1 |
207 |
jeremybenn |
|
2 |
|
|
/* Linuxthreads - a simple clone()-based implementation of Posix */
|
3 |
|
|
/* threads for Linux. */
|
4 |
|
|
/* Copyright (C) 1996 Xavier Leroy (Xavier.Leroy@inria.fr) */
|
5 |
|
|
/* */
|
6 |
|
|
/* This program is free software; you can redistribute it and/or */
|
7 |
|
|
/* modify it under the terms of the GNU Library General Public License */
|
8 |
|
|
/* as published by the Free Software Foundation; either version 2 */
|
9 |
|
|
/* of the License, or (at your option) any later version. */
|
10 |
|
|
/* */
|
11 |
|
|
/* This program is distributed in the hope that it will be useful, */
|
12 |
|
|
/* but WITHOUT ANY WARRANTY; without even the implied warranty of */
|
13 |
|
|
/* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the */
|
14 |
|
|
/* GNU Library General Public License for more details. */
|
15 |
|
|
|
16 |
|
|
/* Thread creation, initialization, and basic low-level routines */
|
17 |
|
|
|
18 |
|
|
#include <errno.h>
|
19 |
|
|
#include <stddef.h>
|
20 |
|
|
#include <stdio.h>
|
21 |
|
|
#include <stdlib.h>
|
22 |
|
|
#include <string.h>
|
23 |
|
|
#include <unistd.h>
|
24 |
|
|
#include <fcntl.h>
|
25 |
|
|
#include <sys/wait.h>
|
26 |
|
|
#include <sys/resource.h>
|
27 |
|
|
#include <sys/sysctl.h>
|
28 |
|
|
#include <shlib-compat.h>
|
29 |
|
|
#include "pthread.h"
|
30 |
|
|
#include "internals.h"
|
31 |
|
|
#include "spinlock.h"
|
32 |
|
|
#include "restart.h"
|
33 |
|
|
#include <machine/syscall.h>
|
34 |
|
|
|
35 |
|
|
/* for threading we use processes so we require a few EL/IX level 2 and
|
36 |
|
|
level 3 syscalls. We only allow this file to see them to preserve
|
37 |
|
|
the interface. */
|
38 |
|
|
#if defined(_ELIX_LEVEL) && _ELIX_LEVEL < 3
|
39 |
|
|
static _syscall1_base(int,pipe,int *,filedes)
|
40 |
|
|
#endif /* _ELIX_LEVEL < 3 */
|
41 |
|
|
|
42 |
|
|
#if defined(_ELIX_LEVEL) && _ELIX_LEVEL < 2
|
43 |
|
|
static _syscall2_base(int,setrlimit,int,resource,const struct rlimit *,rlp)
|
44 |
|
|
int on_exit (void (*fn)(int, void *), void *arg)
|
45 |
|
|
{
|
46 |
|
|
register struct _atexit *p;
|
47 |
|
|
void (*x)(void) = (void (*)(void))fn;
|
48 |
|
|
|
49 |
|
|
/* _REENT_SMALL on_exit() doesn't allow more than the required 32 entries. */
|
50 |
|
|
#ifndef _REENT_SMALL
|
51 |
|
|
if ((p = _REENT->_atexit) == NULL)
|
52 |
|
|
_REENT->_atexit = p = &_REENT->_atexit0;
|
53 |
|
|
if (p->_ind >= _ATEXIT_SIZE)
|
54 |
|
|
{
|
55 |
|
|
if ((p = (struct _atexit *) malloc (sizeof *p)) == NULL)
|
56 |
|
|
return -1;
|
57 |
|
|
p->_ind = 0;
|
58 |
|
|
p->_fntypes = 0;
|
59 |
|
|
p->_next = _REENT->_atexit;
|
60 |
|
|
_REENT->_atexit = p;
|
61 |
|
|
}
|
62 |
|
|
#else
|
63 |
|
|
p = &_REENT->_atexit;
|
64 |
|
|
if (p->_ind >= _ATEXIT_SIZE)
|
65 |
|
|
return -1;
|
66 |
|
|
#endif
|
67 |
|
|
p->_fntypes |= (1 << p->_ind);
|
68 |
|
|
p->_fnargs[p->_ind] = arg;
|
69 |
|
|
p->_fns[p->_ind++] = x;
|
70 |
|
|
return 0;
|
71 |
|
|
}
|
72 |
|
|
|
73 |
|
|
#endif /* _ELIX_LEVEL < 2 */
|
74 |
|
|
|
75 |
|
|
/* We need the global/static resolver state here. */
|
76 |
|
|
#include <resolv.h>
|
77 |
|
|
#undef _res
|
78 |
|
|
|
79 |
|
|
/* FIXME: for now, set up _res here */
|
80 |
|
|
struct __res_state _res;
|
81 |
|
|
|
82 |
|
|
/* Sanity check. */
|
83 |
|
|
#if __ASSUME_REALTIME_SIGNALS && !defined __SIGRTMIN
|
84 |
|
|
# error "This must not happen; new kernel assumed but old headers"
|
85 |
|
|
#endif
|
86 |
|
|
|
87 |
|
|
/* These variables are used by the setup code. */
|
88 |
|
|
|
89 |
|
|
/* Descriptor of the initial thread */
|
90 |
|
|
|
91 |
|
|
struct _pthread_descr_struct __pthread_initial_thread = {
|
92 |
|
|
{
|
93 |
|
|
{
|
94 |
|
|
&__pthread_initial_thread /* pthread_descr self */
|
95 |
|
|
}
|
96 |
|
|
},
|
97 |
|
|
&__pthread_initial_thread, /* pthread_descr p_nextlive */
|
98 |
|
|
&__pthread_initial_thread, /* pthread_descr p_prevlive */
|
99 |
|
|
NULL, /* pthread_descr p_nextwaiting */
|
100 |
|
|
NULL, /* pthread_descr p_nextlock */
|
101 |
|
|
PTHREAD_THREADS_MAX, /* pthread_t p_tid */
|
102 |
|
|
0, /* int p_pid */
|
103 |
|
|
0, /* int p_priority */
|
104 |
|
|
&__pthread_handles[0].h_lock, /* struct _pthread_fastlock * p_lock */
|
105 |
|
|
0, /* int p_signal */
|
106 |
|
|
NULL, /* sigjmp_buf * p_signal_buf */
|
107 |
|
|
NULL, /* sigjmp_buf * p_cancel_buf */
|
108 |
|
|
0, /* char p_terminated */
|
109 |
|
|
0, /* char p_detached */
|
110 |
|
|
0, /* char p_exited */
|
111 |
|
|
NULL, /* void * p_retval */
|
112 |
|
|
0, /* int p_retval */
|
113 |
|
|
NULL, /* pthread_descr p_joining */
|
114 |
|
|
NULL, /* struct _pthread_cleanup_buffer * p_cleanup */
|
115 |
|
|
0, /* char p_cancelstate */
|
116 |
|
|
0, /* char p_canceltype */
|
117 |
|
|
0, /* char p_canceled */
|
118 |
|
|
&__pthread_initial_thread.p_reent, /* struct _reent *p_reentp */
|
119 |
|
|
_REENT_INIT(__pthread_initial_thread.p_reent), /* struct _reent p_reent */
|
120 |
|
|
NULL, /* int *p_h_errnop */
|
121 |
|
|
0, /* int p_h_errno */
|
122 |
|
|
NULL, /* char * p_in_sighandler */
|
123 |
|
|
0, /* char p_sigwaiting */
|
124 |
|
|
PTHREAD_START_ARGS_INITIALIZER(NULL),
|
125 |
|
|
/* struct pthread_start_args p_start_args */
|
126 |
|
|
{NULL}, /* void ** p_specific[PTHREAD_KEY_1STLEVEL_SIZE] */
|
127 |
|
|
{NULL}, /* void * p_libc_specific[_LIBC_TSD_KEY_N] */
|
128 |
|
|
1, /* int p_userstack */
|
129 |
|
|
NULL, /* void * p_guardaddr */
|
130 |
|
|
0, /* size_t p_guardsize */
|
131 |
|
|
0, /* Always index 0 */
|
132 |
|
|
0, /* int p_report_events */
|
133 |
|
|
{{{0, }}, 0, NULL}, /* td_eventbuf_t p_eventbuf */
|
134 |
|
|
__ATOMIC_INITIALIZER, /* struct pthread_atomic p_resume_count */
|
135 |
|
|
0, /* char p_woken_by_cancel */
|
136 |
|
|
0, /* char p_condvar_avail */
|
137 |
|
|
0, /* char p_sem_avail */
|
138 |
|
|
NULL, /* struct pthread_extricate_if *p_extricate */
|
139 |
|
|
NULL, /* pthread_readlock_info *p_readlock_list; */
|
140 |
|
|
