1 |
19 |
jeremybenn |
/* libtoplevel.c -- Top level simulator library source file
|
2 |
|
|
|
3 |
|
|
Copyright (C) 1999 Damjan Lampret, lampret@opencores.org
|
4 |
|
|
Copyright (C) 2008 Embecosm Limited
|
5 |
|
|
|
6 |
|
|
Contributor Jeremy Bennett <jeremy.bennett@embecosm.com>
|
7 |
|
|
|
8 |
|
|
This file is part of OpenRISC 1000 Architectural Simulator.
|
9 |
|
|
|
10 |
|
|
This program is free software; you can redistribute it and/or modify it
|
11 |
|
|
under the terms of the GNU General Public License as published by the Free
|
12 |
|
|
Software Foundation; either version 3 of the License, or (at your option)
|
13 |
|
|
any later version.
|
14 |
|
|
|
15 |
|
|
This program is distributed in the hope that it will be useful, but WITHOUT
|
16 |
|
|
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
17 |
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
18 |
|
|
more details.
|
19 |
|
|
|
20 |
|
|
You should have received a copy of the GNU General Public License along
|
21 |
|
|
with this program. If not, see <http://www.gnu.org/licenses/>. */
|
22 |
|
|
|
23 |
|
|
/* This program is commented throughout in a fashion suitable for processing
|
24 |
|
|
with Doxygen. */
|
25 |
|
|
|
26 |
|
|
|
27 |
|
|
/* Autoconf and/or portability configuration */
|
28 |
|
|
#include "config.h"
|
29 |
|
|
|
30 |
|
|
/* System includes */
|
31 |
|
|
#include <stdlib.h>
|
32 |
|
|
#include <unistd.h>
|
33 |
|
|
#include <signal.h>
|
34 |
|
|
|
35 |
|
|
/* Package includes */
|
36 |
|
|
#include "or1ksim.h"
|
37 |
|
|
#include "sim-config.h"
|
38 |
|
|
#include "toplevel-support.h"
|
39 |
|
|
#include "sched.h"
|
40 |
|
|
#include "execute.h"
|
41 |
|
|
#include "pic.h"
|
42 |
82 |
jeremybenn |
#include "jtag.h"
|
43 |
19 |
jeremybenn |
|
44 |
143 |
jeremybenn |
/* Indices of GDB registers that are not GPRs. Must match GDB settings! */
|
45 |
|
|
#define MAX_GPRS 32 /*!< Maximum GPRs */
|
46 |
|
|
#define PPC_REGNUM (MAX_GPRS + 0) /*!< Previous PC */
|
47 |
|
|
#define NPC_REGNUM (MAX_GPRS + 1) /*!< Next PC */
|
48 |
|
|
#define SR_REGNUM (MAX_GPRS + 2) /*!< Supervision Register */
|
49 |
19 |
jeremybenn |
|
50 |
143 |
jeremybenn |
|
51 |
19 |
jeremybenn |
/*---------------------------------------------------------------------------*/
|
52 |
|
|
/*!Initialize the simulator.
|
53 |
|
|
|
54 |
220 |
jeremybenn |
The user can pass in any arguments acceptable to the standalone
|
55 |
|
|
simulator. Not all make any sense in a library environment.
|
56 |
19 |
jeremybenn |
|
57 |
220 |
jeremybenn |
@param[in] argc Size of argument vector
|
58 |
|
|
@param[in] argv Argument vector
|
59 |
19 |
jeremybenn |
@param[in] class_ptr Pointer to a C++ class instance (for use when
|
60 |
|
|
called by C++)
|
61 |
|
|
@param[in] upr Upcall routine for reads
|
62 |
|
|
@param[in] upw Upcall routine for writes
|
63 |
|
|
|
64 |
|
|
@return 0 on success and an error code on failure */
|
65 |
|
|
/*---------------------------------------------------------------------------*/
|
66 |
|
|
int
|
67 |
220 |
jeremybenn |
or1ksim_init (int argc,
|
68 |
|
|
char *argv[],
|
69 |
19 |
jeremybenn |
void *class_ptr,
|
70 |
93 |
jeremybenn |
int (*upr) (void *class_ptr,
|
71 |
|
|
unsigned long int addr,
|
72 |
|
|
unsigned char mask[],
|
73 |
|
|
unsigned char rdata[],
|
74 |
|
|
int data_len),
|
75 |
|
|
int (*upw) (void *class_ptr,
|
76 |
|
|
unsigned long int addr,
|
77 |
|
|
unsigned char mask[],
|
78 |
|
|
unsigned char wdata[],
|
79 |
|
|
int data_len))
|
80 |
19 |
jeremybenn |
{
|
81 |
|
|
/* Initialization copied from existing main() */
|
82 |
|
|
srand (getpid ());
|
83 |
|
|
init_defconfig ();
|
84 |
|
|
reg_config_secs ();
|
85 |
|
|
|
86 |
220 |
jeremybenn |
if (parse_args (argc, argv))
|
87 |
19 |
jeremybenn |
{
|
88 |
|
|
