| 1 |
63 |
julius |
// ----------------------------------------------------------------------------
|
| 2 |
|
|
|
| 3 |
|
|
// SystemC OpenRISC 1000 Debug Unit: implementation
|
| 4 |
|
|
|
| 5 |
|
|
// Copyright (C) 2008 Embecosm Limited <info@embecosm.com>
|
| 6 |
|
|
// Copyright (C) 2009 ORSoC
|
| 7 |
|
|
|
| 8 |
|
|
// Contributor Jeremy Bennett <jeremy.bennett@embecosm.com>
|
| 9 |
|
|
// Contributor Julius Baxter <julius@orsoc.se>
|
| 10 |
|
|
|
| 11 |
|
|
// This file is part of the GDB interface to the cycle accurate model of the
|
| 12 |
|
|
// OpenRISC 1000 based system-on-chip, ORPSoC, built using Verilator.
|
| 13 |
|
|
|
| 14 |
|
|
// This program is free software: you can redistribute it and/or modify it
|
| 15 |
|
|
// under the terms of the GNU Lesser General Public License as published by
|
| 16 |
|
|
// the Free Software Foundation, either version 3 of the License, or (at your
|
| 17 |
|
|
// option) any later version.
|
| 18 |
|
|
|
| 19 |
|
|
// This program is distributed in the hope that it will be useful, but WITHOUT
|
| 20 |
|
|
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
| 21 |
|
|
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
|
| 22 |
|
|
// License for more details.
|
| 23 |
|
|
|
| 24 |
|
|
// You should have received a copy of the GNU Lesser General Public License
|
| 25 |
|
|
// along with this program. If not, see <http://www.gnu.org/licenses/>.
|
| 26 |
|
|
|
| 27 |
|
|
// ----------------------------------------------------------------------------
|
| 28 |
|
|
|
| 29 |
|
|
// $Id$
|
| 30 |
|
|
|
| 31 |
|
|
#include <iostream>
|
| 32 |
|
|
#include <iomanip>
|
| 33 |
|
|
|
| 34 |
|
|
#include "DebugUnitSC.h"
|
| 35 |
|
|
#include "Utils.h"
|
| 36 |
|
|
|
| 37 |
|
|
|
| 38 |
|
|
using sc_core::sc_event;
|
| 39 |
|
|
using sc_core::sc_fifo;
|
| 40 |
|
|
using sc_core::sc_module_name;
|
| 41 |
|
|
|
| 42 |
|
|
|
| 43 |
|
|
//-----------------------------------------------------------------------------
|
| 44 |
|
|
//! Constructor for the Debug Unit
|
| 45 |
|
|
|
| 46 |
|
|
//! This module is entirely subservient to the GDB server. It has no SystemC
|
| 47 |
|
|
//! processes of its own. It provides services via calls to its API.
|
| 48 |
|
|
|
| 49 |
|
|
//! The current scan chain is marked as undefined, and the current JTAG scan
|
| 50 |
|
|
//! chain is maked as undefined.
|
| 51 |
|
|
|
| 52 |
|
|
//! Caches for SPR and memory access are initialized.
|
| 53 |
|
|
|
| 54 |
|
|
//! This makes use of the Embecosm cycle accurate SystemC JTAG interface.
|
| 55 |
|
|
|
| 56 |
|
|
//! @see Embecosm Application Note 5 "Using JTAG with SystemC: Implementation
|
| 57 |
|
|
//! of a Cycle Accurate Interface"
|
| 58 |
|
|
//! (http://www.embecosm.com/download/ean5.html)
|
| 59 |
|
|
|
| 60 |
|
|
//! @param[in] name Name of this module, passed to the parent
|
| 61 |
|
|
//! constructor.
|
| 62 |
|
|
//! @param[in] _tapActionQueue Pointer to fifo of actions to be performed by
|
| 63 |
|
|
//! the JTAG interface
|
| 64 |
|
|
//-----------------------------------------------------------------------------
|
| 65 |
|
|
DebugUnitSC::DebugUnitSC (sc_module_name name,
|
| 66 |
|
|
sc_fifo<TapAction *> *_tapActionQueue) :
|
| 67 |
|
|
sc_module (name),
|
| 68 |
|
|
tapActionQueue (_tapActionQueue),
|
| 69 |
|
|
stallState (UNKNOWN),
|
| 70 |
|
|
currentScanChain (OR1K_SC_UNDEF)
|
| 71 |
|
|
{
|
| 72 |
|
|
#ifdef NOCACHE
|
| 73 |
|
|
npcCacheIsValid = false; // Always cache NPC
|
| 74 |
|
|
#else
|
| 75 |
|
|
sprCache = new SprCache ();
|
| 76 |
|
|
memCache = new MemCache ();
|
| 77 |
|
|
#endif
|
| 78 |
|
|
|
| 79 |
|
|
} // DebugUnitSC ()
|
| 80 |
|
|
|
| 81 |
|
|
|
| 82 |
|
|
//-----------------------------------------------------------------------------
|
| 83 |
|
|
//! Destructor
|
| 84 |
|
|
|
| 85 |
|
|
//! Free up data structures
|
| 86 |
|
|
//-----------------------------------------------------------------------------
|
| 87 |
|
|
DebugUnitSC::~DebugUnitSC ()
|
| 88 |
|
|
{
|
| 89 |
|
|
#ifndef NOCACHE
|
| 90 |
|
|
delete memCache;
|
| 91 |
|
|
delete sprCache;
|
| 92 |
|
|
#endif
|
| 93 |
|
|
|
| 94 |
|
|
} // ~DebugUnitSC
|
| 95 |
|
|
|
| 96 |
|
|
|
| 97 |
|
|
//-----------------------------------------------------------------------------
|
| 98 |
|
|
//! Reset the Debug Unit
|
| 99 |
|
|
|
| 100 |
|
|
//! This is just a reset of the JTAG. It is quite possible to reset the debug
|
| 101 |
|
|
//! unit without resetting the whole target.
|
| 102 |
|
|
|
| 103 |
|
|
//! @note Must be called from a SystemC thread, because of the use of wait()
|
| 104 |
|
|
//-----------------------------------------------------------------------------
|
| 105 |
|
|
void
|
| 106 |
|
|
DebugUnitSC::resetDebugUnit ()
|
| 107 |
|
|
{
|
| 108 |
|
|
sc_event *done = new sc_event();
|
| 109 |
|
|
TapActionReset *resetAction;
|
| 110 |
|
|
|
| 111 |
|
|
// Create and queue the reset action and wait for it to complete
|
| 112 |
|
|
resetAction = new TapActionReset (done);
|
| 113 |
|
|
tapActionQueue->write (resetAction);
|
| 114 |
|
|
wait (*done);
|
| 115 |
|
|
|
| 116 |
|
|
delete resetAction;
|
| 117 |
|
|
delete done;
|
| 118 |
|
|
|
| 119 |
|
|
} // resetDebugUnit ()
|
| 120 |
|
|
|
| 121 |
|
|
|
| 122 |
|
|
//-----------------------------------------------------------------------------
|
| 123 |
|
|
//! Reset the processor
|
| 124 |
|
|
|
| 125 |
|
|
//! Read the RISCOP register, OR in the reset bit and write it back.
|
| 126 |
|
|
|
| 127 |
|
|
//! After reset, the processor is known to be unstalled.
