|
|
abort (); /* TODO: Make the queue dynamic */
|
143 |
|
|
|
144 |
|
|
/* Find the right place in the queue. */
|
145 |
|
|
for (i = 0; i < limit; ++i)
|
146 |
|
|
{
|
147 |
|
|
if (frv_interrupt_state.queue[i].kind >= kind)
|
148 |
|
|
break;
|
149 |
|
|
}
|
150 |
|
|
|
151 |
|
|
/* Don't queue two external interrupts of the same priority. */
|
152 |
|
|
iclass = frv_interrupt_table[kind].iclass;
|
153 |
|
|
if (i < limit && iclass == FRV_EXTERNAL_INTERRUPT)
|
154 |
|
|
{
|
155 |
|
|
if (frv_interrupt_state.queue[i].kind == kind)
|
156 |
|
|
return & frv_interrupt_state.queue[i];
|
157 |
|
|
}
|
158 |
|
|
|
159 |
|
|
/* Make room for the new interrupt in this spot. */
|
160 |
|
|
for (j = limit - 1; j >= i; --j)
|
161 |
|
|
frv_interrupt_state.queue[j + 1] = frv_interrupt_state.queue[j];
|
162 |
|
|
|
163 |
|
|
/* Add the new interrupt. */
|
164 |
|
|
frv_interrupt_state.queue_index++;
|
165 |
|
|
new_element = & frv_interrupt_state.queue[i];
|
166 |
|
|
new_element->kind = kind;
|
167 |
|
|
new_element->vpc = CPU_PC_GET (current_cpu);
|
168 |
|
|
new_element->u.data_written.length = 0;
|
169 |
|
|
frv_set_interrupt_queue_slot (current_cpu, new_element);
|
170 |
|
|
|
171 |
|
|
return new_element;
|
172 |
|
|
}
|
173 |
|
|
|
174 |
|
|
struct frv_interrupt_queue_element *
|
175 |
|
|
frv_queue_register_exception_interrupt (SIM_CPU *current_cpu, enum frv_rec rec)
|
176 |
|
|
{
|
177 |
|
|
struct frv_interrupt_queue_element *new_element =
|
178 |
|
|
frv_queue_program_interrupt (current_cpu, FRV_REGISTER_EXCEPTION);
|
179 |
|
|
|
180 |
|
|
new_element->u.rec = rec;
|
181 |
|
|
|
182 |
|
|
return new_element;
|
183 |
|
|
}
|
184 |
|
|
|
185 |
|
|
struct frv_interrupt_queue_element *
|
186 |
|
|
frv_queue_mem_address_not_aligned_interrupt (SIM_CPU *current_cpu, USI addr)
|
187 |
|
|
{
|
188 |
|
|
struct frv_interrupt_queue_element *new_element;
|
189 |
|
|
USI isr = GET_ISR ();
|
190 |
|
|
|
191 |
|
|
/* Make sure that this exception is not masked. */
|
192 |
|
|
if (GET_ISR_EMAM (isr))
|
193 |
|
|
return NULL;
|
194 |
|
|
|
195 |
|
|
/* Queue the interrupt. */
|
196 |
|
|
new_element = frv_queue_program_interrupt (current_cpu,
|
197 |
|
|
FRV_MEM_ADDRESS_NOT_ALIGNED);
|
198 |
|
|
new_element->eaddress = addr;
|
199 |
|
|
new_element->u.data_written = frv_interrupt_state.data_written;
|
200 |
|
|
frv_interrupt_state.data_written.length = 0;
|
201 |
|
|
|
202 |
|
|
return new_element;
|
203 |
|
|
}
|
204 |
|
|
|
205 |
|
|
struct frv_interrupt_queue_element *
|
206 |
|
|
frv_queue_data_access_error_interrupt (SIM_CPU *current_cpu, USI addr)
|
207 |
|
|
{
|
208 |
|
|
struct frv_interrupt_queue_element *new_element;
|
209 |
|
|
new_element = frv_queue_program_interrupt (current_cpu,
|
210 |
|
|
FRV_DATA_ACCESS_ERROR);
|
211 |
|
|
new_element->eaddress = addr;
|
212 |
|
|
return new_element;
|
213 |
|
|
}
|
214 |
|
|
|
215 |
|
|
struct frv_interrupt_queue_element *
|
216 |
|
|
frv_queue_data_access_exception_interrupt (SIM_CPU *current_cpu)
|
217 |
|
|
{
|
218 |
|
|
return frv_queue_program_interrupt (current_cpu, FRV_DATA_ACCESS_EXCEPTION);
|
219 |
|
|
}
|
220 |
|
|
|
221 |
|
|
struct frv_interrupt_queue_element *
|
222 |
|
|
frv_queue_instruction_access_error_interrupt (SIM_CPU *current_cpu)
|
223 |
|
|
{
|
224 |
|
|
return frv_queue_program_interrupt (current_cpu, FRV_INSTRUCTION_ACCESS_ERROR);
|
225 |
|
|
}
|
226 |
|
|
|
227 |
|
|
struct frv_interrupt_queue_element *
|
228 |
|
|
frv_queue_instruction_access_exception_interrupt (SIM_CPU *current_cpu)
|
229 |
|
|
{
|
230 |
|
|
return frv_queue_program_interrupt (current_cpu, FRV_INSTRUCTION_ACCESS_EXCEPTION);
|
231 |
|
|
}
|
232 |
|
|
|
233 |
|
|
struct frv_interrupt_queue_element *
|
234 |
|
|
frv_queue_illegal_instruction_interrupt (
|
235 |
|
|
SIM_CPU *current_cpu, const CGEN_INSN *insn
|
236 |
|
|
)
|
237 |
|
|
{
|
238 |
|
|
SIM_DESC sd = CPU_STATE (current_cpu);
|
239 |
|
|
switch (STATE_ARCHITECTURE (sd)->mach)
|
240 |
|
|
{
|
241 |
|
|
case bfd_mach_fr400:
|
242 |
|
|
case bfd_mach_fr450:
|
243 |
|
|
case bfd_mach_fr550:
|
244 |
|
|
break;
|
245 |
|
|
default:
|
246 |
|
|
/* Some machines generate fp_exception for this case. */
|
247 |
|
|
if (frv_is_float_insn (insn) || frv_is_media_insn (insn))
|
248 |
|
|
{
|
249 |
|
|
struct frv_fp_exception_info fp_info = {
|
250 |
|
|
FSR_NO_EXCEPTION, FTT_SEQUENCE_ERROR
|
251 |
|
|
};
|
252 |
|
|
return frv_queue_fp_exception_interrupt (current_cpu, & fp_info);
|
253 |
|
|
}
|
254 |
|
|
break;
|
255 |
|
|
}
|
256 |
|
|
|
257 |
|
|
return frv_queue_program_interrupt (current_cpu, FRV_ILLEGAL_INSTRUCTION);
|
258 |
|
|
}
|
259 |
|
|
|
260 |
|
|
struct frv_interrupt_queue_element *
|
261 |
|
|
frv_queue_privileged_instruction_interrupt (SIM_CPU *current_cpu, const CGEN_INSN *insn)
|
262 |
|
|
{
|
263 |
|
|
/* The fr550 has no privileged instruction interrupt. It uses
|
264 |
|
|
illegal_instruction. */
|
265 |
|
|
SIM_DESC sd = CPU_STATE (current_cpu);
|
266 |
|
|
if (STATE_ARCHITECTURE (sd)->mach == bfd_mach_fr550)
|
267 |
|
|
return frv_queue_program_interrupt (current_cpu, FRV_ILLEGAL_INSTRUCTION);
|
268 |
|
|
|
269 |
|
|
return frv_queue_program_interrupt (current_cpu, FRV_PRIVILEGED_INSTRUCTION);
|
270 |
|
|
}
|
271 |
|
|
|
272 |
|
|
struct frv_interrupt_queue_element *
|
273 |
|
|
frv_queue_float_disabled_interrupt (SIM_CPU *current_cpu)
|
274 |
|
|
{
|
275 |
|
|
/* The fr550 has no fp_disabled interrupt. It uses illegal_instruction. */
|
276 |
|
|
SIM_DESC sd = CPU_STATE (current_cpu);
|
277 |
|
|
if (STATE_ARCHITECTURE (sd)->mach == bfd_mach_fr550)
|
278 |
|
|
return frv_queue_program_interrupt (current_cpu, FRV_ILLEGAL_INSTRUCTION);
|
279 |
|
|
|
280 |
|
|
return frv_queue_program_interrupt (current_cpu, FRV_FP_DISABLED);
|
281 |
|
|
}
|
282 |
|
|
|
283 |
|
|
struct frv_interrupt_queue_element *
|
284 |
|
|
frv_queue_media_disabled_interrupt (SIM_CPU *current_cpu)
|
285 |
|
|
{
|
286 |
|
|
/* The fr550 has no mp_disabled interrupt. It uses illegal_instruction. */
|
287 |
|
|
SIM_DESC sd = CPU_STATE (current_cpu);
|
288 |
|
|
if (STATE_ARCHITECTURE (sd)->mach == bfd_mach_fr550)
|
289 |
|
|
return frv_queue_program_interrupt (current_cpu, FRV_ILLEGAL_INSTRUCTION);
|
290 |
|
|
|
291 |
|
|
return frv_queue_program_interrupt (current_cpu, FRV_MP_DISABLED);
|
292 |
|
|
}
|
293 |
|
|
|
294 |
|
|
struct frv_interrupt_queue_element *
|
295 |
|
|
frv_queue_non_implemented_instruction_interrupt (