return OR1KSIM_RC_BADINIT;
|
89 |
|
|
}
|
90 |
|
|
|
91 |
143 |
jeremybenn |
config.sim.is_library = 1; /* Library operation */
|
92 |
|
|
config.sim.profile = 0; /* No profiling */
|
93 |
|
|
config.sim.mprofile = 0;
|
94 |
19 |
jeremybenn |
|
95 |
143 |
jeremybenn |
config.ext.class_ptr = class_ptr; /* SystemC linkage */
|
96 |
|
|
config.ext.read_up = upr;
|
97 |
|
|
config.ext.write_up = upw;
|
98 |
19 |
jeremybenn |
|
99 |
|
|
print_config (); /* Will go eventually */
|
100 |
|
|
signal (SIGINT, ctrl_c); /* Not sure we want this really */
|
101 |
|
|
|
102 |
|
|
runtime.sim.hush = 1; /* Not sure if this is needed */
|
103 |
|
|
do_stats = config.cpu.superscalar ||
|
104 |
|
|
config.cpu.dependstats ||
|
105 |
|
|
config.sim.history ||
|
106 |
|
|
config.sim.exe_log;
|
107 |
|
|
|
108 |
|
|
sim_init ();
|
109 |
|
|
|
110 |
|
|
runtime.sim.ext_int_set = 0; /* No interrupts pending to be set */
|
111 |
|
|
runtime.sim.ext_int_clr = 0; /* No interrupts pending to be cleared */
|
112 |
|
|
|
113 |
|
|
return OR1KSIM_RC_OK;
|
114 |
|
|
|
115 |
143 |
jeremybenn |
} /* or1ksim_init () */
|
116 |
19 |
jeremybenn |
|
117 |
|
|
|
118 |
|
|
/*---------------------------------------------------------------------------*/
|
119 |
|
|
/*!Run the simulator
|
120 |
|
|
|
121 |
|
|
The argument is a time in seconds, which is converted to a number of
|
122 |
|
|
cycles, if positive. A negative value means "run for ever".
|
123 |
|
|
|
124 |
97 |
jeremybenn |
With the JTAG interface, it is possible to stall the processor between
|
125 |
|
|
calls of this function (but not during upcalls). In which case we return
|
126 |
|
|
immediately.
|
127 |
|
|
|
128 |
|
|
@todo Is it possible (or desirable) to permit JTAG activity during upcalls,
|
129 |
|
|
in which case we could stall mid-run.
|
130 |
|
|
|
131 |
|
|
@todo Should the JTAG functionality require enabling?
|
132 |
|
|
|
133 |
19 |
jeremybenn |
The semantics are that the duration for which the run may occur may be
|
134 |
|
|
changed mid-run by a call to or1ksim_reset_duration(). This is to allow for
|
135 |
|
|
the upcalls to generic components adding time, and reducing the time
|
136 |
|
|
permitted for ISS execution before synchronization of the parent SystemC
|
137 |
|
|
wrapper.
|
138 |
|
|
|
139 |
|
|
This is over-ridden if the call was for a negative duration, which means
|
140 |
|
|
run forever!
|
141 |
|
|
|
142 |
|
|
Uses a simplified version of the old main program loop. Returns success if
|
143 |
|
|
the requested number of cycles were run and an error code otherwise.
|
144 |
|
|
|
145 |
|
|
@param[in] duration Time to execute for (seconds)
|
146 |
|
|
|
147 |
|
|
@return OR1KSIM_RC_OK if we run to completion, OR1KSIM_RC_BRKPT if we hit
|
148 |
|
|
a breakpoint (not clear how this can be set without CLI access) */
|
149 |
|
|
/*---------------------------------------------------------------------------*/
|
150 |
|
|
int
|
151 |
|
|
or1ksim_run (double duration)
|
152 |
|
|
{
|
153 |
|
|
const int num_ints = sizeof (runtime.sim.ext_int_set) * 8;
|
154 |
|
|
|
155 |
97 |
jeremybenn |
/* If we are stalled we can't do anything. We treat this as hitting a
|
156 |
143 |
jeremybenn |
breakpoint or halting. */
|
157 |
97 |
jeremybenn |
if(runtime.cpu.stalled)
|
158 |
|
|
{
|
159 |
143 |
jeremybenn |
return runtime.cpu.halted ? OR1KSIM_RC_HALTED : OR1KSIM_RC_BRKPT;
|
160 |
97 |
jeremybenn |
}
|
161 |
|
|
|
162 |
|
|
/* Reset the duration */
|
163 |
19 |
jeremybenn |
or1ksim_reset_duration (duration);
|
164 |
|
|
|
165 |
|
|
/* Loop until we have done enough cycles (or forever if we had a negative
|
166 |
|
|
duration) */
|
167 |
|
|
while (duration < 0.0 || (runtime.sim.cycles < runtime.sim.end_cycles))
|
168 |
|
|
{
|
169 |
|
|
long long int time_start = runtime.sim.cycles;
