1 |
82 |
jeremybenn |
/* jtag.c -- JTAG modeling
|
2 |
|
|
|
3 |
|
|
Copyright (C) 2008 Embecosm Limited
|
4 |
|
|
|
5 |
|
|
Contributor Jeremy Bennett <jeremy.bennett@embecosm.com>
|
6 |
|
|
|
7 |
|
|
This file is part of Or1ksim, the OpenRISC 1000 Architectural Simulator.
|
8 |
|
|
|
9 |
|
|
This program is free software; you can redistribute it and/or modify it
|
10 |
|
|
under the terms of the GNU General Public License as published by the Free
|
11 |
|
|
Software Foundation; either version 3 of the License, or (at your option)
|
12 |
|
|
any later version.
|
13 |
|
|
|
14 |
|
|
This program is distributed in the hope that it will be useful, but WITHOUT
|
15 |
|
|
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
16 |
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
17 |
|
|
more details.
|
18 |
|
|
|
19 |
|
|
You should have received a copy of the GNU General Public License along
|
20 |
|
|
with this program. If not, see <http://www.gnu.org/licenses/>. */
|
21 |
|
|
|
22 |
|
|
/* This program is commented throughout in a fashion suitable for processing
|
23 |
|
|
with Doxygen. */
|
24 |
|
|
|
25 |
|
|
|
26 |
|
|
/* Autoconf and/or portability configuration */
|
27 |
|
|
#include "config.h"
|
28 |
|
|
#include "port.h"
|
29 |
|
|
|
30 |
|
|
/* System includes */
|
31 |
|
|
#include <stdlib.h>
|
32 |
|
|
#include <unistd.h>
|
33 |
|
|
#include <stddef.h>
|
34 |
|
|
#include <stdint.h>
|
35 |
|
|
#include <string.h>
|
36 |
|
|
|
37 |
|
|
/* Package includes */
|
38 |
|
|
#include "sim-config.h"
|
39 |
|
|
#include "sprs.h"
|
40 |
|
|
#include "debug-unit.h"
|
41 |
|
|
#include "spr-defs.h"
|
42 |
|
|
#include "jtag.h"
|
43 |
|
|
#include "abstract.h"
|
44 |
|
|
#include "toplevel-support.h"
|
45 |
|
|
|
46 |
|
|
|
47 |
|
|
/*---------------------------------------------------------------------------*/
|
48 |
|
|
/*!Calculate an ongoing 32-bit CRC for a value
|
49 |
|
|
|
50 |
|
|
Utility function. This is for a CRC, where the value is presented in normal
|
51 |
|
|
order (i.e its most significant bit is at the most significant positions,
|
52 |
|
|
it has not been reversed for incorporating ina JTAG register).
|
53 |
|
|
|
54 |
|
|
The function can be used for values with more than 64 bits, but will treat
|
55 |
|
|
the supplied value as the most-significant 64 bits, with all other bits
|
56 |
|
|
zero. In practice this is only of use when shifting in a large number of
|
57 |
|
|
zeros.
|
58 |
|
|
|
59 |
|
|
The CRC used is the IEEE 802.3 32-bit CRC using the polynomial:
|
60 |
|
|
|
61 |
|
|
x^32 + x^26 + x^23 +x^22 +x^16 + x^12 + x^11 + x^10 + x^8 + x^7 + x^5 +
|
62 |
|
|
x^4 + x^2 + x^1 + 1
|
63 |
|
|
|
64 |
|
|
In this implementation, the CRC is initialized to all ones (outside this
|
65 |
|
|
function), to catch leading zeros.
|
66 |
|
|
|
67 |
|
|
The function is designed to be used in a continuing calculation if
|
68 |
|
|
desired. It takes a partially computed CRC and shifts in the appropriate
|
69 |
|
|
new bits for the value supplied. For a new calculation, this value should
|
70 |
|
|
be 0xffffffff.
|
71 |
|
|
|
72 |
|
|
@param[in] value The number whose CRC is wanted (MSB first)
|
73 |
|
|
@param[in] num_bits The number of bits to use from value
|
74 |
|
|
@param[in] crc_in The value of the CRC computed so far
|
75 |
|
|
|
76 |
|
|
@return The updated CRC value */
|
77 |
|
|
/*---------------------------------------------------------------------------*/
|
78 |
|
|
static uint32_t
|
79 |
|
|
crc32 (uint64_t value,
|
80 |
|
|
int num_bits,
|
81 |
|
|
uint32_t crc_in)
|
82 |
|
|
{
|
83 |
|
|
static const uint32_t CRC32_POLY = 0x04c11db7;
|
84 |
|
|
|
85 |
|
|
/* Incorporate the bits, MS bit first. */
|
86 |
|
|
int i;
|
87 |
|
|
|
88 |
|
|
for (i = num_bits - 1; i >= 0; i--)
|
89 |
|
|
{
|
90 |
|
|
uint32_t d = (1 == ((value >> i) & 1)) ? 0xfffffff : 0x0000000;
|
91 |
|
|
uint32_t t = (1 == ((crc_in >> 31) & 1)) ? 0xfffffff : 0x0000000;
|
92 |
|
|
|
93 |
|
|
crc_in <<= 1;
|
94 |
|
|
crc_in ^= (d ^ t) & CRC32_POLY;
|
95 |
|
|
}
|
96 |
|
|
|
97 |
|
|
return crc_in;
|
98 |
|
|
|
99 |
|
|
} /* crc32 () */
|
100 |
|
|
|
101 |
|
|
|
102 |
|
|
/*---------------------------------------------------------------------------*/
|
103 |
|
|
/*!Reverse up to 64 bits in a word
|
104 |
|
|
|
105 |
|
|
Utility function. Uses the "reverse" algorithm from the University of
|
106 |
|
|
Kentucky Aggregate Magic Algorithms.
|
107 |
|
|
|
108 |
|
|
@param[in] val The long word to reverse
|
109 |
|
|
@param[in] numBits Number of bits to reverse
|
110 |
|
|
|
111 |
|
|
@return The reversed word. */
|
112 |
|
|
/*---------------------------------------------------------------------------*/
|
113 |
|
|
static uint64_t
|
114 |
|
|
reverse_bits (uint64_t val,
|
115 |
|
|
int numBits)
|
116 |
|
|
{
|
117 |
|
|
val = (((val & 0xaaaaaaaaaaaaaaaaULL) >> 1) |
|
118 |
|
|
((val & 0x5555555555555555ULL) << 1));
|
119 |
|
|
val = (((val & 0xccccccccccccccccULL) >> 2) |
|
120 |
|
|
((val & 0x3333333333333333ULL) << 2));
|
121 |
|
|
val = (((val & 0xf0f0f0f0f0f0f0f0ULL) >> 4) |
|
122 |
|
|
((val & 0x0f0f0f0f0f0f0f0fULL) << 4));
|
123 |
|
|
val = (((val & 0xff00ff00ff00ff00ULL) >> 8) |
|
124 |
|
|
((val & 0x00ff00ff00ff00ffULL) << 8));
|
125 |
|
|
val = (((val & 0xffff0000ffff0000ULL) >> 16) |
|
126 |
|
|
((val & 0x00000fff0000ffffULL) << 16));
|
127 |
|
|
val = ((val >> 32) | (val << 32));
|
128 |
|
|
|
129 |
|
|
return val >> (64 - numBits); /* Only the bits we want */
|
130 |
|
|
|
131 |
|
|
} /* reverse_bits () */
|
132 |
|
|
|
133 |
|
|
|
134 |
|
|
/*---------------------------------------------------------------------------*/
|
135 |
|
|
/*!Reverse a byte
|
136 |
|
|
|
137 |
|
|
Utility function. Uses the "reverse" algorithm from the University of
|
138 |
|
|
Kentucky Aggregate Magic Algorithms.
|
139 |
|
|
|
140 |
|
|
@param[in] byte The byte to reverse
|
141 |
|
|
|
142 |
|
|
@return The reversed byte. */
|
143 |
|
|
/*---------------------------------------------------------------------------*/
|
144 |
|
|
static uint8_t
|
145 |
|
|
reverse_byte (uint8_t byte)
|
146 |
|
|
{
|
147 |
|
|
byte = (((byte & 0xaa) >> 1) | ((byte & 0x55) << 1));
|
148 |
|
|
byte = (((byte & 0xcc) >> 2) | ((byte & 0x33) << 2));
|
149 |
|
|
|
150 |
|
|
return ((byte >> 4) | (byte << 4));
|
151 |
|
|
|
152 |
|
|
} /* reverse_byte () */
|
153 |
|
|
|
154 |
|
|
|
155 |
|
|
/*---------------------------------------------------------------------------*/
|
156 |
|
|
/*!Construct a response register to shift out.
|
157 |
|
|
|
158 |
|
|
The generic format is:
|
159 |
|
|
|
160 |
|
|
+-------+--------+---------+---------+
|
161 |
|
|
| | | | |
|
162 |
|
|
TDI -> | CRC | Status | XX..XX | 00..00 | -> TDO
|
163 |
|
|
| | | | |
|
164 |
|
|
+-------+--------+---------+---------+
|
165 |
|
|
32 4 "ignored" "zero"
|
166 |
|
|
bits bits bits bits
|
167 |
|
|
|
168 |
|
|
|
169 |
|
|
Fields are always shifted in MS bit first, so must be reversed. The CRC is
|
170 |
|
|
on the 4 status bits. Only the "zero" bits are zeroed. This allows for
|
171 |
|
|
other fields to be specified in the "ignored" bits region, which are
|
172 |
|
|
guaranteed to be left untouched.
|
173 |
|
|
|
174 |
|
|
@param[out] jreg The buffer for the constructed register
|
175 |
|
|
@param[in] status The status bits
|
176 |
|
|
@param[in] crc_in CRC computed so far (set to 0xffffffff if none)
|
177 |
|
|
@param[in] ign_bits The number of bits to ignore
|
178 |
|
|
@param[in] zero_bits The number of bits to zero
|
179 |
|
|
|
180 |
|
|
@return The register length in bits */
|
181 |
|
|
/*---------------------------------------------------------------------------*/
|
182 |
|
|
static int
|
183 |
|
|
construct_response (unsigned char *jreg,
|
184 |
|
|
uint8_t status,
|
185 |
|
|
uint32_t crc_in,
|
186 |
|
|
unsigned int ign_bits,
|
187 |
|
|
unsigned int zero_bits)
|
188 |
|
|
{
|
189 |
|
|
/* Construct the outgoing CRC */
|
190 |
|
|
uint32_t crc_out = crc32 (status, 4, crc_in);
|
191 |
|
|
|
192 |
|
|
/* Reversed versions of fields ready for insertion */
|
193 |
|
|
uint8_t status_r = reverse_bits (status, 4);
|
194 |
|
|
uint32_t crc_out_r = reverse_bits (crc_out, 32);
|
195 |
|
|
|
196 |
|
|
/* Construct the response register */
|
197 |
|
|
unsigned int zero_bytes = zero_bits / 8;
|
198 |
|
|
unsigned int zero_off = zero_bits % 8;
|
199 |
|
|
|
200 |
|
|
/* Clear the zero bits */
|
201 |
|
|
if (zero_bytes > 0)
|
202 |
|
|
{
|
203 |
|
|
memset (jreg, 0, zero_bytes);
|
204 |
|
|
}
|
205 |
|
|
|
206 |
|
|
jreg[zero_bytes] >>= zero_off;
|
207 |
|
|
jreg[zero_bytes] <<= zero_off;
|
208 |
|
|
|
209 |
|
|
/* Determine how much to skip in total */
|
210 |
|
|
unsigned int skip_bytes = ign_bits + zero_bits / 8;
|
211 |
|
|
unsigned int bit_off = ign_bits + zero_bits % 8;
|
212 |
|
|
|
213 |
|
|
/* Simplify by dealing separately with two cases:
|
214 |
|
|
- the bit offset is less than or equal to 4, so the status goes in the
|
215 |
|
|
first free byte, with some CRC.
