1 |
330 |
jeremybenn |
/* frv memory model.
|
2 |
|
|
Copyright (C) 1999, 2000, 2001, 2003, 2007, 2008, 2009, 2010
|
3 |
|
|
Free Software Foundation, Inc.
|
4 |
|
|
Contributed by Red Hat
|
5 |
|
|
|
6 |
|
|
This file is part of the GNU simulators.
|
7 |
|
|
|
8 |
|
|
This program is free software; you can redistribute it and/or modify
|
9 |
|
|
it under the terms of the GNU General Public License as published by
|
10 |
|
|
the Free Software Foundation; either version 3 of the License, or
|
11 |
|
|
(at your option) any later version.
|
12 |
|
|
|
13 |
|
|
This program is distributed in the hope that it will be useful,
|
14 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
15 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
16 |
|
|
GNU General Public License for more details.
|
17 |
|
|
|
18 |
|
|
You should have received a copy of the GNU General Public License
|
19 |
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
20 |
|
|
|
21 |
|
|
#define WANT_CPU frvbf
|
22 |
|
|
#define WANT_CPU_FRVBF
|
23 |
|
|
|
24 |
|
|
#include "sim-main.h"
|
25 |
|
|
#include "cgen-mem.h"
|
26 |
|
|
#include "bfd.h"
|
27 |
|
|
|
28 |
|
|
/* Check for alignment and access restrictions. Return the corrected address.
|
29 |
|
|
*/
|
30 |
|
|
static SI
|
31 |
|
|
fr400_check_data_read_address (SIM_CPU *current_cpu, SI address, int align_mask)
|
32 |
|
|
{
|
33 |
|
|
/* Check access restrictions for double word loads only. */
|
34 |
|
|
if (align_mask == 7)
|
35 |
|
|
{
|
36 |
|
|
if ((USI)address >= 0xfe800000 && (USI)address <= 0xfeffffff)
|
37 |
|
|
frv_queue_data_access_error_interrupt (current_cpu, address);
|
38 |
|
|
}
|
39 |
|
|
return address;
|
40 |
|
|
}
|
41 |
|
|
|
42 |
|
|
static SI
|
43 |
|
|
fr500_check_data_read_address (SIM_CPU *current_cpu, SI address, int align_mask)
|
44 |
|
|
{
|
45 |
|
|
if (address & align_mask)
|
46 |
|
|
{
|
47 |
|
|
frv_queue_mem_address_not_aligned_interrupt (current_cpu, address);
|
48 |
|
|
address &= ~align_mask;
|
49 |
|
|
}
|
50 |
|
|
|
51 |
|
|
if ((USI)address >= 0xfeff0600 && (USI)address <= 0xfeff7fff
|
52 |
|
|
|| (USI)address >= 0xfe800000 && (USI)address <= 0xfefeffff)
|
53 |
|
|
frv_queue_data_access_error_interrupt (current_cpu, address);
|
54 |
|
|
|
55 |
|
|
return address;
|
56 |
|
|
}
|
57 |
|
|
|
58 |
|
|
static SI
|
59 |
|
|
fr550_check_data_read_address (SIM_CPU *current_cpu, SI address, int align_mask)
|
60 |
|
|
{
|
61 |
|
|
if ((USI)address >= 0xfe800000 && (USI)address <= 0xfefeffff
|
62 |
|
|
|| (align_mask > 0x3
|
63 |
|
|
&& ((USI)address >= 0xfeff0000 && (USI)address <= 0xfeffffff)))
|
64 |
|
|
frv_queue_data_access_error_interrupt (current_cpu, address);
|
65 |
|
|
|
66 |
|
|
return address;
|
67 |
|
|
}
|
68 |
|
|
|
69 |
|
|
static SI
|
70 |
|
|
check_data_read_address (SIM_CPU *current_cpu, SI address, int align_mask)
|
71 |
|
|
{
|
72 |
|
|
SIM_DESC sd = CPU_STATE (current_cpu);
|
73 |
|
|
switch (STATE_ARCHITECTURE (sd)->mach)
|
74 |
|
|
{
|
75 |
|
|
case bfd_mach_fr400:
|
76 |
|
|
case bfd_mach_fr450:
|
77 |
|
|
address = fr400_check_data_read_address (current_cpu, address,
|
78 |
|
|
align_mask);
|
79 |
|
|
break;
|
80 |
|
|
case bfd_mach_frvtomcat:
|
81 |
|
|
case bfd_mach_fr500:
|
82 |
|
|
case bfd_mach_frv:
|
83 |
|
|
address = fr500_check_data_read_address (current_cpu, address,
|
84 |
|
|
align_mask);
|
85 |
|
|
break;
|
86 |
|
|
case bfd_mach_fr550:
|
87 |
|
|
address = fr550_check_data_read_address (current_cpu, address,
|
88 |
|
|
align_mask);
|
89 |
|
|
break;
|
90 |
|
|
default:
|
91 |
|
|
break;
|
92 |
|
|
}
|
93 |
|
|
|
94 |
|
|
return address;
|
95 |
|
|
}
|
96 |
|
|
|
97 |
|
|
static SI
|
98 |
|
|
fr400_check_readwrite_address (SIM_CPU *current_cpu, SI address, int align_mask)
|
99 |
|
|
{
|
100 |
|
|
if (address & align_mask)
|
101 |
|
|
{
|
102 |
|
|
/* Make sure that this exception is not masked. */
|
103 |
|
|
USI isr = GET_ISR ();
|
104 |
|
|
if (! GET_ISR_EMAM (isr))
|
105 |
|
|
{
|
106 |
|
|
/* Bad alignment causes a data_access_error on fr400. */
|
107 |
|
|
frv_queue_data_access_error_interrupt (current_cpu, address);
|
108 |
|
|
}
|
109 |
|
|
address &= ~align_mask;
|
110 |
|
|
}
|
111 |
|
|
/* Nothing to check. */
|
112 |
|
|
return address;
|
113 |
|
|
}
|
114 |
|
|
|
115 |
|
|
static SI
|
116 |
|
|
fr500_check_readwrite_address (SIM_CPU *current_cpu, SI address, int align_mask)
|
117 |
|
|
{
|
118 |
|
|
if ((USI)address >= 0xfe000000 && (USI)address <= 0xfe003fff
|
119 |
|
|
|| (USI)address >= 0xfe004000 && (USI)address <= 0xfe3fffff
|
120 |
|
|
|| (USI)address >= 0xfe400000 && (USI)address <= 0xfe403fff
|
121 |
|
|
|| (USI)address >= 0xfe404000 && (USI)address <= 0xfe7fffff)
|
122 |
|
|
frv_queue_data_access_exception_interrupt (current_cpu);
|
123 |
|
|
|
124 |
|
|
return address;
|
125 |
|
|
}
|
126 |
|
|
|
127 |
|
|
static SI
|
128 |
|
|
fr550_check_readwrite_address (SIM_CPU *current_cpu, SI address, int align_mask)
|
129 |
|
|
{
|
130 |
|
|
/* No alignment restrictions on fr550 */
|
131 |
|
|
|
132 |
|
|
if ((USI)address >= 0xfe000000 && (USI)address <= 0xfe3fffff
|
133 |
|
|
|| (USI)address >= 0xfe408000 && (USI)address <= 0xfe7fffff)
|
134 |
|
|
frv_queue_data_access_exception_interrupt (current_cpu);
|
135 |
|
|
else
|
136 |
|
|
{
|
137 |
|
|
USI hsr0 = GET_HSR0 ();