|
170 |
|
|
int i; /* Interrupt # */
|
171 |
|
|
|
172 |
|
|
/* Each cycle has counter of mem_cycles; this value is joined with cycles
|
173 |
|
|
* at the end of the cycle; no sim originated memory accesses should be
|
174 |
82 |
jeremybenn |
* performed in between. */
|
175 |
19 |
jeremybenn |
runtime.sim.mem_cycles = 0;
|
176 |
|
|
|
177 |
|
|
if (cpu_clock ())
|
178 |
|
|
{
|
179 |
143 |
jeremybenn |
/* This is probably wrong. This is an Or1ksim breakpoint, not a GNU
|
180 |
|
|
one. */
|
181 |
|
|
return runtime.cpu.halted ? OR1KSIM_RC_HALTED : OR1KSIM_RC_BRKPT;
|
182 |
19 |
jeremybenn |
}
|
183 |
|
|
|
184 |
143 |
jeremybenn |
/* If we are stalled we can't do anything. We treat this as hitting a
|
185 |
|
|
breakpoint or halting. */
|
186 |
|
|
if(runtime.cpu.stalled)
|
187 |
|
|
{
|
188 |
|
|
return runtime.cpu.halted ? OR1KSIM_RC_HALTED : OR1KSIM_RC_BRKPT;
|
189 |
|
|
}
|
190 |
|
|
|
191 |
19 |
jeremybenn |
runtime.sim.cycles += runtime.sim.mem_cycles;
|
192 |
|
|
|
193 |
|
|
/* Take any external interrupts. Outer test is for the common case for
|
194 |
|
|
efficiency. */
|
195 |
|
|
if (0 != runtime.sim.ext_int_set)
|
196 |
|
|
{
|
197 |
|
|
for (i = 0; i < num_ints; i++)
|
198 |
|
|
{
|
199 |
|
|
if (0x1 == ((runtime.sim.ext_int_set >> i) & 0x1))
|
200 |
|
|
{
|
201 |
|
|
report_interrupt (i);
|
202 |
|
|
runtime.sim.ext_int_set &= ~(1 << i); /* Clear req flag */
|
203 |
|
|
}
|
204 |
|
|
}
|
205 |
|
|
}
|
206 |
|
|
|
207 |
|
|
/* Clear any interrupts as requested. For edge triggered interrupts this
|
208 |
|
|
will happen in the same cycle. For level triggered, it must be an
|
209 |
|
|
explicit call. */
|
210 |
|
|
if (0 != runtime.sim.ext_int_clr)
|
211 |
|
|
{
|
212 |
|
|
for (i = 0; i < num_ints; i++)
|
213 |
|
|
{
|
214 |
|
|
/* Only clear interrupts that have been explicitly cleared */
|
215 |
|
|
if(0x1 == ((runtime.sim.ext_int_clr >> i) & 0x1))
|
216 |
|
|
{
|
217 |
|
|
clear_interrupt(i);
|
218 |
|
|
runtime.sim.ext_int_clr &= ~(1 << i); /* Clear clr flag */
|
219 |
|
|
}
|
220 |
|
|
}
|
221 |
|
|
}
|
222 |
|
|
|
223 |
|
|
/* Update the scheduler queue */
|
224 |
|
|
scheduler.job_queue->time -= (runtime.sim.cycles - time_start);
|
225 |
|
|
|
226 |
|
|
if (scheduler.job_queue->time <= 0)
|
227 |
|
|
{
|
228 |
|
|
do_scheduler ();
|
229 |
|
|
}
|
230 |
|
|
}
|
231 |
|
|
|
232 |
|
|
return OR1KSIM_RC_OK;
|
233 |
|
|
|
234 |
143 |
jeremybenn |
} /* or1ksim_run () */
|
235 |
19 |
jeremybenn |
|
236 |
|
|
|
237 |
|
|
/*---------------------------------------------------------------------------*/
|
238 |
143 |
jeremybenn |
/*!Step the simulator
|
239 |
|
|
|
240 |
|
|
This is just a wrapper for the run function, specifying a time
|
241 |
|
|
corresponding to a single cycle. This will in fact mean that a single
|
242 |
|
|
instruction is executed, even if takes more than one cycle to execute.
|
243 |
|
|
|
244 |
|
|
@todo What happens if an event is triggered - that may mean multiple
|
245 |
|
|
instructions.
|
246 |
|
|
|
247 |
|
|
@return OR1KSIM_RC_OK if we step to completion, OR1KSIM_RC_BRKPT if we hit
|
248 |
|
|
a breakpoint (not clear how this can be set without CLI access) */
|
249 |
|
|
/*---------------------------------------------------------------------------*/
|
250 |
|
|
int
|
251 |
|
|
or1ksim_step ()
|
252 |
|
|
{
|
253 |
|
|
return or1ksim_run ((double) config.sim.clkcycle_ps / 1e12);
|
254 |
|
|
|
255 |
|
|
} /* or1ksim_step () */
|
256 |
|
|
|
257 |
|
|
|
258 |
|
|
/*---------------------------------------------------------------------------*/
|
259 |
19 |
jeremybenn |
/*!Reset the run-time simulation end point
|
260 |
|
|
|
261 |
|
|
Reset the time for which the simulation should run to the specified duration
|
262 |
|
|
from NOW (i.e. NOT from when the run started).