|
216 |
|
|
- the bit offset is greater than 4 but less than 8, so the status goes in
|
217 |
|
|
the first and second free bytes.
|
218 |
|
|
|
219 |
|
|
For completeness we deal with what should be the impossible case of
|
220 |
|
|
bit_off > 7. */
|
221 |
|
|
if (bit_off <= 4)
|
222 |
|
|
{
|
223 |
|
|
/* Note that this works even if bit_off == 4, since there will be no CRC
|
224 |
|
|
remaining to OR into the first byte. */
|
225 |
|
|
jreg[skip_bytes] |= ((status_r & 0xf) << bit_off) |
|
226 |
|
|
((crc_out_r << (4 + bit_off)) & 0xff);
|
227 |
|
|
jreg[skip_bytes + 1] = (crc_out_r >> ( 4 - bit_off)) & 0xff;
|
228 |
|
|
jreg[skip_bytes + 2] = (crc_out_r >> (12 - bit_off)) & 0xff;
|
229 |
|
|
jreg[skip_bytes + 3] = (crc_out_r >> (20 - bit_off)) & 0xff;
|
230 |
|
|
jreg[skip_bytes + 4] = (crc_out_r >> (28 - bit_off)) & 0xff;
|
231 |
|
|
}
|
232 |
|
|
else if (bit_off < 8)
|
233 |
|
|
{
|
234 |
|
|
jreg[skip_bytes] |= status_r << bit_off;
|
235 |
|
|
jreg[skip_bytes + 1] = (status_r >> (8 - bit_off)) |
|
236 |
|
|
((crc_out_r << (bit_off - 4)) & 0xff);
|
237 |
|
|
jreg[skip_bytes + 2] = (crc_out_r >> (12 - bit_off)) & 0xff;
|
238 |
|
|
jreg[skip_bytes + 3] = (crc_out_r >> (20 - bit_off)) & 0xff;
|
239 |
|
|
jreg[skip_bytes + 4] = (crc_out_r >> (28 - bit_off)) & 0xff;
|
240 |
|
|
jreg[skip_bytes + 5] = (crc_out_r >> (36 - bit_off)) & 0xff;
|
241 |
|
|
}
|
242 |
|
|
else
|
243 |
|
|
{
|
244 |
|
|
fprintf (stderr, "*** ABORT ***: construct_response: impossible bit "
|
245 |
|
|
"offset: %u\n", bit_off);
|
246 |
|
|
abort ();
|
247 |
|
|
}
|
248 |
|
|
|
249 |
|
|
/* Result is the register length in bits */
|
250 |
|
|
return 32 + 4 + skip_bytes;
|
251 |
|
|
|
252 |
|
|
} /* construct_response () */
|
253 |
|
|
|
254 |
|
|
|
255 |
|
|
/*---------------------------------------------------------------------------*/
|
256 |
|
|
/*!Select a module for debug
|
257 |
|
|
|
258 |
|
|
Process a module selection register. The format is:
|
259 |
|
|
|
260 |
|
|
+---------+-------+--------+---+
|
261 |
|
|
| | | | |
|
262 |
|
|
TDI -> | Ignored | CRC | Module | 1 | -> TDO
|
263 |
|
|
| | | ID | |
|
264 |
|
|
+---------+-------+--------+---+
|
265 |
|
|
36 32 4
|
266 |
|
|
bits bits bits
|
267 |
|
|
|
268 |
|
|
The returned register has the format:
|
269 |
|
|
|
270 |
|
|
+-------+--------+---------+
|
271 |
|
|
| | | |
|
272 |
|
|
TDI -> | CRC | Status | 00..00 | -> TDO
|
273 |
|
|
| | | |
|
274 |
|
|
+-------+--------+---------+
|
275 |
|
|
32 4 37
|
276 |
|
|
bits bits bits
|
277 |
|
|
|
278 |
|
|
|
279 |
|
|
Fields are always shifted in MS bit first, so must be reversed. The CRC in
|
280 |
|
|
is computed on the first 5 bits, the CRC out on the 4 status bits.
|
281 |
|
|
|
282 |
|
|
@param[in,out] jreg The register to shift in, and the register shifted
|
283 |
|
|
back out.
|
284 |
|
|
|
285 |
|
|
@return The number of cycles the shift took, which in turn is the number
|
286 |
|
|
of bits in the register */
|
287 |
|
|
/*---------------------------------------------------------------------------*/
|
288 |
|
|
static int
|
289 |
|
|
module_select (unsigned char *jreg)
|
290 |
|
|
{
|
291 |
|
|
/* Break out the fields */
|
292 |
|
|
uint8_t mod_id = reverse_bits ((jreg[0] >> 1) & 0xf, 4);
|
293 |
|
|
uint32_t crc_in = reverse_bits (((uint32_t ) jreg[0] & 0xe0 >> 5) |
|
294 |
|
|
((uint32_t ) jreg[1] << 3) |
|
295 |
|
|
((uint32_t ) jreg[2] << 11) |
|
296 |
|
|
((uint32_t ) jreg[3] << 19) |
|
297 |
|
|
((uint32_t ) (jreg[4] & 0x1f) << 27), 32);
|
298 |
|
|
|
299 |
|
|
/* Compute the expected CRC */
|
300 |
|
|
uint32_t crc_computed;
|
301 |
|
|
|
302 |
|
|
crc_computed = crc32 (1, 1, 0xffffffff);
|
303 |
|
|
crc_computed = crc32 (mod_id, 4, crc_computed);
|
304 |
|
|
|
305 |
|
|
/* Status flags */
|
306 |
|
|
enum jtag_status status = JS_OK;
|
307 |
|
|
|
308 |
|
|
/* Validate the CRC */
|
309 |
|
|
if (crc_computed != crc_in)
|
310 |
|
|
{
|
311 |
|
|
/* Mismatch: record the error */
|
312 |
|
|
status |= JS_CRC_IN_ERROR;
|
313 |
|
|
}
|
314 |
|
|
else
|
315 |
|
|
{
|
316 |
|
|
/* Is it a valid module? */
|
317 |
|
|
switch (mod_id)
|
318 |
|
|
{
|
319 |
|
|
case JM_WISHBONE:
|
320 |
|
|
case JM_CPU0:
|
321 |
|
|
case JM_CPU1:
|
322 |
|
|
/* All valid. Record the module */
|
323 |
|
|
runtime.debug.mod_id = mod_id;
|
324 |
|
|
|
325 |
|
|
break;
|
326 |
|
|
|
327 |
|
|
default:
|
328 |
|
|
/* Bad module: record the error */
|
329 |
|
|
status |= JS_MODULE_MISSING;
|
330 |
|
|
break;
|
331 |
|
|
}
|
332 |
|
|
}
|
333 |
|
|
|
334 |
|
|
/* Construct the outgoing register and return the JTAG cycles taken (the
|
335 |
|
|
register length) */
|
336 |
|
|
return construct_response (jreg, status, 0xffffffff, 0, 37);
|
337 |
|
|
|
338 |
|
|
} /* module_select */
|
339 |
|
|
|
340 |
|
|
|
341 |
|
|
/*---------------------------------------------------------------------------*/
|
342 |
|
|
/*!Validate WRITE_COMMAND fields for WishBone
|
343 |
|
|
|
344 |
|
|
Check that a WRITE_COMMAND's fields are valid for WishBone access.
|
345 |
|
|
|
346 |
|
|
- 16 and 32-bit access must be correctly aligned. If not a warning is
|
347 |
|
|
printed and validation fails.
|
348 |
|
|
|
349 |
|
|
- size must be a multiple of 2 for 16-bit access, and a multiple of 4 for
|
350 |
|
|
32-bit access
|
351 |
|
|
|
352 |
|
|
Validation is carried out when executing a GO_COMMAND, rather than when
|
353 |
|
|
setting the WRITE_COMMAND, because only the GO_COMMAND can set the status
|
354 |
|
|
error if there is a problem.
|
355 |
|
|
|
356 |
|
|
Warning messages are printed to explain any validation problems.
|
357 |
|
|
|
358 |
|
|
@todo Should multiple SPR accesses be allowed in a single access?
|
359 |
|
|
|
360 |
|
|
@note The size of the data is one greater than the length specified in the
|
361 |
|
|
original WRITE_COMMAND.
|
362 |
|
|
|
363 |
|
|
@return 1 (TRUE) if validation is OK, 0 (FALSE) if validation fails. */
|
364 |
|
|
/*---------------------------------------------------------------------------*/
|
365 |
|
|
static int
|
366 |
|
|
validate_wb_fields ()
|
367 |
|
|
{
|
368 |
|
|
/* Determine the size of the access */
|
369 |
|
|
uint32_t access_bits;
|
370 |
|
|
|
371 |
|
|
switch (runtime.debug.acc_type)
|
372 |
|
|
{
|
373 |
|
|
case JAT_WRITE8:
|
374 |
|
|
case JAT_READ8:
|
375 |
|
|
access_bits = 8;
|
376 |
|
|
break;
|
377 |
|
|
|
378 |
|
|
case JAT_WRITE16:
|
379 |
|
|
case JAT_READ16:
|
380 |
|
|
access_bits = 16;
|
381 |
|
|
break;
|
382 |
|
|
|
383 |
|
|
case JAT_WRITE32:
|
384 |
|
|
case JAT_READ32:
|
385 |
|
|
access_bits = 32;
|
386 |
|
|
break;
|
387 |
|
|
|
388 |
|
|
default:
|
389 |
|
|
fprintf (stderr, "*** ABORT ***: validate_wb_fields: unknown access "
|
390 |
|
|
"type %u\n", runtime.debug.acc_type);
|
391 |
|
|
abort ();
|
392 |
|
|
}
|
393 |
|
|
|
394 |
|
|
/* Check for validity. This works for 8-bit, although the tests will always
|
395 |
|
|
pass. */
|
396 |
|
|
uint32_t access_bytes = access_bits / 8;
|
397 |
|
|
|
398 |
|
|
if (0 != (runtime.debug.addr % access_bytes))
|
399 |
|
|
{
|
400 |
|
|
fprintf (stderr, "Warning: JTAG WishBone %d-bit access must be %d-byte "
|
401 |
|
|
"aligned\n", access_bits, access_bytes);
|
402 |
|
|
return 0;
|
403 |
|
|
}
|
404 |
|
|
else if (0 != (runtime.debug.size % access_bytes))
|
405 |
|
|
{
|
406 |
|
|
fprintf (stderr, "Warning: JTAG %d-bit WishBone access must be multiple "
|
407 |
|
|
"of %d bytes in length\n", access_bits, access_bytes);
|
408 |
|
|
return 0;
|
409 |
|
|
}
|
410 |
|
|
else
|
411 |
|
|
{
|
412 |
|
|
return 1; /* No problems */
|
413 |
|
|
}
|
414 |
|
|
} /* validate_wb_fields () */
|
415 |
|
|
|
416 |
|
|
|
417 |
|
|
/*---------------------------------------------------------------------------*/
|
418 |
|
|
/*!Read WishBone data
|
419 |
|
|
|
420 |
|
|
Read memory from WishBone. The WRITE_COMMAND address is updated to reflect
|
421 |
|
|
the completed read if successful.