|
138 |
|
|
if (! GET_HSR0_RME (hsr0)
|
139 |
|
|
&& (USI)address >= 0xfe400000 && (USI)address <= 0xfe407fff)
|
140 |
|
|
frv_queue_data_access_exception_interrupt (current_cpu);
|
141 |
|
|
}
|
142 |
|
|
|
143 |
|
|
return address;
|
144 |
|
|
}
|
145 |
|
|
|
146 |
|
|
static SI
|
147 |
|
|
check_readwrite_address (SIM_CPU *current_cpu, SI address, int align_mask)
|
148 |
|
|
{
|
149 |
|
|
SIM_DESC sd = CPU_STATE (current_cpu);
|
150 |
|
|
switch (STATE_ARCHITECTURE (sd)->mach)
|
151 |
|
|
{
|
152 |
|
|
case bfd_mach_fr400:
|
153 |
|
|
case bfd_mach_fr450:
|
154 |
|
|
address = fr400_check_readwrite_address (current_cpu, address,
|
155 |
|
|
align_mask);
|
156 |
|
|
break;
|
157 |
|
|
case bfd_mach_frvtomcat:
|
158 |
|
|
case bfd_mach_fr500:
|
159 |
|
|
case bfd_mach_frv:
|
160 |
|
|
address = fr500_check_readwrite_address (current_cpu, address,
|
161 |
|
|
align_mask);
|
162 |
|
|
break;
|
163 |
|
|
case bfd_mach_fr550:
|
164 |
|
|
address = fr550_check_readwrite_address (current_cpu, address,
|
165 |
|
|
align_mask);
|
166 |
|
|
break;
|
167 |
|
|
default:
|
168 |
|
|
break;
|
169 |
|
|
}
|
170 |
|
|
|
171 |
|
|
return address;
|
172 |
|
|
}
|
173 |
|
|
|
174 |
|
|
static PCADDR
|
175 |
|
|
fr400_check_insn_read_address (SIM_CPU *current_cpu, PCADDR address,
|
176 |
|
|
int align_mask)
|
177 |
|
|
{
|
178 |
|
|
if (address & align_mask)
|
179 |
|
|
{
|
180 |
|
|
frv_queue_instruction_access_error_interrupt (current_cpu);
|
181 |
|
|
address &= ~align_mask;
|
182 |
|
|
}
|
183 |
|
|
else if ((USI)address >= 0xfe800000 && (USI)address <= 0xfeffffff)
|
184 |
|
|
frv_queue_instruction_access_error_interrupt (current_cpu);
|
185 |
|
|
|
186 |
|
|
return address;
|
187 |
|
|
}
|
188 |
|
|
|
189 |
|
|
static PCADDR
|
190 |
|
|
fr500_check_insn_read_address (SIM_CPU *current_cpu, PCADDR address,
|
191 |
|
|
int align_mask)
|
192 |
|
|
{
|
193 |
|
|
if (address & align_mask)
|
194 |
|
|
{
|
195 |
|
|
frv_queue_mem_address_not_aligned_interrupt (current_cpu, address);
|
196 |
|
|
address &= ~align_mask;
|
197 |
|
|
}
|
198 |
|
|
|
199 |
|
|
if ((USI)address >= 0xfeff0600 && (USI)address <= 0xfeff7fff
|
200 |
|
|
|| (USI)address >= 0xfe800000 && (USI)address <= 0xfefeffff)
|
201 |
|
|
frv_queue_instruction_access_error_interrupt (current_cpu);
|
202 |
|
|
else if ((USI)address >= 0xfe004000 && (USI)address <= 0xfe3fffff
|
203 |
|
|
|| (USI)address >= 0xfe400000 && (USI)address <= 0xfe403fff
|
204 |
|
|
|| (USI)address >= 0xfe404000 && (USI)address <= 0xfe7fffff)
|
205 |
|
|
frv_queue_instruction_access_exception_interrupt (current_cpu);
|
206 |
|
|
else
|
207 |
|
|
{
|
208 |
|
|
USI hsr0 = GET_HSR0 ();
|
209 |
|
|
if (! GET_HSR0_RME (hsr0)
|
210 |
|
|
&& (USI)address >= 0xfe000000 && (USI)address <= 0xfe003fff)
|
211 |
|
|
frv_queue_instruction_access_exception_interrupt (current_cpu);
|
212 |
|
|
}
|
213 |
|
|
|
214 |
|
|
return address;
|
215 |
|
|
}
|
216 |
|
|
|
217 |
|
|
static PCADDR
|
218 |
|
|
fr550_check_insn_read_address (SIM_CPU *current_cpu, PCADDR address,
|
219 |
|
|
int align_mask)
|
220 |
|
|
{
|
221 |
|
|
address &= ~align_mask;
|
222 |
|
|
|
223 |
|
|
if ((USI)address >= 0xfe800000 && (USI)address <= 0xfeffffff)
|
224 |
|
|
frv_queue_instruction_access_error_interrupt (current_cpu);
|
225 |
|
|
else if ((USI)address >= 0xfe008000 && (USI)address <= 0xfe7fffff)
|
226 |
|
|
frv_queue_instruction_access_exception_interrupt (current_cpu);
|
227 |
|
|
else
|
228 |
|
|
{
|
229 |
|
|
USI hsr0 = GET_HSR0 ();
|
230 |
|
|
if (! GET_HSR0_RME (hsr0)
|
231 |
|
|
&& (USI)address >= 0xfe000000 && (USI)address <= 0xfe007fff)
|
232 |
|
|
frv_queue_instruction_access_exception_interrupt (current_cpu);
|
233 |
|
|
}
|
234 |
|
|
|
235 |
|
|
return address;
|
236 |
|
|
}
|
237 |
|
|
|
238 |
|
|
static PCADDR
|
239 |
|
|
check_insn_read_address (SIM_CPU *current_cpu, PCADDR address, int align_mask)
|
240 |
|
|
{
|
241 |
|
|
SIM_DESC sd = CPU_STATE (current_cpu);
|
242 |
|
|
switch (STATE_ARCHITECTURE (sd)->mach)
|
243 |
|
|
{
|
244 |
|
|
case bfd_mach_fr400:
|
245 |
|
|
case bfd_mach_fr450:
|
246 |
|
|
address = fr400_check_insn_read_address (current_cpu, address,
|
247 |
|
|
align_mask);
|
248 |
|
|
break;
|
249 |
|
|
case bfd_mach_frvtomcat:
|
250 |
|
|
case bfd_mach_fr500:
|
251 |
|
|
case bfd_mach_frv:
|
252 |
|
|
address = fr500_check_insn_read_address (current_cpu, address,
|
253 |
|
|
align_mask);
|
254 |
|
|
break;
|
255 |
|
|
case bfd_mach_fr550:
|
256 |
|
|
address = fr550_check_insn_read_address (current_cpu, address,
|
257 |
|
|
align_mask);
|
258 |
|
|
break;
|
259 |
|
|
default:
|
260 |
|
|
break;
|
261 |
|
|
}
|
262 |
|
|
|
263 |
|
|
return address;
|
264 |
|
|
}
|
265 |
|
|
|
266 |
|
|
/* Memory reads. */
|
267 |
|
|
QI
|
268 |
|
|
frvbf_read_mem_QI (SIM_CPU *current_cpu, IADDR pc, SI address)
|
269 |
|
|
{
|
270 |
|
|
USI hsr0 = GET_HSR0 ();
|
271 |
|
|
FRV_CACHE *cache = CPU_DATA_CACHE (current_cpu);
|
272 |
|
|
|
273 |
|
|
/* Check for access exceptions. */
|
274 |
|
|
address = check_data_read_address (current_cpu, address, 0);
|
275 |
|
|
address = check_readwrite_address (current_cpu, address, 0);
|
276 |
|
|
|
277 |
|
|
/* If we need to count cycles, then the cache operation will be
|
278 |
|
|
initiated from the model profiling functions.