|
| 128 |
|
|
//-----------------------------------------------------------------------------
|
| 129 |
|
|
void
|
| 130 |
|
|
DebugUnitSC::reset ()
|
| 131 |
|
|
{
|
| 132 |
|
|
writeRiscop (readRiscop () | RISCOP_RESET);
|
| 133 |
|
|
stallState = UNKNOWN;
|
| 134 |
|
|
|
| 135 |
|
|
} // reset ()
|
| 136 |
|
|
|
| 137 |
|
|
|
| 138 |
|
|
//-----------------------------------------------------------------------------
|
| 139 |
|
|
//! Stall the processor
|
| 140 |
|
|
|
| 141 |
|
|
//! Read the RISCOP register, OR in the stall bit and write it back.
|
| 142 |
|
|
//-----------------------------------------------------------------------------
|
| 143 |
|
|
void
|
| 144 |
|
|
DebugUnitSC::stall ()
|
| 145 |
|
|
{
|
| 146 |
|
|
writeRiscop (/*readRiscop () |*/ RISCOP_STALL);
|
| 147 |
|
|
stallState = STALLED;
|
| 148 |
|
|
|
| 149 |
|
|
} // stall ()
|
| 150 |
|
|
|
| 151 |
|
|
|
| 152 |
|
|
//-----------------------------------------------------------------------------
|
| 153 |
|
|
//! Unstall the processor
|
| 154 |
|
|
|
| 155 |
|
|
//! Read the RISCOP register, AND out the stall bit and write it back. After
|
| 156 |
|
|
//! this the NPC cache will be invalid.
|
| 157 |
|
|
|
| 158 |
|
|
//! @note Don't be tempted to read back for confirmation. Single stepping
|
| 159 |
|
|
//! will already have stalled the processor again!
|
| 160 |
|
|
//-----------------------------------------------------------------------------
|
| 161 |
|
|
void
|
| 162 |
|
|
DebugUnitSC::unstall ()
|
| 163 |
|
|
{
|
| 164 |
|
|
writeRiscop (/*readRiscop () & ~RISCOP_STALL*/ 0);
|
| 165 |
|
|
stallState = UNKNOWN;
|
| 166 |
|
|
|
| 167 |
|
|
#ifdef NOCACHE
|
| 168 |
|
|
npcCacheIsValid = false; // Always cache NPC
|
| 169 |
|
|
#else
|
| 170 |
|
|
// Clear the caches
|
| 171 |
|
|
sprCache->clear ();
|
| 172 |
|
|
memCache->clear ();
|
| 173 |
|
|
#endif
|
| 174 |
|
|
|
| 175 |
|
|
} // unstall ()
|
| 176 |
|
|
|
| 177 |
|
|
|
| 178 |
|
|
//-----------------------------------------------------------------------------
|
| 179 |
|
|
//! Report if the processor is stalled.
|
| 180 |
|
|
|
| 181 |
|
|
//! A stalled processor cannot spontaneously "unstall", so if the stallState
|
| 182 |
|
|
//! flag is STALLED, that value is returned. Otherwise the target is
|
| 183 |
|
|
//! interrogated to determine the status.
|
| 184 |
|
|
|
| 185 |
|
|
//! @return TRUE if the processor is known to be stalled
|
| 186 |
|
|
//-----------------------------------------------------------------------------
|
| 187 |
|
|
bool
|
| 188 |
|
|
DebugUnitSC::isStalled ()
|
| 189 |
|
|
{
|
| 190 |
|
|
if (STALLED == stallState)
|
| 191 |
|
|
{
|
| 192 |
|
|
return true;
|
| 193 |
|
|
}
|
| 194 |
|
|
|
| 195 |
|
|
uint32_t riscop = readRiscop ();
|
| 196 |
|
|
/* For some reason the reset bit is skipped over somewhere, so we should
|
| 197 |
|
|
just get riscop = 1 if it's stalled */
|
| 198 |
|
|
|
| 199 |
|
|
//stallState = (RISCOP_STALL == (riscop & RISCOP_STALL)) ? STALLED : UNKNOWN;
|
| 200 |
|
|
stallState = riscop ? STALLED : UNKNOWN;
|
| 201 |
|
|
|
| 202 |
|
|
return STALLED == stallState;
|
| 203 |
|
|
|
| 204 |
|
|
} // isStalled ()
|
| 205 |
|
|
|
| 206 |
|
|
|
| 207 |
|
|
//-----------------------------------------------------------------------------
|
| 208 |
|
|
//! Read the value of an OpenRISC 1000 Special Purpose Register
|
| 209 |
|
|
|
| 210 |
|
|
//! First see if we have the value in the cache, and if so return
|
| 211 |
|
|
//! it. Otherwise, select the RISC_DEBUG scan chain and read from JTAG,
|
| 212 |
|
|
//! storing the result in the cache.
|
| 213 |
|
|
|
| 214 |
|
|
//! @param[in] sprNum The SPR to read
|
| 215 |
|
|
|
| 216 |
|
|
//! @return The value of the SPR
|
| 217 |
|
|
//-----------------------------------------------------------------------------
|
| 218 |
|
|
uint32_t
|
| 219 |
|
|
DebugUnitSC::readSpr (uint16_t sprNum)
|
| 220 |
|
|
{
|
| 221 |
|
|
uint32_t cachedValue;
|
| 222 |
|
|
|
| 223 |
|
|
#ifdef NOCACHE
|
| 224 |
|
|
// Always check NPC cache
|
| 225 |
|
|
if ((STALLED == stallState) && (sprNum == SPR_NPC) && npcCacheIsValid)
|
| 226 |
|
|
{
|
| 227 |
|
|
return npcCachedValue;
|
| 228 |
|
|
}
|
| 229 |
|
|
#else
|
| 230 |
|
|
// Use any cached value if we are stalled.
|
| 231 |
|
|
if ((STALLED == stallState) && sprCache->read (sprNum, cachedValue))
|
| 232 |
|
|
{
|
| 233 |
|
|
return cachedValue; // Already there, no more to do
|
| 234 |
|
|
}
|
| 235 |
|
|
#endif
|
| 236 |
|
|
|
| 237 |
|
|
// Read the value
|
| 238 |
|
|
selectDebugModule (OR1K_SC_CPU0);
|
| 239 |
|
|
cachedValue = readJtagReg (sprNum);
|
| 240 |
|
|
|
| 241 |
|
|
#ifdef NOCACHE
|
| 242 |
|
|
// Always update the NPC cache
|
| 243 |
|
|
if ((STALLED == stallState) && (sprNum == SPR_NPC))
|
| 244 |
|
|
{
|
| 245 |
|
|
npcCachedValue = cachedValue;
|
| 246 |
|
|
npcCacheIsValid = true;
|
| 247 |
|
|
}
|
| 248 |
|
|
#else
|
| 249 |
|
|
// Update the cache if we are stalled
|
| 250 |
|
|
if (STALLED == stallState)
|
| 251 |
|
|
{
|
| 252 |
|
|
sprCache->write (sprNum, cachedValue, sprNum == SPR_NPC);
|
| 253 |
|
|
}
|
| 254 |
|
|
#endif
|
| 255 |
|
|
|
| 256 |
|
|
return cachedValue;
|
| 257 |
|
|
|
| 258 |
|
|
} // readSpr ()
|
| 259 |
|
|
|
| 260 |
|
|
|
| 261 |
|
|
//-----------------------------------------------------------------------------
|
| 262 |
|
|
//! Write the value of an OpenRISC 1000 Special Purpose Register
|
| 263 |
|
|
|
| 264 |
|
|
//! First look to see if we are stalled and the value is cached. If the value
|
| 265 |
|
|
//! has not changed, then we need to no more. Otherwise cache the value prior
|
| 266 |
|
|
//! to writing it.
