1 |
233 |
julius |
|
2 |
|
|
/*============================================================================
|
3 |
|
|
|
4 |
|
|
This C source fragment is part of the SoftFloat IEC/IEEE Floating-point
|
5 |
|
|
Arithmetic Package, Release 2b.
|
6 |
|
|
|
7 |
|
|
Written by John R. Hauser. This work was made possible in part by the
|
8 |
|
|
International Computer Science Institute, located at Suite 600, 1947 Center
|
9 |
|
|
Street, Berkeley, California 94704. Funding was partially provided by the
|
10 |
|
|
National Science Foundation under grant MIP-9311980. The original version
|
11 |
|
|
of this code was written as part of a project to build a fixed-point vector
|
12 |
|
|
processor in collaboration with the University of California at Berkeley,
|
13 |
|
|
overseen by Profs. Nelson Morgan and John Wawrzynek. More information
|
14 |
|
|
is available through the Web page `http://www.cs.berkeley.edu/~jhauser/
|
15 |
|
|
arithmetic/SoftFloat.html'.
|
16 |
|
|
|
17 |
|
|
THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort has
|
18 |
|
|
been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES
|
19 |
|
|
RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS
|
20 |
|
|
AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES,
|
21 |
|
|
COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE
|
22 |
|
|
EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE
|
23 |
|
|
INSTITUTE (possibly via similar legal notice) AGAINST ALL LOSSES, COSTS, OR
|
24 |
|
|
OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE.
|
25 |
|
|
|
26 |
|
|
Derivative works are acceptable, even for commercial purposes, so long as
|
27 |
|
|
(1) the source code for the derivative work includes prominent notice that
|
28 |
|
|
the work is derivative, and (2) the source code includes prominent notice with
|
29 |
|
|
these four paragraphs for those parts of this code that are retained.
|
30 |
|
|
|
31 |
|
|
=============================================================================*/
|
32 |
|
|
|
33 |
|
|
/*----------------------------------------------------------------------------
|
34 |
|
|
| Shifts `a' right by the number of bits given in `count'. If any nonzero
|
35 |
|
|
| bits are shifted off, they are ``jammed'' into the least significant bit of
|
36 |
|
|
| the result by setting the least significant bit to 1. The value of `count'
|
37 |
|
|
| can be arbitrarily large; in particular, if `count' is greater than 32, the
|
38 |
|
|
| result will be either 0 or 1, depending on whether `a' is zero or nonzero.
|
39 |
|
|
| The result is stored in the location pointed to by `zPtr'.
|
40 |
|
|
*----------------------------------------------------------------------------*/
|
41 |
|
|
|
42 |
|
|
INLINE void shift32RightJamming( bits32 a, int16 count, bits32 *zPtr )
|
43 |
|
|
{
|
44 |
|
|
bits32 z;
|
45 |
|
|
|
46 |
|
|
if ( count == 0 ) {
|
47 |
|
|
z = a;
|
48 |
|
|
}
|
49 |
|
|
else if ( count < 32 ) {
|
50 |
|
|
z = ( a>>count ) | ( ( a<<( ( - count ) & 31 ) ) != 0 );
|
51 |
|
|
}
|
52 |
|
|
else {
|
53 |
|
|
z = ( a != 0 );
|
54 |
|
|
}
|
55 |
|
|
*zPtr = z;
|
56 |
|
|
|
57 |
|
|
}
|
58 |
|
|
|
59 |
|
|
/*----------------------------------------------------------------------------
|
60 |
|
|
| Shifts `a' right by the number of bits given in `count'. If any nonzero
|
61 |
|
|
| bits are shifted off, they are ``jammed'' into the least significant bit of
|
62 |
|
|
| the result by setting the least significant bit to 1. The value of `count'
|
63 |
|
|
| can be arbitrarily large; in particular, if `count' is greater than 64, the
|
64 |
|
|
| result will be either 0 or 1, depending on whether `a' is zero or nonzero.
|
65 |
|
|
| The result is stored in the location pointed to by `zPtr'.
|
66 |
|
|
*----------------------------------------------------------------------------*/
|
67 |
|
|
|
68 |
|
|
INLINE void shift64RightJamming( bits64 a, int16 count, bits64 *zPtr )
|
69 |
|
|
{
|
70 |
|
|
bits64 z;
|
71 |
|
|
|
72 |
|
|
if ( count == 0 ) {
|
73 |
|
|
z = a;
|
74 |
|
|
}
|
75 |
|
|
else if ( count < 64 ) {
|
76 |
|
|
z = ( a>>count ) | ( ( a<<( ( - count ) & 63 ) ) != 0 );
|
77 |
|
|
}
|
78 |
|
|
else {
|
79 |
|
|
z = ( a != 0 );
|
80 |
|
|
}
|
81 |
|
|
*zPtr = z;
|
82 |
|
|
|
83 |
|
|
}
|
84 |
|
|
|
85 |
|
|
/*----------------------------------------------------------------------------
|
86 |
|
|
| Shifts the 128-bit value formed by concatenating `a0' and `a1' right by 64
|
87 |
|
|
| _plus_ the number of bits given in `count'. The shifted result is at most
|
88 |
|
|
| 64 nonzero bits; this is stored at the location pointed to by `z0Ptr'. The
|
89 |
|
|
| bits shifted off form a second 64-bit result as follows: The _last_ bit
|
90 |
|
|
| shifted off is the most-significant bit of the extra result, and the other
|
91 |
|
|
| 63 bits of the extra result are all zero if and only if _all_but_the_last_
|
92 |
|
|
| bits shifted off were all zero. This extra result is stored in the location
|
93 |
|
|
| pointed to by `z1Ptr'. The value of `count' can be arbitrarily large.