|
279 |
|
|
See frvbf_model_.... */
|
280 |
|
|
if (model_insn)
|
281 |
|
|
{
|
282 |
|
|
CPU_LOAD_ADDRESS (current_cpu) = address;
|
283 |
|
|
CPU_LOAD_LENGTH (current_cpu) = 1;
|
284 |
|
|
CPU_LOAD_SIGNED (current_cpu) = 1;
|
285 |
|
|
return 0xb7; /* any random value */
|
286 |
|
|
}
|
287 |
|
|
|
288 |
|
|
if (GET_HSR0_DCE (hsr0))
|
289 |
|
|
{
|
290 |
|
|
int cycles;
|
291 |
|
|
cycles = frv_cache_read (cache, 0, address);
|
292 |
|
|
if (cycles != 0)
|
293 |
|
|
return CACHE_RETURN_DATA (cache, 0, address, QI, 1);
|
294 |
|
|
}
|
295 |
|
|
|
296 |
|
|
return GETMEMQI (current_cpu, pc, address);
|
297 |
|
|
}
|
298 |
|
|
|
299 |
|
|
UQI
|
300 |
|
|
frvbf_read_mem_UQI (SIM_CPU *current_cpu, IADDR pc, SI address)
|
301 |
|
|
{
|
302 |
|
|
USI hsr0 = GET_HSR0 ();
|
303 |
|
|
FRV_CACHE *cache = CPU_DATA_CACHE (current_cpu);
|
304 |
|
|
|
305 |
|
|
/* Check for access exceptions. */
|
306 |
|
|
address = check_data_read_address (current_cpu, address, 0);
|
307 |
|
|
address = check_readwrite_address (current_cpu, address, 0);
|
308 |
|
|
|
309 |
|
|
/* If we need to count cycles, then the cache operation will be
|
310 |
|
|
initiated from the model profiling functions.
|
311 |
|
|
See frvbf_model_.... */
|
312 |
|
|
if (model_insn)
|
313 |
|
|
{
|
314 |
|
|
CPU_LOAD_ADDRESS (current_cpu) = address;
|
315 |
|
|
CPU_LOAD_LENGTH (current_cpu) = 1;
|
316 |
|
|
CPU_LOAD_SIGNED (current_cpu) = 0;
|
317 |
|
|
return 0xb7; /* any random value */
|
318 |
|
|
}
|
319 |
|
|
|
320 |
|
|
if (GET_HSR0_DCE (hsr0))
|
321 |
|
|
{
|
322 |
|
|
int cycles;
|
323 |
|
|
cycles = frv_cache_read (cache, 0, address);
|
324 |
|
|
if (cycles != 0)
|
325 |
|
|
return CACHE_RETURN_DATA (cache, 0, address, UQI, 1);
|
326 |
|
|
}
|
327 |
|
|
|
328 |
|
|
return GETMEMUQI (current_cpu, pc, address);
|
329 |
|
|
}
|
330 |
|
|
|
331 |
|
|
/* Read a HI which spans two cache lines */
|
332 |
|
|
static HI
|
333 |
|
|
read_mem_unaligned_HI (SIM_CPU *current_cpu, IADDR pc, SI address)
|
334 |
|
|
{
|
335 |
|
|
HI value = frvbf_read_mem_QI (current_cpu, pc, address);
|
336 |
|
|
value <<= 8;
|
337 |
|
|
value |= frvbf_read_mem_UQI (current_cpu, pc, address + 1);
|
338 |
|
|
return T2H_2 (value);
|
339 |
|
|
}
|
340 |
|
|
|
341 |
|
|
HI
|
342 |
|
|
frvbf_read_mem_HI (SIM_CPU *current_cpu, IADDR pc, SI address)
|
343 |
|
|
{
|
344 |
|
|
USI hsr0;
|
345 |
|
|
FRV_CACHE *cache;
|
346 |
|
|
|
347 |
|
|
/* Check for access exceptions. */
|
348 |
|
|
address = check_data_read_address (current_cpu, address, 1);
|
349 |
|
|
address = check_readwrite_address (current_cpu, address, 1);
|
350 |
|
|
|
351 |
|
|
/* If we need to count cycles, then the cache operation will be
|
352 |
|
|
initiated from the model profiling functions.
|
353 |
|
|
See frvbf_model_.... */
|
354 |
|
|
hsr0 = GET_HSR0 ();
|
355 |
|
|
cache = CPU_DATA_CACHE (current_cpu);
|
356 |
|
|
if (model_insn)
|
357 |
|
|
{
|
358 |
|
|
CPU_LOAD_ADDRESS (current_cpu) = address;
|
359 |
|
|
CPU_LOAD_LENGTH (current_cpu) = 2;
|
360 |
|
|
CPU_LOAD_SIGNED (current_cpu) = 1;
|
361 |
|
|
return 0xb711; /* any random value */
|
362 |
|
|
}
|
363 |
|
|
|
364 |
|
|
if (GET_HSR0_DCE (hsr0))
|
365 |
|
|
{
|
366 |
|
|
int cycles;
|
367 |
|
|
/* Handle access which crosses cache line boundary */
|
368 |
|
|
SIM_DESC sd = CPU_STATE (current_cpu);
|
369 |
|
|
if (STATE_ARCHITECTURE (sd)->mach == bfd_mach_fr550)
|
370 |
|
|
{
|
371 |
|
|
if (DATA_CROSSES_CACHE_LINE (cache, address, 2))
|
372 |
|
|
return read_mem_unaligned_HI (current_cpu, pc, address);
|
373 |
|
|
}
|
374 |
|
|
cycles = frv_cache_read (cache, 0, address);
|
375 |
|
|
if (cycles != 0)
|
376 |
|
|
return CACHE_RETURN_DATA (cache, 0, address, HI, 2);
|
377 |
|
|
}
|
378 |
|
|
|
379 |
|
|
return GETMEMHI (current_cpu, pc, address);
|
380 |
|
|
}
|
381 |
|
|
|
382 |
|
|
UHI
|
383 |
|
|
frvbf_read_mem_UHI (SIM_CPU *current_cpu, IADDR pc, SI address)
|
384 |
|
|
{
|
385 |
|
|
USI hsr0;
|
386 |
|
|
FRV_CACHE *cache;
|
387 |
|
|
|
388 |
|
|
/* Check for access exceptions. */
|
389 |
|
|
address = check_data_read_address (current_cpu, address, 1);
|
390 |
|
|
address = check_readwrite_address (current_cpu, address, 1);
|
391 |
|
|
|
392 |
|
|
/* If we need to count cycles, then the cache operation will be
|
393 |
|
|
initiated from the model profiling functions.
