1 |
233 |
julius |
|
2 |
|
|
/*============================================================================
|
3 |
|
|
|
4 |
|
|
This C source fragment is part of the SoftFloat IEC/IEEE Floating-point
|
5 |
|
|
Arithmetic Package, Release 2b.
|
6 |
|
|
|
7 |
|
|
Written by John R. Hauser. This work was made possible in part by the
|
8 |
|
|
International Computer Science Institute, located at Suite 600, 1947 Center
|
9 |
|
|
Street, Berkeley, California 94704. Funding was partially provided by the
|
10 |
|
|
National Science Foundation under grant MIP-9311980. The original version
|
11 |
|
|
of this code was written as part of a project to build a fixed-point vector
|
12 |
|
|
processor in collaboration with the University of California at Berkeley,
|
13 |
|
|
overseen by Profs. Nelson Morgan and John Wawrzynek. More information
|
14 |
|
|
is available through the Web page `http://www.cs.berkeley.edu/~jhauser/
|
15 |
|
|
arithmetic/SoftFloat.html'.
|
16 |
|
|
|
17 |
|
|
THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort has
|
18 |
|
|
been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES
|
19 |
|
|
RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS
|
20 |
|
|
AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES,
|
21 |
|
|
COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE
|
22 |
|
|
EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE
|
23 |
|
|
INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR
|
24 |
|
|
OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE.
|
25 |
|
|
|
26 |
|
|
Derivative works are acceptable, even for commercial purposes, so long as
|
27 |
|
|
(1) the source code for the derivative work includes prominent notice that
|
28 |
|
|
the work is derivative, and (2) the source code includes prominent notice with
|
29 |
|
|
these four paragraphs for those parts of this code that are retained.
|
30 |
|
|
|
31 |
|
|
=============================================================================*/
|
32 |
|
|
|
33 |
|
|
/*----------------------------------------------------------------------------
|
34 |
|
|
| Underflow tininess-detection mode, statically initialized to default value.
|
35 |
|
|
| (The declaration in `softfloat.h' must match the `int8' type here.)
|
36 |
|
|
*----------------------------------------------------------------------------*/
|
37 |
|
|
int8 float_detect_tininess = float_tininess_after_rounding;
|
38 |
|
|
|
39 |
|
|
/*----------------------------------------------------------------------------
|
40 |
|
|
| Raises the exceptions specified by `flags'. Floating-point traps can be
|
41 |
|
|
| defined here if desired. It is currently not possible for such a trap to
|
42 |
|
|
| substitute a result value. If traps are not implemented, this routine
|
43 |
|
|
| should be simply `float_exception_flags |= flags;'.
|
44 |
|
|
*----------------------------------------------------------------------------*/
|
45 |
|
|
|
46 |
|
|
void float_raise( int8 flags )
|
47 |
|
|
{
|
48 |
|
|
|
49 |
|
|
float_exception_flags |= flags;
|
50 |
|
|
|
51 |
|
|
}
|
52 |
|
|
|
53 |
|
|
/*----------------------------------------------------------------------------
|
54 |
|
|
| Internal canonical NaN format.
|
55 |
|
|
*----------------------------------------------------------------------------*/
|
56 |
|
|
typedef struct {
|
57 |
|
|
flag sign;
|
58 |
|
|
bits64 high, low;
|
59 |
|
|
} commonNaNT;
|
60 |
|
|
|
61 |
|
|
/*----------------------------------------------------------------------------
|
62 |
|
|
| The pattern for a default generated single-precision NaN.
|
63 |
|
|
*----------------------------------------------------------------------------*/
|
64 |
|
|
//#define float32_default_nan 0xFFFFFFFF
|
65 |
|
|
#define float32_default_nan 0xFFC00000
|
66 |
|
|
|
67 |
|
|
/*----------------------------------------------------------------------------
|
68 |
|
|
| Returns 1 if the single-precision floating-point value `a' is a NaN;
|
69 |
|
|
| otherwise returns 0.