|
94 |
|
|
| (This routine makes more sense if `a0' and `a1' are considered to form
|
95 |
|
|
| a fixed-point value with binary point between `a0' and `a1'. This fixed-
|
96 |
|
|
| point value is shifted right by the number of bits given in `count', and
|
97 |
|
|
| the integer part of the result is returned at the location pointed to by
|
98 |
|
|
| `z0Ptr'. The fractional part of the result may be slightly corrupted as
|
99 |
|
|
| described above, and is returned at the location pointed to by `z1Ptr'.)
|
100 |
|
|
*----------------------------------------------------------------------------*/
|
101 |
|
|
|
102 |
|
|
INLINE void
|
103 |
|
|
shift64ExtraRightJamming(
|
104 |
|
|
bits64 a0, bits64 a1, int16 count, bits64 *z0Ptr, bits64 *z1Ptr )
|
105 |
|
|
{
|
106 |
|
|
bits64 z0, z1;
|
107 |
|
|
int8 negCount = ( - count ) & 63;
|
108 |
|
|
|
109 |
|
|
if ( count == 0 ) {
|
110 |
|
|
z1 = a1;
|
111 |
|
|
z0 = a0;
|
112 |
|
|
}
|
113 |
|
|
else if ( count < 64 ) {
|
114 |
|
|
z1 = ( a0<
|
115 |
|
|
z0 = a0>>count;
|
116 |
|
|
}
|
117 |
|
|
else {
|
118 |
|
|
if ( count == 64 ) {
|
119 |
|
|
z1 = a0 | ( a1 != 0 );
|
120 |
|
|
}
|
121 |
|
|
else {
|
122 |
|
|
z1 = ( ( a0 | a1 ) != 0 );
|
123 |
|
|
}
|
124 |
|
|
z0 = 0;
|
125 |
|
|
}
|
126 |
|
|
*z1Ptr = z1;
|
127 |
|
|
*z0Ptr = z0;
|
128 |
|
|
|
129 |
|
|
}
|
130 |
|
|
|
131 |
|
|
/*----------------------------------------------------------------------------
|
132 |
|
|
| Shifts the 128-bit value formed by concatenating `a0' and `a1' right by the
|
133 |
|
|
| number of bits given in `count'. Any bits shifted off are lost. The value
|
134 |
|
|
| of `count' can be arbitrarily large; in particular, if `count' is greater
|
135 |
|
|
| than 128, the result will be 0. The result is broken into two 64-bit pieces
|
136 |
|
|
| which are stored at the locations pointed to by `z0Ptr' and `z1Ptr'.
|
137 |
|
|
*----------------------------------------------------------------------------*/
|
138 |
|
|
|
139 |
|
|
INLINE void
|
140 |
|
|
shift128Right(
|
141 |
|
|
bits64 a0, bits64 a1, int16 count, bits64 *z0Ptr, bits64 *z1Ptr )
|
142 |
|
|
{
|
143 |
|
|
bits64 z0, z1;
|
144 |
|
|
int8 negCount = ( - count ) & 63;
|
145 |
|
|
|
146 |
|
|
if ( count == 0 ) {
|
147 |
|
|
z1 = a1;
|
148 |
|
|
z0 = a0;
|
149 |
|
|
}
|
150 |
|
|
else if ( count < 64 ) {
|
151 |
|
|
z1 = ( a0<>count );
|
152 |
|
|
z0 = a0>>count;
|
153 |
|
|
}
|
154 |
|
|
else {
|
155 |
|
|
z1 = ( count < 64 ) ? ( a0>>( count & 63 ) ) : 0;
|
156 |
|
|
z0 = 0;
|
157 |
|
|
}
|
158 |
|
|
*z1Ptr = z1;
|
159 |
|
|
*z0Ptr = z0;
|
160 |
|
|
|
161 |
|
|
}
|
162 |
|
|
|
163 |
|
|
/*----------------------------------------------------------------------------
|
164 |
|
|
| Shifts the 128-bit value formed by concatenating `a0' and `a1' right by the
|
165 |
|
|
| number of bits given in `count'. If any nonzero bits are shifted off, they
|
166 |
|
|
| are ``jammed'' into the least significant bit of the result by setting the
|
167 |
|
|
| least significant bit to 1. The value of `count' can be arbitrarily large;
|
168 |
|
|
| in particular, if `count' is greater than 128, the result will be either
|
169 |
|
|
| 0 or 1, depending on whether the concatenation of `a0' and `a1' is zero or
|
170 |
|
|
| nonzero. The result is broken into two 64-bit pieces which are stored at
|
171 |
|
|
| the locations pointed to by `z0Ptr' and `z1Ptr'.