|
394 |
|
|
See frvbf_model_.... */
|
395 |
|
|
hsr0 = GET_HSR0 ();
|
396 |
|
|
cache = CPU_DATA_CACHE (current_cpu);
|
397 |
|
|
if (model_insn)
|
398 |
|
|
{
|
399 |
|
|
CPU_LOAD_ADDRESS (current_cpu) = address;
|
400 |
|
|
CPU_LOAD_LENGTH (current_cpu) = 2;
|
401 |
|
|
CPU_LOAD_SIGNED (current_cpu) = 0;
|
402 |
|
|
return 0xb711; /* any random value */
|
403 |
|
|
}
|
404 |
|
|
|
405 |
|
|
if (GET_HSR0_DCE (hsr0))
|
406 |
|
|
{
|
407 |
|
|
int cycles;
|
408 |
|
|
/* Handle access which crosses cache line boundary */
|
409 |
|
|
SIM_DESC sd = CPU_STATE (current_cpu);
|
410 |
|
|
if (STATE_ARCHITECTURE (sd)->mach == bfd_mach_fr550)
|
411 |
|
|
{
|
412 |
|
|
if (DATA_CROSSES_CACHE_LINE (cache, address, 2))
|
413 |
|
|
return read_mem_unaligned_HI (current_cpu, pc, address);
|
414 |
|
|
}
|
415 |
|
|
cycles = frv_cache_read (cache, 0, address);
|
416 |
|
|
if (cycles != 0)
|
417 |
|
|
return CACHE_RETURN_DATA (cache, 0, address, UHI, 2);
|
418 |
|
|
}
|
419 |
|
|
|
420 |
|
|
return GETMEMUHI (current_cpu, pc, address);
|
421 |
|
|
}
|
422 |
|
|
|
423 |
|
|
/* Read a SI which spans two cache lines */
|
424 |
|
|
static SI
|
425 |
|
|
read_mem_unaligned_SI (SIM_CPU *current_cpu, IADDR pc, SI address)
|
426 |
|
|
{
|
427 |
|
|
FRV_CACHE *cache = CPU_DATA_CACHE (current_cpu);
|
428 |
|
|
unsigned hi_len = cache->line_size - (address & (cache->line_size - 1));
|
429 |
|
|
char valarray[4];
|
430 |
|
|
SI SIvalue;
|
431 |
|
|
HI HIvalue;
|
432 |
|
|
|
433 |
|
|
switch (hi_len)
|
434 |
|
|
{
|
435 |
|
|
case 1:
|
436 |
|
|
valarray[0] = frvbf_read_mem_QI (current_cpu, pc, address);
|
437 |
|
|
SIvalue = frvbf_read_mem_SI (current_cpu, pc, address + 1);
|
438 |
|
|
SIvalue = H2T_4 (SIvalue);
|
439 |
|
|
memcpy (valarray + 1, (char*)&SIvalue, 3);
|
440 |
|
|
break;
|
441 |
|
|
case 2:
|
442 |
|
|
HIvalue = frvbf_read_mem_HI (current_cpu, pc, address);
|
443 |
|
|
HIvalue = H2T_2 (HIvalue);
|
444 |
|
|
memcpy (valarray, (char*)&HIvalue, 2);
|
445 |
|
|
HIvalue = frvbf_read_mem_HI (current_cpu, pc, address + 2);
|
446 |
|
|
HIvalue = H2T_2 (HIvalue);
|
447 |
|
|
memcpy (valarray + 2, (char*)&HIvalue, 2);
|
448 |
|
|
break;
|
449 |
|
|
case 3:
|
450 |
|
|
SIvalue = frvbf_read_mem_SI (current_cpu, pc, address - 1);
|
451 |
|
|
SIvalue = H2T_4 (SIvalue);
|
452 |
|
|
memcpy (valarray, (char*)&SIvalue, 3);
|
453 |
|
|
valarray[3] = frvbf_read_mem_QI (current_cpu, pc, address + 3);
|
454 |
|
|
break;
|
455 |
|
|
default:
|
456 |
|
|
abort (); /* can't happen */
|
457 |
|
|
}
|
458 |
|
|
return T2H_4 (*(SI*)valarray);
|
459 |
|
|
}
|
460 |
|
|
|
461 |
|
|
SI
|
462 |
|
|
frvbf_read_mem_SI (SIM_CPU *current_cpu, IADDR pc, SI address)
|
463 |
|
|
{
|
464 |
|
|
FRV_CACHE *cache;
|
465 |
|
|
USI hsr0;
|
466 |
|
|
|
467 |
|
|
/* Check for access exceptions. */
|
468 |
|
|
address = check_data_read_address (current_cpu, address, 3);
|
469 |
|
|
address = check_readwrite_address (current_cpu, address, 3);
|
470 |
|
|
|
471 |
|
|
hsr0 = GET_HSR0 ();
|
472 |
|
|
cache = CPU_DATA_CACHE (current_cpu);
|
473 |
|
|
/* If we need to count cycles, then the cache operation will be
|
474 |
|
|
initiated from the model profiling functions.
|
475 |
|
|
See frvbf_model_.... */
|
476 |
|
|
if (model_insn)
|
477 |
|
|
{
|
478 |
|
|
CPU_LOAD_ADDRESS (current_cpu) = address;
|
479 |
|
|
CPU_LOAD_LENGTH (current_cpu) = 4;
|
480 |
|
|
return 0x37111319; /* any random value */
|
481 |
|
|
}
|
482 |
|
|
|
483 |
|
|
if (GET_HSR0_DCE (hsr0))
|
484 |
|
|
{
|
485 |
|
|
int cycles;
|
486 |
|
|
/* Handle access which crosses cache line boundary */
|
487 |
|
|
SIM_DESC sd = CPU_STATE (current_cpu);
|
488 |
|
|
if (STATE_ARCHITECTURE (sd)->mach == bfd_mach_fr550)
|
489 |
|
|
{
|
490 |
|
|
if (DATA_CROSSES_CACHE_LINE (cache, address, 4))
|
491 |
|
|
return read_mem_unaligned_SI (current_cpu, pc, address);
|
492 |
|
|
}
|
493 |
|
|
cycles = frv_cache_read (cache, 0, address);
|
494 |
|
|
if (cycles != 0)
|
495 |
|
|
return CACHE_RETURN_DATA (cache, 0, address, SI, 4);
|
496 |
|
|
}
|
497 |
|
|
|
498 |
|
|
return GETMEMSI (current_cpu, pc, address);
|
499 |
|
|
}
|
500 |
|
|
|
501 |
|
|
SI
|
502 |
|
|
frvbf_read_mem_WI (SIM_CPU *current_cpu, IADDR pc, SI address)
|
503 |
|
|
{
|
504 |
|
|
return frvbf_read_mem_SI (current_cpu, pc, address);
|
505 |
|
|
}
|
506 |
|
|
|
507 |
|
|
/* Read a SI which spans two cache lines */
|
508 |
|
|
static DI
|
509 |
|
|
read_mem_unaligned_DI (SIM_CPU *current_cpu, IADDR pc, SI address)
|
510 |
|
|
{
|
511 |
|
|
FRV_CACHE *cache = CPU_DATA_CACHE (current_cpu);
|
512 |
|
|
unsigned hi_len = cache->line_size - (address & (cache->line_size - 1));