|
70 |
|
|
*----------------------------------------------------------------------------*/
|
71 |
|
|
|
72 |
|
|
flag float32_is_nan( float32 a )
|
73 |
|
|
{
|
74 |
|
|
|
75 |
|
|
return ( 0xFF000000 < (bits32) ( a<<1 ) );
|
76 |
|
|
|
77 |
|
|
}
|
78 |
|
|
|
79 |
|
|
/*----------------------------------------------------------------------------
|
80 |
|
|
| Returns 1 if the single-precision floating-point value `a' is a signaling
|
81 |
|
|
| NaN; otherwise returns 0.
|
82 |
|
|
*----------------------------------------------------------------------------*/
|
83 |
|
|
|
84 |
|
|
flag float32_is_signaling_nan( float32 a )
|
85 |
|
|
{
|
86 |
|
|
|
87 |
|
|
return ( ( ( a>>22 ) & 0x1FF ) == 0x1FE ) && ( a & 0x003FFFFF );
|
88 |
|
|
|
89 |
|
|
}
|
90 |
|
|
|
91 |
|
|
/*----------------------------------------------------------------------------
|
92 |
|
|
| Returns the result of converting the single-precision floating-point NaN
|
93 |
|
|
| `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
|
94 |
|
|
| exception is raised.
|
95 |
|
|
*----------------------------------------------------------------------------*/
|
96 |
|
|
|
97 |
|
|
static commonNaNT float32ToCommonNaN( float32 a )
|
98 |
|
|
{
|
99 |
|
|
commonNaNT z;
|
100 |
|
|
|
101 |
|
|
if ( float32_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
|
102 |
|
|
z.sign = a>>31;
|
103 |
|
|
z.low = 0;
|
104 |
|
|
z.high = ( (bits64) a )<<41;
|
105 |
|
|
return z;
|
106 |
|
|
|
107 |
|
|
}
|
108 |
|
|
|
109 |
|
|
/*----------------------------------------------------------------------------
|
110 |
|
|
| Returns the result of converting the canonical NaN `a' to the single-
|
111 |
|
|
| precision floating-point format.
|
112 |
|
|
*----------------------------------------------------------------------------*/
|
113 |
|
|
|
114 |
|
|
static float32 commonNaNToFloat32( commonNaNT a )
|
115 |
|
|
{
|
116 |
|
|
|
117 |
|
|
return ( ( (bits32) a.sign )<<31 ) | 0x7FC00000 | ( a.high>>41 );
|
118 |
|
|
|
119 |
|
|
}
|
120 |
|
|
|
121 |
|
|
/*----------------------------------------------------------------------------
|
122 |
|
|
| Takes two single-precision floating-point values `a' and `b', one of which
|
123 |
|
|
| is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a
|
124 |
|
|
| signaling NaN, the invalid exception is raised.
|
125 |
|
|
*----------------------------------------------------------------------------*/
|
126 |
|
|
|
127 |
|
|
static float32 propagateFloat32NaN( float32 a, float32 b )
|
128 |
|
|
{
|
129 |
|
|
flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
|
130 |
|
|
|
131 |
|
|
aIsNaN = float32_is_nan( a );
|
132 |
|
|
aIsSignalingNaN = float32_is_signaling_nan( a );
|
133 |
|
|
bIsNaN = float32_is_nan( b );
|
134 |
|
|
bIsSignalingNaN = float32_is_signaling_nan( b );
|
135 |
|
|
a |= 0x00400000;
|
136 |
|
|
b |= 0x00400000;
|
137 |
|
|
if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
|
138 |
|
|
if ( aIsNaN ) {
|
139 |
|
|
return ( aIsSignalingNaN & bIsNaN ) ? b : a;
|
140 |
|
|
}
|
141 |
|
|
else {
|
142 |
|
|
return b;
|
143 |
|
|
}
|
144 |
|
|
|
145 |
|
|
}
|
146 |
|
|
|
147 |
|
|
/*----------------------------------------------------------------------------
|
148 |
|
|
| The pattern for a default generated double-precision NaN.