|
263 |
|
|
|
264 |
|
|
@param[in] duration Time to run for in seconds */
|
265 |
|
|
/*---------------------------------------------------------------------------*/
|
266 |
|
|
void
|
267 |
|
|
or1ksim_reset_duration (double duration)
|
268 |
|
|
{
|
269 |
|
|
runtime.sim.end_cycles =
|
270 |
|
|
runtime.sim.cycles +
|
271 |
|
|
(long long int) (duration * 1.0e12 / (double) config.sim.clkcycle_ps);
|
272 |
|
|
|
273 |
143 |
jeremybenn |
} /* or1ksim_reset_duration () */
|
274 |
19 |
jeremybenn |
|
275 |
|
|
|
276 |
|
|
/*---------------------------------------------------------------------------*/
|
277 |
|
|
/*!Return time executed so far
|
278 |
|
|
|
279 |
|
|
Internal utility to return the time executed so far. Note that this is a
|
280 |
|
|
re-entrant routine.
|
281 |
|
|
|
282 |
|
|
@return Time executed so far in seconds */
|
283 |
|
|
/*---------------------------------------------------------------------------*/
|
284 |
|
|
static double
|
285 |
|
|
internal_or1ksim_time ()
|
286 |
|
|
{
|
287 |
|
|
return (double) runtime.sim.cycles * (double) config.sim.clkcycle_ps /
|
288 |
|
|
1.0e12;
|
289 |
|
|
|
290 |
|
|
} // or1ksim_cycle_count()
|
291 |
|
|
|
292 |
|
|
|
293 |
|
|
/*---------------------------------------------------------------------------*/
|
294 |
|
|
/*!Mark a time point in the simulation
|
295 |
|
|
|
296 |
|
|
Sets the internal parameter recording this point in the simulation */
|
297 |
|
|
/*---------------------------------------------------------------------------*/
|
298 |
|
|
void
|
299 |
|
|
or1ksim_set_time_point ()
|
300 |
|
|
{
|
301 |
|
|
runtime.sim.time_point = internal_or1ksim_time ();
|
302 |
|
|
|
303 |
143 |
jeremybenn |
} /* or1ksim_set_time_point () */
|
304 |
19 |
jeremybenn |
|
305 |
|
|
|
306 |
|
|
/*---------------------------------------------------------------------------*/
|
307 |
|
|
/*!Return the time since the time point was set
|
308 |
|
|
|
309 |
|
|
Get the value from the internal parameter */
|
310 |
|
|
/*---------------------------------------------------------------------------*/
|
311 |
|
|
double
|
312 |
|
|
or1ksim_get_time_period ()
|
313 |
|
|
{
|
314 |
|
|
return internal_or1ksim_time () - runtime.sim.time_point;
|
315 |
|
|
|
316 |
143 |
jeremybenn |
} /* or1ksim_get_time_period () */
|
317 |
19 |
jeremybenn |
|
318 |
|
|
|
319 |
|
|
/*---------------------------------------------------------------------------*/
|
320 |
|
|
/*!Return the endianism of the model
|
321 |
|
|
|
322 |
|
|
Note that this is a re-entrant routine.
|
323 |
|
|
|
324 |
|
|
@return 1 if the model is little endian, 0 otherwise. */
|
325 |
|
|
/*---------------------------------------------------------------------------*/
|
326 |
|
|
int
|
327 |
|
|
or1ksim_is_le ()
|
328 |
|
|
{
|
329 |
|
|
#ifdef OR32_BIG_ENDIAN
|
330 |
|
|
return 0;
|
331 |
|
|
#else
|
332 |
|
|
return 1;
|
333 |
|
|
#endif
|
334 |
|
|
|
335 |
143 |
jeremybenn |
} /* or1ksim_is_le () */
|
336 |
19 |
jeremybenn |
|
337 |
|
|
|
338 |
|
|
/*---------------------------------------------------------------------------*/
|
339 |
|
|
/*!Return the clock rate
|
340 |
|
|
|
341 |
|
|
Value is part of the configuration
|
342 |
|
|
|
343 |
|
|
@return Clock rate in Hz. */
|
344 |
|
|
/*---------------------------------------------------------------------------*/
|
345 |
|
|
unsigned long int
|
346 |
|
|
or1ksim_clock_rate ()
|
347 |
|
|
{
|
348 |
|
|
return (unsigned long int) (1000000000000ULL /
|
349 |
|
|
(unsigned long long int) (config.sim.