|
296 |
|
|
SIM_CPU *current_cpu, const CGEN_INSN *insn
|
297 |
|
|
)
|
298 |
|
|
{
|
299 |
|
|
SIM_DESC sd = CPU_STATE (current_cpu);
|
300 |
|
|
switch (STATE_ARCHITECTURE (sd)->mach)
|
301 |
|
|
{
|
302 |
|
|
case bfd_mach_fr400:
|
303 |
|
|
case bfd_mach_fr450:
|
304 |
|
|
case bfd_mach_fr550:
|
305 |
|
|
break;
|
306 |
|
|
default:
|
307 |
|
|
/* Some machines generate fp_exception or mp_exception for this case. */
|
308 |
|
|
if (frv_is_float_insn (insn))
|
309 |
|
|
{
|
310 |
|
|
struct frv_fp_exception_info fp_info = {
|
311 |
|
|
FSR_NO_EXCEPTION, FTT_UNIMPLEMENTED_FPOP
|
312 |
|
|
};
|
313 |
|
|
return frv_queue_fp_exception_interrupt (current_cpu, & fp_info);
|
314 |
|
|
}
|
315 |
|
|
if (frv_is_media_insn (insn))
|
316 |
|
|
{
|
317 |
|
|
frv_set_mp_exception_registers (current_cpu, MTT_UNIMPLEMENTED_MPOP,
|
318 |
|
|
0);
|
319 |
|
|
return NULL; /* no interrupt queued at this time. */
|
320 |
|
|
}
|
321 |
|
|
break;
|
322 |
|
|
}
|
323 |
|
|
|
324 |
|
|
return frv_queue_program_interrupt (current_cpu, FRV_ILLEGAL_INSTRUCTION);
|
325 |
|
|
}
|
326 |
|
|
|
327 |
|
|
/* Queue the given fp_exception interrupt. Also update fp_info by removing
|
328 |
|
|
masked interrupts and updating the 'slot' flield. */
|
329 |
|
|
struct frv_interrupt_queue_element *
|
330 |
|
|
frv_queue_fp_exception_interrupt (
|
331 |
|
|
SIM_CPU *current_cpu, struct frv_fp_exception_info *fp_info
|
332 |
|
|
)
|
333 |
|
|
{
|
334 |
|
|
SI fsr0 = GET_FSR (0);
|
335 |
|
|
int tem = GET_FSR_TEM (fsr0);
|
336 |
|
|
int aexc = GET_FSR_AEXC (fsr0);
|
337 |
|
|
struct frv_interrupt_queue_element *new_element = NULL;
|
338 |
|
|
|
339 |
|
|
/* Update AEXC with the interrupts that are masked. */
|
340 |
|
|
aexc |= fp_info->fsr_mask & ~tem;
|
341 |
|
|
SET_FSR_AEXC (fsr0, aexc);
|
342 |
|
|
SET_FSR (0, fsr0);
|
343 |
|
|
|
344 |
|
|
/* update fsr_mask with the exceptions that are enabled. */
|
345 |
|
|
fp_info->fsr_mask &= tem;
|
346 |
|
|
|
347 |
|
|
/* If there is an unmasked interrupt then queue it, unless
|
348 |
|
|
this was a non-excepting insn, in which case simply set the NE
|
349 |
|
|
status registers. */
|
350 |
|
|
if (frv_interrupt_state.ne_index != NE_NOFLAG
|
351 |
|
|
&& fp_info->fsr_mask != FSR_NO_EXCEPTION)
|
352 |
|
|
{
|
353 |
|
|
SET_NE_FLAG (frv_interrupt_state.f_ne_flags,
|
354 |
|
|
frv_interrupt_state.ne_index);
|
355 |
|
|
/* TODO -- Set NESR for chips which support it. */
|
356 |
|
|
new_element = NULL;
|
357 |
|
|
}
|
358 |
|
|
else if (fp_info->fsr_mask != FSR_NO_EXCEPTION
|
359 |
|
|
|| fp_info->ftt == FTT_UNIMPLEMENTED_FPOP
|
360 |
|
|
|| fp_info->ftt == FTT_SEQUENCE_ERROR
|
361 |
|
|
|| fp_info->ftt == FTT_INVALID_FR)
|
362 |
|
|
{
|
363 |
|
|
new_element = frv_queue_program_interrupt (current_cpu, FRV_FP_EXCEPTION);
|
364 |
|
|
new_element->u.fp_info = *fp_info;
|
365 |
|
|
}
|
366 |
|
|
|
367 |
|
|
return new_element;
|
368 |
|
|
}
|
369 |
|
|
|
370 |
|
|
struct frv_interrupt_queue_element *
|
371 |
|
|
frv_queue_division_exception_interrupt (SIM_CPU *current_cpu, enum frv_dtt dtt)
|
372 |
|
|
{
|
373 |
|
|
struct frv_interrupt_queue_element *new_element =
|
374 |
|
|
frv_queue_program_interrupt (current_cpu, FRV_DIVISION_EXCEPTION);
|
375 |
|
|
|
376 |
|
|
new_element->u.dtt = dtt;
|
377 |
|
|
|
378 |
|
|
return new_element;
|
379 |
|
|
}
|
380 |
|
|
|
381 |
|
|
/* Check for interrupts caused by illegal insn access. These conditions are
|
382 |
|
|
checked in the order specified by the fr400 and fr500 LSI specs. */
|
383 |
|
|
void
|
384 |
|
|
frv_detect_insn_access_interrupts (SIM_CPU *current_cpu, SCACHE *sc)
|
385 |
|
|
{
|
386 |
|
|
|
387 |
|
|
const CGEN_INSN *insn = sc->argbuf.idesc->idata;
|
388 |
|
|
SIM_DESC sd = CPU_STATE (current_cpu);
|
389 |
|
|
FRV_VLIW *vliw = CPU_VLIW (current_cpu);
|
390 |
|
|
|
391 |
|
|
/* Check for vliw constraints. */
|
392 |
|
|
if (vliw->constraint_violation)
|
393 |
|
|
frv_queue_illegal_instruction_interrupt (current_cpu, insn);
|
394 |
|
|
/* Check for non-excepting insns. */
|
395 |
|
|
else if (CGEN_INSN_ATTR_VALUE (insn, CGEN_INSN_NON_EXCEPTING)
|
396 |
|
|
&& ! GET_H_PSR_NEM ())
|
397 |
|
|
frv_queue_non_implemented_instruction_interrupt (current_cpu, insn);
|
398 |
|
|
/* Check for conditional insns. */
|
399 |
|
|
else if (CGEN_INSN_ATTR_VALUE (insn, CGEN_INSN_CONDITIONAL)
|
400 |
|
|
&& ! GET_H_PSR_CM ())
|
401 |
|
|
frv_queue_non_implemented_instruction_interrupt (current_cpu, insn);
|
402 |
|
|
/* Make sure floating point support is enabled. */
|
403 |
|
|
else if (! GET_H_PSR_EF ())
|
404 |
|
|
{
|
405 |
|
|
/* Generate fp_disabled if it is a floating point insn or if PSR.EM is
|
406 |
|
|
off and the insns accesses a fp register. */
|
407 |
|
|
if (frv_is_float_insn (insn)
|
408 |
|
|
|| (CGEN_INSN_ATTR_VALUE (insn, CGEN_INSN_FR_ACCESS)
|
409 |
|
|
&& ! GET_H_PSR_EM ()))
|
410 |
|
|
frv_queue_float_disabled_interrupt (current_cpu);
|
411 |
|
|
}
|
412 |
|
|
/* Make sure media support is enabled. */
|
413 |
|
|
else if (! GET_H_PSR_EM ())
|
414 |
|
|
{
|
415 |
|
|
/* Generate mp_disabled if it is a media insn. */
|
416 |
|
|
if (frv_is_media_insn (insn) || CGEN_INSN_NUM (insn) == FRV_INSN_MTRAP)
|
417 |
|
|
frv_queue_media_disabled_interrupt (current_cpu);
|
418 |
|
|
}
|
419 |
|
|
/* Check for privileged insns. */
|
420 |
|
|
else if (CGEN_INSN_ATTR_VALUE (insn, CGEN_INSN_PRIVILEGED) &&
|
421 |
|
|
! GET_H_PSR_S ())
|
422 |
|
|
frv_queue_privileged_instruction_interrupt (current_cpu, insn);
|
423 |
|
|
#if 0 /* disable for now until we find out how FSR0.QNE gets reset. */
|
424 |
|
|
else
|
425 |
|
|
{
|
426 |
|
|
/* Enter the halt state if FSR0.QNE is set and we are executing a
|
427 |
|
|
floating point insn, a media insn or an insn which access a FR
|
428 |
|
|
register. */
|
429 |
|
|
SI fsr0 = GET_FSR (0);
|
430 |
|
|
if (GET_FSR_QNE (fsr0)
|
431 |
|
|
&& (frv_is_float_insn (insn) || frv_is_media_insn (insn)
|
432 |
|
|
|| CGEN_INSN_ATTR_VALUE (insn, CGEN_INSN_FR_ACCESS)))
|
433 |
|
|
{
|
434 |
|
|
sim_engine_halt (sd, current_cpu, NULL, GET_H_PC (), sim_stopped,
|
435 |
|
|
SIM_SIGINT);
|
436 |
|
|
}
|
437 |
|
|
}
|
438 |
|
|
#endif
|
439 |
|
|
}
|
440 |
|
|
|
441 |
|
|
/* Record the current VLIW slot in the given interrupt queue element. */
|
442 |
|
|
void
|
443 |
|
|
frv_set_interrupt_queue_slot (
|
444 |
|
|
SIM_CPU *current_cpu, struct frv_interrupt_queue_element *item
|
445 |
|
|