|
422 |
|
|
|
423 |
|
|
The result is the CRC of the data read. The status flag is supplied as a
|
424 |
|
|
pointer, since this can also be updated if there is a problem reading the
|
425 |
|
|
data.
|
426 |
|
|
|
427 |
|
|
@note The size of the data is one greater than the length specified in the
|
428 |
|
|
original WRITE_COMMAND.
|
429 |
|
|
|
430 |
|
|
@todo For now we always read a byte a time. In the future, we ought to use
|
431 |
|
|
16 and 32-bit accesses for greater efficiency.
|
432 |
|
|
|
433 |
|
|
@todo The algorithm for ensuring we only set the bits of interest in the
|
434 |
|
|
register is inefficient. We should instead clear the whole area
|
435 |
|
|
before starting.
|
436 |
|
|
|
437 |
|
|
@param[out] jreg The JTAG register buffer where data is to be
|
438 |
|
|
stored.
|
439 |
|
|
@param[in] skip_bits Bits to skip before storing data in jreg.
|
440 |
|
|
@param[in] status_ptr Pointer to the status register.
|
441 |
|
|
|
442 |
|
|
@return The CRC of the data read */
|
443 |
|
|
/*---------------------------------------------------------------------------*/
|
444 |
|
|
static uint32_t
|
445 |
|
|
wishbone_read (unsigned char *jreg,
|
446 |
|
|
unsigned int skip_bits,
|
447 |
|
|
enum jtag_status *status_ptr)
|
448 |
|
|
{
|
449 |
|
|
/* Compute the CRC as we go */
|
450 |
|
|
uint32_t crc_out = 0xffffffff;
|
451 |
|
|
|
452 |
|
|
/* Validate the fields for the wishbone read. If this fails we stop here,
|
453 |
|
|
setting an error in the status_ptr. */
|
454 |
|
|
if (!validate_wb_fields())
|
455 |
|
|
{
|
456 |
|
|
*status_ptr |= JS_WISHBONE_ERROR;
|
457 |
|
|
return crc_out;
|
458 |
|
|
}
|
459 |
|
|
|
460 |
|
|
/* Transfer each byte in turn, computing the CRC as we go */
|
461 |
|
|
unsigned byte_off = skip_bits / 8;
|
462 |
|
|
unsigned bit_off = skip_bits % 8;
|
463 |
|
|
|
464 |
|
|
uint32_t i; /* Index into the data being read */
|
465 |
|
|
|
466 |
|
|
for (i = 0; i < runtime.debug.size; i++)
|
467 |
|
|
{
|
468 |
|
|
/* Error if we can't access this byte */
|
469 |
|
|
if (NULL == verify_memoryarea (runtime.debug.addr + i))
|
470 |
|
|
{
|
471 |
|
|
*status_ptr |= JS_WISHBONE_ERROR;
|
472 |
|
|
return crc_out;
|
473 |
|
|
}
|
474 |
|
|
|
475 |
|
|
/* Get the data with no cache or VM translation and update the CRC */
|
476 |
|
|
unsigned char byte = eval_direct8 (runtime.debug.addr + i, 0, 0);
|
477 |
|
|
crc_out = crc32 (byte, 8, crc_out);
|
478 |
|
|
|
479 |
|
|
/* Store the byte in the register, without trampling adjacent
|
480 |
|
|
bits. Simplified version when the bit offset is zero. */
|
481 |
|
|
if (0 == bit_off)
|
482 |
|
|
{
|
483 |
|
|
jreg[byte_off + i] = byte;
|
484 |
|
|
}
|
485 |
|
|
else
|
486 |
|
|
{
|
487 |
|
|
/* Clear the bits (only) we are setting */
|
488 |
|
|
jreg[byte_off + i] <<= bit_off;
|
489 |
|
|
jreg[byte_off + i] >>= bit_off;
|
490 |
|
|
jreg[byte_off + i + 1] >>= 8 - bit_off;
|
491 |
|
|
jreg[byte_off + i + 1] <<= 8 - bit_off;
|
492 |
|
|
|
493 |
|
|
/* OR in the bits */
|
494 |
|
|
jreg[byte_off + i] |= (byte << bit_off) & 0xff;
|
495 |
|
|
jreg[byte_off + i + 1] |= (byte >> (8 - bit_off)) & 0xff;
|
496 |
|
|
}
|
497 |
|
|
}
|
498 |
|
|
|
499 |
|
|
runtime.debug.addr += runtime.debug.size;
|
500 |
|
|
|
501 |
|
|
return crc_out;
|
502 |
|
|
|
503 |
|
|
} /* wishbone_read () */
|
504 |
|
|
|
505 |
|
|
|
506 |
|
|
/*---------------------------------------------------------------------------*/
|
507 |
|
|
/*!Validate WRITE_COMMAND fields for SPR
|
508 |
|
|
|
509 |
|
|
Check that a WRITE_COMMAND's fields are valid for SPR access. Only prints
|
510 |
|
|
messages, since the protocol does not allow for any errors.
|
511 |
|
|
|
512 |
|
|
- 8 and 16-bit access is only permitted for WishBone. If they are specified
|
513 |
|
|
for SPR, they are treated as their 32 bit equivalent. A warning is
|
514 |
|
|
printed.
|
515 |
|
|
|
516 |
|
|
- size must be 1 word. If a larger value is specified that is treated as 1
|
517 |
|
|
with a warning.
|
518 |
|
|
|
519 |
|
|
- address must be less than MAX_SPRS. If a larger value is specified, it is
|
520 |
|
|
reduced module MAX_SPRS (which is hopefully a power of 2).
|
521 |
|
|
|
522 |
|
|
Where errors are found, the data is updated.
|
523 |
|
|
|
524 |
|
|
Validation is carried out with the GO_COMMAND, rather than with the
|
525 |
|
|
WRITE_COMMAND, for consistency with WishBone error checking, for which
|
526 |
|
|
only the GO_COMMAND can set the status error if there is a problem.
|
527 |
|
|
|
528 |
|
|
Warning messages are printed to explain any validation problems.
|
529 |
|
|
|
530 |
|
|
@todo Should multiple SPR accesses be allowed in a single access?
|
531 |
|
|
|
532 |
|
|
@note The size of the data is one greater than the length specified in the
|
533 |
|
|
original WRITE_COMMAND. */
|
534 |
|
|
/*---------------------------------------------------------------------------*/
|
535 |
|
|
static void
|
536 |
|
|
validate_spr_fields ()
|
537 |
|
|
{
|
538 |
|
|
int access_bits;
|
539 |
|
|
int is_read_p;
|
540 |
|
|
|
541 |
|
|
switch (runtime.debug.acc_type)
|
542 |
|
|
{
|
543 |
|
|
case JAT_WRITE8: access_bits = 8; is_read_p = 0;
|
544 |
|
|
case JAT_READ8: access_bits = 8; is_read_p = 1;
|
545 |
|
|
case JAT_WRITE16: access_bits = 16; is_read_p = 0;
|
546 |
|
|
case JAT_READ16: access_bits = 16; is_read_p = 1;
|
547 |
|
|
case JAT_WRITE32: access_bits = 32; is_read_p = 0;
|
548 |
|
|
case JAT_READ32: access_bits = 32; is_read_p = 1;
|
549 |
|
|
|
550 |
|
|
default:
|
551 |
|
|
fprintf (stderr, "*** ABORT ***: validate_spr_fields: unknown access "
|
552 |
|
|
"type %u\n", runtime.debug.acc_type);
|
553 |
|
|
abort ();
|
554 |
|
|
}
|
555 |
|
|
|
556 |
|
|
/* Validate and correct if necessary access width */
|
557 |
|
|
if (32 != access_bits)
|
558 |
|
|
{
|
559 |
|
|
fprintf (stderr, "Warning: JTAG %d-bit access not permitted for SPR: "
|
560 |
|
|
"corrected\n", access_bits);
|
561 |
|
|
runtime.debug.acc_type = is_read_p ? JAT_READ32 : JAT_WRITE32;
|
562 |
|
|
}
|
563 |
|
|
|
564 |
|
|
/* Validate and correct if necessary access size */
|
565 |
|
|
if (1 != runtime.debug.size)
|
566 |
|
|
{
|
567 |
|
|
fprintf (stderr, "warning: JTAG SPR access must be 1 word in length: "
|
568 |
|
|
"corrected\n");
|
569 |
|
|
runtime.debug.size = 1;
|
570 |
|
|
}
|
571 |
|
|
/* Validate and correct if necessary access size */
|
572 |
|
|
if (runtime.debug.addr >= MAX_SPRS)
|
573 |
|
|
{
|
574 |
|
|
fprintf (stderr, "warning: JTAG SPR address exceeds MAX_SPRS: "
|
575 |
|
|
"truncated\n");
|
576 |
|
|
runtime.debug.addr %= MAX_SPRS;
|
577 |
|
|
}
|
578 |
|
|
} /* validate_spr_fields () */
|
579 |
|
|
|
580 |
|
|
|
581 |
|
|
/*---------------------------------------------------------------------------*/
|
582 |
|
|
/*!Read SPR data
|
583 |
|
|
|
584 |
|
|
Read memory from WishBone. The WRITE_COMMAND address is updated to reflect
|
585 |
|
|
the completed read if successful.
|
586 |
|
|
|
587 |
|
|
The result is the CRC of the data read.
|
588 |
|
|
|
589 |
|
|
Unlike with Wishbone, there is no concept of any errors possible when
|
590 |
|
|
reading an SPR.
|
591 |
|
|
|
592 |
|
|
@todo The algorithm for ensuring we only set the bits of interest in the
|
593 |
|
|
register is inefficient. We should instead clear the whole area
|
594 |
|
|
before starting.
|
595 |
|
|
|
596 |
|
|
@note The address is treated as a word address of the SPR.
|
597 |
|
|
|
598 |
|
|
@note The debug unit is documented as being explicitly Big Endian. However
|
599 |
|
|
that seems to be a poor basis for modeling, and more to do with the
|
600 |
|
|
debug unit only ever being used with big-endian architectures. We
|
601 |
|
|
transfer the bytes in the endianness of the OR1K.
|
602 |
|
|
|
603 |
|
|
@param[out] jreg The JTAG register buffer where data is to be stored.
|
604 |
|
|
@param[in] skip_bits Bits to skip before storing data in jreg.