|
350 |
|
|
clkcycle_ps));
|
351 |
143 |
jeremybenn |
} /* or1ksim_clock_rate () */
|
352 |
19 |
jeremybenn |
|
353 |
|
|
|
354 |
|
|
/*---------------------------------------------------------------------------*/
|
355 |
|
|
/*!Trigger an edge triggered interrupt
|
356 |
|
|
|
357 |
|
|
This function is appropriate for edge triggered interrupts, which are taken
|
358 |
|
|
and then immediately cleared.
|
359 |
|
|
|
360 |
|
|
@note There is no check that the specified interrupt number is reasonable
|
361 |
|
|
(i.e. <= 31).
|
362 |
|
|
|
363 |
|
|
@param[in] i The interrupt number */
|
364 |
|
|
/*---------------------------------------------------------------------------*/
|
365 |
|
|
void
|
366 |
|
|
or1ksim_interrupt (int i)
|
367 |
|
|
{
|
368 |
|
|
if (!config.pic.edge_trigger)
|
369 |
|
|
{
|
370 |
|
|
fprintf (stderr, "Warning: or1ksim_interrupt should not be used for "
|
371 |
93 |
jeremybenn |
"level triggered interrupts. Ignored\n");
|
372 |
19 |
jeremybenn |
}
|
373 |
|
|
else
|
374 |
|
|
{
|
375 |
|
|
runtime.sim.ext_int_set |= 1 << i; // Better not be > 31!
|
376 |
|
|
runtime.sim.ext_int_clr |= 1 << i; // Better not be > 31!
|
377 |
|
|
}
|
378 |
143 |
jeremybenn |
} /* or1ksim_interrupt () */
|
379 |
19 |
jeremybenn |
|
380 |
|
|
|
381 |
|
|
/*---------------------------------------------------------------------------*/
|
382 |
|
|
/*!Set a level triggered interrupt
|
383 |
|
|
|
384 |
|
|
This function is appropriate for level triggered interrupts, which must be
|
385 |
|
|
explicitly cleared in a separate call.
|
386 |
|
|
|
387 |
|
|
@note There is no check that the specified interrupt number is reasonable
|
388 |
|
|
(i.e. <= 31).
|
389 |
|
|
|
390 |
|
|
@param[in] i The interrupt number to set */
|
391 |
|
|
/*---------------------------------------------------------------------------*/
|
392 |
|
|
void
|
393 |
|
|
or1ksim_interrupt_set (int i)
|
394 |
|
|
{
|
395 |
|
|
if (config.pic.edge_trigger)
|
396 |
|
|
{
|
397 |
|
|
fprintf (stderr, "Warning: or1ksim_interrupt_set should not be used for "
|
398 |
93 |
jeremybenn |
"edge triggered interrupts. Ignored\n");
|
399 |
19 |
jeremybenn |
}
|
400 |
|
|
else
|
401 |
|
|
{
|
402 |
|
|
runtime.sim.ext_int_set |= 1 << i; // Better not be > 31!
|
403 |
|
|
}
|
404 |
143 |
jeremybenn |
} /* or1ksim_interrupt () */
|
405 |
19 |
jeremybenn |
|
406 |
|
|
|
407 |
|
|
/*---------------------------------------------------------------------------*/
|
408 |
|
|
/*!Clear a level triggered interrupt
|
409 |
|
|
|
410 |
|
|
This function is appropriate for level triggered interrupts, which must be
|
411 |
|
|
explicitly set first in a separate call.
|
412 |
|
|
|
413 |
|
|
@note There is no check that the specified interrupt number is reasonable
|
414 |
|
|
(i.e. <= 31).
|
415 |
|
|
|
416 |
|
|
@param[in] i The interrupt number to clear */
|
417 |
|
|
/*---------------------------------------------------------------------------*/
|
418 |
|
|
void
|
419 |
|
|
or1ksim_interrupt_clear (int i)
|
420 |
|
|
{
|
421 |
|
|
if (config.pic.edge_trigger)
|
422 |
|
|
{
|
423 |
|
|
fprintf (stderr, "Warning: or1ksim_interrupt_clear should not be used "
|
424 |
93 |
jeremybenn |
"for edge triggered interrupts. Ignored\n");
|
425 |
19 |
jeremybenn |
}
|
426 |
|
|
else
|
427 |
|
|
{
|
428 |
|
|
runtime.sim.ext_int_clr |= 1 << i; // Better not be > 31!
|
429 |
|
|
}
|
430 |
143 |
jeremybenn |
} /* or1ksim_interrupt () */
|
431 |
82 |
jeremybenn |
|
432 |
|
|
|
433 |
|
|
/*---------------------------------------------------------------------------*/
|
434 |
|
|
/*!Reset the JTAG interface
|
435 |
|
|
|
436 |
|
|
@note Like all the JTAG interface functions, this must not be called
|
437 |
|
|
re-entrantly while a call to any other function (e.g. or1kim_run ())
|
438 |
|
|
is in progress. It is the responsibility of the caller to ensure this
|
439 |
|
|
constraint is met, for example by use of a SystemC mutex.