)
|
446 |
|
|
{
|
447 |
|
|
FRV_VLIW *vliw = CPU_VLIW (current_cpu);
|
448 |
|
|
int slot = vliw->next_slot - 1;
|
449 |
|
|
item->slot = (*vliw->current_vliw)[slot];
|
450 |
|
|
}
|
451 |
|
|
|
452 |
|
|
/* Handle an individual interrupt. */
|
453 |
|
|
static void
|
454 |
|
|
handle_interrupt (SIM_CPU *current_cpu, IADDR pc)
|
455 |
|
|
{
|
456 |
|
|
struct frv_interrupt *interrupt;
|
457 |
|
|
int writeback_done = 0;
|
458 |
|
|
while (1)
|
459 |
|
|
{
|
460 |
|
|
/* Interrupts are queued in priority order with the highest priority
|
461 |
|
|
last. */
|
462 |
|
|
int index = frv_interrupt_state.queue_index - 1;
|
463 |
|
|
struct frv_interrupt_queue_element *item
|
464 |
|
|
= & frv_interrupt_state.queue[index];
|
465 |
|
|
interrupt = & frv_interrupt_table[item->kind];
|
466 |
|
|
|
467 |
|
|
switch (interrupt->iclass)
|
468 |
|
|
{
|
469 |
|
|
case FRV_EXTERNAL_INTERRUPT:
|
470 |
|
|
/* Perform writeback first. This may cause a higher priority
|
471 |
|
|
interrupt. */
|
472 |
|
|
if (! writeback_done)
|
473 |
|
|
{
|
474 |
|
|
frvbf_perform_writeback (current_cpu);
|
475 |
|
|
writeback_done = 1;
|
476 |
|
|
continue;
|
477 |
|
|
}
|
478 |
|
|
frv_external_interrupt (current_cpu, item, pc);
|
479 |
|
|
return;
|
480 |
|
|
case FRV_SOFTWARE_INTERRUPT:
|
481 |
|
|
frv_interrupt_state.queue_index = index;
|
482 |
|
|
frv_software_interrupt (current_cpu, item, pc);
|
483 |
|
|
return;
|
484 |
|
|
case FRV_PROGRAM_INTERRUPT:
|
485 |
|
|
/* If the program interrupt is not strict (imprecise), then perform
|
486 |
|
|
writeback first. This may, in turn, cause a higher priority
|
487 |
|
|
interrupt. */
|
488 |
|
|
if (! interrupt->precise && ! writeback_done)
|
489 |
|
|
{
|
490 |
|
|
frv_interrupt_state.imprecise_interrupt = item;
|
491 |
|
|
frvbf_perform_writeback (current_cpu);
|
492 |
|
|
writeback_done = 1;
|
493 |
|
|
continue;
|
494 |
|
|
}
|
495 |
|
|
frv_interrupt_state.queue_index = index;
|
496 |
|
|
frv_program_interrupt (current_cpu, item, pc);
|
497 |
|
|
return;
|
498 |
|
|
case FRV_BREAK_INTERRUPT:
|
499 |
|
|
frv_interrupt_state.queue_index = index;
|
500 |
|
|
frv_break_interrupt (current_cpu, interrupt, pc);
|
501 |
|
|
return;
|
502 |
|
|
case FRV_RESET_INTERRUPT:
|
503 |
|
|
break;
|
504 |
|
|
default:
|
505 |
|
|
break;
|
506 |
|
|
}
|
507 |
|
|
frv_interrupt_state.queue_index = index;
|
508 |
|
|
break; /* out of loop. */
|
509 |
|
|
}
|
510 |
|
|
|
511 |
|
|
/* We should never get here. */
|
512 |
|
|
{
|
513 |
|
|
SIM_DESC sd = CPU_STATE (current_cpu);
|
514 |
|
|
sim_engine_abort (sd, current_cpu, pc,
|
515 |
|
|
"interrupt class not supported %d\n",
|
516 |
|
|
interrupt->iclass);
|
517 |
|
|
}
|
518 |
|
|
}
|
519 |
|
|
|
520 |
|
|
/* Check to see the if the RSTR.HR or RSTR.SR bits have been set. If so, handle
|
521 |
|
|
the appropriate reset interrupt. */
|
522 |
|
|
static int
|
523 |
|
|
check_reset (SIM_CPU *current_cpu, IADDR pc)
|
524 |
|
|
{
|
525 |
|
|
int hsr0;
|
526 |
|
|
int hr;
|
527 |
|
|
int sr;
|
528 |
|
|
SI rstr;
|
529 |
|
|
FRV_CACHE *cache = CPU_DATA_CACHE (current_cpu);
|
530 |
|
|
IADDR address = RSTR_ADDRESS;
|
531 |
|
|
|
532 |
|
|
/* We don't want this to show up in the cache statistics, so read the
|
533 |
|
|
cache passively. */
|
534 |
|
|
if (! frv_cache_read_passive_SI (cache, address, & rstr))
|
535 |
|
|
rstr = sim_core_read_unaligned_4 (current_cpu, pc, read_map, address);
|
536 |
|
|
|
537 |
|
|
hr = GET_RSTR_HR (rstr);
|
538 |
|
|
sr = GET_RSTR_SR (rstr);
|
539 |
|
|
|
540 |
|
|
if (! hr && ! sr)
|
541 |
|
|
return 0; /* no reset. */
|
542 |
|
|
|
543 |
|
|
/* Reinitialize the machine state. */
|
544 |
|
|
if (hr)
|
545 |
|
|
frv_hardware_reset (current_cpu);
|
546 |
|
|
else
|
547 |
|
|
frv_software_reset (current_cpu);
|
548 |
|
|
|
549 |
|
|
/* Branch to the reset address. */
|
550 |
|
|
hsr0 = GET_HSR0 ();
|
551 |
|
|
if (GET_HSR0_SA (hsr0))
|
552 |
|
|
SET_H_PC (0xff000000);
|
553 |
|
|
else
|
554 |
|
|
SET_H_PC (0);
|
555 |
|
|
|
556 |
|
|
return 1; /* reset */
|
557 |
|
|
}
|
558 |
|
|
|
559 |
|
|
/* Process any pending interrupt(s) after a group of parallel insns. */
|
560 |
|
|
void
|
561 |
|
|
frv_process_interrupts (SIM_CPU *current_cpu)
|
562 |
|
|
{
|
563 |
|
|
SI NE_flags[2];
|
564 |
|
|
/* Need to save the pc here because writeback may change it (due to a
|
565 |
|
|
branch). */
|
566 |
|
|
IADDR pc = CPU_PC_GET (current_cpu);
|
567 |
|
|
|
568 |
|
|
/* Check for a reset before anything else. */
|
569 |
|
|
if (check_reset (current_cpu, pc))
|
570 |
|
|
return;
|
571 |
|
|
|
572 |
|
|
/* First queue the writes for any accumulated NE flags. */
|
573 |
|
|
if (frv_interrupt_state.f_ne_flags[0] != 0
|
574 |
|
|
|| frv_interrupt_state.f_ne_flags[1] != 0)
|
575 |
|
|
{
|
576 |
|
|
GET_NE_FLAGS (NE_flags, H_SPR_FNER0);
|
577 |
|
|
NE_flags[0] |= frv_interrupt_state.f_ne_flags[0];
|
578 |
|
|
NE_flags[1] |= frv_interrupt_state.f_ne_flags[1];
|
579 |
|
|
SET_NE_FLAGS (H_SPR_FNER0, NE_flags);
|
580 |
|
|
}
|
581 |
|
|
|
582 |
|
|
/* If there is no interrupt pending, then perform parallel writeback. This
|
583 |
|
|
may cause an interrupt. */
|
584 |
|
|
if (frv_interrupt_state.queue_index <= 0)
|
585 |
|
|
frvbf_perform_writeback (current_cpu);
|
586 |
|
|
|
587 |
|
|
/* If there is an interrupt pending, then process it. */
|
588 |
|
|
if (frv_interrupt_state.queue_index > 0)
|
589 |
|
|
handle_interrupt (current_cpu, pc);
|
590 |
|
|
}
|
591 |
|
|
|
592 |
|
|
/* Find the next available ESR and return its index */
|
593 |
|
|
static int
|
594 |
|
|
esr_for_data_access_exception (
|
595 |
|
|
SIM_CPU *current_cpu, struct frv_interrupt_queue_element *item
|
596 |
|
|
)
|
597 |
|
|
{
|
598 |
|
|
SIM_DESC sd = CPU_STATE (current_cpu);
|
599 |
|
|
if (STATE_ARCHITECTURE (sd)->mach == bfd_mach_fr550)
|
600 |
|
|
return 8; /* Use ESR8, EPCR8. */
|
601 |
|
|
|
602 |
|
|
if (item->slot == UNIT_I0)
|
603 |
|
|
return 8; /* Use ESR8, EPCR8, EAR8, EDR8. */
|
604 |
|
|
|
605 |
|
|
return 9; /* Use ESR9, EPCR9, EAR9. */
|
606 |
|
|
}
|
607 |
|
|
|
608 |
|
|
/* Set the next available EDR register with the data which was to be stored
|
609 |
|
|
and return the index of the register. */
|
610 |
|
|
static int
|
611 |
|
|
set_edr_register (
|
612 |
|
|
SIM_CPU *current_cpu, struct frv_interrupt_queue_element *item, int edr_index
|
613 |
|
|
)
|
614 |
|
|
{
|
615 |
|
|
/* EDR0, EDR4 and EDR8 are available as blocks of 4.