|
| 267 |
|
|
|
| 268 |
|
|
//! Select the RISC_DEBUG scan chain and write to JTAG
|
| 269 |
|
|
|
| 270 |
|
|
//! @param[in] sprNum The SPR to write
|
| 271 |
|
|
//! @param[in] value The value to write
|
| 272 |
|
|
//-----------------------------------------------------------------------------
|
| 273 |
|
|
void
|
| 274 |
|
|
DebugUnitSC::writeSpr (uint16_t sprNum,
|
| 275 |
|
|
uint32_t value)
|
| 276 |
|
|
{
|
| 277 |
|
|
#ifdef NOCACHE
|
| 278 |
|
|
// Always cache the NPC
|
| 279 |
|
|
if ((STALLED == stallState) && (SPR_NPC == sprNum))
|
| 280 |
|
|
{
|
| 281 |
|
|
// Have we already cached this NPC value?
|
| 282 |
|
|
if (npcCacheIsValid && (value == npcCachedValue))
|
| 283 |
|
|
{
|
| 284 |
|
|
return;
|
| 285 |
|
|
}
|
| 286 |
|
|
else
|
| 287 |
|
|
{
|
| 288 |
|
|
npcCachedValue = value;
|
| 289 |
|
|
npcCacheIsValid = true;
|
| 290 |
|
|
}
|
| 291 |
|
|
}
|
| 292 |
|
|
#else
|
| 293 |
|
|
if (STALLED == stallState)
|
| 294 |
|
|
{
|
| 295 |
|
|
// Have we already cached this value?
|
| 296 |
|
|
uint32_t cachedValue;
|
| 297 |
|
|
if (sprCache->read (sprNum, cachedValue) &&
|
| 298 |
|
|
(value == cachedValue))
|
| 299 |
|
|
{
|
| 300 |
|
|
return; // Already there, no more to do
|
| 301 |
|
|
}
|
| 302 |
|
|
else
|
| 303 |
|
|
{
|
| 304 |
|
|
sprCache->write (sprNum, value, sprNum == SPR_NPC);
|
| 305 |
|
|
}
|
| 306 |
|
|
}
|
| 307 |
|
|
#endif
|
| 308 |
|
|
|
| 309 |
|
|
// Write the SPR
|
| 310 |
|
|
selectDebugModule (OR1K_SC_CPU0);
|
| 311 |
|
|
writeJtagReg (sprNum, value);
|
| 312 |
|
|
|
| 313 |
|
|
} // writeSpr ()
|
| 314 |
|
|
|
| 315 |
|
|
|
| 316 |
|
|
//-----------------------------------------------------------------------------
|
| 317 |
|
|
//! AND the contents of an SPR with a value
|
| 318 |
|
|
|
| 319 |
|
|
//! A convenience combination of read and write
|
| 320 |
|
|
|
| 321 |
|
|
//! @param[in] sprNum The SPR to write
|
| 322 |
|
|
//! @param[in] value The value to AND into the register
|
| 323 |
|
|
//-----------------------------------------------------------------------------
|
| 324 |
|
|
void
|
| 325 |
|
|
DebugUnitSC::andSpr (uint16_t sprNum,
|
| 326 |
|
|
uint32_t value)
|
| 327 |
|
|
{
|
| 328 |
|
|
writeSpr (sprNum, readSpr (sprNum) & value);
|
| 329 |
|
|
|
| 330 |
|
|
} // andSpr ()
|
| 331 |
|
|
|
| 332 |
|
|
|
| 333 |
|
|
//-----------------------------------------------------------------------------
|
| 334 |
|
|
//! OR the contents of an SPR with a value
|
| 335 |
|
|
|
| 336 |
|
|
//! A convenience combination of read and write
|
| 337 |
|
|
|
| 338 |
|
|
//! @param[in] sprNum The SPR to write
|
| 339 |
|
|
//! @param[in] value The value to OR into the register
|
| 340 |
|
|
//-----------------------------------------------------------------------------
|
| 341 |
|
|
void
|
| 342 |
|
|
DebugUnitSC::orSpr (uint16_t sprNum,
|
| 343 |
|
|
uint32_t value)
|
| 344 |
|
|
{
|
| 345 |
|
|
writeSpr (sprNum, readSpr (sprNum) | value);
|
| 346 |
|
|
|
| 347 |
|
|
} // orSpr ()
|
| 348 |
|
|
|
| 349 |
|
|
|
| 350 |
|
|
//-----------------------------------------------------------------------------
|
| 351 |
|
|
//! Read a 32-bit word from the OpenRISC 1000 memory
|
| 352 |
|
|
|
| 353 |
|
|
//! Select the WISHBONE scan chain, then write the register. The data is in
|
| 354 |
|
|
//! model endianness and passed on without modification.
|
| 355 |
|
|
|
| 356 |
|
|
//! @todo Provide code to check if the read was from a valid address.
|
| 357 |
|
|
|
| 358 |
|
|
//! @param[in] addr The address to read from
|
| 359 |
|
|
|
| 360 |
|
|
//! @return The 32-bit value read
|
| 361 |
|
|
//-----------------------------------------------------------------------------
|
| 362 |
|
|
uint32_t
|
| 363 |
|
|
DebugUnitSC::readMem32 (uint32_t addr)
|
| 364 |
|
|
{
|
| 365 |
|
|
uint32_t cachedValue;
|
| 366 |
|
|
|
| 367 |
|
|
#ifndef NOCACHE
|
| 368 |
|
|
// Use any cached value if we are stalled.
|
| 369 |
|
|
if ((STALLED == stallState) && memCache->read (addr, cachedValue))
|
| 370 |
|
|
{
|
| 371 |
|
|
return cachedValue; // Already there, no more to do
|
| 372 |
|
|
}
|
| 373 |
|
|
#endif
|
| 374 |
|
|
|
| 375 |
|
|
// Read the value
|
| 376 |
|
|
selectDebugModule (OR1K_SC_WISHBONE);
|
| 377 |
|
|
cachedValue = readJtagReg (addr);
|
| 378 |
|
|
|
| 379 |
|
|
#ifndef NOCACHE
|
| 380 |
|
|
// Update the cache if we are stalled
|
| 381 |
|
|
if (STALLED == stallState)
|
| 382 |
|
|
{
|
| 383 |
|
|
memCache->write (addr, cachedValue);
|
| 384 |
|
|
}
|
| 385 |
|
|
#endif
|
| 386 |
|
|
|
| 387 |
|
|
return cachedValue;
|
| 388 |
|
|
|
| 389 |
|
|
} // readMem32 ()
|
| 390 |
|
|
|
| 391 |
|
|
|
| 392 |
|
|
//-----------------------------------------------------------------------------
|
| 393 |
|
|
//! Write a 32-bit word to the OpenRISC 1000 memory
|
| 394 |
|
|
|
| 395 |
|
|
//! Select the WISHBONE scan chain, then write the register. The data is in
|
| 396 |
|
|
//! model endianness and passed on without modification.
|
| 397 |
|
|
|
| 398 |
|
|
//! @todo Provide code to check if the write was to a valid address.
|
| 399 |
|
|
|
| 400 |
|
|
//! @param[in] addr The address to write to
|
| 401 |
|
|
//! @param[in] value The 32-bit value to write
|
| 402 |
|
|
|
| 403 |
|
|
//! @return True if the write was successful. For now all writes are
|
| 404 |
|
|
// successful.
|
| 405 |
|
|
//-----------------------------------------------------------------------------
|
| 406 |
|
|
bool
|
| 407 |
|
|
DebugUnitSC::writeMem32 (uint32_t addr,
|
| 408 |
|
|
uint32_t value)
|
| 409 |
|
|
{
|
| 410 |
|
|
#ifndef NOCACHE
|
| 411 |
|
|
if (STALLED == stallState)
|
| 412 |
|
|
{
|
| 413 |
|
|
// Have we already cached this value?
