1 |
19 |
jeremybenn |
/* sprs.c -- Simulation of OR1K special-purpose registers
|
2 |
|
|
|
3 |
|
|
Copyright (C) 1999 Damjan Lampret, lampret@opencores.org
|
4 |
|
|
Copyright (C) 2008 Embecosm Limited
|
5 |
|
|
|
6 |
|
|
Contributor Jeremy Bennett <jeremy.bennett@embecosm.com>
|
7 |
|
|
|
8 |
|
|
This file is part of Or1ksim, the OpenRISC 1000 Architectural Simulator.
|
9 |
|
|
|
10 |
|
|
This program is free software; you can redistribute it and/or modify it
|
11 |
|
|
under the terms of the GNU General Public License as published by the Free
|
12 |
|
|
Software Foundation; either version 3 of the License, or (at your option)
|
13 |
|
|
any later version.
|
14 |
|
|
|
15 |
|
|
This program is distributed in the hope that it will be useful, but WITHOUT
|
16 |
|
|
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
17 |
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
18 |
|
|
more details.
|
19 |
|
|
|
20 |
|
|
You should have received a copy of the GNU General Public License along
|
21 |
|
|
with this program. If not, see <http://www.gnu.org/licenses/>. */
|
22 |
|
|
|
23 |
|
|
/* This program is commented throughout in a fashion suitable for processing
|
24 |
|
|
with Doxygen. */
|
25 |
|
|
|
26 |
|
|
|
27 |
|
|
/* Autoconf and/or portability configuration */
|
28 |
|
|
#include "config.h"
|
29 |
|
|
#include "port.h"
|
30 |
|
|
|
31 |
|
|
/* System includes */
|
32 |
|
|
#include <stdlib.h>
|
33 |
|
|
#include <stdio.h>
|
34 |
|
|
#include <errno.h>
|
35 |
|
|
|
36 |
|
|
/* Package includes */
|
37 |
|
|
#include "sprs.h"
|
38 |
|
|
#include "sim-config.h"
|
39 |
|
|
#include "debug.h"
|
40 |
|
|
#include "execute.h"
|
41 |
|
|
#include "spr-defs.h"
|
42 |
|
|
#include "tick.h"
|
43 |
|
|
#include "dcache-model.h"
|
44 |
|
|
#include "icache-model.h"
|
45 |
|
|
#include "dmmu.h"
|
46 |
|
|
#include "immu.h"
|
47 |
|
|
#include "toplevel-support.h"
|
48 |
|
|
#include "pic.h"
|
49 |
|
|
|
50 |
|
|
|
51 |
|
|
DECLARE_DEBUG_CHANNEL(immu);
|
52 |
|
|
|
53 |
|
|
/* Set a specific SPR with a value. */
|
54 |
|
|
void mtspr(uint16_t regno, const uorreg_t value)
|
55 |
|
|
{
|
56 |
|
|
uorreg_t prev_val;
|
57 |
|
|
|
58 |
|
|
prev_val = cpu_state.sprs[regno];
|
59 |
|
|
cpu_state.sprs[regno] = value;
|
60 |
|
|
|
61 |
|
|
/* MM: Register hooks. */
|
62 |
|
|
switch (regno) {
|
63 |
|
|
case SPR_TTCR:
|
64 |
|
|
spr_write_ttcr (value);
|
65 |
|
|
break;
|
66 |
|
|
case SPR_TTMR:
|
67 |
|
|
spr_write_ttmr (prev_val);
|
68 |
|
|
break;
|
69 |
|
|
/* Data cache simulateing stuff */
|
70 |
|
|
case SPR_DCBPR:
|
71 |
|
|
/* FIXME: This is not correct. The arch. manual states: "Memory accesses
|
72 |
|
|
* are not recorded (Unlike load or store instructions) and cannot invoke
|
73 |
|
|
* any exception". If the physical address is invalid a bus error will be
|
74 |
|
|
* generated. Also if the effective address is not resident in the mmu
|
75 |
|
|
* the read will happen from address 0, which is naturally not correct. */
|
76 |
|
|
dc_simulate_read(peek_into_dtlb(value, 0, 1), value, 4);
|
77 |
|
|
cpu_state.sprs[SPR_DCBPR] = 0;
|
78 |
|
|
break;
|
79 |
|
|
case SPR_DCBFR:
|
80 |
|
|
dc_inv(value);