|
440 |
|
|
|
441 |
|
|
@return The time in seconds which the reset took. */
|
442 |
|
|
/*---------------------------------------------------------------------------*/
|
443 |
|
|
double
|
444 |
|
|
or1ksim_jtag_reset ()
|
445 |
|
|
{
|
446 |
98 |
jeremybenn |
/* Number of JTAG clock cycles a reset sequence takes */
|
447 |
|
|
const double JTAG_RESET_CYCLES = 5.0;
|
448 |
82 |
jeremybenn |
|
449 |
98 |
jeremybenn |
jtag_reset ();
|
450 |
|
|
|
451 |
|
|
return JTAG_RESET_CYCLES * (double) config.debug.jtagcycle_ps / 1.0e12;
|
452 |
|
|
|
453 |
82 |
jeremybenn |
} /* or1ksim_jtag_reset () */
|
454 |
|
|
|
455 |
|
|
|
456 |
|
|
/*---------------------------------------------------------------------------*/
|
457 |
|
|
/*!Shift a JTAG instruction register
|
458 |
|
|
|
459 |
|
|
@note Like all the JTAG interface functions, this must not be called
|
460 |
|
|
re-entrantly while a call to any other function (e.g. or1kim_run ())
|
461 |
|
|
is in progress. It is the responsibility of the caller to ensure this
|
462 |
|
|
constraint is met, for example by use of a SystemC mutex.
|
463 |
|
|
|
464 |
|
|
The register is represented as a vector of bytes, with the byte at offset
|
465 |
|
|
zero being shifted first, and the least significant bit in each byte being
|
466 |
|
|
shifted first. Where the register will not fit in an exact number of bytes,
|
467 |
|
|
the odd bits are in the highest numbered byte, shifted to the low end.
|
468 |
|
|
|
469 |
|
|
The only JTAG instruction for which we have any significant behavior in
|
470 |
|
|
this model is DEBUG. For completeness the register is parsed and a warning
|
471 |
|
|
given if any register other than DEBUG is shifted.
|
472 |
|
|
|
473 |
98 |
jeremybenn |
@param[in,out] jreg The register to shift in, and the register shifted
|
474 |
|
|
back out.
|
475 |
|
|
@param[in] num_bits The number of bits in the register. Just for
|
476 |
|
|
sanity check (it should always be 4).
|
477 |
82 |
jeremybenn |
|
478 |
|
|
@return The time in seconds which the shift took. */
|
479 |
|
|
/*---------------------------------------------------------------------------*/
|
480 |
|
|
double
|
481 |
98 |
jeremybenn |
or1ksim_jtag_shift_ir (unsigned char *jreg,
|
482 |
|
|
int num_bits)
|
483 |
82 |
jeremybenn |
{
|
484 |
98 |
jeremybenn |
jtag_shift_ir (jreg, num_bits);
|
485 |
82 |
jeremybenn |
|
486 |
98 |
jeremybenn |
return (double) num_bits * (double) config.debug.jtagcycle_ps / 1.0e12;
|
487 |
|
|
|
488 |
82 |
jeremybenn |
} /* or1ksim_jtag_shift_ir () */
|
489 |
|
|
|
490 |
|
|
|
491 |
|
|
/*---------------------------------------------------------------------------*/
|
492 |
|
|
/*!Shift a JTAG data register
|
493 |
|
|
|
494 |
|
|
@note Like all the JTAG interface functions, this must not be called
|
495 |
|
|
re-entrantly while a call to any other function (e.g. or1kim_run ())
|
496 |
|
|
is in progress. It is the responsibility of the caller to ensure this
|
497 |
|
|
constraint is met, for example by use of a SystemC mutex.
|
498 |
|
|
|
499 |
|
|
The register is represented as a vector of bytes, with the byte at offset
|
500 |
|
|
zero being shifted first, and the least significant bit in each byte being
|
501 |
|
|
shifted first. Where the register will not fit in an exact number of bytes,
|
502 |
|
|
the odd bits are in the highest numbered byte, shifted to the low end.
|
503 |
|
|
|
504 |
|
|
The register is parsed to determine which of the six possible register
|
505 |
|
|
types it could be.
|
506 |
|
|
- MODULE_SELECT
|
507 |
|
|
- WRITE_COMMNAND
|
508 |
|
|
- READ_COMMAND
|
509 |
|
|
- GO_COMMAND
|
510 |
|
|
- WRITE_CONTROL
|
511 |
|
|
- READ_CONTROL
|
512 |
|
|
|
513 |
|
|
@note In practice READ_COMMAND is not used. However the functionality is
|
514 |
|
|
provided for future compatibility.
|
515 |
|
|
|
516 |
98 |
jeremybenn |
@param[in,out] jreg The register to shift in, and the register shifted
|
517 |
|
|
back out.
|
518 |
|
|
@param[in] num_bits The number of bits in the register. This is
|
519 |
|
|
essential to prevent bugs where the size of
|
520 |
|
|
register supplied is incorrect.