|
172 |
|
|
*----------------------------------------------------------------------------*/
|
173 |
|
|
|
174 |
|
|
INLINE void
|
175 |
|
|
shift128RightJamming(
|
176 |
|
|
bits64 a0, bits64 a1, int16 count, bits64 *z0Ptr, bits64 *z1Ptr )
|
177 |
|
|
{
|
178 |
|
|
bits64 z0, z1;
|
179 |
|
|
int8 negCount = ( - count ) & 63;
|
180 |
|
|
|
181 |
|
|
if ( count == 0 ) {
|
182 |
|
|
z1 = a1;
|
183 |
|
|
z0 = a0;
|
184 |
|
|
}
|
185 |
|
|
else if ( count < 64 ) {
|
186 |
|
|
z1 = ( a0<>count ) | ( ( a1<
|
187 |
|
|
z0 = a0>>count;
|
188 |
|
|
}
|
189 |
|
|
else {
|
190 |
|
|
if ( count == 64 ) {
|
191 |
|
|
z1 = a0 | ( a1 != 0 );
|
192 |
|
|
}
|
193 |
|
|
else if ( count < 128 ) {
|
194 |
|
|
z1 = ( a0>>( count & 63 ) ) | ( ( ( a0<
|
195 |
|
|
}
|
196 |
|
|
else {
|
197 |
|
|
z1 = ( ( a0 | a1 ) != 0 );
|
198 |
|
|
}
|
199 |
|
|
z0 = 0;
|
200 |
|
|
}
|
201 |
|
|
*z1Ptr = z1;
|
202 |
|
|
*z0Ptr = z0;
|
203 |
|
|
|
204 |
|
|
}
|
205 |
|
|
|
206 |
|
|
/*----------------------------------------------------------------------------
|
207 |
|
|
| Shifts the 192-bit value formed by concatenating `a0', `a1', and `a2' right
|
208 |
|
|
| by 64 _plus_ the number of bits given in `count'. The shifted result is
|
209 |
|
|
| at most 128 nonzero bits; these are broken into two 64-bit pieces which are
|
210 |
|
|
| stored at the locations pointed to by `z0Ptr' and `z1Ptr'. The bits shifted
|
211 |
|
|
| off form a third 64-bit result as follows: The _last_ bit shifted off is
|
212 |
|
|
| the most-significant bit of the extra result, and the other 63 bits of the
|
213 |
|
|
| extra result are all zero if and only if _all_but_the_last_ bits shifted off
|
214 |
|
|
| were all zero. This extra result is stored in the location pointed to by
|
215 |
|
|
| `z2Ptr'. The value of `count' can be arbitrarily large.
|
216 |
|
|
| (This routine makes more sense if `a0', `a1', and `a2' are considered
|
217 |
|
|
| to form a fixed-point value with binary point between `a1' and `a2'. This
|
218 |
|
|
| fixed-point value is shifted right by the number of bits given in `count',
|
219 |
|
|
| and the integer part of the result is returned at the locations pointed to
|
220 |
|
|
| by `z0Ptr' and `z1Ptr'. The fractional part of the result may be slightly
|
221 |
|
|
| corrupted as described above, and is returned at the location pointed to by
|
222 |
|
|
| `z2Ptr'.)
|
223 |
|
|
*----------------------------------------------------------------------------*/
|
224 |
|
|
|
225 |
|
|
INLINE void
|
226 |
|
|
shift128ExtraRightJamming(
|
227 |
|
|
bits64 a0,
|
228 |
|
|
bits64 a1,
|
229 |
|
|
bits64 a2,
|
230 |
|
|
int16 count,
|
231 |
|
|
bits64 *z0Ptr,
|
232 |
|
|
bits64 *z1Ptr,
|
233 |
|
|
bits64 *z2Ptr
|
234 |
|
|
)
|
235 |
|
|
{
|
236 |
|
|
bits64 z0, z1, z2;
|
237 |
|
|
int8 negCount = ( - count ) & 63;
|
238 |
|
|
|
239 |
|
|
if ( count == 0 ) {
|
240 |
|
|
z2 = a2;
|
241 |
|
|
z1 = a1;
|
242 |
|
|
z0 = a0;
|
243 |
|
|
}
|
244 |
|
|
else {
|
245 |
|
|
if ( count < 64 ) {
|
246 |
|
|
z2 = a1<
|
247 |
|
|
z1 = ( a0<>count );
|
248 |
|
|
z0 = a0>>count;
|
249 |
|
|
}
|
250 |
|
|
else {
|
251 |
|
|
if ( count == 64 ) {
|
252 |
|
|
z2 = a1;
|
253 |
|
|
z1 = a0;
|
254 |
|
|
}
|
255 |
|
|
else {
|
256 |
|
|
a2 |= a1;
|
257 |
|
|
if ( count < 128 ) {
|
258 |
|
|
z2 = a0<
|
259 |
|
|
z1 = a0>>( count & 63 );
|
260 |
|
|
}
|
261 |
|
|
else {
|
262 |
|
|
z2 = ( count == 128 ) ? a0 : ( a0 != 0 );
|
263 |
|
|
z1 = 0;
|
264 |
|
|
}
|
265 |
|
|
}
|
266 |
|
|
z0 = 0;
|
267 |
|
|
}
|
268 |
|
|
z2 |= ( a2 != 0 );
|
269 |
|
|
}
|
270 |
|
|
*z2Ptr = z2;
|
271 |
|
|
*z1Ptr = z1;
|
272 |
|
|
*z0Ptr = z0;
|
273 |
|
|
|
274 |
|
|
}
|
275 |
|
|
|
276 |
|
|
/*----------------------------------------------------------------------------
|
277 |
|
|
| Shifts the 128-bit value formed by concatenating `a0' and `a1' left by the
|
278 |
|
|
| number of bits given in `count'. Any bits shifted off are lost. The value
|
279 |
|
|
| of `count' must be less than 64. The result is broken into two 64-bit
|
280 |
|
|
| pieces which are stored at the locations pointed to by `z0Ptr' and `z1Ptr'.