|
81 |
|
|
cpu_state.sprs[SPR_DCBFR] = -1;
|
82 |
|
|
break;
|
83 |
|
|
case SPR_DCBIR:
|
84 |
|
|
dc_inv(value);
|
85 |
|
|
cpu_state.sprs[SPR_DCBIR] = 0;
|
86 |
|
|
break;
|
87 |
|
|
case SPR_DCBWR:
|
88 |
|
|
cpu_state.sprs[SPR_DCBWR] = 0;
|
89 |
|
|
break;
|
90 |
|
|
case SPR_DCBLR:
|
91 |
|
|
cpu_state.sprs[SPR_DCBLR] = 0;
|
92 |
|
|
break;
|
93 |
|
|
/* Instruction cache simulateing stuff */
|
94 |
|
|
case SPR_ICBPR:
|
95 |
|
|
/* FIXME: The arch manual does not say what happens when an invalid memory
|
96 |
|
|
* location is specified. I guess the same as for the DCBPR register */
|
97 |
|
|
ic_simulate_fetch(peek_into_itlb(value), value);
|
98 |
|
|
cpu_state.sprs[SPR_ICBPR] = 0;
|
99 |
|
|
break;
|
100 |
|
|
case SPR_ICBIR:
|
101 |
|
|
ic_inv(value);
|
102 |
|
|
cpu_state.sprs[SPR_ICBIR] = 0;
|
103 |
|
|
break;
|
104 |
|
|
case SPR_ICBLR:
|
105 |
|
|
cpu_state.sprs[SPR_ICBLR] = 0;
|
106 |
|
|
break;
|
107 |
|
|
case SPR_SR:
|
108 |
|
|
cpu_state.sprs[regno] |= SPR_SR_FO;
|
109 |
|
|
if((value & SPR_SR_IEE) && !(prev_val & SPR_SR_IEE))
|
110 |
|
|
pic_ints_en();
|
111 |
|
|
#if DYNAMIC_EXECUTION
|
112 |
|
|
if((value & SPR_SR_IME) && !(prev_val & SPR_SR_IME)) {
|
113 |
|
|
TRACE_(immu)("IMMU just became enabled (%lli).\n", runtime.sim.cycles);
|
114 |
|
|
recheck_immu(IMMU_GOT_ENABLED);
|
115 |
|
|
} else if(!(value & SPR_SR_IME) && (prev_val & SPR_SR_IME)) {
|
116 |
|
|
TRACE_(immu)("Remove counting of mmu hit delay with cycles (%lli)\n",
|
117 |
|
|
runtime.sim.cycles);
|
118 |
|
|
recheck_immu(IMMU_GOT_DISABLED);
|
119 |
|
|
}
|
120 |
|
|
#endif
|
121 |
|
|
break;
|
122 |
|
|
case SPR_NPC:
|
123 |
|
|
{
|
124 |
|
|
/* The debugger has redirected us to a new address */
|
125 |
|
|
/* This is usually done to reissue an instruction
|
126 |
|
|
which just caused a breakpoint exception. */
|
127 |
|
|
|
128 |
|
|
/* JPB patch. When GDB stepi, this may be used to set the PC to the
|
129 |
|
|
value it is already at. If this is the case, then we do nothing (in
|
130 |
|
|
particular we do not trash a delayed branch) */
|
131 |
|
|
|
132 |
|
|
if (value != cpu_state.pc)
|
133 |
|
|
{
|
134 |
|
|
cpu_state.pc = value;
|
135 |
|
|
|
136 |
|
|
if(!value && config.sim.verbose)
|
137 |
|
|
PRINTF("WARNING: PC just set to 0!\n");
|
138 |
|
|
|
139 |
|
|
/* Clear any pending delay slot jumps also */
|
140 |
|
|
cpu_state.delay_insn = 0;
|
141 |
|
|
pcnext = value + 4;
|
142 |
|
|
|
143 |
|
|
/* Further JPB patch. If the processor is stalled, then subsequent
|
144 |
|
|
reads of the NPC should return 0 until the processor is
|
145 |
|
|
unstalled. If the processor is stalled, note that the NPC has
|
146 |
|
|
been updated while the processor was stalled. */
|
147 |
|
|
|
148 |
|
|
if (runtime.cpu.stalled)
|
149 |
|
|
{
|
150 |
|
|
cpu_state.npc_not_valid = 1;
|
151 |
|
|
}
|
152 |
|
|
}
|
153 |
|
|
}
|
154 |
|
|
break;
|
155 |
|
|
case SPR_PICSR:
|
156 |
|
|
if(!config.pic.edge_trigger)
|
157 |
436 |
julius |
/* When configured with level triggered interrupts we clear PICSR in PIC
|
158 |
|
|
peripheral model when incoming IRQ goes low */
|
159 |
19 |
jeremybenn |
cpu_state.sprs[SPR_PICSR] = prev_val;
|
160 |
|
|
break;
|
161 |
|
|
case SPR_PICMR:
|
162 |
432 |
jeremybenn |
/* If we have non-maskable interrupts, then the bottom two bits are always
|
163 |
|
|
one. */
|
164 |
|
|
if (config.pic.use_nmi)
|
165 |
|
|
{
|
166 |
508 |
jeremybenn |
cpu_state.sprs[SPR_PICMR] |= 0x00000003;
|
167 |
432 |
jeremybenn |
}
|
168 |
|
|
|
169 |
19 |
jeremybenn |
if(cpu_state.sprs[SPR_SR] & SPR_SR_IEE)
|
170 |
|
|
pic_ints_en();
|
171 |
|
|
break;
|
172 |
|
|
case SPR_PMR:
|
173 |
|
|
/* PMR[SDF] and PMR[DCGE] are ignored completely. */
|
174 |
|
|
if (config.pm.enabled && (value & SPR_PMR_SUME)) {
|
175 |
|
|
PRINTF ("SUSPEND: PMR[SUME] bit was set.\n");
|
176 |
|
|
sim_done();
|
177 |
|
|
}
|
178 |
|
|
break;
|
179 |
|
|
default:
|
180 |
|
|
/* Mask reserved bits in DTLBMR and DTLBMR registers */
|
181 |
|
|
if ( (regno >= SPR_DTLBMR_BASE(0)) && (regno < SPR_DTLBTR_LAST(3))) {
|
182 |
|
|
if((regno & 0xff) < 0x80)
|
183 |
|
|
cpu_state.sprs[regno] = DADDR_PAGE(value) |
|
184 |
|
|
(value & (SPR_DTLBMR_V | SPR_DTLBMR_PL1 | SPR_DTLBMR_CID | SPR_DTLBMR_LRU));
|
185 |
|
|
else
|
186 |
|
|
cpu_state.sprs[regno] = DADDR_PAGE(value) |
|
187 |
|
|
(value & (SPR_DTLBTR_CC | SPR_DTLBTR_CI | SPR_DTLBTR_WBC | SPR_DTLBTR_WOM |
|
188 |
|
|
SPR_DTLBTR_A | SPR_DTLBTR_D | SPR_DTLBTR_URE | SPR_DTLBTR_UWE | SPR_DTLBTR_SRE |
|
189 |
|
|
SPR_DTLBTR_SWE));
|
190 |
|
|
}
|
191 |
|
|
|
192 |
|
|
/* Mask reseved bits in ITLBMR and ITLBMR registers */
|
193 |
|
|
if ( (regno >= SPR_ITLBMR_BASE(0)) && (regno < SPR_ITLBTR_LAST(3))) {
|
194 |
|
|
if((regno & 0xff) < 0x80)
|
195 |
|
|
cpu_state.sprs[regno] = IADDR_PAGE(value) |
|
196 |
|
|
(value & (SPR_ITLBMR_V | SPR_ITLBMR_PL1 | SPR_ITLBMR_CID | SPR_ITLBMR_LRU));
|
197 |
|
|
else
|
198 |
|
|
cpu_state.sprs[regno] = IADDR_PAGE(value) |
|
199 |
|
|
(value & (SPR_ITLBTR_CC | SPR_ITLBTR_CI | SPR_ITLBTR_WBC | SPR_ITLBTR_WOM |
|
200 |
|
|
SPR_ITLBTR_A | SPR_ITLBTR_D | SPR_ITLBTR_SXE | SPR_ITLBTR_UXE));
|
201 |
|
|
|
202 |
|
|
#if DYNAMIC_EXECUTION
|
203 |
|
|
if(cpu_state.sprs[SPR_SR] & SPR_SR_IME) {
|
204 |
|
|
/* The immu got reconfigured. Recheck if the current page in execution
|
205 |
|
|
* is resident in the immu ways. This check would be done during the
|
206 |
|
|
* instruction fetch but since the dynamic execution model does not do
|
207 |
|
|
* instruction fetchs, do it now. */
|
208 |
|
|
recheck_immu(0);
|
209 |
|
|
}
|
210 |
|
|
#endif
|
211 |
|
|
}
|
212 |
|
|
|
213 |
|
|
/* Links to GPRS */
|
214 |
|
|
if(regno >= 0x0400 && regno < 0x0420) {
|
215 |
|
|
cpu_state.reg[regno - 0x0400] = value;
|
216 |
|
|
}
|
217 |
|
|
break;
|
218 |
|
|
}
|
219 |
|
|
}
|
220 |
|
|
|
221 |
|
|
/* Get a specific SPR. */
|
222 |
|
|
uorreg_t mfspr(const uint16_t regno)
|
223 |
|
|
{
|
224 |
|
|
uorreg_t ret;
|
225 |
|
|
|
226 |
|
|
ret = cpu_state.sprs[regno];
|
227 |
|
|
|
228 |
|
|
switch (regno) {
|
229 |
|
|
case SPR_NPC:
|
230 |
|
|
|
231 |
|
|
/* The NPC is the program counter UNLESS the NPC has been changed and we
|
232 |
|
|
are stalled, which will have flushed the pipeline, so the value is
|
233 |
|
|
zero. Currently this is optional behavior, since it breaks GDB.
|
234 |
|
|
*/
|
235 |
|
|
|
236 |
|
|
if (config.sim.strict_npc && cpu_state.npc_not_valid)
|
237 |
|
|
{
|
238 |
|
|
ret = 0;
|
239 |
|
|
}
|
240 |
|
|
else
|
241 |
|
|
{
|
242 |
|
|
ret = cpu_state.pc;
|
243 |
|
|
}
|
244 |
|
|
break;
|
245 |
|
|
|
246 |
|
|
case SPR_TTCR:
|
247 |
|
|
ret = spr_read_ttcr();
|
248 |
|
|
break;
|
249 |
226 |
julius |
case SPR_FPCSR:
|
250 |
|
|
// If hard floating point is disabled - return 0
|
251 |
|
|
if (!config.cpu.hardfloat)
|
252 |
|
|
ret = 0;
|
253 |
|
|
break;
|
254 |
19 |
jeremybenn |
default:
|
255 |
|
|
/* Links to GPRS */
|
256 |
|
|
if(regno >= 0x0400 && regno < 0x0420)
|
257 |
|
|
ret = cpu_state.reg[regno - 0x0400];
|
258 |
|
|
}
|
259 |
|
|
|
260 |
|
|
return ret;
|
261 |
|
|
}
|
262 |
|
|
|
263 |
|
|
/* Show status of important SPRs. */
|
264 |
|
|
void sprs_status(void)
|
265 |
|
|
{
|
266 |
|
|
PRINTF("VR : 0x%"PRIxREG" UPR : 0x%"PRIxREG"\n", cpu_state.sprs[SPR_VR],
|
267 |
|
|
cpu_state.sprs[SPR_UPR]);
|
268 |
|
|
PRINTF("SR : 0x%"PRIxREG"\n", cpu_state.sprs[SPR_SR]);
|
269 |
|
|
PRINTF("MACLO: 0x%"PRIxREG" MACHI: 0x%"PRIxREG"\n",
|
270 |
|
|
cpu_state.sprs[SPR_MACLO], cpu_state.sprs[SPR_MACHI]);
|
271 |
|
|
PRINTF("EPCR0: 0x%"PRIxADDR" EPCR1: 0x%"PRIxADDR"\n",
|
272 |
|
|
cpu_state.sprs[SPR_EPCR_BASE], cpu_state.sprs[SPR_EPCR_BASE+1]);
|
273 |
|
|
PRINTF("EEAR0: 0x%"PRIxADDR" EEAR1: 0x%"PRIxADDR"\n",
|
274 |
|
|
cpu_state.sprs[SPR_EEAR_BASE], cpu_state.sprs[SPR_EEAR_BASE+1]);
|
275 |
|
|
PRINTF("ESR0 : 0x%"PRIxREG" ESR1 : 0x%"PRIxREG"\n",
|
276 |
|
|
cpu_state.sprs[SPR_ESR_BASE], cpu_state.sprs[SPR_ESR_BASE+1]);
|
277 |
|
|
PRINTF("TTMR : 0x%"PRIxREG" TTCR : 0x%"PRIxREG"\n",
|
278 |
|
|
cpu_state.sprs[SPR_TTMR], cpu_state.sprs[SPR_TTCR]);
|
279 |
|
|
PRINTF("PICMR: 0x%"PRIxREG" PICSR: 0x%"PRIxREG"\n",
|
280 |
|
|
cpu_state.sprs[SPR_PICMR], cpu_state.sprs[SPR_PICSR]);
|
281 |
|
|
PRINTF("PPC: 0x%"PRIxADDR" NPC : 0x%"PRIxADDR"\n",
|
282 |
|
|
cpu_state.sprs[SPR_PPC], cpu_state.sprs[SPR_NPC]);
|
283 |
|
|
}
|