|
149 |
|
|
*----------------------------------------------------------------------------*/
|
150 |
|
|
#define float64_default_nan LIT64( 0xFFFFFFFFFFFFFFFF )
|
151 |
|
|
|
152 |
|
|
/*----------------------------------------------------------------------------
|
153 |
|
|
| Returns 1 if the double-precision floating-point value `a' is a NaN;
|
154 |
|
|
| otherwise returns 0.
|
155 |
|
|
*----------------------------------------------------------------------------*/
|
156 |
|
|
|
157 |
|
|
flag float64_is_nan( float64 a )
|
158 |
|
|
{
|
159 |
|
|
|
160 |
|
|
return ( LIT64( 0xFFE0000000000000 ) < (bits64) ( a<<1 ) );
|
161 |
|
|
|
162 |
|
|
}
|
163 |
|
|
|
164 |
|
|
/*----------------------------------------------------------------------------
|
165 |
|
|
| Returns 1 if the double-precision floating-point value `a' is a signaling
|
166 |
|
|
| NaN; otherwise returns 0.
|
167 |
|
|
*----------------------------------------------------------------------------*/
|
168 |
|
|
|
169 |
|
|
flag float64_is_signaling_nan( float64 a )
|
170 |
|
|
{
|
171 |
|
|
|
172 |
|
|
return
|
173 |
|
|
( ( ( a>>51 ) & 0xFFF ) == 0xFFE )
|
174 |
|
|
&& ( a & LIT64( 0x0007FFFFFFFFFFFF ) );
|
175 |
|
|
|
176 |
|
|
}
|
177 |
|
|
|
178 |
|
|
/*----------------------------------------------------------------------------
|
179 |
|
|
| Returns the result of converting the double-precision floating-point NaN
|
180 |
|
|
| `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
|
181 |
|
|
| exception is raised.
|
182 |
|
|
*----------------------------------------------------------------------------*/
|
183 |
|
|
|
184 |
|
|
static commonNaNT float64ToCommonNaN( float64 a )
|
185 |
|
|
{
|
186 |
|
|
commonNaNT z;
|
187 |
|
|
|
188 |
|
|
if ( float64_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
|
189 |
|
|
z.sign = a>>63;
|
190 |
|
|
z.low = 0;
|
191 |
|
|
z.high = a<<12;
|
192 |
|
|
return z;
|
193 |
|
|
|
194 |
|
|
}
|
195 |
|
|
|
196 |
|
|
/*----------------------------------------------------------------------------
|
197 |
|
|
| Returns the result of converting the canonical NaN `a' to the double-
|
198 |
|
|
| precision floating-point format.
|
199 |
|
|
*----------------------------------------------------------------------------*/
|
200 |
|
|
|
201 |
|
|
static float64 commonNaNToFloat64( commonNaNT a )
|
202 |
|
|
{
|
203 |
|
|
|
204 |
|
|
return
|
205 |
|
|
( ( (bits64) a.sign )<<63 )
|
206 |
|
|
| LIT64( 0x7FF8000000000000 )
|
207 |
|
|
| ( a.high>>12 );
|
208 |
|
|
|
209 |
|
|
}
|
210 |
|
|
|
211 |
|
|
/*----------------------------------------------------------------------------
|
212 |
|
|
| Takes two double-precision floating-point values `a' and `b', one of which
|
213 |
|
|
| is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a
|
214 |
|
|
| signaling NaN, the invalid exception is raised.