|
513 |
|
|
DI value, value1;
|
514 |
|
|
|
515 |
|
|
switch (hi_len)
|
516 |
|
|
{
|
517 |
|
|
case 1:
|
518 |
|
|
value = frvbf_read_mem_QI (current_cpu, pc, address);
|
519 |
|
|
value <<= 56;
|
520 |
|
|
value1 = frvbf_read_mem_DI (current_cpu, pc, address + 1);
|
521 |
|
|
value1 = H2T_8 (value1);
|
522 |
|
|
value |= value1 & ((DI)0x00ffffff << 32);
|
523 |
|
|
value |= value1 & 0xffffffffu;
|
524 |
|
|
break;
|
525 |
|
|
case 2:
|
526 |
|
|
value = frvbf_read_mem_HI (current_cpu, pc, address);
|
527 |
|
|
value = H2T_2 (value);
|
528 |
|
|
value <<= 48;
|
529 |
|
|
value1 = frvbf_read_mem_DI (current_cpu, pc, address + 2);
|
530 |
|
|
value1 = H2T_8 (value1);
|
531 |
|
|
value |= value1 & ((DI)0x0000ffff << 32);
|
532 |
|
|
value |= value1 & 0xffffffffu;
|
533 |
|
|
break;
|
534 |
|
|
case 3:
|
535 |
|
|
value = frvbf_read_mem_SI (current_cpu, pc, address - 1);
|
536 |
|
|
value = H2T_4 (value);
|
537 |
|
|
value <<= 40;
|
538 |
|
|
value1 = frvbf_read_mem_DI (current_cpu, pc, address + 3);
|
539 |
|
|
value1 = H2T_8 (value1);
|
540 |
|
|
value |= value1 & ((DI)0x000000ff << 32);
|
541 |
|
|
value |= value1 & 0xffffffffu;
|
542 |
|
|
break;
|
543 |
|
|
case 4:
|
544 |
|
|
value = frvbf_read_mem_SI (current_cpu, pc, address);
|
545 |
|
|
value = H2T_4 (value);
|
546 |
|
|
value <<= 32;
|
547 |
|
|
value1 = frvbf_read_mem_SI (current_cpu, pc, address + 4);
|
548 |
|
|
value1 = H2T_4 (value1);
|
549 |
|
|
value |= value1 & 0xffffffffu;
|
550 |
|
|
break;
|
551 |
|
|
case 5:
|
552 |
|
|
value = frvbf_read_mem_DI (current_cpu, pc, address - 3);
|
553 |
|
|
value = H2T_8 (value);
|
554 |
|
|
value <<= 24;
|
555 |
|
|
value1 = frvbf_read_mem_SI (current_cpu, pc, address + 5);
|
556 |
|
|
value1 = H2T_4 (value1);
|
557 |
|
|
value |= value1 & 0x00ffffff;
|
558 |
|
|
break;
|
559 |
|
|
case 6:
|
560 |
|
|
value = frvbf_read_mem_DI (current_cpu, pc, address - 2);
|
561 |
|
|
value = H2T_8 (value);
|
562 |
|
|
value <<= 16;
|
563 |
|
|
value1 = frvbf_read_mem_HI (current_cpu, pc, address + 6);
|
564 |
|
|
value1 = H2T_2 (value1);
|
565 |
|
|
value |= value1 & 0x0000ffff;
|
566 |
|
|
break;
|
567 |
|
|
case 7:
|
568 |
|
|
value = frvbf_read_mem_DI (current_cpu, pc, address - 1);
|
569 |
|
|
value = H2T_8 (value);
|
570 |
|
|
value <<= 8;
|
571 |
|
|
value1 = frvbf_read_mem_QI (current_cpu, pc, address + 7);
|
572 |
|
|
value |= value1 & 0x000000ff;
|
573 |
|
|
break;
|
574 |
|
|
default:
|
575 |
|
|
abort (); /* can't happen */
|
576 |
|
|
}
|
577 |
|
|
return T2H_8 (value);
|
578 |
|
|
}
|
579 |
|
|
|
580 |
|
|
DI
|
581 |
|
|
frvbf_read_mem_DI (SIM_CPU *current_cpu, IADDR pc, SI address)
|
582 |
|
|
{
|
583 |
|
|
USI hsr0;
|
584 |
|
|
FRV_CACHE *cache;
|
585 |
|
|
|
586 |
|
|
/* Check for access exceptions. */
|
587 |
|
|
address = check_data_read_address (current_cpu, address, 7);
|
588 |
|
|
address = check_readwrite_address (current_cpu, address, 7);
|
589 |
|
|
|
590 |
|
|
/* If we need to count cycles, then the cache operation will be
|
591 |
|
|
initiated from the model profiling functions.
|
592 |
|
|
See frvbf_model_.... */
|
593 |
|
|
hsr0 = GET_HSR0 ();
|
594 |
|
|
cache = CPU_DATA_CACHE (current_cpu);
|
595 |
|
|
if (model_insn)
|
596 |
|
|
{
|
597 |
|
|
CPU_LOAD_ADDRESS (current_cpu) = address;
|
598 |
|
|
CPU_LOAD_LENGTH (current_cpu) = 8;
|
599 |
|
|
return 0x37111319; /* any random value */
|
600 |
|
|
}
|
601 |
|
|
|
602 |
|
|
if (GET_HSR0_DCE (hsr0))
|
603 |
|
|
{
|
604 |
|
|
int cycles;
|
605 |
|
|
/* Handle access which crosses cache line boundary */
|
606 |
|
|
SIM_DESC sd = CPU_STATE (current_cpu);
|
607 |
|
|
if (STATE_ARCHITECTURE (sd)->mach == bfd_mach_fr550)
|
608 |
|
|
{
|
609 |
|
|
if (DATA_CROSSES_CACHE_LINE (cache, address, 8))
|
610 |
|
|
return read_mem_unaligned_DI (current_cpu, pc, address);
|
611 |
|
|
}
|
612 |
|
|
cycles = frv_cache_read (cache, 0, address);
|
613 |
|
|
if (cycles != 0)
|
614 |
|
|
return CACHE_RETURN_DATA (cache, 0, address, DI, 8);
|
615 |
|
|
}
|
616 |
|
|
|
617 |
|
|
return GETMEMDI (current_cpu, pc, address);
|
618 |
|
|
}
|
619 |
|
|
|
620 |
|
|
DF
|
621 |
|
|
frvbf_read_mem_DF (SIM_CPU *current_cpu, IADDR pc, SI address)
|
622 |
|
|
{
|
623 |
|
|
USI hsr0;
|
624 |
|
|
FRV_CACHE *cache;
|
625 |
|
|
|
626 |
|
|
/* Check for access exceptions. */
|
627 |
|
|
address = check_data_read_address (current_cpu, address, 7);
|
628 |
|
|
address = check_readwrite_address (current_cpu, address, 7);
|
629 |
|
|
|
630 |
|
|
/* If we need to count cycles, then the cache operation will be
|
631 |
|
|
initiated from the model profiling functions.
|
632 |
|
|
See frvbf_model_.... */
|
633 |
|
|
hsr0 = GET_HSR0 ();
|
634 |
|
|
cache = CPU_DATA_CACHE (current_cpu);
|
635 |
|
|
if (model_insn)
|
636 |
|
|
{
|
637 |
|
|
CPU_LOAD_ADDRESS (current_cpu) = address;
|
638 |
|
|
CPU_LOAD_LENGTH (current_cpu) = 8;
|
639 |
|
|
return 0x37111319; /* any random value */
|
640 |
|
|
}
|
641 |
|
|
|
642 |
|
|
if (GET_HSR0_DCE (hsr0))
|
643 |
|
|
{
|
644 |
|
|
int cycles;
|
645 |
|
|
/* Handle access which crosses cache line boundary */
|
646 |
|
|
SIM_DESC sd = CPU_STATE (current_cpu);
|
647 |
|
|
if (STATE_ARCHITECTURE (sd)->mach == bfd_mach_fr550)
|
648 |
|
|
{
|
649 |
|
|
if (DATA_CROSSES_CACHE_LINE (cache, address, 8))
|
650 |
|
|
return read_mem_unaligned_DI (current_cpu, pc, address);
|
651 |
|
|
}
|
652 |
|
|
cycles = frv_cache_read (cache, 0, address);
|
653 |
|
|
if (cycles != 0)
|
654 |
|
|
return CACHE_RETURN_DATA (cache, 0, address, DF, 8);
|
655 |
|
|
}
|
656 |
|
|
|
657 |
|
|
return GETMEMDF (current_cpu, pc, address);
|
658 |
|
|
}
|
659 |
|
|
|
660 |
|
|
USI
|
661 |
|
|
frvbf_read_imem_USI (SIM_CPU *current_cpu, PCADDR vpc)
|
662 |
|
|
{
|
663 |
|
|
USI hsr0;
|
664 |
|
|
vpc = check_insn_read_address (current_cpu, vpc, 3);
|
665 |
|
|
|
666 |
|
|
hsr0 = GET_HSR0 ();
|
667 |
|
|
if (GET_HSR0_ICE (hsr0))
|
668 |
|
|
{
|
669 |
|
|
FRV_CACHE *cache;
|
670 |
|
|
USI value;
|
671 |
|
|
|
672 |
|
|
/* We don't want this to show up in the cache statistics. That read
|
673 |
|
|
is done in frvbf_simulate_insn_prefetch. So read the cache or memory
|
674 |
|
|
passively here. */
|
675 |
|
|
cache = CPU_INSN_CACHE (current_cpu);
|
676 |
|
|
if (frv_cache_read_passive_SI (cache, vpc, &value))
|
677 |
|
|
return value;
|
678 |
|
|
}
|
679 |
|
|
return sim_core_read_unaligned_4 (current_cpu, vpc, read_map, vpc);
|
680 |
|
|
}
|
681 |
|
|
|
682 |
|
|
static SI
|
683 |
|
|
fr400_check_write_address (SIM_CPU *current_cpu, SI address, int align_mask)
|
684 |
|
|
{
|
685 |
|
|
if (align_mask == 7
|
686 |
|
|
&& address >= 0xfe800000 && address <= 0xfeffffff)
|
687 |
|
|
frv_queue_program_interrupt (current_cpu, FRV_DATA_STORE_ERROR);
|
688 |
|
|
|
689 |
|
|
return address;
|
690 |
|
|
}
|
691 |
|
|
|
692 |
|
|
static SI
|
693 |
|
|
fr500_check_write_address (SIM_CPU *current_cpu, SI address, int align_mask)
|
694 |
|
|
{
|
695 |
|
|
if (address & align_mask)
|
696 |
|
|
{
|
697 |
|
|
struct frv_interrupt_queue_element *item =
|
698 |
|
|
frv_queue_mem_address_not_aligned_interrupt (current_cpu, address);
|
699 |
|
|
/* Record the correct vliw slot with the interrupt. */
|
700 |
|
|
if (item != NULL)
|
701 |
|
|
item->slot = frv_interrupt_state.slot;
|
702 |
|
|
address &= ~align_mask;
|
703 |
|
|
}
|
704 |
|
|
if (address >= 0xfeff0600 && address <= 0xfeff7fff
|
705 |
|
|
|| address >= 0xfe800000 && address <= 0xfefeffff)
|
706 |
|
|
frv_queue_program_interrupt (current_cpu, FRV_DATA_STORE_ERROR);
|
707 |
|
|
|
708 |
|
|
return address;
|
709 |
|
|
}
|
710 |
|
|
|
711 |
|
|
static SI
|
712 |
|
|
fr550_check_write_address (SIM_CPU *current_cpu, SI address, int align_mask)
|
713 |
|
|
{
|
714 |
|
|
if ((USI)address >= 0xfe800000 && (USI)address <= 0xfefeffff
|
715 |
|
|
|| (align_mask > 0x3
|
716 |
|
|
&& ((USI)address >= 0xfeff0000 && (USI)address <= 0xfeffffff)))
|
717 |
|
|
frv_queue_program_interrupt (current_cpu, FRV_DATA_STORE_ERROR);
|
718 |
|
|
|
719 |
|
|
return address;
|
720 |
|
|
}
|
721 |
|
|
|
722 |
|
|
static SI
|
723 |
|
|
check_write_address (SIM_CPU *current_cpu, SI address, int align_mask)
|
724 |
|
|
{
|
725 |
|
|
SIM_DESC sd = CPU_STATE (current_cpu);
|
726 |
|
|
switch (STATE_ARCHITECTURE (sd)->mach)
|
727 |
|
|
{
|
728 |
|
|
case bfd_mach_fr400:
|
729 |
|
|
case bfd_mach_fr450:
|
730 |
|
|
address = fr400_check_write_address (current_cpu, address, align_mask);
|
731 |
|
|
break;
|
732 |
|
|
case bfd_mach_frvtomcat:
|
733 |
|
|
case bfd_mach_fr500:
|
734 |
|
|
case bfd_mach_frv:
|
735 |
|
|
address = fr500_check_write_address (current_cpu, address, align_mask);
|
736 |
|
|
break;
|
737 |
|
|
case bfd_mach_fr550:
|
738 |
|
|
address = fr550_check_write_address (current_cpu, address, align_mask);
|
739 |
|
|
break;
|
740 |
|
|
default:
|
741 |
|
|
break;
|
742 |
|
|
}
|
743 |
|
|
return address;
|
744 |
|
|
}
|
745 |
|
|
|
746 |
|
|
void
|
747 |
|
|
frvbf_write_mem_QI (SIM_CPU *current_cpu, IADDR pc, SI address, QI value)
|
748 |
|
|
{
|
749 |
|
|
USI hsr0;
|
750 |
|
|
hsr0 = GET_HSR0 ();
|
751 |
|
|
if (GET_HSR0_DCE (hsr0))
|
752 |
|
|
sim_queue_fn_mem_qi_write (current_cpu, frvbf_mem_set_QI, address, value);
|
753 |
|
|
else
|
754 |
|
|
sim_queue_mem_qi_write (current_cpu, address, value);
|
755 |
|
|
frv_set_write_queue_slot (current_cpu);
|
756 |
|
|
}
|
757 |
|
|
|
758 |
|
|
void
|
759 |
|
|
frvbf_write_mem_UQI (SIM_CPU *current_cpu, IADDR pc, SI address, UQI value)
|
760 |
|
|
{
|
761 |
|
|
frvbf_write_mem_QI (current_cpu, pc, address, value);
|
762 |
|
|
}
|
763 |
|
|
|
764 |
|
|
void
|
765 |
|
|
frvbf_write_mem_HI (SIM_CPU *current_cpu, IADDR pc, SI address, HI value)
|
766 |
|
|
{
|
767 |
|
|
USI hsr0;
|
768 |
|
|
hsr0 = GET_HSR0 ();
|
769 |
|
|
if (GET_HSR0_DCE (hsr0))
|
770 |
|
|
sim_queue_fn_mem_hi_write (current_cpu, frvbf_mem_set_HI, address, value);
|
771 |
|
|
else
|
772 |
|
|
sim_queue_mem_hi_write (current_cpu, address, value);
|
773 |
|
|
frv_set_write_queue_slot (current_cpu);
|
774 |
|
|
}
|
775 |
|
|
|
776 |
|
|
void
|
777 |
|
|
frvbf_write_mem_UHI (SIM_CPU *current_cpu, IADDR pc, SI address, UHI value)
|
778 |
|
|
{
|
779 |
|
|
frvbf_write_mem_HI (current_cpu, pc, address, value);
|
780 |
|
|