NULL, /* pthread_readlock_info *p_readlock_free; */
|
141 |
|
|
|
142 |
|
|
};
|
143 |
|
|
|
144 |
|
|
/* Descriptor of the manager thread; none of this is used but the error
|
145 |
|
|
variables, the p_pid and p_priority fields,
|
146 |
|
|
and the address for identification. */
|
147 |
|
|
|
148 |
|
|
struct _pthread_descr_struct __pthread_manager_thread = {
|
149 |
|
|
{
|
150 |
|
|
{
|
151 |
|
|
&__pthread_manager_thread /* pthread_descr self */
|
152 |
|
|
}
|
153 |
|
|
},
|
154 |
|
|
NULL, /* pthread_descr p_nextlive */
|
155 |
|
|
NULL, /* pthread_descr p_prevlive */
|
156 |
|
|
NULL, /* pthread_descr p_nextwaiting */
|
157 |
|
|
NULL, /* pthread_descr p_nextlock */
|
158 |
|
|
0, /* int p_tid */
|
159 |
|
|
0, /* int p_pid */
|
160 |
|
|
0, /* int p_priority */
|
161 |
|
|
&__pthread_handles[1].h_lock, /* struct _pthread_fastlock * p_lock */
|
162 |
|
|
0, /* int p_signal */
|
163 |
|
|
NULL, /* sigjmp_buf * p_signal_buf */
|
164 |
|
|
NULL, /* sigjmp_buf * p_cancel_buf */
|
165 |
|
|
0, /* char p_terminated */
|
166 |
|
|
0, /* char p_detached */
|
167 |
|
|
0, /* char p_exited */
|
168 |
|
|
NULL, /* void * p_retval */
|
169 |
|
|
0, /* int p_retval */
|
170 |
|
|
NULL, /* pthread_descr p_joining */
|
171 |
|
|
NULL, /* struct _pthread_cleanup_buffer * p_cleanup */
|
172 |
|
|
0, /* char p_cancelstate */
|
173 |
|
|
0, /* char p_canceltype */
|
174 |
|
|
0, /* char p_canceled */
|
175 |
|
|
&__pthread_manager_thread.p_reent, /* struct _reent *p_reentp */
|
176 |
|
|
_REENT_INIT(__pthread_manager_thread.p_reent), /* struct _reent p_reent */
|
177 |
|
|
NULL, /* int *p_h_errnop */
|
178 |
|
|
0, /* int p_h_errno */
|
179 |
|
|
NULL, /* char * p_in_sighandler */
|
180 |
|
|
0, /* char p_sigwaiting */
|
181 |
|
|
PTHREAD_START_ARGS_INITIALIZER(__pthread_manager),
|
182 |
|
|
/* struct pthread_start_args p_start_args */
|
183 |
|
|
{NULL}, /* void ** p_specific[PTHREAD_KEY_1STLEVEL_SIZE] */
|
184 |
|
|
{NULL}, /* void * p_libc_specific[_LIBC_TSD_KEY_N] */
|
185 |
|
|
0, /* int p_userstack */
|
186 |
|
|
NULL, /* void * p_guardaddr */
|
187 |
|
|
0, /* size_t p_guardsize */
|
188 |
|
|
1, /* Always index 1 */
|
189 |
|
|
0, /* int p_report_events */
|
190 |
|
|
{{{0, }}, 0, NULL}, /* td_eventbuf_t p_eventbuf */
|
191 |
|
|
__ATOMIC_INITIALIZER, /* struct pthread_atomic p_resume_count */
|
192 |
|
|
0, /* char p_woken_by_cancel */
|
193 |
|
|
0, /* char p_condvar_avail */
|
194 |
|
|
0, /* char p_sem_avail */
|
195 |
|
|
NULL, /* struct pthread_extricate_if *p_extricate */
|
196 |
|
|
NULL, /* pthread_readlock_info *p_readlock_list; */
|
197 |
|
|
NULL, /* pthread_readlock_info *p_readlock_free; */
|
198 |
|
|
|
199 |
|
|
};
|
200 |
|
|
|
201 |
|
|
/* Pointer to the main thread (the father of the thread manager thread) */
|
202 |
|
|
/* Originally, this is the initial thread, but this changes after fork() */
|
203 |
|
|
|
204 |
|
|
pthread_descr __pthread_main_thread = &__pthread_initial_thread;
|
205 |
|
|
|
206 |
|
|
/* Limit between the stack of the initial thread (above) and the
|
207 |
|
|
stacks of other threads (below). Aligned on a STACK_SIZE boundary. */
|
208 |
|
|
|
209 |
|
|
char *__pthread_initial_thread_bos;
|
210 |
|
|
|
211 |
|
|
/* File descriptor for sending requests to the thread manager. */
|
212 |
|
|
/* Initially -1, meaning that the thread manager is not running. */
|
213 |
|
|
|
214 |
|
|
int __pthread_manager_request = -1;
|
215 |
|
|
|
216 |
|
|
/* Other end of the pipe for sending requests to the thread manager. */
|
217 |
|
|
|
218 |
|
|
int __pthread_manager_reader;
|
219 |
|
|
|
220 |
|
|
/* Limits of the thread manager stack */
|
221 |
|
|
|
222 |
|
|
char *__pthread_manager_thread_bos;
|
223 |
|
|
char *__pthread_manager_thread_tos;
|
224 |
|
|
|
225 |
|
|
/* For process-wide exit() */
|
226 |
|
|
|
227 |
|
|
int __pthread_exit_requested;
|
228 |
|
|
int __pthread_exit_code;
|
229 |
|
|
|
230 |
|
|
/* Maximum stack size. */
|
231 |
|
|
size_t __pthread_max_stacksize;
|
232 |
|
|
|
233 |
|
|
/* Nozero if the machine has more than one processor. */
|
234 |
|
|
int __pthread_smp_kernel;
|
235 |
|
|
|
236 |
|
|
|
237 |
|
|
#if !__ASSUME_REALTIME_SIGNALS
|
238 |
|
|
/* Pointers that select new or old suspend/resume functions
|
239 |
|
|
based on availability of rt signals. */
|
240 |
|
|
|
241 |
|
|
void (*__pthread_restart)(pthread_descr) = __pthread_restart_old;
|
242 |
|
|
void (*__pthread_suspend)(pthread_descr) = __pthread_suspend_old;
|
243 |
|
|
int (*__pthread_timedsuspend)(pthread_descr, const struct timespec *) = __pthread_timedsuspend_old;
|
244 |
|
|
#endif /* __ASSUME_REALTIME_SIGNALS */
|
245 |
|
|
|
246 |
|
|
/* Communicate relevant LinuxThreads constants to gdb */
|
247 |
|
|
|
248 |
|
|
const int __pthread_threads_max = PTHREAD_THREADS_MAX;
|
249 |
|
|
const int __pthread_sizeof_handle = sizeof(struct pthread_handle_struct);
|
250 |
|
|
const int __pthread_offsetof_descr = offsetof(struct pthread_handle_struct,
|
251 |
|
|
h_descr);
|
252 |
|
|
const int __pthread_offsetof_pid = offsetof(struct _pthread_descr_struct,
|
253 |
|
|
p_pid);
|
254 |
|
|
const int __linuxthreads_pthread_sizeof_descr
|
255 |
|
|
= sizeof(struct _pthread_descr_struct);
|
256 |
|
|
|
257 |
|
|
/* Forward declarations */
|
258 |
|
|
|
259 |
|
|
static void pthread_onexit_process(int retcode, void *arg);
|
260 |
|
|
#ifndef HAVE_Z_NODELETE
|
261 |
|
|
static void pthread_atexit_process(void *arg, int retcode);
|
262 |
|
|
static void pthread_atexit_retcode(void *arg, int retcode);
|
263 |
|
|
#endif
|
264 |
|
|
static void pthread_handle_sigcancel(int sig);
|
265 |
|
|
static void pthread_handle_sigrestart(int sig);
|
266 |
|
|
static void pthread_handle_sigdebug(int sig);
|
267 |
|
|
|
268 |
|
|
/* CPU clock handling. */
|
269 |
|
|
#if HP_TIMING_AVAIL
|
270 |
|
|
extern hp_timing_t _dl_cpuclock_offset;
|
271 |
|
|
#endif
|
272 |
|
|
|
273 |
|
|
/* Signal numbers used for the communication.