|
521 |
82 |
jeremybenn |
|
522 |
|
|
@return The time in seconds which the shift took. */
|
523 |
|
|
/*---------------------------------------------------------------------------*/
|
524 |
|
|
double
|
525 |
98 |
jeremybenn |
or1ksim_jtag_shift_dr (unsigned char *jreg,
|
526 |
|
|
int num_bits)
|
527 |
82 |
jeremybenn |
{
|
528 |
98 |
jeremybenn |
jtag_shift_dr (jreg, num_bits);
|
529 |
82 |
jeremybenn |
|
530 |
98 |
jeremybenn |
return (double) num_bits * (double) config.debug.jtagcycle_ps / 1.0e12;
|
531 |
|
|
|
532 |
82 |
jeremybenn |
} /* or1ksim_jtag_shift_dr () */
|
533 |
143 |
jeremybenn |
|
534 |
|
|
|
535 |
|
|
/*---------------------------------------------------------------------------*/
|
536 |
|
|
/*!Read a block of memory.
|
537 |
|
|
|
538 |
|
|
@param[out] buf Where to put the data.
|
539 |
|
|
@param[in] addr The address to read from.
|
540 |
|
|
@param[in] len The number of bytes to read.
|
541 |
|
|
|
542 |
|
|
@return Number of bytes read, or zero if error. */
|
543 |
|
|
/*---------------------------------------------------------------------------*/
|
544 |
|
|
int
|
545 |
|
|
or1ksim_read_mem (unsigned char *buf,
|
546 |
|
|
unsigned int addr,
|
547 |
|
|
int len)
|
548 |
|
|
{
|
549 |
|
|
int off; /* Offset into the memory */
|
550 |
|
|
|
551 |
|
|
/* Fill the buffer with data */
|
552 |
|
|
for (off = 0; off < len; off++)
|
553 |
|
|
{
|
554 |
|
|
/* Check memory area is valid */
|
555 |
|
|
if (NULL == verify_memoryarea (addr + off))
|
556 |
|
|
{
|
557 |
|
|
/* Fail silently - others can raise any error message. */
|
558 |
|
|
return 0;
|
559 |
|
|
}
|
560 |
|
|
else
|
561 |
|
|
{
|
562 |
|
|
/* Get the memory direct - no translation. */
|
563 |
|
|
buf[off] = eval_direct8 (addr + off, 0, 0);
|
564 |
|
|
}
|
565 |
|
|
}
|
566 |
|
|
|
567 |
|
|
return len;
|
568 |
|
|
|
569 |
|
|
} /* or1ksim_read_mem () */
|
570 |
|
|
|
571 |
|
|
|
572 |
|
|
/*---------------------------------------------------------------------------*/
|
573 |
|
|
/*!Write a block of memory.
|
574 |
|
|
|
575 |
|
|
@param[in] buf Where to get the data from.
|
576 |
|
|
@param[in] addr The address to write to.
|
577 |
|
|
@param[in] len The number of bytes to write.
|
578 |
|
|
|
579 |
|
|
@return Number of bytes written, or zero if error. */
|
580 |
|
|
/*---------------------------------------------------------------------------*/
|
581 |
|
|
int
|
582 |
|
|
or1ksim_write_mem (unsigned char *buf,
|
583 |
|
|
unsigned int addr,
|
584 |
|
|
int len)
|
585 |
|
|
{
|
586 |
|
|
int off; /* Offset into the memory */
|
587 |
|
|
|
588 |
|
|
/* Write the bytes to memory */
|
589 |
|
|
for (off = 0; off < len; off++)
|
590 |
|
|
{
|
591 |
|
|
if (NULL == verify_memoryarea (addr + off))
|
592 |
|
|
{
|
593 |
|
|
/* Fail silently - others can raise any error message. */
|
594 |
|
|
return 0;
|
595 |
|
|
}
|
596 |
|
|
else
|
597 |
|
|
{
|
598 |
|
|
/* circumvent the read-only check usually done for mem accesses data
|
599 |
|
|
is in host order, because that's what set_direct32 needs */
|
600 |
|
|
set_program8 (addr + off, buf[off]);
|
601 |
|
|
}
|
602 |
|
|
}
|
603 |
|
|
|
604 |
|
|
return len;
|
605 |
|
|
|
606 |
|
|
} /* or1ksim_write_mem () */
|
607 |
|
|
|
608 |
|
|
|
609 |
|
|
/*---------------------------------------------------------------------------*/
|
610 |
|
|
/*!Read a single register
|
611 |
|
|
|
612 |
|
|
The registers follow the GDB sequence for OR1K: GPR0 through GPR31, PC
|
613 |
|
|
(i.e. SPR NPC) and SR (i.e. SPR SR).
|
614 |
|
|
|
615 |
|
|
@param[out] buf Where to put the data.
|
616 |
|
|
@param[in] regnum The register to read.