|
| 414 |
|
|
uint32_t cachedValue;
|
| 415 |
|
|
if (memCache->read (addr, cachedValue) &&
|
| 416 |
|
|
(value == cachedValue))
|
| 417 |
|
|
{
|
| 418 |
|
|
return true; // Already there, no more to do
|
| 419 |
|
|
}
|
| 420 |
|
|
else
|
| 421 |
|
|
{
|
| 422 |
|
|
memCache->write (addr, value); // Write for the future
|
| 423 |
|
|
}
|
| 424 |
|
|
}
|
| 425 |
|
|
#endif
|
| 426 |
|
|
|
| 427 |
|
|
// Write the memory
|
| 428 |
|
|
selectDebugModule (OR1K_SC_WISHBONE);
|
| 429 |
|
|
writeJtagReg (addr, value);
|
| 430 |
|
|
|
| 431 |
|
|
return true;
|
| 432 |
|
|
|
| 433 |
|
|
} // writeMem32 ()
|
| 434 |
|
|
|
| 435 |
|
|
|
| 436 |
|
|
//-----------------------------------------------------------------------------
|
| 437 |
|
|
//! Read a byte from the OpenRISC 1000 main memory
|
| 438 |
|
|
|
| 439 |
|
|
//! All we can get are 32-bits words, so we have to unpick the value.
|
| 440 |
|
|
|
| 441 |
|
|
//! The underlying 32-bit routines take target endian arguments and return
|
| 442 |
|
|
//! target endian results. We need to convert to host endianness to access the
|
| 443 |
|
|
//! relevant byte.
|
| 444 |
|
|
|
| 445 |
|
|
//! @todo Provide code to check if the read was from a valid address.
|
| 446 |
|
|
|
| 447 |
|
|
//! @note Read bytes from memory mapped devices at your peril!
|
| 448 |
|
|
|
| 449 |
|
|
//! @param[in] addr The address to read from
|
| 450 |
|
|
//! @return The byte read
|
| 451 |
|
|
//-----------------------------------------------------------------------------
|
| 452 |
|
|
uint8_t
|
| 453 |
|
|
DebugUnitSC::readMem8 (uint32_t addr)
|
| 454 |
|
|
{
|
| 455 |
|
|
uint32_t word = Utils::ttohl (readMem32 (addr & 0xfffffffc));
|
| 456 |
|
|
uint8_t *bytes = (uint8_t *)(&word);
|
| 457 |
|
|
int offset = addr & 0x3;
|
| 458 |
|
|
|
| 459 |
|
|
return bytes[offset];
|
| 460 |
|
|
|
| 461 |
|
|
} // readMem8 ()
|
| 462 |
|
|
|
| 463 |
|
|
|
| 464 |
|
|
//-----------------------------------------------------------------------------
|
| 465 |
|
|
//! Write a byte to the OpenRISC 1000 main memory
|
| 466 |
|
|
|
| 467 |
|
|
//! All we can get are 32-bits words, so we have to read the current value and
|
| 468 |
|
|
//! construct the new value to write back.
|
| 469 |
|
|
|
| 470 |
|
|
//! The underlying 32-bit routines take target endian arguments and return
|
| 471 |
|
|
//! target endian results. We need to convert to host endianness to alter the
|
| 472 |
|
|
//! relevant byte.
|
| 473 |
|
|
|
| 474 |
|
|
//! @note Write bytes to memory mapped devices at your peril!
|
| 475 |
|
|
|
| 476 |
|
|
//! @todo Provide code to check if the write was to a valid address.
|
| 477 |
|
|
|
| 478 |
|
|
//! @param[in] addr The address to write to
|
| 479 |
|
|
//! @param[in] value The byte to write
|
| 480 |
|
|
|
| 481 |
|
|
//! @return True if the write was successful. For now all writes are
|
| 482 |
|
|
// successful.
|
| 483 |
|
|
//-----------------------------------------------------------------------------
|
| 484 |
|
|
bool
|
| 485 |
|
|
DebugUnitSC::writeMem8 (uint32_t addr,
|
| 486 |
|
|
uint8_t value)
|
| 487 |
|
|
{
|
| 488 |
|
|
uint32_t currWord = Utils::ttohl (readMem32 (addr & 0xfffffffc));
|
| 489 |
|
|
uint8_t *currBytes = (uint8_t *)(&currWord);
|
| 490 |
|
|
int offset = addr & 0x3;
|
| 491 |
|
|
|
| 492 |
|
|
currBytes[offset] = value;
|
| 493 |
|
|
|
| 494 |
|
|
return writeMem32 (addr & 0xfffffffc, Utils::htotl (currWord));
|
| 495 |
|
|
|
| 496 |
|
|
} // writeMem8 ()
|
| 497 |
|
|
|
| 498 |
|
|
|
| 499 |
|
|
//-----------------------------------------------------------------------------
|
| 500 |
|
|
//! Get the debug interface CPU0 control register value
|
| 501 |
|
|
|
| 502 |
|
|
//! @return The value in the RISCOP register
|
| 503 |
|
|
//-----------------------------------------------------------------------------
|
| 504 |
|
|
uint32_t
|
| 505 |
|
|
DebugUnitSC::readRiscop ()
|
| 506 |
|
|
{
|
| 507 |
|
|
selectDebugModule (OR1K_SC_CPU0);
|
| 508 |
|
|
|
| 509 |
|
|
int drLen; // Size of the data register
|
| 510 |
|
|
|
| 511 |
|
|
uint32_t calc_recv_crc = 0, recv_crc, status_ret;
|
| 512 |
|
|
|
| 513 |
|
|
drLen = 1+4+32+52+4+32;
|
| 514 |
|
|
|
| 515 |
|
|
// Initialize the register fields
|
| 516 |
|
|
uint64_t *dRegIn = new uint64_t [(drLen + 63) / 64];
|
| 517 |
|
|
uint64_t *dRegOut = new uint64_t [(drLen + 63) / 64];
|
| 518 |
|
|
|
| 519 |
|
|
// Write the READ command
|
| 520 |
|
|
clearBits (dRegIn, drLen);
|
| 521 |
|
|
|
| 522 |
|
|
packBits (dRegIn, 0, 1, 0);
|
| 523 |
|
|
packBits (dRegIn, 0+1, 4, BITREV(0x3,4)); // We're reading CPU0 control reg
|
| 524 |
|
|
uint32_t crc32_send = crc32 (dRegIn, 0+1+4, 0);
|
| 525 |
|
|
packBits (dRegIn, 0+1+4, 32, BITREV(crc32_send,32));
|
| 526 |
|
|
|
| 527 |
|
|
// Allocate a SystemC completion event
|
| 528 |
|
|
sc_event *done = new sc_event();
|
| 529 |
|
|
|
| 530 |
|
|
// Loop until status is OK and CRCs match.
|
| 531 |
|
|
do
|
| 532 |
|
|
{
|
| 533 |
|
|
TapActionDRScan *dRScan = new TapActionDRScan (done, dRegIn, drLen);
|
| 534 |
|
|
tapActionQueue->write (dRScan);
|
| 535 |
|
|
wait (*done);
|
| 536 |
|
|
dRScan->getDRegOut (dRegOut);
|
| 537 |
|
|
delete dRScan;
|
| 538 |
|
|
status_ret = unpackBits (dRegOut,1+4+32+52,4);
|
| 539 |
|
|
calc_recv_crc = crc32(dRegOut,52+4,1+4+32);
|
| 540 |
|
|
recv_crc = BITREV(unpackBits (dRegOut,1+4+32+52+4,32),32);
|
| 541 |
|
|
}
|
| 542 |
|
|
while ((0 != status_ret) || ( calc_recv_crc != recv_crc));
|
| 543 |
|
|
|
| 544 |
|
|
// All done
|
| 545 |
|
|
uint32_t res = BITREV(unpackBits (dRegOut, (1+4+32),2),2);
|
| 546 |
|
|
|
| 547 |
|
|
delete [] dRegIn;
|
| 548 |
|
|
delete [] dRegOut;
|
| 549 |
|
|
delete done;
|
| 550 |
|
|
return res;
|
| 551 |
|
|
} // readRiscop ()
|
| 552 |
|
|
|
| 553 |
|
|
|
| 554 |
|
|
//-----------------------------------------------------------------------------
|
| 555 |
|
|
//! Set the RISCOP control register
|
| 556 |
|
|
|
| 557 |
|
|
//! Convenience function. Select the REGISTER scan chain, write the new value.