|
605 |
|
|
|
606 |
|
|
@return The CRC of the data read */
|
607 |
|
|
/*---------------------------------------------------------------------------*/
|
608 |
|
|
static uint32_t
|
609 |
|
|
spr_read (unsigned char *jreg,
|
610 |
|
|
unsigned int skip_bits)
|
611 |
|
|
{
|
612 |
|
|
/* Compute the CRC as we go */
|
613 |
|
|
uint32_t crc_out = 0xffffffff;
|
614 |
|
|
|
615 |
|
|
/* Validate the fields for the SPR read. This doesn't stop us - just prints
|
616 |
|
|
out warnings and corrects the problems. */
|
617 |
|
|
validate_spr_fields();
|
618 |
|
|
|
619 |
|
|
/* Transfer the SPR */
|
620 |
|
|
uint32_t spr = mfspr (runtime.debug.addr);
|
621 |
|
|
|
622 |
|
|
runtime.debug.addr++;
|
623 |
|
|
|
624 |
|
|
/* Store the SPR in the register, without trampling adjacent
|
625 |
|
|
bits. Simplified version when the bit offset is zero. Compute the CRC as
|
626 |
|
|
we go. */
|
627 |
|
|
unsigned byte_off = skip_bits / 8;
|
628 |
|
|
unsigned bit_off = skip_bits % 8;
|
629 |
|
|
|
630 |
|
|
if (0 == bit_off)
|
631 |
|
|
{
|
632 |
|
|
/* Each byte in turn */
|
633 |
|
|
int i;
|
634 |
|
|
|
635 |
|
|
for (i = 0; i < 4; i++)
|
636 |
|
|
{
|
637 |
|
|
#ifdef OR32_BIG_ENDIAN
|
638 |
|
|
uint8_t byte = (spr >> 8 * i) & 0xff;
|
639 |
|
|
#else /* !OR32_BIG_ENDIAN */
|
640 |
|
|
uint8_t byte = (spr >> (24 - (8 * i))) & 0xff;
|
641 |
|
|
#endif /* OR32_BIG_ENDIAN */
|
642 |
|
|
|
643 |
|
|
jreg[byte_off + i] = byte;
|
644 |
|
|
crc_out = crc32 (byte, 8, crc_out);
|
645 |
|
|
}
|
646 |
|
|
}
|
647 |
|
|
else
|
648 |
|
|
{
|
649 |
|
|
/* Each byte in turn */
|
650 |
|
|
int i;
|
651 |
|
|
|
652 |
|
|
for (i = 0; i < 4; i++)
|
653 |
|
|
{
|
654 |
|
|
#ifdef OR32_BIG_ENDIAN
|
655 |
|
|
uint8_t byte = (spr >> 8 * i) & 0xff;
|
656 |
|
|
#else /* !OR32_BIG_ENDIAN */
|
657 |
|
|
uint8_t byte = (spr >> (24 - (8 * i))) & 0xff;
|
658 |
|
|
#endif /* OR32_BIG_ENDIAN */
|
659 |
|
|
|
660 |
|
|
/* Clear the bits (only) we are setting */
|
661 |
|
|
jreg[byte_off + i] <<= bit_off;
|
662 |
|
|
jreg[byte_off + i] >>= bit_off;
|
663 |
|
|
jreg[byte_off + i + 1] >>= 8 - bit_off;
|
664 |
|
|
jreg[byte_off + i + 1] <<= 8 - bit_off;
|
665 |
|
|
|
666 |
|
|
/* OR in the bits */
|
667 |
|
|
jreg[byte_off + i] |= (byte << bit_off) & 0xff;
|
668 |
|
|
jreg[byte_off + i + 1] |= (byte >> (8 - bit_off)) & 0xff;
|
669 |
|
|
|
670 |
|
|
crc_out = crc32 (byte, 8, crc_out);
|
671 |
|
|
}
|
672 |
|
|
}
|
673 |
|
|
|
674 |
|
|
return crc_out;
|
675 |
|
|
|
676 |
|
|
} /* spr_read () */
|
677 |
|
|
|
678 |
|
|
|
679 |
|
|
/*---------------------------------------------------------------------------*/
|
680 |
|
|
/*!Carry out a read from WishBone or SPR
|
681 |
|
|
|
682 |
|
|
Process a GO_COMMAND register for read. The format is:
|
683 |
|
|
|
684 |
|
|
+-------------+-------+---------+---+
|
685 |
|
|
| | | GO | |
|
686 |
|
|
TDI -> | Ignored | CRC | COMMAND | 0 | -> TDO
|
687 |
|
|
| | | (0x0) | |
|
688 |
|
|
+-------------+-------+---------+---+
|
689 |
|
|
36 + 8 * size 32 4
|
690 |
|
|
bits bits bits
|
691 |
|
|
|
692 |
|
|
The returned register has the format:
|
693 |
|
|
|
694 |
|
|
+-------+--------+------------+---------+
|
695 |
|
|
| | | | |
|
696 |
|
|
TDI -> | CRC | Status | Data | 00..00 | -> TDO
|
697 |
|
|
| | | | |
|
698 |
|
|
+-------+--------+------------+---------+
|
699 |
|
|
32 4 8 * size 37
|
700 |
|
|
bits bits bits bits
|
701 |
|
|
|
702 |
|
|
Fields are always shifted in MS bit first, so must be reversed. The CRC in
|
703 |
|
|
is computed on the first 5 bits, the CRC out on the 4 + 8 * size status and
|
704 |
|
|
data bits.
|
705 |
|
|
|
706 |
|
|
@note The size of the data is one greater than the length specified in the
|
707 |
|
|
original WRITE_COMMAND.
|
708 |
|
|
|
709 |
|
|
@param[in,out] jreg The register to shift in, and the register shifted
|
710 |
|
|
back out.
|
711 |
|
|
|
712 |
|
|
@return The number of cycles the shift took, which in turn is the number
|
713 |
|
|
of bits in the register */
|
714 |
|
|
/*---------------------------------------------------------------------------*/
|
715 |
|
|
static int
|
716 |
|
|
go_command_read (unsigned char *jreg)
|
717 |
|
|
{
|
718 |
|
|
/* Break out the fields */
|
719 |
|
|
uint32_t crc_in = reverse_bits (((uint32_t) (jreg[0] & 0xe0) >> 5) |
|
720 |
|
|
((uint32_t) jreg[1] << 3) |
|
721 |
|
|
((uint32_t) jreg[2] << 11) |
|
722 |
|
|
((uint32_t) jreg[3] << 19) |
|
723 |
|
|
((uint32_t) (jreg[4] & 0x1f) << 27), 32);
|
724 |
|
|
|
725 |
|
|
/* Compute the expected CRC */
|
726 |
|
|
uint32_t crc_computed;
|
727 |
|
|
|
728 |
|
|
crc_computed = crc32 (0, 1, 0xffffffff);
|
729 |
|
|
crc_computed = crc32 (JCMD_GO_COMMAND, 4, crc_computed);
|
730 |
|
|
|
731 |
|
|
/* Status flags */
|
732 |
|
|
enum jtag_status status = JS_OK;
|
733 |
|
|
|
734 |
|
|
/* CRC to go out */
|
735 |
96 |
jeremybenn |
uint32_t crc_out = 0;
|
736 |
82 |
jeremybenn |
|
737 |
|
|
/* Validate the CRC */
|
738 |
|
|
if (crc_computed == crc_in)
|
739 |
|
|
{
|
740 |
|
|
/* Read the data. */
|
741 |
|
|
switch (runtime.debug.mod_id)
|
742 |
|
|
{
|
743 |
|
|
case JM_WISHBONE:
|
744 |
|
|
crc_out = wishbone_read (jreg, 37, &status);
|
745 |
|
|
break;
|
746 |
|
|
|
747 |
|
|
case JM_CPU0:
|
748 |
|
|
crc_out = spr_read (jreg, 37);
|
749 |
|
|
break;
|
750 |
|
|
|
751 |
|
|
case JM_CPU1:
|
752 |
|
|
fprintf (stderr, "Warning: JTAG attempt to read from CPU1: Not "
|
753 |
|
|
"supported.\n");
|
754 |
|
|
break;
|
755 |
|
|
|
756 |
|
|
default:
|
757 |
|
|
fprintf (stderr, "*** ABORT ***: go_command_read: invalid "
|
758 |
|
|
"module\n");
|
759 |
|
|
abort ();
|
760 |
|
|
}
|
761 |
|
|
}
|
762 |
|
|
else
|
763 |
|
|
{
|
764 |
|
|
/* Mismatch: record the error */
|
765 |
|
|
status |= JS_CRC_IN_ERROR;
|
766 |
|
|
}
|
767 |
|
|
|
768 |
|
|
/* Construct the outgoing register, skipping the data read and returning the
|
769 |
|
|
number of JTAG cycles taken (the register length). */
|
770 |
|
|
return construct_response (jreg, status, crc_out, 8 * runtime.debug.size,
|
771 |
|
|
37);
|
772 |
|
|
|
773 |
|
|
} /* go_command_read () */
|
774 |
|
|
|
775 |
|
|
|
776 |
|
|
/*---------------------------------------------------------------------------*/
|
777 |
|
|
/*!Write WishBone data
|
778 |
|
|
|
779 |
|
|
Write memory to WishBone. The WRITE_COMMAND address is updated to reflect
|
780 |
|
|
the completed write if successful.
|
781 |
|
|
|
782 |
|
|
@note The size of the data is one greater than the length specified in the
|
783 |
|
|
original WRITE_COMMAND.
|
784 |
|
|
|
785 |
|
|
@todo For now we always write a byte a time. In the future, we ought to use
|
786 |
|
|
16 and 32-bit accesses for greater efficiency.
|
787 |
|
|
|
788 |
|
|
@todo The algorithm for ensuring we only set the bits of interest in the
|
789 |
|
|
register is inefficient. We should instead clear the whole area
|
790 |
|
|
before starting.
|
791 |
|
|
|
792 |
|
|
@param[out] jreg The JTAG register buffer where data is to be
|
793 |
|
|
stored.
|
794 |
|
|
@param[in] skip_bits Bits to skip before reading data from jreg.
|
795 |
|
|
@param[in] status_ptr Pointer to the status register. */
|
796 |
|
|
/*---------------------------------------------------------------------------*/
|
797 |
|
|
static void
|
798 |
|
|
wishbone_write (unsigned char *jreg,
|
799 |
|
|
unsigned int skip_bits,
|
800 |
|
|
enum jtag_status *status_ptr)
|
801 |
|
|
{
|
802 |
|
|
/* Validate the fields for the wishbone write. If this fails we stop here,
|
803 |
|
|
setting an error in the status_ptr. */
|
804 |
|
|
if (!validate_wb_fields())
|
805 |
|
|
{
|
806 |
|
|
*status_ptr |= JS_WISHBONE_ERROR;
|
807 |
|
|
return;
|
808 |
|
|
}
|
809 |
|
|
|
810 |
|
|
/* Transfer each byte in turn, computing the CRC as we go */
|
811 |
|
|
unsigned byte_off = skip_bits / 8;
|
812 |
|
|
unsigned bit_off = skip_bits % 8;
|
813 |
|
|
|
814 |
|
|
uint32_t i; /* Index into the data being write */
|
815 |
|
|
|
816 |
|
|
for (i = 0; i < runtime.debug.size; i++)
|
817 |
|
|
{
|
818 |
|
|
/* Error if we can't access this byte */
|
819 |
|
|
if (NULL == verify_memoryarea (runtime.debug.addr + i))
|
820 |
|
|
{
|
821 |
|
|
*status_ptr |= JS_WISHBONE_ERROR;
|
822 |
|
|
return;
|
823 |
|
|
}
|
824 |
|
|
|
825 |
|
|
/* Extract the byte from the register. Simplified version when the bit
|
826 |
|
|
offset is zero. */
|
827 |
|
|
unsigned char byte_r;
|
828 |
|
|
|
829 |
|
|
if (0 == bit_off)
|
830 |
|
|
{
|
831 |
|
|
byte_r = jreg[byte_off + i];
|
832 |
|
|
}
|
833 |
|
|
else
|
834 |
|
|
{
|
835 |
|
|
byte_r = jreg[byte_off + i] >> bit_off |
|
836 |
|
|
jreg[byte_off + i + 1] >> (8 - bit_off);
|
837 |
|
|
}
|
838 |
|
|
|
839 |
|
|
/* Circumvent the read-only check usually done for mem accesses. */
|
840 |
|
|
set_program8 (runtime.debug.addr + i, reverse_byte (byte_r));
|
841 |
|
|
}
|
842 |
|
|
|
843 |
|
|
runtime.debug.addr += runtime.debug.size;
|
844 |
|
|
|
845 |
|
|
} /* wishbone_write () */
|
846 |
|
|
|
847 |
|
|
|
848 |
|
|
/*---------------------------------------------------------------------------*/
|
849 |
|
|
/*!Write SPR data
|
850 |
|
|
|
851 |
|
|
Write memory to WishBone. The WRITE_COMMAND address is updated to reflect
|
852 |
|
|
the completed write if successful.