|
215 |
|
|
*----------------------------------------------------------------------------*/
|
216 |
|
|
|
217 |
|
|
static float64 propagateFloat64NaN( float64 a, float64 b )
|
218 |
|
|
{
|
219 |
|
|
flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
|
220 |
|
|
|
221 |
|
|
aIsNaN = float64_is_nan( a );
|
222 |
|
|
aIsSignalingNaN = float64_is_signaling_nan( a );
|
223 |
|
|
bIsNaN = float64_is_nan( b );
|
224 |
|
|
bIsSignalingNaN = float64_is_signaling_nan( b );
|
225 |
|
|
a |= LIT64( 0x0008000000000000 );
|
226 |
|
|
b |= LIT64( 0x0008000000000000 );
|
227 |
|
|
if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
|
228 |
|
|
if ( aIsNaN ) {
|
229 |
|
|
return ( aIsSignalingNaN & bIsNaN ) ? b : a;
|
230 |
|
|
}
|
231 |
|
|
else {
|
232 |
|
|
return b;
|
233 |
|
|
}
|
234 |
|
|
|
235 |
|
|
}
|
236 |
|
|
|
237 |
|
|
#ifdef FLOATX80
|
238 |
|
|
|
239 |
|
|
/*----------------------------------------------------------------------------
|
240 |
|
|
| The pattern for a default generated extended double-precision NaN. The
|
241 |
|
|
| `high' and `low' values hold the most- and least-significant bits,
|
242 |
|
|
| respectively.
|
243 |
|
|
*----------------------------------------------------------------------------*/
|
244 |
|
|
#define floatx80_default_nan_high 0xFFFF
|
245 |
|
|
#define floatx80_default_nan_low LIT64( 0xFFFFFFFFFFFFFFFF )
|
246 |
|
|
|
247 |
|
|
/*----------------------------------------------------------------------------
|
248 |
|
|
| Returns 1 if the extended double-precision floating-point value `a' is a
|
249 |
|
|
| NaN; otherwise returns 0.
|
250 |
|
|
*----------------------------------------------------------------------------*/
|
251 |
|
|
|
252 |
|
|
flag floatx80_is_nan( floatx80 a )
|
253 |
|
|
{
|
254 |
|
|
|
255 |
|
|
return ( ( a.high & 0x7FFF ) == 0x7FFF ) && (bits64) ( a.low<<1 );
|
256 |
|
|
|
257 |
|
|
}
|
258 |
|
|
|
259 |
|
|
/*----------------------------------------------------------------------------
|
260 |
|
|
| Returns 1 if the extended double-precision floating-point value `a' is a
|
261 |
|
|
| signaling NaN; otherwise returns 0.
|
262 |
|
|
*----------------------------------------------------------------------------*/
|
263 |
|
|
|
264 |
|
|
flag floatx80_is_signaling_nan( floatx80 a )
|
265 |
|
|
{
|
266 |
|
|
bits64 aLow;
|
267 |
|
|
|
268 |
|
|
aLow = a.low & ~ LIT64( 0x4000000000000000 );
|
269 |
|
|
return
|
270 |
|
|
( ( a.high & 0x7FFF ) == 0x7FFF )
|
271 |
|
|
&& (bits64) ( aLow<<1 )
|
272 |
|
|
&& ( a.low == aLow );
|
273 |
|
|
|
274 |
|
|
}
|
275 |
|
|
|
276 |
|
|
/*----------------------------------------------------------------------------
|
277 |
|
|
| Returns the result of converting the extended double-precision floating-
|
278 |
|
|
| point NaN `a' to the canonical NaN format. If `a' is a signaling NaN, the
|
279 |
|
|
| invalid exception is raised.
|
280 |
|
|
*----------------------------------------------------------------------------*/
|
281 |
|
|
|
282 |
|
|
static commonNaNT floatx80ToCommonNaN( floatx80 a )
|
283 |
|
|
{
|
284 |
|
|
commonNaNT z;
|
285 |
|
|
|
286 |
|
|
if ( floatx80_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
|
287 |
|
|
z.sign = a.high>>15;
|
288 |
|
|
z.low = 0;
|
289 |
|
|
z.high = a.low<<1;
|
290 |
|
|
return z;
|
291 |
|
|
|
292 |
|
|
}
|
293 |
|
|
|
294 |
|
|
/*----------------------------------------------------------------------------
|
295 |
|
|
| Returns the result of converting the canonical NaN `a' to the extended
|
296 |
|
|
| double-precision floating-point format.