|
| 558 |
|
|
|
| 559 |
|
|
//! @param[in] value The value to write into the RISCOP register
|
| 560 |
|
|
//-----------------------------------------------------------------------------
|
| 561 |
|
|
void
|
| 562 |
|
|
DebugUnitSC::writeRiscop (uint32_t value)
|
| 563 |
|
|
{
|
| 564 |
|
|
selectDebugModule (OR1K_SC_CPU0);
|
| 565 |
|
|
|
| 566 |
|
|
int drLen; // Size of the data register
|
| 567 |
|
|
|
| 568 |
|
|
uint32_t calc_recv_crc = 0, recv_crc, status_ret;
|
| 569 |
|
|
|
| 570 |
|
|
drLen = 1+4+32+52+4+32;
|
| 571 |
|
|
|
| 572 |
|
|
// Initialize the register fields
|
| 573 |
|
|
uint64_t *dRegIn = new uint64_t [(drLen + 63) / 64];
|
| 574 |
|
|
uint64_t *dRegOut = new uint64_t [(drLen + 63) / 64];
|
| 575 |
|
|
|
| 576 |
|
|
// Write the READ command
|
| 577 |
|
|
clearBits (dRegIn, drLen);
|
| 578 |
|
|
|
| 579 |
|
|
packBits (dRegIn, 0, 1, 0);
|
| 580 |
|
|
packBits (dRegIn, 0+1, 4, BITREV(0x4,4)); // We're writing CPU0 control reg
|
| 581 |
|
|
packBits (dRegIn, 5, 1, value&RISCOP_RESET); // First bit is reset
|
| 582 |
|
|
packBits (dRegIn, 6, 1, (value&RISCOP_STALL)>>1); // Next bit is stall
|
| 583 |
|
|
/* Next 50 bits should be zero */
|
| 584 |
|
|
uint32_t crc32_send = crc32 (dRegIn, 1+4+52, 0);
|
| 585 |
|
|
packBits (dRegIn, 1+4+52, 32, BITREV(crc32_send,32));
|
| 586 |
|
|
|
| 587 |
|
|
// Allocate a SystemC completion event
|
| 588 |
|
|
sc_event *done = new sc_event();
|
| 589 |
|
|
|
| 590 |
|
|
// Loop until status is OK and CRCs match.
|
| 591 |
|
|
do
|
| 592 |
|
|
{
|
| 593 |
|
|
TapActionDRScan *dRScan = new TapActionDRScan (done, dRegIn, drLen);
|
| 594 |
|
|
tapActionQueue->write (dRScan);
|
| 595 |
|
|
wait (*done);
|
| 596 |
|
|
dRScan->getDRegOut (dRegOut);
|
| 597 |
|
|
delete dRScan;
|
| 598 |
|
|
status_ret = unpackBits (dRegOut,1+4+32+52,4);
|
| 599 |
|
|
calc_recv_crc = crc32(dRegOut,4,1+4+52+32);
|
| 600 |
|
|
recv_crc = BITREV(unpackBits (dRegOut,1+4+52+32+4,32),32);
|
| 601 |
|
|
}
|
| 602 |
|
|
while ((0 != status_ret) || ( calc_recv_crc != recv_crc));
|
| 603 |
|
|
|
| 604 |
|
|
delete [] dRegIn;
|
| 605 |
|
|
delete [] dRegOut;
|
| 606 |
|
|
delete done;
|
| 607 |
|
|
|
| 608 |
|
|
} // writeRiscop ()
|
| 609 |
|
|
|
| 610 |
|
|
|
| 611 |
|
|
//-----------------------------------------------------------------------------
|
| 612 |
|
|
//! Select a module attached to the debug module
|
| 613 |
|
|
|
| 614 |
|
|
//! @note Must be called from a SystemC thread, because of the use of wait()
|
| 615 |
|
|
|
| 616 |
|
|
//! @param[in] chain The desired module
|
| 617 |
|
|
//-----------------------------------------------------------------------------
|
| 618 |
|
|
void
|
| 619 |
|
|
DebugUnitSC::selectDebugModule (int module)
|
| 620 |
|
|
{
|
| 621 |
|
|
|
| 622 |
|
|
if (module == currentScanChain)
|
| 623 |
|
|
{
|
| 624 |
|
|
return;
|
| 625 |
|
|
}
|
| 626 |
|
|
else
|
| 627 |
|
|
{
|
| 628 |
|
|
currentScanChain = module;
|
| 629 |
|
|
}
|
| 630 |
|
|
|
| 631 |
|
|
sc_event *done = new sc_event();
|
| 632 |
|
|
TapActionIRScan *iRScan;
|
| 633 |
|
|
TapActionDRScan *dRScan;
|
| 634 |
|
|
|
| 635 |
|
|
// Create and queue the IR-Scan action for DEBUG (no CRC)
|
| 636 |
|
|
iRScan = new TapActionIRScan (done, DEBUG_IR, JTAG_IR_LEN);
|
| 637 |
|
|
tapActionQueue->write (iRScan);
|
| 638 |
|
|
wait (*done);
|
| 639 |
|
|
|
| 640 |
|
|
delete iRScan;
|
| 641 |
|
|
|
| 642 |
|
|
// Initialize the register fields
|
| 643 |
|
|
uint64_t *dRegIn = new uint64_t [(DUSEL_DR_LEN + 63) / 64];
|
| 644 |
|
|
uint64_t *dRegOut = new uint64_t [(DUSEL_DR_LEN + 63) / 64];
|
| 645 |
|
|
|
| 646 |
|
|
clearBits (dRegIn, DUSEL_DR_LEN);
|
| 647 |
|
|
packBits (dRegIn, DUSEL_SEL_OFF, DUSEL_SEL_LEN, 0x1);
|
| 648 |
|
|
packBits (dRegIn, DUSEL_OPCODE_OFF, DUSEL_OPCODE_LEN, bit_reverse_data(module,4));
|
| 649 |
|
|
uint32_t crc32_send = crc32 (dRegIn, DUSEL_CRC_OFF, 0);
|
| 650 |
|
|
packBits (dRegIn, DUSEL_CRC_OFF, DUSEL_CRC_LEN, bit_reverse_data(crc32_send,32) );
|
| 651 |
|
|
uint32_t calc_recv_crc = 0, recv_crc, status_ret;
|
| 652 |
|
|
// Loop until status is OK and CRCs match.