|
274 |
|
|
In these variables we keep track of the used variables. If the
|
275 |
|
|
platform does not support any real-time signals we will define the
|
276 |
|
|
values to some unreasonable value which will signal failing of all
|
277 |
|
|
the functions below. */
|
278 |
|
|
#ifndef __SIGRTMIN
|
279 |
|
|
static int current_rtmin = -1;
|
280 |
|
|
static int current_rtmax = -1;
|
281 |
|
|
int __pthread_sig_restart = SIGUSR1;
|
282 |
|
|
int __pthread_sig_cancel = SIGUSR2;
|
283 |
|
|
int __pthread_sig_debug;
|
284 |
|
|
#else
|
285 |
|
|
static int current_rtmin;
|
286 |
|
|
static int current_rtmax;
|
287 |
|
|
|
288 |
|
|
#if __SIGRTMAX - __SIGRTMIN >= 3
|
289 |
|
|
int __pthread_sig_restart = __SIGRTMIN;
|
290 |
|
|
int __pthread_sig_cancel = __SIGRTMIN + 1;
|
291 |
|
|
int __pthread_sig_debug = __SIGRTMIN + 2;
|
292 |
|
|
#else
|
293 |
|
|
int __pthread_sig_restart = SIGUSR1;
|
294 |
|
|
int __pthread_sig_cancel = SIGUSR2;
|
295 |
|
|
int __pthread_sig_debug;
|
296 |
|
|
#endif
|
297 |
|
|
|
298 |
|
|
static int rtsigs_initialized;
|
299 |
|
|
|
300 |
|
|
#if !__ASSUME_REALTIME_SIGNALS
|
301 |
|
|
# include "testrtsig.h"
|
302 |
|
|
#endif
|
303 |
|
|
|
304 |
|
|
static void
|
305 |
|
|
init_rtsigs (void)
|
306 |
|
|
{
|
307 |
|
|
#if !__ASSUME_REALTIME_SIGNALS
|
308 |
|
|
if (__builtin_expect (!kernel_has_rtsig (), 0))
|
309 |
|
|
{
|
310 |
|
|
current_rtmin = -1;
|
311 |
|
|
current_rtmax = -1;
|
312 |
|
|
# if __SIGRTMAX - __SIGRTMIN >= 3
|
313 |
|
|
__pthread_sig_restart = SIGUSR1;
|
314 |
|
|
__pthread_sig_cancel = SIGUSR2;
|
315 |
|
|
__pthread_sig_debug = 0;
|
316 |
|
|
# endif
|
317 |
|
|
}
|
318 |
|
|
else
|
319 |
|
|
#endif /* __ASSUME_REALTIME_SIGNALS */
|
320 |
|
|
{
|
321 |
|
|
#if __SIGRTMAX - __SIGRTMIN >= 3
|
322 |
|
|
current_rtmin = __SIGRTMIN + 3;
|
323 |
|
|
# if !__ASSUME_REALTIME_SIGNALS
|
324 |
|
|
__pthread_restart = __pthread_restart_new;
|
325 |
|
|
__pthread_suspend = __pthread_wait_for_restart_signal;
|
326 |
|
|
__pthread_timedsuspend = __pthread_timedsuspend_new;
|
327 |
|
|
# endif /* __ASSUME_REALTIME_SIGNALS */
|
328 |
|
|
#else
|
329 |
|
|
current_rtmin = __SIGRTMIN;
|
330 |
|
|
#endif
|
331 |
|
|
|
332 |
|
|
current_rtmax = __SIGRTMAX;
|
333 |
|
|
}
|
334 |
|
|
|
335 |
|
|
rtsigs_initialized = 1;
|
336 |
|
|
}
|
337 |
|
|
#endif
|
338 |
|
|
|
339 |
|
|
/* Return number of available real-time signal with highest priority. */
|
340 |
|
|
int
|
341 |
|
|
__libc_current_sigrtmin (void)
|
342 |
|
|
{
|
343 |
|
|
#ifdef __SIGRTMIN
|
344 |
|
|
if (__builtin_expect (!rtsigs_initialized, 0))
|
345 |
|
|
init_rtsigs ();
|
346 |
|
|
#endif
|
347 |
|
|
return current_rtmin;
|
348 |
|
|
}
|
349 |
|
|
|
350 |
|
|
/* Return number of available real-time signal with lowest priority. */
|
351 |
|
|
int
|
352 |
|
|
__libc_current_sigrtmax (void)
|
353 |
|
|
{
|
354 |
|
|
#ifdef __SIGRTMIN
|
355 |
|
|
if (__builtin_expect (!rtsigs_initialized, 0))
|
356 |
|
|
init_rtsigs ();
|
357 |
|
|
#endif
|
358 |
|
|
return current_rtmax;
|
359 |
|
|
}
|
360 |
|
|
|
361 |
|
|
/* Allocate real-time signal with highest/lowest available
|
362 |
|
|
priority. Please note that we don't use a lock since we assume
|
363 |
|
|
this function to be called at program start. */
|
364 |
|
|
int
|
365 |
|
|
__libc_allocate_rtsig (int high)
|
366 |
|
|
{
|
367 |
|
|
#ifndef __SIGRTMIN
|
368 |
|
|
return -1;
|
369 |
|
|
#else
|
370 |
|
|
if (__builtin_expect (!rtsigs_initialized, 0))
|
371 |
|
|
init_rtsigs ();
|
372 |
|
|
if (__builtin_expect (current_rtmin == -1, 0)
|
373 |
|
|
|| __builtin_expect (current_rtmin > current_rtmax, 0))
|
374 |
|
|
/* We don't have anymore signal available. */
|
375 |
|
|
return -1;
|
376 |
|
|
|
377 |
|
|
return high ? current_rtmin++ : current_rtmax--;
|
378 |
|
|
#endif
|
379 |
|
|
}
|
380 |
|
|
|
381 |
|
|
/* The function we use to get the kernel revision. */
|
382 |
|
|
extern int __sysctl (int *name, int nlen, void *oldval, size_t *oldlenp,
|
383 |
|
|
void *newval, size_t newlen);
|
384 |
|
|
|
385 |
|
|
/* Test whether the machine has more than one processor. This is not the
|
386 |
|
|
best test but good enough. More complicated tests would require `malloc'
|
387 |
|
|
which is not available at that time. */
|
388 |
|
|
static int
|
389 |
|
|
is_smp_system (void)
|
390 |
|
|
{
|
391 |
|
|
static const int sysctl_args[] = { CTL_KERN, KERN_VERSION };
|
392 |
|
|
char buf[512];
|
393 |
|
|
size_t reslen = sizeof (buf);
|
394 |
|
|
|
395 |
|
|
/* Try reading the number using `sysctl' first. */
|
396 |
|
|
if (__sysctl ((int *) sysctl_args,
|
397 |
|
|
sizeof (sysctl_args) / sizeof (sysctl_args[0]),
|
398 |
|
|
buf, &reslen, NULL, 0) < 0)
|
399 |
|
|
{
|
400 |
|
|
/* This was not successful. Now try reading the /proc filesystem. */
|
401 |
|
|
int fd = __open ("/proc/sys/kernel/version", O_RDONLY);
|
402 |
|
|
if (__builtin_expect (fd, 0) == -1
|
403 |
|
|
|| (reslen = __read (fd, buf, sizeof (buf))) <= 0)
|
404 |
|
|
/* This also didn't work. We give up and say it's a UP machine. */
|
405 |
|
|
buf[0] = '\0';
|
406 |
|
|
|
407 |
|
|
__close (fd);
|
408 |
|
|
}
|
409 |
|
|
|
410 |
|
|
return strstr (buf, "SMP") != NULL;
|
411 |
|
|
}
|
412 |
|
|
|
413 |
|
|
|
414 |
|
|
/* Initialize the pthread library.
|
415 |
|
|
Initialization is split in two functions:
|
416 |
|
|
- a constructor function that blocks the __pthread_sig_restart signal
|
417 |
|
|
(must do this very early, since the program could capture the signal
|
418 |
|
|
mask with e.g. sigsetjmp before creating the first thread);
|
419 |
|
|
- a regular function called from pthread_create when needed. */
|
420 |
|
|
|
421 |
|
|
static void pthread_initialize(void) __attribute__((constructor));
|
422 |
|
|
|
423 |
|
|
#ifndef HAVE_Z_NODELETE
|
424 |
|
|
extern void *__dso_handle __attribute__ ((weak));
|
425 |
|
|
#endif
|
426 |
|
|
|
427 |
|
|
|
428 |
|
|
/* Do some minimal initialization which has to be done during the
|
429 |
|
|
startup of the C library. */
|
430 |
|
|
void
|
431 |
|
|
__pthread_initialize_minimal(void)
|
432 |
|
|
{
|
433 |
|
|
/* If we have special thread_self processing, initialize that for the
|
434 |
|
|
main thread now. */
|
435 |
|
|
#ifdef INIT_THREAD_SELF
|
436 |
|
|
INIT_THREAD_SELF(&__pthread_initial_thread, 0);
|
437 |
|
|
#endif
|
438 |
|
|
#if HP_TIMING_AVAIL
|
439 |
|
|
__pthread_initial_thread.p_cpuclock_offset = _dl_cpuclock_offset;
|
440 |
|
|
#endif
|
441 |
|
|
}
|
442 |
|
|
|
443 |
|
|
|
444 |
|
|
void
|
445 |
|
|
__pthread_init_max_stacksize(void)
|
446 |
|
|
{
|
447 |
|
|
struct rlimit limit;
|
448 |
|
|
size_t max_stack;
|
449 |
|
|
|
450 |
|
|
getrlimit(RLIMIT_STACK, &limit);
|
451 |
|
|
#ifdef FLOATING_STACKS
|
452 |
|
|
if (limit.rlim_cur == RLIM_INFINITY)
|
453 |
|
|
limit.rlim_cur = ARCH_STACK_MAX_SIZE;
|
454 |
|
|
# ifdef NEED_SEPARATE_REGISTER_STACK
|
455 |
|
|
max_stack = limit.rlim_cur / 2;
|
456 |
|
|
# else
|
457 |
|
|
max_stack = limit.rlim_cur;
|
458 |
|
|
# endif
|
459 |
|
|
#else
|
460 |
|
|
/* Play with the stack size limit to make sure that no stack ever grows
|
461 |
|
|
beyond STACK_SIZE minus one page (to act as a guard page). */
|
462 |
|
|
# ifdef NEED_SEPARATE_REGISTER_STACK
|
463 |
|
|
/* STACK_SIZE bytes hold both the main stack and register backing
|
464 |
|
|
store. The rlimit value applies to each individually. */
|
465 |
|
|
max_stack = STACK_SIZE/2 - __getpagesize ();
|
466 |
|
|
# else
|
467 |
|
|
max_stack = STACK_SIZE - __getpagesize();
|
468 |
|
|
# endif
|
469 |
|
|
if (limit.rlim_cur > max_stack) {
|
470 |
|
|
limit.rlim_cur = max_stack;
|
471 |
|
|
__libc_setrlimit(RLIMIT_STACK, &limit);
|
472 |
|
|
}
|
473 |
|
|
#endif
|
474 |
|
|
__pthread_max_stacksize = max_stack;
|
475 |
|
|
}
|
476 |
|
|
|
477 |
|
|
|
478 |
|
|
static void pthread_initialize(void)
|
479 |
|
|
{
|
480 |
|
|
struct sigaction sa;
|
481 |
|
|
sigset_t mask;
|
482 |
|
|
|
483 |
|
|
/* If already done (e.g. by a constructor called earlier!), bail out */
|
484 |
|
|
if (__pthread_initial_thread_bos != NULL) return;
|
485 |
|
|
#ifdef TEST_FOR_COMPARE_AND_SWAP
|
486 |
|
|
/* Test if compare-and-swap is available */
|
487 |
|
|
__pthread_has_cas = compare_and_swap_is_available();
|
488 |
|
|
#endif
|
489 |
|
|
#ifdef FLOATING_STACKS
|
490 |
|
|
/* We don't need to know the bottom of the stack. Give the pointer some
|
491 |
|
|
value to signal that initialization happened. */
|
492 |
|
|
__pthread_initial_thread_bos = (void *) -1l;
|
493 |
|
|
#else
|
494 |
|
|
/* Determine stack size limits . */
|
495 |
|
|
__pthread_init_max_stacksize ();
|
496 |
|
|
# ifdef _STACK_GROWS_UP
|
497 |
|
|
/* The initial thread already has all the stack it needs */
|
498 |
|
|
__pthread_initial_thread_bos = (char *)
|
499 |
|
|
((long)CURRENT_STACK_FRAME &~ (STACK_SIZE - 1));
|
500 |
|
|
# else
|
501 |
|
|
/* For the initial stack, reserve at least STACK_SIZE bytes of stack
|
502 |
|
|
below the current stack address, and align that on a
|
503 |
|
|
STACK_SIZE boundary. */
|
504 |
|
|
__pthread_initial_thread_bos =
|
505 |
|
|
(char *)(((long)CURRENT_STACK_FRAME - 2 * STACK_SIZE) & ~(STACK_SIZE - 1));
|
506 |
|
|
# endif
|
507 |
|
|
#endif
|
508 |
|
|
/* Update the descriptor for the initial thread. */
|
509 |
|
|
__pthread_initial_thread.p_pid = __getpid();
|
510 |
|
|
/* Likewise for the resolver state _res. */
|
511 |
|
|
__pthread_initial_thread.p_resp = &_res;
|
512 |
|
|
#ifdef __SIGRTMIN
|
513 |
|
|
/* Initialize real-time signals. */
|
514 |
|
|
init_rtsigs ();
|
515 |
|
|
#endif
|
516 |
|
|
/* Setup signal handlers for the initial thread.