|
616 |
|
|
SI data uses EDR3, EDR7 and EDR11
|
617 |
|
|
DI data uses EDR2, EDR6 and EDR10
|
618 |
|
|
XI data uses EDR0, EDR4 and EDR8. */
|
619 |
|
|
int i;
|
620 |
|
|
edr_index += 4 - item->u.data_written.length;
|
621 |
|
|
for (i = 0; i < item->u.data_written.length; ++i)
|
622 |
|
|
SET_EDR (edr_index + i, item->u.data_written.words[i]);
|
623 |
|
|
|
624 |
|
|
return edr_index;
|
625 |
|
|
};
|
626 |
|
|
|
627 |
|
|
/* Clear ESFR0, EPCRx, ESRx, EARx and EDRx. */
|
628 |
|
|
static void
|
629 |
|
|
clear_exception_status_registers (SIM_CPU *current_cpu)
|
630 |
|
|
{
|
631 |
|
|
int i;
|
632 |
|
|
/* It is only necessary to clear the flag bits indicating which registers
|
633 |
|
|
are valid. */
|
634 |
|
|
SET_ESFR (0, 0);
|
635 |
|
|
SET_ESFR (1, 0);
|
636 |
|
|
|
637 |
|
|
for (i = 0; i <= 2; ++i)
|
638 |
|
|
{
|
639 |
|
|
SI esr = GET_ESR (i);
|
640 |
|
|
CLEAR_ESR_VALID (esr);
|
641 |
|
|
SET_ESR (i, esr);
|
642 |
|
|
}
|
643 |
|
|
for (i = 8; i <= 15; ++i)
|
644 |
|
|
{
|
645 |
|
|
SI esr = GET_ESR (i);
|
646 |
|
|
CLEAR_ESR_VALID (esr);
|
647 |
|
|
SET_ESR (i, esr);
|
648 |
|
|
}
|
649 |
|
|
}
|
650 |
|
|
|
651 |
|
|
/* Record state for media exception. */
|
652 |
|
|
void
|
653 |
|
|
frv_set_mp_exception_registers (
|
654 |
|
|
SIM_CPU *current_cpu, enum frv_msr_mtt mtt, int sie
|
655 |
|
|
)
|
656 |
|
|
{
|
657 |
|
|
/* Record the interrupt factor in MSR0. */
|
658 |
|
|
SI msr0 = GET_MSR (0);
|
659 |
|
|
if (GET_MSR_MTT (msr0) == MTT_NONE)
|
660 |
|
|
SET_MSR_MTT (msr0, mtt);
|
661 |
|
|
|
662 |
|
|
/* Also set the OVF bit in the appropriate MSR as well as MSR0.AOVF. */
|
663 |
|
|
if (mtt == MTT_OVERFLOW)
|
664 |
|
|
{
|
665 |
|
|
FRV_VLIW *vliw = CPU_VLIW (current_cpu);
|
666 |
|
|
int slot = vliw->next_slot - 1;
|
667 |
|
|
SIM_DESC sd = CPU_STATE (current_cpu);
|
668 |
|
|
|
669 |
|
|
/* If this insn is in the M2 slot, then set MSR1.OVF and MSR1.SIE,
|
670 |
|
|
otherwise set MSR0.OVF and MSR0.SIE. */
|
671 |
|
|
if (STATE_ARCHITECTURE (sd)->mach != bfd_mach_fr550 && (*vliw->current_vliw)[slot] == UNIT_FM1)
|
672 |
|
|
{
|
673 |
|
|
SI msr = GET_MSR (1);
|
674 |
|
|
OR_MSR_SIE (msr, sie);
|
675 |
|
|
SET_MSR_OVF (msr);
|
676 |
|
|
SET_MSR (1, msr);
|
677 |
|
|
}
|
678 |
|
|
else
|
679 |
|
|
{
|
680 |
|
|
OR_MSR_SIE (msr0, sie);
|
681 |
|
|
SET_MSR_OVF (msr0);
|
682 |
|
|
}
|
683 |
|
|
|
684 |
|
|
/* Generate the interrupt now if MSR0.MPEM is set on fr550 */
|
685 |
|
|
if (STATE_ARCHITECTURE (sd)->mach == bfd_mach_fr550 && GET_MSR_MPEM (msr0))
|
686 |
|
|
frv_queue_program_interrupt (current_cpu, FRV_MP_EXCEPTION);
|
687 |
|
|
else
|
688 |
|
|
{
|
689 |
|
|
/* Regardless of the slot, set MSR0.AOVF. */
|
690 |
|
|
SET_MSR_AOVF (msr0);
|
691 |
|
|
}
|
692 |
|
|
}
|
693 |
|
|
|
694 |
|
|
SET_MSR (0, msr0);
|
695 |
|
|
}
|
696 |
|
|
|
697 |
|
|
/* Determine the correct FQ register to use for the given exception.
|
698 |
|
|
Return -1 if a register is not available. */
|
699 |
|
|
static int
|
700 |
|
|
fq_for_exception (
|
701 |
|
|
SIM_CPU *current_cpu, struct frv_interrupt_queue_element *item
|
702 |
|
|
)
|
703 |
|
|
{
|
704 |
|
|
SI fq;
|
705 |
|
|
struct frv_fp_exception_info *fp_info = & item->u.fp_info;
|
706 |
|
|
|
707 |
|
|
/* For fp_exception overflow, underflow or inexact, use FQ0 or FQ1. */
|
708 |
|
|
if (fp_info->ftt == FTT_IEEE_754_EXCEPTION
|
709 |
|
|
&& (fp_info->fsr_mask & (FSR_OVERFLOW | FSR_UNDERFLOW | FSR_INEXACT)))
|
710 |
|
|
{
|
711 |
|
|
fq = GET_FQ (0);
|
712 |
|
|
if (! GET_FQ_VALID (fq))
|
713 |
|
|
return 0; /* FQ0 is available. */
|
714 |
|
|
fq = GET_FQ (1);
|
715 |
|
|
if (! GET_FQ_VALID (fq))
|
716 |
|
|
return 1; /* FQ1 is available. */
|
717 |
|
|
|
718 |
|
|
/* No FQ register is available */
|
719 |
|
|
{
|
720 |
|
|
SIM_DESC sd = CPU_STATE (current_cpu);
|
721 |
|
|
IADDR pc = CPU_PC_GET (current_cpu);
|
722 |
|
|
sim_engine_abort (sd, current_cpu, pc, "No FQ register available\n");
|
723 |
|
|
}
|
724 |
|
|
return -1;
|
725 |
|
|
}
|
726 |
|
|
/* For other exceptions, use FQ2 if the insn was in slot F0/I0 and FQ3
|
727 |
|
|
otherwise. */
|
728 |
|
|
if (item->slot == UNIT_FM0 || item->slot == UNIT_I0)
|
729 |
|
|
return 2;
|
730 |
|
|
|
731 |
|
|
return 3;
|
732 |
|
|
}
|
733 |
|
|
|
734 |
|
|
/* Set FSR0, FQ0-FQ9, depending on the interrupt. */
|
735 |
|
|
static void
|
736 |
|
|
set_fp_exception_registers (
|
737 |
|
|
SIM_CPU *current_cpu, struct frv_interrupt_queue_element *item
|
738 |
|
|
)
|
739 |
|
|
{
|
740 |
|
|
int fq_index;
|
741 |
|
|
SI fq;
|
742 |
|
|
SI insn;
|
743 |
|
|
SI fsr0;
|
744 |
|
|
IADDR pc;
|
745 |
|
|
struct frv_fp_exception_info *fp_info;
|
746 |
|
|
SIM_DESC sd = CPU_STATE (current_cpu);
|
747 |
|
|
|
748 |
|
|
/* No FQ registers on fr550 */
|
749 |
|
|
if (STATE_ARCHITECTURE (sd)->mach == bfd_mach_fr550)
|
750 |
|
|
{
|
751 |
|
|
/* Update the fsr. */
|
752 |
|
|
fp_info = & item->u.fp_info;
|
753 |
|
|
fsr0 = GET_FSR (0);
|
754 |
|
|
SET_FSR_FTT (fsr0, fp_info->ftt);
|
755 |
|
|
SET_FSR (0, fsr0);
|
756 |
|
|
return;
|
757 |
|
|
}
|
758 |
|
|
|
759 |
|
|
/* Select an FQ and update it with the exception information. */
|
760 |
|
|
fq_index = fq_for_exception (current_cpu, item);
|
761 |
|
|
if (fq_index == -1)
|
762 |
|
|
return;
|
763 |
|
|
|
764 |
|
|
fp_info = & item->u.fp_info;
|
765 |
|
|
fq = GET_FQ (fq_index);
|
766 |
|
|
SET_FQ_MIV (fq, MIV_FLOAT);
|
767 |
|
|
SET_FQ_SIE (fq, SIE_NIL);
|
768 |
|
|
SET_FQ_FTT (fq, fp_info->ftt);
|
769 |
|
|
SET_FQ_CEXC (fq, fp_info->fsr_mask);
|
770 |
|
|
SET_FQ_VALID (fq);
|
771 |
|
|
SET_FQ (fq_index, fq);
|
772 |
|
|
|
773 |
|
|
/* Write the failing insn into FQx.OPC. */
|
774 |
|
|
pc = item->vpc;
|
775 |
|
|
insn = GETMEMSI (current_cpu, pc, pc);
|
776 |
|
|
SET_FQ_OPC (fq_index, insn);
|
777 |
|
|
|
778 |
|
|
/* Update the fsr. */
|
779 |
|
|
fsr0 = GET_FSR (0);
|
780 |
|
|
SET_FSR_QNE (fsr0); /* FQ not empty */
|
781 |
|
|
SET_FSR_FTT (fsr0, fp_info->ftt);
|
782 |
|
|
SET_FSR (0, fsr0);
|
783 |
|
|
}
|
784 |
|
|
|
785 |
|
|
/* Record the state of a division exception in the ISR. */
|
786 |
|
|
static void
|
787 |
|
|
set_isr_exception_fields (
|
788 |
|
|
SIM_CPU *current_cpu, struct frv_interrupt_queue_element *item
|
789 |
|
|
)
|
790 |
|
|
{
|
791 |
|
|
USI isr = GET_ISR ();
|
792 |
|
|
int dtt = GET_ISR_DTT (isr);
|
793 |
|
|
dtt |= item->u.dtt;
|
794 |
|
|
SET_ISR_DTT (isr, dtt);
|
795 |
|
|
SET_ISR (isr);
|
796 |
|
|
}
|
797 |
|
|
|
798 |
|
|
/* Set ESFR0, EPCRx, ESRx, EARx and EDRx, according to the given program
|
799 |
|
|
interrupt. */
|
800 |
|
|
static void
|
801 |
|
|
set_exception_status_registers (
|
802 |
|
|
SIM_CPU *current_cpu, struct frv_interrupt_queue_element *item
|
803 |
|
|
)
|
804 |
|
|
{
|
805 |
|
|
struct frv_interrupt *interrupt = & frv_interrupt_table[item->kind];
|
806 |
|
|
int slot = (item->vpc - previous_vliw_pc) / 4;
|
807 |
|
|
int reg_index = -1;
|
808 |
|
|
int set_ear = 0;
|
809 |
|
|
int set_edr = 0;
|
810 |
|
|
int set_daec = 0;
|
811 |
|
|
int set_epcr = 0;
|
812 |
|
|
SI esr = 0;
|
813 |
|
|
SIM_DESC sd = CPU_STATE (current_cpu);
|
814 |
|
|
|
815 |
|
|
/* If the interrupt is strict (precise) or the interrupt is on the insns
|
816 |
|
|
in the I0 pipe, then set the 0 registers. */
|
817 |
|
|
if (interrupt->precise)
|
818 |
|
|
{
|
819 |
|
|
reg_index = 0;
|
820 |
|
|
if (interrupt->kind == FRV_REGISTER_EXCEPTION)
|
821 |
|
|
SET_ESR_REC (esr, item->u.rec);
|
822 |
|
|
else if (interrupt->kind == FRV_INSTRUCTION_ACCESS_EXCEPTION)
|
823 |
|
|
SET_ESR_IAEC (esr, item->u.iaec);
|
824 |
|
|
/* For fr550, don't set epcr for precise interrupts. */
|
825 |
|
|
if (STATE_ARCHITECTURE (sd)->mach != bfd_mach_fr550)
|
826 |
|
|
set_epcr = 1;
|
827 |
|
|
}
|
828 |
|
|
else
|
829 |
|
|
{
|
830 |
|
|
switch (interrupt->kind)
|
831 |
|
|
{
|
832 |
|
|
case FRV_DIVISION_EXCEPTION:
|
833 |
|
|
set_isr_exception_fields (current_cpu, item);
|
834 |
|
|
/* fall thru to set reg_index. */
|
835 |
|
|
case FRV_COMMIT_EXCEPTION:
|
836 |
|
|
/* For fr550, always use ESR0. */
|
837 |
|
|
if (STATE_ARCHITECTURE (sd)->mach == bfd_mach_fr550)
|
838 |
|
|
reg_index = 0;
|
839 |
|
|
else if (item->slot == UNIT_I0)
|
840 |
|
|
reg_index = 0;
|
841 |
|
|
else if (item->slot == UNIT_I1)
|
842 |
|
|
reg_index = 1;
|
843 |
|
|
set_epcr = 1;
|
844 |
|
|
break;
|
845 |
|
|
case FRV_DATA_STORE_ERROR:
|
846 |
|
|
reg_index = 14; /* Use ESR14. */
|
847 |
|
|
break;
|
848 |
|
|
case FRV_DATA_ACCESS_ERROR:
|
849 |
|
|
reg_index = 15; /* Use ESR15, EPCR15. */
|
850 |
|
|
set_ear = 1;
|
851 |
|
|
break;
|
852 |
|
|
case FRV_DATA_ACCESS_EXCEPTION:
|
853 |
|
|
set_daec = 1;
|
854 |
|
|
/* fall through */
|
855 |
|
|
case FRV_DATA_ACCESS_MMU_MISS:
|
856 |
|
|
case FRV_MEM_ADDRESS_NOT_ALIGNED:
|
857 |
|
|
/* Get the appropriate ESR, EPCR, EAR and EDR.
|
858 |
|
|
EAR will be set. EDR will not be set if this is a store insn. */
|
859 |
|
|
set_ear = 1;
|
860 |
|
|
/* For fr550, never use EDRx. */
|
861 |
|
|
if (STATE_ARCHITECTURE (sd)->mach != bfd_mach_fr550)
|
862 |
|
|
if (item->u.data_written.length != 0)
|
863 |
|
|
set_edr = 1;
|
864 |
|
|
reg_index = esr_for_data_access_exception (current_cpu, item);
|
865 |
|
|
set_epcr = 1;
|
866 |
|
|
break;
|
867 |
|
|
case FRV_MP_EXCEPTION:
|
868 |
|
|
/* For fr550, use EPCR2 and ESR2. */
|
869 |
|
|
if (STATE_ARCHITECTURE (sd)->mach == bfd_mach_fr550)
|
870 |
|
|
{
|
871 |
|
|
reg_index = 2;
|
872 |
|
|
set_epcr = 1;
|
873 |
|
|
}
|
874 |
|
|
break; /* MSR0-1, FQ0-9 are already set. */
|
875 |
|
|
case FRV_FP_EXCEPTION:
|
876 |
|
|
set_fp_exception_registers (current_cpu, item);
|
877 |
|
|
/* For fr550, use EPCR2 and ESR2. */
|
878 |
|
|
if (STATE_ARCHITECTURE (sd)->mach == bfd_mach_fr550)
|
879 |
|
|
{
|
880 |
|
|
reg_index = 2;
|
881 |
|
|
set_epcr = 1;
|
882 |
|
|
}
|
883 |
|
|
break;
|
884 |
|
|
default:
|
885 |
|
|
{
|
886 |
|
|
SIM_DESC sd = CPU_STATE (current_cpu);
|
887 |
|
|
IADDR pc = CPU_PC_GET (current_cpu);
|
888 |
|
|
sim_engine_abort (sd, current_cpu, pc,
|
889 |
|
|
"invalid non-strict program interrupt kind: %d\n",
|
890 |
|
|
interrupt->kind);
|
891 |
|
|
break;
|
892 |
|
|
}
|
893 |
|
|
}
|
894 |
|
|
} /* non-strict (imprecise) interrupt */
|
895 |
|
|
|
896 |
|
|
/* Now fill in the selected exception status registers. */
|
897 |
|
|
if (reg_index != -1)
|
898 |
|
|
{
|
899 |
|
|
/* Now set the exception status registers. */
|
900 |
|
|
SET_ESFR_FLAG (reg_index);
|
901 |
|
|
SET_ESR_EC (esr, interrupt->ec);
|
902 |
|
|
|
903 |
|
|
if (set_epcr)
|
904 |
|
|
{
|
905 |
|
|
if (STATE_ARCHITECTURE (sd)->mach == bfd_mach_fr400)
|
906 |
|
|
SET_EPCR (reg_index, previous_vliw_pc);
|
907 |
|
|
else
|
908 |
|
|
SET_EPCR (reg_index, item->vpc);
|
909 |
|
|
}
|
910 |
|
|
|
911 |
|
|
if (set_ear)
|
912 |
|
|
{
|
913 |
|
|
SET_EAR (reg_index, item->eaddress);
|
914 |
|
|
SET_ESR_EAV (esr);
|
915 |
|
|
}
|
916 |
|
|
else
|
917 |
|
|
CLEAR_ESR_EAV (esr);
|
918 |
|
|
|
919 |
|
|
if (set_edr)
|
920 |
|
|
{
|
921 |
|
|
int edn = set_edr_register (current_cpu, item, 0/* EDR0-3 */);
|
922 |
|
|
SET_ESR_EDN (esr, edn);
|
923 |
|
|
SET_ESR_EDV (esr);
|
924 |
|
|
}
|
925 |
|
|
else
|
926 |
|
|
CLEAR_ESR_EDV (esr);
|
927 |
|
|
|
928 |
|
|
if (set_daec)
|
929 |
|
|
SET_ESR_DAEC (esr, item->u.daec);
|
930 |
|
|
|
931 |
|
|
SET_ESR_VALID (esr);
|
932 |
|
|
SET_ESR (reg_index, esr);
|
933 |
|
|
}
|
934 |
|
|
}
|
935 |
|
|
|
936 |
|
|
/* Check for compound interrupts.