|
281 |
|
|
*----------------------------------------------------------------------------*/
|
282 |
|
|
|
283 |
|
|
INLINE void
|
284 |
|
|
shortShift128Left(
|
285 |
|
|
bits64 a0, bits64 a1, int16 count, bits64 *z0Ptr, bits64 *z1Ptr )
|
286 |
|
|
{
|
287 |
|
|
|
288 |
|
|
*z1Ptr = a1<
|
289 |
|
|
*z0Ptr =
|
290 |
|
|
( count == 0 ) ? a0 : ( a0<>( ( - count ) & 63 ) );
|
291 |
|
|
|
292 |
|
|
}
|
293 |
|
|
|
294 |
|
|
/*----------------------------------------------------------------------------
|
295 |
|
|
| Shifts the 192-bit value formed by concatenating `a0', `a1', and `a2' left
|
296 |
|
|
| by the number of bits given in `count'. Any bits shifted off are lost.
|
297 |
|
|
| The value of `count' must be less than 64. The result is broken into three
|
298 |
|
|
| 64-bit pieces which are stored at the locations pointed to by `z0Ptr',
|
299 |
|
|
| `z1Ptr', and `z2Ptr'.
|
300 |
|
|
*----------------------------------------------------------------------------*/
|
301 |
|
|
|
302 |
|
|
INLINE void
|
303 |
|
|
shortShift192Left(
|
304 |
|
|
bits64 a0,
|
305 |
|
|
bits64 a1,
|
306 |
|
|
bits64 a2,
|
307 |
|
|
int16 count,
|
308 |
|
|
bits64 *z0Ptr,
|
309 |
|
|
bits64 *z1Ptr,
|
310 |
|
|
bits64 *z2Ptr
|
311 |
|
|
)
|
312 |
|
|
{
|
313 |
|
|
bits64 z0, z1, z2;
|
314 |
|
|
int8 negCount;
|
315 |
|
|
|
316 |
|
|
z2 = a2<
|
317 |
|
|
z1 = a1<
|
318 |
|
|
z0 = a0<
|
319 |
|
|
if ( 0 < count ) {
|
320 |
|
|
negCount = ( ( - count ) & 63 );
|
321 |
|
|
z1 |= a2>>negCount;
|
322 |
|
|
z0 |= a1>>negCount;
|
323 |
|
|
}
|
324 |
|
|
*z2Ptr = z2;
|
325 |
|
|
*z1Ptr = z1;
|
326 |
|
|
*z0Ptr = z0;
|
327 |
|
|
|
328 |
|
|
}
|
329 |
|
|
|
330 |
|
|
/*----------------------------------------------------------------------------
|
331 |
|
|
| Adds the 128-bit value formed by concatenating `a0' and `a1' to the 128-bit
|
332 |
|
|
| value formed by concatenating `b0' and `b1'. Addition is modulo 2^128, so
|
333 |
|
|
| any carry out is lost. The result is broken into two 64-bit pieces which
|
334 |
|
|
| are stored at the locations pointed to by `z0Ptr' and `z1Ptr'.
|
335 |
|
|
*----------------------------------------------------------------------------*/
|
336 |
|
|
|
337 |
|
|
INLINE void
|
338 |
|
|
add128(
|
339 |
|
|
bits64 a0, bits64 a1, bits64 b0, bits64 b1, bits64 *z0Ptr, bits64 *z1Ptr )
|
340 |
|
|
{
|
341 |
|
|
bits64 z1;
|
342 |
|
|
|
343 |
|
|
z1 = a1 + b1;
|
344 |
|
|
*z1Ptr = z1;
|
345 |
|
|
*z0Ptr = a0 + b0 + ( z1 < a1 );
|
346 |
|
|
|
347 |
|
|
}
|
348 |
|
|
|
349 |
|
|
/*----------------------------------------------------------------------------
|
350 |
|
|
| Adds the 192-bit value formed by concatenating `a0', `a1', and `a2' to the
|
351 |
|
|
| 192-bit value formed by concatenating `b0', `b1', and `b2'. Addition is
|
352 |
|
|
| modulo 2^192, so any carry out is lost. The result is broken into three
|
353 |
|
|
| 64-bit pieces which are stored at the locations pointed to by `z0Ptr',
|
354 |
|
|
| `z1Ptr', and `z2Ptr'.
|
355 |
|
|
*----------------------------------------------------------------------------*/
|
356 |
|
|
|
357 |
|
|
INLINE void
|
358 |
|
|
add192(
|
359 |
|
|
bits64 a0,
|
360 |
|
|
bits64 a1,
|
361 |
|
|
bits64 a2,
|
362 |
|
|
bits64 b0,
|
363 |
|
|
bits64 b1,
|
364 |
|
|
bits64 b2,
|
365 |
|
|
bits64 *z0Ptr,
|
366 |
|
|
bits64 *z1Ptr,
|
367 |
|
|
bits64 *z2Ptr
|
368 |
|
|
)
|
369 |
|
|
{
|
370 |
|
|
bits64 z0, z1, z2;
|
371 |
|
|
int8 carry0, carry1;
|
372 |
|
|
|
373 |
|
|
z2 = a2 + b2;
|
374 |
|
|
carry1 = ( z2 < a2 );
|
375 |
|
|
z1 = a1 + b1;
|
376 |
|
|
carry0 = ( z1 < a1 );
|
377 |
|
|
z0 = a0 + b0;
|
378 |
|
|
z1 += carry1;
|
379 |
|
|
z0 += ( z1 < carry1 );
|
380 |
|
|
z0 += carry0;
|
381 |
|
|
*z2Ptr = z2;
|
382 |
|
|
*z1Ptr = z1;
|
383 |
|
|
*z0Ptr = z0;
|
384 |
|
|
|
385 |
|
|
}
|
386 |
|
|
|
387 |
|
|
/*----------------------------------------------------------------------------
|
388 |
|
|
| Subtracts the 128-bit value formed by concatenating `b0' and `b1' from the
|
389 |
|
|
| 128-bit value formed by concatenating `a0' and `a1'. Subtraction is modulo
|
390 |
|
|
| 2^128, so any borrow out (carry out) is lost. The result is broken into two
|
391 |
|
|
| 64-bit pieces which are stored at the locations pointed to by `z0Ptr' and
|
392 |
|
|
| `z1Ptr'.
|
393 |
|
|
*----------------------------------------------------------------------------*/
|
394 |
|
|
|
395 |
|
|
INLINE void
|
396 |
|
|
sub128(
|
397 |
|
|
bits64 a0, bits64 a1, bits64 b0, bits64 b1, bits64 *z0Ptr, bits64 *z1Ptr )
|
398 |
|
|
{
|
399 |
|
|
|
400 |
|
|
*z1Ptr = a1 - b1;
|
401 |
|
|
*z0Ptr = a0 - b0 - ( a1 < b1 );
|
402 |
|
|
|
403 |
|
|
}
|
404 |
|
|
|
405 |
|
|
/*----------------------------------------------------------------------------
|
406 |
|
|
| Subtracts the 192-bit value formed by concatenating `b0', `b1', and `b2'
|
407 |
|
|
| from the 192-bit value formed by concatenating `a0', `a1', and `a2'.
|
408 |
|
|
| Subtraction is modulo 2^192, so any borrow out (carry out) is lost. The
|
409 |
|
|
| result is broken into three 64-bit pieces which are stored at the locations
|
410 |
|
|
| pointed to by `z0Ptr', `z1Ptr', and `z2Ptr'.
|
411 |
|
|
*----------------------------------------------------------------------------*/
|
412 |
|
|
|
413 |
|
|
INLINE void
|
414 |
|
|
sub192(
|
415 |
|
|
bits64 a0,
|
416 |
|
|
bits64 a1,
|
417 |
|
|
bits64 a2,
|
418 |
|
|
bits64 b0,
|
419 |
|
|
bits64 b1,
|
420 |
|
|
bits64 b2,
|
421 |
|
|
bits64 *z0Ptr,
|
422 |
|
|
bits64 *z1Ptr,
|
423 |
|
|
bits64 *z2Ptr
|
424 |
|
|
)
|
425 |
|
|
{
|
426 |
|
|
bits64 z0, z1, z2;
|
427 |
|
|
int8 borrow0, borrow1;
|
428 |
|
|
|
429 |
|
|
z2 = a2 - b2;
|
430 |
|
|
borrow1 = ( a2 < b2 );
|
431 |
|
|
z1 = a1 - b1;
|
432 |
|
|
borrow0 = ( a1 < b1 );
|
433 |
|
|
z0 = a0 - b0;
|
434 |
|
|
z0 -= ( z1 < borrow1 );
|
435 |
|
|
z1 -= borrow1;
|
436 |
|
|
z0 -= borrow0;
|
437 |
|
|
*z2Ptr = z2;
|
438 |
|
|
*z1Ptr = z1;
|
439 |
|
|
*z0Ptr = z0;
|
440 |
|
|
|
441 |
|
|
}
|
442 |
|
|
|
443 |
|
|
/*----------------------------------------------------------------------------
|
444 |
|
|
| Multiplies `a' by `b' to obtain a 128-bit product. The product is broken
|
445 |
|
|
| into two 64-bit pieces which are stored at the locations pointed to by
|
446 |
|
|
| `z0Ptr' and `z1Ptr'.
|
447 |
|
|
*----------------------------------------------------------------------------*/
|
448 |
|
|
|
449 |
|
|
INLINE void mul64To128( bits64 a, bits64 b, bits64 *z0Ptr, bits64 *z1Ptr )
|
450 |
|
|
{
|
451 |
|
|
bits32 aHigh, aLow, bHigh, bLow;
|
452 |
|
|
bits64 z0, zMiddleA, zMiddleB, z1;
|
453 |
|
|
|
454 |
|
|
aLow = a;
|
455 |
|
|
aHigh = a>>32;
|
456 |
|
|
bLow = b;
|
457 |
|
|
bHigh = b>>32;
|
458 |
|
|
z1 = ( (bits64) aLow ) * bLow;
|
459 |
|
|
zMiddleA = ( (bits64) aLow ) * bHigh;
|
460 |
|
|
zMiddleB = ( (bits64) aHigh ) * bLow;
|
461 |
|
|
z0 = ( (bits64) aHigh ) * bHigh;
|
462 |
|
|
zMiddleA += zMiddleB;
|
463 |
|
|
z0 += ( ( (bits64) ( zMiddleA < zMiddleB ) )<<32 ) + ( zMiddleA>>32 );
|
464 |
|
|
zMiddleA <<= 32;
|
465 |
|
|
z1 += zMiddleA;
|
466 |
|
|
z0 += ( z1 < zMiddleA );
|
467 |
|
|
*z1Ptr = z1;
|
468 |
|
|
*z0Ptr = z0;
|
469 |
|
|
|
470 |
|
|
}
|
471 |
|
|
|
472 |
|
|
/*----------------------------------------------------------------------------
|
473 |
|
|
| Multiplies the 128-bit value formed by concatenating `a0' and `a1' by
|
474 |
|
|
| `b' to obtain a 192-bit product. The product is broken into three 64-bit
|
475 |
|
|
| pieces which are stored at the locations pointed to by `z0Ptr', `z1Ptr', and
|
476 |
|
|
| `z2Ptr'.
|
477 |
|
|
*----------------------------------------------------------------------------*/
|
478 |
|
|
|
479 |
|
|
INLINE void
|
480 |
|
|
mul128By64To192(
|
481 |
|
|
bits64 a0,
|
482 |
|
|
bits64 a1,
|
483 |
|
|
bits64 b,
|
484 |
|
|
bits64 *z0Ptr,
|
485 |
|
|
bits64 *z1Ptr,
|
486 |
|
|
bits64 *z2Ptr
|
487 |
|
|
)
|
488 |
|
|
{
|
489 |
|
|
bits64 z0, z1, z2, more1;
|
490 |
|
|
|
491 |
|
|
mul64To128( a1, b, &z1, &z2 );
|
492 |
|
|
mul64To128( a0, b, &z0, &more1 );
|
493 |
|
|
add128( z0, more1, 0, z1, &z0, &z1 );
|
494 |
|
|
*z2Ptr = z2;
|
495 |
|
|
*z1Ptr = z1;
|
496 |
|
|
*z0Ptr = z0;
|
497 |
|
|
|
498 |
|
|
}
|
499 |
|
|
|
500 |
|
|
/*----------------------------------------------------------------------------
|
501 |
|
|
| Multiplies the 128-bit value formed by concatenating `a0' and `a1' to the
|
502 |
|
|
| 128-bit value formed by concatenating `b0' and `b1' to obtain a 256-bit
|
503 |
|
|
| product. The product is broken into four 64-bit pieces which are stored at
|
504 |
|
|
| the locations pointed to by `z0Ptr', `z1Ptr', `z2Ptr', and `z3Ptr'.
|
505 |
|
|
*----------------------------------------------------------------------------*/
|
506 |
|
|
|
507 |
|
|
INLINE void
|
508 |
|
|
mul128To256(
|
509 |
|
|
bits64 a0,
|
510 |
|
|
bits64 a1,
|
511 |
|
|
bits64 b0,
|
512 |
|
|
bits64 b1,
|
513 |
|
|
bits64 *z0Ptr,
|
514 |
|
|
bits64 *z1Ptr,
|
515 |
|
|
bits64 *z2Ptr,
|
516 |
|
|
bits64 *z3Ptr
|
517 |
|
|
)
|
518 |
|
|
{
|
519 |
|
|
bits64 z0, z1, z2, z3;
|
520 |
|
|
bits64 more1, more2;
|
521 |
|
|
|
522 |
|
|
mul64To128( a1, b1, &z2, &z3 );
|
523 |
|
|
mul64To128( a1, b0, &z1, &more2 );
|
524 |
|
|
add128( z1, more2, 0, z2, &z1, &z2 );
|
525 |
|
|
mul64To128( a0, b0, &z0, &more1 );
|
526 |
|
|
add128( z0, more1, 0, z1, &z0, &z1 );
|
527 |
|
|
mul64To128( a0, b1, &more1, &more2 );
|
528 |
|
|
add128( more1, more2, 0, z2, &more1, &z2 );
|
529 |
|
|
add128( z0, z1, 0, more1, &z0, &z1 );
|
530 |
|
|
*z3Ptr = z3;
|
531 |
|
|
*z2Ptr = z2;
|
532 |
|
|
*z1Ptr = z1;
|
533 |
|
|
*z0Ptr = z0;
|
534 |
|
|
|
535 |
|
|
}
|
536 |
|
|
|
537 |
|
|
/*----------------------------------------------------------------------------
|
538 |
|
|
| Returns an approximation to the 64-bit integer quotient obtained by dividing
|
539 |
|
|
| `b' into the 128-bit value formed by concatenating `a0' and `a1'. The
|
540 |
|
|
| divisor `b' must be at least 2^63. If q is the exact quotient truncated
|
541 |
|
|
| toward zero, the approximation returned lies between q and q + 2 inclusive.