|
517 |
|
|
Since signal handlers are shared between threads, these settings
|
518 |
|
|
will be inherited by all other threads. */
|
519 |
|
|
sa.sa_handler = pthread_handle_sigrestart;
|
520 |
|
|
sigemptyset(&sa.sa_mask);
|
521 |
|
|
sa.sa_flags = 0;
|
522 |
|
|
__libc_sigaction(__pthread_sig_restart, &sa, NULL);
|
523 |
|
|
sa.sa_handler = pthread_handle_sigcancel;
|
524 |
|
|
// sa.sa_flags = 0;
|
525 |
|
|
__libc_sigaction(__pthread_sig_cancel, &sa, NULL);
|
526 |
|
|
if (__pthread_sig_debug > 0) {
|
527 |
|
|
sa.sa_handler = pthread_handle_sigdebug;
|
528 |
|
|
sigemptyset(&sa.sa_mask);
|
529 |
|
|
// sa.sa_flags = 0;
|
530 |
|
|
__libc_sigaction(__pthread_sig_debug, &sa, NULL);
|
531 |
|
|
}
|
532 |
|
|
/* Initially, block __pthread_sig_restart. Will be unblocked on demand. */
|
533 |
|
|
sigemptyset(&mask);
|
534 |
|
|
sigaddset(&mask, __pthread_sig_restart);
|
535 |
|
|
sigprocmask(SIG_BLOCK, &mask, NULL);
|
536 |
|
|
/* Register an exit function to kill all other threads. */
|
537 |
|
|
/* Do it early so that user-registered atexit functions are called
|
538 |
|
|
before pthread_*exit_process. */
|
539 |
|
|
#ifndef HAVE_Z_NODELETE
|
540 |
|
|
if (__builtin_expect (&__dso_handle != NULL, 1))
|
541 |
|
|
__cxa_atexit ((void (*) (void *)) pthread_atexit_process, NULL,
|
542 |
|
|
__dso_handle);
|
543 |
|
|
else
|
544 |
|
|
#endif
|
545 |
|
|
on_exit (pthread_onexit_process, NULL);
|
546 |
|
|
/* How many processors. */
|
547 |
|
|
__pthread_smp_kernel = is_smp_system ();
|
548 |
|
|
}
|
549 |
|
|
|
550 |
|
|
void __pthread_initialize(void)
|
551 |
|
|
{
|
552 |
|
|
pthread_initialize();
|
553 |
|
|
}
|
554 |
|
|
|
555 |
|
|
int __pthread_initialize_manager(void)
|
556 |
|
|
{
|
557 |
|
|
int manager_pipe[2];
|
558 |
|
|
int pid;
|
559 |
|
|
struct pthread_request request;
|
560 |
|
|
|
561 |
|
|
#ifndef HAVE_Z_NODELETE
|
562 |
|
|
if (__builtin_expect (&__dso_handle != NULL, 1))
|
563 |
|
|
__cxa_atexit ((void (*) (void *)) pthread_atexit_retcode, NULL,
|
564 |
|
|
__dso_handle);
|
565 |
|
|
#endif
|
566 |
|
|
|
567 |
|
|
if (__pthread_max_stacksize == 0)
|
568 |
|
|
__pthread_init_max_stacksize ();
|
569 |
|
|
/* If basic initialization not done yet (e.g. we're called from a
|
570 |
|
|
constructor run before our constructor), do it now */
|
571 |
|
|
if (__pthread_initial_thread_bos == NULL) pthread_initialize();
|
572 |
|
|
/* Setup stack for thread manager */
|
573 |
|
|
__pthread_manager_thread_bos = malloc(THREAD_MANAGER_STACK_SIZE);
|
574 |
|
|
if (__pthread_manager_thread_bos == NULL) return -1;
|
575 |
|
|
__pthread_manager_thread_tos =
|
576 |
|
|
__pthread_manager_thread_bos + THREAD_MANAGER_STACK_SIZE;
|
577 |
|
|
/* Setup pipe to communicate with thread manager */
|
578 |
|
|
if (__libc_pipe(manager_pipe) == -1) {
|
579 |
|
|
free(__pthread_manager_thread_bos);
|
580 |
|
|
return -1;
|
581 |
|
|
}
|
582 |
|
|
/* Start the thread manager */
|
583 |
|
|
pid = 0;
|
584 |
|
|
if (__builtin_expect (__pthread_initial_thread.p_report_events, 0))
|
585 |
|
|
{
|
586 |
|
|
/* It's a bit more complicated. We have to report the creation of
|
587 |
|
|
the manager thread. */
|
588 |
|
|
int idx = __td_eventword (TD_CREATE);
|
589 |
|
|
uint32_t mask = __td_eventmask (TD_CREATE);
|
590 |
|
|
|
591 |
|
|
if ((mask & (__pthread_threads_events.event_bits[idx]
|
592 |
|
|
| __pthread_initial_thread.p_eventbuf.eventmask.event_bits[idx]))
|
593 |
|
|
!= 0)
|
594 |
|
|
{
|
595 |
|
|
__pthread_lock(__pthread_manager_thread.p_lock, NULL);
|
596 |
|
|
|
597 |
|
|
#ifdef NEED_SEPARATE_REGISTER_STACK
|
598 |
|
|
pid = __clone2(__pthread_manager_event,
|
599 |
|
|
(void **) __pthread_manager_thread_bos,
|
600 |
|
|
THREAD_MANAGER_STACK_SIZE,
|
601 |
|
|
CLONE_VM | CLONE_FS | CLONE_FILES | CLONE_SIGHAND,
|
602 |
|
|
(void *)(long)manager_pipe[0]);
|
603 |
|
|
#elif _STACK_GROWS_UP
|
604 |
|
|
pid = __clone(__pthread_manager_event,
|
605 |
|
|
(void **) __pthread_manager_thread_bos,
|
606 |
|
|
CLONE_VM | CLONE_FS | CLONE_FILES | CLONE_SIGHAND,
|
607 |
|
|
(void *)(long)manager_pipe[0]);
|
608 |
|
|
#else
|
609 |
|
|
pid = __clone(__pthread_manager_event,
|
610 |
|
|
(void **) __pthread_manager_thread_tos,
|
611 |
|
|
CLONE_VM | CLONE_FS | CLONE_FILES | CLONE_SIGHAND,
|
612 |
|
|
(void *)(long)manager_pipe[0]);
|
613 |
|
|
#endif
|
614 |
|
|
|
615 |
|
|
if (pid != -1)
|
616 |
|
|
{
|
617 |
|
|
/* Now fill in the information about the new thread in
|
618 |
|
|
the newly created thread's data structure. We cannot let
|
619 |
|
|
the new thread do this since we don't know whether it was
|
620 |
|
|
already scheduled when we send the event. */
|
621 |
|
|
__pthread_manager_thread.p_eventbuf.eventdata =
|
622 |
|
|
&__pthread_manager_thread;
|
623 |
|
|
__pthread_manager_thread.p_eventbuf.eventnum = TD_CREATE;
|
624 |
|
|
__pthread_last_event = &__pthread_manager_thread;
|
625 |
|
|
__pthread_manager_thread.p_tid = 2* PTHREAD_THREADS_MAX + 1;
|
626 |
|
|
__pthread_manager_thread.p_pid = pid;
|
627 |
|
|
|
628 |
|
|
/* Now call the function which signals the event. */
|
629 |
|
|
__linuxthreads_create_event ();
|
630 |
|
|
}
|
631 |
|
|
|
632 |
|
|
/* Now restart the thread. */
|
633 |
|
|
__pthread_unlock(__pthread_manager_thread.p_lock);
|
634 |
|
|
}
|
635 |
|
|
}
|
636 |
|
|
|
637 |
|
|
if (__builtin_expect (pid, 0) == 0)
|
638 |
|
|
{
|
639 |
|
|
#ifdef NEED_SEPARATE_REGISTER_STACK
|
640 |
|
|
pid = __clone2(__pthread_manager, (void **) __pthread_manager_thread_bos,
|
641 |
|
|
THREAD_MANAGER_STACK_SIZE,
|
642 |
|
|
CLONE_VM | CLONE_FS | CLONE_FILES | CLONE_SIGHAND,
|
643 |
|
|
(void *)(long)manager_pipe[0]);
|
644 |
|
|
#elif _STACK_GROWS_UP
|
645 |
|
|
pid = __clone(__pthread_manager, (void **) __pthread_manager_thread_bos,
|
646 |
|
|
CLONE_VM | CLONE_FS | CLONE_FILES | CLONE_SIGHAND,
|
647 |
|
|
(void *)(long)manager_pipe[0]);
|
648 |
|
|
#else
|
649 |
|
|
pid = __clone(__pthread_manager, (void **) __pthread_manager_thread_tos,
|
650 |
|
|
CLONE_VM | CLONE_FS | CLONE_FILES | CLONE_SIGHAND,
|
651 |
|
|
(void *)(long)manager_pipe[0]);
|
652 |
|
|
#endif
|
653 |
|
|
}
|
654 |
|
|
if (__builtin_expect (pid, 0) == -1) {
|
655 |
|
|
free(__pthread_manager_thread_bos);
|
656 |
|
|
__libc_close(manager_pipe[0]);
|
657 |
|
|
__libc_close(manager_pipe[1]);
|
658 |
|
|
return -1;
|
659 |
|
|
}
|
660 |
|
|
__pthread_manager_request = manager_pipe[1]; /* writing end */
|
661 |
|
|
__pthread_manager_reader = manager_pipe[0]; /* reading end */
|
662 |
|
|
__pthread_manager_thread.p_tid = 2* PTHREAD_THREADS_MAX + 1;
|
663 |
|
|
__pthread_manager_thread.p_pid = pid;
|
664 |
|
|
/* Make gdb aware of new thread manager */
|
665 |
|
|
if (__builtin_expect (__pthread_threads_debug, 0) && __pthread_sig_debug > 0)
|
666 |
|
|
{
|
667 |
|
|
raise(__pthread_sig_debug);
|
668 |
|
|
/* We suspend ourself and gdb will wake us up when it is
|
669 |
|
|
ready to handle us. */
|
670 |
|
|
__pthread_wait_for_restart_signal(thread_self());
|
671 |
|
|
}
|
672 |
|
|
/* Synchronize debugging of the thread manager */
|
673 |
|
|
request.req_kind = REQ_DEBUG;
|
674 |
|
|
TEMP_FAILURE_RETRY(__libc_write(__pthread_manager_request,
|
675 |
|
|
(char *) &request, sizeof(request)));
|
676 |
|
|
return 0;
|
677 |
|
|
}
|
678 |
|
|
|
679 |
|
|
/* Thread creation */
|
680 |
|
|
|
681 |
|
|
int __pthread_create_2_1(pthread_t *thread, const pthread_attr_t *attr,
|
682 |
|
|
void * (*start_routine)(void *), void *arg)
|
683 |
|
|
{
|
684 |
|
|
pthread_descr self = thread_self();
|
685 |
|
|
struct pthread_request request;
|
686 |
|
|
int retval;
|
687 |
|
|
if (__builtin_expect (__pthread_manager_request, 0) < 0) {
|
688 |
|
|
if (__pthread_initialize_manager() < 0) return EAGAIN;
|
689 |
|
|
}
|
690 |
|
|
request.req_thread = self;
|
691 |
|
|
request.req_kind = REQ_CREATE;
|
692 |
|
|
request.req_args.create.attr = attr;
|
693 |
|
|
request.req_args.create.fn = start_routine;
|
694 |
|
|
request.req_args.create.arg = arg;
|
695 |
|
|
sigprocmask(SIG_SETMASK, (const sigset_t *) NULL,
|
696 |
|
|
&request.req_args.create.mask);
|
697 |
|
|
TEMP_FAILURE_RETRY(__libc_write(__pthread_manager_request,
|
698 |
|
|
(char *) &request, sizeof(request)));
|
699 |
|
|
suspend(self);
|
700 |
|
|
retval = THREAD_GETMEM(self, p_retcode);
|
701 |
|
|
if (__builtin_expect (retval, 0) == 0)
|
702 |
|
|
*thread = (pthread_t) THREAD_GETMEM(self, p_retval);
|
703 |
|
|
return retval;
|
704 |
|
|
}
|
705 |
|
|
|
706 |
|
|
versioned_symbol (libpthread, __pthread_create_2_1, pthread_create, GLIBC_2_1);
|
707 |
|
|
|
708 |
|
|
#if SHLIB_COMPAT (libpthread, GLIBC_2_0, GLIBC_2_1)
|
709 |
|
|
|
710 |
|
|
int __pthread_create_2_0(pthread_t *thread, const pthread_attr_t *attr,
|
711 |
|
|
void * (*start_routine)(void *), void *arg)
|
712 |
|
|
{
|
713 |
|
|
/* The ATTR attribute is not really of type `pthread_attr_t *'. It has
|
714 |
|
|
the old size and access to the new members might crash the program.
|
715 |
|
|
We convert the struct now. */
|
716 |
|
|
pthread_attr_t new_attr;
|
717 |
|
|
|
718 |
|
|
if (attr != NULL)
|
719 |
|
|
{
|
720 |
|
|
size_t ps = __getpagesize ();
|
721 |
|
|
|
722 |
|
|
memcpy (&new_attr, attr,
|
723 |
|
|
(size_t) &(((pthread_attr_t*)NULL)->__guardsize));
|
724 |
|
|
new_attr.__guardsize = ps;
|
725 |
|
|
new_attr.__stackaddr_set = 0;
|
726 |
|
|
new_attr.__stackaddr = NULL;
|
727 |
|
|
new_attr.__stacksize = STACK_SIZE - ps;
|
728 |
|
|
attr = &new_attr;
|
729 |
|
|
}
|
730 |
|
|
return __pthread_create_2_1 (thread, attr, start_routine, arg);
|
731 |
|
|
}
|
732 |
|
|
compat_symbol (libpthread, __pthread_create_2_0, pthread_create, GLIBC_2_0);
|
733 |
|
|
#endif
|
734 |
|
|
|
735 |
|
|
/* Simple operations on thread identifiers */
|
736 |
|
|
|
737 |
|
|
pthread_t pthread_self(void)
|
738 |
|
|
{
|
739 |
|
|
pthread_descr self = thread_self();
|
740 |
|
|
return THREAD_GETMEM(self, p_tid);
|
741 |
|
|
}
|
742 |
|
|
|
743 |
|
|
int pthread_equal(pthread_t thread1, pthread_t thread2)
|
744 |
|
|
{
|
745 |
|
|
return thread1 == thread2;
|
746 |
|
|
}
|
747 |
|
|
|
748 |
|
|
/* Helper function for thread_self in the case of user-provided stacks */
|
749 |
|
|
|
750 |
|
|
#ifndef THREAD_SELF
|
751 |
|
|
|
752 |
|
|
pthread_descr __pthread_find_self(void)
|
753 |
|
|
{
|
754 |
|
|
char * sp = CURRENT_STACK_FRAME;
|
755 |
|
|
pthread_handle h;
|
756 |
|
|
|
757 |
|
|
/* __pthread_handles[0] is the initial thread, __pthread_handles[1] is
|
758 |
|
|
the manager threads handled specially in thread_self(), so start at 2 */
|
759 |
|
|
h = __pthread_handles + 2;
|
760 |
|
|
while (! (sp <= (char *) h->h_descr && sp >= h->h_bottom)) h++;
|
761 |
|
|
return h->h_descr;
|
762 |
|
|
}
|
763 |
|
|
|
764 |
|
|
#else
|
765 |
|
|
|
766 |
|
|
static pthread_descr thread_self_stack(void)
|
767 |
|
|
{
|
768 |
|
|
char *sp = CURRENT_STACK_FRAME;
|
769 |
|
|
pthread_handle h;
|
770 |
|
|
|
771 |
|
|
if (sp >= __pthread_manager_thread_bos && sp < __pthread_manager_thread_tos)
|
772 |
|
|
return &__pthread_manager_thread;
|
773 |
|
|
h = __pthread_handles + 2;
|
774 |
|
|
while (! (sp <= (char *) h->h_descr && sp >= h->h_bottom))
|
775 |
|
|
h++;
|
776 |
|
|
return h->h_descr;
|
777 |
|
|
}
|
778 |
|
|
|
779 |
|
|
#endif
|
780 |
|
|
|
781 |
|
|
/* Thread scheduling */
|
782 |
|
|
|
783 |
|
|
int pthread_setschedparam(pthread_t thread, int policy,
|
784 |
|
|
const struct sched_param *param)
|
785 |
|
|
{
|
786 |
|
|
pthread_handle handle = thread_handle(thread);
|
787 |
|
|
pthread_descr th;
|
788 |
|
|
|
789 |
|
|
__pthread_lock(&handle->h_lock, NULL);
|
790 |
|
|
if (__builtin_expect (invalid_handle(handle, thread), 0)) {
|
791 |
|
|
__pthread_unlock(&handle->h_lock);
|
792 |
|
|
return ESRCH;
|
793 |
|
|
}
|
794 |
|
|
th = handle->h_descr;
|
795 |
|
|
if (__builtin_expect (__sched_setscheduler(th->p_pid, policy, param) == -1,
|
796 |
|
|
0)) {
|
797 |
|
|
__pthread_unlock(&handle->h_lock);
|
798 |
|
|
return errno;
|
799 |
|
|
}
|
800 |
|
|
th->p_priority = policy == SCHED_OTHER ? 0 : param->sched_priority;
|
801 |
|
|
__pthread_unlock(&handle->h_lock);
|
802 |
|
|
if (__pthread_manager_request >= 0)
|
803 |
|
|
__pthread_manager_adjust_prio(th->p_priority);
|
804 |
|
|
return 0;
|
805 |
|
|
}
|
806 |
|
|
|
807 |
|
|
int pthread_getschedparam(pthread_t thread, int *policy,
|
808 |
|
|
struct sched_param *param)
|
809 |
|
|
{
|
810 |
|
|
pthread_handle handle = thread_handle(thread);
|
811 |
|
|
int pid, pol;
|
812 |
|
|
|
813 |
|
|
__pthread_lock(&handle->h_lock, NULL);
|
814 |
|
|
if (__builtin_expect (invalid_handle(handle, thread), 0)) {
|
815 |
|
|
__pthread_unlock(&handle->h_lock);
|
816 |
|
|
return ESRCH;
|
817 |
|
|
}
|
818 |
|
|
pid = handle->h_descr->p_pid;
|
819 |
|
|
__pthread_unlock(&handle->h_lock);
|
820 |
|
|
pol = __sched_getscheduler(pid);
|
821 |
|
|
if (__builtin_expect (pol, 0) == -1) return errno;
|
822 |
|
|
if (__sched_getparam(pid, param) == -1) return errno;
|
823 |
|
|
*policy = pol;
|
824 |
|
|
return 0;
|
825 |
|
|
}
|
826 |
|
|
|
827 |
|
|
int __pthread_yield (void)
|
828 |
|
|
{
|
829 |
|
|
/* For now this is equivalent with the POSIX call. */
|
830 |
|
|
return sched_yield ();
|
831 |
|
|
}
|
832 |
|
|
weak_alias (__pthread_yield, pthread_yield)
|
833 |
|
|
|
834 |
|
|
/* Process-wide exit() request */
|
835 |
|
|
|
836 |
|
|
static void pthread_onexit_process(int retcode, void *arg)
|
837 |
|
|
{
|
838 |
|
|
if (__builtin_expect (__pthread_manager_request, 0) >= 0) {
|
839 |
|
|
struct pthread_request request;
|
840 |
|
|
pthread_descr self = thread_self();
|
841 |
|
|
|
842 |
|
|
request.req_thread = self;
|
843 |
|
|
request.req_kind = REQ_PROCESS_EXIT;
|
844 |
|
|
request.req_args.exit.code = retcode;
|
845 |
|
|
TEMP_FAILURE_RETRY(__libc_write(__pthread_manager_request,
|
846 |
|
|
(char *) &request, sizeof(request)));
|
847 |
|
|
suspend(self);
|
848 |
|
|
/* Main thread should accumulate times for thread manager and its
|
849 |
|
|
children, so that timings for main thread account for all threads. */
|
850 |
|
|
if (self == __pthread_main_thread)
|
851 |
|
|
{
|
852 |
|
|
__waitpid(__pthread_manager_thread.p_pid, NULL, __WCLONE);
|
853 |
|
|
/* Since all threads have been asynchronously terminated
|
854 |
|
|
(possibly holding locks), free cannot be used any more. */
|
855 |
|
|
/*free (__pthread_manager_thread_bos);*/
|
856 |
|
|
__pthread_manager_thread_bos = __pthread_manager_thread_tos = NULL;
|
857 |
|
|
}
|
858 |
|
|
}
|
859 |
|
|
}
|
860 |
|
|
|
861 |
|
|
#ifndef HAVE_Z_NODELETE
|
862 |
|
|
static int __pthread_atexit_retcode;
|
863 |
|
|
|
864 |
|
|
static void pthread_atexit_process(void *arg, int retcode)
|
865 |
|
|
{
|
866 |
|
|
pthread_onexit_process (retcode ?: __pthread_atexit_retcode, arg);
|
867 |
|
|
}
|
868 |
|
|
|
869 |
|
|
static void pthread_atexit_retcode(void *arg, int retcode)
|
870 |
|
|
{
|
871 |
|
|
__pthread_atexit_retcode = retcode;
|
872 |
|
|
}
|
873 |
|
|
#endif
|
874 |
|
|
|
875 |
|
|
/* The handler for the RESTART signal just records the signal received
|
876 |
|
|
in the thread descriptor, and optionally performs a siglongjmp
|
877 |
|
|
(for pthread_cond_timedwait). */
|
878 |
|
|
|
879 |
|
|
static void pthread_handle_sigrestart(int sig)
|
880 |
|
|
{
|
881 |
|
|
pthread_descr self = thread_self();
|
882 |
|
|
THREAD_SETMEM(self, p_signal, sig);
|
883 |
|
|
if (THREAD_GETMEM(self, p_signal_jmp) != NULL)
|
884 |
|
|
siglongjmp(*THREAD_GETMEM(self, p_signal_jmp), 1);
|
885 |
|
|
}
|
886 |
|
|
|
887 |
|
|
/* The handler for the CANCEL signal checks for cancellation
|
888 |
|
|
(in asynchronous mode), for process-wide exit and exec requests.
|
889 |
|
|
For the thread manager thread, redirect the signal to
|
890 |
|
|
__pthread_manager_sighandler. */
|
891 |
|
|
|
892 |
|
|
static void pthread_handle_sigcancel(int sig)
|
893 |
|
|
{
|
894 |
|
|
pthread_descr self = thread_self();
|
895 |
|
|
sigjmp_buf * jmpbuf;
|
896 |
|
|
|
897 |
|
|
if (self == &__pthread_manager_thread)
|
898 |
|
|
{
|
899 |
|
|
#ifdef THREAD_SELF
|
900 |
|
|
/* A new thread might get a cancel signal before it is fully
|
901 |
|
|
initialized, so that the thread register might still point to the
|
902 |
|
|
manager thread. Double check that this is really the manager
|
903 |
|
|
thread. */
|
904 |
|
|
pthread_descr real_self = thread_self_stack();
|
905 |
|
|
if (real_self == &__pthread_manager_thread)
|
906 |
|
|
{
|
907 |
|
|
__pthread_manager_sighandler(sig);
|
908 |
|
|
return;
|
909 |
|
|
}
|
910 |
|
|
/* Oops, thread_self() isn't working yet.. */
|
911 |
|
|
self = real_self;
|
912 |
|
|
# ifdef INIT_THREAD_SELF
|
913 |
|
|
INIT_THREAD_SELF(self, self->p_nr);
|
914 |
|
|
# endif
|
915 |
|
|
#else
|
916 |
|
|
__pthread_manager_sighandler(sig);
|
917 |
|
|
return;
|
918 |
|
|
#endif
|
919 |
|
|
}
|
920 |
|
|
if (__builtin_expect (__pthread_exit_requested, 0)) {
|
921 |
|
|
/* Main thread should accumulate times for thread manager and its
|
922 |
|
|
children, so that timings for main thread account for all threads. */
|
923 |
|
|
if (self == __pthread_main_thread)
|
924 |
|
|
__waitpid(__pthread_manager_thread.p_pid, NULL, __WCLONE);
|
925 |
|
|
_exit(__pthread_exit_code);
|
926 |
|
|
}
|
927 |
|
|
if (__builtin_expect (THREAD_GETMEM(self, p_canceled), 0)
|
928 |
|
|
&& THREAD_GETMEM(self, p_cancelstate) == PTHREAD_CANCEL_ENABLE) {
|
929 |
|
|
if (THREAD_GETMEM(self, p_canceltype) == PTHREAD_CANCEL_ASYNCHRONOUS)
|
930 |
|
|
__pthread_do_exit(PTHREAD_CANCELED, CURRENT_STACK_FRAME);
|
931 |
|
|
jmpbuf = THREAD_GETMEM(self, p_cancel_jmp);
|
932 |
|
|
if (jmpbuf != NULL) {
|
933 |
|
|
THREAD_SETMEM(self, p_cancel_jmp, NULL);
|
934 |
|
|
siglongjmp(*jmpbuf, 1);
|
935 |
|
|
}
|
936 |
|
|
}
|
937 |
|
|
}
|
938 |
|
|
|
939 |
|
|
/* Handler for the DEBUG signal.