}
|
781 |
|
|
|
782 |
|
|
void
|
783 |
|
|
frvbf_write_mem_SI (SIM_CPU *current_cpu, IADDR pc, SI address, SI value)
|
784 |
|
|
{
|
785 |
|
|
USI hsr0;
|
786 |
|
|
hsr0 = GET_HSR0 ();
|
787 |
|
|
if (GET_HSR0_DCE (hsr0))
|
788 |
|
|
sim_queue_fn_mem_si_write (current_cpu, frvbf_mem_set_SI, address, value);
|
789 |
|
|
else
|
790 |
|
|
sim_queue_mem_si_write (current_cpu, address, value);
|
791 |
|
|
frv_set_write_queue_slot (current_cpu);
|
792 |
|
|
}
|
793 |
|
|
|
794 |
|
|
void
|
795 |
|
|
frvbf_write_mem_WI (SIM_CPU *current_cpu, IADDR pc, SI address, SI value)
|
796 |
|
|
{
|
797 |
|
|
frvbf_write_mem_SI (current_cpu, pc, address, value);
|
798 |
|
|
}
|
799 |
|
|
|
800 |
|
|
void
|
801 |
|
|
frvbf_write_mem_DI (SIM_CPU *current_cpu, IADDR pc, SI address, DI value)
|
802 |
|
|
{
|
803 |
|
|
USI hsr0;
|
804 |
|
|
hsr0 = GET_HSR0 ();
|
805 |
|
|
if (GET_HSR0_DCE (hsr0))
|
806 |
|
|
sim_queue_fn_mem_di_write (current_cpu, frvbf_mem_set_DI, address, value);
|
807 |
|
|
else
|
808 |
|
|
sim_queue_mem_di_write (current_cpu, address, value);
|
809 |
|
|
frv_set_write_queue_slot (current_cpu);
|
810 |
|
|
}
|
811 |
|
|
|
812 |
|
|
void
|
813 |
|
|
frvbf_write_mem_DF (SIM_CPU *current_cpu, IADDR pc, SI address, DF value)
|
814 |
|
|
{
|
815 |
|
|
USI hsr0;
|
816 |
|
|
hsr0 = GET_HSR0 ();
|
817 |
|
|
if (GET_HSR0_DCE (hsr0))
|
818 |
|
|
sim_queue_fn_mem_df_write (current_cpu, frvbf_mem_set_DF, address, value);
|
819 |
|
|
else
|
820 |
|
|
sim_queue_mem_df_write (current_cpu, address, value);
|
821 |
|
|
frv_set_write_queue_slot (current_cpu);
|
822 |
|
|
}
|
823 |
|
|
|
824 |
|
|
/* Memory writes. These do the actual writing through the cache. */
|
825 |
|
|
void
|
826 |
|
|
frvbf_mem_set_QI (SIM_CPU *current_cpu, IADDR pc, SI address, QI value)
|
827 |
|
|
{
|
828 |
|
|
FRV_CACHE *cache = CPU_DATA_CACHE (current_cpu);
|
829 |
|
|
|
830 |
|
|
/* Check for access errors. */
|
831 |
|
|
address = check_write_address (current_cpu, address, 0);
|
832 |
|
|
address = check_readwrite_address (current_cpu, address, 0);
|
833 |
|
|
|
834 |
|
|
/* If we need to count cycles, then submit the write request to the cache
|
835 |
|
|
and let it prioritize the request. Otherwise perform the write now. */
|
836 |
|
|
if (model_insn)
|
837 |
|
|
{
|
838 |
|
|
int slot = UNIT_I0;
|
839 |
|
|
frv_cache_request_store (cache, address, slot, (char *)&value,
|
840 |
|
|
sizeof (value));
|
841 |
|
|
}
|
842 |
|
|
else
|
843 |
|
|
frv_cache_write (cache, address, (char *)&value, sizeof (value));
|
844 |
|
|
}
|
845 |
|
|
|
846 |
|
|
/* Write a HI which spans two cache lines */
|
847 |
|
|
static void
|
848 |
|
|
mem_set_unaligned_HI (SIM_CPU *current_cpu, IADDR pc, SI address, HI value)
|
849 |
|
|
{
|
850 |
|
|
FRV_CACHE *cache = CPU_DATA_CACHE (current_cpu);
|
851 |
|
|
/* value is already in target byte order */
|
852 |
|
|
frv_cache_write (cache, address, (char *)&value, 1);
|
853 |
|
|
frv_cache_write (cache, address + 1, ((char *)&value + 1), 1);
|
854 |
|
|
}
|
855 |
|
|
|
856 |
|
|
void
|
857 |
|
|
frvbf_mem_set_HI (SIM_CPU *current_cpu, IADDR pc, SI address, HI value)
|
858 |
|
|
{
|
859 |
|
|
FRV_CACHE *cache;
|
860 |
|
|
|
861 |
|
|
/* Check for access errors. */
|
862 |
|
|
address = check_write_address (current_cpu, address, 1);
|
863 |
|
|
address = check_readwrite_address (current_cpu, address, 1);
|
864 |
|
|
|
865 |
|
|
/* If we need to count cycles, then submit the write request to the cache
|
866 |
|
|
and let it prioritize the request. Otherwise perform the write now. */
|
867 |
|
|
value = H2T_2 (value);
|
868 |
|
|
cache = CPU_DATA_CACHE (current_cpu);
|
869 |
|
|
if (model_insn)
|
870 |
|
|
{
|
871 |
|
|
int slot = UNIT_I0;
|
872 |
|
|
frv_cache_request_store (cache, address, slot,
|
873 |
|
|
(char *)&value, sizeof (value));
|
874 |
|
|
}
|
875 |
|
|
else
|
876 |
|
|
{
|
877 |
|
|
/* Handle access which crosses cache line boundary */
|
878 |
|
|
SIM_DESC sd = CPU_STATE (current_cpu);
|
879 |
|
|
if (STATE_ARCHITECTURE (sd)->mach == bfd_mach_fr550)
|
880 |
|
|
{
|
881 |
|
|
if (DATA_CROSSES_CACHE_LINE (cache, address, 2))
|
882 |
|
|
{
|
883 |
|
|
mem_set_unaligned_HI (current_cpu, pc, address, value);
|
884 |
|
|
return;
|
885 |
|
|
}
|
886 |
|
|
}
|
887 |
|
|
frv_cache_write (cache, address, (char *)&value, sizeof (value));
|
888 |
|
|
}
|
889 |
|
|
}
|
890 |
|
|
|
891 |
|
|
/* Write a SI which spans two cache lines */
|
892 |
|
|
static void
|
893 |
|
|
mem_set_unaligned_SI (SIM_CPU *current_cpu, IADDR pc, SI address, SI value)
|
894 |
|
|
{
|
895 |
|
|
FRV_CACHE *cache = CPU_DATA_CACHE (current_cpu);
|
896 |
|
|
unsigned hi_len = cache->line_size - (address & (cache->line_size - 1));
|
897 |
|
|
/* value is already in target byte order */
|
898 |
|
|
frv_cache_write (cache, address, (char *)&value, hi_len);
|
899 |
|
|
frv_cache_write (cache, address + hi_len, (char *)&value + hi_len, 4 - hi_len);
|
900 |
|
|
}
|
901 |
|
|
|
902 |
|
|
void
|
903 |
|
|
frvbf_mem_set_SI (SIM_CPU *current_cpu, IADDR pc, SI address, SI value)
|
904 |
|
|
{
|
905 |
|
|
FRV_CACHE *cache;
|
906 |
|
|
|
907 |
|
|
/* Check for access errors. */
|
908 |
|
|
address = check_write_address (current_cpu, address, 3);
|
909 |
|
|
address = check_readwrite_address (current_cpu, address, 3);
|
910 |
|
|
|
911 |
|
|
/* If we need to count cycles, then submit the write request to the cache
|
912 |
|
|
and let it prioritize the request. Otherwise perform the write now. */
|
913 |
|
|
cache = CPU_DATA_CACHE (current_cpu);
|
914 |
|
|
value = H2T_4 (value);
|
915 |
|
|
if (model_insn)
|
916 |
|
|
{
|
917 |
|
|
int slot = UNIT_I0;
|
918 |
|
|
frv_cache_request_store (cache, address, slot,
|
919 |
|
|
(char *)&value, sizeof (value));
|
920 |
|
|
}
|
921 |
|
|
else
|
922 |
|
|
{
|
923 |
|
|
/* Handle access which crosses cache line boundary */
|
924 |
|
|
SIM_DESC sd = CPU_STATE (current_cpu);
|
925 |
|
|
if (STATE_ARCHITECTURE (sd)->mach == bfd_mach_fr550)
|
926 |
|
|
{
|
927 |
|
|
if (DATA_CROSSES_CACHE_LINE (cache, address, 4))
|
928 |
|
|
{
|
929 |
|
|
mem_set_unaligned_SI (current_cpu, pc, address, value);
|
930 |
|
|
return;
|
931 |
|
|
}
|
932 |
|
|
}
|
933 |
|
|
frv_cache_write (cache, address, (char *)&value, sizeof (value));
|
934 |
|
|
}
|
935 |
|
|
}
|
936 |
|
|
|
937 |
|
|
/* Write a DI which spans two cache lines */
|
938 |
|
|
static void
|
939 |
|
|
mem_set_unaligned_DI (SIM_CPU *current_cpu, IADDR pc, SI address, DI value)
|
940 |
|
|
{
|
941 |
|
|
FRV_CACHE *cache = CPU_DATA_CACHE (current_cpu);
|
942 |
|
|
unsigned hi_len = cache->line_size - (address & (cache->line_size - 1));
|
943 |
|
|
/* value is already in target byte order */
|
944 |
|
|
frv_cache_write (cache, address, (char *)&value, hi_len);
|
945 |
|
|
frv_cache_write (cache, address + hi_len, (char *)&value + hi_len, 8 - hi_len);
|
946 |
|
|
}
|
947 |
|
|
|
948 |
|
|
void
|
949 |
|
|
frvbf_mem_set_DI (SIM_CPU *current_cpu, IADDR pc, SI address, DI value)
|
950 |
|
|
{
|
951 |
|
|
FRV_CACHE *cache;
|
952 |
|
|
|
953 |
|
|
/* Check for access errors. */
|
954 |
|
|
address = check_write_address (current_cpu, address, 7);
|
955 |
|
|
address = check_readwrite_address (current_cpu, address, 7);
|
956 |
|
|
|
957 |
|
|
/* If we need to count cycles, then submit the write request to the cache
|
958 |
|
|
and let it prioritize the request. Otherwise perform the write now. */
|
959 |
|
|
value = H2T_8 (value);
|
960 |
|
|
cache = CPU_DATA_CACHE (current_cpu);
|
961 |
|
|
if (model_insn)
|
962 |
|
|
{
|
963 |
|
|
int slot = UNIT_I0;
|
964 |
|
|
frv_cache_request_store (cache, address, slot,
|
965 |
|
|
(char *)&value, sizeof (value));
|
966 |
|
|
}
|
967 |
|
|
else
|
968 |
|
|
{
|
969 |
|
|
/* Handle access which crosses cache line boundary */
|
970 |
|
|
SIM_DESC sd = CPU_STATE (current_cpu);
|
971 |
|
|
if (STATE_ARCHITECTURE (sd)->mach == bfd_mach_fr550)
|
972 |
|
|
{
|
973 |
|
|
if (DATA_CROSSES_CACHE_LINE (cache, address, 8))
|
974 |
|
|
{
|
975 |
|
|
mem_set_unaligned_DI (current_cpu, pc, address, value);
|
976 |
|
|
return;
|
977 |
|
|
}
|
978 |
|
|
}
|
979 |
|
|
frv_cache_write (cache, address, (char *)&value, sizeof (value));
|
980 |
|
|
}
|
981 |
|
|
}
|
982 |
|
|
|
983 |
|
|
void
|
984 |
|
|
frvbf_mem_set_DF (SIM_CPU *current_cpu, IADDR pc, SI address, DF value)
|
985 |
|
|
{
|
986 |
|
|
FRV_CACHE *cache;
|
987 |
|
|
|
988 |
|
|
/* Check for access errors. */
|
989 |
|
|
address = check_write_address (current_cpu, address, 7);
|
990 |
|
|
address = check_readwrite_address (current_cpu, address, 7);
|
991 |
|
|
|
992 |
|
|
/* If we need to count cycles, then submit the write request to the cache
|
993 |
|
|
and let it prioritize the request. Otherwise perform the write now. */
|
994 |
|
|
value = H2T_8 (value);
|
995 |
|
|
cache = CPU_DATA_CACHE (current_cpu);
|
996 |
|
|
if (model_insn)
|
997 |
|
|
{
|
998 |
|
|
int slot = UNIT_I0;
|
999 |
|
|
frv_cache_request_store (cache, address, slot,
|
1000 |
|
|
(char *)&value, sizeof (value));
|
1001 |
|
|
}
|
1002 |
|
|
else
|
1003 |
|
|
{
|
1004 |
|
|
/* Handle access which crosses cache line boundary */
|
1005 |
|
|
SIM_DESC sd = CPU_STATE (current_cpu);
|
1006 |
|
|
if (STATE_ARCHITECTURE (sd)->mach == bfd_mach_fr550)
|
1007 |
|
|
{
|
1008 |
|
|
if (DATA_CROSSES_CACHE_LINE (cache, address, 8))
|
1009 |
|
|
{
|
1010 |
|
|
mem_set_unaligned_DI (current_cpu, pc, address, value);
|
1011 |
|
|
return;
|
1012 |
|
|
}
|
1013 |
|
|
}
|
1014 |
|
|
frv_cache_write (cache, address, (char *)&value, sizeof (value));
|
1015 |
|
|
}
|
1016 |
|
|
}
|
1017 |
|
|
|
1018 |
|
|
void
|
1019 |
|
|
frvbf_mem_set_XI (SIM_CPU *current_cpu, IADDR pc, SI address, SI *value)
|
1020 |
|
|
{
|
1021 |
|
|
int i;
|
1022 |
|
|
FRV_CACHE *cache;
|
1023 |
|
|
|
1024 |
|
|
/* Check for access errors. */
|
1025 |
|
|
address = check_write_address (current_cpu, address, 0xf);
|
1026 |
|
|
address = check_readwrite_address (current_cpu, address, 0xf);
|
1027 |
|
|
|
1028 |
|
|
/* TODO -- reverse word order as well? */
|
1029 |
|
|
for (i = 0; i < 4; ++i)
|
1030 |
|
|
value[i] = H2T_4 (value[i]);
|
1031 |
|
|
|
1032 |
|
|
/* If we need to count cycles, then submit the write request to the cache
|
1033 |
|
|
and let it prioritize the request. Otherwise perform the write now. */
|
1034 |
|
|
cache = CPU_DATA_CACHE (current_cpu);
|
1035 |
|
|
if (model_insn)
|
1036 |
|
|
{
|
1037 |
|
|
int slot = UNIT_I0;
|
1038 |
|
|
frv_cache_request_store (cache, address, slot, (char*)value, 16);
|
1039 |
|
|
}
|
1040 |
|
|
else
|
1041 |
|
|
frv_cache_write (cache, address, (char*)value, 16);
|
1042 |
|
|
}
|
1043 |
|
|
|
1044 |
|
|
/* Record the current VLIW slot on the element at the top of the write queue.
|
1045 |
|
|
*/
|
1046 |
|
|
void
|
1047 |
|
|
frv_set_write_queue_slot (SIM_CPU *current_cpu)
|
1048 |
|
|
{
|
1049 |
|
|
FRV_VLIW *vliw = CPU_VLIW (current_cpu);
|
1050 |
|
|
int slot = vliw->next_slot - 1;
|
1051 |
|
|
CGEN_WRITE_QUEUE *q = CPU_WRITE_QUEUE (current_cpu);
|
1052 |
|
|
int ix = CGEN_WRITE_QUEUE_INDEX (q) - 1;
|
1053 |
|
|
CGEN_WRITE_QUEUE_ELEMENT *item = CGEN_WRITE_QUEUE_ELEMENT (q, ix);
|
1054 |
|
|
CGEN_WRITE_QUEUE_ELEMENT_PIPE (item) = (*vliw->current_vliw)[slot];
|
1055 |
|
|
}
|