|
853 |
|
|
|
854 |
|
|
Unlike with Wishbone, there is no concept of any errors possible when
|
855 |
|
|
writeing an SPR.
|
856 |
|
|
|
857 |
|
|
@todo The algorithm for ensuring we only set the bits of interest in the
|
858 |
|
|
register is inefficient. We should instead clear the whole area
|
859 |
|
|
before starting.
|
860 |
|
|
|
861 |
|
|
@note The address is treated as a word address of the SPR.
|
862 |
|
|
|
863 |
|
|
@note The debug unit is documented as being explicitly Big Endian. However
|
864 |
|
|
that seems to be a poor basis for modeling, and more to do with the
|
865 |
|
|
debug unit only ever being used with big-endian architectures. We
|
866 |
|
|
transfer the bytes in the endianness of the OR1K.
|
867 |
|
|
|
868 |
|
|
@param[out] jreg The JTAG register buffer where data is to be stored.
|
869 |
|
|
@param[in] skip_bits Bits to skip before reading data from jreg. */
|
870 |
|
|
/*---------------------------------------------------------------------------*/
|
871 |
|
|
static void
|
872 |
|
|
spr_write (unsigned char *jreg,
|
873 |
|
|
unsigned int skip_bits)
|
874 |
|
|
{
|
875 |
|
|
/* Validate the fields for the SPR write. This doesn't stop us - just prints
|
876 |
|
|
out warnings and corrects the problems. */
|
877 |
|
|
validate_spr_fields ();
|
878 |
|
|
|
879 |
|
|
/* Construct the SPR value one byte at a time. */
|
880 |
|
|
uint32_t spr = 0;
|
881 |
|
|
|
882 |
|
|
unsigned byte_off = skip_bits / 8;
|
883 |
|
|
unsigned bit_off = skip_bits % 8;
|
884 |
|
|
|
885 |
|
|
/* Each byte in turn */
|
886 |
|
|
int i;
|
887 |
|
|
|
888 |
|
|
for (i = 0; i < 4; i++)
|
889 |
|
|
{
|
890 |
|
|
uint8_t byte;
|
891 |
|
|
|
892 |
|
|
/* Simplified version when the bit offset is zero */
|
893 |
|
|
if (0 == bit_off)
|
894 |
|
|
{
|
895 |
|
|
byte = reverse_byte (jreg[byte_off + i]);
|
896 |
|
|
}
|
897 |
|
|
else
|
898 |
|
|
{
|
899 |
|
|
byte = reverse_byte ((jreg[byte_off + i] >> bit_off) |
|
900 |
|
|
(jreg[byte_off + i + 1] << (8 - bit_off)));
|
901 |
|
|
}
|
902 |
|
|
|
903 |
|
|
#ifdef OR32_BIG_ENDIAN
|
904 |
|
|
spr |= ((uint32_t) (byte)) << (8 * i);
|
905 |
|
|
#else /* !OR32_BIG_ENDIAN */
|
906 |
|
|
spr |= ((uint32_t) (byte)) << (24 - (8 * i));
|
907 |
|
|
#endif /* OR32_BIG_ENDIAN */
|
908 |
|
|
}
|
909 |
|
|
|
910 |
|
|
/* Transfer the SPR */
|
911 |
|
|
mtspr (runtime.debug.addr, spr);
|
912 |
|
|
runtime.debug.addr++;
|
913 |
|
|
|
914 |
|
|
} /* spr_write () */
|
915 |
|
|
|
916 |
|
|
|
917 |
|
|
/*---------------------------------------------------------------------------*/
|
918 |
|
|
/*!Carry out a write to WishBone or SPR
|
919 |
|
|
|
920 |
|
|
Process a GO_COMMAND register for write. The format is:
|
921 |
|
|
|
922 |
|
|
+-------------+-------+------------+---------+---+
|
923 |
|
|
| | | | GO | |
|
924 |
|
|
TDI -> | Ignored | CRC | Data | COMMAND | 0 | -> TDO
|
925 |
|
|
| | | | (0x0) | |
|
926 |
|
|
+-------------+-------+------------+---------+---+
|
927 |
|
|
36 32 8 * size 4
|
928 |
|
|
bits bits bits bits
|
929 |
|
|
|
930 |
|
|
The returned register has the format:
|
931 |
|
|
|
932 |
|
|
+-------+--------+-------------+
|
933 |
|
|
| | | |
|
934 |
|
|
TDI -> | CRC | Status | 00......00 | -> TDO
|
935 |
|
|
| | | |
|
936 |
|
|
+-------+--------+-------------+
|
937 |
|
|
32 4 8 * size + 37
|
938 |
|
|
bits bits bits
|
939 |
|
|
|
940 |
|
|
Fields are always shifted in MS bit first, so must be reversed. The CRC in
|
941 |
|
|
is computed on the first 5 + 8 * size bits, the CRC out on the 4 status
|
942 |
|
|
bits.
|
943 |
|
|
|
944 |
|
|
@note The size of the data is one greater than the length specified in the
|
945 |
|
|
original WRITE_COMMAND.
|
946 |
|
|
|
947 |
|
|
@todo The rules say we look for errors in the WRITE_COMMAND spec
|
948 |
|
|
here. However it would be better to do that at WRITE_COMMAND time and
|
949 |
|
|
save the result for here, to avoid using duff data.
|
950 |
|
|
|
951 |
|
|
@param[in,out] jreg The register to shift in, and the register shifted
|
952 |
|
|
back out.
|
953 |
|
|
|
954 |
|
|
@return The number of cycles the shift took, which in turn is the number
|
955 |
|
|
of bits in the register */
|
956 |
|
|
/*---------------------------------------------------------------------------*/
|
957 |
|
|
static int
|
958 |
|
|
go_command_write (unsigned char *jreg)
|
959 |
|
|
{
|
960 |
|
|
/* Break out the fields */
|
961 |
|
|
uint32_t crc_in =
|
962 |
|
|
reverse_bits (((uint32_t) (jreg[runtime.debug.size + 0] & 0xe0) >> 5) |
|
963 |
|
|
((uint32_t) jreg[runtime.debug.size + 1] << 3) |
|
964 |
|
|
((uint32_t) jreg[runtime.debug.size + 2] << 11) |
|
965 |
|
|
((uint32_t) jreg[runtime.debug.size + 3] << 19) |
|
966 |
|
|
((uint32_t) (jreg[runtime.debug.size + 4] & 0x1f) << 27),
|
967 |
|
|
32);
|
968 |
|
|
|
969 |
|
|
/* Compute the expected CRC */
|
970 |
|
|
uint32_t crc_computed;
|
971 |
|
|
|
972 |
|
|
crc_computed = crc32 (0, 1, 0xffffffff);
|
973 |
|
|
crc_computed = crc32 (JCMD_GO_COMMAND, 4, crc_computed);
|
974 |
|
|
|
975 |
|
|
int i;
|
976 |
|
|
|
977 |
|
|
for (i = 0; i < runtime.debug.size; i++)
|
978 |
|
|
{
|
979 |
|
|
uint8_t byte = ((jreg[i] & 0xe0) >> 5) | ((jreg[i + 1] & 0x1f) << 3);
|
980 |
|
|
crc_computed = crc32 (byte, 8, crc_computed);
|
981 |
|
|
}
|
982 |
|
|
|
983 |
|
|
/* Status flags */
|
984 |
|
|
enum jtag_status status = JS_OK;
|
985 |
|
|
|
986 |
|
|
/* Validate the CRC */
|
987 |
|
|
if (crc_computed == crc_in)
|
988 |
|
|
{
|
989 |
|
|
/* Read the data. */
|
990 |
|
|
switch (runtime.debug.mod_id)
|
991 |
|
|
{
|
992 |
|
|
case JM_WISHBONE:
|
993 |
|
|
wishbone_write (jreg, 5, &status);
|
994 |
|
|
break;
|
995 |
|
|
|
996 |
|
|
case JM_CPU0:
|
997 |
|
|
spr_write (jreg, 5);
|
998 |
|
|
break;
|
999 |
|
|
|
1000 |
|
|
case JM_CPU1:
|
1001 |
|
|
fprintf (stderr, "Warning: JTAG attempt to write to CPU1: Not "
|
1002 |
|
|
"supported.\n");
|
1003 |
|
|
break;
|
1004 |
|
|
|
1005 |
|
|
default:
|
1006 |
|
|
fprintf (stderr, "*** ABORT ***: go_command_write: invalid "
|
1007 |
|
|
"module\n");
|
1008 |
|
|
abort ();
|
1009 |
|
|
}
|
1010 |
|
|
}
|
1011 |
|
|
else
|
1012 |
|
|
{
|
1013 |
|
|
/* Mismatch: record the error */
|
1014 |
|
|
status |= JS_CRC_IN_ERROR;
|
1015 |
|
|
}
|
1016 |
|
|
|
1017 |
|
|
/* Construct the outgoing register, skipping the data read and returning the
|
1018 |
|
|
number of JTAG cycles taken (the register length). */
|
1019 |
|
|
return construct_response (jreg, status, 0xffffffff, 0,
|
1020 |
|
|
37 + 8 * runtime.debug.size);
|
1021 |
|
|
|
1022 |
|
|
} /* go_command_write () */
|
1023 |
|
|
|
1024 |
|
|
|
1025 |
|
|
/*---------------------------------------------------------------------------*/
|
1026 |
|
|
/*!Invoke the action specified by a prior WRITE_COMMAND register
|
1027 |
|
|
|
1028 |
|
|
Process a GO_COMMAND register.
|
1029 |
|
|
|
1030 |
|
|
How this is handled depends on whether a previous WRITE_COMMAND has
|
1031 |
|
|
selected a read access type or a write access type has been selected.
|
1032 |
|
|
|
1033 |
|
|
This function breaks this out.
|
1034 |
|
|
|
1035 |
|
|
@param[in,out] jreg The register to shift in, and the register shifted
|
1036 |
|
|
back out.