|
940 |
|
|
The debugging strategy is as follows:
|
941 |
|
|
On reception of a REQ_DEBUG request (sent by new threads created to
|
942 |
|
|
the thread manager under debugging mode), the thread manager throws
|
943 |
|
|
__pthread_sig_debug to itself. The debugger (if active) intercepts
|
944 |
|
|
this signal, takes into account new threads and continue execution
|
945 |
|
|
of the thread manager by propagating the signal because it doesn't
|
946 |
|
|
know what it is specifically done for. In the current implementation,
|
947 |
|
|
the thread manager simply discards it. */
|
948 |
|
|
|
949 |
|
|
static void pthread_handle_sigdebug(int sig)
|
950 |
|
|
{
|
951 |
|
|
/* Nothing */
|
952 |
|
|
}
|
953 |
|
|
|
954 |
|
|
/* Reset the state of the thread machinery after a fork().
|
955 |
|
|
Close the pipe used for requests and set the main thread to the forked
|
956 |
|
|
thread.
|
957 |
|
|
Notice that we can't free the stack segments, as the forked thread
|
958 |
|
|
may hold pointers into them. */
|
959 |
|
|
|
960 |
|
|
void __pthread_reset_main_thread(void)
|
961 |
|
|
{
|
962 |
|
|
pthread_descr self = thread_self();
|
963 |
|
|
struct rlimit limit;
|
964 |
|
|
|
965 |
|
|
if (__pthread_manager_request != -1) {
|
966 |
|
|
/* Free the thread manager stack */
|
967 |
|
|
free(__pthread_manager_thread_bos);
|
968 |
|
|
__pthread_manager_thread_bos = __pthread_manager_thread_tos = NULL;
|
969 |
|
|
/* Close the two ends of the pipe */
|
970 |
|
|
__libc_close(__pthread_manager_request);
|
971 |
|
|
__libc_close(__pthread_manager_reader);
|
972 |
|
|
__pthread_manager_request = __pthread_manager_reader = -1;
|
973 |
|
|
}
|
974 |
|
|
|
975 |
|
|
/* Update the pid of the main thread */
|
976 |
|
|
THREAD_SETMEM(self, p_pid, __getpid());
|
977 |
|
|
/* Make the forked thread the main thread */
|
978 |
|
|
__pthread_main_thread = self;
|
979 |
|
|
THREAD_SETMEM(self, p_nextlive, self);
|
980 |
|
|
THREAD_SETMEM(self, p_prevlive, self);
|
981 |
|
|
/* Now this thread modifies the global variables. */
|
982 |
|
|
THREAD_SETMEM(self, p_resp, &_res);
|
983 |
|
|
|
984 |
|
|
if (getrlimit (RLIMIT_STACK, &limit) == 0
|
985 |
|
|
&& limit.rlim_cur != limit.rlim_max) {
|
986 |
|
|
limit.rlim_cur = limit.rlim_max;
|
987 |
|
|
__libc_setrlimit(RLIMIT_STACK, &limit);
|
988 |
|
|
}
|
989 |
|
|
}
|
990 |
|
|
|
991 |
|
|
/* Process-wide exec() request */
|
992 |
|
|
|
993 |
|
|
#if !defined(_ELIX_LEVEL) || _ELIX_LEVEL >= 2
|
994 |
|
|
|
995 |
|
|
void __pthread_kill_other_threads_np(void)
|
996 |
|
|
{
|
997 |
|
|
struct sigaction sa;
|
998 |
|
|
/* Terminate all other threads and thread manager */
|
999 |
|
|
pthread_onexit_process(0, NULL);
|
1000 |
|
|
/* Make current thread the main thread in case the calling thread
|
1001 |
|
|
changes its mind, does not exec(), and creates new threads instead. */
|
1002 |
|
|
__pthread_reset_main_thread();
|
1003 |
|
|
|
1004 |
|
|
/* Reset the signal handlers behaviour for the signals the
|
1005 |
|
|
implementation uses since this would be passed to the new
|
1006 |
|
|
process. */
|
1007 |
|
|
sigemptyset(&sa.sa_mask);
|
1008 |
|
|
sa.sa_flags = 0;
|
1009 |
|
|
sa.sa_handler = SIG_DFL;
|
1010 |
|
|
__libc_sigaction(__pthread_sig_restart, &sa, NULL);
|
1011 |
|
|
__libc_sigaction(__pthread_sig_cancel, &sa, NULL);
|
1012 |
|
|
if (__pthread_sig_debug > 0)
|
1013 |
|
|
__libc_sigaction(__pthread_sig_debug, &sa, NULL);
|
1014 |
|
|
}
|
1015 |
|
|
weak_alias (__pthread_kill_other_threads_np, pthread_kill_other_threads_np)
|
1016 |
|
|
|
1017 |
|
|
#endif /* !_ELIX_LEVEL || _ELIX_LEVEL >= 2 */
|
1018 |
|
|
|
1019 |
|
|
/* Concurrency symbol level. */
|
1020 |
|
|
static int current_level;
|
1021 |
|
|
|
1022 |
|
|
int __pthread_setconcurrency(int level)
|
1023 |
|
|
{
|
1024 |
|
|
/* We don't do anything unless we have found a useful interpretation. */
|
1025 |
|
|
current_level = level;
|
1026 |
|
|
return 0;
|
1027 |
|
|
}
|
1028 |
|
|
weak_alias (__pthread_setconcurrency, pthread_setconcurrency)
|
1029 |
|
|
|
1030 |
|
|
int __pthread_getconcurrency(void)
|
1031 |
|
|
{
|
1032 |
|
|
return current_level;
|
1033 |
|
|
}
|
1034 |
|
|
weak_alias (__pthread_getconcurrency, pthread_getconcurrency)
|
1035 |
|
|
|
1036 |
|
|
/* Primitives for controlling thread execution */
|
1037 |
|
|
|
1038 |
|
|
void __pthread_wait_for_restart_signal(pthread_descr self)
|
1039 |
|
|
{
|
1040 |
|
|
sigset_t mask;
|
1041 |
|
|
|
1042 |
|
|
sigprocmask(SIG_SETMASK, NULL, &mask); /* Get current signal mask */
|
1043 |
|
|
sigdelset(&mask, __pthread_sig_restart); /* Unblock the restart signal */
|
1044 |
|
|
THREAD_SETMEM(self, p_signal, 0);
|
1045 |
|
|
do {
|
1046 |
|
|
sigsuspend(&mask); /* Wait for signal */
|
1047 |
|
|
} while (THREAD_GETMEM(self, p_signal) !=__pthread_sig_restart);
|
1048 |
|
|
|
1049 |
|
|
READ_MEMORY_BARRIER(); /* See comment in __pthread_restart_new */
|
1050 |
|
|
}
|
1051 |
|
|
|
1052 |
|
|
#if !__ASSUME_REALTIME_SIGNALS
|
1053 |
|
|
/* The _old variants are for 2.0 and early 2.1 kernels which don't have RT
|
1054 |
|
|
signals.
|
1055 |
|
|
On these kernels, we use SIGUSR1 and SIGUSR2 for restart and cancellation.
|
1056 |
|
|
Since the restart signal does not queue, we use an atomic counter to create
|
1057 |
|
|
queuing semantics. This is needed to resolve a rare race condition in
|
1058 |
|
|
pthread_cond_timedwait_relative. */
|
1059 |
|
|
|
1060 |
|
|
void __pthread_restart_old(pthread_descr th)
|
1061 |
|
|
{
|
1062 |
|
|
if (atomic_increment(&th->p_resume_count) == -1)
|
1063 |
|
|
kill(th->p_pid, __pthread_sig_restart);
|
1064 |
|
|
}
|
1065 |
|
|
|
1066 |
|
|
void __pthread_suspend_old(pthread_descr self)
|
1067 |
|
|
{
|
1068 |
|
|
if (atomic_decrement(&self->p_resume_count) <= 0)
|
1069 |
|
|
__pthread_wait_for_restart_signal(self);
|
1070 |
|
|
}
|
1071 |
|
|
|
1072 |
|
|
int
|
1073 |
|
|
__pthread_timedsuspend_old(pthread_descr self, const struct timespec *abstime)
|
1074 |
|
|
{
|
1075 |
|
|
sigset_t unblock, initial_mask;
|
1076 |
|
|
int was_signalled = 0;
|
1077 |
|
|
sigjmp_buf jmpbuf;
|
1078 |
|
|
|
1079 |
|
|
if (atomic_decrement(&self->p_resume_count) == 0) {
|
1080 |
|
|
/* Set up a longjmp handler for the restart signal, unblock
|
1081 |
|
|
the signal and sleep. */
|
1082 |
|
|
|
1083 |
|
|
if (sigsetjmp(jmpbuf, 1) == 0) {
|
1084 |
|
|
THREAD_SETMEM(self, p_signal_jmp, &jmpbuf);
|
1085 |
|
|
THREAD_SETMEM(self, p_signal, 0);
|
1086 |
|
|
/* Unblock the restart signal */
|
1087 |
|
|
sigemptyset(&unblock);
|
1088 |
|
|
sigaddset(&unblock, __pthread_sig_restart);
|
1089 |
|
|
sigprocmask(SIG_UNBLOCK, &unblock, &initial_mask);
|
1090 |
|
|
|
1091 |
|
|
while (1) {
|
1092 |
|
|
struct timeval now;
|
1093 |
|
|
struct timespec reltime;
|
1094 |
|
|
|
1095 |
|
|
/* Compute a time offset relative to now. */
|
1096 |
|
|
__gettimeofday (&now, NULL);
|
1097 |
|
|
reltime.tv_nsec = abstime->tv_nsec - now.tv_usec * 1000;
|
1098 |
|
|
reltime.tv_sec = abstime->tv_sec - now.tv_sec;
|
1099 |
|
|
if (reltime.tv_nsec < 0) {
|
1100 |
|
|
reltime.tv_nsec += 1000000000;
|
1101 |
|
|
reltime.tv_sec -= 1;
|
1102 |
|
|
}
|
1103 |
|
|
|
1104 |
|
|
/* Sleep for the required duration. If woken by a signal,
|
1105 |
|
|
resume waiting as required by Single Unix Specification. */
|
1106 |
|
|
if (reltime.tv_sec < 0 || __libc_nanosleep(&reltime, NULL) == 0)
|
1107 |
|
|
break;
|
1108 |
|
|
}
|
1109 |
|
|
|
1110 |
|
|
/* Block the restart signal again */
|
1111 |
|
|
sigprocmask(SIG_SETMASK, &initial_mask, NULL);
|
1112 |
|
|
was_signalled = 0;
|
1113 |
|
|
} else {
|
1114 |
|
|
was_signalled = 1;
|
1115 |
|
|
}
|
1116 |
|
|
THREAD_SETMEM(self, p_signal_jmp, NULL);
|
1117 |
|
|
}
|
1118 |
|
|
|
1119 |
|
|
/* Now was_signalled is true if we exited the above code
|
1120 |
|
|
due to the delivery of a restart signal. In that case,
|
1121 |
|
|
we know we have been dequeued and resumed and that the
|
1122 |
|
|
resume count is balanced. Otherwise, there are some
|
1123 |
|
|
cases to consider. First, try to bump up the resume count
|
1124 |
|
|
back to zero. If it goes to 1, it means restart() was
|
1125 |
|
|
invoked on this thread. The signal must be consumed
|
1126 |
|
|
and the count bumped down and everything is cool. We
|
1127 |
|
|
can return a 1 to the caller.