|
937 |
|
|
Returns NULL if no interrupt is to be processed. */
|
938 |
|
|
static struct frv_interrupt *
|
939 |
|
|
check_for_compound_interrupt (
|
940 |
|
|
SIM_CPU *current_cpu, struct frv_interrupt_queue_element *item
|
941 |
|
|
)
|
942 |
|
|
{
|
943 |
|
|
struct frv_interrupt *interrupt;
|
944 |
|
|
|
945 |
|
|
/* Set the exception status registers for the original interrupt. */
|
946 |
|
|
set_exception_status_registers (current_cpu, item);
|
947 |
|
|
interrupt = & frv_interrupt_table[item->kind];
|
948 |
|
|
|
949 |
|
|
if (! interrupt->precise)
|
950 |
|
|
{
|
951 |
|
|
IADDR vpc = 0;
|
952 |
|
|
int mask = 0;
|
953 |
|
|
|
954 |
|
|
vpc = item->vpc;
|
955 |
|
|
mask = (1 << item->kind);
|
956 |
|
|
|
957 |
|
|
/* Look for more queued program interrupts which are non-deferred
|
958 |
|
|
(pending inhibit), imprecise (non-strict) different than an interrupt
|
959 |
|
|
already found and caused by a different insn. A bit mask is used
|
960 |
|
|
to keep track of interrupts which have already been detected. */
|
961 |
|
|
while (item != frv_interrupt_state.queue)
|
962 |
|
|
{
|
963 |
|
|
enum frv_interrupt_kind kind;
|
964 |
|
|
struct frv_interrupt *next_interrupt;
|
965 |
|
|
--item;
|
966 |
|
|
kind = item->kind;
|
967 |
|
|
next_interrupt = & frv_interrupt_table[kind];
|
968 |
|
|
|
969 |
|
|
if (next_interrupt->iclass != FRV_PROGRAM_INTERRUPT)
|
970 |
|
|
break; /* no program interrupts left. */
|
971 |
|
|
|
972 |
|
|
if (item->vpc == vpc)
|
973 |
|
|
continue; /* caused by the same insn. */
|
974 |
|
|
|
975 |
|
|
vpc = item->vpc;
|
976 |
|
|
if (! next_interrupt->precise && ! next_interrupt->deferred)
|
977 |
|
|
{
|
978 |
|
|
if (! (mask & (1 << kind)))
|
979 |
|
|
{
|
980 |
|
|
/* Set the exception status registers for the additional
|
981 |
|
|
interrupt. */
|
982 |
|
|
set_exception_status_registers (current_cpu, item);
|
983 |
|
|
mask |= (1 << kind);
|
984 |
|
|
interrupt = & frv_interrupt_table[FRV_COMPOUND_EXCEPTION];
|
985 |
|
|
}
|
986 |
|
|
}
|
987 |
|
|
}
|
988 |
|
|
}
|
989 |
|
|
|
990 |
|
|
/* Return with either the original interrupt, a compound_exception,
|
991 |
|
|
or no exception. */
|
992 |
|
|
return interrupt;
|
993 |
|
|
}
|
994 |
|
|
|
995 |
|
|
/* Handle a program interrupt. */
|
996 |
|
|
void
|
997 |
|
|
frv_program_interrupt (
|
998 |
|
|
SIM_CPU *current_cpu, struct frv_interrupt_queue_element *item, IADDR pc
|
999 |
|
|
)
|
1000 |
|
|
{
|
1001 |
|
|
struct frv_interrupt *interrupt;
|
1002 |
|
|
|
1003 |
|
|
clear_exception_status_registers (current_cpu);
|
1004 |
|
|
/* If two or more non-deferred imprecise (non-strict) interrupts occur
|
1005 |
|
|
on two or more insns, then generate a compound_exception. */
|
1006 |
|
|
interrupt = check_for_compound_interrupt (current_cpu, item);
|
1007 |
|
|
if (interrupt != NULL)
|
1008 |
|
|
{
|
1009 |
|
|
frv_program_or_software_interrupt (current_cpu, interrupt, pc);
|
1010 |
|
|
frv_clear_interrupt_classes (FRV_SOFTWARE_INTERRUPT,
|
1011 |
|
|
FRV_PROGRAM_INTERRUPT);
|
1012 |
|
|
}
|
1013 |
|
|
}
|
1014 |
|
|
|
1015 |
|
|
/* Handle a software interrupt. */
|
1016 |
|
|
void
|
1017 |
|
|
frv_software_interrupt (
|
1018 |
|
|
SIM_CPU *current_cpu, struct frv_interrupt_queue_element *item, IADDR pc
|
1019 |
|
|
)
|
1020 |
|
|
{
|
1021 |
|
|
struct frv_interrupt *interrupt = & frv_interrupt_table[item->kind];
|
1022 |
|
|
frv_program_or_software_interrupt (current_cpu, interrupt, pc);
|
1023 |
|
|
}
|
1024 |
|
|
|
1025 |
|
|
/* Handle a program interrupt or a software interrupt in non-operating mode. */
|
1026 |
|
|
void
|
1027 |
|
|
frv_non_operating_interrupt (
|
1028 |
|
|
SIM_CPU *current_cpu, enum frv_interrupt_kind kind, IADDR pc
|
1029 |
|
|
)
|
1030 |
|
|
{
|
1031 |
|
|
SIM_DESC sd = CPU_STATE (current_cpu);
|
1032 |
|
|
switch (kind)
|
1033 |
|
|
{
|
1034 |
|
|
case FRV_INTERRUPT_LEVEL_1:
|
1035 |
|
|
case FRV_INTERRUPT_LEVEL_2:
|
1036 |
|
|
case FRV_INTERRUPT_LEVEL_3:
|
1037 |
|
|
case FRV_INTERRUPT_LEVEL_4:
|
1038 |
|
|
case FRV_INTERRUPT_LEVEL_5:
|
1039 |
|
|
case FRV_INTERRUPT_LEVEL_6:
|
1040 |
|
|
case FRV_INTERRUPT_LEVEL_7:
|
1041 |
|
|
case FRV_INTERRUPT_LEVEL_8:
|
1042 |
|
|
case FRV_INTERRUPT_LEVEL_9:
|
1043 |
|
|
case FRV_INTERRUPT_LEVEL_10:
|
1044 |
|
|
case FRV_INTERRUPT_LEVEL_11:
|
1045 |
|
|
case FRV_INTERRUPT_LEVEL_12:
|
1046 |
|
|
case FRV_INTERRUPT_LEVEL_13:
|
1047 |
|
|
case FRV_INTERRUPT_LEVEL_14:
|
1048 |
|
|
case FRV_INTERRUPT_LEVEL_15:
|
1049 |
|
|
sim_engine_abort (sd, current_cpu, pc,
|
1050 |
|
|
"interrupt: external %d\n", kind + 1);
|
1051 |
|
|
break;
|
1052 |
|
|
case FRV_TRAP_INSTRUCTION:
|
1053 |
|
|
break; /* handle as in operating mode. */
|
1054 |
|
|
case FRV_COMMIT_EXCEPTION:
|
1055 |
|
|
sim_engine_abort (sd, current_cpu, pc,
|
1056 |
|
|
"interrupt: commit_exception\n");
|
1057 |
|
|
break;
|
1058 |
|
|
case FRV_DIVISION_EXCEPTION:
|
1059 |
|
|
sim_engine_abort (sd, current_cpu, pc,
|
1060 |
|
|
"interrupt: division_exception\n");
|
1061 |
|
|
break;
|
1062 |
|
|
case FRV_DATA_STORE_ERROR:
|
1063 |
|
|
sim_engine_abort (sd, current_cpu, pc,
|
1064 |
|
|
"interrupt: data_store_error\n");
|
1065 |
|
|
break;
|
1066 |
|
|
case FRV_DATA_ACCESS_EXCEPTION:
|
1067 |
|
|
sim_engine_abort (sd, current_cpu, pc,
|
1068 |
|
|
"interrupt: data_access_exception\n");
|
1069 |
|
|
break;
|
1070 |
|
|
case FRV_DATA_ACCESS_MMU_MISS:
|
1071 |
|
|
sim_engine_abort (sd, current_cpu, pc,
|
1072 |
|
|
"interrupt: data_access_mmu_miss\n");
|
1073 |
|
|
break;
|
1074 |
|
|
case FRV_DATA_ACCESS_ERROR:
|
1075 |
|
|
sim_engine_abort (sd, current_cpu, pc,
|
1076 |
|
|
"interrupt: data_access_error\n");
|
1077 |
|
|
break;
|
1078 |
|
|