|
1037 |
|
|
|
1038 |
|
|
@return The number of cycles the shift took, which in turn is the number
|
1039 |
|
|
of bits in the register */
|
1040 |
|
|
/*---------------------------------------------------------------------------*/
|
1041 |
|
|
static int
|
1042 |
|
|
go_command (unsigned char *jreg)
|
1043 |
|
|
{
|
1044 |
|
|
/* Have we even had a WRITE_COMMAND? */
|
1045 |
|
|
if (!runtime.debug.write_defined_p)
|
1046 |
|
|
{
|
1047 |
|
|
fprintf (stderr, "Warning: JTAG GO_COMMAND with no prior WRITE_COMMAND: "
|
1048 |
|
|
"ignored\n");
|
1049 |
|
|
return 4 + 1; /* Only the first 5 bits meaningful */
|
1050 |
|
|
}
|
1051 |
|
|
|
1052 |
|
|
/* Whether to read or write depends on the access type */
|
1053 |
|
|
switch (runtime.debug.acc_type)
|
1054 |
|
|
{
|
1055 |
|
|
case JAT_WRITE8:
|
1056 |
|
|
case JAT_WRITE16:
|
1057 |
|
|
case JAT_WRITE32:
|
1058 |
|
|
return go_command_write (jreg);
|
1059 |
|
|
|
1060 |
|
|
case JAT_READ8:
|
1061 |
|
|
case JAT_READ16:
|
1062 |
|
|
case JAT_READ32:
|
1063 |
|
|
return go_command_read (jreg);
|
1064 |
|
|
|
1065 |
|
|
default:
|
1066 |
|
|
fprintf (stderr, "Warning: JTAG GO_COMMAND: invalid access type: "
|
1067 |
|
|
"ignored\n");
|
1068 |
|
|
return 4 + 1; /* Only the first 5 bits meaningful */
|
1069 |
|
|
}
|
1070 |
|
|
} /* go_command () */
|
1071 |
|
|
|
1072 |
|
|
|
1073 |
|
|
/*---------------------------------------------------------------------------*/
|
1074 |
|
|
/*!Read a previouse WRITE_COMMAND register
|
1075 |
|
|
|
1076 |
|
|
Process a READ_COMMAND register. The format is:
|
1077 |
|
|
|
1078 |
|
|
+---------+-------+---------+---+
|
1079 |
|
|
| | | READ | |
|
1080 |
|
|
TDI -> | Ignored | CRC | COMMAND | 0 | -> TDO
|
1081 |
|
|
| | | (0x1) | |
|
1082 |
|
|
+---------+-------+---------+---+
|
1083 |
|
|
88 32 4
|
1084 |
|
|
bits bits bits
|
1085 |
|
|
|
1086 |
|
|
The returned register has the format:
|
1087 |
|
|
|
1088 |
|
|
+-------+--------+--------+---------+--------+---------+
|
1089 |
|
|
| | | | | | |
|
1090 |
|
|
TDI -> | CRC | Status | Length | Address | Access | 00..00 | -> TDO
|
1091 |
|
|
| | | | | Type | |
|
1092 |
|
|
+-------+--------+--------+---------+--------+---------+
|
1093 |
|
|
32 4 16 32 4 37
|
1094 |
|
|
bits bits bits bits bits bits
|
1095 |
|
|
|
1096 |
|
|
Fields are always shifted in MS bit first, so must be reversed. The CRC in
|
1097 |
|
|
is computed on the first 5 bits, the CRC out on the 56 status, length,
|
1098 |
|
|
address and access type bits.
|
1099 |
|
|
|
1100 |
|
|
@param[in,out] jreg The register to shift in, and the register shifted
|
1101 |
|
|
back out.
|
1102 |
|
|
|
1103 |
|
|
@return The number of cycles the shift took, which in turn is the number
|
1104 |
|
|
of bits in the register */
|
1105 |
|
|
/*---------------------------------------------------------------------------*/
|
1106 |
|
|
static int
|
1107 |
|
|
read_command (unsigned char *jreg)
|
1108 |
|
|
{
|
1109 |
|
|
/* Break out the fields */
|
1110 |
|
|
uint32_t crc_in = reverse_bits (((uint32_t) (jreg[0] & 0xe0) >> 5) |
|
1111 |
|
|
((uint32_t) jreg[1] << 3) |
|
1112 |
|
|
((uint32_t) jreg[2] << 11) |
|
1113 |
|
|
((uint32_t) jreg[3] << 19) |
|
1114 |
|
|
((uint32_t) (jreg[4] & 0x1f) << 27), 32);
|
1115 |
|
|
|
1116 |
|
|
/* Compute the expected CRC */
|
1117 |
|
|
uint32_t crc_computed;
|
1118 |
|
|
|
1119 |
|
|
crc_computed = crc32 (0, 1, 0xffffffff);
|
1120 |
|
|
crc_computed = crc32 (JCMD_READ_COMMAND, 4, crc_computed);
|
1121 |
|
|
|
1122 |
|
|
/* CRC to go out */
|
1123 |
|
|
uint32_t crc_out = 0xffffffff;
|
1124 |
|
|
|
1125 |
|
|
/* Status flags */
|
1126 |
|
|
enum jtag_status status = JS_OK;
|
1127 |
|
|
|
1128 |
|
|
/* Validate the CRC */
|
1129 |
|
|
if (crc_computed != crc_in)
|
1130 |
|
|
{
|
1131 |
|
|
/* Mismatch: record the error */
|
1132 |
|
|
status |= JS_CRC_IN_ERROR;
|
1133 |
|
|
}
|
1134 |
|
|
else if (runtime.debug.write_defined_p)
|
1135 |
|
|
{
|
1136 |
|
|
/* Compute the CRC */
|
1137 |
|
|
crc_out = crc32 (runtime.debug.acc_type, 4, crc_out);
|
1138 |
|
|
crc_out = crc32 (runtime.debug.addr, 32, crc_out);
|
1139 |
|
|
crc_out = crc32 (runtime.debug.size - 1, 16, crc_out);
|
1140 |
|
|
|
1141 |
|
|
/* Construct the outgoing register. Fields can only be written if they
|
1142 |
|
|
are available */
|
1143 |
|
|
uint8_t acc_type_r = reverse_bits (runtime.debug.acc_type, 4);
|
1144 |
|
|
uint32_t addr_r = reverse_bits (runtime.debug.addr, 32);
|
1145 |
|
|
uint16_t len_r = reverse_bits (runtime.debug.size - 1, 16);
|
1146 |
|
|
|
1147 |
|
|
jreg[ 4] |= (acc_type_r << 5) & 0xf8;
|
1148 |
|
|
jreg[ 5] |= (acc_type_r >> 3) & 0x07;
|
1149 |
|
|
jreg[ 5] |= (addr_r << 1) & 0xfe;
|
1150 |
|
|
jreg[ 6] |= (addr_r >> 7) & 0xff;
|
1151 |
|
|
jreg[ 7] |= (addr_r >> 15) & 0xff;
|
1152 |
|
|
jreg[ 8] |= (addr_r >> 23) & 0xff;
|
1153 |
|
|
jreg[ 9] |= (addr_r >> 31) & 0x01;
|
1154 |
|
|
jreg[ 9] |= (len_r << 1) & 0xfe;
|
1155 |
|
|
jreg[10] |= (len_r >> 7) & 0xff;
|
1156 |
|
|
jreg[11] |= (len_r >> 15) & 0x01;
|
1157 |
|
|
}
|
1158 |
|
|
else
|
1159 |
|
|
{
|
1160 |
|
|
fprintf (stderr, "Warning: JTAG attempt to READ_COMMAND without prior "
|
1161 |
|
|
"WRITE_COMMAND: no data returned\n");
|
1162 |
|
|
}
|
1163 |
|
|
|
1164 |
|
|
/* Construct the final response with the status, skipping the fields we've
|
1165 |
|
|
just (possibly) written. */
|
1166 |
|
|
return construct_response (jreg, status, crc_out, 52, 37);
|
1167 |
|
|
|
1168 |
|
|
} /* read_command () */
|
1169 |
|
|
|
1170 |
|
|
|
1171 |
|
|
/*---------------------------------------------------------------------------*/
|
1172 |
|
|
/*!Specify details for a subsequence GO_COMMAND
|
1173 |
|
|
|
1174 |
|
|
Process a WRITE_COMMAND register. The format is:
|
1175 |
|
|
|
1176 |
|
|
+---------+-------+--------+---------+--------+---------+---+
|
1177 |
|
|
| | | | | | WRITE | |
|
1178 |
|
|
TDI -> | Ignored | CRC | Length | Address | Access | COMMAND | 0 | -> TDO
|
1179 |
|
|
| | | | | Type | (0x2) | |
|
1180 |
|
|
+---------+-------+--------+---------+--------+---------+---+
|
1181 |
|
|
36 32 16 32 4 4
|
1182 |
|
|
bits bits bits bits bits bits
|
1183 |
|
|
|
1184 |
|
|
The returned register has the format:
|
1185 |
|
|
|
1186 |
|
|
+-------+--------+---------+
|
1187 |
|
|
| | | |
|
1188 |
|
|
TDI -> | CRC | Status | 00..00 | -> TDO
|
1189 |
|
|
| | | |
|
1190 |
|
|
+-------+--------+---------+
|
1191 |
|
|
32 4 89
|
1192 |
|
|
bits bits bits
|
1193 |
|
|
|
1194 |
|
|
|
1195 |
|
|
Fields are always shifted in MS bit first, so must be reversed. The CRC in
|
1196 |
|
|
is computed on the first 57 bits, the CRC out on the 4 status bits.
|
1197 |
|
|
|
1198 |
|
|
@param[in,out] jreg The register to shift in, and the register shifted
|
1199 |
|
|
back out.