|
297 |
|
|
*----------------------------------------------------------------------------*/
|
298 |
|
|
|
299 |
|
|
static floatx80 commonNaNToFloatx80( commonNaNT a )
|
300 |
|
|
{
|
301 |
|
|
floatx80 z;
|
302 |
|
|
|
303 |
|
|
z.low = LIT64( 0xC000000000000000 ) | ( a.high>>1 );
|
304 |
|
|
z.high = ( ( (bits16) a.sign )<<15 ) | 0x7FFF;
|
305 |
|
|
return z;
|
306 |
|
|
|
307 |
|
|
}
|
308 |
|
|
|
309 |
|
|
/*----------------------------------------------------------------------------
|
310 |
|
|
| Takes two extended double-precision floating-point values `a' and `b', one
|
311 |
|
|
| of which is a NaN, and returns the appropriate NaN result. If either `a' or
|
312 |
|
|
| `b' is a signaling NaN, the invalid exception is raised.
|
313 |
|
|
*----------------------------------------------------------------------------*/
|
314 |
|
|
|
315 |
|
|
static floatx80 propagateFloatx80NaN( floatx80 a, floatx80 b )
|
316 |
|
|
{
|
317 |
|
|
flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
|
318 |
|
|
|
319 |
|
|
aIsNaN = floatx80_is_nan( a );
|
320 |
|
|
aIsSignalingNaN = floatx80_is_signaling_nan( a );
|
321 |
|
|
bIsNaN = floatx80_is_nan( b );
|
322 |
|
|
bIsSignalingNaN = floatx80_is_signaling_nan( b );
|
323 |
|
|
a.low |= LIT64( 0xC000000000000000 );
|
324 |
|
|
b.low |= LIT64( 0xC000000000000000 );
|
325 |
|
|
if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
|
326 |
|
|
if ( aIsNaN ) {
|
327 |
|
|
return ( aIsSignalingNaN & bIsNaN ) ? b : a;
|
328 |
|
|
}
|
329 |
|
|
else {
|
330 |
|
|
return b;
|
331 |
|
|
}
|
332 |
|
|
|
333 |
|
|
}
|
334 |
|
|
|
335 |
|
|
#endif
|
336 |
|
|
|
337 |
|
|
#ifdef FLOAT128
|
338 |
|
|
|
339 |
|
|
/*----------------------------------------------------------------------------
|
340 |
|
|
| The pattern for a default generated quadruple-precision NaN. The `high' and
|
341 |
|
|
| `low' values hold the most- and least-significant bits, respectively.
|
342 |
|
|
*----------------------------------------------------------------------------*/
|
343 |
|
|
#define float128_default_nan_high LIT64( 0xFFFFFFFFFFFFFFFF )
|
344 |
|
|
#define float128_default_nan_low LIT64( 0xFFFFFFFFFFFFFFFF )
|
345 |
|
|
|
346 |
|
|
/*----------------------------------------------------------------------------
|
347 |
|
|
| Returns 1 if the quadruple-precision floating-point value `a' is a NaN;
|
348 |
|
|
| otherwise returns 0.
|
349 |
|
|
*----------------------------------------------------------------------------*/
|
350 |
|
|
|
351 |
|
|
flag float128_is_nan( float128 a )
|
352 |
|
|
{
|
353 |
|
|
|
354 |
|
|
return
|
355 |
|
|
( LIT64( 0xFFFE000000000000 ) <= (bits64) ( a.high<<1 ) )
|
356 |
|
|
&& ( a.low || ( a.high & LIT64( 0x0000FFFFFFFFFFFF ) ) );
|
357 |
|
|
|
358 |
|
|
}
|
359 |
|
|
|
360 |
|
|
/*----------------------------------------------------------------------------
|
361 |
|
|
| Returns 1 if the quadruple-precision floating-point value `a' is a
|
362 |
|
|
| signaling NaN; otherwise returns 0.