|
1128 |
|
|
Otherwise, no restart was delivered yet, so a potential
|
1129 |
|
|
race exists; we return a 0 to the caller which must deal
|
1130 |
|
|
with this race in an appropriate way; for example by
|
1131 |
|
|
atomically removing the thread from consideration for a
|
1132 |
|
|
wakeup---if such a thing fails, it means a restart is
|
1133 |
|
|
being delivered. */
|
1134 |
|
|
|
1135 |
|
|
if (!was_signalled) {
|
1136 |
|
|
if (atomic_increment(&self->p_resume_count) != -1) {
|
1137 |
|
|
__pthread_wait_for_restart_signal(self);
|
1138 |
|
|
atomic_decrement(&self->p_resume_count); /* should be zero now! */
|
1139 |
|
|
/* woke spontaneously and consumed restart signal */
|
1140 |
|
|
return 1;
|
1141 |
|
|
}
|
1142 |
|
|
/* woke spontaneously but did not consume restart---caller must resolve */
|
1143 |
|
|
return 0;
|
1144 |
|
|
}
|
1145 |
|
|
/* woken due to restart signal */
|
1146 |
|
|
return 1;
|
1147 |
|
|
}
|
1148 |
|
|
#endif /* __ASSUME_REALTIME_SIGNALS */
|
1149 |
|
|
|
1150 |
|
|
void __pthread_restart_new(pthread_descr th)
|
1151 |
|
|
{
|
1152 |
|
|
/* The barrier is proabably not needed, in which case it still documents
|
1153 |
|
|
our assumptions. The intent is to commit previous writes to shared
|
1154 |
|
|
memory so the woken thread will have a consistent view. Complementary
|
1155 |
|
|
read barriers are present to the suspend functions. */
|
1156 |
|
|
WRITE_MEMORY_BARRIER();
|
1157 |
|
|
kill(th->p_pid, __pthread_sig_restart);
|
1158 |
|
|
}
|
1159 |
|
|
|
1160 |
|
|
/* There is no __pthread_suspend_new because it would just
|
1161 |
|
|
be a wasteful wrapper for __pthread_wait_for_restart_signal */
|
1162 |
|
|
|
1163 |
|
|
int
|
1164 |
|
|
__pthread_timedsuspend_new(pthread_descr self, const struct timespec *abstime)
|
1165 |
|
|
{
|
1166 |
|
|
sigset_t unblock, initial_mask;
|
1167 |
|
|
int was_signalled = 0;
|
1168 |
|
|
sigjmp_buf jmpbuf;
|
1169 |
|
|
|
1170 |
|
|
if (sigsetjmp(jmpbuf, 1) == 0) {
|
1171 |
|
|
THREAD_SETMEM(self, p_signal_jmp, &jmpbuf);
|
1172 |
|
|
THREAD_SETMEM(self, p_signal, 0);
|
1173 |
|
|
/* Unblock the restart signal */
|
1174 |
|
|
sigemptyset(&unblock);
|
1175 |
|
|
sigaddset(&unblock, __pthread_sig_restart);
|
1176 |
|
|
sigprocmask(SIG_UNBLOCK, &unblock, &initial_mask);
|
1177 |
|
|
|
1178 |
|
|
while (1) {
|
1179 |
|
|
struct timeval now;
|
1180 |
|
|
struct timespec reltime;
|
1181 |
|
|
|
1182 |
|
|
/* Compute a time offset relative to now. */
|
1183 |
|
|
__gettimeofday (&now, NULL);
|
1184 |
|
|
reltime.tv_nsec = abstime->tv_nsec - now.tv_usec * 1000;
|
1185 |
|
|
reltime.tv_sec = abstime->tv_sec - now.tv_sec;
|
1186 |
|
|
if (reltime.tv_nsec < 0) {
|
1187 |
|
|
reltime.tv_nsec += 1000000000;
|
1188 |
|
|
reltime.tv_sec -= 1;
|
1189 |
|
|
}
|
1190 |
|
|
|
1191 |
|
|
/* Sleep for the required duration. If woken by a signal,
|
1192 |
|
|
resume waiting as required by Single Unix Specification. */
|
1193 |
|
|
if (reltime.tv_sec < 0 || __libc_nanosleep(&reltime, NULL) == 0)
|
1194 |
|
|
break;
|
1195 |
|
|
}
|
1196 |
|
|
|
1197 |
|
|
/* Block the restart signal again */
|
1198 |
|
|
sigprocmask(SIG_SETMASK, &initial_mask, NULL);
|
1199 |
|
|
was_signalled = 0;
|
1200 |
|
|
} else {
|
1201 |
|
|
was_signalled = 1;
|
1202 |
|
|
}
|
1203 |
|
|
THREAD_SETMEM(self, p_signal_jmp, NULL);
|
1204 |
|
|
|
1205 |
|
|
/* Now was_signalled is true if we exited the above code
|
1206 |
|
|
due to the delivery of a restart signal. In that case,
|
1207 |
|
|
everything is cool. We have been removed from whatever
|
1208 |
|
|
we were waiting on by the other thread, and consumed its signal.
|
1209 |
|
|
|
1210 |
|
|
Otherwise we this thread woke up spontaneously, or due to a signal other
|
1211 |
|
|
than restart. This is an ambiguous case that must be resolved by
|
1212 |
|
|
the caller; the thread is still eligible for a restart wakeup
|
1213 |
|
|
so there is a race. */
|
1214 |
|
|
|
1215 |
|
|
READ_MEMORY_BARRIER(); /* See comment in __pthread_restart_new */
|
1216 |
|
|
return was_signalled;
|
1217 |
|
|
}
|
1218 |
|
|
|
1219 |
|
|
|
1220 |
|
|
/* Debugging aid */
|
1221 |
|
|
|
1222 |
|
|
#ifdef DEBUG
|
1223 |
|
|
#include <stdarg.h>
|
1224 |
|
|
|
1225 |
|
|
void __pthread_message(char * fmt, ...)
|
1226 |
|
|
{
|
1227 |
|
|
char buffer[1024];
|
1228 |
|
|
va_list args;
|
1229 |
|
|
sprintf(buffer, "%05d : ", __getpid());
|
1230 |
|
|
va_start(args, fmt);
|
1231 |
|
|
vsnprintf(buffer + 8, sizeof(buffer) - 8, fmt, args);
|
1232 |
|
|
va_end(args);
|
1233 |
|
|
TEMP_FAILURE_RETRY(__libc_write(2, buffer, strlen(buffer)));
|
1234 |
|
|
}
|
1235 |
|
|
|
1236 |
|
|
#endif
|
1237 |
|
|
|
1238 |
|
|
|
1239 |
|
|
#ifndef SHARED
|
1240 |
|
|
/* We need a hook to force the cancelation wrappers and file locking
|
1241 |
|
|
to be linked in when static libpthread is used. */
|
1242 |
|
|
extern const int __pthread_provide_wrappers;
|
1243 |
|
|
static const int *const __pthread_require_wrappers =
|
1244 |
|
|
&__pthread_provide_wrappers;
|
1245 |
|
|
extern const int __pthread_provide_lockfile;
|
1246 |
|
|
static const int *const __pthread_require_lockfile =
|
1247 |
|
|
&__pthread_provide_lockfile;
|
1248 |
|
|
#endif
|