|
| 653 |
|
|
do
|
| 654 |
|
|
{
|
| 655 |
|
|
TapActionDRScan *dRScan = new TapActionDRScan (done, dRegIn, DUSEL_DR_LEN);
|
| 656 |
|
|
tapActionQueue->write (dRScan);
|
| 657 |
|
|
wait (*done);
|
| 658 |
|
|
dRScan->getDRegOut (dRegOut);
|
| 659 |
|
|
delete dRScan;
|
| 660 |
|
|
status_ret = unpackBits (dRegOut, DUSEL_RESP_STATUS_OFF, DUSEL_RESP_STATUS_LEN);
|
| 661 |
|
|
calc_recv_crc = crc32(dRegOut, DUSEL_RESP_STATUS_LEN, DUSEL_RESP_STATUS_OFF);
|
| 662 |
|
|
recv_crc = bit_reverse_data(unpackBits (dRegOut, DUSEL_RESP_CRC_OFF, DUSEL_RESP_CRC_LEN),32);
|
| 663 |
|
|
}
|
| 664 |
|
|
while ((0 != status_ret) || ( calc_recv_crc != recv_crc));
|
| 665 |
|
|
|
| 666 |
|
|
delete [] dRegIn;
|
| 667 |
|
|
delete [] dRegOut;
|
| 668 |
|
|
delete done;
|
| 669 |
|
|
|
| 670 |
|
|
} // selectDebugModule()
|
| 671 |
|
|
|
| 672 |
|
|
|
| 673 |
|
|
//-----------------------------------------------------------------------------
|
| 674 |
|
|
//! Read a 32-bit value via the debug interface
|
| 675 |
|
|
|
| 676 |
|
|
//! @note Must be called from a SystemC thread, because of the use of wait()
|
| 677 |
|
|
|
| 678 |
|
|
//! @param[in] addr The address of the register
|
| 679 |
|
|
|
| 680 |
|
|
//! @return The register value read
|
| 681 |
|
|
//-----------------------------------------------------------------------------
|
| 682 |
|
|
uint32_t
|
| 683 |
|
|
DebugUnitSC::readJtagReg (uint32_t addr)
|
| 684 |
|
|
{
|
| 685 |
|
|
int drLen; // Size of the data register
|
| 686 |
|
|
|
| 687 |
|
|
uint32_t calc_recv_crc = 0, recv_crc, status_ret;
|
| 688 |
|
|
|
| 689 |
|
|
drLen = 125; // Size of write command command (bigger than data read)
|
| 690 |
|
|
|
| 691 |
|
|
// Initialize the register fields
|
| 692 |
|
|
uint64_t *dRegIn = new uint64_t [(drLen + 63) / 64];
|
| 693 |
|
|
uint64_t *dRegOut = new uint64_t [(drLen + 63) / 64];
|
| 694 |
|
|
|
| 695 |
|
|
// Write the READ command
|
| 696 |
|
|
clearBits (dRegIn, drLen);
|
| 697 |
|
|
|
| 698 |
|
|
packBits (dRegIn, 0, 1, 0);
|
| 699 |
|
|
packBits (dRegIn, 0+1, 4, BITREV(0x2,4)); // We're writing a command
|
| 700 |
|
|
packBits (dRegIn, 1+4, 4, BITREV(0x6,4)); // Access type, 0x6 = 32-bit READ
|
| 701 |
|
|
packBits (dRegIn, 1+4+4, 32, BITREV(addr,32)); // Address
|
| 702 |
|
|
packBits (dRegIn, 1+4+4+32, 16, BITREV(0x3,16)); // Length (always 32-bit,n=(32/8)-1=3)
|
| 703 |
|
|
uint32_t crc32_send = crc32 (dRegIn, 1+4+4+32+16, 0);
|
| 704 |
|
|
packBits (dRegIn, 1+4+4+32+16, 32, BITREV(crc32_send,32));
|
| 705 |
|
|
|
| 706 |
|
|
// Allocate a SystemC completion event
|
| 707 |
|
|
sc_event *done = new sc_event();
|
| 708 |
|
|
|
| 709 |
|
|
// Loop until status is OK and CRCs match.
|
| 710 |
|
|
do
|
| 711 |
|
|
{
|
| 712 |
|
|
TapActionDRScan *dRScan = new TapActionDRScan (done, dRegIn, 125);
|
| 713 |
|
|
tapActionQueue->write (dRScan);
|
| 714 |
|
|
wait (*done);
|
| 715 |
|
|
dRScan->getDRegOut (dRegOut);
|
| 716 |
|
|
delete dRScan;
|
| 717 |
|
|
status_ret = unpackBits (dRegOut,1+4+4+32+16+32,4);
|
| 718 |
|
|
calc_recv_crc = crc32(dRegOut,4,1+4+4+32+16+32);
|
| 719 |
|
|
recv_crc = BITREV(unpackBits (dRegOut,1+4+4+32+16+32+4,32),32);
|
| 720 |
|
|
}
|
| 721 |
|
|
while ((0 != status_ret) || ( calc_recv_crc != recv_crc));
|
| 722 |
|
|
|
| 723 |
|
|
clearBits (dRegIn, drLen);
|
| 724 |
|
|
packBits (dRegIn, 0, 1, 0);
|
| 725 |
|
|
packBits (dRegIn, 0+1, 4, 0x0); // We're GO'ing command
|
| 726 |
|
|
crc32_send = crc32 (dRegIn,1+4,0);
|
| 727 |
|
|
packBits (dRegIn, 1+4, 32, BITREV(crc32_send,32)); // CRC
|
| 728 |
|
|
|
| 729 |
|
|
uint32_t result;
|
| 730 |
|
|
// Loop until status is OK and CRCs match.
|
| 731 |
|
|
do
|
| 732 |
|
|
{
|
| 733 |
|
|
TapActionDRScan *dRScan = new TapActionDRScan (done, dRegIn, (1+4+32+36+((3+1)*8)));
|
| 734 |
|
|
tapActionQueue->write (dRScan);
|
| 735 |
|
|
wait (*done);
|
| 736 |
|
|
dRScan->getDRegOut (dRegOut);
|
| 737 |
|
|
delete dRScan;
|
| 738 |
|
|
status_ret = BITREV(unpackBits (dRegOut,1+4+32+((3+1)*8),4),4);
|
| 739 |
|
|
if (status_ret)
|
| 740 |
|
|
{
|
| 741 |
|
|
printf("readJtagReg(): Addr: 0x%.8x Status err: 0x%x\n",addr,status_ret);
|
| 742 |
|
|
result = 0;
|
| 743 |
|
|
break;
|
| 744 |
|
|
}
|
| 745 |
|
|
calc_recv_crc = crc32(dRegOut,((3+1)*8)+4,1+4+32);
|
| 746 |
|
|
recv_crc = BITREV(unpackBits (dRegOut,1+4+32+((3+1)*8)+4,32),32);
|
| 747 |
|
|
result = BITREV(unpackBits (dRegOut, (1+4+32), ((3+1)*8)),32);
|
| 748 |
|
|
|
| 749 |
|
|
}
|
| 750 |
|
|
while ((0 != status_ret) || ( calc_recv_crc != recv_crc));
|
| 751 |
|
|
|
| 752 |
|
|
// All done
|
| 753 |
|
|
|
| 754 |
|
|
delete [] dRegIn;
|
| 755 |
|
|
delete [] dRegOut;
|
| 756 |
|
|
delete done;
|
| 757 |
|
|
return result;
|
| 758 |
|
|
|
| 759 |
|
|
} // readJtagReg ()
|
| 760 |
|
|
|
| 761 |
|
|
|
| 762 |
|
|
//-----------------------------------------------------------------------------
|
| 763 |
|
|
//! Write a 32-bit value via the debug interface
|
| 764 |
|
|
|
| 765 |
|
|
//! @note Must be called from a SystemC thread, because of the use of wait()
|
| 766 |
|
|
|
| 767 |
|
|
//! @param[in] addr The address of the register
|
| 768 |
|
|
//! @param[in] data The register data to write
|
| 769 |
|
|
//-----------------------------------------------------------------------------
|
| 770 |
|
|
void
|
| 771 |
|
|
DebugUnitSC::writeJtagReg (uint32_t addr,
|
| 772 |
|
|
uint32_t data)
|
| 773 |
|
|
{
|
| 774 |
|
|
int drLen; // Size of the data register
|
| 775 |
|
|
|
| 776 |
|
|
uint32_t calc_recv_crc = 0, recv_crc, status_ret;
|
| 777 |
|
|
|
| 778 |
|
|
drLen = 125; // Size of write command command (bigger than data read)
|
| 779 |
|
|
|
| 780 |
|
|
// Initialize the register fields
|
| 781 |
|
|
uint64_t *dRegIn = new uint64_t [(drLen + 63) / 64];
|
| 782 |
|
|
uint64_t *dRegOut = new uint64_t [(drLen + 63) / 64];
|
| 783 |
|
|
|
| 784 |
|
|
// Write the READ command
|
| 785 |
|
|
clearBits (dRegIn, drLen);
|
| 786 |
|
|
|
| 787 |
|
|
packBits (dRegIn, 0, 1, 0);
|
| 788 |
|
|
packBits (dRegIn, 0+1, 4, BITREV(0x2,4)); // We're writing a command
|
| 789 |
|
|
packBits (dRegIn, 1+4, 4, BITREV(0x2,4)); // Access type, 0x2 = 32-bit WRITE
|
| 790 |
|
|
packBits (dRegIn, 1+4+4, 32, BITREV(addr,32)); // Address
|
| 791 |
|
|
packBits (dRegIn, 1+4+4+32, 16, BITREV(0x3,16)); // Length (always 32-bit,n=(32/8)-1=3)
|
| 792 |
|
|
uint32_t crc32_send = crc32 (dRegIn, 1+4+4+32+16, 0);
|
| 793 |
|
|
packBits (dRegIn, 1+4+4+32+16, 32, BITREV(crc32_send,32));
|
| 794 |
|
|
|
| 795 |
|
|
// Allocate a SystemC completion event
|
| 796 |
|
|
sc_event *done = new sc_event();
|
| 797 |
|
|
|
| 798 |
|
|
// Loop until status is OK and CRCs match.