case FRV_MP_EXCEPTION:
|
1079 |
|
|
sim_engine_abort (sd, current_cpu, pc,
|
1080 |
|
|
"interrupt: mp_exception\n");
|
1081 |
|
|
break;
|
1082 |
|
|
case FRV_FP_EXCEPTION:
|
1083 |
|
|
sim_engine_abort (sd, current_cpu, pc,
|
1084 |
|
|
"interrupt: fp_exception\n");
|
1085 |
|
|
break;
|
1086 |
|
|
case FRV_MEM_ADDRESS_NOT_ALIGNED:
|
1087 |
|
|
sim_engine_abort (sd, current_cpu, pc,
|
1088 |
|
|
"interrupt: mem_address_not_aligned\n");
|
1089 |
|
|
break;
|
1090 |
|
|
case FRV_REGISTER_EXCEPTION:
|
1091 |
|
|
sim_engine_abort (sd, current_cpu, pc,
|
1092 |
|
|
"interrupt: register_exception\n");
|
1093 |
|
|
break;
|
1094 |
|
|
case FRV_MP_DISABLED:
|
1095 |
|
|
sim_engine_abort (sd, current_cpu, pc,
|
1096 |
|
|
"interrupt: mp_disabled\n");
|
1097 |
|
|
break;
|
1098 |
|
|
case FRV_FP_DISABLED:
|
1099 |
|
|
sim_engine_abort (sd, current_cpu, pc,
|
1100 |
|
|
"interrupt: fp_disabled\n");
|
1101 |
|
|
break;
|
1102 |
|
|
case FRV_PRIVILEGED_INSTRUCTION:
|
1103 |
|
|
sim_engine_abort (sd, current_cpu, pc,
|
1104 |
|
|
"interrupt: privileged_instruction\n");
|
1105 |
|
|
break;
|
1106 |
|
|
case FRV_ILLEGAL_INSTRUCTION:
|
1107 |
|
|
sim_engine_abort (sd, current_cpu, pc,
|
1108 |
|
|
"interrupt: illegal_instruction\n");
|
1109 |
|
|
break;
|
1110 |
|
|
case FRV_INSTRUCTION_ACCESS_EXCEPTION:
|
1111 |
|
|
sim_engine_abort (sd, current_cpu, pc,
|
1112 |
|
|
"interrupt: instruction_access_exception\n");
|
1113 |
|
|
break;
|
1114 |
|
|
case FRV_INSTRUCTION_ACCESS_MMU_MISS:
|
1115 |
|
|
sim_engine_abort (sd, current_cpu, pc,
|
1116 |
|
|
"interrupt: instruction_access_mmu_miss\n");
|
1117 |
|
|
break;
|
1118 |
|
|
case FRV_INSTRUCTION_ACCESS_ERROR:
|
1119 |
|
|
sim_engine_abort (sd, current_cpu, pc,
|
1120 |
|
|
"interrupt: insn_access_error\n");
|
1121 |
|
|
break;
|
1122 |
|
|
case FRV_COMPOUND_EXCEPTION:
|
1123 |
|
|
sim_engine_abort (sd, current_cpu, pc,
|
1124 |
|
|
"interrupt: compound_exception\n");
|
1125 |
|
|
break;
|
1126 |
|
|
case FRV_BREAK_EXCEPTION:
|
1127 |
|
|
sim_engine_abort (sd, current_cpu, pc,
|
1128 |
|
|
"interrupt: break_exception\n");
|
1129 |
|
|
break;
|
1130 |
|
|
case FRV_RESET:
|
1131 |
|
|
sim_engine_abort (sd, current_cpu, pc,
|
1132 |
|
|
"interrupt: reset\n");
|
1133 |
|
|
break;
|
1134 |
|
|
default:
|
1135 |
|
|
sim_engine_abort (sd, current_cpu, pc,
|
1136 |
|
|
"unhandled interrupt kind: %d\n", kind);
|
1137 |
|
|
break;
|
1138 |
|
|
}
|
1139 |
|
|
}
|
1140 |
|
|
|
1141 |
|
|
/* Handle a break interrupt. */
|
1142 |
|
|
void
|
1143 |
|
|
frv_break_interrupt (
|
1144 |
|
|
SIM_CPU *current_cpu, struct frv_interrupt *interrupt, IADDR current_pc
|
1145 |
|
|
)
|
1146 |
|
|
{
|
1147 |
|
|
IADDR new_pc;
|
1148 |
|
|
|
1149 |
|
|
/* BPCSR=PC
|
1150 |
|
|
BPSR.BS=PSR.S
|
1151 |
|
|
BPSR.BET=PSR.ET
|
1152 |
|
|
PSR.S=1
|
1153 |
|
|
PSR.ET=0
|
1154 |
|
|
TBR.TT=0xff
|
1155 |
|
|
PC=TBR
|
1156 |
|
|
*/
|
1157 |
|
|
/* Must set PSR.S first to allow access to supervisor-only spr registers. */
|
1158 |
|
|
SET_H_BPSR_BS (GET_H_PSR_S ());
|
1159 |
|
|
SET_H_BPSR_BET (GET_H_PSR_ET ());
|
1160 |
|
|
SET_H_PSR_S (1);
|
1161 |
|
|
SET_H_PSR_ET (0);
|
1162 |
|
|
/* Must set PSR.S first to allow access to supervisor-only spr registers. */
|
1163 |
|
|
SET_H_SPR (H_SPR_BPCSR, current_pc);
|
1164 |
|
|
|
1165 |
|
|
/* Set the new PC in the TBR. */
|
1166 |
|
|
SET_H_TBR_TT (interrupt->handler_offset);
|
1167 |
|
|
new_pc = GET_H_SPR (H_SPR_TBR);
|
1168 |
|
|
SET_H_PC (new_pc);
|
1169 |
|
|
|
1170 |
|
|
CPU_DEBUG_STATE (current_cpu) = 1;
|
1171 |
|
|
}
|
1172 |
|
|
|
1173 |
|
|
/* Handle a program interrupt or a software interrupt. */
|
1174 |
|
|
void
|
1175 |
|
|
frv_program_or_software_interrupt (
|
1176 |
|
|
SIM_CPU *current_cpu, struct frv_interrupt *interrupt, IADDR current_pc
|
1177 |
|
|
)
|
1178 |
|
|
{
|
1179 |
|
|
USI new_pc;
|
1180 |
|
|
int original_psr_et;
|
1181 |
|
|
|
1182 |
|
|
/* PCSR=PC
|
1183 |
|
|
PSR.PS=PSR.S
|
1184 |
|
|
PSR.ET=0
|
1185 |
|
|
PSR.S=1
|
1186 |
|
|
if PSR.ESR==1
|
1187 |
|
|
SR0 through SR3=GR4 through GR7
|
1188 |
|
|
TBR.TT=interrupt handler offset
|
1189 |
|
|
PC=TBR
|
1190 |
|
|
*/
|
1191 |
|
|
original_psr_et = GET_H_PSR_ET ();
|
1192 |
|
|
|
1193 |
|
|
SET_H_PSR_PS (GET_H_PSR_S ());
|
1194 |
|
|
SET_H_PSR_ET (0);
|
1195 |
|
|
SET_H_PSR_S (1);
|
1196 |
|
|
|
1197 |
|
|
/* Must set PSR.S first to allow access to supervisor-only spr registers. */
|
1198 |
|
|
/* The PCSR depends on the precision of the interrupt. */
|
1199 |
|
|
if (interrupt->precise)
|
1200 |
|
|
SET_H_SPR (H_SPR_PCSR, previous_vliw_pc);
|
1201 |
|
|
else
|
1202 |
|
|
SET_H_SPR (H_SPR_PCSR, current_pc);
|
1203 |
|
|
|
1204 |
|
|
/* Set the new PC in the TBR. */
|
1205 |
|
|
SET_H_TBR_TT (interrupt->handler_offset);
|
1206 |
|
|
new_pc = GET_H_SPR (H_SPR_TBR);
|
1207 |
|
|
SET_H_PC (new_pc);
|
1208 |
|
|
|
1209 |
|
|
/* If PSR.ET was not originally set, then enter the stopped state. */
|
1210 |
|
|
if (! original_psr_et)
|
1211 |
|
|
{
|
1212 |
|
|
SIM_DESC sd = CPU_STATE (current_cpu);
|
1213 |
|
|
frv_non_operating_interrupt (current_cpu, interrupt->kind, current_pc);
|
1214 |
|
|
sim_engine_halt (sd, current_cpu, NULL, new_pc, sim_stopped, SIM_SIGINT);
|
1215 |
|
|
}
|
1216 |
|
|
}
|
1217 |
|
|
|
1218 |
|
|
/* Handle a program interrupt or a software interrupt. */
|
1219 |
|
|
void
|
1220 |
|
|
frv_external_interrupt (
|
1221 |
|
|
SIM_CPU *current_cpu, struct frv_interrupt_queue_element *item, IADDR pc
|
1222 |
|
|
)
|
1223 |
|
|
{
|
1224 |
|
|
USI new_pc;
|
1225 |
|
|
struct frv_interrupt *interrupt = & frv_interrupt_table[item->kind];
|
1226 |
|
|
|
1227 |
|
|
/* Don't process the interrupt if PSR.ET is not set or if it is masked.