|
617 |
|
|
@param[in] len Size of the register in bytes
|
618 |
|
|
|
619 |
|
|
@return Size of the register, or zero if error. */
|
620 |
|
|
/*---------------------------------------------------------------------------*/
|
621 |
|
|
int
|
622 |
|
|
or1ksim_read_reg (unsigned char *buf,
|
623 |
|
|
int regnum,
|
624 |
|
|
int len)
|
625 |
|
|
{
|
626 |
|
|
unsigned long int *regbuf = (unsigned long *) buf;
|
627 |
|
|
|
628 |
|
|
if (4 != len)
|
629 |
|
|
{
|
630 |
|
|
return 0; /* Not 32-bit reg */
|
631 |
|
|
}
|
632 |
|
|
|
633 |
|
|
/* Get the relevant register */
|
634 |
|
|
if (regnum < MAX_GPRS)
|
635 |
|
|
{
|
636 |
|
|
*regbuf = cpu_state.reg[regnum];
|
637 |
|
|
}
|
638 |
|
|
else if (PPC_REGNUM == regnum)
|
639 |
|
|
{
|
640 |
|
|
*regbuf = cpu_state.sprs[SPR_PPC];
|
641 |
|
|
}
|
642 |
|
|
else if (NPC_REGNUM == regnum)
|
643 |
|
|
{
|
644 |
|
|
*regbuf = cpu_state.pc;
|
645 |
|
|
}
|
646 |
|
|
else if (SR_REGNUM == regnum)
|
647 |
|
|
{
|
648 |
|
|
*regbuf = cpu_state.sprs[SPR_SR];
|
649 |
|
|
}
|
650 |
|
|
else
|
651 |
|
|
{
|
652 |
|
|
/* Silent error response if we don't know the register */
|
653 |
|
|
return 0;
|
654 |
|
|
}
|
655 |
|
|
|
656 |
|
|
return len;
|
657 |
|
|
|
658 |
|
|
} /* or1ksim_read_reg () */
|
659 |
|
|
|
660 |
|
|
|
661 |
|
|
/*---------------------------------------------------------------------------*/
|
662 |
|
|
/*!Write a single register
|
663 |
|
|
|
664 |
|
|
The registers follow the GDB sequence for OR1K: GPR0 through GPR31, PC
|
665 |
|
|
(i.e. SPR NPC) and SR (i.e. SPR SR). The register is specified as a
|
666 |
|
|
sequence of bytes in target endian order.
|
667 |
|
|
|
668 |
|
|
Each byte is packed as a pair of hex digits.
|
669 |
|
|
|
670 |
|
|
@param[in] buf Where to get the data from.
|
671 |
|
|
@param[in] regnum The register to write.
|
672 |
|
|
@param[in] len Size of the register in bytes
|
673 |
|
|
|
674 |
|
|
@return Size of the register, or zero if error. */
|
675 |
|
|
/*---------------------------------------------------------------------------*/
|
676 |
|
|
int
|
677 |
|
|
or1ksim_write_reg (unsigned char *buf,
|
678 |
|
|
int regnum,
|
679 |
|
|
int len)
|
680 |
|
|
{
|
681 |
|
|
unsigned long int *regbuf = (unsigned long *) buf;
|
682 |
|
|
unsigned long int regval = *regbuf;
|
683 |
|
|
|
684 |
|
|
if (4 != len)
|
685 |
|
|
{
|
686 |
|
|
return 0; /* Not 32-bit reg */
|
687 |
|
|
}
|
688 |
|
|
|
689 |
|
|
/* Set the relevant register */
|
690 |
|
|
if (regnum < MAX_GPRS)
|
691 |
|
|
{
|
692 |
|
|
cpu_state.reg[regnum] =regval;
|
693 |
|
|
}
|
694 |
|
|
else if (PPC_REGNUM == regnum)
|
695 |
|
|
{
|
696 |
|
|
cpu_state.sprs[SPR_PPC] = regval;
|
697 |
|
|
}
|
698 |
|
|
else if (NPC_REGNUM == regnum)
|
699 |
|
|
{
|
700 |
|
|
if (cpu_state.pc != regval)
|
701 |
|
|
{
|
702 |
|
|
cpu_state.pc = regval;
|
703 |
|
|
cpu_state.delay_insn = 0;
|
704 |
|
|
pcnext = regval + 4;
|
705 |
|
|
}
|
706 |
|
|
}
|
707 |
|
|
else if (SR_REGNUM == regnum)
|
708 |
|
|
{
|
709 |
|
|
cpu_state.sprs[SPR_SR] = regval;
|
710 |
|
|
}
|
711 |
|
|
else
|
712 |
|
|
{
|
713 |
|
|
/* Silent error response if we don't know the register */
|
714 |
|
|
return 0;
|
715 |
|
|
}
|
716 |
|
|
|
717 |
|
|
return len;
|
718 |
|
|
|
719 |
|
|
} /* or1ksim_write_reg () */
|
720 |
|
|
|
721 |
|
|
|