|
| 799 |
|
|
do
|
| 800 |
|
|
{
|
| 801 |
|
|
TapActionDRScan *dRScan = new TapActionDRScan (done, dRegIn, 125);
|
| 802 |
|
|
tapActionQueue->write (dRScan);
|
| 803 |
|
|
wait (*done);
|
| 804 |
|
|
dRScan->getDRegOut (dRegOut);
|
| 805 |
|
|
delete dRScan;
|
| 806 |
|
|
status_ret = unpackBits (dRegOut,1+4+4+32+16+32,4);
|
| 807 |
|
|
calc_recv_crc = crc32(dRegOut,4,1+4+4+32+16+32);
|
| 808 |
|
|
recv_crc = BITREV(unpackBits (dRegOut,1+4+4+32+16+32+4,32),32);
|
| 809 |
|
|
}
|
| 810 |
|
|
while ((0 != status_ret) || ( calc_recv_crc != recv_crc));
|
| 811 |
|
|
|
| 812 |
|
|
clearBits (dRegIn, drLen);
|
| 813 |
|
|
packBits (dRegIn, 0, 1, 0);
|
| 814 |
|
|
packBits (dRegIn, 0+1, 4, 0x0); // We're GO'ing command
|
| 815 |
|
|
packBits (dRegIn, 0+1+4, 32, BITREV(data,32)); // Add in data
|
| 816 |
|
|
crc32_send = crc32 (dRegIn,1+4+32,0);
|
| 817 |
|
|
packBits (dRegIn, 1+4+32, 32, BITREV(crc32_send,32)); // CRC
|
| 818 |
|
|
|
| 819 |
|
|
// Loop until status is OK and CRCs match.
|
| 820 |
|
|
do
|
| 821 |
|
|
{
|
| 822 |
|
|
TapActionDRScan *dRScan = new TapActionDRScan (done, dRegIn, (1+4+((3+1)*8)+32+36));
|
| 823 |
|
|
tapActionQueue->write (dRScan);
|
| 824 |
|
|
wait (*done);
|
| 825 |
|
|
dRScan->getDRegOut (dRegOut);
|
| 826 |
|
|
delete dRScan;
|
| 827 |
|
|
status_ret = unpackBits (dRegOut,1+4+32+32,4);
|
| 828 |
|
|
calc_recv_crc = crc32(dRegOut,4,1+4+32+32);
|
| 829 |
|
|
recv_crc = BITREV(unpackBits (dRegOut,1+4+32+32+4,32),32);
|
| 830 |
|
|
}
|
| 831 |
|
|
while ((0 != status_ret) || ( calc_recv_crc != recv_crc));
|
| 832 |
|
|
|
| 833 |
|
|
delete [] dRegIn;
|
| 834 |
|
|
delete [] dRegOut;
|
| 835 |
|
|
delete done;
|
| 836 |
|
|
|
| 837 |
|
|
} // writeJtagReg ()
|
| 838 |
|
|
|
| 839 |
|
|
|
| 840 |
|
|
//-----------------------------------------------------------------------------
|
| 841 |
|
|
//! Clear the bits in a data register
|
| 842 |
|
|
|
| 843 |
|
|
//! We always clear whole 64-bit words, not just the minimum number of
|
| 844 |
|
|
//! bytes. It saves all sorts of confusion when debugging code.
|
| 845 |
|
|
|
| 846 |
|
|
//! @note It is the caller's responsibility to make sure the date register
|
| 847 |
|
|
//! array is large enough.
|
| 848 |
|
|
|
| 849 |
|
|
//! @param[in,out] regArray The data register to clear
|
| 850 |
|
|
//! @param[in] regBits Size of the data register (in bits)
|
| 851 |
|
|
//-----------------------------------------------------------------------------
|
| 852 |
|
|
void
|
| 853 |
|
|
DebugUnitSC::clearBits (uint64_t regArray[],
|
| 854 |
|
|
int regBits)
|
| 855 |
|
|
{
|
| 856 |
|
|
memset ((char *)regArray, 0, ((regBits + 63) / 64) * 8);
|
| 857 |
|
|
|
| 858 |
|
|
} // clearBits ()
|
| 859 |
|
|
|
| 860 |
|
|
|
| 861 |
|
|
//-----------------------------------------------------------------------------
|
| 862 |
|
|
//! Set a bit field in a data register
|
| 863 |
|
|
|
| 864 |
|
|
//! The field is cleared, the supplied value masked and then ored into the
|
| 865 |
|
|
//! vector.
|
| 866 |
|
|
|
| 867 |
|
|
//! @note It is the caller's responsibility to make sure the date register
|
| 868 |
|
|
//! array is large enough.
|
| 869 |
|
|
|
| 870 |
|
|
//! @param[in,out] regArray The data register
|
| 871 |
|
|
//! @param[in] fieldOffset Start of the field (in bits)
|
| 872 |
|
|
//! @param[in] fieldBits Size of the field (in bits)
|
| 873 |
|
|
//! @param[in] fieldVal Value to set in the field
|
| 874 |
|
|
//-----------------------------------------------------------------------------
|
| 875 |
|
|
void
|
| 876 |
|
|
DebugUnitSC::packBits (uint64_t regArray[],
|
| 877 |
|
|
int fieldOffset,
|
| 878 |
|
|
int fieldBits,
|
| 879 |
|
|
uint64_t fieldVal)
|
| 880 |
|
|
{
|
| 881 |
|
|
fieldVal &= (1ULL << fieldBits) - 1ULL; // Mask the supplied value
|
| 882 |
|
|
|
| 883 |
|
|
int startWord = fieldOffset / 64;
|
| 884 |
|
|
int endWord = (fieldOffset + fieldBits - 1) / 64;
|
| 885 |
|
|
|
| 886 |
|
|
fieldOffset = fieldOffset % 64; // Now refers to target word
|
| 887 |
|
|
|
| 888 |
|
|
// Deal with the startWord. Get enough bits for the mask and put them in the
|
| 889 |
|
|
// right place
|
| 890 |
|
|
uint64_t startMask = ((1ULL << fieldBits) - 1ULL) << fieldOffset;
|
| 891 |
|
|
|
| 892 |
|
|
regArray[startWord] &= ~startMask;
|
| 893 |
|
|
regArray[startWord] |= fieldVal << fieldOffset;
|
| 894 |
|
|
|
| 895 |
|
|
// If we were all in one word, we can give up now.
|
| 896 |
|
|
if (startWord == endWord)
|
| 897 |
|
|
{
|
| 898 |
|
|
return;
|
| 899 |
|
|
}
|
| 900 |
|
|
|
| 901 |
|
|
// Deal with the endWord. Get enough bits for the mask. No need to shift
|
| 902 |
|
|
// these up - they're always at the bottom of the word
|
| 903 |
|
|
int bitsToDo = (fieldOffset + fieldBits) % 64;
|
| 904 |
|
|
uint64_t endMask = (1ULL << bitsToDo) - 1ULL;
|
| 905 |
|
|
|
| 906 |
|
|
regArray[endWord] &= ~endMask;
|
| 907 |
|
|
regArray[endWord] |= fieldVal >> (fieldBits - bitsToDo);
|
| 908 |
|
|
|
| 909 |
|
|
} // packBits ()
|
| 910 |
|
|
|
| 911 |
|
|
|
| 912 |
|
|
//-----------------------------------------------------------------------------
|
| 913 |
|
|
//! Extract a bit field from a data register
|
| 914 |
|
|
|
| 915 |
|
|
//! The field is cleared, the supplied value masked and then ored into the
|
| 916 |
|
|
//! vector.
|
| 917 |
|
|
|
| 918 |
|
|
//! @note It is the caller's responsibility to make sure the date register
|
| 919 |
|
|
//! array is large enough.
|
| 920 |
|
|
|
| 921 |
|
|
//! @param[in,out] regArray The data register
|
| 922 |
|
|
//! @param[in] fieldOffset Start of the field (in bits)
|
| 923 |
|
|
//! @param[in] fieldBits Size of the field (in bits)
|
| 924 |
|
|
|
| 925 |
|
|
//! @return The value in the field
|
| 926 |
|
|
//-----------------------------------------------------------------------------
|
| 927 |
|
|
uint64_t
|
| 928 |
|
|
DebugUnitSC::unpackBits (uint64_t regArray[],
|
| 929 |
|
|
int fieldOffset,
|
| 930 |
|
|
int fieldBits)
|
| 931 |
|
|
{
|
| 932 |
|
|
int startWord = fieldOffset / 64;
|
| 933 |
|
|
int endWord = (fieldOffset + fieldBits - 1) / 64;
|
| 934 |
|
|
|
| 935 |
|
|
fieldOffset = fieldOffset % 64; // Now refers to target word
|
| 936 |
|
|
|
| 937 |
|
|
// Deal with the startWord. Get enough bits for the mask and put them in the
|
| 938 |
|
|
// right place
|
| 939 |
|
|
uint64_t startMask = ((1ULL << fieldBits) - 1ULL) << fieldOffset;
|
| 940 |
|
|
uint64_t res = (regArray[startWord] & startMask) >> fieldOffset;
|
| 941 |
|
|
|
| 942 |
|
|
// If we were all in one word, we can give up now.
|
| 943 |
|
|
if (startWord == endWord)
|
| 944 |
|
|
{
|
| 945 |
|
|
res &= (1ULL << fieldBits) - 1ULL; // Mask off any unwanted bits
|
| 946 |
|
|
return res;
|
| 947 |
|
|
}
|
| 948 |
|
|
|
| 949 |
|
|
// Deal with the endWord. Get enough bits for the mask. No need to shift
|
| 950 |
|
|
// these up - they're always at the bottom of the word
|
| 951 |
|
|
int bitsToDo = (fieldOffset + fieldBits) % 64;
|
| 952 |
|
|
uint64_t endMask = (1ULL << bitsToDo) - 1ULL;
|
| 953 |
|
|
|
| 954 |
|
|
res = res | ((regArray[endWord] & endMask) << (fieldBits - bitsToDo));
|
| 955 |
|
|
res &= (1ULL << fieldBits) - 1ULL; // Mask off any unwanted bits
|
| 956 |
|
|
return res;
|
| 957 |
|
|
|
| 958 |
|
|
} // unpackBits ()
|
| 959 |
|
|
|
| 960 |
|
|
|
| 961 |
|
|
//-----------------------------------------------------------------------------
|
| 962 |
|
|
//! Compute CRC-8-ATM
|
| 963 |
|
|
|
| 964 |
|
|
//! The data is in an array of uint64_t, for which we use the first size bits
|
| 965 |
|
|
//! to compute the CRC.
|
| 966 |
|
|
|
| 967 |
|
|
//! @Note I am using the same algorithm as the ORPSoC debug unit, but I
|
| 968 |
|
|
//! believe its function is broken! I don't believe the data bit should
|
| 969 |
|
|
//! feature in the computation of bits 2 & 1 of the new CRC.
|
| 970 |
|
|
|
| 971 |
|
|
//! @Note I've realized that this is an algorithm for LSB first, so maybe it
|
| 972 |
|
|
//! is correct!
|
| 973 |
|
|
|
| 974 |
|
|
//! @param dataArray The array of data whose CRC is desired
|
| 975 |
|
|
//! @param size The number of bits in the data
|
| 976 |
|
|
//-----------------------------------------------------------------------------
|
| 977 |
|
|
uint8_t
|
| 978 |
|
|
DebugUnitSC::crc8 (uint64_t dataArray[],
|
| 979 |
|
|
int size)
|
| 980 |
|
|
{
|
| 981 |
|
|
uint8_t crc = 0;
|
| 982 |
|
|
|
| 983 |
|
|
for (int i = 0; i < size; i++)
|
| 984 |
|
|
{
|
| 985 |
|
|
uint8_t d = (dataArray[i / 64] >> (i % 64)) & 1;
|
| 986 |
|
|
uint8_t oldCrc7 = (crc >> 7) & 1;
|
| 987 |
|
|
uint8_t oldCrc1 = (crc >> 1) & 1;
|
| 988 |
|
|
uint8_t oldCrc0 = (crc >> 0) & 1;
|
| 989 |
|
|
uint8_t newCrc2 = d ^ oldCrc1 ^ oldCrc7; // Why d?
|
| 990 |
|
|
uint8_t newCrc1 = d ^ oldCrc0 ^ oldCrc7; // Why d?
|
| 991 |
|
|
uint8_t newCrc0 = d ^ oldCrc7;
|
| 992 |
|
|
|
| 993 |
|
|
crc = ((crc << 1) & 0xf8) | (newCrc2 << 2) | (newCrc1 << 1) | newCrc0;
|
| 994 |
|
|
}
|
| 995 |
|
|
|
| 996 |
|
|
return crc;
|
| 997 |
|
|
|
| 998 |
|
|
} // crc8 ()
|
| 999 |
|
|
|
| 1000 |
|
|
/* Crc of current read or written data. */
|
| 1001 |
|
|
uint32_t crc_r, crc_w = 0;
|
| 1002 |
|
|
|
| 1003 |
|
|
/* