OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [or1ksim/] [doc/] [or1ksim.texi] - Blame information for rev 475

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 19 jeremybenn
\input texinfo   @c -*- texinfo -*-
2
@setfilename or1ksim.info
3
@afourpaper
4
@include version.texi
5
@include config.texi
6
@dircategory Embedded development
7
@direntry
8 442 julius
* Or1ksim: (or32-elf-or1ksim).  The OpenRISC 1000 Architectural
9 19 jeremybenn
                                        Simulator
10
@end direntry
11
 
12
@copying
13
This file documents the OpenRISC Architectural Simulator, @value{OR1KSIM}.
14
 
15
Copyright @copyright{} 2008, 2009 Embecosm Limited.
16
 
17
@quotation
18
Permission is granted to copy, distribute and/or modify this document
19
under the terms of the GNU Free Documentation License, Version 1.2 or
20
any later version published by the Free Software Foundation; with no
21
Invariant Sections, with no Front-Cover Texts, and with no Back-Cover
22
Texts.  A copy of the license is included in the section entitled ``GNU
23
Free Documentation License''.
24
@end quotation
25
@end copying
26
 
27
@setchapternewpage on
28
@settitle @value{OR1KSIM} User Guide
29
 
30
@syncodeindex fn cp
31
@syncodeindex vr cp
32
 
33
@titlepage
34
@title @value{OR1KSIM} User Guide
35
@author Jeremy Bennett
36
@author Embecosm Limited
37
@author Issue 1 for @value{OR1KSIM} @value{VERSION}
38
 
39
@page
40
@vskip 0pt plus 1filll
41
@insertcopying
42
 
43
Published by Embecosm Limited
44
@end titlepage
45
 
46
@contents
47
 
48
@node Top
49
@c Perhaps this should be the title of the document (but only for info,
50
@c not for TeX).  Existing GNU manuals seem inconsistent on this point.
51
@top Scope of this Document
52
 
53
This document is the user guide for @value{OR1KSIM}, the OpenRISC 1000
54
Architectural Simulator.
55
 
56
@menu
57
* Installation::
58
* Usage::
59
* Configuration::
60
* Interactive Command Line::
61
* Verification API::
62
 
63
* Code Internals::
64
 
65
* GNU Free Documentation License::  The license for this documentation
66
* Index::
67
@end menu
68
 
69
@node Installation
70
@chapter Installation
71
@cindex installing @value{OR1KSIM}
72
 
73
Installation follows standard GNU protocols.
74
 
75
@menu
76
* Preparation::
77
* Configuring the Build::
78
* Build and Install::
79
* Known Issues::
80
@end menu
81
 
82
@node Preparation
83
@section Preparation
84
 
85
Unpack the software and create a @emph{separate} directory in which to
86
build it:
87
 
88
@example
89 440 jeremybenn
tar jxf or1ksim-@value{VERSION}.tar.bz2
90
mkdir builddir_or1ksim
91
cd builddir_or1ksim
92 19 jeremybenn
@end example
93
 
94
@node Configuring the Build
95
@section Configuring the Build
96
 
97
Configure the software using the @command{configure} script in the
98
main directory.
99
 
100
The most significant argument is @code{--target}, which should specify
101 82 jeremybenn
the OpenRISC 1000 32-bit architecture.  If this argument is omitted, it will
102 19 jeremybenn
default to OpenRISC 1000 32-bit with a warning
103
 
104
@example
105 442 julius
../or1ksim-@value{VERSION}/configure --target=or32-elf ...
106 19 jeremybenn
@end example
107
 
108
There are several other options available, many of which are standard
109 82 jeremybenn
to GNU @command{configure} scripts.  Use @kbd{configure --help} to see
110
all the options.  The most useful is @code{--prefix} to specify a
111 19 jeremybenn
directory for installation of the tools.
112
 
113 104 jeremybenn
For testing (using @command{make check}), the @code{--target} parameter
114 385 jeremybenn
may be specified, to allow the target tool chain to be selected.  If not
115
specified, it will default to @code{or32-elf}, which is the same prefix
116
used with the standard OpenRISC toolchain installation script.
117 19 jeremybenn
 
118 104 jeremybenn
A number of @value{OR1KSIM} specific features in the simulator do
119
require enabling at configuration.  These include
120
 
121 19 jeremybenn
@table @code
122
@item --enable-profiling
123
@cindex @code{--enable-profiling}
124
@itemx --disable-profiling
125
@cindex @code{--disable-profiling}
126
If enabled, @value{OR1KSIM} is compiled for profiling with
127 82 jeremybenn
@command{gprof}.  This is disabled by default.  Only really of value for
128 19 jeremybenn
developers of @value{OR1KSIM}.
129
 
130
@item --enable-execution=simple
131
@itemx --enable-execution=complex
132
@itemx --enable-execution=dynamic
133
@cindex @code{--enable-execution}
134
@cindex simple model
135
@cindex complex model
136
@cindex dynamic model
137
@value{OR1KSIM} has developed to improve functionality and
138 82 jeremybenn
performance.  This feature allows three versions of @value{OR1KSIM} to be built
139 19 jeremybenn
 
140
@table @code
141
 
142
@item --enable-execution=simple
143
Build the original simple interpreting simulator
144
 
145
@item --enable-execution=complex
146 82 jeremybenn
Build a more complex interpreting simulator.  Experiments suggest this
147
is 50% faster than the simple simulator.  This is the default.
148 19 jeremybenn
 
149
@item --enable-execution=dynamic
150 82 jeremybenn
Build a dynamically compiling simulator.  This is the way many modern ISS are
151
built.  This represents a work in progress.  Currently @value{OR1KSIM} will
152 19 jeremybenn
compile, but segfaults if configured with this option.
153
 
154
@end table
155
 
156
The default is @code{--enable-execution=complex}.
157
 
158
@item --enable-ethphy
159
@cindex @code{--enable-ethphy}
160
@itemx --disable-ethphy
161
@cindex @code{--disable-ethphy}
162
@cindex Ethernet via socket, enabling
163
@cindex enabling Ethernet via socket
164
If enabled, this option allows the Ethernet to be simulated by connecting via a
165 82 jeremybenn
socket (the alternative reads and writes, from and to files).  This
166 19 jeremybenn
must then be configured using the relevant fields in the
167 82 jeremybenn
@code{ethernet} section of the configuration file.  @xref{Ethernet
168 19 jeremybenn
Configuration, , Ethernet Configuration}.
169
 
170
The default is for this to be disabled.
171
 
172 127 jeremybenn
@item --enable-unsigned-xori
173
@cindex @code{--enable-unsigned-xori}
174
@itemx --disable-unsigned-xori
175
@cindex @code{--disable-unsigned-xori}
176
@cindex exclusive-OR immediate operand
177 346 jeremybenn
Historically, @code{l.xori}, has sign extended its operand.  This is
178 127 jeremybenn
inconsistent with the other logical opcodes (@code{l.andi},
179
@code{l.ori}), but in the absence of @code{l.not}, it allows a register
180
to be inverted in a single instruction using:
181
 
182
@example
183
@code{l.xori  rD,rA,-1}
184
@end example
185
 
186 440 jeremybenn
This flag causes @value{OR1KSIM} to treat the immediate operand as unsigned (i.e
187 127 jeremybenn
to zero-extend rather than sign-extend).
188
 
189
The default is to sign-extend, so that existing code will continue to
190
work.
191
 
192
@quotation Caution
193
The GNU compiler tool chain makes heavy use of this instruction.  Using
194
unsigned behavior will require the compiler to be modified accordingly.
195
 
196
This option is provided for experimentation.  A future version of
197
OpenRISC may adopt this more consistent behavior and also provide a
198
@code{l.not} opcode.
199
@end quotation
200
 
201 19 jeremybenn
@item --enable-range-stats
202
@cindex @code{--enable-range-stats}
203
@itemx --disable-range-stats
204
@cindex @code{--disable-range-stats}
205
@cindex statistics, register over time
206
@cindex register over time statistics
207
If enabled, this option allows statistics to be collected to analyse
208 82 jeremybenn
register access over time.  The default is for this to be disabled.
209 19 jeremybenn
 
210
@item --enable-debug
211
@cindex @code{--enable-debug}
212
@itemx --disable-debug
213
@cindex @code{--disable-debug}
214
@cindex debugging enabled (Argtable2)
215
@cindex Argtable2 debugging
216 82 jeremybenn
This is a feature of the Argtable2 package used to process arguments.  If
217
enabled, some debugging features are turned on in Argtable2.  It is provided for
218 19 jeremybenn
completeness, but there is no reason why this feature should ever be needed by
219
any @value{OR1KSIM} user.
220
 
221 82 jeremybenn
@item --enable-all-tests
222
@cindex @code{--enable-all-tests}
223
@itemx --disable-all-tests
224
@cindex @code{--disable-all-tests}
225
@cindex all tests enabled
226
@cindex tests, all enabled.
227
Some of the tests (at the time of writing just one) will not compile
228
without error.  If enabled with this flag, all test programs will be
229
compiled with @command{make check}.
230
 
231
This flag is intended for those working on the test package, who wish to
232
get the missing test(s) working.
233
 
234 19 jeremybenn
@end table
235
 
236 112 jeremybenn
A number of configuration flags have been removed since version 0.3.0,
237 440 jeremybenn
because they led to invalid behavior of @value{OR1KSIM}.  Those removed are:
238 112 jeremybenn
 
239
@table @code
240
 
241 124 jeremybenn
@item --enable-arith-flag
242
@cindex @code{--enable-arith-flag}
243
@itemx --disable-arith-flag
244
@cindex @code{--disable-arith-flag}
245
@cindex flag setting by instructions
246
If enabled, this option caused certain instructions to set the flag
247
(@code{F} bit) in the supervision register if the result were zero.
248
The instructions affected by this were @code{l.add}, @code{l.addc},
249
@code{l.addi}, @code{l.and} and @code{l.andi}.
250
 
251 346 jeremybenn
If set, this caused incorrect behavior.  Whether or not flags are set is part
252 124 jeremybenn
of the OpenRISC 1000 architectural specification.  The only flags which
253
should set this are the ``set flag'' instructions: @code{l.sfeq},
254
@code{l.sfeqi}, @code{l.sfges}, @code{l.sfgesi}, @code{l.sfgeu},
255
@code{l.sfgeui}, @code{l.sfgts}, @code{l.sfgtsi}, @code{l.sfgtu},
256
@code{l.sfgtui}, @code{l.sfles}, @code{l.sflesi}, @code{l.sfleu},
257
@code{l.sfleui}, @code{l.sflts}, @code{l.sfltsi}, @code{l.sfltu},
258
@code{l.sfltui}, @code{l.sfne} and @code{l.sfnei}.
259
 
260 112 jeremybenn
@item --enable-ov-flag
261
@cindex @code{--enable-ov-flag}
262
@itemx --disable-ov-flag
263
@cindex @code{--disable-ov-flag}
264
@cindex overflow flag setting by instructions
265 124 jeremybenn
This flag caused certain instructions to set the overflow flag.  If not,
266
those instructions would not set the overflow flat.  The instructions
267
affected by this were @code{l.add}, @code{l.addc}, @code{l.addi},
268
@code{l.and}, @code{l.andi}, @code{l.div}, @code{l.divu}, @code{l.mul},
269
@code{l.muli}, @code{l.or}, @code{l.ori}, @code{l.sll}, @code{l.slli},
270
@code{l.srl}, @code{l.srli}, @code{l.sra}, @code{l.srai}, @code{l.sub},
271
@code{l.xor} and @code{l.xori}.
272 112 jeremybenn
 
273
This guaranteed incorrect behavior.  The OpenRISC 1000 architecture
274
specification defines which flags are set by which instructions.
275
 
276
Within the above list, the arithmetic instructions (@code{l.add},
277
@code{l.addc}, @code{l.addi}, @code{l.div}, @code{l.divu}, @code{l.mul},
278
@code{l.muli} and @code{l.sub}), together with @code{l.addic} which is
279
missed out, set the overflow flag.  All the others (@code{l.and},
280
@code{l.andi}, @code{l.or}, @code{l.ori}, @code{l.sll}, @code{l.slli},
281
@code{l.srl}, @code{l.srli}, @code{l.sra}, @code{l.srai}, @code{l.xor}
282
and @code{l.xori}) do not.
283
 
284
@end table
285
 
286 19 jeremybenn
@node Build and Install
287
@section Building and Installing
288 82 jeremybenn
Build the tool with:
289 19 jeremybenn
 
290
@example
291 440 jeremybenn
make all
292 82 jeremybenn
@end example
293
 
294
If you have the OpenRISC tool chain and DejaGNU installed, you can
295
verify the tool as follows (otherwise omit this step):
296
 
297
@example
298 440 jeremybenn
make check
299 82 jeremybenn
@end example
300
 
301
Install the tool with:
302
 
303
@example
304 440 jeremybenn
make install
305 19 jeremybenn
@end example
306
 
307
This will install the three variations of the @value{OR1KSIM} tool,
308 442 julius
@command{or32-elf-sim}, @command{or32-elf-psim} and
309
@command{or32-elf-mpsim}, the @value{OR1KSIM} library, @file{libsim}, the
310 19 jeremybenn
header file, @file{or1ksim.h} and this documentation in @command{info} format.
311
 
312
The documentation may be created and installed in alternative formats (PDF,
313
Postscript, DVI, HTML) with for example:
314
 
315
@example
316 440 jeremybenn
make pdf
317
make install-pdf
318 19 jeremybenn
@end example
319
 
320
@node Known Issues
321
@section Known Problems and Issues
322
 
323 346 jeremybenn
Full details of outstanding issues may be found in the @file{NEWS} file in
324
the main directory of the distribution.  The OpenRISC tracker may be used
325
to see the current state of these issues and to raise new problems and
326
feature requests.  It may be found at
327
@url{http://opencores.org/project,or1k,bugtracker}.
328 19 jeremybenn
 
329 346 jeremybenn
The following issues are long standing and unlikely to be fixed in
330 440 jeremybenn
@value{OR1KSIM} in the near future.
331 346 jeremybenn
 
332 19 jeremybenn
@itemize @bullet
333
@item
334
The Supervision Register Little Endian Enable (LEE) bit is
335 82 jeremybenn
ignored.  @value{OR1KSIM} can be built for either little endian or big endian
336 19 jeremybenn
use, but that behavior cannot be changed dynamically.
337
 
338
@item
339
@value{OR1KSIM} is not reentrant, so a program cannot instantiate
340 82 jeremybenn
multiple instances using the library.  This is clearly a problem when
341
considering multi-core applications.  However it stems from the original
342
design, and can only be fixed by a complete rewrite.  The entire source
343 19 jeremybenn
code uses static global constants liberally!
344
 
345
@end itemize
346
 
347
@node Usage
348
@chapter Usage
349
@cindex running @value{OR1KSIM}
350
 
351
@menu
352
* Standalone Simulator::
353
* Profiling Utility::
354
* Memory Profiling Utility::
355 442 julius
* Trace Generation::
356 19 jeremybenn
* Simulator Library::
357 440 jeremybenn
* Ethernet TUN/TAP Interface::
358 460 jeremybenn
* l.nop Support::
359 19 jeremybenn
@end menu
360
 
361
@node Standalone Simulator
362
@section Standalone Simulator
363
@cindex command line for @value{OR1KSIM} standalone use
364
 
365
The general form the standalone command is:
366
 
367
@example
368 442 julius
or32-elf-sim [-vhiqVt] [-f @var{file}] [--nosrv] [--srv=[@var{n}]]
369 346 jeremybenn
                 [-m <n>][-d @var{str}]
370 19 jeremybenn
                 [--enable-profile] [--enable-mprofile] [@var{file}]
371
@end example
372
 
373 82 jeremybenn
Many of the options have both a short and a long form.  For example
374 19 jeremybenn
@code{-h} or @code{--help}.
375
 
376
@table @code
377
 
378
@item -v
379
@itemx --version
380
@cindex @code{-v}
381
@cindex @code{--version}
382
Print out the version and copyright notice for @value{OR1KSIM} and
383
exit.
384
 
385
@item -h
386
@itemx --help
387
@cindex @code{-h}
388
@cindex @code{--help}
389
Print out help about the command line options and what they mean.
390
 
391 346 jeremybenn
@item -i
392
@itemx --interactive
393
@cindex @code{-i}
394
@cindex @code{--interactive}
395
After starting, drop into the @value{OR1KSIM} interactive command
396
shell.
397
 
398
@item -q
399
@itemx --quiet
400
@cindex @code{-q}
401
@cindex @code{--quiet}
402
Do not generate any information messages, only error messages.
403
 
404
@item -V
405
@itemx --verbose
406
@cindex @code{-V}
407
@cindex @code{--verbose}
408
Generate extra output messages (equivalent of specifying the ``verbose''
409
option in the simulator configuration section (see @pxref{Simulator Behavior, , Simulator Behavior}).
410
 
411 385 jeremybenn
@item -t
412
@itemx --trace
413 420 jeremybenn
@cindex @code{-t}
414
@cindex @code{--trace}
415
Dump instruction just executed and any register/memory location chaged
416
after each instruction (one line per instruction).
417 385 jeremybenn
 
418 472 jeremybenn
@item --trace-physical
419
@itemx --trace-virtual
420
@cindex @code{--trace-physical}
421
@cindex @code{--trace-virtual}
422
When tracing instructions, show the physical address
423
(@code{--trace-physical}) and/or the virtual address
424
(@code{--trace-virtual}) of the instruction being executed.  Both flags
425
may be specified, in which case both physical and virtual addresses are
426
shown, physical first.
427
 
428
@quotation Note
429
Either or both flags may be specified without @code{--trace}, to
430
indicate how addresses should be shown if subsequently enabled by a
431
@code{SIGUSER1} signal or @code{l.nop 8} opcode (@pxref{Trace
432
Generation, , Trace Generation}).
433
@end quotation
434
 
435 19 jeremybenn
@item -f @var{file}
436 385 jeremybenn
@itemx --file=@var{file}
437 19 jeremybenn
@cindex @code{-f}
438
@cindex @code{--file}
439
Read configuration commands from the specified file, looking first in
440
the current directory, and otherwise in the @file{$HOME/.or1k}
441 82 jeremybenn
directory.  If this argument is not specified, the file @file{sim.cfg}
442
in those two locations is used.  Failure to find the file is a fatal
443
error.  @xref{Configuration, , Configuration}, for detailed information
444 19 jeremybenn
on configuring @value{OR1KSIM}.
445
 
446
@item --nosrv
447
@cindex @code{--nosrv}
448 235 jeremybenn
@cindex Remote Serial Protocol, @code{--nosrv}
449
Do not start up the @dfn{Remote Serial Protocol} debug server.  This
450
overrides any setting specified in the configuration file.  This
451
option may not be specified with @code{--srv}.  If it is, a rude
452
message is printed and the @code{--nosrv} option is ignored.
453 19 jeremybenn
 
454
@item --srv
455
@item --srv=@var{n}
456
@cindex @code{--srv}
457 235 jeremybenn
@cindex Remote Serial Protocol, @code{--srv}
458
Start up the @dfn{Remote Serial Protocol} debug server.  This
459
overrides any setting specified in the configuration file.  If the
460
parameter, @var{n}, is specified, use that as the TCP/IP port for the
461
server, otherwise a random value from the private port range
462
(41920-65535) will be used.  This option may not be specified with
463
@code{--nosrv}.  If it is, a rude message is printed and the
464
@code{--nosrv} option is ignored.
465 19 jeremybenn
 
466 385 jeremybenn
@item -m @var{size}
467 346 jeremybenn
@itemx --memory=@var{size}
468
@cindex @code{-m}
469
@cindex @code{--memory}
470
Configure a memory block of @var{size} bytes, starting at address
471
zero.  The size may be followed by @samp{k}, @samp{K}, @samp{m},
472
@samp{M}, @samp{g}, @samp{G}, to indicate kilobytes (@math{2^{10}}
473
bytes), megabytes (@math{2^{20}} bytes) and gigabytes (@math{2^{30}}
474
bytes).
475
 
476 440 jeremybenn
This is mainly intended for use when @value{OR1KSIM} is used without a
477 346 jeremybenn
configuration file, to allow just the processor and memory to be set
478
up.  This is the equivalent of specifying a configuration memory section
479
with @code{baseaddr = 0} and @code{size = @var{size}} and all other
480
parameters taking their default value.
481
 
482
If a configuration file is also used, it should be sure not to specify
483
an overlapping memory block.
484
 
485 385 jeremybenn
@item -d @var{config_string}
486 19 jeremybenn
@itemx --debug-config=@var{config_string}
487
@cindex @code{-d}
488
@cindex @code{--debug-config}
489 82 jeremybenn
Enable selected debug messages in @value{OR1KSIM}.  This parameter is
490
for use by developers only, and is not covered further here.  See the
491 19 jeremybenn
source code for more details.
492
 
493 346 jeremybenn
@item --report-memory-errors
494
@cindex @code{--report-memory-errors}
495
By default all exceptions are now handled silently.  If this option is
496
specified, bus exceptions will be reported with a message to standard
497
error indicating the address at which the exception occurred.
498 19 jeremybenn
 
499 440 jeremybenn
This was the default behaviour up to @value{OR1KSIM} 0.4.0.  This flag is
500 346 jeremybenn
provided for those who wish to keep that behavior.
501
 
502 19 jeremybenn
@item --strict-npc
503
@cindex @code{--strict-npc}
504
In real hardware, setting the next program counter (NPC, SPR 16),
505 82 jeremybenn
flushes the processor pipeline.  The consequence of this is that until
506
the pipeline refills, reading the NPC will return zero.  This is typically
507 19 jeremybenn
the case when debugging, since the processor is stalled.
508
 
509
Historically, @value{OR1KSIM} has always returned the value of the NPC,
510 82 jeremybenn
irrespective of when it is changed.  If the @code{--strict-npc} option is
511
used, then @value{OR1KSIM} will mirror real hardware more accurately.  If the NPC
512 19 jeremybenn
is changed while the processor is stalled, subsequent reads of its value
513
will return 0 until the processor is unstalled.
514
 
515
This is not currently the default behavior, since tools such as GDB have
516 346 jeremybenn
been implemented assuming the historic @value{OR1KSIM} behavior.
517
However at some time in the future it will become the default.
518 19 jeremybenn
 
519
@item --enable-profile
520
@cindex @code{--enable-profile}
521
Enable instruction profiling.
522
 
523
@item --enable-mprofile
524
@cindex @code{--enable-mprofile}
525
Enable memory profiling.
526
 
527
@end table
528
 
529
@node Profiling Utility
530
@section Profiling Utility
531
@cindex profiling for @value{OR1KSIM}
532
@cindex instruction profiling for @value{OR1KSIM}
533
 
534
This utility analyses instruction profile data generated by
535 82 jeremybenn
@value{OR1KSIM}.  It may be invoked as a standalone command, or from
536
the @value{OR1KSIM} CLI.  The general form the standalone command is:
537 19 jeremybenn
 
538
@example
539 442 julius
or32-elf-profile [-vhcq] [-g=@var{file}]
540 19 jeremybenn
@end example
541
 
542 82 jeremybenn
Many of the options have both a short and a long form.  For example
543 19 jeremybenn
@code{-h} or @code{--help}.
544
 
545
@table @code
546
 
547
@item -v
548
@itemx --version
549
@cindex @code{-v} (profiling utility)
550
@cindex @code{--version} (profiling utility)
551
Print out the version and copyright notice for the @value{OR1KSIM}
552
profiling utility and exit.
553
 
554
@item -h
555
@itemx --help
556
@cindex @code{-h} (profiling utility)
557
@cindex @code{--help} (profiling utility)
558
Print out help about the command line options and what they mean.
559
 
560
@item -c
561
@itemx --cumulative
562
@cindex @code{-c}
563
@cindex @code{--cumulative}
564
Show cumulative sum of cycles in functions
565
 
566
@item -q
567
@itemx --quiet
568
@cindex @code{-q}
569
@cindex @code{--quiet}
570
Suppress messages
571
 
572
@item -g=@var{file}
573
@itemx --generate=@var{file}
574
@cindex @code{-g}
575
@cindex @code{--generate}
576 82 jeremybenn
The data file to analyse.  If omitted, the default file,
577 19 jeremybenn
@file{sim.profile} is used.
578
 
579
@end table
580
 
581
@node Memory Profiling Utility
582
@section Memory Profiling Utility
583
@cindex memory profiling version of @value{OR1KSIM}
584
 
585
This utility analyses memory profile data generated by
586 82 jeremybenn
@value{OR1KSIM}.  It may be invoked as a standalone command, or from
587
the @value{OR1KSIM} CLI.  The general form the standalone command is:
588 19 jeremybenn
 
589
@example
590 442 julius
or32-elf-mprofile  [-vh] [-m=@var{m}] [-g=@var{n}] [-f=@var{file}] @var{from} @var{to}
591 19 jeremybenn
@end example
592
 
593 82 jeremybenn
Many of the options have both a short and a long form.  For example
594 19 jeremybenn
@code{-h} or @code{--help}.
595
 
596
@table @code
597
 
598
@item -v
599
@itemx --version
600
@cindex @code{-v} (memory profiling utility)
601
@cindex @code{--version} (memory profiling utility)
602
Print out the version and copyright notice for the @value{OR1KSIM}
603
memory profiling utility and exit.
604
 
605
@item -h
606
@itemx --help
607
@cindex @code{-h} (memory profiling utility)
608
@cindex @code{--help} (memory profiling utility)
609
Print out help about the command line options and what they mean.
610
 
611
@item -m=@var{m}
612
@itemx --mode=@var{m}
613
@cindex @code{-m}
614
@cindex @code{--mode}
615 82 jeremybenn
Specify the mode out output.  Permitted options are
616 19 jeremybenn
 
617
@table @code
618
 
619
@item detailed
620
@itemx d
621 82 jeremybenn
Detailed output.  This is the default if no mode is specified.
622 19 jeremybenn
 
623
@item pretty
624
@itemx p
625
Pretty printed output.
626
 
627
@item access
628
@itemx a
629
Memory accesses only.
630
 
631
@item width
632
@itemx w
633
Access width only.
634
 
635
@end table
636
 
637
@item -g=@var{n}
638
@itemx --group=@var{n}
639
@cindex @code{-g}
640
@cindex @code{--group}
641
Group @math{2^n} bits of successive addresses together.
642
 
643
@item -f=@var{file}
644
@itemx --filename=@var{file}
645
@cindex @code{-f}
646
@cindex @code{--filename}
647 82 jeremybenn
The data file to analyse.  If not specified, the default,
648 19 jeremybenn
@file{sim.profile} is used.
649
 
650
@item @var{from}
651
@itemx @var{to}
652
@cindex memory profiling start address
653
@cindex memory profiling end address
654
@var{from} and @var{to} are respectively the start and end address of
655
the region of memory to be analysed.
656
 
657
@end table
658
 
659 442 julius
@node Trace Generation
660
@section Trace Generation
661
@cindex trace generation of @value{OR1KSIM}
662
 
663 443 jeremybenn
An execution trace can be generated at run time with options passed by
664
the command line, or via the operating system's signal passing
665 472 jeremybenn
mechanism, or by @code{l.nop} opcodes in an application program.
666 442 julius
 
667 472 jeremybenn
The following flag can be used to create an execution dump.
668 442 julius
 
669
@table @code
670
 
671
@item -t
672
@itemx --trace
673
@cindex @code{-t}
674
@cindex @code{--trace}
675 472 jeremybenn
Dump instruction just executed and any register/memory location changed
676
after each instruction (one line per instruction).  Each line starts
677
with either ``S'' or ``U'' to indicate whether the processor was in
678
supervisor or user mode @emph{when the instruction completed}.  It is
679
worth bearing in mind that tracing happens at completion of instruction
680
execution and shows the state at that time.
681 442 julius
@end table
682
 
683 443 jeremybenn
Passing a signal @code{SIGUSR1} while the simulator is running toggles
684
trace generation. This can be done with the following command, assuming
685
@value{OR1KSIM}'s executable name is @code{or32-elf-sim}:
686 442 julius
 
687
@example
688
pkill -SIGUSR1 or32-elf-sim
689
@end example
690
 
691 443 jeremybenn
This is useful in the case where trace output is desired after a
692
significant amount of simulation time, where it would be inconvenient to
693
generate trace up to that point.
694 442 julius
 
695 443 jeremybenn
If the @code{pkill} utility is not available, the @code{kill} utility
696
can be used if @value{OR1KSIM}'s process number is known. Use the
697
following to determine the process ID of the @code{or32-elf-sim} and
698
then send the @code{SIGUSR1} command to toggle execution trace
699
generation:
700 442 julius
 
701
@example
702
ps a | grep or32-elf-sim
703
kill -SIGUSR1 @emph{process-number}
704
@end example
705
 
706 472 jeremybenn
@cindex l.nop 8 (turn on tracing)
707
@cindex l.nop 8 (turn off tracing)
708
Tracing can also be enabled and disabled from within a target program
709
using the @code{l.nop 8} and @code{l.nop 9} opcodes to enable and
710
disable tracing respectively.
711 442 julius
 
712 472 jeremybenn
@cindex @code{--trace-physical}
713
@cindex @code{--trace-virtual}
714
By default tracing will show the virtual address of each instruction
715
traced.  This may be controlled by two options, @code{--trace-physical}
716
to show the physical address and/or @code{--trace-virtual} to show the
717
virtual address. If neither is specified, the virtual address is shown.
718
 
719
@quotation Note
720
Either or both flags may be specified without @code{--trace}, to
721
indicate how addresses should be shown if subsequently enabled by a
722
@code{SIGUSER1} signal or @code{l.nop 8} opcode.
723
@end quotation
724
 
725 19 jeremybenn
@node Simulator Library
726
@section Simulator Library
727
@cindex library version of @value{OR1KSIM}
728
 
729
@value{OR1KSIM} may be used as a static of dynamic library,
730 82 jeremybenn
@file{libsim.a} or @file{libsim.so}.  When compiling with the static
731 19 jeremybenn
library, the flag, @code{-lsim} should be added to the link command.
732
 
733
The header file @file{or1ksim.h} contains appropriate declarations of
734 82 jeremybenn
the functions exported by the @value{OR1KSIM} library.  These are:
735 19 jeremybenn
 
736 432 jeremybenn
@deftypefn {@file{or1ksim.h}} int or1ksim_init (int @var{argc}, @
737
           char *@var{argv}, void *@var{class_ptr}, @
738
           int (*@var{upr})(void *@var{class_ptr}, @
739
           unsigned long int @var{addr}, unsigned char @var{mask}[], @
740
           unsigned char @var{rdata}[], int @var{data_len}), @
741
           int (*@var{upw})(void *@var{class_ptr}, @
742
           unsigned long int @var{addr}, @
743
           unsigned char @var{mask}[], unsigned char @var{wdata}[], @
744
           int @var{data_len}))
745 19 jeremybenn
 
746 346 jeremybenn
The initialization function is supplied with a vector of arguments,
747
which are interpreted as arguments to the standalone version (see
748
@pxref{Standalone Simulator, , Standalone Simulator}), a pointer to the
749
calling class, @var{class_ptr} (since the library may be used from C++)
750
and two up-call functions, one for reads, @var{upr}, and one for writes,
751 19 jeremybenn
@var{upw}.
752
 
753
@var{upw} is called for any write to an address external to the model
754
(determined by a @code{generic} section in the configuration
755 82 jeremybenn
file).  @var{upr} is called for any reads to an external address.  The
756 19 jeremybenn
@var{class_ptr} is passed back with these upcalls, allowing the
757
function to associate the call with the class which originally
758 93 jeremybenn
initialized the library.  Both @var{upw} and @var{upr} should return
759
zero on success and non-zero otherwise.  At the present time the meaning
760
of non-zero values is not defined but this may change in the future.
761 19 jeremybenn
 
762 93 jeremybenn
@var{mask} indicates which bytes in the data are to be written or
763 82 jeremybenn
read.  Bytes to be read/written should have 0xff set in
764 93 jeremybenn
@var{mask}.  Otherwise the byte should be zero.  The adddress,
765
@var{addr}, is the @emph{full} address, since the upcall function must
766
handle all generic devices, using the full address for decoding.
767 19 jeremybenn
 
768 346 jeremybenn
Endianness is not a concern, since @value{OR1KSIM} is transferring byte
769
vectors, not multi-byte values.
770 19 jeremybenn
 
771 346 jeremybenn
The result indicates whether the initialization was successful.  The
772
integer values are available as an @code{enum or1ksim}, with possible
773
values @code{OR1KSIM_RC_OK} and @code{OR1KSIM_RC_BADINIT}.
774
 
775 93 jeremybenn
@quotation Caution
776 346 jeremybenn
This is a change from versions 0.3.0 and 0.4.0.  It further simplifies
777
the interface, and makes @value{OR1KSIM} more consistent with payload
778
representation in SystemC TLM 2.0.
779 93 jeremybenn
@end quotation
780
 
781
@quotation Note
782 440 jeremybenn
The current implementation of @value{OR1KSIM} always transfers single words (4
783 93 jeremybenn
bytes), using masks if smaller values are required.  In this it mimcs the
784
behavior of the WishBone bus.
785
@end quotation
786
 
787 19 jeremybenn
@end deftypefn
788
 
789
@deftypefn {@file{or1ksim.h}} int or1ksim_run (double  @var{duration})
790
 
791 346 jeremybenn
Run the simulator for the simulated duration specified (in seconds).  A
792
duration of -1 indicates `run forever'
793 19 jeremybenn
 
794 346 jeremybenn
The result indicates how the run terminated.  The integer values are
795
available as an @code{enum or1ksim}, with possible values
796
@code{OR1KSIM_RC_OK} (ran for the full duration),
797
@code{OR1KSIM_RC_BRKPT} (terminated early due to hitting a breakpoint)
798
and @code{OR1KSIM_RC_HALTED} (terminated early due to hitting
799
@code{l.nop 1}).
800
 
801 19 jeremybenn
@end deftypefn
802
 
803
@deftypefn {@file{or1ksim.h}} void or1ksim_reset_duration (double @var{duration})
804
 
805
Change the duration of a run specified in an earlier call to
806 82 jeremybenn
@code{or1ksim_run}.  Typically this is called from an upcall, which
807 19 jeremybenn
realizes it needs to change the duration of the run specified in the
808
call to @code{or1ksim_run} that has been interrupted by the upcall.
809
 
810
The time specified is the amount of time that the run must continue
811
for (i.e the duration from @emph{now}, not the duration from the original
812
call to @code{or1ksim_run}).
813
 
814
@end deftypefn
815
 
816
@deftypefn {@file{or1ksim.h}} void  or1ksim_set_time_point ()
817
 
818 82 jeremybenn
Set a timing point.  For use with @code{or1ksim_get_time_period}.
819 19 jeremybenn
 
820
@end deftypefn
821
 
822
@deftypefn {@file{or1ksim.h}} double  or1ksim_get_time_period ()
823
 
824
Return the simulated time (in seconds) that has elapsed since the last
825
call to @code{or1ksim_set_time_point}.
826
 
827
@end deftypefn
828
 
829
@deftypefn {@file{or1ksim.h}} int  or1ksim_is_le ()
830
 
831
Return 1 (logical true) if the @value{OR1KSIM} simulation is
832
little-endian, 0 otherwise.
833
 
834
@end deftypefn
835
 
836
@deftypefn {@file{or1ksim.h}} unsigned long int  or1ksim_clock_rate ()
837
 
838 82 jeremybenn
Return the @value{OR1KSIM} clock rate (in Hz).  This is the value
839 19 jeremybenn
specified in the configuration file.
840
 
841
@end deftypefn
842
 
843
@deftypefn {@file{or1ksim.h}} void or1ksim_interrupt (int  @var{i})
844
 
845 432 jeremybenn
Generate an edge-triggered interrupt on interrupt line @var{i}.  The
846
interrupt must be cleared separately by clearing the corresponding bit
847
in the PICSR SPR.  Until the interrupt is cleared, any further
848
interrupts on the same line will be ignored with a warning.  A warning
849
will be generated and the interrupt request ignored if level sensitive
850
interrupts have been configured with the programmable interrupt
851
controller (@pxref{Interrupt Configuration, , Interrupt Configuration}).
852 19 jeremybenn
 
853
@end deftypefn
854
 
855
@deftypefn {@file{or1ksim.h}} void or1ksim_interrupt_set (int  @var{i})
856
 
857 432 jeremybenn
Assert a level-triggered interrupt on interrupt line @var{i}.  The
858
interrupt must be cleared separately by an explicit call to
859
@code{or1ksim_interrupt_clear}.  Until the interrupt is cleared, any
860
further setting of interrupts on the same line will be ignored with a
861
warning.  A warning will be generated, and the interrupt request ignored
862
if edge sensitive interrupts have been configured with the programmable
863
interrupt controller (@pxref{Interrupt Configuration, , Interrupt
864 19 jeremybenn
Configuration}).
865
 
866
@end deftypefn
867
 
868
@deftypefn {@file{or1ksim.h}} void or1ksim_interrupt_clear (int  @var{i})
869
 
870
Clear a level-triggered interrupt on interrupt line @var{i}, which was
871 82 jeremybenn
previously asserted by a call to @code{or1ksim_interrupt_set}.  A warning will
872 19 jeremybenn
be generated, and the interrupt request ignored if edge sensitive interrupts
873
have been configured with the programmable interrupt controller
874
(@pxref{Interrupt Configuration, , Interrupt Configuration}).
875
 
876
@end deftypefn
877
 
878 104 jeremybenn
@deftypefn {@file{or1ksim.h}} double or1ksim_jtag_reset ()
879
 
880 346 jeremybenn
Drive a reset sequence through the JTAG interface.  Return the (model)
881 104 jeremybenn
time taken for this action.  Remember that the JTAG has its own clock,
882
which can be an order of magnitude slower than the main clock, so even a
883
reset (5 JTAG cycles) could take 50 processor clock cycles to complete.
884
 
885
@end deftypefn
886
 
887 432 jeremybenn
@deftypefn {@file{or1ksim.h}} double or1ksim_jtag_shift_ir @
888
           (unsigned char *@var{jreg}, int @var{num_bits})
889 104 jeremybenn
 
890 346 jeremybenn
Shift the supplied register through the JTAG instruction register.
891
Return the (model) time taken for this action.  The register is supplied
892
as a byte vector, with the least significant bits in the least
893 104 jeremybenn
significant byte.  If the total number of bits is not an exact number of
894
bytes, then the odd bits are found in the least significant end of the
895
highest numbered byte.
896
 
897
For example a 12-bit register would have bits 0-7 in byte 0 and bits
898
11-8 in the least significant 4 bits of byte 1.
899
 
900
@end deftypefn
901
 
902 432 jeremybenn
@deftypefn {@file{or1ksim.h}} double or1ksim_jtag_shift_dr @
903
           (unsigned char *@var{jreg}, int @var{num_bits})
904 104 jeremybenn
 
905
Shift the supplied register through the JTAG data register.  Return the
906 346 jeremybenn
(model) time taken for this action.  The register is supplied as a byte
907 104 jeremybenn
vector, with the least significant bits in the least significant byte.
908
If the total number of bits is not an exact number of bytes, then the
909
odd bits are found in the least significant end of the highest numbered
910
byte.
911
 
912
For example a 12-bit register would have bits 0-7 in byte 0 and bits
913
11-8 in the least significant 4 bits of byte 1.
914
 
915
@end deftypefn
916
 
917 432 jeremybenn
@deftypefn {@file{or1ksim.h}} int or1ksim_read_mem @
918
           (unsigned long int @var{addr}, unsigned char *@var{buf}, @
919
           int @var{len})
920 346 jeremybenn
 
921
Read @var{len} bytes from @var{addr}, placing the result in @var{buf}.
922
Return @var{len} on success and 0 on failure.
923
 
924
@quotation Note
925 440 jeremybenn
This function was added in @value{OR1KSIM} 0.5.0.
926 346 jeremybenn
@end quotation
927
 
928
@end deftypefn
929
 
930 432 jeremybenn
@deftypefn {@file{or1ksim.h}} int or1ksim_write_mem @
931
           (unsigned long int @var{addr}, const unsigned char *@var{buf}, @
932
           int @var{len})
933 346 jeremybenn
 
934
Write @var{len} bytes to @var{addr}, taking the data from @var{buf}.
935
Return @var{len} on success and 0 on failure.
936
 
937
@quotation Note
938 440 jeremybenn
This function was added in @value{OR1KSIM} 0.5.0.
939 346 jeremybenn
@end quotation
940
 
941
@end deftypefn
942
 
943 432 jeremybenn
@deftypefn {@file{or1ksim.h}} int or1ksim_read_spr (int @var{sprnum}, @
944
           unsigned long int *@var{sprval_ptr})
945 346 jeremybenn
 
946
Read the SPR specified by @var{sprnum}, placing the result in
947
@var{sprval_ptr}.  Return non-zero on success and 0 on failure.
948
 
949
@quotation Note
950 440 jeremybenn
This function was added in @value{OR1KSIM} 0.5.0.
951 346 jeremybenn
@end quotation
952
 
953
@end deftypefn
954
 
955 432 jeremybenn
@deftypefn {@file{or1ksim.h}} int or1ksim_write_spr (int @var{sprnum}, @
956
           unsigned long int @var{sprva})
957 346 jeremybenn
 
958
Write @var{sprval} to the SPR specified by @var{sprnum}.  Return
959
non-zero on success and 0 on failure.
960
 
961
@quotation Note
962 440 jeremybenn
This function was added in @value{OR1KSIM} 0.5.0.
963 346 jeremybenn
@end quotation
964
 
965
@end deftypefn
966
 
967 432 jeremybenn
@deftypefn {@file{or1ksim.h}} int or1ksim_read_reg (int @var{regnum}, @
968
           unsigned long int *@var{regval_ptr})
969 346 jeremybenn
 
970
Read the general purpose register specified by @var{regnum}, placing the
971
result in @var{regval_ptr}.  Return non-zero on success and 0 on
972
failure.
973
 
974
@quotation Note
975 440 jeremybenn
This function was added in @value{OR1KSIM} 0.5.0.
976 346 jeremybenn
@end quotation
977
 
978
@end deftypefn
979
 
980 432 jeremybenn
@deftypefn {@file{or1ksim.h}} int or1ksim_write_reg (int @var{regnum}, @
981
           unsigned long int @var{regva})
982 346 jeremybenn
 
983
Write @var{regval} to the general purpose register specified by
984
@var{regnum}.  Return non-zero on success and 0 on failure.
985
 
986
@quotation Note
987 440 jeremybenn
This function was added in @value{OR1KSIM} 0.5.0.
988 346 jeremybenn
@end quotation
989
 
990
@end deftypefn
991
 
992 432 jeremybenn
@deftypefn {@file{or1ksim.h}} void or1ksim_set_stall_state (int @var{state})
993 346 jeremybenn
 
994
Set the processor's state according to @var{state} (1 = stalled, 0 = not
995
stalled).
996
 
997
@quotation Note
998 440 jeremybenn
This function was added in @value{OR1KSIM} 0.5.0.
999 346 jeremybenn
@end quotation
1000
 
1001
@end deftypefn
1002
 
1003 19 jeremybenn
The libraries will be installed in the @file{lib} sub-directory of the
1004
main installation directory (as specified with the @option{--prefix}
1005
option to the @command{configure} script).
1006
 
1007
For example if the main installation directory is @file{/opt/or1ksim},
1008 82 jeremybenn
the library will be found in the @file{/opt/or1ksim/lib} directory.  It
1009 19 jeremybenn
is available as both a static library (@file{libsim.a}) and a shared
1010
object (@file{libsim.so}).
1011
 
1012
To link against the library add the @option{-lsim} flag when linking
1013
and do one of the following:
1014
 
1015
@itemize @bullet
1016
 
1017
@item
1018
Add the library directory to the @code{LD_LIBRARY_PATH} environment
1019 82 jeremybenn
variable during execution.  For example:
1020 19 jeremybenn
 
1021
@example
1022
export LD_LIBRARY_PATH=/opt/or1ksim/lib:$LD_LIBRARY_PATH
1023
@end example
1024
 
1025
@item
1026
Add the library directory to the @code{LD_RUN_PATH} environment
1027 82 jeremybenn
variable during linking.  For example:
1028 19 jeremybenn
 
1029
@example
1030
export LD_RUN_PATH=/opt/or1ksim/lib:$LD_RUN_PATH
1031
@end example
1032
 
1033
@item
1034
Use the linker @option{--rpath} option and specify the library
1035 82 jeremybenn
directory when linking your program.  For example
1036 19 jeremybenn
 
1037
@example
1038 82 jeremybenn
gcc ...  -Wl,--rpath -Wl,/opt/or1ksim/lib ...
1039 19 jeremybenn
@end example
1040
 
1041
@item
1042
Add the library directory to @file{/etc/ld.so.conf}
1043
 
1044
@end itemize
1045
 
1046 440 jeremybenn
@node Ethernet TUN/TAP Interface
1047
@section Ethernet TUN/TAP Interface
1048
@cindex configuring the Ethernet TUN/TAP interface
1049
 
1050
When an Ethernet peripheral is configured (@pxref{Ethernet
1051
Configuration, , Ethernet Configuration}), one option is to tunnel
1052
traffic through a TUN/TAP interface.  The low level TAP interface is used
1053
to tunnel raw Ethernet datagrams.
1054
 
1055
The TAP interface can then be connected to a physical Ethernet through a
1056
bridge, allowing the @value{OR1KSIM} model to connect to a physical
1057
network.  This is particularly when @value{OR1KSIM} is running the
1058
OpenRISC Linux kernel image.
1059
 
1060
This section explains how to set up a bridge for use by @value{OR1KSIM}. It does
1061
require superuser access to the host machine (or at least the relevant
1062
network capabilities). A system administrator can modify these
1063
guidelines so they are executed on reboot if appropriate.
1064
 
1065
@menu
1066
* Setting Up a Persistent TAP device::
1067
* Establishing a Bridge::
1068
* Opening the Firewall::
1069
* Disabling Ethernet Filtering::
1070
* Networking from OpenRISC Linux and BusyBox::
1071
* Tearing Down a Bridge::
1072
@end menu
1073
 
1074
@node Setting Up a Persistent TAP device
1075
@subsection Setting Up a Persistent TAP device
1076
@cindex persistent TAP device creation
1077
@cindex TAP device creation
1078
 
1079
TUN/TAP devices can be created dynamically, but this requires superuser
1080
privileges (or at least @code{CAP_NET_ADMIN} capability).  The solution
1081
is to create a persistent TAP device.  This can be done using either
1082
@command{openvpn} or @command{tunctl}.  In either case the package must
1083
be installed on the host system.  Using @command{openvpn}, the following
1084
would set up a TAP interface for a specified user and group.
1085
 
1086
@example
1087
openvpn --mktun --dev tap@emph{n} --user @emph{username} --group @emph{groupname}
1088
@end example
1089
 
1090
@node Establishing a Bridge
1091
@subsection Establishing a Bridge
1092
@cindex bridge setup
1093
@cindex Ethernet bridge setup
1094
 
1095
A bridge is a ``virtual'' local area network interfaces, subsuming two or more
1096
existing network interfaces.  In this case we will bridge the physical
1097
Ethernet interface of the host with the TAP interface that will be used
1098
by @value{OR1KSIM}.
1099
 
1100
The Ethernet and TAP must lose their own individual IP addresses (by
1101
setting them to 0.0.0.0) and are replaced by the IP address of the
1102
bridge interface. To do this we use the @command{bridge-utils} package,
1103
which must be installed on the host system. These commands are require
1104
superuser privileges or @code{CAP_NET_ADMIN} capability. To create a new
1105
interface @code{br@emph{n}} the following commands are appropriate.
1106
 
1107
@example
1108
brctl addbr br@emph{n}
1109
brctl addif br@emph{n} eth@emph{x}
1110
brctl addif br@emph{n} tap@emph{y}
1111
 
1112
ifconfig eth@emph{x} 0.0.0.0 promisc up
1113
ifconfig tap@emph{y} 0.0.0.0 promisc up
1114
 
1115
dhclient br@emph{n}
1116
@end example
1117
 
1118
The last command instructs the bridge to obtain its IP address, netmask,
1119
broadcast address, gateway and nameserver information using DHCP.  In a
1120
network without DHCP it should be replaced by @command{ifconfig} to set
1121
a static IP address, netmask and broadcast address.
1122
 
1123
@quotation Note
1124
This will leave a spare dhclient process running in the background,
1125
which should be killed for tidiness. There is a technique to avoid this
1126
using @command{omshell}, but that is beyond the scope of this guide.
1127
@end quotation
1128
 
1129
@quotation Note
1130
It is not clear to the author why the existing interfaces need to be
1131
brought up in promiscuous mode, but it seems to cure various problems.
1132
@end quotation
1133
 
1134
@node Opening the Firewall
1135
@subsection  Opening the Firewall
1136
@cindex firewall with Ethernet bridge and TAP/TUN
1137
 
1138
Firewall rules should be added to ensure traffic flows freely through
1139
the TAP and bridge interfaces. As superuser the following commands are
1140
appropriate.
1141
 
1142
@example
1143
iptables -A INPUT -i tap@emph{y} -j ACCEPT
1144
iptables -A INPUT -i br@emph{n} -j ACCEPT
1145
iptables -A FORWARD -i br@emph{n} -j ACCEPT
1146
@end example
1147
 
1148
@node Disabling Ethernet Filtering
1149
@subsection Disabling Ethernet Filtering
1150
 
1151
Some systems may have ethernet filtering enabled (@command{ebtables},
1152
@command{bridge-nf}, @command{arptables}) which will stop traffic
1153
flowing through the bridge.
1154
 
1155
The easiest way to disable this is by writing zero to all
1156
@file{bridge-nf-*} entries in @file{/proc/sys/net/bridge}. As superuser
1157
the following commands will achieve this.
1158
 
1159
@example
1160
cd /proc/sys/net/bridge
1161
for f in bridge-nf-*; do echo 0 > $f; done
1162
@end example
1163
 
1164
@node Networking from OpenRISC Linux and BusyBox
1165
@subsection Networking from OpenRISC Linux and BusyBox
1166
@cindex BusyBox and Ethernet
1167
@cindex Linux (OpenRISC) and Ethernet
1168
 
1169
The main use of this style of Ethernet interface to @value{OR1KSIM} is when
1170
running the OpenRISC Linux kernel with BusyBox. The following commands
1171
in the BusyBox console window will configure the Ethernet interface
1172
(assumed to be @code{eth0}) and bring it up with a DHCP assigned
1173
address.
1174
 
1175
@example
1176
ifconfig eth0
1177
ifup eth0
1178
@end example
1179
 
1180
At this stage interface to IP addresses will work correctly.
1181
 
1182
For DNS to work the BusyBox system needs to know where to find a
1183
nameserver.  Under BusyBox, @command{udhcp} does not configure
1184
@file{/etc/resolv.conf} automatically.
1185
 
1186
The solution is to duplicate the nameserver entry from the
1187
@file{/etc/resolv.conf} file of the host on the BusyBox system. A
1188
typical file might be as follows:
1189
 
1190
@example
1191
@code{nameserver 192.168.0.1}
1192
@end example
1193
 
1194
It is convenient to make this permanent within the Linux initramfs. Add
1195
the file as @code{arch/openrisc/support/initramfs/etc/resolv.conf}
1196
within the Linux source tree and rebuild @code{vmlinux}. It will then be
1197
present automatically.
1198
 
1199
One of the most useful functions that is possible is to mount
1200
the host file system through NFS. For example, from the BusyBox console:
1201
 
1202
@example
1203
mount -t nfs -o nolock 192.168.0.60:/home /mnt
1204
@end example
1205
 
1206
Another useful technique is to telnet into the BusyBox system from the
1207
host. This is particularly valuable when a console process locks up,
1208
since the @command{xterm} console will not recognize ctrl-C. Instead the
1209
rogue process can be killed from a telnet connection.
1210
 
1211
@node Tearing Down a Bridge
1212
@subsection Tearing Down a Bridge
1213
 
1214
There is little reason why a bridge should ever need to be torn down,
1215
but if desired, the following commands will achieve the effect.
1216
 
1217
@example
1218
ifconfig br@emph{n} down
1219
brctl delbr br@emph{n}
1220
 
1221
dhclient eth@emph{x}
1222
@end example
1223
 
1224
As before this will leave a spare @command{dhclient} process in the
1225
background which should be killed.
1226
 
1227
If desired the TAP interface can be deleted using
1228
 
1229
@example
1230
openvpn --rmtun -dev tap@emph{y}
1231
@end example
1232
 
1233
@quotation Caution
1234
The TAP interface should not be in use when running this command. For
1235
example any OpenRISC Linux/BusyBox sessions should be closed first.
1236
@end quotation
1237
 
1238 460 jeremybenn
@node l.nop Support
1239
@section l.nop Opcode Support
1240
@cindex l.nop opcode effects
1241
 
1242
The OpenRISC @code{l.nop} opcode can take a parameter.  This has no
1243
effect on the semantics of the opcode, but can be used to trigger side
1244
effect behavior in a simulator.  Within Or1ksim, the following parameters
1245
are supported.
1246
 
1247
@table @code
1248
 
1249
@item l.nop 0
1250
@cindex @code{l.nop 0}
1251
 
1252
The equivalent to @code{l.nop} with no parameter. Has no side effects.
1253
 
1254
@item l.nop 1
1255
@cindex @code{l.nop 1} (end simulation)
1256
 
1257
Execution of Or1ksim is terminated. This is used to implement the
1258
library @code{exit} functions.
1259
 
1260
@item l.nop 2
1261
@cindex @code{l.nop 2} (report)
1262
 
1263
Report the value in @code{r3} on the console as a 32-bit hex value.
1264
 
1265
@item l.nop 3
1266
@cindex @code{l.nop 3} (printf, now obsolete)
1267
 
1268
In earlier versions of @value{OR1KSIM} this treated @code{r3} as a
1269
pointer to a @code{printf} style format string, and regsiters @code{r4}
1270
through @code{r8} as parameters for that format string.
1271
 
1272
This opcode is no longer supported, and has no effect if used.
1273
 
1274
@item l.nop 4
1275
@cindex @code{l.nop 4} (putc)
1276
 
1277
The value in @code{r3} is printed to standard output as an ASCII
1278
character.  All library output routines are implemented using this opcode.
1279
 
1280
@item l.nop 5
1281
@cindex @code{l.nop 5} (reset statistics counters)
1282
 
1283
The statistics counters are reset.
1284
 
1285
@item l.nop 6
1286
@cindex @code{l.nop 6} (get clock ticks)
1287
 
1288
The number of clock ticks since start of execution (a 64-bit value) is
1289
returned in @code{r11} (low 32 bits) and @code{r12} (high 32 bits).
1290
 
1291
@item l.nop 7
1292
@cindex @code{l.nop 7} (get picoseconds per cycle)
1293
 
1294
The number of picoseconds per clock cycle is returned in @code{r11}.
1295
This is used with @code{l.nop 6} to implement timing functions.
1296
 
1297
@item l.nop 8
1298
@cindex @code{l.nop 8} (turn on tracing)
1299
 
1300
Instruction tracing is turned on.
1301
 
1302
@item l.nop 9
1303
@cindex @code{l.nop 9} (turn off tracing)
1304
 
1305
Instruction tracing is turned off.
1306
 
1307
@end table
1308
 
1309 19 jeremybenn
@node Configuration
1310
@chapter Configuration
1311
@cindex configuring @value{OR1KSIM}
1312
 
1313 82 jeremybenn
@value{OR1KSIM} is configured through a configuration file.  This is specified
1314 19 jeremybenn
through the @code{-f} parameter to the @value{OR1KSIM} command, or passed as a
1315 82 jeremybenn
string when initializing the @value{OR1KSIM} library.  If no file is specified,
1316
the default @file{sim.cfg} is used.  The file is looked for first in the
1317 224 jeremybenn
current directory, then in the @file{$HOME/.or1ksim} directory of the user.
1318 19 jeremybenn
 
1319
@menu
1320
* Configuration File Format::
1321
* Simulator Configuration::
1322
* Core OpenRISC Configuration::
1323
* Peripheral Configuration::
1324
@end menu
1325
 
1326
@node Configuration File Format
1327
@section Configuration File Format
1328
@cindex configuration file structure
1329
 
1330 346 jeremybenn
The configuration file is a plain text file.  A reference example,
1331
@file{sim.cfg}, is included in the top level directory of the
1332
distribution.
1333 19 jeremybenn
 
1334
@menu
1335
* Configuration File Preprocessing::
1336
* Configuration File Syntax::
1337
@end menu
1338
 
1339
@node Configuration File Preprocessing
1340
@subsection Configuration File Preprocessing
1341
 
1342 82 jeremybenn
The configuration file may include C style comments (i.e.  delimited by
1343 19 jeremybenn
@code{/*} and @code{*/}).
1344
 
1345
@node Configuration File Syntax
1346
@subsection Configuration File Syntax
1347
 
1348
The configuration file is divided into a series of sections, with the general
1349
form:
1350
 
1351
@example
1352
section @var{section_name}
1353
 
1354
  <contents>...
1355
 
1356
end
1357
@end example
1358
 
1359
Sections may also have sub-sections within them (currently only the
1360
ATA/ATAPI disc interface uses this).
1361
 
1362
Within a section, or sub-section are a series of parameter assignments, one
1363
per line, withe the general form
1364
 
1365
@example
1366
  @var{parameter} = @var{value}
1367
@end example
1368
 
1369
Depending on the parameter, the value may be a named value (an enumeration),
1370
an integer (specified in any format acceptable in C) or a string in doubple
1371 82 jeremybenn
quotes.  For flag parameters, the value 1 is used to mean ``true'' or ``on''
1372
and the value ``0'' to mean ``false'' or ``off''.  An example from a memory
1373 19 jeremybenn
section shows each of these
1374
 
1375
@example
1376
section memory
1377
  type    = random
1378
  pattern = 0x00
1379
  name    = "FLASH"
1380
  ...
1381
end
1382
@end example
1383
 
1384
Many parameters are optional and take reasonable default values if not
1385 82 jeremybenn
specified.  However there are some parameters (for example the
1386 19 jeremybenn
@code{ce} parameter in @code{@w{section memory}}) @emph{must} be
1387
specified.
1388
 
1389
Subsections are introduced by a keyword, with a parameter value (no
1390
@code{=} sign), and end with the same keyword prefixed by
1391 82 jeremybenn
@code{end}.  Thus the ATA/ATAPI inteface (@code{@w{section ata}}) has a
1392 19 jeremybenn
@code{device} subsection, thus:
1393
 
1394
@example
1395
section ata
1396
  ...
1397
  device 0
1398
    type    = 1
1399
    file = "@var{filename}"
1400
    ...
1401
  enddevice
1402
  ...
1403
end
1404
@end example
1405
 
1406
Some sections (for example @code{@w{section sim}}) should appear only
1407 82 jeremybenn
once.  Others (for example @code{@w{section memory}} may appear
1408 19 jeremybenn
multiple times.
1409
 
1410
Sections may be omitted, @emph{unless they contain parameters which
1411 82 jeremybenn
are non-optional}.  If the section describes a part of the simulator
1412 19 jeremybenn
which is optional (for example whether it has a UART), then that
1413 82 jeremybenn
functionality will not be provided.  If the section describes a part of
1414 19 jeremybenn
the simulator which is not optional (for example the CPU), then all the
1415
parameters of that section will take their default values.
1416
 
1417
All optional parts of the functionality are always described by
1418
sections including a @code{enabled} parameter, which can be set to 0
1419
to ensure that functionality is explicitly omitted.
1420
 
1421
Even if a section is disabled, all its parameters will be read and
1422 82 jeremybenn
stored.  This is helpful if the section is subsequently enabled from
1423 19 jeremybenn
the @value{OR1KSIM} command line (@pxref{Interactive Command Line, ,
1424
Interactive Command Line}).
1425
 
1426
@quotation Tip
1427
It generally clearer to have sections describing @emph{all}
1428
components, with omitted functionality explicitly indicated by setting
1429
the @code{enabled} parameter to 0
1430
@end quotation
1431
 
1432
The following sections describe the various configuration sections and the
1433
parameters which may be set in each.
1434
 
1435
@node Simulator Configuration
1436
@section Simulator Configuration
1437
 
1438
@menu
1439
* Simulator Behavior::
1440
* Verification API Configuration::
1441
* CUC Configuration::
1442
@end menu
1443
 
1444
@node Simulator Behavior
1445
@subsection Simulator Behavior
1446
@cindex configuring the behavior of @value{OR1KSIM}
1447
@cindex simulator configuration
1448
@cindex @code{section sim}
1449 82 jeremybenn
Simulator behavior is described in @code{section sim}.  This section
1450
should appear only once.  The following parameters may be specified.
1451 19 jeremybenn
 
1452
@table @code
1453
 
1454
@item verbose = 0|1
1455
@cindex @code{verbose} (simulator configuration)
1456 82 jeremybenn
If 1 (true), print extra messages.  Default 0.
1457 19 jeremybenn
 
1458
@item debug = 0-9
1459
@cindex @code{debug} (simulator configuration)
1460 82 jeremybenn
 
1461
value the greater the number of messages.  Default 0.  Negative values
1462
will be treated as 0 (with a warning).  Values that are too large will
1463 19 jeremybenn
be treated as 9 (with a warning).
1464
 
1465
@item profile = 0|1
1466
@cindex @code{profile} (simulator configuration)
1467
If 1 (true) generate a profiling file using the file specified in the
1468 82 jeremybenn
@code{prof_file} parameter or otherwise @file{sim.profile}.  Default 0.
1469 19 jeremybenn
 
1470
@item prof_file = ``@var{filename}''
1471
@cindex @code{prof_file} (simulator configuration)
1472
@cindex @code{prof_fn} (simulator configuration - deprecated)
1473 82 jeremybenn
Specifies the file to be used with the @code{profile} parameter.  Default
1474
@file{sim.profile}.  For backwards compatibility, the alternative name
1475 346 jeremybenn
@code{prof_fn} is supported for this parameter, but deprecated.  Default
1476
@file{sim.profile}.
1477 19 jeremybenn
 
1478 346 jeremybenn
 
1479 19 jeremybenn
@item mprofile = 0|1
1480
@cindex @code{mprofile} (simulator configuration)
1481
If 1 (true) generate a memory profiling file using the file specified in the
1482 82 jeremybenn
@code{mprof_file} parameter or otherwise @file{sim.mprofile}.  Default 0.
1483 19 jeremybenn
 
1484 346 jeremybenn
@item mprof_file = ``@var{filename}''
1485 19 jeremybenn
@cindex @code{mprof_file} (simulator configuration)
1486
@cindex @code{mprof_fn} (simulator configuration - deprecated)
1487 82 jeremybenn
Specifies the file to be used with the @code{mprofile} parameter.  Default
1488
@file{sim.mprofile}.  For backwards compatibility, the alternative name
1489 19 jeremybenn
@code{mprof_fn} is supported for this parameter, but deprecated.
1490 346 jeremybenn
Default @file{sim.mprofile}.
1491 19 jeremybenn
 
1492
@item history = 0|1
1493
@cindex @code{history} (simulator configuration)
1494 82 jeremybenn
If 1 (true) track execution flow.  Default 0.
1495 19 jeremybenn
 
1496
@quotation Note
1497
Setting this parameter seriously degrades performance.
1498
@end quotation
1499
 
1500
@quotation Note
1501
If this execution flow tracking is enabled, then @code{dependstats}
1502
must be enabled in the CPU configuration section (@pxref{CPU
1503
Configuration, , CPU Configuration}).
1504
@end quotation
1505
 
1506
@item exe_log = 0|1
1507
@cindex @code{exe_log} (simulator configuration)
1508 82 jeremybenn
If 1 (true), generate an execution log.  Log is written to the file specified
1509
in parameter @code{exe_log_file}.  Default 0.
1510 19 jeremybenn
 
1511
@quotation Note
1512
Setting this parameter seriously degrades performance.
1513
@end quotation
1514
 
1515
@item exe_log_type = default|hardware|simple|software
1516
@cindex @code{exe_log_type} (simulator configuration)
1517
Type of execution log to produce.
1518
 
1519
@table @code
1520
 
1521
@item default
1522
@cindex @code{exe_log_type=default} (simulator configuration)
1523 82 jeremybenn
Produce default output for the execution log.  In the current implementation
1524 19 jeremybenn
this is the equivalent of @code{hardware}.
1525
 
1526
@item hardware
1527
@cindex @code{exe_log_type=hardware} (simulator configuration)
1528
After each instruction execution, log the number of instructions executed so
1529
far, the next instruction to execute (in hex), the general purpose registers
1530
(GPRs), status register, exception program counter, exception, effective
1531
address register and exception status register.
1532
 
1533
@item simple
1534
@cindex @code{exe_log_type=simple} (simulator configuration)
1535
After each instruction execution, log the number of instructions executed so
1536
far and the next instruction to execute, symbolically disassembled.
1537
 
1538
@item software
1539
@cindex @code{exe_log_type=software} (simulator configuration)
1540
After each instruction execution, log the number of instructions executed so
1541 82 jeremybenn
far and the next instruction to execute, symbolically disassembled.  Also show
1542 19 jeremybenn
the value of each operand to the instruction.
1543
 
1544
@end table
1545
 
1546 82 jeremybenn
Default value @code{hardware}.  Any unrecognized keyword (case
1547 19 jeremybenn
insensitive) will be treated as the default with a warning.
1548
 
1549
@quotation Note
1550
Execution logs can be @emph{very} big.
1551
@end quotation
1552
 
1553
@item exe_log_start = @var{value}
1554
@cindex @code{exe_log_start} (simulator configuration)
1555 82 jeremybenn
Address of the first instruction to start logging.  Default 0.
1556 19 jeremybenn
 
1557
@item exe_log_end = @var{value}
1558
@cindex @code{exe_log_end} (simulator configuration)
1559 82 jeremybenn
Address of the last instruction to log.  Default no limit (i.e once started
1560 19 jeremybenn
logging will continue until the simulator exits).
1561
 
1562
@item exe_log_marker = @var{value}
1563
@cindex @code{exe_log_marker} (simulator configuration)
1564
Specifies the number of instructions between printing horizontal
1565 82 jeremybenn
markers.  Default is to produce no markers.
1566 19 jeremybenn
 
1567
@item exe_log_file = @var{filename}
1568
@cindex @code{exe_log_file} (simulator configuration)
1569
@cindex @code{exe_log_fn} (simulator configuration - deprecated)
1570 82 jeremybenn
Filename for the execution log filename if @code{exe_log} is enabled.  Default
1571
@file{executed.log}.  For backwards compatibility, the alternative name
1572 19 jeremybenn
@code{exe_log_fn} is supported for this parameter, but deprecated.
1573
 
1574 202 julius
@item exe_bin_insn_log = 0|1
1575
@cindex @code{exe_bin_insn_log} (simulator configuration)
1576 346 jeremybenn
Enable logging of executed instructions to a file in binary format.
1577
This is helpful for off-line dynamic execution analysis.
1578 202 julius
 
1579
@quotation Note
1580 346 jeremybenn
Execution logs can be @emph{very} big.  For example, while booting the
1581
Linux kernel, version 2.6.34, a log file 1.2GB in size was generated.
1582 202 julius
@end quotation
1583
 
1584
@item exe_bin_insn_log_file = @var{filename}
1585
@cindex @code{exe_bin_insn_log_file} (simulator configuration)
1586
Filename for the binary execution log filename if @code{exe_bin_insn_log} is
1587
enabled.  Default @file{exe-insn.bin}.
1588
 
1589
 
1590 19 jeremybenn
@item clkcycle = @var{value}[ps|ns|us|ms]
1591
@cindex @code{clkcycle} (simulator configuration)
1592 82 jeremybenn
Specify the time taken by one clock cycle.  If no units are specified,
1593
@code{ps} is assumed.  Default 4000ps (250MHz).
1594 19 jeremybenn
 
1595
@end table
1596
 
1597
@node Verification API Configuration
1598
@subsection Verification API (VAPI) Configuration
1599
@cindex configuring the Verification API (VAPI)
1600
@cindex Verification API configuration
1601
@cindex VAPI configuration
1602
@cindex @code{section vapi}
1603
The Verification API (VAPI) provides a TCP/IP interface to allow
1604
components of the simulation to be controlled
1605 82 jeremybenn
externally.  @xref{Verification API, , Verification API}, for more
1606 19 jeremybenn
details.
1607
 
1608
Verification API configuration is described in @code{section
1609 82 jeremybenn
vapi}.  This section may appear at most once.  The following parameters
1610 19 jeremybenn
may be specified.
1611
 
1612
@table @code
1613
 
1614
@item enabled = 0|1
1615
@cindex @code{enabled} (verification API configuration)
1616 82 jeremybenn
If 1 (true), verification API is enabled and its server started.  If 0
1617 19 jeremybenn
(the default), it is disabled.
1618
 
1619
@item server_port = @var{value}
1620
@cindex @code{server_port} (verification API configuration)
1621
When VAPI is enabled, communication will be via TCP/IP on the port
1622 82 jeremybenn
specified by @var{value}.  The value must lie in the range 1 to 65535.
1623 19 jeremybenn
The default value is 50000.
1624
 
1625
@quotation Tip
1626
@cindex TCP/IP port range
1627
@cindex port range for TCP/IP
1628
@cindex dynamic ports, use of
1629
@cindex private ports, use of
1630 82 jeremybenn
There is no registered port for @value{OR1KSIM} VAPI.  Good practice
1631 19 jeremybenn
suggests users should adopt port values in the @dfn{Dynamic} or
1632 82 jeremybenn
@dfn{Private} port range, i.e.  49152-65535.
1633 19 jeremybenn
@end quotation
1634
 
1635
@item log_enabled = 0|1
1636
@cindex @code{log_enabled} (verification API configuration)
1637 82 jeremybenn
If 1 (true), all VAPI requests and sent commands will be logged.  If 0
1638
(the default), logging is diabled.  Logs are written to the file
1639 19 jeremybenn
specified by the @code{vapi_log_file} field (see below).
1640
 
1641
@quotation Caution
1642
This can generate a substantial amount of file I/O and seriously
1643
degrade simulator performance.
1644
@end quotation
1645
 
1646
@item hide_device_id = 0|1
1647
@cindex @code{hide_device_id} (verification API configuration)
1648 82 jeremybenn
If 1 (true) don't log the device ID.  If 0 (the default), log the
1649
device ID.  This feature (when set to 1) is provided for backwards
1650 19 jeremybenn
compatibility with an old version of VAPI.
1651
 
1652
@item vapi_log_file = "@var{filename}"
1653
@cindex @code{vapi_log_file} (verification API configuration)
1654
@cindex @code{vapi_log_fn} (verification API configuration - deprecated)
1655
Use @file{filename} as the file for logged data is logging is enabled
1656 82 jeremybenn
(see @code{log_enabled} above).  The default is @code{"vapi.log"}.  For
1657 19 jeremybenn
backwards compatibility, the alternative name @code{vapi_log_fn} is
1658
supported for this parameter, but deprecated.
1659
 
1660
@end table
1661
 
1662
@node CUC Configuration
1663
@subsection Custom Unit Compiler (CUC) Configuration
1664
@cindex configuring the Custom Unit Compiler (CUC)
1665
@cindex Custom Unit Compiler Configuration
1666
@cindex CUC configuration
1667
@cindex @code{section cuc}
1668
The Custom Unit Compiler (CUC) was a project by Marko Mlinar to generate
1669 82 jeremybenn
Verilog from ANSI C functions.  The project seems to not have progressed
1670
beyond the initial prototype phase.  The configuration parameters are
1671 19 jeremybenn
described here for the record.
1672
 
1673 82 jeremybenn
CUC configuration is described in @code{@w{section cuc}}.  This section
1674
may appear at most once.  The following parameters may be specified.
1675 19 jeremybenn
 
1676
@table @code
1677
 
1678
@item memory_order = none|weak|strong|exact
1679
@cindex @code{memory_order} (CUC configuration)
1680
This parameter specifies the memory ordering required:
1681
 
1682
@table @code
1683
 
1684
@item memory_order=none
1685
@cindex @code{memory_order=none} (CUC configuration)
1686 82 jeremybenn
Different memory ordering, even if there are dependencies.  Bursts can
1687 19 jeremybenn
be made, width can change.
1688
 
1689 346 jeremybenn
@item memory_order=weak
1690 19 jeremybenn
@cindex @code{memory_order=weak} (CUC configuration)
1691 82 jeremybenn
Different memory ordering, even if there are dependencies.  If
1692 19 jeremybenn
dependencies cannot occur, then bursts can be made, width can change.
1693
 
1694 346 jeremybenn
@item memory_order=strong
1695 19 jeremybenn
@cindex @code{memory_order=strong} (CUC configuration)
1696 82 jeremybenn
Same memory ordering.  Bursts can be made, width can change.
1697 19 jeremybenn
 
1698 346 jeremybenn
@item memory_order=exact
1699 19 jeremybenn
@cindex @code{memory_order=exact} (CUC configuration)
1700
Exactly the same memory ordering and widths.
1701
 
1702
@end table
1703
 
1704 82 jeremybenn
The default value is @code{memory_order=exact}.  Invalid memory
1705 19 jeremybenn
orderings are ignored with a warning.
1706
 
1707
@item calling_convention = 0|1
1708
@cindex @code{calling_convention} (CUC configuration)
1709 82 jeremybenn
If 1 (true), programs follow OpenRISC calling conventions.  If 0 (the
1710 19 jeremybenn
default), they may use other convenitions.
1711
 
1712
@item enable_bursts = 0 | 1
1713
@cindex @code{enable_bursts} (CUC configuration)
1714 82 jeremybenn
If 1 (true), bursts are detected.  If 0 (the default), bursts are not
1715 19 jeremybenn
detected.
1716
 
1717
@item no_multicycle = 0 | 1
1718
@cindex @code{no_multicycle} (CUC configuration)
1719 82 jeremybenn
If 1 (true), no multicycle logic paths will be generated.  If 0 (the
1720 19 jeremybenn
default), multicycle logic paths will be generated.
1721
 
1722
@item timings_file = "@var{filename}"
1723
@cindex @code{timings_file} (CUC configuration)
1724
@cindex @code{timings_fn} (CUC configuration - deprecated)
1725 82 jeremybenn
@var{filename} specifies a file containing timing information.  The
1726
default value is @code{"virtex.tim"}.  For backwards compatibility, the
1727 19 jeremybenn
alternative name @code{timings_fn} is supported for this parameter,
1728
but deprecated.
1729
 
1730
@end table
1731
 
1732
@node Core OpenRISC Configuration
1733
@section Configuring the OpenRISC Architectural Components
1734
 
1735
@menu
1736
* CPU Configuration::
1737
* Memory Configuration::
1738
* Memory Management Configuration::
1739
* Cache Configuration::
1740
* Interrupt Configuration::
1741
* Power Management Configuration::
1742
* Branch Prediction Configuration::
1743
* Debug Interface Configuration::
1744
@end menu
1745
 
1746
@node CPU Configuration
1747
@subsection CPU Configuration
1748
@cindex configuring the CPU
1749
@cindex configuring the processor
1750
@cindex CPU configuration
1751
@cindex processor configuration
1752
@cindex @code{section cpu}
1753 82 jeremybenn
CPU configuration is described in @code{section cpu}.  This section
1754
should appear only once.  At present @value{OR1KSIM} does not model multi-CPU
1755
systems.  The following parameters may be specified.
1756 19 jeremybenn
 
1757
@table @code
1758
 
1759
@item ver = @var{value}
1760
@item cfg = @var{value}
1761
@item rev = @var{value}
1762
@cindex @code{ver} (CPU configuration)
1763
@cindex @code{rev} (CPU configuration)
1764
The values are used to form the corresponding fields in the @code{VR}
1765 82 jeremybenn
Special Purpose Register (SPR 0).  Default values 0.  A warning is given
1766 19 jeremybenn
and the value truncated if it is too large (8 bits for @code{ver} and
1767
@code{cfg}, 6 bits for @code{rev}).
1768
 
1769
@item upr = @var{value}
1770
@cindex @code{upr} (CPU configuration)
1771
Used as the value of the Unit Present Register (UPR) Special Purpose Register
1772 82 jeremybenn
(SPR 1) to @var{value}.  Default value is 0x0000075f, i.e.
1773 19 jeremybenn
@itemize @bullet
1774
@item
1775
UPR present (0x00000001)
1776
@item
1777
Data cache present (0x00000002)
1778
@item
1779
Instruction cache present (0x00000004)
1780
@item
1781
Data MMY present (0x00000008)
1782
@item
1783
Instruction MMU present (0x00000010)
1784
@item
1785
Debug unit present (0x00000040)
1786
@item
1787
Power management unit present (0x00000100)
1788
@item
1789
Programmable interrupt controller present (0x00000200)
1790
@item
1791
Tick timer present (0x00000400)
1792
@end itemize
1793
 
1794
However, with the exection of the UPR present (0x00000001) and tick
1795
timer present, the various
1796
fields will be modified with the values specified in their corresponding
1797
configuration sections.
1798
 
1799
@item cfgr = @var{value}
1800
@cindex @code{cfgr} (CPU configuration)
1801
Sets the CPU configuration register (Special Purpose Register 2) to
1802 82 jeremybenn
@var{value}.  Default value is 0x00000020, i.e.  support for the ORBIS32
1803
instruction set.  Attempts to set any other value are accepted, but
1804 19 jeremybenn
issue a warning that there is no support for the instruction set.
1805
 
1806
@item sr = @var{value}
1807
@cindex @code{sr} (CPU configuration)
1808
Sets the supervision register Special Purpose Register (SPR 0x11) to
1809 82 jeremybenn
@var{value}.  Default value is 0x00008001, i.e.  start in supervision
1810 19 jeremybenn
mode (0x00000001) and set the ``Fixed One'' bit (0x00008000).
1811
 
1812 98 jeremybenn
@quotation Note
1813
This is particularly useful when an image is held in Flash at high
1814
memory (0xf0000000).  The EPH  bit can be set, so that interrupt
1815
vectors are basedf at 0xf0000000, rather than 0x0.
1816
@end quotation
1817
 
1818 19 jeremybenn
@item superscalar = 0|1
1819
@cindex @code{superscalar} (CPU configuration)
1820 82 jeremybenn
If 1, the processor operates in superscalar mode.  Default value is
1821 19 jeremybenn
0.
1822
 
1823
In the current simulator, the only functional effect of superscalar
1824
mode is to affect the calculation of the number of cycles taken to
1825
execute an instruction.
1826
 
1827
@quotation Caution
1828
The code for this does not appear to be complete or well tested, so
1829
users are advised not to use this option.
1830
@end quotation
1831
 
1832
@item hazards = 0|1
1833
@cindex @code{hazards} (CPU configuration)
1834 82 jeremybenn
If 1, data hazards are tracked in a superscalar CPU.  Default value is
1835 19 jeremybenn
0.
1836
 
1837
In the current simulator, the only functional effect is to cause
1838
logging of hazard waiting information if the CPU is
1839 82 jeremybenn
superscalar.  However nowhere in the simulator is this data actually
1840 19 jeremybenn
computed, so the net result is probably to have no effect.
1841
 
1842
if harzards are tracked, current hazards can be displayed using the
1843
simulator's @command{r} command.
1844
 
1845
@quotation Caution
1846
The code for this does not appear to be complete or well tested, so
1847
users are advised not to use this option.
1848
@end quotation
1849
 
1850
@item dependstats = 0|1
1851
@cindex @code{dependstats} (CPU configuration)
1852 82 jeremybenn
If 1, inter-instruction dependencies are calculated.  Default value 0.
1853 19 jeremybenn
 
1854
If these values are calculated, the depencies can be displayed using
1855
the simulator's @command{stat} command.
1856
 
1857
@quotation Note
1858
This field must be enabled, if execution execution flow tracking
1859
(field @code{history}) has been requested in the simulator
1860
configuration section (@pxref{Simulator Behavior, , Simulator
1861
Behavior}).
1862
@end quotation
1863
 
1864
@item sbuf_len = @var{value}
1865
@cindex @code{sbuf_len} (CPU configuration)
1866
The length of the store buffer is set to @var{value}, which must be no
1867 82 jeremybenn
greater than 256.  Larger values will be truncated to 256 with a
1868
warning.  Negative values will be treated as 0 with a warning.  Use 0 to
1869 19 jeremybenn
disable the store buffer.
1870
 
1871
When the store buffer is active, stores are accumulated and committed
1872
when I/O is idle.
1873
 
1874 100 julius
@item hardfloat = 0|1
1875
@cindex @code{hardfloat} (CPU configuration)
1876 346 jeremybenn
If 1, hardfloat instructions are enabled.  Default value 0.
1877 101 jeremybenn
 
1878 19 jeremybenn
@end table
1879
 
1880
@node Memory Configuration
1881
@subsection Memory Configuration
1882
@cindex configuring memory
1883
@cindex memory configuration
1884
@cindex @code{section memory}
1885 82 jeremybenn
Memory configuration is described in @code{section memory}.  This
1886 19 jeremybenn
section may appear multiple times, specifying multiple blocks of
1887 98 jeremybenn
memory.
1888 19 jeremybenn
 
1889 98 jeremybenn
@quotation Caution
1890 346 jeremybenn
The user may choose whether or not to enable a memory controller.  If a
1891 385 jeremybenn
memory controller is enabled, then appropriate initalization code must
1892
be provided.  The section describing memory controller configuration
1893
describes the steps necessary for using smaller or larger memory
1894
sections (@pxref{Memory Controller Configuration, , Memory Controller
1895
Configuration}).
1896 98 jeremybenn
 
1897 385 jeremybenn
The @dfn{uClibc} startup code initalizes a memory controller, assumed to
1898
be mapped at 0x93000000.  If a memory controller is @emph{not} enabled,
1899
then the standard C library code will generate memory access errors.
1900
The solution is to declare an additional writable memory block, mimicing
1901
the memory controller's register bank as follows.
1902 98 jeremybenn
 
1903
@example
1904
section memory
1905
  pattern = 0x00
1906
  type = unknown
1907
  name = "MC shadow"
1908
  baseaddr = 0x93000000
1909
  size     = 0x00000080
1910
  delayr = 2
1911
  delayw = 4
1912
end
1913
@end example
1914
 
1915
@end quotation
1916
 
1917
 
1918
The following parameters may be specified.
1919
 
1920 19 jeremybenn
@table @code
1921
 
1922 418 julius
@item type=random|pattern|unknown|zero|exitnops
1923 19 jeremybenn
@cindex @code{type} (memory configuration)
1924 82 jeremybenn
Specifies the values to which memory should be initialized.  The
1925 19 jeremybenn
default value is @code{unknown}.
1926
 
1927
@table @code
1928
 
1929
@item random
1930
@cindex @code{type=random} (memory configuration)
1931 82 jeremybenn
Set the memory values to be a random value.  A seed for the random
1932 19 jeremybenn
generator may be set using the @code{random_seed} field in this
1933
section (see below), thus ensuring the same ``random'' values are used
1934
each time.
1935
 
1936
@item pattern
1937
@cindex @code{type=pattern} (memory configuration)
1938
Set the memory values to be a pattern value, which is set using the
1939
@code{pattern} field in this section (see below).
1940
 
1941
@item unknown
1942
@cindex @code{type=unknown} (memory configuration)
1943 82 jeremybenn
The memory values are not initialized (i.e.  left ``unknown'').  This
1944 346 jeremybenn
option will yield faster initialization of the simulator.  This is the
1945
default.
1946 19 jeremybenn
 
1947
@item zero
1948
@cindex @code{type=zero} (memory configuration)
1949 82 jeremybenn
Set the memory values to be 0.  This is the equivalent of
1950 19 jeremybenn
@code{type=pattern} and a @code{pattern} value of 0, and implemented
1951
as such.
1952
 
1953
@quotation Note
1954
As a consequence, if the @code{pattern} field is @emph{subsequently}
1955
specified in this section, the value in that field will be used
1956
instead of zero to initialize the memory.
1957
@end quotation
1958
 
1959 418 julius
@item exitnops
1960
@cindex @code{type=exitnops} (memory configuration)
1961
Set the memory values to be an instruction used to signal end of
1962
simulation. This is useful for causing immediate end of simulation
1963
when PC corruption occurs.
1964
 
1965 19 jeremybenn
@end table
1966
 
1967
@item random_seed = @var{value}
1968
@cindex @code{random_seed} (memory configuration)
1969 82 jeremybenn
Set the seed for the random number generator to @var{value}.  This only
1970 19 jeremybenn
has any effect for memory type @code{random}.
1971
 
1972
The default value is -1,
1973
which means the seed will be set from a call to the @code{time}
1974
function, thus ensuring different random values are used on each
1975 82 jeremybenn
run.  The simulator prints out the seed used in this case, allowing
1976 19 jeremybenn
repeat runs to regenerate the same random values used in any
1977
particular run.
1978
 
1979
@item pattern = @var{value}
1980
@cindex @code{pattern} (memory configuration)
1981
Set the pattern to be used when initializing memory to
1982 82 jeremybenn
@var{value}.  The default value is 0.  This only has any effect for
1983
memory type @code{pattern}.  The least significant 8 bits of this value
1984
is used to initialize each byte.  More than 8 bits can be specified,
1985 19 jeremybenn
but will ignored with a warning.
1986
 
1987
@quotation Tip
1988
The default value, is equivalent to setting the memory @code{type} to
1989 82 jeremybenn
be @code{zero}.  If that is what is intended, then using
1990 19 jeremybenn
@code{type=zero} explicitly is better than using @code{type=pattern}
1991
and not specifying a value for @code{pattern}.
1992
@end quotation
1993
 
1994
@item baseaddr = @var{value}
1995
@cindex @code{baseaddr} (memory configuration)
1996 82 jeremybenn
Set the base address of the memory to @var{value}.  It should be
1997 19 jeremybenn
aligned to a multiple of the memory size rounded up to the nearest
1998 82 jeremybenn
@math{2^n}.  The default value is 0.
1999 19 jeremybenn
 
2000
@item size = @var{value}
2001
@cindex @code{size} (memory configuration)
2002 82 jeremybenn
Set the size of the memory block to be @var{value} bytes.  This should be a
2003
multiple of 4 (i.e.  word aligned).  The default value is 1024.
2004 19 jeremybenn
 
2005
@quotation Note
2006
When allocating memory, the simulator will allocate the nearest
2007
@math{2^n} bytes greater than or equal to @var{value}, and will not
2008
notice memory misses in any part of the memory between @var{value} and
2009
the amount allocated.
2010
 
2011
As a consequence users are strongly recommended to specify memory
2012 82 jeremybenn
sizes that are an exact power of 2.  If some other amount of memory is
2013 19 jeremybenn
required, it should be specified as separate, contiguous blocks, each
2014
of which is a power of 2 in size.
2015
@end quotation
2016
 
2017
@item name = "@var{text}"
2018
@cindex @code{name} (memory configuration)
2019 82 jeremybenn
Name the block.  Typically these describe the type of memory being
2020
modeled (thus @code{"SRAM"} or @code{"Flash"}.  The default is
2021 19 jeremybenn
@code{@w{"anonymous memory block"}}.
2022
 
2023
@quotation Note
2024
It is not clear that this information is currently ever used in normal
2025 82 jeremybenn
operation of the simulator.  Even the @command{info} command of the simulator
2026 19 jeremybenn
ignores it.
2027
@end quotation
2028
 
2029
@item ce = @var{value}
2030
@cindex @code{ce} (memory configuration)
2031 82 jeremybenn
Set the chip enable index of the memory instance.  Each memory instance
2032 19 jeremybenn
should have a unique chip enable index, which should be greater
2033 82 jeremybenn
than or equal to zero.  This is used by the memory controller when
2034 19 jeremybenn
identifying different memory instances.
2035
 
2036 346 jeremybenn
There is no requirement to set @code{ce} if a memory controller is not
2037
enabled.  The default value is -1 (invalid).
2038 19 jeremybenn
 
2039
@item mc = @var{value}
2040
@cindex @code{mc} (memory configuration)
2041 82 jeremybenn
Specifies the memory controller this memory is connected to.  It should
2042 19 jeremybenn
correspond to the @code{index} field specified in a @code{@w{section
2043
mc}} for a memory controller (@pxref{Memory Controller Configuration,
2044
, Memory Controller Configuration}).
2045
 
2046 346 jeremybenn
There is no requirement to set @code{mc} if a memory controller is not
2047
enabled.  Default value is 0, which is also the default value of a
2048
memory controller @code{index} field.  This is suitable therefore for
2049
designs with just one memory controller.
2050 19 jeremybenn
 
2051
@item delayr = @var{value}
2052
@cindex @code{delayr} (memory configuration)
2053 82 jeremybenn
The number of cycles required for a read access.  Set to -1 if the
2054
memory does not support reading.  Default value 1.  The simulator will
2055 19 jeremybenn
add this number of cycles to the total instruction cycle count when
2056
reading from main memory.
2057
 
2058
@item delayw = @var{value}
2059
@cindex @code{delayw} (memory configuration)
2060 82 jeremybenn
The number of cycles required for a write access.  Set to -1 if the
2061
memory does not support writing.  Default value 1.  The simulator will
2062 19 jeremybenn
add this number of cycles to the total instruction cycle count when
2063
writing to main memory.
2064
 
2065
@item log = "@var{file}"
2066
@cindex @code{log} (memory configuration)
2067
If specified, @file{file} names a file for all memory accesses to be
2068 82 jeremybenn
logged.  If not specified, the default value, NULL is used, meaning
2069 19 jeremybenn
that the memory is not logged.
2070
 
2071
@end table
2072
 
2073
@node Memory Management Configuration
2074
@subsection Memory Management Configuration
2075
@cindex configuring data & instruction MMUs
2076
@cindex MMU configuration
2077
@cindex DMMU configuration
2078
@cindex data MMU configuration
2079
@cindex IMMU configuration
2080
@cindex instruction MMU configuration
2081
@cindex @code{section dmmu}
2082
@cindex @code{section immu}
2083
Memory Management Unit (MMU) configuration is described in
2084
@code{section dmmu} (for the data MMU) and @code{section immu} (for
2085 82 jeremybenn
the instruction MMU).  Each section should appear at most once.  The
2086 19 jeremybenn
following parameters may be specified.
2087
 
2088
@table @code
2089
 
2090
@item enabled = 0|1
2091
@cindex @code{enabled} (MMU configuration)
2092
If 1 (true), the data or instruction (as appropriate) MMU is
2093 82 jeremybenn
enabled.  If 0 (the default), it is disabled.
2094 19 jeremybenn
 
2095
@item nsets = @var{value}
2096
@cindex @code{nsets} (MMU configuration)
2097
Sets the number of data or instruction (as appropriate) TLB sets to
2098 82 jeremybenn
@var{value}, which must be a power of two, not exceeding 128.  Values
2099
which do not fit these criteria are ignored with a warning.  The
2100
default value is 1.
2101 19 jeremybenn
 
2102
@item nways = @var{value}
2103
@cindex @code{nways} (MMU configuration)
2104
Sets the number of data or instruction (as appropriate) TLB ways to
2105 82 jeremybenn
@var{value}.  The value must be in the range 1 to 4.  Values outside
2106
this range are ignored with a warning.  The default value is 1.
2107 19 jeremybenn
 
2108
@item pagesize = @var{value}
2109
@cindex @code{pagesize} (MMU configuration)
2110
The data or instruction (as appropriate) MMU page size is set to
2111 82 jeremybenn
@var{value}, which must be a power of 2.  Values which are not a power
2112
of 2 are ignored with a warning.  The default is 8192 (0x2000).
2113 19 jeremybenn
 
2114
@item entrysize = @var{value}
2115
@cindex @code{entrysize} (MMU configuration)
2116
The data or instruction (as appropriate) MMU entry size is set to
2117 82 jeremybenn
@var{value}, which must be a power of 2.  Values which are not a power
2118
of 2 are ignored with a warning.  The default value is 1.
2119 19 jeremybenn
 
2120
@quotation Note
2121
@value{OR1KSIM} does not appear to use the @code{entrysize} parameter
2122 82 jeremybenn
in its simulation of the MMUs.  Thus setting this value does not seem
2123 19 jeremybenn
to matter.
2124
@end quotation
2125
 
2126
@item ustates = @var{value}
2127
@cindex @code{ustates} (MMU configuration)
2128
The number of instruction usage states for the data or instruction (as
2129
appropriate) MMU is set to @var{value}, which must be 2, 3 or
2130 82 jeremybenn
4.  Values outside this range are ignored with a warning.  The default
2131 19 jeremybenn
value is 2.
2132
 
2133
@quotation Note
2134
@value{OR1KSIM} does not appear to use the @code{ustates} parameter in
2135 82 jeremybenn
its simulation of the MMUs.  Thus setting this value does not seem to
2136 19 jeremybenn
matter.
2137
@end quotation
2138
 
2139
@item hitdelay = @var{value}
2140
@cindex @code{hitdelay} (MMU configuration)
2141
Set the number of cycles a data or instruction (as appropriate) MMU
2142 82 jeremybenn
hit costs.  Default value 1.
2143 19 jeremybenn
 
2144
@item missdelay = @var{value}
2145
@cindex @code{missdelay} (MMU configuration)
2146
Set the number of cycles a data or instruction (as appropriate) MMU
2147 82 jeremybenn
miss costs.  Default value 1.
2148 19 jeremybenn
 
2149
@end table
2150
 
2151
@node Cache Configuration
2152
@subsection Cache Configuration
2153
@cindex configuring data & instruction caches
2154
@cindex cache configuration
2155
@cindex data cache configuration
2156
@cindex instruction cache configuration
2157
@cindex @code{section dc}
2158
@cindex @code{section ic}
2159
Cache configuration is described in @code{section dc} (for the data
2160 82 jeremybenn
cache) and @code{seciton ic} (for the instruction cache).  Each section
2161
should appear at most once.  The following parameters may be specified.
2162 19 jeremybenn
 
2163
@table @code
2164
 
2165
@item enabled = 0|1
2166
@cindex @code{enabled} (cache configuration)
2167
If 1 (true), the data or instruction (as appropriate) cache is
2168 82 jeremybenn
enabled.  If 0 (the default), it is disabled.
2169 19 jeremybenn
 
2170
@item nsets = @var{value}
2171
@cindex @code{nsets} (cache configuration)
2172
Sets the number of data or instruction (as appropriate) cache sets to
2173
@var{value}, which must be a power of two, not exceeding
2174
@code{MAX_DC_SETS} (for the data cache) or @code{MAX_IC_SETS} (for the
2175 82 jeremybenn
instruction cache).  At the time of writing, these constants are
2176
both defined in the code to be 1024).  The default value is 1.
2177 19 jeremybenn
 
2178
@item nways = @var{value}
2179
@cindex @code{nways} (cache configuration)
2180
Sets the number of data or instruction (as appropriate) cache ways to
2181
@var{value}, which must be a power of two, not exceeding
2182
@code{MAX_DC_WAYS} (for the data cache) or @code{MAX_IC_WAYS} (for the
2183 82 jeremybenn
instruction cache).  At the time of writing, these constants are both
2184
defined in the code to be 32).  The default value is 1.
2185 19 jeremybenn
 
2186
@item blocksize = @var{value}
2187
@cindex @code{blocksize} (cache configuration)
2188
The data or instruction (as appropriate) cache block size is set to
2189 82 jeremybenn
@var{value} bytes, which must be either 16 or 32.  The default is 16.
2190 19 jeremybenn
 
2191
@item ustates = @var{value}
2192
@cindex @code{ustates} (cache configuration)
2193
The number of instruction usage states for the data or instruction (as
2194 82 jeremybenn
appropriate) cache is set to @var{value}, which must be 2, 3 or 4.  The
2195 19 jeremybenn
default value is 2.
2196
 
2197
@item hitdelay = @var{value}
2198
@cindex @code{hitdelay} (instruction cache configuration)
2199 82 jeremybenn
@emph{Instruction cache only}.  Set the number of cycles an instruction
2200
cache hit costs.  Default value 1.
2201 19 jeremybenn
 
2202
@item missdelay = @var{value}
2203
@cindex @code{missdelay} (instruction cache configuration)
2204 82 jeremybenn
@emph{Instruction cache only}.  Set the number of cycles an instruction
2205
cache miss costs.  Default value 1.
2206 19 jeremybenn
 
2207
@item load_hitdelay = @var{value}
2208
@cindex @code{load_hitdelay} (data cache configuration)
2209 82 jeremybenn
@emph{Data cache only}.  Set the number of cycles a data load cache hit
2210
costs.  Default value 2.
2211 19 jeremybenn
 
2212
@item load_missdelay = @var{value}
2213
@cindex @code{load_missdelay} (data cache configuration)
2214 82 jeremybenn
@emph{Data cache only}.  Set the number of cycles a data load cache
2215
miss costs.  Default value 2.
2216 19 jeremybenn
 
2217
@item store_hitdelay = @var{value}
2218
@cindex @code{store_hitdelay} (data cache configuration)
2219 82 jeremybenn
@emph{Data cache only}.  Set the number of cycles a data store cache hit
2220
costs.  Default value 0.
2221 19 jeremybenn
 
2222
@item store_missdelay = @var{value}
2223
@cindex @code{store_missdelay} (data cache configuration)
2224 82 jeremybenn
@emph{Data cache only}.  Set the number of cycles a data store cache
2225
miss costs.  Default value 0.
2226 19 jeremybenn
 
2227
@end table
2228
 
2229
@node Interrupt Configuration
2230
@subsection Interrupt Configuration
2231
@cindex configuring the interrupt controller
2232
@cindex interrupt controller configuration
2233
@cindex programmable interrupt controller configuration
2234
@cindex PIC configuration
2235
@cindex @code{section pic}
2236
Programmable Interrupt Controller (PIC) configuration is described in
2237 82 jeremybenn
@code{section pic}.  This section may appear at most
2238 19 jeremybenn
once---@value{OR1KSIM} has no mechanism for handling multiple
2239 82 jeremybenn
interrupt controllers.  The following parameters may be specified.
2240 19 jeremybenn
 
2241
@table @code
2242
 
2243
@item enabled = 0|1
2244
@cindex @code{enabled} (interrupt controller)
2245 82 jeremybenn
If 1 (true), the programmable interrupt controller is enabled.  If 0
2246 19 jeremybenn
(the default), it is disabled.
2247
 
2248
@item edge_trigger = 0|1
2249
@cindex @code{edge_trigger} (interrupt controller)
2250
If 1 (true, the default), the programmable interrupt controller is
2251 82 jeremybenn
edge triggered.  If 0 (false), it is level triggered.
2252 19 jeremybenn
 
2253 432 jeremybenn
The library interface (@pxref{Simulator Library, , Simulator Library})
2254
provides different functions for setting the different types of
2255
interrupt, and a function to clear level sensitive interrupts. Edge
2256
sensitive interrupts must be cleared by clearing the corresponding bit
2257
in the PICSR SPR.
2258 430 julius
 
2259 432 jeremybenn
Internal functions to set and clear interrupts are also provided for
2260 440 jeremybenn
peripherals implemented within @value{OR1KSIM}. @xref{Interrupts Internal, ,
2261 432 jeremybenn
Interrupts Internal} for more details.
2262 430 julius
 
2263 432 jeremybenn
@item use_nmi = 0|1
2264
@cindex @code{use_nmi} (interrupt controller)
2265
If 1 (true, the default), interrupt lines 0 and 1 are non-maskable. In
2266
other words the least significant 2 bits of the PICMR SPR are hard-wired
2267
to 1.  If 0 (false), all interrupt lines are treated as equivalent.
2268
 
2269
@quotation Note
2270
These are not non-maskable in the true sense that they will pre-empt
2271
other interrupts.  Rather they can never be masked out using the PICMR
2272
register. It is up the interrupt exception handler to give these
2273
interrupt lines priority, and indeed to decide on the priority order in
2274
general.
2275 430 julius
@end quotation
2276
 
2277 19 jeremybenn
@end table
2278
 
2279
@node Power Management Configuration
2280
@subsection Power Management Configuration
2281
@cindex configuring power management
2282
@cindex power management configuration
2283
@cindex PMU configuration
2284
@cindex @code{section pmu}
2285 82 jeremybenn
Power management implementation is incomplete.  At present the effect
2286 19 jeremybenn
(which only happens when the power management unit is enabled) of
2287
setting the different bits in the power management Special Purpose
2288
Register (PMR, SPR 0x4000) is
2289
 
2290
@table @code
2291
 
2292
@item SDF (bit mask 0x0000000f)
2293
@cindex SDF (power management register)
2294
@cindex slow down factor (power management register)
2295
@cindex power management register, SDF
2296
@cindex PMR - SDF
2297
No effect - these bits are ignored
2298
 
2299
@item DME (bit mask 0x00000010)
2300
@cindex DME (power management register)
2301
@cindex doze mode (power management register)
2302
@cindex power management register, DME
2303
@cindex PMR - DME
2304
@itemx SME (bit mask 0x00000020)
2305
@cindex SME (power management register)
2306
@cindex sleep mode (power management register)
2307
@cindex power management register, SME
2308
@cindex PMR - SME
2309
Both these bits cause the processor to stop executing
2310 82 jeremybenn
instructions.  However all other functions (debug interaction, CLI,
2311 19 jeremybenn
VAPI etc) carry on as normal.
2312
 
2313
@item DCGE (bit mask 0x00000004)
2314
@cindex DCGE (power management register)
2315
@cindex dynamic clock gating (power management register)
2316
@cindex power management register, DGCE
2317
@cindex PMR - DGCE
2318
No effect - this bit is ignored
2319
 
2320
@item SUME (bit mask 0x00000008)
2321
@cindex SUME (power management register)
2322
@cindex suspend mode (power management register)
2323
@cindex power management register, SUME
2324
@cindex PMR - SUME
2325
Enabling this bit causes a message to be printed, advising that the
2326
processor is suspending and the simulator exits.
2327
 
2328
@end table
2329
 
2330
On reset all bits are cleared.
2331
 
2332 82 jeremybenn
Power management configuration is described in @code{section pm}.  This
2333
section may appear at most once.  The following parameter may be specified.
2334 19 jeremybenn
 
2335
@table @code
2336
 
2337
@item enabled = 0|1
2338
@cindex @code{enabled} (power management configuration)
2339 82 jeremybenn
If 1 (true), power management is enabled.  If 0 (the default), it is
2340 19 jeremybenn
disabled.
2341
 
2342
@end table
2343
 
2344
@node Branch Prediction Configuration
2345
@subsection Branch Prediction Configuration
2346
@cindex configuring branch prediction
2347
@cindex branch prediction configuration
2348
@cindex BPB configuration
2349
@cindex @code{section bpb}
2350
From examining the code base, it seems the branch prediction function
2351 82 jeremybenn
is not fully implemented.  At present the functionality seems
2352 19 jeremybenn
restricted to collection of statistics.
2353
 
2354 82 jeremybenn
Branch prediction configuration is described in @code{section bpb}.  This
2355
section may appear at most once.  The following parameters may be specified.
2356 19 jeremybenn
 
2357
@table @code
2358
 
2359
@item enabled = 0|1
2360
@cindex @code{enabled} (branch prediction configuration)
2361 82 jeremybenn
If 1 (true), branch prediction is enabled.  If 0 (the default), it is
2362 19 jeremybenn
disabled.
2363
 
2364
@item btic = 0|1
2365
@cindex @code{btic} (branch prediction configuration)
2366 82 jeremybenn
If 1 (true), the branch target instruction cache model is enabled.  If
2367 19 jeremybenn
 
2368
 
2369
@item sbp_bf_fwd = 0|1
2370
@cindex @code{sbp_bf_fwd} (branch prediction configuration)
2371 82 jeremybenn
If 1 (true), use forward prediction for the @code{l.bf} instruction.  If
2372 19 jeremybenn
 
2373
 
2374
@item sbp_bnf_fwd = 0|1
2375
@cindex @code{sbp_bnf_fwd} (branch prediction configuration)
2376 82 jeremybenn
If 1 (true), use forward prediction for the @code{l.bnf} instruction.  If
2377 19 jeremybenn
 
2378
 
2379
@item hitdelay = @var{value}
2380
@cindex @code{hitdelay} (branch prediction configuration)
2381 82 jeremybenn
Set the number of cycles a branch prediction hit costs.  Default value
2382 19 jeremybenn
0.
2383
 
2384
@item missdelay = @var{value}
2385
@cindex @code{missdelay} (branch prediction configuration)
2386 82 jeremybenn
Set the number of cycles a branch prediction miss costs.  Default value
2387 19 jeremybenn
0.
2388
 
2389
@end table
2390
 
2391
@node Debug Interface Configuration
2392
@subsection Debug Interface Configuration
2393
@cindex configuring the debug unit and interface to external debuggers
2394
@cindex debug unit configuration
2395
@cindex debug interface configuration
2396
@cindex @code{section debug}
2397
The debug unit and debug interface configuration is described in
2398 82 jeremybenn
@code{@w{section debug}}.  This section may appear at most once.  The
2399 19 jeremybenn
following parameters may be specified.
2400
 
2401
@table @code
2402
 
2403
@item enabled = 0|1
2404
@cindex @code{enabled} (debug interface configuration)
2405 82 jeremybenn
If 1 (true), the debug unit is enabled.  If 0 (the default), it is disabled.
2406 19 jeremybenn
 
2407
@quotation Note
2408
This enables the functionality of the debug unit (its registers etc) within
2409 82 jeremybenn
the mode.  It does not provide any external interface to the debug unit.
2410
For
2411 235 jeremybenn
that, see @code{rsp_enabled} below.
2412 19 jeremybenn
@end quotation
2413
 
2414
@item rsp_enabled = 0|1
2415
@cindex @code{rsp_enabled} (debug interface configuration)
2416
@cindex Remote Serial Protocol
2417
If 1 (true), the GDB @dfn{Remote Serial Protocol} server is started, provding
2418
an interface to an external GNU debugger, using the port specified in the
2419
@code{rsp_port} field (see below), or the @code{or1ksim-rsp} TCP/IP
2420 82 jeremybenn
service.  If 0 (the default), the server is not started, and no external
2421 19 jeremybenn
interface is provided.
2422
 
2423
For more detailed information on the interface to the GNU Debugger see
2424
Embecosm Application Note 2, @cite{Howto: Porting the GNU Debugger Practical
2425
Experience with the OpenRISC 1000 Architecture}, by Jeremy Bennett, published
2426
by Embecosm Limited (@url{www.embecosm.com}).
2427
 
2428
@item rsp_port = @var{value}
2429
@cindex @code{rsp_port} (debug interface configuration)
2430
@var{value} specifies the port to be used for the GDB @dfn{Remote Serial
2431 82 jeremybenn
Protocol} interface to the GNU Debugger (GDB).  Default value 51000.  If
2432 19 jeremybenn
the value 0 is specified, @value{OR1KSIM} will instead look for a TCP/IP
2433
service named @code{or1ksim-rsp}.
2434
 
2435
@quotation Tip
2436
@cindex TCP/IP port range for @code{or1ksim-rsp} service
2437
There is no registered port for @value{OR1KSIM} @dfn{Remote Serial Protocol}
2438 82 jeremybenn
service @code{or1ksim-rsp}.  Good practice suggests users should adopt port
2439
values in the @dfn{Dynamic} or @dfn{Private} port range, i.e.  49152-65535.
2440 19 jeremybenn
@end quotation
2441
 
2442
@item vapi_id = @var{value}
2443
@cindex @code{vapi_id} (debug interface configuration)
2444
@var{value} specifies the value of the Verification API (VAPI) base
2445 82 jeremybenn
address to be used with the debug unit.  @xref{Verification API, ,
2446 19 jeremybenn
Verification API}, for more details.
2447
 
2448
If this is specified and @var{value} is non-zero, all OpenRISC Remote
2449
JTAG protocol transactions will be logged to the VAPI log file, if
2450 82 jeremybenn
enabled.  This is the only functionality associated with VAPI for the
2451
debug unit.  No VAPI commands are sent, nor requests handled.
2452 19 jeremybenn
 
2453
@end table
2454
 
2455
@node Peripheral Configuration
2456
@section Configuring Memory Mapped Peripherals
2457
 
2458 82 jeremybenn
All peripheral components are optional.  If they are specified, then
2459 19 jeremybenn
(unlike other components) by default they are enabled.
2460
 
2461
@menu
2462
* Memory Controller Configuration::
2463
* UART Configuration::
2464
* DMA Configuration::
2465
* Ethernet Configuration::
2466
* GPIO Configuration::
2467
* Display Interface Configuration::
2468
* Frame Buffer Configuration::
2469
* Keyboard Configuration::
2470
* Disc Interface Configuration::
2471
* Generic Peripheral Configuration::
2472
@end menu
2473
 
2474
@node Memory Controller Configuration
2475
@subsection Memory Controller Configuration
2476
@cindex configuring the memory controller
2477
@cindex memory controller configuration
2478
@cindex @code{section mc}
2479
The memory controller used in @value{OR1KSIM} is the component
2480 98 jeremybenn
implemented at OpenCores, and found in the top level SVN directory,
2481 82 jeremybenn
@file{mem_ctrl}.  It is described in the document @cite{Memory
2482 19 jeremybenn
Controller IP Core} by Rudolf Usselmann, which can be found in the
2483 82 jeremybenn
@file{doc} subdirectory.  It is a memory mapped component, which
2484 19 jeremybenn
resides on the main OpenRISC Wishbone data bus.
2485
 
2486
The memory controller configuration is described in @code{@w{section
2487 82 jeremybenn
mc}}.  This section may appear multiple times, specifying multiple
2488 98 jeremybenn
memory controllers.
2489 19 jeremybenn
 
2490 385 jeremybenn
@quotation Warning
2491
There are known to be problems with the current memory controller, which
2492
currently is not included in the regression test suite. Users are
2493
advised not to use the memory controller in the current release.
2494
@end quotation
2495
 
2496 98 jeremybenn
@quotation Caution
2497 385 jeremybenn
There is no initialization code in the standard @dfn{newlib}
2498
library.
2499 98 jeremybenn
 
2500 385 jeremybenn
The standard @dfn{uClibc} library assumes a memory controller
2501
mapped at 0x93000000 and will initialize the memory controller to expect
2502
64MB memory blocks, and any memory declarations @emph{must} reflect
2503
this.
2504
 
2505 98 jeremybenn
If smaller memory blocks are declared with a memory controller, then
2506
sufficient memory will not be allocated by @value{OR1KSIM}, but out of
2507 346 jeremybenn
range memory accesses will not be trapped.  For example declaring a
2508 98 jeremybenn
memory section from 0-4MB with a memory controller enabled would mean
2509
that accesses between 4MB and 64MB would be permitted, but having no
2510
allocated memory would likely cause a segmentation fault.
2511
 
2512
If the user is determined to use smaller memories with the memory
2513
controller, then custom initialization code must be provided, to
2514
ensure the memory controller traps out-of-memory accesses.
2515
@end quotation
2516
 
2517
The following parameters may be specified.
2518
 
2519 19 jeremybenn
@table @code
2520
 
2521
@item enabled = 0|1
2522
@cindex @code{enabled} (memory controller configuration)
2523 82 jeremybenn
If 1 (true, the default), this memory controller is enabled.  If 0, it is
2524 19 jeremybenn
disabled.
2525
 
2526
@quotation Note
2527
The memory controller can effectively also be disabled by setting an
2528 82 jeremybenn
appropriate power on control register value (see below).  However this
2529 19 jeremybenn
should only be used if it is desired to specifically model this
2530
behavior of the memory controller, not as a way of disabling the
2531
memory controller in general.
2532
@end quotation
2533
 
2534
@item baseaddr = @var{value}
2535
@cindex @code{baseaddr} (memory controller configuration)
2536
Set the base address of the memory controller's memory mapped
2537 82 jeremybenn
registers to @var{value}.  The default is 0, which is probably not a
2538 19 jeremybenn
sensible value.
2539
 
2540
The memory controller has a 7 bit address bus, with a total of 19
2541
32-bit registers, at addresses 0x00 through 0x4c (address 0x0c and
2542
addresses 0x50 through 0x7c are not used).
2543
 
2544
@item poc = @var{value}
2545
@cindex @code{poc} (memory controller configuration)
2546
Specifies the value of the power on control register, The least
2547
signficant two bits specify the bus width (use 0 for an 8-bit bus, 1
2548
for a 16-bit bus and 2 for a 32-bit bus) and the next two bits the
2549
type of memory connected (use 0 for a disabled interface, 1 for SSRAM,
2550
2 for asyncrhonous devices and 3 for synchronous devices).
2551
 
2552
If other bits are specified, they are ignored with a warning.
2553
 
2554
@quotation Caution
2555
The default value, 0, corresponds to a disabled 8-bit bus, and
2556
is likely not the most suitable value
2557
@end quotation
2558
 
2559
@item index = @var{value}
2560
@cindex @code{index} (memory controller configuration)
2561
Specify the index of this memory controller amongst all the memory
2562 82 jeremybenn
controllers.  This value should be unique for each memory controller,
2563 19 jeremybenn
and is used to associate specific memories with the controller,
2564
through the @code{mc} field in the @code{@w{section memory}}
2565
configuration (@pxref{Memory Configuration, , Memory Configuration}).
2566
 
2567
The default value, 0, is suitable when there is only one memory controller.
2568
 
2569
@end table
2570
 
2571
@node UART Configuration
2572
@subsection UART Configuration
2573
@cindex configuring the UART
2574
@cindex UART configuration
2575
@cindex @code{section uart}
2576
The UART implemented in @value{OR1KSIM} follows the specification of the
2577 82 jeremybenn
National Semiconductor 16450 and 16550 parts.  It is a memory mapped
2578 19 jeremybenn
component, which resides on the main OpenRISC Wishbone data bus.
2579
 
2580
The component provides a number of interfaces to emulate the behavior
2581
of an external terminal connected to the UART.
2582
 
2583 82 jeremybenn
UART configuration is described in @code{section uart}.  This section
2584
may appear multiple times, specifying multiple UARTs.  The following
2585 19 jeremybenn
parameters may be specified.
2586
 
2587
@table @code
2588
 
2589
@item enabled = 0|1
2590
@cindex @code{enabled} (UART configuration)
2591 82 jeremybenn
If 1 (true, the default), this UART is enabled.  If 0, it is disabled.
2592 19 jeremybenn
 
2593
@item baseaddr = @var{value}
2594
@cindex @code{baseaddr} (UART configuration)
2595
Set the base address of the UART's memory mapped
2596 82 jeremybenn
registers to @var{value}.  The default is 0, which is probably not a
2597 19 jeremybenn
sensible value.
2598
 
2599
The UART has a 3 bit address bus, with a total of 8 8-bit registers,
2600
at addresses 0x0 through 0x7.
2601
 
2602
@item channel = "@var{type}:@var{args}"
2603
@cindex @code{channel} (UART configuration)
2604
Specify the channel representing the terminal connected to the UART
2605
Rx & Tx pins.
2606
 
2607
@table @code
2608
 
2609
@item channel="file:@file{rxfile},@file{txfile}"
2610
@cindex UART I/O from/to files
2611
Read input characters from the file @file{rxfile} and write output
2612
characters to the file @file{txfile} (which will be created if
2613
required).
2614
 
2615
@item channel="xterm:@var{args}"
2616
@cindex UART I/O from/to an @command{xterm}
2617
Create an xterm on startup, write UART Tx traffic to the xterm and
2618
take Rx traffic from the keyboard when the xterm window is
2619 82 jeremybenn
selected.  Additional arguments to the xterm command (for example
2620 19 jeremybenn
specifying window size may be specified in @var{args}, or this may be
2621
left blank.
2622
 
2623
@item channel="tcp:@var{value}"
2624
@cindex UART I/O from/to TCP/IP
2625
Open the TCP/IP port specified by @var{value} and read and write UART
2626
traffic from and to it.
2627
 
2628
Typically a telnet session is connected to the other end of this port.
2629
 
2630
@quotation Tip
2631
There is no registered port for @value{OR1KSIM} telnet UART
2632 82 jeremybenn
connection.  Priviledged access is required to read traffic on the
2633
registered ``well-known'' telnet port (23).  Instead users should use
2634 19 jeremybenn
port values in the @dfn{Dynamic} or @dfn{Private} port range,
2635 82 jeremybenn
i.e.  49152-65535.
2636 19 jeremybenn
@end quotation
2637
 
2638
@item channel="fd:@code{rxfd},@code{txfd}"
2639
@cindex UART I/O from/to open file descriptors
2640
Read and write characters from and to the existing open numerical file
2641
descriptors, file @code{rxfd} and @code{txfd}.
2642
 
2643
@item channel="tty:device=/dev/ttyS0,baud=9600"
2644
@cindex UART I/O from/to a physical serial port
2645 82 jeremybenn
Read and write characters from and to a physical serial port.  The
2646 19 jeremybenn
precise device (shown here as @code{/dev/ttyS0}) may vary from machine
2647
to machine.
2648
 
2649
@end table
2650
 
2651
The default value for this field is @code{"xterm:"}.
2652
 
2653
@item irq = @var{value}
2654
@cindex @code{irq} (UART configuration)
2655 82 jeremybenn
Use @var{value} as the IRQ number of this UART.  Default value 0.
2656 19 jeremybenn
 
2657
@item 16550 = 0|1
2658
@cindex @code{16550} (UART configuration)
2659 82 jeremybenn
If 1 (true), the UART has the functionality of a 16550.  If 0 (the
2660
default), it has the functionality of a 16450.  The principal
2661 19 jeremybenn
difference is that the 16550 can buffer multiple characters.
2662
 
2663
@item jitter = @var{value}
2664
@cindex @code{jitter} (UART configuration)
2665
Set the jitter, modeled as a time to block, to @var{value}
2666 82 jeremybenn
milliseconds.  Set to -1 to disable jitter modeling.  Default value 0.
2667 19 jeremybenn
 
2668
@quotation Note
2669
This functionality has yet to be implemented, so this parameter has no
2670
effect.
2671
@end quotation
2672
 
2673
@item vapi_id = @var{value}
2674
@cindex @code{vapi_id} (UART configuration)
2675
@var{value} specifies the value of the Verification API (VAPI) base
2676 82 jeremybenn
address to be used with the UART.  @xref{Verification API, ,
2677 19 jeremybenn
Verification API}, for more details, which details the use of the VAPI
2678
with the UART.
2679
 
2680
@end table
2681
 
2682
@node DMA Configuration
2683
@subsection DMA Configuration
2684
@cindex configuring DMA
2685
@cindex DMA configuration
2686
@cindex @code{section dma}
2687
The DMA controller used in @value{OR1KSIM} is the component
2688 98 jeremybenn
implemented at OpenCores, and found in the top level SVN directory,
2689 82 jeremybenn
@file{wb_dma}.  It is described in the document @cite{Wishbone
2690 19 jeremybenn
DMA/Bridge IP Core} by Rudolf Usselmann, which can be found in the
2691 82 jeremybenn
@file{doc} subdirectory.  It is a memory mapped component, which
2692
resides on the main OpenRISC Wishbone data bus.  The present
2693 19 jeremybenn
implementation is incomplete, intended only to support the Ethernet
2694
interface (@pxref{Ethernet Configuration}), although the Ethernet
2695
interface is not yet completed.
2696
 
2697 82 jeremybenn
DMA configuration is described in @code{@w{section dma}}.  This section
2698
may appear multiple times, specifying multiple DMA controllers.  The
2699 19 jeremybenn
following parameters may be specified.
2700
 
2701
@table @code
2702
 
2703
@item enabled = 0|1
2704
@cindex @code{enabled} (DMA configuration)
2705 82 jeremybenn
If 1 (true, the default), this DMA controller is enabled.  If 0, it is disabled.
2706 19 jeremybenn
 
2707
@item baseaddr = @var{value}
2708
@cindex @code{baseaddr} (DMA configuration)
2709
Set the base address of the DMA's memory mapped
2710 82 jeremybenn
registers to @var{value}.  The default is 0, which is probably not a
2711 19 jeremybenn
sensible value.
2712
 
2713
The DMA controller has a 10 bit address bus, with a total of 253
2714 82 jeremybenn
32-bit registers.  The first 5 registers at addresses 0x000 through
2715
0x010 control the overall behavior of the DMA controller.  There are
2716 19 jeremybenn
then 31 blocks of 8 registers, controlling each of the 31 DMA channels
2717 82 jeremybenn
available.  Addresses 0x014 through 0x01c are not used.
2718 19 jeremybenn
 
2719
@item irq = @var{value}
2720
@cindex @code{irq} (DMA configuration)
2721 82 jeremybenn
Use @var{value} as the IRQ number of this DMA controller.  Default value 0.
2722 19 jeremybenn
 
2723
@item vapi_id = @var{value}
2724
@cindex @code{vapi_id} (DMA configuration)
2725
@var{value} specifies the value of the Verification API (VAPI) base
2726 82 jeremybenn
address to be used with the DMA controller.  @xref{Verification API, ,
2727 19 jeremybenn
Verification API}, for more details, which details the use of the VAPI
2728
with the DMA controller.
2729
 
2730
@end table
2731
 
2732
@node Ethernet Configuration
2733
@subsection Ethernet Configuration
2734
@cindex configuring the Ethernet interface
2735
@cindex Ethernet configuration
2736
@cindex @code{section ethernet}
2737 82 jeremybenn
Ethernet configuration is described in @code{section ethernet}.  This
2738 19 jeremybenn
section may appear multiple times, specifying multiple Ethernet
2739 82 jeremybenn
interfaces.  The following parameters may be specified.
2740 19 jeremybenn
 
2741 440 jeremybenn
The Ethernet MAC used in @value{OR1KSIM} corresponds to the Verilog
2742
implementation in project @dfn{ethmac}. It's source code can be found in
2743
the top level SVN directory, @file{ethmac}.  It also forms part of the
2744
OpenRISC reference SoC, ORPSoC.  It is described in the document
2745
@cite{Ethernet IP Core Specification} by Igor Mohor, which can be found
2746
in the @file{doc} subdirectory.  It is a memory mapped component, which
2747
resides on the main OpenRISC Wishbone data bus.
2748
 
2749 19 jeremybenn
@table @code
2750
 
2751
@item enabled = 0|1
2752
@cindex @code{enabled} (Ethernet configuration)
2753 82 jeremybenn
If 1 (true, the default), this Ethernet MAC is enabled.  If 0, it is
2754 19 jeremybenn
disabled.
2755
 
2756
@item baseaddr = @var{value}
2757
@cindex @code{baseaddr} (Ethernet configuration)
2758
Set the base address of the MAC's memory mapped registers to
2759 82 jeremybenn
@var{value}.  The default is 0, which is probably not a sensible value.
2760 19 jeremybenn
 
2761
The Ethernet MAC has a 7-bit address bus, with a total of 21
2762 82 jeremybenn
32-bit registers.  Addresses 0x54 through 0x7c are not used.
2763 19 jeremybenn
 
2764
@quotation Note
2765
The Ethernet specification describes a Tx control register,
2766 82 jeremybenn
@code{TXCTRL}, at address 0x50.  However this register is not
2767 19 jeremybenn
implemented in the @value{OR1KSIM} model.
2768
@end quotation
2769
 
2770
@item dma = @var{value}
2771
@cindex @code{dma} (Ethernet configuration)
2772
@var{value} specifies the DMA controller with which this Ethernet is
2773 82 jeremybenn
associated.  The default value is 0.
2774 19 jeremybenn
 
2775
@quotation Note
2776
Support for external DMA is not provided in the current
2777 82 jeremybenn
implementation, and this value is ignored.  In any case there is no
2778 19 jeremybenn
equivalent field to which this can be matched in the current DMA
2779
component implementation (@pxref{DMA Configuration, , DMA
2780
Configuration}).
2781
@end quotation
2782
 
2783
@item irq = @var{value}
2784
@cindex @code{dma} (Ethernet configuration)
2785 82 jeremybenn
Use @var{value} as the IRQ number of this Ethernet MAC.  Default value 0.
2786 19 jeremybenn
 
2787 440 jeremybenn
@item rtx_type = "file"|"tap"
2788 19 jeremybenn
@cindex @code{rtx_type} (Ethernet configuration)
2789 440 jeremybenn
Specifies whether to use a TUN/TAP interface or file interface (the default)
2790
to model the external connection of the Ethernet.
2791
 
2792
If a TUN/TAP interface is requested, Ethernet packets will be sent and
2793
received through the pesistent TAP interface specified in parameter
2794
@code{tap_dev} (see below).
2795
 
2796
More details on configuring the TUN/TAP interface are given in the Usage
2797
section (@pxref{Ethernet TUN/TAP Interface, , Ethernet TUN/TAP
2798
Interface}).
2799
 
2800
If a file interface (the default), is requested, the Ethernet will be
2801
modelled by reading and writing from and to the files specified in the
2802 19 jeremybenn
@code{rxfile} and @code{txfile} parameters (see below).
2803
 
2804 440 jeremybenn
@quotation Caution
2805
If a file interface is specified, @value{OR1KSIM} will terminate once the
2806
receive file specified by @code{rxfile} is exhausted.
2807 19 jeremybenn
@end quotation
2808
 
2809
@item rx_channel = @var{rxvalue}
2810
@cindex @code{rx_channel} (Ethernet configuration)
2811
@itemx tx_channel = @var{txvalue}
2812
@cindex @code{tx_channel} (Ethernet configuration)
2813
@var{rxvalue} specifies the DMA channel to use for receive and
2814 82 jeremybenn
@var{txvalue} the DMA channel to use for transmit.  Both default to 0.
2815 19 jeremybenn
 
2816
@quotation Note
2817
As noted above, support for external DMA is not provided in the
2818
current implementation, and so these values are ignored.
2819
@end quotation
2820
 
2821
@item rxfile = "@var{rxfile}"
2822
@cindex @code{rxfile} (Ethernet configuration)
2823
@itemx txfile = "@var{txfile}"
2824
@cindex @code{txfile} (Ethernet configuration)
2825
When @code{rtx_type} is 0 (see above), @var{rxfile} specifies the file
2826
to use as input and @var{txfile} specifies the fie to use as
2827
output.
2828
 
2829 82 jeremybenn
The file contains a sequence of packets.  Each packet consists of a
2830
packet length (32 bits), followed by that many bytes of data.  Once the
2831 19 jeremybenn
input file is empty, the Ethernet MAC behaves as though there were no
2832 82 jeremybenn
data on the Ethernet.  The default values of these parameters are
2833 19 jeremybenn
@code{"eth_rx"} and @code{"eth_tx"} respectively.
2834
 
2835 82 jeremybenn
The input file must exist and be readable.  The output file must be
2836
writable and will be created if necessary.  If either of these
2837 19 jeremybenn
conditions is not met, a warning will be given.
2838
 
2839 440 jeremybenn
@quotation Caution
2840
@value{OR1KSIM} will terminate once the @var{rxfile} is exhausted.
2841
@end quotation
2842 19 jeremybenn
 
2843 440 jeremybenn
@item tap_dev = "@var{tap}"
2844
@cindex @code{tap_dev} (Ethernet configuration)
2845
When @code{rtx_type} is @code{"tap"} (see above), @var{tap_dev}
2846
specifies the TAP device to use for communication.  This should be a
2847
persistent TAP device configured for the system (@pxref{Ethernet TUN/TAP
2848
Interface, , Ethernet TUN/TAP Interface})
2849
 
2850 451 jeremybenn
@item phy_addr = @var{value}
2851
@cindex @code{phy_addr}
2852
@var{value} specifies the address for emulated ethernet PHY (default
2853
0). If there are multiple Ethernet peripherals, they should each have a
2854
different PHY value.
2855
 
2856
@item dummy_crc = 0|1
2857
@cindex @code{dummy_crc} (Ethernet configuration)
2858
If 1 (true, the default), the length of the data transferred to the core
2859
will be increased by 4 bytes, as though the CRC were included.
2860
 
2861
@quotation Note
2862
This is for historical consistency with the OpenRISC Ethernet hardware
2863
MAC, which passes on the CRC in the data packet. This is unusual
2864
behavior for a MAC, but the OpenRISC Linux device drivers have been
2865
written to expect it.
2866
@end quotation
2867
 
2868
@item phy_addr = @var{value}
2869
@cindex @code{phy_addr}
2870
@var{value} specifies the address for emulated ethernet PHY (default
2871
0). If there are multiple Ethernet peripherals, they should each have a
2872
different PHY value.
2873
 
2874 19 jeremybenn
@item vapi_id = @var{value}
2875
@cindex @code{vapi_id} (DMA configuration)
2876
@var{value} specifies the value of the Verification API (VAPI) base
2877 82 jeremybenn
address to be used with the Ethernet PHY.  @xref{Verification API, ,
2878 19 jeremybenn
Verification API}, for more details, which details the use of the VAPI
2879
with the DMA controller.
2880
 
2881
@end table
2882
 
2883
@node GPIO Configuration
2884
@subsection GPIO Configuration
2885
@cindex configuring the GPIO
2886
@cindex GPIO configuration
2887
@cindex @code{section cpio}
2888
The GPIO used in @value{OR1KSIM} is the component implemented at
2889 98 jeremybenn
OpenCores, and found in the top level SVN directory, @file{gpio}.  It
2890 19 jeremybenn
is described in the document @cite{GPIO IP Core Specification} by
2891
Damjan Lampret and Goran Djakovic, which can be found in the
2892 82 jeremybenn
@file{doc} subdirectory.  It is a memory mapped component, which
2893 19 jeremybenn
resides on the main OpenRISC Wishbone data bus.
2894
 
2895 82 jeremybenn
GPIO configuration is described in @code{@w{section gpio}}.  This section
2896
may appear multiple times, specifying multiple GPIO devices.  The
2897 19 jeremybenn
following parameters may be specified.
2898
 
2899
@table @code
2900
 
2901
@item enabled = 0|1
2902
@cindex @code{enabled} (GPIO configuration)
2903 82 jeremybenn
If 1 (true, the default), this GPIO is enabled.  If 0, it is disabled.
2904 19 jeremybenn
 
2905
@item baseaddr = @var{value}
2906
@cindex @code{baseaddr} (GPIO configuration)
2907
Set the base address of the GPIO's memory mapped
2908 82 jeremybenn
registers to @var{value}.  The default is 0, which is probably not a
2909 19 jeremybenn
sensible value.
2910
 
2911
The GPIO has a 6 bit address bus, with a total of 10 32-bit registers,
2912 82 jeremybenn
although the number of bits that are actively used varies.  Addresses
2913 19 jeremybenn
0x28 through 0x3c are not used.
2914
 
2915
@item irq = @var{value}
2916
@cindex @code{irq} (GPIO configuration)
2917 82 jeremybenn
Use @var{value} as the IRQ number of this GPIO.  Default value 0.
2918 19 jeremybenn
 
2919
@item vapi_id = @var{value}
2920
@cindex @code{vapi_id} (GPIO configuration)
2921
@cindex @code{base_vapi_id} (GPIO configuration - deprecated)
2922
@var{value} specifies the value of the Verification API (VAPI) base
2923 82 jeremybenn
address to be used with the GPIO.  @xref{Verification API, ,
2924 19 jeremybenn
Verification API}, for more details, which details the use of the VAPI
2925 82 jeremybenn
with the GPIO controller.  For backwards compatibility, the
2926 19 jeremybenn
alternative name @code{base_vapi_id} is supported for this parameter,
2927
but deprecated.
2928
 
2929
@end table
2930
 
2931
@node Display Interface Configuration
2932
@subsection Display Interface Configuration
2933
@cindex configuring the VGA interface
2934
@cindex display interface configuration
2935
@cindex VGA configuration
2936
@cindex @code{section vga}
2937
@value{OR1KSIM} models a VGA interface to an external monitor.  The
2938
VGA controller used in @value{OR1KSIM} is the component implemented at
2939 98 jeremybenn
OpenCores, and found in the top level SVN directory, @file{vga_lcd},
2940 82 jeremybenn
with no support for the optional hardware cursors.  It is described in
2941 19 jeremybenn
the document @cite{VGA/LCD Core v2.0 Specifications} by Richard
2942 82 jeremybenn
Herveille, which can be found in the @file{doc} subdirectory.  It is a
2943 19 jeremybenn
memory mapped component, which resides on the main OpenRISC Wishbone
2944
data bus.
2945
 
2946
The current implementation provides only functionality to dump the
2947
screen to a file at intervals.
2948
 
2949
VGA controller configuration is described in @code{@w{section
2950 82 jeremybenn
vga}}.  This section may appear multiple times, specifying multiple
2951
VGA controllers.  The following parameters may be specified.
2952 19 jeremybenn
 
2953
@table @code
2954
 
2955
@item enabled = 0|1
2956
@cindex @code{enabled} (VGA configuration)
2957 82 jeremybenn
If 1 (true, the default), this VGA is enabled.  If 0, it is disabled.
2958 19 jeremybenn
 
2959
@item baseaddr = @var{value}
2960
@cindex @code{baseaddr} (VGA configuration)
2961
Set the base address of the VGA controller's memory mapped
2962 82 jeremybenn
registers to @var{value}.  The default is 0, which is probably not a
2963 19 jeremybenn
sensible value.
2964
 
2965
The VGA controller has a 12-bit address bus, with 7 32-bit registers, at
2966
addresses 0x000 through 0x018, and two color lookup tables at
2967 82 jeremybenn
addresses 0x800 through 0xfff.  The hardware cursor registers are not
2968 19 jeremybenn
implemented, so addresses 0x01c through 0x7fc are not used.
2969
 
2970
@item irq = @var{value}
2971
@cindex @code{irq} (VGA configuration)
2972 82 jeremybenn
Use @var{value} as the IRQ number of this VGA controller.  Default
2973 19 jeremybenn
value 0.
2974
 
2975
@item refresh_rate = @var{value}
2976
@cindex @code{refresh_rate} (VGA configuration)
2977 82 jeremybenn
@var{value} specifies number of cycles between screen dumps.  Default
2978 19 jeremybenn
value is derived from the simulation clock cycle time
2979
(@pxref{Simulator Behavior, , Simulator Behavior}), to correspond
2980
to dumping 50 times per simulated second.
2981
 
2982
@item txfile = "@var{file}"
2983
@cindex @code{txfile} (VGA configuration)
2984
@cindex @code{filename} (VGA configuration - deprecated)
2985
@var{file} specifies the base of the filename for screen
2986 82 jeremybenn
dumps.  Successive screen dumps will be in BMP format, in files with
2987 19 jeremybenn
the name @file{@var{file}@var{nnnn}.bmp}, where @var{nnnn} is a
2988 82 jeremybenn
sequential count of the screen dumps starting at zero.  The default
2989
value is @code{"vga_out"}.  For backwards compatibility, the
2990 19 jeremybenn
alternative name @code{filename} is supported for this parameter,
2991
but deprecated.
2992
 
2993
@end table
2994
 
2995
@node Frame Buffer Configuration
2996
@subsection Frame Buffer Configuration
2997
@cindex configuring the frame buffer
2998
@cindex frame buffer configuration
2999
@cindex @code{section fb}
3000
@quotation Caution
3001 82 jeremybenn
The frame buffer is only partially implemented.  Its configuration
3002 19 jeremybenn
fields are described here, but the component should not be used at
3003 82 jeremybenn
this time.  Like the VGA controller, it is designed to make screen
3004 19 jeremybenn
dumps to file.
3005
@end quotation
3006
 
3007 82 jeremybenn
Frame buffer configuration is described in @code{section fb}.  This
3008 19 jeremybenn
section may appear multiple times, specifying multiple frame
3009 82 jeremybenn
buffers.  The following parameters may be specified.
3010 19 jeremybenn
 
3011
@table @code
3012
 
3013
@item enabled = 0|1
3014
@cindex @code{enabled} (frame buffer configuration)
3015 82 jeremybenn
If 1 (true, the default), this frame buffer is enabled.  If 0, it is disabled.
3016 19 jeremybenn
 
3017
@item baseaddr = @var{value}
3018
@cindex @code{baseaddr} (frame buffer configuration)
3019
Set the base address of the frame buffer's memory mapped registers to
3020 82 jeremybenn
@var{value}.  The default is 0, which is probably not a sensible value.
3021 19 jeremybenn
 
3022
The frame buffer has an 121-bit address bus, with 4 32-bit registers,
3023
at addresses 0x000 through 0x00c, and a PAL lookup table at addresses
3024 82 jeremybenn
0x400 through 0x4ff.  Addresses 0x010 through 0x3fc and addresses 0x500
3025 19 jeremybenn
through 0x7ff are not used.
3026
 
3027
@item refresh_rate = @var{value}
3028
@cindex @code{refresh_rate} (frame buffer configuration)
3029 82 jeremybenn
@var{value} specifies number of cycles between screen dumps.  Default
3030 19 jeremybenn
value is derived from the simulation clock cycle time
3031
(@pxref{Simulator Behavior, , Simulator Behavior}), to correspond to
3032
dumping 50 times per simulated second.
3033
 
3034
@item txfile = "@var{file}"
3035
@cindex @code{txfile} (frame buffer configuration)
3036
@cindex @code{filename} (frame buffer configuration - deprecated)
3037
@var{file} specifies the base of the filename for screen
3038 82 jeremybenn
dumps.  Successive screen dumps will be in BMP format, in files with
3039 19 jeremybenn
the name @file{@var{file}@var{nnnn}.bmp}, where @var{nnnn} is a
3040 82 jeremybenn
sequential count of the screen dumps starting at zero.  The default
3041
value is @code{"fb_out"}.  For backwards compatibility, the
3042 19 jeremybenn
alternative name @code{filename} is supported for this parameter,
3043
but deprecated.
3044
 
3045
@end table
3046
 
3047
@node Keyboard Configuration
3048
@subsection Keyboard Configuration (PS2)
3049
@cindex configuring the keyboard interface
3050
@cindex configuring the PS2 interface
3051
@cindex keyboard configuration
3052
@cindex PS2 configuration
3053
@cindex @code{section kb}
3054 82 jeremybenn
The PS2 interface provided by @value{OR1KSIM} is not documented.  It
3055 19 jeremybenn
may be based on the PS2 project at OpenCores, and found in
3056 98 jeremybenn
the top level SVN directory, @file{ps2}.  However this project lacks
3057 82 jeremybenn
any documentation beyond its project webpage.  Since most PS2
3058 19 jeremybenn
interfaces follow the Intel i8042 standard, this is presumably what is
3059
expected with this device.
3060
 
3061
The implementation only provides for keyboard support, which is
3062 82 jeremybenn
modelled as a file of keystrokes.  There is no mouse support.
3063 19 jeremybenn
 
3064
@quotation Caution
3065
A standard i8042 device has two registers at addresses 0x60 (command)
3066 82 jeremybenn
and 0x64 (status).  Inspection of the code, suggests that the
3067 19 jeremybenn
@value{OR1KSIM} component places these registers at addresses 0x00 and
3068
0x04.
3069
 
3070
The port of Linux for the OpenRISC 1000, which runs on @value{OR1KSIM}
3071
implements the i8042 device driver, anticipating these registers
3072 82 jeremybenn
reside at their conventional address.  It seems unlikel that this code
3073 19 jeremybenn
will work.
3074
 
3075
This component should be used with caution.
3076
@end quotation
3077
 
3078 82 jeremybenn
Keyboard configuration is described in @code{section kbd}.  This
3079 19 jeremybenn
section may appear multiple times, specifying multiple keyboard
3080 82 jeremybenn
interfaces.  The following parameters may be specified.
3081 19 jeremybenn
 
3082
@table @code
3083
 
3084
@item enabled = 0|1
3085
@cindex @code{enabled} (keyboard configuration)
3086 82 jeremybenn
If 1 (true, the default), this keyboard is enabled.  If 0, it is disabled.
3087 19 jeremybenn
 
3088
@item baseaddr = @var{value}
3089
@cindex @code{baseaddr} (keyboard configuration)
3090
Set the base address of the keyboard's memory mapped registers to
3091 82 jeremybenn
@var{value}.  The default is 0, which is probably not a sensible value.
3092 19 jeremybenn
 
3093
The keyboard PS/2 interface has an 3-bit address bus, with 2 8-bit registers,
3094
at addresses 0x000 and 0x004.
3095
 
3096
@quotation Caution
3097
As noted above, a standard Intel 8042 interface would expect to find
3098
these registers at locations 0x60 and 0x64, thus requiring at least a
3099
7-bit bus.
3100
@end quotation
3101
 
3102
@item irq = @var{value}
3103
@cindex @code{irq} (keyboard configuration)
3104 82 jeremybenn
Use @var{value} as the IRQ number of this Keyboard interface.  Default
3105 19 jeremybenn
value 0.
3106
 
3107
@item rxfile = "@var{file}"
3108
@cindex @code{file} (keyboard configuration)
3109
@file{file} specifies a file containing raw key stroke data, which
3110 82 jeremybenn
models the input from a physical keyboard.  The default value is
3111 19 jeremybenn
@code{"kbd_in"}.
3112
 
3113
@end table
3114
 
3115
@node Disc Interface Configuration
3116
@subsection Disc Interface Configuration
3117
@cindex configuring the ATA/ATAPI interfaces
3118
@cindex disc interface configuration
3119
@cindex ATA/ATAPI configuration
3120
@cindex @code{section ata}
3121
The ATA/ATAPI disc controller used in @value{OR1KSIM} is the OCIDEC
3122
(OpenCores IDE Controller) component implemented at OpenCores, and
3123 98 jeremybenn
found in the top level SVN directory, @file{ata}.  It is described in
3124 19 jeremybenn
the document @cite{ATA/ATAPI-5 Core Specification} by Richard
3125 82 jeremybenn
Herveille, which can be found in the @file{doc} subdirectory.  It is a
3126 19 jeremybenn
memory mapped component, which resides on the main OpenRISC Wishbone
3127
data bus.
3128
 
3129 385 jeremybenn
@quotation Warning
3130 440 jeremybenn
In the current release of @value{OR1KSIM}, parsing of the ATA section is
3131 385 jeremybenn
broken. Users should not configure the disc interface in this release.
3132
@end quotation
3133
 
3134 82 jeremybenn
ATA/ATAPI configuration is described in @code{@w{section ata}}.  This section
3135
may appear multiple times, specifying multiple disc controllers.  The
3136 19 jeremybenn
following parameters may be specified.
3137
 
3138
@table @code
3139
 
3140
@item enabled = 0|1
3141
@cindex @code{enabled} (ATA/ATAPI configuration)
3142 82 jeremybenn
If 1 (true, the default), this ATA/ATAPI interface is enabled.  If 0,
3143 19 jeremybenn
it is disabled.
3144
 
3145
@item baseaddr = @var{value}
3146
@cindex @code{baseaddr} (ATA/ATAPI configuration)
3147
Set the base address of the ATA/ATAPI interface's memory mapped
3148 82 jeremybenn
registers to @var{value}.  The default is 0, which is probably not a
3149 19 jeremybenn
sensible value.
3150
 
3151
The ATA/ATAPI PS/2 interface has an 5-bit address bus, with 8 32-bit
3152 82 jeremybenn
registers.  Depending on the version of the OCIDEC ATA/ATAPI interface
3153 19 jeremybenn
selected (see @code{dev_id} below), not all registers will be available.
3154
 
3155
@item irq = @var{value}
3156
@cindex @code{irq} (ATA/ATAPI configuration)
3157 82 jeremybenn
Use @var{value} as the IRQ number of this ATA/ATAPI interface.  Default
3158 19 jeremybenn
value 0.
3159
 
3160
@item dev_id = 1|2|3
3161
@cindex @code{dev_id} (ATA/ATAPI configuration)
3162
This parameter specifies which version of the OCIDEC ATA/ATAPI
3163 82 jeremybenn
interface to model.  The default value is 1.
3164 19 jeremybenn
 
3165
Version 1 supports only the @code{CTRL}, @code{STAT} and @code{PCTR}
3166 82 jeremybenn
registers.  Versions 2 & 3 add the @code{FCTR} registers, Version 3
3167 19 jeremybenn
adds the @code{DTR} registers and the @code{RXD}/@code{TXD} registers.
3168
 
3169
@item rev = @var{value}
3170
@cindex @code{rev} (ATA/ATAPI configuration)
3171
Set the @var{value} as the revision of the OCIDEC ATA/ATAPI
3172 82 jeremybenn
interface.  The default value is 1.  The default value is 0.  Its value
3173
should be in the range 0-15.  Larger values are truncated with a
3174
warning.  This only affects the reset value of the @code{STAT}
3175 19 jeremybenn
register, where it forms bits 24-27.
3176
 
3177
@item pio_mode0_t1 = @var{value}
3178
@cindex @code{pio_mode0_t1} (ATA/ATAPI configuration)
3179
@itemx pio_mode0_t2 = @var{value}
3180
@cindex @code{pio_mode0_t2} (ATA/ATAPI configuration)
3181
@itemx pio_mode0_t4 = @var{value}
3182
@cindex @code{pio_mode0_t4} (ATA/ATAPI configuration)
3183
@itemx pio_mode0_teoc = @var{value}
3184
@cindex @code{pio_mode0_teoc} (ATA/ATAPI configuration)
3185
These parameters specify the timings for use with Programmed
3186 82 jeremybenn
Input/Output (PIO) transfers.  They are specified as the number of
3187 19 jeremybenn
clock cycles - 2, rounded up to the next highest integer, or zero if
3188 82 jeremybenn
that would be negative.  The values should not exceed 255.  If they do,
3189 19 jeremybenn
they will be ignored with a warning.
3190
 
3191
See the ATA/ATAPI-5 specification for explanations of each of these
3192 82 jeremybenn
timing parameters.  The default values are:
3193 19 jeremybenn
 
3194
@example
3195
pio_mode0_t1   =  6
3196
pio_mode0_t2   = 28
3197
pio_mode0_t4   =  2
3198
pio_mode0_teoc = 23
3199
@end example
3200
 
3201
@item dma_mode0_tm = @var{value}
3202
@cindex @code{dma_mode0_tm} (ATA/ATAPI configuration)
3203
@itemx dma_mode0_td = @var{value}
3204
@cindex @code{dma_mode0_td} (ATA/ATAPI configuration)
3205
@itemx dma_mode0_teoc = @var{value}
3206
@cindex @code{dma_mode0_teoc} (ATA/ATAPI configuration)
3207 82 jeremybenn
These parameters specify the timings for use with DMA transfers.  They
3208 19 jeremybenn
are specified as the number of clock cycles - 2, rounded up to the
3209 82 jeremybenn
next highest integer, or zero if that would be negative.  The values
3210
should not exceed 255.  If they do, they will be ignored with a
3211 19 jeremybenn
warning.
3212
 
3213
See the ATA/ATAPI-5 specification for explanations of each of these
3214 82 jeremybenn
timing parameters.  The default values are:
3215 19 jeremybenn
 
3216
@example
3217
dma_mode0_tm   =  4
3218
dma_mode0_td   = 21
3219
dma_mode0_teoc = 21
3220
@end example
3221
 
3222
@end table
3223
 
3224
@subsubsection ATA/ATAPI Device Configuration
3225
@cindex disc interface device configuration
3226
@cindex ATA/ATAPI device configuration
3227
Within the @code{@w{section ata}}, each device is specified
3228 82 jeremybenn
separately.  The device subsection is introduced by
3229 19 jeremybenn
 
3230
@example
3231
device @var{value}
3232
@end example
3233
 
3234 82 jeremybenn
@var{value} is the device number, which should be 0 or 1.  The
3235
subsection ends with @code{enddevice}.  Note that if the same device
3236 19 jeremybenn
number is specified more than once, the previous values will be
3237 82 jeremybenn
overwritten.  Within the @code{device} subsection, the following
3238 19 jeremybenn
parameters may appear:
3239
 
3240
@table @code
3241
 
3242
@item type = @var{value}
3243
@cindex @code{type} (ATA/ATAPI device configuration)
3244
@var{value}specifies the type of device: 0 (the default) for ``not
3245
connected'', 1 for hard disk simulated in a file and 2 for local system
3246
hard disk.
3247
 
3248
@item file = "@var{filename}"
3249
@cindex @code{file} (ATA/ATAPI device configuration)
3250
@file{filename} specifies the file to be used for a simulated ATA
3251 82 jeremybenn
device if the file type (see @code{type} above) is 1.  Default value
3252 346 jeremybenn
@code{"ata_file@var{n}"}, where @var{n} is the device number.
3253 19 jeremybenn
 
3254
@item size = @var{value}
3255
@cindex @code{size} (ATA/ATAPI device configuration)
3256
@var{value} specifies the size of a simulated ATA device if the file
3257 82 jeremybenn
type (see @code{type} above) is 1.  The default value is zero.
3258 19 jeremybenn
 
3259
@item packet = 0|1
3260
@cindex @code{packet} (ATA/ATAPI device configuration)
3261 82 jeremybenn
If 1 (true), implement the PACKET command feature set.  If 0 (the
3262 19 jeremybenn
default), do not implement the PACKET command feature set.
3263
 
3264
@item firmware = "@var{str}"
3265
@cindex @code{firmware} (ATA/ATAPI device configuration)
3266
Firmware to report in response to the ``Identify Device''
3267 82 jeremybenn
command.  Default @code{"02207031"}.
3268 19 jeremybenn
 
3269
@item heads = @var{value}
3270
@cindex @code{heads} (ATA/ATAPI device configuration)
3271 82 jeremybenn
Number of heads in the device.  Default 7, use -1 to disable all heads.
3272 19 jeremybenn
 
3273
@item sectors = @var{value}
3274
@cindex @code{sectors} (ATA/ATAPI device configuration)
3275 82 jeremybenn
Number of sectors per track in the device.  Default 32.
3276 19 jeremybenn
 
3277
@item mwdma = 0|1|2|-1
3278
@cindex @code{mwdma} (ATA/ATAPI device configuration)
3279 82 jeremybenn
Highest multi-word DMA mode supported.  Default 2, use -1 to disable.
3280 19 jeremybenn
 
3281
@item pio = 0|1|2|3|4
3282
@cindex @code{pio} (ATA/ATAPI device configuration)
3283 82 jeremybenn
Highest PIO mode supported.  Default 4.
3284 19 jeremybenn
 
3285
@end table
3286
 
3287
@node Generic Peripheral Configuration
3288
@subsection Generic Peripheral Configuration
3289
@cindex generic peripheral configuration
3290
@cindex configuration of generic peripherals
3291
@cindex @code{section generic}
3292
When used as a library (@pxref{Simulator Library, , Simulator
3293
Library}), @value{OR1KSIM} makes provision for any additional peripheral to be
3294 82 jeremybenn
implemented externally.  Any read or write access to this peripheral's
3295
memory map generates @dfn{upcall}s to an external handler.  This
3296 19 jeremybenn
interface can support either C or C++, and was particularly designed
3297
to facilitate support for OSCI SystemC (see @url{http://www.systemc.org}).
3298
 
3299
Generic peripheral configuration is described in @code{@w{section
3300 82 jeremybenn
generic}}.  This section may appear multiple times, specifying multiple
3301
external peripherals.  The following parameters may be specified.
3302 19 jeremybenn
 
3303
@table @code
3304
 
3305
@item enabled = 0|1
3306
@cindex @code{enabled} (generic peripheral configuration)
3307 82 jeremybenn
If 1 (true, the default), this ATA/ATAPI interface is enabled.  If 0,
3308 19 jeremybenn
it is disabled.
3309
 
3310
@item baseaddr = @var{value}
3311
@cindex @code{baseaddr} (generic peripheral configuration)
3312
Set the base address of the generic peripheral's memory mapped
3313 82 jeremybenn
registers to @var{value}.  The default is 0, which is probably not a
3314 19 jeremybenn
sensible value.
3315
 
3316
The size of the memory mapped register space is controlled by the
3317
@code{size} paramter, described below.
3318
 
3319
@item size = @var{value}
3320
@cindex @code{size} (generic peripheral configuration)
3321
Set the size of the generic peripheral's memory mapped register space
3322 82 jeremybenn
to @var{value} bytes.  Any read or write accesses to addresses with
3323 19 jeremybenn
offsets of 0 to @var{value}-1 bytes from the base address specified in
3324
parameter @code{baseaddr} (see above) will be directed to the external
3325
interface.
3326
 
3327 82 jeremybenn
@var{value} will be rounded up the nearest power of 2.  It's default
3328
value is zero.  If @var{value} is not an exact power of two, accesses
3329 19 jeremybenn
to address offsets of @var{value} or above up to the next power of 2
3330
will generate a warning, and have no effect (reads will return zero).
3331
 
3332
@item name = "@var{str}"
3333
@cindex @code{name} (generic peripheral configuration)
3334 82 jeremybenn
This gives the peripheral the name @code{"@var{str}"}.  This is used to
3335 19 jeremybenn
identify the peripheral in error messages and warnings, and when
3336 82 jeremybenn
reporting its status.  The default value is @code{@w{"anonymous
3337 19 jeremybenn
external peripheral"}}.
3338
 
3339
@item byte_enabled = 0|1
3340
@cindex @code{byte_enabled} (generic peripheral configuration)
3341
@itemx hw_enabled = 0|1
3342
@cindex @code{hw_enabled} (generic peripheral configuration)
3343
@itemx word_enabled = 0|1
3344
@cindex @code{word_enabled} (generic peripheral configuration)
3345
If 1 (true, the default), these parameters respectively enable the
3346 82 jeremybenn
device for byte wide, half-word wide and word wide accesses.  If 0,
3347 19 jeremybenn
accesses of that width will fail.
3348
 
3349
@end table
3350
 
3351
@node Interactive Command Line
3352
@chapter Interactive Command Line
3353
 
3354
If started with the @code{-f} flag, or if interrupted with
3355
@kbd{ctrl-C}, @value{OR1KSIM} provides the user with an interactive
3356 82 jeremybenn
command line.  The commands available, which may not be abbreviated, are:
3357 19 jeremybenn
 
3358
@table @code
3359
 
3360
@item q
3361
@cindex @code{q} (Interactive CLI)
3362
@cindex quitting (Interactive CLI)
3363
Exit the simulator
3364
 
3365
@item r
3366
@cindex @code{r} (Interactive CLI)
3367
@cindex displaying registers (Interactive CLI)
3368
@cindex register display (Interactive CLI)
3369 82 jeremybenn
Display all the General Purpose Registers (GPRs).  Also shows the just
3370 19 jeremybenn
executed and next to be executed instructions symbolically and the
3371
state of the flag in the Supervision Register.
3372
 
3373
@item t
3374
@cindex @code{t} (Interactive CLI)
3375
@cindex stepping code (Interactive CLI)
3376
Execute the next instruction and then display register/instruction
3377
information as with the @code{r} command (see above).
3378
 
3379
@item run @var{num} [ hush ]
3380
@cindex @code{run} (Interactive CLI)
3381
@cindex running code (Interactive CLI)
3382
@cindex executing code (Interactive CLI)
3383 82 jeremybenn
Execute @var{num} instructions.  The register/instruction information
3384 19 jeremybenn
is displayed after each instruction, as with the @code{r} command (see
3385
above) @emph{unless} @code{hush} is specified.
3386
 
3387
@item pr @var{reg} @var{value}
3388
@cindex @code{pr} (Interactive CLI)
3389
@cindex patching registers (Interactive CLI)
3390
@cindex register patching (Interactive CLI)
3391
Patch register @var{reg} with @var{value}.
3392
 
3393
@item dm @var{fromaddr} [ @var{toaddr} ]
3394
@cindex @code{dm} (Interactive CLI)
3395
@cindex displaying memory (Interactive CLI)
3396
@cindex memory display (Interactive CLI)
3397 82 jeremybenn
Display memory bytes between @var{fromaddr} and @var{toaddr}.  If
3398 19 jeremybenn
@var{toaddr} is not given, 64 bytes are displayed, starting at
3399
@var{fromaddr}.
3400
 
3401
@quotation Caution
3402 82 jeremybenn
The output from this command is broken (a bug).  @value{OR1KSIM}
3403
attempts to print out 16 bytes per row.  However, instead of printing
3404 19 jeremybenn
out the address at the start of each row, it prints the address (of
3405
the first of the 16 bytes) before @emph{each} byte.
3406
@end quotation
3407
 
3408
@item de @var{fromaddr} [ @var{toaddr} ]
3409
@cindex @code{dm} (Interactive CLI)
3410
@cindex disassemble (Interactive CLI)
3411 82 jeremybenn
Disassemble code between @var{fromaddr} and @var{toaddr}.  If
3412 19 jeremybenn
@var{toaddr} is not given, 16 instructions are disassembled.
3413
 
3414
The disassembly is entirely numerical, and gives no symbolic
3415
information.
3416
 
3417
@item pm @var{addr} @var{value}
3418
@cindex @code{pm} (Interactive CLI)
3419
@cindex patching memory (Interactive CLI)
3420
@cindex memory patching (Interactive CLI)
3421
Patch the 4 bytes in memory starting at @var{addr} with the 32-bit
3422
@var{value}.
3423
 
3424
@item pc @var{value}
3425
@cindex @code{pc} (Interactive CLI)
3426
@cindex patching the program counter (Interactive CLI)
3427
@cindex program counter patching (Interactive CLI)
3428
Patch the program counter with @var{value}.
3429
 
3430
@item cm @var{fromaddr} @var{toaddr} @var{size}
3431
@cindex @code{cm} (Interactive CLI)
3432
@cindex copying memory (Interactive CLI)
3433
@cindex memory copying (Interactive CLI)
3434
Copy @var{size} bytes in memory from @var{fromaddr} to @var{toaddr}.
3435
 
3436
@item break @var{addr}
3437
@cindex @code{break} (Interactive CLI)
3438
@cindex breakpoint set/clear (Interactive CLI)
3439
@cindex set breakpoint (Interactive CLI)
3440
@cindex clear breakpoint (Interactive CLI)
3441
@cindex toggle breakpoint (Interactive CLI)
3442
Toggle the breakpoint set at @var{addr}.
3443
 
3444
@item breaks
3445
@cindex @code{breaks} (Interactive CLI)
3446
@cindex breakpoint list (Interactive CLI)
3447
@cindex list breakpoints (Interactive CLI)
3448
List all set breakpoints
3449
 
3450
@item reset
3451
@cindex @code{reset} (Interactive CLI)
3452
@cindex simulator reset (Interactive CLI)
3453
@cindex reset the simulator (Interactive CLI)
3454 82 jeremybenn
Reset the simulator.  Includes modeling a reset of the processor, so
3455 19 jeremybenn
execution will restart from the reset vector location, 0x100.
3456
 
3457
@item hist
3458
@cindex @code{hist} (Interactive CLI)
3459
@cindex execution history (Interactive CLI)
3460
@cindex history of execution (Interactive CLI)
3461
If saving the execution history has been configured (@pxref{Simulator
3462
Behavior, , Simulator Behavior}), display the execution history.
3463
 
3464
@item stall
3465
@cindex @code{stall} (Interactive CLI)
3466
@cindex processor stall (Interactive CLI)
3467
@cindex stall the processor (Interactive CLI)
3468 82 jeremybenn
Stall the processor, so that control is passed to the debug unit.  When
3469
stalled, the processor can execute no instructions.  This command is
3470 19 jeremybenn
useful when debugging the JTAG interface, used by debuggers such as
3471
GDB.
3472
 
3473
@item unstall
3474
@cindex @code{unstall} (Interactive CLI)
3475
@cindex processor unstall (Interactive CLI)
3476
@cindex unstall the processor (Interactive CLI)
3477 82 jeremybenn
Unstall the processor, so that normal execution can continue.  This command is
3478 19 jeremybenn
useful when debugging the JTAG interface, used by debuggers such as GDB.
3479
 
3480
@item stats @var{category} | clear
3481
@cindex @code{stats} (Interactive CLI)
3482
@cindex simulator statistics (Interactive CLI)
3483
@cindex statistics, simulation (Interactive CLI)
3484
Print the statistics for the given @var{category}, if available, or
3485 82 jeremybenn
clear if @code{clear} is specified.  The categories are:
3486 19 jeremybenn
 
3487
@table @asis
3488
 
3489
@item 1
3490
Miscellaneous statistics: branch predictions (if branch predictions
3491
are enabled), branch target cache model (if enabled), cache (if
3492
enbaled), MMU (if enabled) and number of addtional load & store
3493
cycles.
3494
 
3495
@xref{Core OpenRISC Configuration, , Configuring the OpenRisc
3496
Achitectural Components}, for details of how to enable these various
3497
features.
3498
 
3499
@item 2
3500 82 jeremybenn
Instruction usage statistics.  Requires hazard analysis to be enabled
3501 19 jeremybenn
(@pxref{CPU Configuration, ,CPU Configuration}).
3502
 
3503
@item 3
3504 82 jeremybenn
Instruction dependency statistics.  Requires hazard analysis to be enabled
3505 19 jeremybenn
(@pxref{CPU Configuration, ,CPU Configuration}).
3506
 
3507
@item 4
3508 82 jeremybenn
Functional unit dependency statistics.  Requires hazard analysis to be enabled
3509 19 jeremybenn
(@pxref{CPU Configuration, ,CPU Configuration}).
3510
 
3511
@item 5
3512 82 jeremybenn
Raw register usage over time.  Requires hazard analysis to be enabled
3513 19 jeremybenn
(@pxref{CPU Configuration, ,CPU Configuration}).
3514
 
3515
@item 6
3516 82 jeremybenn
Store buffer statistics.  Requires the store buffer to be enabled
3517 19 jeremybenn
(@pxref{CPU Configuration, ,CPU Configuration}).
3518
 
3519
@end table
3520
 
3521
@item info
3522
@cindex @code{info} (Interactive CLI)
3523
@cindex simulator configuration info (Interactive CLI)
3524
@cindex configuration info (Interactive CLI)
3525 82 jeremybenn
Display detailed information about the simulator configuration.  This
3526 19 jeremybenn
is quite a lengthy about, because all MMU TLB information is displayed.
3527
 
3528
@item dv @var{fromaddr} [ @var{toaddr} ] [ @var{module} ]
3529
@cindex @code{dv} (Interactive CLI)
3530
@cindex Verilog memory dump (Interactive CLI)
3531
@cindex memory dump, Verilog (Interactive CLI)
3532
Dump the area of memory between @var{fromaddr} and @var{toaddr} as
3533
Verilog code for a synchronous, 23-bit wide SRAM module, named
3534 82 jeremybenn
@var{module}.  If @var{toaddr} is not specified, then 64 bytes are
3535
dumped (as 16 32-bit words).  If @var{module} is not specified,
3536 19 jeremybenn
@code{or1k_mem} is used.
3537
 
3538
To save to a file, use the redirection function (described after this
3539
table, below).
3540
 
3541
@item dh @var{fromaddr} [ @var{toaddr} ]
3542
@cindex @code{dv} (Interactive CLI)
3543
@cindex hexadecimal memory dump (Interactive CLI)
3544
@cindex memory dump, hexadecimal (Interactive CLI)
3545
Dump the area of memory between @var{fromaddr} and @var{toaddr} as
3546 82 jeremybenn
32-bit hex numbers (no @code{0x}, or @code{32'h} prefix).  If
3547 19 jeremybenn
@var{toaddr} is not specified, then 64 bytes are dumped (as 16 32-bit
3548
words).
3549
 
3550
To save to a file, use the redirection function (described after this
3551
table, below).
3552
 
3553
@item setdbch
3554
@cindex @code{setdbch} (Interactive CLI)
3555
@cindex debug channel toggle (Interactive CLI)
3556
@cindex toggle debug channels (Interactive CLI)
3557 82 jeremybenn
Toggle debug channels on/off.  @xref{Standalone Simulator, , Standalone
3558 19 jeremybenn
Simulator}, for a description of specifying debug channels on the
3559
command line.
3560
 
3561
@item set @var{section} @var{param} = @var{value}
3562
@cindex @code{set} (Interactive CLI)
3563
@cindex configuration parameter setting (Interactive CLI)
3564
Set the configuration parameter @var{para} in section @var{section} to
3565 82 jeremybenn
@var{value}.  @xref{Configuration, , Configuration}, for details of
3566 19 jeremybenn
configuration parameters and their settings.
3567
 
3568
@item debug
3569
@cindex @code{debug} (Interactive CLI)
3570
@cindex debug mode toggle (Interactive CLI)
3571
@cindex toggle debug mode (Interactive CLI)
3572 82 jeremybenn
Toggle the simulator debug mode.  @xref{Debug Interface Configuration,
3573 19 jeremybenn
, Debug Interface Configuration}, for information on this parameter.
3574
 
3575
@quotation Caution
3576 82 jeremybenn
This is effectively enabling or disabling the debug unit.  It does not
3577
effect the remote GDB debug interface.  However using the remote debug
3578 19 jeremybenn
interface while the debug unit is disabled will lead to undefined
3579
behavior and likely crash @value{OR1KSIM}
3580
@end quotation
3581
 
3582
@item cuc
3583
@cindex @code{debug} (Interactive CLI)
3584
@cindex Custom Unit Compiler (Interactive CLI)
3585
Enter the the Custom Unit Compiler command prompt (@pxref{CUC
3586
Configuration, , CUC Configuration}).
3587
 
3588
@quotation Caution
3589 82 jeremybenn
The CUC must be properly configured, for this to succeed.  In
3590
particular a timing file must be available and readable.  Otherwise
3591 19 jeremybenn
@value{OR1KSIM} will crash.
3592
@end quotation
3593
 
3594
@item help
3595
@cindex @code{help} (Interactive CLI)
3596
@cindex Custom Unit Compiler (Interactive CLI)
3597
Print out brief information about each command available.
3598
 
3599
@item mprofile [-vh] [-m @var{m}] [-g @var{n}] [-f @var{file}] @var{from} @var{to}
3600
@cindex @code{mprofile} (Interactive CLI)
3601
@cindex memory profiling utility (Interactive CLI)
3602 82 jeremybenn
Run the memory profiling utility.  This follows the same usage as the
3603 19 jeremybenn
standalone command (@pxref{Memory Profiling Utility, , Memory
3604
Profiling Utility}).
3605
 
3606
@item profile [-vhcq] [-g @var{file}]
3607
@cindex @code{mprofile} (Interactive CLI)
3608
@cindex profiling utility (Interactive CLI)
3609
@cindex instruction profiling utility (Interactive CLI)
3610 82 jeremybenn
Run the instruction profiling utility.  This follows the same usage as the
3611 19 jeremybenn
standalone command (@pxref{Profiling Utility, , Profiling Utility}).
3612
 
3613
@end table
3614
 
3615
For all commands, it is possible to redirect the output to a file, by
3616
using the redirection operator, @code{>}.
3617
 
3618
@example
3619
@var{command} > @var{filename}
3620
@end example
3621
 
3622
This is particularly useful for commands dumping a large amount of
3623
output, such as @code{dv}.
3624
 
3625
@quotation Caution
3626 82 jeremybenn
Unfortunately there is a serious bug with the redirection operator.  It
3627 19 jeremybenn
does not return output to standard output after the command
3628 82 jeremybenn
completes.  Until this bug is fixed, file redirection should not be
3629 19 jeremybenn
used.
3630
@end quotation
3631
 
3632
@node Verification API
3633
@chapter Verification API (VAPI)
3634
 
3635
The Verification API (VAPI) provides a TCP/IP interface to allow
3636 82 jeremybenn
components of the simulation to be controlled externally.  The
3637 19 jeremybenn
interface is polled for new requests on each simulated clock
3638 82 jeremybenn
cycle.  Components within the simulator may send responses to such
3639 19 jeremybenn
requests.
3640
 
3641 82 jeremybenn
The inteface is an asynchronous duplex protocol.  On the request side
3642 19 jeremybenn
it provides for simple commands, known as VAPI IDs (a 32 bit integer),
3643 82 jeremybenn
with a single piece of data (also a 32 bit integer).  On the send side,
3644
it provides for sending a single VAPI ID and data.  However there is no
3645
explicit command-response structure.  Some components just accept
3646
requests (e.g.  to set values), some just generate sends (to report
3647 19 jeremybenn
values), and some do both.
3648
 
3649
Each component has a base ID (32 bit) and its commands will start from
3650 82 jeremybenn
that base ID.  This provides a simple partitioning of the command space
3651
amongst components.  Request commands will be directed to the component with
3652 19 jeremybenn
the closest base ID lower than the VAPI ID of the command.
3653
 
3654
Thus if there are two components with base IDs of 0x200 and 0x300, and
3655
a request with VAPI ID of 0x203 is received, it will be directed to
3656
the first component as its command #3.
3657
 
3658
The results of VAPI interactions are logged (by default in
3659
@file{vapi.log} unless an alternative is specified in @code{@w{section
3660
vapi}}).
3661
 
3662
Currently the following components support VAPI:
3663
 
3664
@table @asis
3665
 
3666
@item Debug Unit
3667
@cindex Debug Unit verification (VAPI)
3668
@cindex VAPI for Debug Unit
3669
Although the Debug Unit can specify a base VAPI ID, it is not used to
3670
send commands or receive requests.
3671
 
3672
Instead, if the base VAPI ID is set, all remote JTAG protocol exchanges are
3673
logged in the VAPI log file.
3674
 
3675
@item UART
3676
@cindex UART verification (VAPI)
3677
@cindex VAPI for UART
3678
If a base VAPI ID is specified, the UART sends details of any chars or
3679
break characters sent, with dteails of the line control register etc
3680
encoded in the data packet sent.
3681
 
3682
This supports a single VAPI command request, but encodes a sub-command in the
3683
top 8 bits of the associated data.
3684
 
3685
@table @code
3686
 
3687
@item 0x00
3688
@cindex 0x00 UART VAPI sub-command (UART verification)
3689
This stuffs the least significant 8 bits of the data into the serial
3690
register of the UART and the next 8 bits into the line control
3691
register, effectively providing control of the next character to be
3692
sent or received.
3693
 
3694
@item 0x01
3695
@cindex 0x01 UART VAPI sub-command (UART verification)
3696
The divisor latch bytes are set from the least significant 16 bits of
3697
the data.
3698
 
3699
@item 0x02
3700
@cindex 0x02 UART VAPI sub-command (UART verification)
3701
The line control register is set from bits 15-8 of the data.
3702
 
3703
@item 0x03
3704
@cindex 0x03 UART VAPI sub-command (UART verification)
3705
The UART skew is set from the least significant 16 bits of the data
3706
 
3707
@item 0x04
3708
@cindex 0x04 UART VAPI sub-command (UART verification)
3709
If the 16th most significant bit of the data is 1, start sending
3710 82 jeremybenn
breaks, otherwise stop sending breaks.  The breaks are sent or cleared
3711 19 jeremybenn
after the number of UART clock divider ticks specified by the data
3712
(immediately if the data is zero).
3713
 
3714
@end table
3715
 
3716
@item DMA
3717
@cindex DMA verification (VAPI)
3718
@cindex VAPI for DMA
3719
Although the DMA unit supports a base VAPI ID in its configuration
3720
(@code{@w{section dma}}), no VAPI data is sent, nor VAPI requests
3721
currently implemented.
3722
 
3723
@item Ethernet
3724
@cindex Ethernet verification (VAPI)
3725
@cindex VAPI for Ethernet
3726 82 jeremybenn
The following requests are handled by the Ethernet.  Specified
3727 19 jeremybenn
symbolically, these are the increments from the base VAPI ID of the
3728 82 jeremybenn
Ethernet.  At present no implementation is provided behind these VAPI
3729 19 jeremybenn
requests.
3730
 
3731
@table @code
3732
 
3733
@item ETH_VAPI_DATA (0)
3734
@cindex @code{ETH_VAPI_DATA} (Ethernet verification)
3735
 
3736
@item ETH_VAPI_CTRL (0)
3737
@cindex @code{ETH_VAPI_CTRL} (Ethernet verification)
3738
 
3739
@end table
3740
 
3741
@item GPIO
3742
@cindex GPIO verification (VAPI)
3743
@cindex VAPI for GPIO
3744
If a base VAPI ID is specified, the GPIO sends out on its base VAPI ID
3745
(symbolically, GPIO_VAPI_DATA (0) offset from the base VAPI ID) any
3746
changes in outputs.
3747
 
3748 82 jeremybenn
The following requests are handled by the GPIO.  Specified
3749 19 jeremybenn
symbolically, these are the increments from the VAPI base ID of the
3750
GPIO.
3751
 
3752
@table @code
3753
 
3754
@item GPIO_VAPI_DATA (0)
3755
@cindex @code{GPIO_VAPI_DATA} (GPIO verification)
3756
Set the next input to the commands data field
3757
 
3758
@item GPIO_VAPI_AUX (1)
3759
@cindex @code{GPIO_VAPI_AUX} (GPIO verification)
3760
Set the GPIO auxiliary inputs to the data field
3761
 
3762
@item GPIO_VAPI_CLOCK (2)
3763
@cindex @code{GPIO_VAPI_CLOCK} (GPIO verification)
3764
Add an external GPIO clock trigger of period specified in the data field.
3765
 
3766
@item GPIO_VAPI_RGPIO_OE (3)
3767
@cindex @code{GPIO_VAPI_RGPIO} (GPIO verification)
3768
Set the GPIO output enable to the data field
3769
 
3770
@item GPIO_VAPI_RGPIO_INTE (4)
3771
@cindex @code{GPIO_VAPI_INTE} (GPIO verification)
3772
Set the next interrupt to the data field
3773
 
3774
@item GPIO_VAPI_RGPIO_PTRIG (5)
3775
@cindex @code{GPIO_VAPI_PTRIG} (GPIO verification)
3776
Set the next trigger to the data field
3777
 
3778
@item GPIO_VAPI_RGPIO_AUX (6)
3779
@cindex @code{GPIO_VAPI_AUX} (GPIO verification)
3780
Set the next auxiliary input to the data field
3781
 
3782
@item GPIO_VAPI_RGPIO_CTRL (7)
3783
@cindex @code{GPIO_VAPI_CTRL} (GPIO verification)
3784
Set th next control input to the data field
3785
 
3786
@end table
3787
 
3788
@end table
3789
 
3790
@node Code Internals
3791
@chapter A Guide to @value{OR1KSIM} Internals
3792
 
3793 82 jeremybenn
These are notes to help those wanting to extend @value{OR1KSIM}.  This
3794 19 jeremybenn
section assumes the use of a tag file, so file locations of entities'
3795 82 jeremybenn
definitions are not in general provided.  For more on tags, see the
3796
Linux manual page for @command{etags}.  A tag file can be created
3797 19 jeremybenn
with:
3798
 
3799
@example
3800
make tags
3801
@end example
3802
 
3803
@menu
3804
* Coding Conventions::
3805
* Global Data Structures::
3806
* Concepts::
3807
* Internal Debugging::
3808 104 jeremybenn
* Regression Testing::
3809 19 jeremybenn
@end menu
3810
 
3811
@node Coding Conventions
3812
@section Coding Conventions for @value{OR1KSIM}
3813
 
3814
This chapter provides some guidelines for coding, to facilitate
3815
extensions to @value{OR1KSIM}
3816
 
3817
@table @emph
3818
 
3819
@item GNU Coding Standard
3820
Code should follow the GNU coding standard for C
3821 82 jeremybenn
(@url{http://www.gnu.org/prep/standards/}.  If in doubt, put your code
3822 19 jeremybenn
through the @command{indent} program.
3823
 
3824
@item @code{#include} headers
3825
All C source code files should include @file{config.h} before any
3826
other file.
3827
 
3828
This should be followed by inclusion of any system headers (but see
3829
the comments about portability and @file{port.h} below) and then by
3830
any @value{OR1KSIM} package headers.
3831
 
3832
If @file{port.h} is required, it should be the first package header to
3833
be included after the system headers.
3834
 
3835
All C source code and header files should directly include any system
3836 82 jeremybenn
or package header they depend on, i.e.  not rely on any other header
3837
having already included it.  The two exceptions are
3838 19 jeremybenn
 
3839
@enumerate
3840
@item
3841
All header files may assume that @file{config.h} has already been
3842
included.
3843
 
3844
@item
3845
System headers which impose portability problems should be included by
3846
using the package header @file{port.h}, rather than the system headers
3847 82 jeremybenn
themselves.  This is the case for code requiring
3848 19 jeremybenn
 
3849
@itemize @bullet
3850
 
3851
@item
3852
@code{strndup} (from @file{string.h})
3853
 
3854
@item
3855
Integer types (@code{int@var{n}_t}, @code{uint@var{n}_t}) (from
3856
@file{inttypes.h}).
3857
 
3858
@item
3859
@code{isblank} (from @file{ctype.h})
3860
 
3861
@end itemize
3862
 
3863
@end enumerate
3864
 
3865
@item @code{#include} files once only
3866
All include files should be protected by @code{#ifndef} to ensure
3867 82 jeremybenn
their definitions are only included once.  For instance a header file
3868 19 jeremybenn
@file{@var{x-y.h}} should surround its contents with:
3869
 
3870
@example
3871
#ifndef X_Y__H
3872
#define X_Y__H
3873
 
3874
<body of the include file>
3875
 
3876
#endif  /* X_Y__H */
3877
@end example
3878
 
3879
@item Avoid @code{typedef}
3880
The GNU coding style for C does not have a clear way to distinguish
3881 82 jeremybenn
between user type name and user variables.  For this reason
3882 19 jeremybenn
@code{typedef} should be avoided except for the most ubiquitous user
3883 82 jeremybenn
defined types.  This makes the code much easier to read.
3884 19 jeremybenn
 
3885
There are some @code{typedef} declarations in the @command{argtable2}
3886
library and the @acronym{ELF} and @acronym{COFF} headers, because this
3887
code is taken from other places.
3888
 
3889
Within @value{OR1KSIM} legacy uses of @code{typedef} have largely been
3890
purged, except in the Custom Unit Compiler (@pxref{CUC Configuration,
3891
, Custom Unit Compiler (CUC) Configuration}).
3892
 
3893
The remaining uses of @code{typedef} occur in two places:
3894
 
3895
@itemize @bullet
3896
 
3897
@item
3898
@file{port/port.h} defines types to replace those in header files that
3899
are not available (character functions, string duplication, integer
3900
types).
3901
 
3902
@file{cpu/or1k/arch.h} defines types for the key @value{OR1KSIM}
3903
entities: addresses (@code{oraddr_t}), unsigned register values
3904
(@code{uorreg_t}) and signed register (@code{orreg_t}) values.
3905
 
3906
@end itemize
3907
 
3908
Where new types are defined, they should appear in one of these two
3909 82 jeremybenn
files as appropriate.  @value{OR1KSIM} specific types appearing in
3910 19 jeremybenn
@file{arch.h} should always have the suffix @file{_h}.
3911
 
3912
@item Don't begin names with underscore
3913
Names beginning with @code{_} are intended to be part of the C
3914 82 jeremybenn
infrastructure.  They should not be used in the simulator code.
3915 19 jeremybenn
 
3916
@item Keep Non-global top level entities static
3917
All top level entities (functions, variables), which are not
3918 82 jeremybenn
explicitly part of a global interface should be declared static.  This
3919 19 jeremybenn
ensures that unwanted connections are not inadvertently built across
3920
the program.
3921
 
3922
@item Use of @code{inline}
3923 82 jeremybenn
Code should not be declared @code{inline}.  Modern compilers can work
3924 19 jeremybenn
out for themselves what is best in this respect.
3925
 
3926
@item Initialization
3927 82 jeremybenn
All data structures should be explicitly initialized.  In particular
3928 19 jeremybenn
code should not rely on static data structures being initialized to
3929
zero.
3930
 
3931
The rationale is that in future static data structures may become
3932 82 jeremybenn
dynamic.  This has been a particular source of bugs in @value{OR1KSIM}
3933 19 jeremybenn
historically.
3934
 
3935
A specific case is with new peripherals, which should always include a
3936
@code{start} function to pre-initialize all configuration parameters
3937
to sensible defaults
3938
 
3939
@item Configuration Validation
3940
All configuration values should be validated, preferably when
3941
encountered, if not when the @code{section} is closed, or otherwise
3942
at run time when the parameter is first used.
3943
 
3944
@end table
3945
 
3946
@node Global Data Structures
3947
@section Global Data Structures
3948
 
3949
@table @code
3950
 
3951
@item config
3952
@cindex configuration global structure
3953
@vindex config
3954
The global variable @code{config} of type @code{struct config} holds
3955
the configuration data for some of the @value{OR1KSIM} components which
3956 82 jeremybenn
are always present.  At present the components are:
3957 19 jeremybenn
 
3958
@itemize @bullet
3959
 
3960
@item
3961
@vindex config.sim
3962
The simulator defined in @code{@w{section sim}} (@pxref{Simulator
3963
Configuration, , Simulator Configuration}).
3964
 
3965
@item
3966
@vindex config.vapi
3967
The Verification API (VAPI) defined  in @code{@w{section vapi}}
3968
(@pxref{Verification API Configuration, , Verification API (VAPI)
3969
Configuration}).
3970
 
3971
@item
3972
@vindex config.cuc
3973
The Custom Unit Compiler (CUC), defined in @code{@w{section cuc}}
3974
(@pxref{CUC Configuration, , Custom Unit Compiler (CUC)
3975
Configuration}).
3976
 
3977
@item
3978
@vindex config.cpu
3979
The CPU, defined in @code{@w{section cpu}} (@pxref{CPU Configuration,
3980
, CPU Configuration}).
3981
 
3982
@item
3983
@vindex config.dc
3984
The data cache (but not the instruction cache), defined in
3985
@code{@w{section dc}} (@pxref{Cache Configuration, , Cache
3986
Configuration}).
3987
 
3988
@item
3989
@vindex config.pm
3990
The power management unit, defined in @code{@w{section pm}}
3991
(@pxref{Power Management Configuration, , Power Management
3992
Configuration}).
3993
 
3994
@item
3995
@vindex config.pic
3996
The programmable interrupt controller, defined in @code{@w{section pic}}
3997
(@pxref{Interrupt Configuration, , Interrupt Configuration}).
3998
 
3999
@item
4000
@vindex config.bpb
4001
Branch prediciton, defined in @code{@w{section bpb}} (@pxref{Branch
4002
Prediction Configuration, , Branch Prediction Configuration}).
4003
 
4004
@item
4005
@vindex config.debug
4006
The debug unit, defined in @code{@w{section debug}} (@pxref{Debug
4007
Interface Configuration, , Debug Interface Configuration}).
4008
 
4009
@end itemize
4010
 
4011
This struct is made of a collection of structs, one for each
4012 82 jeremybenn
component.  For example the simulator configuration is held in
4013 19 jeremybenn
@code{config.sim}.
4014
 
4015
@item config
4016
@cindex configuration dynamic structure
4017
@vindex sections
4018
This is a linked list of data structures holding configuration data
4019
for all sections which are not held in the main @code{config} data
4020 82 jeremybenn
structure.  In general these are components (such as peripherals and
4021
memory) which may occur multiple times.  However it also handles some
4022 19 jeremybenn
architectural components which may occur only once, such as the memory
4023
management units, the instruction cache, the interrupt controller and
4024
branch prediction.
4025
 
4026
@item runtime
4027
@cindex runtime global structure
4028
@vindex runtime
4029
The global variable @code{runtime} of type @code{struct runtime} holds
4030 82 jeremybenn
all the runtime information about the simulation.  To access this
4031 19 jeremybenn
variable, @file{sim-config.h} must be included.
4032
 
4033
@vindex runtime.cpu
4034
@vindex runtime.vapi
4035
@vindex runtime.cuc
4036
This struct is itself made of 3 other structs, @code{cpu} (for CPU run
4037
time state), @code{vapi} (for Verification API state) and @code{cuc}
4038
(for Custom Unit Compiler state).
4039
 
4040
@end table
4041
 
4042
@node Concepts
4043
@section Concepts
4044
 
4045
@table @emph
4046
 
4047
@anchor{Output Redirection}
4048
@item Output Redirection
4049
@cindex output rediretion
4050
@vindex runtime.cpu.fout
4051 82 jeremybenn
The current output stream is held in @code{runtime.cpu.fout}.  Output
4052 19 jeremybenn
should be explicitly written to this stream, or may use the
4053
@code{PRINTF} macro, which will write its arguments to this output stream.
4054
 
4055
@item Reset Hooks
4056
@cindex reset hooks
4057
@findex reg_sim_reset
4058
Any peripheral may register a routine to be called when the the
4059
processor is reset by calling @code{reg_sim_reset}, providing a
4060 82 jeremybenn
function and pointer to a data structure as arguments.  On reset that
4061 19 jeremybenn
function will be called with the data stucture pointer as argument.
4062
 
4063 432 jeremybenn
@anchor{Interrupts Internal}
4064
@item Interrupts
4065
@cindex interrupts
4066
@findex report_interrupt
4067
@findex clear_interrupt
4068
@findex mtspr
4069
An internal peripheral can model the effect of an interrupt being
4070
asserted by calling @code{report_interrupt}.  This is used for both edge
4071
and level sensitive interrupts.
4072
 
4073
The effect is to set the corresponding bit in the PICSR SPR and to queue
4074
an interrupt exception to take place after the current instruction
4075
completes execution.
4076
 
4077
Externally, the different interrupts require different mechanisms for
4078
clearing.  Level sensitive interrupts should be cleared by deasserting
4079
the interrupt line, edge sensitive interrupts by clearing the
4080
corresponding bit in the PICSR SPR.
4081
 
4082
Internally this amounts to the same thing (clearing the PICSPR bit), so
4083
a single function is provided, @code{clear_interrupt}.  Note however that
4084
when level sensitive interrupts are configured, PICSR is read only, and
4085
can only be cleared by calling @code{clear_interrupt}.  Using the two
4086
functions provided will ensure the peripheral works correctly whichever
4087
type of interrupt is used.
4088
 
4089
@quotation Note
4090
Until an interrupt is cleared, all subsequent interrupts are ignored
4091
with a warning.
4092
@end quotation
4093
 
4094 19 jeremybenn
@end table
4095
 
4096
@node Internal Debugging
4097
@section Internal Debugging
4098
@cindex internal debugging
4099
 
4100
The function @code{debug} is like @code{printf}, but with an extra
4101 82 jeremybenn
first argument, which is the debug level.  If the debug level specified
4102 19 jeremybenn
in the simulator configuration (@pxref{Simulator Behavior, , Simulator
4103
Behavior}) is greater than or equal to this value, the remaining
4104
arguments are printed to the current output stream (@pxref{Output
4105
Redirection, , Output Redirection}).
4106
 
4107 104 jeremybenn
@node Regression Testing
4108
@section Regression Testing
4109
@cindex regression testing
4110
@cindex testing
4111
@value{OR1KSIM} now includes a regression test suite for both standalone
4112
and library usage as described earlier (@pxref{Build and Install,
4113
, Building and Installing}).  Running the tests requires that the
4114
OpenRISC toolchain and DejaGNU are both installed.
4115
 
4116
Tests are written using @command{expect}, a derivative of TCL.
4117
Documentation of DejaGnu, @command{expect} and TCL are freely available
4118
on the Web.  The Embecosm Application Note 8, @cite{Howto: Using DejaGnu
4119
for Testing: A Simple Introduction}
4120
(@uref{http://www.embecosm.com/download/ean8.html}) provides a concise
4121
introduction.
4122
 
4123
All test code is found in the @file{testsuite} directory.  The key
4124
files and directories used are as follows.
4125
 
4126
@table @code
4127
@item global-conf.exp
4128
@cindex DejaGnu configuration
4129
This is the global DejaGNU configuration file used to set up parameters
4130
common to all tests.  If the user has the environment varialbe
4131
@env{DEJAGNU} defined, it will be used instead, but this is not
4132
recommended.
4133
 
4134
@item Makefile.am
4135
@cindex test make file
4136
@cindex make file for tests
4137
This is the top level @command{automake} file for the testsuite.  The
4138
only changes likely to be needed here is additional local cleanup of
4139
files created by new tests.
4140
 
4141
@item README
4142
@cindex test README
4143
This contains details of all the tests
4144
 
4145
@item config
4146
@cindex DejaGnu board configurations
4147
This contains DejaGnu board configurations.  Since the tests are
4148
generally run on a Unix host, this should just contain @file{Unix.exp}.
4149
 
4150
@item lib
4151
@cindex DejaGnu tool specific configuration
4152
This contains DejaGnu tool specific configurations.  ``Tool'' has a
4153
specific meaning in DejaGNU, referring just to a grouping of tests.  In
4154
this case there are two such ``tools'', ``or1ksim'' and ``libsim''
4155
for tests of the standalone tool and tests of the library.
4156
 
4157
Corresponding to this, there are two tool specific configuration files,
4158
@file{or1ksim.exp} and @file{libsim.exp}.  These contain @command{expect}/TCL
4159
procedures for common use among the tests.
4160
 
4161
@item libsim.tests
4162
@itemx or1ksim.tests
4163
@cindex DejaGNU tests directories
4164 440 jeremybenn
These are the directories of tests of the @value{OR1KSIM} library.  They
4165
also include @value{OR1KSIM} configuration files and each has a
4166
@file{Makefile.am} file.  @file{Makefile.am} should be updated whenever
4167
files are added to this directory, to ensure they are included in the
4168
distribution.
4169 104 jeremybenn
 
4170
@item test-code
4171
@cindex host test code
4172
@cindex test code for host
4173
These are all the test programs to be compiled on the host (each in its
4174
own directory).  In general these are programs to support testing of the
4175
library, and build various programs linking in the library.
4176
 
4177
@item test-code
4178
@cindex target test code
4179
@cindex test code for target
4180
These are all the test programs to be compiled with the OpenRISC tool
4181 346 jeremybenn
chain to run with either standalone @value{OR1KSIM} or the library.
4182
This directory includes its own @file{configure.ac}, since it must set
4183
up a separate tool chain based on the target, not the host.
4184 104 jeremybenn
 
4185
@end table
4186
 
4187
To add a new test needs the following steps.
4188
 
4189
@itemize @bullet
4190
 
4191
@item
4192 346 jeremybenn
Put new host C code in its own directory within @file{test-code}.  Add
4193 104 jeremybenn
the directory to the existing @file{Makefile.am} in the @file{test-code}
4194 346 jeremybenn
directory and create a @file{Makefile.am} in the new directory to drive
4195
building the test program(s).  Don't forget to add the new
4196
@file{Makefile} to the top level @file{configure.ac} so it gets
4197
generated. Not all tests require code here.
4198 104 jeremybenn
 
4199
@item
4200 346 jeremybenn
Put new target C code in its own directory within @file{test-code-or1k}.
4201
Once again modify & create @file{Makefile.am}.  This time modify the
4202
@file{configure.ac} in the @file{test-code-or1k} so the @file{Makefile}
4203
gets generated.  The existing programs provide examples to start from,
4204
including custom linker scripts where needed.
4205 104 jeremybenn
 
4206
@item
4207
Add one or more tests and configuration files to the relevant ``tool''
4208 346 jeremybenn
test directory.  Use the existing tests as templates.  They make heavy
4209
use of the @command{expect}/TCL procedures in the @file{config}
4210
directory to facilitate driving the tests.
4211 104 jeremybenn
 
4212
@end itemize
4213
 
4214 19 jeremybenn
@node  GNU Free Documentation License
4215
@chapter GNU Free Documentation License
4216
@cindex license for @value{OR1KSIM}
4217
 
4218
@include fdl-1.2.texi
4219
 
4220
@node Index
4221
 
4222
@unnumbered Index
4223
 
4224
@printindex cp
4225
 
4226
@bye

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.