|
1200 |
|
|
|
1201 |
|
|
@return The number of cycles the shift took, which in turn is the number
|
1202 |
|
|
of bits in the register */
|
1203 |
|
|
/*---------------------------------------------------------------------------*/
|
1204 |
|
|
static int
|
1205 |
|
|
write_command (unsigned char *jreg)
|
1206 |
|
|
{
|
1207 |
|
|
/* Break out the fields */
|
1208 |
|
|
uint8_t acc_type = reverse_bits (((jreg[0] & 0x0e) >> 5) |
|
1209 |
|
|
(jreg[1] & 0x01), 4);
|
1210 |
|
|
uint32_t addr = reverse_bits (((uint32_t) (jreg[ 1] & 0xfe) >> 1) |
|
1211 |
|
|
((uint32_t) jreg[ 2] << 7) |
|
1212 |
|
|
((uint32_t) jreg[ 3] << 15) |
|
1213 |
|
|
((uint32_t) jreg[ 4] << 23) |
|
1214 |
|
|
((uint32_t) (jreg[ 5] & 0x01) << 31), 32);
|
1215 |
|
|
uint16_t len = reverse_bits (((uint32_t) (jreg[ 5] & 0xfe) >> 1) |
|
1216 |
|
|
((uint32_t) jreg[ 6] << 7) |
|
1217 |
|
|
((uint32_t) (jreg[ 7] & 0x01) << 15), 16);
|
1218 |
|
|
uint32_t crc_in = reverse_bits (((uint32_t) (jreg[ 7] & 0xfe) >> 1) |
|
1219 |
|
|
((uint32_t) jreg[ 8] << 7) |
|
1220 |
|
|
((uint32_t) jreg[ 9] << 15) |
|
1221 |
|
|
((uint32_t) jreg[10] << 23) |
|
1222 |
|
|
((uint32_t) (jreg[11] & 0x01) << 31), 32);
|
1223 |
|
|
|
1224 |
|
|
/* Compute the expected CRC */
|
1225 |
|
|
uint32_t crc_computed;
|
1226 |
|
|
|
1227 |
|
|
crc_computed = crc32 (0, 1, 0xffffffff);
|
1228 |
|
|
crc_computed = crc32 (JCMD_WRITE_COMMAND, 4, crc_computed);
|
1229 |
|
|
crc_computed = crc32 (acc_type, 4, crc_computed);
|
1230 |
|
|
crc_computed = crc32 (addr, 32, crc_computed);
|
1231 |
|
|
crc_computed = crc32 (len, 16, crc_computed);
|
1232 |
|
|
|
1233 |
|
|
/* Status flags */
|
1234 |
|
|
enum jtag_status status = JS_OK;
|
1235 |
|
|
|
1236 |
|
|
/* Validate the CRC */
|
1237 |
|
|
if (crc_computed != crc_in)
|
1238 |
|
|
{
|
1239 |
|
|
/* Mismatch: record the error */
|
1240 |
|
|
status |= JS_CRC_IN_ERROR;
|
1241 |
|
|
}
|
1242 |
|
|
else
|
1243 |
|
|
{
|
1244 |
|
|
/* All OK. All other errors can only occur when the GO_COMMAND tries to
|
1245 |
|
|
execute the write. Record the information for next GO_COMMAND */
|
1246 |
|
|
runtime.debug.write_defined_p = 1;
|
1247 |
|
|
runtime.debug.acc_type = acc_type;
|
1248 |
|
|
runtime.debug.addr = addr;
|
1249 |
|
|
runtime.debug.size = (unsigned long int) len + 1UL;
|
1250 |
|
|
}
|
1251 |
|
|
|
1252 |
|
|
/* Construct the outgoing register and return the JTAG cycles taken (the
|
1253 |
|
|
register length) */
|
1254 |
|
|
return construct_response (jreg, status, 0xffffffff, 0, 89);
|
1255 |
|
|
|
1256 |
|
|
} /* write_command () */
|
1257 |
|
|
|
1258 |
|
|
|
1259 |
|
|
/*---------------------------------------------------------------------------*/
|
1260 |
|
|
/*!Read the control bits from a CPU.
|
1261 |
|
|
|
1262 |
|
|
Process a READ_CONTROL register. The format is:
|
1263 |
|
|
|
1264 |
|
|
+---------+-------+---------+---+
|
1265 |
|
|
| | | READ | |
|
1266 |
|
|
TDI -> | Ignored | CRC | CONTROL | 0 | -> TDO
|
1267 |
|
|
| | | (0x3) | |
|
1268 |
|
|
+---------+-------+---------+---+
|
1269 |
|
|
36 32 4
|
1270 |
|
|
bits bits bits
|
1271 |
|
|
|
1272 |
|
|
The returned register has the format:
|
1273 |
|
|
|
1274 |
|
|
+-------+--------+--------+---------+
|
1275 |
|
|
| | | | |
|
1276 |
|
|
TDI -> | CRC | Status | Data | 00..00 | -> TDO
|
1277 |
|
|
| | | | |
|
1278 |
|
|
+-------+--------+--------+---------+
|
1279 |
|
|
32 4 52 37
|
1280 |
|
|
bits bits bits bits
|
1281 |
|
|
|
1282 |
|
|
Fields are always shifted in MS bit first, so must be reversed. The CRC in
|
1283 |
|
|
is computed on the first 57 bits, the CRC out on the 4 status bits.
|
1284 |
|
|
|
1285 |
|
|
@param[in,out] jreg The register to shift in, and the register shifted
|
1286 |
|
|
back out.
|
1287 |
|
|
|
1288 |
|
|
@return The number of cycles the shift took, which in turn is the number
|
1289 |
|
|
of bits in the register */
|
1290 |
|
|
/*---------------------------------------------------------------------------*/
|
1291 |
|
|
static int
|
1292 |
|
|
read_control (unsigned char *jreg)
|
1293 |
|
|
{
|
1294 |
|
|
/* Break out the fields. */
|
1295 |
|
|
uint32_t crc_in = reverse_bits (((uint32_t) (jreg[0] & 0xe0) >> 5) |
|
1296 |
|
|
((uint32_t) jreg[1] << 3) |
|
1297 |
|
|
((uint32_t) jreg[2] << 11) |
|
1298 |
|
|
((uint32_t) jreg[3] << 19) |
|
1299 |
|
|
((uint32_t) (jreg[4] & 0x1f) << 27), 32);
|
1300 |
|
|
|
1301 |
|
|
/* Compute the expected CRC */
|
1302 |
|
|
uint32_t crc_computed;
|
1303 |
|
|
|
1304 |
|
|
crc_computed = crc32 (0, 1, 0xffffffff);
|
1305 |
|
|
crc_computed = crc32 (JCMD_READ_CONTROL, 4, crc_computed);
|
1306 |
|
|
|
1307 |
|
|
/* CRC to go out */
|
1308 |
|
|
uint32_t crc_out = 0xffffffff;
|
1309 |
|
|
|
1310 |
|
|
/* Status flags */
|
1311 |
|
|
enum jtag_status status = JS_OK;
|
1312 |
|
|
|
1313 |
|
|
/* Validate the CRC */
|
1314 |
|
|
if (crc_computed != crc_in)
|
1315 |
|
|
{
|
1316 |
|
|
/* Mismatch: record the error */
|
1317 |
|
|
status |= JS_CRC_IN_ERROR;
|
1318 |
|
|
}
|
1319 |
|
|
else if (JM_CPU0 == runtime.debug.mod_id)
|
1320 |
|
|
{
|
1321 |
|
|
/* Valid module. Only bit we can sensibly read is the stall bit. */
|
1322 |
|
|
uint64_t data = (uint64_t) runtime.cpu.stalled << JCB_STALL;
|
1323 |
|
|
|
1324 |
|
|
/* Compute the CRC */
|
1325 |
|
|
crc_out = crc32 (data, 52, crc_out);
|
1326 |
|
|
|
1327 |
|
|
/* Construct the outgoing register. */
|
1328 |
|
|
uint64_t data_r = reverse_bits (data, 52);
|
1329 |
|
|
|
1330 |
|
|
jreg[ 4] |= (data_r << 5) & 0xf8;
|
1331 |
|
|
jreg[ 5] |= (data_r >> 3) & 0x07;
|
1332 |
|
|
jreg[ 5] |= (data_r >> 11) & 0xff;
|
1333 |
|
|
jreg[ 5] |= (data_r >> 19) & 0xff;
|
1334 |
|
|
jreg[ 5] |= (data_r >> 27) & 0xff;
|
1335 |
|
|
jreg[ 5] |= (data_r >> 35) & 0xff;
|
1336 |
|
|
jreg[ 5] |= (data_r >> 43) & 0xff;
|
1337 |
|
|
jreg[ 5] |= (data_r >> 51) & 0x01;
|
1338 |
|
|
}
|
1339 |
|
|
else
|
1340 |
|
|
{
|
1341 |
|
|
/* Not a valid module */
|
1342 |
|
|
fprintf (stderr, "ERROR: JTAG attempt to read control data for module "
|
1343 |
|
|
"other than CPU0: ignored\n");
|
1344 |
|
|
}
|
1345 |
|
|
|
1346 |
|
|
/* Construct the response with the status */
|
1347 |
|
|
return construct_response (jreg, status, crc_out, 52, 37);
|
1348 |
|
|
|
1349 |
|
|
} /* read_control () */
|
1350 |
|
|
|
1351 |
|
|
|
1352 |
|
|
/*---------------------------------------------------------------------------*/
|
1353 |
|
|
/*!Write the control bits to a CPU.
|
1354 |
|
|
|
1355 |
|
|
Process a WRITE_CONTROL register. The format is:
|
1356 |
|
|
|
1357 |
|
|
+---------+-------+--------+---------+---+
|
1358 |
|
|
| | | | WRITE | |
|
1359 |
|
|
TDI -> | Ignored | CRC | Data | CONTROL | 0 | -> TDO
|
1360 |
|
|
| | | | (0x4) | |
|
1361 |
|
|
+---------+-------+--------+---------+---+
|
1362 |
|
|
36 32 52 4
|
1363 |
|
|
bits bits bits bits
|
1364 |
|
|
|
1365 |
|
|
The returned register has the format:
|
1366 |
|
|
|
1367 |
|
|
+-------+--------+---------+
|
1368 |
|
|
| | | |
|
1369 |
|
|
TDI -> | CRC | Status | 00..00 | -> TDO
|
1370 |
|
|
| | | |
|
1371 |
|
|
+-------+--------+---------+
|
1372 |
|
|
32 4 89
|
1373 |
|
|
bits bits bits
|
1374 |
|
|
|
1375 |
|
|
Fields are always shifted in MS bit first, so must be reversed. The CRC in
|
1376 |
|
|
is computed on the first 57 bits, the CRC out on the 4 status bits.
|
1377 |
|
|
|
1378 |
|
|
@param[in,out] jreg The register to shift in, and the register shifted
|
1379 |
|
|
back out.
|
1380 |
|
|
|
1381 |
|
|
@return The number of cycles the shift took, which in turn is the number
|
1382 |
|
|
of bits in the register */
|
1383 |
|
|
/*---------------------------------------------------------------------------*/
|
1384 |
|
|
static int
|
1385 |
|
|
write_control (unsigned char *jreg)
|
1386 |
|
|
{
|
1387 |
|
|
/* Break out the fields. */
|
1388 |
|
|
uint64_t data = reverse_bits (((uint64_t) (jreg[ 0] & 0xe0) >> 5) |
|
1389 |
|
|
((uint64_t) jreg[ 1] << 3) |
|
1390 |
|
|
((uint64_t) jreg[ 2] << 11) |
|
1391 |
|
|
((uint64_t) jreg[ 3] << 19) |
|
1392 |
|
|
((uint64_t) jreg[ 4] << 27) |
|
1393 |
|
|
((uint64_t) jreg[ 5] << 35) |
|
1394 |
|
|
((uint64_t) jreg[ 6] << 43) |
|
1395 |
|
|
((uint64_t) (jreg[ 7] & 0x01) << 51), 52);
|
1396 |
|
|
uint32_t crc_in = reverse_bits (((uint32_t) (jreg[ 7] & 0xfe) >> 1) |
|
1397 |
|
|
((uint32_t) jreg[ 8] << 7) |
|
1398 |
|
|
((uint32_t) jreg[ 9] << 15) |
|
1399 |
|
|
((uint32_t) jreg[10] << 23) |
|
1400 |
|
|
((uint32_t) (jreg[11] & 0x01) << 31), 32);
|
1401 |
|
|
|
1402 |
|
|
/* Compute the expected CRC */
|
1403 |
|
|
uint32_t crc_computed;
|
1404 |
|
|
|
1405 |
|
|
crc_computed = crc32 (0, 1, 0xffffffff);
|
1406 |
|
|
crc_computed = crc32 (JCMD_WRITE_CONTROL, 4, crc_computed);
|
1407 |
|
|
crc_computed = crc32 (data, 52, crc_computed);
|
1408 |
|
|
|
1409 |
|
|
/* Status flags */
|
1410 |
|
|
enum jtag_status status = JS_OK;
|
1411 |
|
|
|
1412 |
|
|
/* Validate the CRC */
|
1413 |
|
|
if (crc_computed != crc_in)
|
1414 |
|
|
{
|
1415 |
|
|
/* Mismatch: record the error */
|
1416 |
|
|
status |= JS_CRC_IN_ERROR;
|
1417 |
|
|
}
|
1418 |
|
|
else if (JM_CPU0 == runtime.debug.mod_id)
|
1419 |
|
|
{
|
1420 |
|
|
/* Good data and valid module. Reset, stall or unstall the register as
|
1421 |
|
|
required. If reset is requested, there is no point considering
|
1422 |
|
|
stalling! */
|
1423 |
|
|
int reset_bit = (0x1 == ((data >> JCB_RESET) & 0x1));
|
1424 |
|
|
int stall_bit = (0x1 == ((data >> JCB_STALL) & 0x1));
|
1425 |
|
|
|
1426 |
|
|
if (reset_bit)
|
1427 |
|
|
{
|
1428 |
|
|
sim_reset ();
|
1429 |
|
|
}
|
1430 |
|
|
else
|
1431 |
|
|
{
|
1432 |
|
|
set_stall_state (stall_bit);
|
1433 |
|
|
}
|
1434 |
|
|
}
|
1435 |
|
|
else
|
1436 |
|
|
{
|
1437 |
|
|
/* Not a valid module */
|
1438 |
|
|
fprintf (stderr, "ERROR: JTAG attempt to control module other than "
|
1439 |
|
|
"CPU0: ignored\n");
|
1440 |
|
|
}
|
1441 |
|
|
|
1442 |
|
|
/* Construct the response with the status */
|
1443 |
|
|
return construct_response (jreg, status, 0xffffffff, 0, 89);
|
1444 |
|
|
|
1445 |
|
|
} /* write_control () */
|
1446 |
|
|
|
1447 |
|
|
|
1448 |
|
|
/*---------------------------------------------------------------------------*/
|
1449 |
|
|
/*!Initialize the JTAG system
|
1450 |
|
|
|
1451 |
|
|
For now just reset the JTAG interface */
|
1452 |
|
|
/*---------------------------------------------------------------------------*/
|
1453 |
|
|
void
|
1454 |
|
|
jtag_init ()
|
1455 |
|
|
{
|
1456 |
|
|
(void) jtag_reset ();
|
1457 |
|
|
|
1458 |
|
|
} /* jtag_init () */
|
1459 |
|
|
|
1460 |
|
|
|
1461 |
|
|
/*---------------------------------------------------------------------------*/
|
1462 |
|
|
/*!Reset the JTAG interface
|
1463 |
|
|
|
1464 |
|
|
Mark the current JTAG instruction as undefined.
|
1465 |
|
|
|
1466 |
|
|
@return The number of cycles the reset took. */
|
1467 |
|
|
/*---------------------------------------------------------------------------*/
|
1468 |
|
|
int
|
1469 |
|
|
jtag_reset ()
|
1470 |
|
|
{
|
1471 |
|
|
runtime.debug.instr = JI_UNDEFINED;
|
1472 |
|
|
|
1473 |
|
|
return JTAG_RESET_CYCLES;
|
1474 |
|
|
|
1475 |
|
|
} /* jtag_reset () */
|
1476 |
|
|
|
1477 |
|
|
|
1478 |
|
|
/*---------------------------------------------------------------------------*/
|
1479 |
|
|
/*!Shift a JTAG instruction register
|
1480 |
|
|
|
1481 |
|
|
@note Like all the JTAG interface functions, this must not be called
|
1482 |
|
|
re-entrantly while a call to any other function (e.g. or1kim_run ())
|
1483 |
|
|
is in progress. It is the responsibility of the caller to ensure this
|
1484 |
|
|
constraint is met, for example by use of a SystemC mutex.
|
1485 |
|
|
|
1486 |
|
|
The register is represented as a vector of bytes, with the byte at offset
|
1487 |
|
|
zero being shifted first, and the least significant bit in each byte being
|
1488 |
|
|
shifted first. Where the register will not fit in an exact number of bytes,
|
1489 |
|
|
the odd bits are in the highest numbered byte, shifted to the low end.
|
1490 |
|
|
|
1491 |
|
|
The format is:
|
1492 |
|
|
|
1493 |
|
|
+-------------+
|
1494 |
|
|
| |
|
1495 |
|
|
TDI -> | Instruction | -> TDO
|
1496 |
|
|
| |
|
1497 |
|
|
+-------------+
|
1498 |
|
|
4
|
1499 |
|
|
bits
|
1500 |
|
|
|
1501 |
|
|
With this debug interface, registers are shifted MS bit first, so we must
|
1502 |
|
|
reverse the bits to get the actual value.
|
1503 |
|
|
|
1504 |
|
|
We record the selected instruction. For completeness the register is parsed
|
1505 |
|
|
and a warning given if any register other than DEBUG is shifted.
|
1506 |
|
|
|
1507 |
|
|
@param[in,out] jreg The register to shift in, and the register shifted
|
1508 |
|
|
back out.
|
1509 |
|
|
|
1510 |
|
|
@return The number of cycles the shift took, which in turn is the number
|
1511 |
|
|
of bits in the register */
|
1512 |
|
|
/*---------------------------------------------------------------------------*/
|
1513 |
|
|
int
|
1514 |
|
|
jtag_shift_ir (unsigned char *jreg)
|
1515 |
|
|
{
|
1516 |
|
|
runtime.debug.instr = reverse_bits (jreg[0] & 0xf, 4);
|
1517 |
|
|
|
1518 |
|
|
switch (runtime.debug.instr)
|
1519 |
|
|
{
|
1520 |
|
|
case JI_EXTEST:
|
1521 |
|
|
fprintf (stderr, "Warning: JTAG EXTEST shifted\n");
|
1522 |
|
|
break;
|
1523 |
|
|
|
1524 |
|
|
case JI_SAMPLE_PRELOAD:
|
1525 |
|
|
fprintf (stderr, "Warning: JTAG SAMPLE/PRELOAD shifted\n");
|
1526 |
|
|
break;
|
1527 |
|
|
|
1528 |
|
|
case JI_IDCODE:
|
1529 |
|
|
fprintf (stderr, "Warning: JTAG IDCODE shifted\n");
|
1530 |
|
|
break;
|
1531 |
|
|
|
1532 |
|
|
case JI_DEBUG:
|
1533 |
|
|
/* Do nothing for this one */
|
1534 |
|
|
break;
|
1535 |
|
|
|
1536 |
|
|
case JI_MBIST:
|
1537 |
|
|
fprintf (stderr, "Warning: JTAG MBIST shifted\n");
|
1538 |
|
|
break;
|
1539 |
|
|
|
1540 |
|
|
case JI_BYPASS:
|
1541 |
|
|
fprintf (stderr, "Warning: JTAG BYPASS shifted\n");
|
1542 |
|
|
break;
|
1543 |
|
|
|
1544 |
|
|
default:
|
1545 |
|
|
fprintf (stderr, "Warning: Unknown JTAG instruction %04x shifted\n",
|
1546 |
|
|
runtime.debug.instr);
|
1547 |
|
|
break;
|
1548 |
|
|
}
|
1549 |
|
|
|
1550 |
|
|
return 4; /* Register length */
|
1551 |
|
|
|
1552 |
|
|
} /* jtag_shift_ir () */
|
1553 |
|
|
|
1554 |
|
|
|
1555 |
|
|
/*---------------------------------------------------------------------------*/
|
1556 |
|
|
/*!Shift a JTAG data register
|
1557 |
|
|
|
1558 |
|
|
@note Like all the JTAG interface functions, this must not be called
|
1559 |
|
|
re-entrantly while a call to any other function (e.g. or1kim_run ())
|
1560 |
|
|
is in progress. It is the responsibility of the caller to ensure this
|
1561 |
|
|
constraint is met, for example by use of a SystemC mutex.
|
1562 |
|
|
|
1563 |
|
|
The register is represented as a vector of bytes, with the byte at offset
|
1564 |
|
|
zero being shifted first, and the least significant bit in each byte being
|
1565 |
|
|
shifted first. Where the register will not fit in an exact number of bytes,
|
1566 |
|
|
the odd bits are in the highest numbered byte, shifted to the low end.
|
1567 |
|
|
|
1568 |
|
|
This is only meaningful if the DEBUG register instruction is already
|
1569 |
|
|
selected. If not, the data register is rejected.
|
1570 |
|
|
|
1571 |
|
|
The register is parsed to determine which of the six possible register
|
1572 |
|
|
types it could be.
|
1573 |
|
|
- MODULE_SELECT
|
1574 |
|
|
- WRITE_COMMNAND
|
1575 |
|
|
- READ_COMMAND
|
1576 |
|
|
- GO_COMMAND
|
1577 |
|
|
- WRITE_CONTROL
|
1578 |
|
|
- READ_CONTROL
|
1579 |
|
|
|
1580 |
|
|
@note In practice READ_COMMAND is not used. However the functionality is
|
1581 |
|
|
provided for future compatibility.
|
1582 |
|
|
|
1583 |
|
|
The parsing is hierarchical. The first bit determines if we have
|
1584 |
|
|
MODULE_SELECT, if not, the next 4 bits determine the command.
|
1585 |
|
|
|
1586 |
|
|
@param[in,out] jreg The register to shift in, and the register shifted
|
1587 |
|
|
back out.
|
1588 |
|
|
|
1589 |
|
|
@return The number of cycles the shift took, which in turn is the number
|
1590 |
|
|
of bits in the register */
|
1591 |
|
|
/*---------------------------------------------------------------------------*/
|
1592 |
|
|
int
|
1593 |
|
|
jtag_shift_dr (unsigned char *jreg)
|
1594 |
|
|
{
|
1595 |
|
|
if (JI_DEBUG != runtime.debug.instr)
|
1596 |
|
|
{
|
1597 |
|
|
fprintf (stderr, "ERROR: Attempt to shift JTAG data register when "
|
1598 |
|
|
"DEBUG not instruction: ignored\n");
|
1599 |
|
|
return 0;
|
1600 |
|
|
}
|
1601 |
|
|
|
1602 |
|
|
int module_select_p = (1 == (jreg[0] & 0x1));
|
1603 |
|
|
|
1604 |
|
|
if (module_select_p)
|
1605 |
|
|
{
|
1606 |
|
|
return module_select (jreg);
|
1607 |
|
|
}
|
1608 |
|
|
else
|
1609 |
|
|
{
|
1610 |
|
|
enum jtag_cmd cmd = reverse_bits ((jreg[0] >> 1) & 0xf, 4);
|
1611 |
|
|
|
1612 |
|
|
switch (cmd)
|
1613 |
|
|
{
|
1614 |
|
|
case JCMD_GO_COMMAND: return go_command (jreg);
|
1615 |
|
|
case JCMD_READ_COMMAND: return read_command (jreg);
|
1616 |
|
|
case JCMD_WRITE_COMMAND: return write_command (jreg);
|
1617 |
|
|
case JCMD_READ_CONTROL: return read_control (jreg);
|
1618 |
|
|
case JCMD_WRITE_CONTROL: return write_control (jreg);
|
1619 |
|
|
|
1620 |
|
|
default:
|
1621 |
|
|
/* Not a command we recognize. Decide this after we've read just
|
1622 |
|
|
the module and command bits */
|
1623 |
|
|
return 4 + 1;
|
1624 |
|
|
}
|
1625 |
|
|
}
|
1626 |
|
|
} /* jtag_shift_dr () */
|