|
542 |
|
|
| If the exact quotient q is larger than 64 bits, the maximum positive 64-bit
|
543 |
|
|
| unsigned integer is returned.
|
544 |
|
|
*----------------------------------------------------------------------------*/
|
545 |
|
|
|
546 |
|
|
static bits64 estimateDiv128To64( bits64 a0, bits64 a1, bits64 b )
|
547 |
|
|
{
|
548 |
|
|
bits64 b0, b1;
|
549 |
|
|
bits64 rem0, rem1, term0, term1;
|
550 |
|
|
bits64 z;
|
551 |
|
|
|
552 |
|
|
if ( b <= a0 ) return LIT64( 0xFFFFFFFFFFFFFFFF );
|
553 |
|
|
b0 = b>>32;
|
554 |
|
|
z = ( b0<<32 <= a0 ) ? LIT64( 0xFFFFFFFF00000000 ) : ( a0 / b0 )<<32;
|
555 |
|
|
mul64To128( b, z, &term0, &term1 );
|
556 |
|
|
sub128( a0, a1, term0, term1, &rem0, &rem1 );
|
557 |
|
|
while ( ( (sbits64) rem0 ) < 0 ) {
|
558 |
|
|
z -= LIT64( 0x100000000 );
|
559 |
|
|
b1 = b<<32;
|
560 |
|
|
add128( rem0, rem1, b0, b1, &rem0, &rem1 );
|
561 |
|
|
}
|
562 |
|
|
rem0 = ( rem0<<32 ) | ( rem1>>32 );
|
563 |
|
|
z |= ( b0<<32 <= rem0 ) ? 0xFFFFFFFF : rem0 / b0;
|
564 |
|
|
return z;
|
565 |
|
|
|
566 |
|
|
}
|
567 |
|
|
|
568 |
|
|
/*----------------------------------------------------------------------------
|
569 |
|
|
| Returns an approximation to the square root of the 32-bit significand given
|
570 |
|
|
| by `a'. Considered as an integer, `a' must be at least 2^31. If bit 0 of
|
571 |
|
|
| `aExp' (the least significant bit) is 1, the integer returned approximates
|
572 |
|
|
| 2^31*sqrt(`a'/2^31), where `a' is considered an integer. If bit 0 of `aExp'
|
573 |
|
|
| is 0, the integer returned approximates 2^31*sqrt(`a'/2^30). In either
|
574 |
|
|
| case, the approximation returned lies strictly within +/-2 of the exact
|
575 |
|
|
| value.
|
576 |
|
|
*----------------------------------------------------------------------------*/
|
577 |
|
|
|
578 |
|
|
static bits32 estimateSqrt32( int16 aExp, bits32 a )
|
579 |
|
|
{
|
580 |
|
|
static const bits16 sqrtOddAdjustments[] = {
|
581 |
|
|
0x0004, 0x0022, 0x005D, 0x00B1, 0x011D, 0x019F, 0x0236, 0x02E0,
|
582 |
|
|
0x039C, 0x0468, 0x0545, 0x0631, 0x072B, 0x0832, 0x0946, 0x0A67
|
583 |
|
|
};
|
584 |
|
|
static const bits16 sqrtEvenAdjustments[] = {
|
585 |
|
|
0x0A2D, 0x08AF, 0x075A, 0x0629, 0x051A, 0x0429, 0x0356, 0x029E,
|
586 |
|
|
0x0200, 0x0179, 0x0109, 0x00AF, 0x0068, 0x0034, 0x0012, 0x0002
|
587 |
|
|
};
|
588 |
|
|
int8 index;
|
589 |
|
|
bits32 z;
|
590 |
|
|
|
591 |
|
|
index = ( a>>27 ) & 15;
|
592 |
|
|
if ( aExp & 1 ) {
|
593 |
|
|
z = 0x4000 + ( a>>17 ) - sqrtOddAdjustments[ index ];
|
594 |
|
|
z = ( ( a / z )<<14 ) + ( z<<15 );
|
595 |
|
|
a >>= 1;
|
596 |
|
|
}
|
597 |
|
|
else {
|
598 |
|
|
z = 0x8000 + ( a>>17 ) - sqrtEvenAdjustments[ index ];
|
599 |
|
|
z = a / z + z;
|
600 |
|
|
z = ( 0x20000 <= z ) ? 0xFFFF8000 : ( z<<15 );
|
601 |
|
|
if ( z <= a ) return (bits32) ( ( (sbits32) a )>>1 );
|
602 |
|
|
}
|
603 |
|
|
return ( (bits32) ( ( ( (bits64) a )<<31 ) / z ) ) + ( z>>1 );
|
604 |
|
|
|
605 |
|
|
}
|
606 |
|
|
|
607 |
|
|
/*----------------------------------------------------------------------------
|
608 |
|
|
| Returns the number of leading 0 bits before the most-significant 1 bit of
|
609 |
|
|
| `a'. If `a' is zero, 32 is returned.