|
1228 |
|
|
Interrupt 15 is processed even if it appears to be masked. */
|
1229 |
|
|
if (! GET_H_PSR_ET ()
|
1230 |
|
|
|| (interrupt->kind != FRV_INTERRUPT_LEVEL_15
|
1231 |
|
|
&& interrupt->kind < GET_H_PSR_PIL ()))
|
1232 |
|
|
return; /* Leave it for later. */
|
1233 |
|
|
|
1234 |
|
|
/* Remove the interrupt from the queue. */
|
1235 |
|
|
--frv_interrupt_state.queue_index;
|
1236 |
|
|
|
1237 |
|
|
/* PCSR=PC
|
1238 |
|
|
PSR.PS=PSR.S
|
1239 |
|
|
PSR.ET=0
|
1240 |
|
|
PSR.S=1
|
1241 |
|
|
if PSR.ESR==1
|
1242 |
|
|
SR0 through SR3=GR4 through GR7
|
1243 |
|
|
TBR.TT=interrupt handler offset
|
1244 |
|
|
PC=TBR
|
1245 |
|
|
*/
|
1246 |
|
|
SET_H_PSR_PS (GET_H_PSR_S ());
|
1247 |
|
|
SET_H_PSR_ET (0);
|
1248 |
|
|
SET_H_PSR_S (1);
|
1249 |
|
|
/* Must set PSR.S first to allow access to supervisor-only spr registers. */
|
1250 |
|
|
SET_H_SPR (H_SPR_PCSR, GET_H_PC ());
|
1251 |
|
|
|
1252 |
|
|
/* Set the new PC in the TBR. */
|
1253 |
|
|
SET_H_TBR_TT (interrupt->handler_offset);
|
1254 |
|
|
new_pc = GET_H_SPR (H_SPR_TBR);
|
1255 |
|
|
SET_H_PC (new_pc);
|
1256 |
|
|
}
|
1257 |
|
|
|
1258 |
|
|
/* Clear interrupts which fall within the range of classes given. */
|
1259 |
|
|
void
|
1260 |
|
|
frv_clear_interrupt_classes (
|
1261 |
|
|
enum frv_interrupt_class low_class, enum frv_interrupt_class high_class
|
1262 |
|
|
)
|
1263 |
|
|
{
|
1264 |
|
|
int i;
|
1265 |
|
|
int j;
|
1266 |
|
|
int limit = frv_interrupt_state.queue_index;
|
1267 |
|
|
|
1268 |
|
|
/* Find the lowest priority interrupt to be removed. */
|
1269 |
|
|
for (i = 0; i < limit; ++i)
|
1270 |
|
|
{
|
1271 |
|
|
enum frv_interrupt_kind kind = frv_interrupt_state.queue[i].kind;
|
1272 |
|
|
struct frv_interrupt* interrupt = & frv_interrupt_table[kind];
|
1273 |
|
|
if (interrupt->iclass >= low_class)
|
1274 |
|
|
break;
|
1275 |
|
|
}
|
1276 |
|
|
|
1277 |
|
|
/* Find the highest priority interrupt to be removed. */
|
1278 |
|
|
for (j = limit - 1; j >= i; --j)
|
1279 |
|
|
{
|
1280 |
|
|
enum frv_interrupt_kind kind = frv_interrupt_state.queue[j].kind;
|
1281 |
|
|
struct frv_interrupt* interrupt = & frv_interrupt_table[kind];
|
1282 |
|
|
if (interrupt->iclass <= high_class)
|
1283 |
|
|
break;
|
1284 |
|
|
}
|
1285 |
|
|
|
1286 |
|
|
/* Shuffle the remaining high priority interrupts down into the empty space
|
1287 |
|
|
left by the deleted interrupts. */
|
1288 |
|
|
if (j >= i)
|
1289 |
|
|
{
|
1290 |
|
|
for (++j; j < limit; ++j)
|
1291 |
|
|
frv_interrupt_state.queue[i++] = frv_interrupt_state.queue[j];
|
1292 |
|
|
frv_interrupt_state.queue_index -= (j - i);
|
1293 |
|
|
}
|
1294 |
|
|
}
|
1295 |
|
|
|
1296 |
|
|
/* Save data written to memory into the interrupt state so that it can be
|
1297 |
|
|
copied to the appropriate EDR register, if necessary, in the event of an
|
1298 |
|
|
interrupt. */
|
1299 |
|
|
void
|
1300 |
|
|
frv_save_data_written_for_interrupts (
|
1301 |
|
|
SIM_CPU *current_cpu, CGEN_WRITE_QUEUE_ELEMENT *item
|
1302 |
|
|
)
|
1303 |
|
|
{
|
1304 |
|
|
/* Record the slot containing the insn doing the write in the
|
1305 |
|
|
interrupt state. */
|
1306 |
|
|
frv_interrupt_state.slot = CGEN_WRITE_QUEUE_ELEMENT_PIPE (item);
|
1307 |
|
|
|
1308 |
|
|
/* Now record any data written to memory in the interrupt state. */
|
1309 |
|
|
switch (CGEN_WRITE_QUEUE_ELEMENT_KIND (item))
|
1310 |
|
|
{
|
1311 |
|
|
case CGEN_BI_WRITE:
|
1312 |
|
|
case CGEN_QI_WRITE:
|
1313 |
|
|
case CGEN_SI_WRITE:
|
1314 |
|
|
case CGEN_SF_WRITE:
|
1315 |
|
|
case CGEN_PC_WRITE:
|
1316 |
|
|
case CGEN_FN_HI_WRITE:
|
1317 |
|
|
case CGEN_FN_SI_WRITE:
|
1318 |
|
|
case CGEN_FN_SF_WRITE:
|
1319 |
|
|
case CGEN_FN_DI_WRITE:
|
1320 |
|
|
case CGEN_FN_DF_WRITE:
|
1321 |
|
|
case CGEN_FN_XI_WRITE:
|
1322 |
|
|
case CGEN_FN_PC_WRITE:
|
1323 |
|
|
break; /* Ignore writes to registers. */
|
1324 |
|
|
case CGEN_MEM_QI_WRITE:
|
1325 |
|
|
frv_interrupt_state.data_written.length = 1;
|
1326 |
|
|
frv_interrupt_state.data_written.words[0]
|
1327 |
|
|
= item->kinds.mem_qi_write.value;
|
1328 |
|
|
break;
|
1329 |
|
|
case CGEN_MEM_HI_WRITE:
|
1330 |
|
|
frv_interrupt_state.data_written.length = 1;
|
1331 |
|
|
frv_interrupt_state.data_written.words[0]
|
1332 |
|
|
= item->kinds.mem_hi_write.value;
|
1333 |
|
|
break;
|
1334 |
|
|
case CGEN_MEM_SI_WRITE:
|
1335 |
|
|
frv_interrupt_state.data_written.length = 1;
|
1336 |
|
|
frv_interrupt_state.data_written.words[0]
|
1337 |
|
|
= item->kinds.mem_si_write.value;
|
1338 |
|
|
break;
|
1339 |
|
|
case CGEN_MEM_DI_WRITE:
|
1340 |
|
|
frv_interrupt_state.data_written.length = 2;
|
1341 |
|
|
frv_interrupt_state.data_written.words[0]
|
1342 |
|
|
= item->kinds.mem_di_write.value >> 32;
|
1343 |
|
|
frv_interrupt_state.data_written.words[1]
|
1344 |
|
|
= item->kinds.mem_di_write.value;
|
1345 |
|
|
break;
|
1346 |
|
|
case CGEN_MEM_DF_WRITE:
|
1347 |
|
|
frv_interrupt_state.data_written.length = 2;
|
1348 |
|
|
frv_interrupt_state.data_written.words[0]
|
1349 |
|
|
= item->kinds.mem_df_write.value >> 32;
|
1350 |
|
|
frv_interrupt_state.data_written.words[1]
|
1351 |
|
|
= item->kinds.mem_df_write.value;
|
1352 |
|
|
break;
|
1353 |
|
|
case CGEN_MEM_XI_WRITE:
|
1354 |
|
|
frv_interrupt_state.data_written.length = 4;
|
1355 |
|
|
frv_interrupt_state.data_written.words[0]
|
1356 |
|
|
= item->kinds.mem_xi_write.value[0];
|
1357 |
|
|
frv_interrupt_state.data_written.words[1]
|
1358 |
|
|
= item->kinds.mem_xi_write.value[1];
|
1359 |
|
|
frv_interrupt_state.data_written.words[2]
|
1360 |
|
|
= item->kinds.mem_xi_write.value[2];
|
1361 |
|
|
frv_interrupt_state.data_written.words[3]
|
1362 |
|
|
= item->kinds.mem_xi_write.value[3];
|
1363 |
|
|
break;
|
1364 |
|
|
case CGEN_FN_MEM_QI_WRITE:
|
1365 |
|
|
frv_interrupt_state.data_written.length = 1;
|
1366 |
|
|
frv_interrupt_state.data_written.words[0]
|
1367 |
|
|
= item->kinds.fn_mem_qi_write.value;
|
1368 |
|
|
break;
|
1369 |
|
|
case CGEN_FN_MEM_HI_WRITE:
|
1370 |
|
|
frv_interrupt_state.data_written.length = 1;
|
1371 |
|
|
frv_interrupt_state.data_written.words[0]
|
1372 |
|
|
= item->kinds.fn_mem_hi_write.value;
|
1373 |
|
|
break;
|
1374 |
|
|
case CGEN_FN_MEM_SI_WRITE:
|
1375 |
|
|
frv_interrupt_state.data_written.length = 1;
|
1376 |
|
|
frv_interrupt_state.data_written.words[0]
|
1377 |
|
|
= item->kinds.fn_mem_si_write.value;
|
1378 |
|
|
break;
|
1379 |
|
|
case CGEN_FN_MEM_DI_WRITE:
|
1380 |
|
|
frv_interrupt_state.data_written.length = 2;
|
1381 |
|
|
frv_interrupt_state.data_written.words[0]
|
1382 |
|
|
= item->kinds.fn_mem_di_write.value >> 32;
|
1383 |
|
|
frv_interrupt_state.data_written.words[1]
|
1384 |
|
|
= item->kinds.fn_mem_di_write.value;
|
1385 |
|
|
break;
|
1386 |
|
|
case CGEN_FN_MEM_DF_WRITE:
|
1387 |
|
|
frv_interrupt_state.data_written.length = 2;
|
1388 |
|
|
frv_interrupt_state.data_written.words[0]
|
1389 |
|
|
= item->kinds.fn_mem_df_write.value >> 32;
|
1390 |
|
|
frv_interrupt_state.data_written.words[1]
|
1391 |
|
|
= item->kinds.fn_mem_df_write.value;
|
1392 |
|
|
break;
|
1393 |
|
|
case CGEN_FN_MEM_XI_WRITE:
|
1394 |
|
|
frv_interrupt_state.data_written.length = 4;
|
1395 |
|
|
frv_interrupt_state.data_written.words[0]
|
1396 |
|
|
= item->kinds.fn_mem_xi_write.value[0];
|
1397 |
|
|
frv_interrupt_state.data_written.words[1]
|
1398 |
|
|
= item->kinds.fn_mem_xi_write.value[1];
|
1399 |
|
|
frv_interrupt_state.data_written.words[2]
|
1400 |
|
|
= item->kinds.fn_mem_xi_write.value[2];
|
1401 |
|
|
frv_interrupt_state.data_written.words[3]
|
1402 |
|
|
= item->kinds.fn_mem_xi_write.value[3];
|
1403 |
|
|
break;
|
1404 |
|
|
default:
|
1405 |
|
|
{
|
1406 |
|
|
SIM_DESC sd = CPU_STATE (current_cpu);
|
1407 |
|
|
IADDR pc = CPU_PC_GET (current_cpu);
|
1408 |
|
|
sim_engine_abort (sd, current_cpu, pc,
|
1409 |
|
|
"unknown write kind during save for interrupt\n");
|
1410 |
|
|
}
|
1411 |
|
|
break;
|
1412 |
|
|
}
|
1413 |
|
|
}
|