|
363 |
|
|
*----------------------------------------------------------------------------*/
|
364 |
|
|
|
365 |
|
|
flag float128_is_signaling_nan( float128 a )
|
366 |
|
|
{
|
367 |
|
|
|
368 |
|
|
return
|
369 |
|
|
( ( ( a.high>>47 ) & 0xFFFF ) == 0xFFFE )
|
370 |
|
|
&& ( a.low || ( a.high & LIT64( 0x00007FFFFFFFFFFF ) ) );
|
371 |
|
|
|
372 |
|
|
}
|
373 |
|
|
|
374 |
|
|
/*----------------------------------------------------------------------------
|
375 |
|
|
| Returns the result of converting the quadruple-precision floating-point NaN
|
376 |
|
|
| `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
|
377 |
|
|
| exception is raised.
|
378 |
|
|
*----------------------------------------------------------------------------*/
|
379 |
|
|
|
380 |
|
|
static commonNaNT float128ToCommonNaN( float128 a )
|
381 |
|
|
{
|
382 |
|
|
commonNaNT z;
|
383 |
|
|
|
384 |
|
|
if ( float128_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
|
385 |
|
|
z.sign = a.high>>63;
|
386 |
|
|
shortShift128Left( a.high, a.low, 16, &z.high, &z.low );
|
387 |
|
|
return z;
|
388 |
|
|
|
389 |
|
|
}
|
390 |
|
|
|
391 |
|
|
/*----------------------------------------------------------------------------
|
392 |
|
|
| Returns the result of converting the canonical NaN `a' to the quadruple-
|
393 |
|
|
| precision floating-point format.
|
394 |
|
|
*----------------------------------------------------------------------------*/
|
395 |
|
|
|
396 |
|
|
static float128 commonNaNToFloat128( commonNaNT a )
|
397 |
|
|
{
|
398 |
|
|
float128 z;
|
399 |
|
|
|
400 |
|
|
shift128Right( a.high, a.low, 16, &z.high, &z.low );
|
401 |
|
|
z.high |= ( ( (bits64) a.sign )<<63 ) | LIT64( 0x7FFF800000000000 );
|
402 |
|
|
return z;
|
403 |
|
|
|
404 |
|
|
}
|
405 |
|
|
|
406 |
|
|
/*----------------------------------------------------------------------------
|
407 |
|
|
| Takes two quadruple-precision floating-point values `a' and `b', one of
|
408 |
|
|
| which is a NaN, and returns the appropriate NaN result. If either `a' or
|
409 |
|
|
| `b' is a signaling NaN, the invalid exception is raised.
|
410 |
|
|
*----------------------------------------------------------------------------*/
|
411 |
|
|
|
412 |
|
|
static float128 propagateFloat128NaN( float128 a, float128 b )
|
413 |
|
|
{
|
414 |
|
|
flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
|
415 |
|
|
|
416 |
|
|
aIsNaN = float128_is_nan( a );
|
417 |
|
|
aIsSignalingNaN = float128_is_signaling_nan( a );
|
418 |
|
|
bIsNaN = float128_is_nan( b );
|
419 |
|
|
bIsSignalingNaN = float128_is_signaling_nan( b );
|
420 |
|
|
a.high |= LIT64( 0x0000800000000000 );
|
421 |
|
|
b.high |= LIT64( 0x0000800000000000 );
|
422 |
|
|
if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
|
423 |
|
|
if ( aIsNaN ) {
|
424 |
|
|
return ( aIsSignalingNaN & bIsNaN ) ? b : a;
|
425 |
|
|
}
|
426 |
|
|
else {
|
427 |
|
|
return b;
|
428 |
|
|
}
|
429 |
|
|
|
430 |
|
|
}
|
431 |
|
|
|
432 |
|
|
#endif
|
433 |
|
|
|