|
610 |
|
|
*----------------------------------------------------------------------------*/
|
611 |
|
|
|
612 |
|
|
static int8 countLeadingZeros32( bits32 a )
|
613 |
|
|
{
|
614 |
|
|
static const int8 countLeadingZerosHigh[] = {
|
615 |
|
|
8, 7, 6, 6, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4,
|
616 |
|
|
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
|
617 |
|
|
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
|
618 |
|
|
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
|
619 |
|
|
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
620 |
|
|
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
621 |
|
|
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
622 |
|
|
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
623 |
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
624 |
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
625 |
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
626 |
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
627 |
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
628 |
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
629 |
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
630 |
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
|
631 |
|
|
};
|
632 |
|
|
int8 shiftCount;
|
633 |
|
|
|
634 |
|
|
shiftCount = 0;
|
635 |
|
|
if ( a < 0x10000 ) {
|
636 |
|
|
shiftCount += 16;
|
637 |
|
|
a <<= 16;
|
638 |
|
|
}
|
639 |
|
|
if ( a < 0x1000000 ) {
|
640 |
|
|
shiftCount += 8;
|
641 |
|
|
a <<= 8;
|
642 |
|
|
}
|
643 |
|
|
shiftCount += countLeadingZerosHigh[ a>>24 ];
|
644 |
|
|
return shiftCount;
|
645 |
|
|
|
646 |
|
|
}
|
647 |
|
|
|
648 |
|
|
/*----------------------------------------------------------------------------
|
649 |
|
|
| Returns the number of leading 0 bits before the most-significant 1 bit of
|
650 |
|
|
| `a'. If `a' is zero, 64 is returned.
|
651 |
|
|
*----------------------------------------------------------------------------*/
|
652 |
|
|
|
653 |
|
|
static int8 countLeadingZeros64( bits64 a )
|
654 |
|
|
{
|
655 |
|
|
int8 shiftCount;
|
656 |
|
|
|
657 |
|
|
shiftCount = 0;
|
658 |
|
|
if ( a < ( (bits64) 1 )<<32 ) {
|
659 |
|
|
shiftCount += 32;
|
660 |
|
|
}
|
661 |
|
|
else {
|
662 |
|
|
a >>= 32;
|
663 |
|
|
}
|
664 |
|
|
shiftCount += countLeadingZeros32( a );
|
665 |
|
|
return shiftCount;
|
666 |
|
|
|
667 |
|
|
}
|
668 |
|
|
|
669 |
|
|
/*----------------------------------------------------------------------------
|
670 |
|
|
| Returns 1 if the 128-bit value formed by concatenating `a0' and `a1'
|
671 |
|
|
| is equal to the 128-bit value formed by concatenating `b0' and `b1'.
|
672 |
|
|
| Otherwise, returns 0.
|
673 |
|
|
*----------------------------------------------------------------------------*/
|
674 |
|
|
|
675 |
|
|
INLINE flag eq128( bits64 a0, bits64 a1, bits64 b0, bits64 b1 )
|
676 |
|
|
{
|
677 |
|
|
|
678 |
|
|
return ( a0 == b0 ) && ( a1 == b1 );
|
679 |
|
|
|
680 |
|
|
}
|
681 |
|
|
|
682 |
|
|
/*----------------------------------------------------------------------------
|
683 |
|
|
| Returns 1 if the 128-bit value formed by concatenating `a0' and `a1' is less
|
684 |
|
|
| than or equal to the 128-bit value formed by concatenating `b0' and `b1'.
|
685 |
|
|
| Otherwise, returns 0.
|
686 |
|
|
*----------------------------------------------------------------------------*/
|
687 |
|
|
|
688 |
|
|
INLINE flag le128( bits64 a0, bits64 a1, bits64 b0, bits64 b1 )
|
689 |
|
|
{
|
690 |
|
|
|
691 |
|
|
return ( a0 < b0 ) || ( ( a0 == b0 ) && ( a1 <= b1 ) );
|
692 |
|
|
|
693 |
|
|
}
|
694 |
|
|
|
695 |
|
|
/*----------------------------------------------------------------------------
|
696 |
|
|
| Returns 1 if the 128-bit value formed by concatenating `a0' and `a1' is less
|
697 |
|
|
| than the 128-bit value formed by concatenating `b0' and `b1'. Otherwise,
|
698 |
|
|
| returns 0.
|
699 |
|
|
*----------------------------------------------------------------------------*/
|
700 |
|
|
|
701 |
|
|
INLINE flag lt128( bits64 a0, bits64 a1, bits64 b0, bits64 b1 )
|
702 |
|
|
{
|
703 |
|
|
|
704 |
|
|
return ( a0 < b0 ) || ( ( a0 == b0 ) && ( a1 < b1 ) );
|
705 |
|
|
|
706 |
|
|
}
|
707 |
|
|
|
708 |
|
|
/*----------------------------------------------------------------------------
|
709 |
|
|
| Returns 1 if the 128-bit value formed by concatenating `a0' and `a1' is
|
710 |
|
|
| not equal to the 128-bit value formed by concatenating `b0' and `b1'.
|
711 |
|
|
| Otherwise, returns 0.
|
712 |
|
|
*----------------------------------------------------------------------------*/
|
713 |
|
|
|
714 |
|
|
INLINE flag ne128( bits64 a0, bits64 a1, bits64 b0, bits64 b1 )
|
715 |
|
|
{
|
716 |
|
|
|
717 |
|
|
return ( a0 != b0 ) || ( a1 != b1 );
|
718 |
|
|
|
719 |
|
|
}
|
720 |
|
|
|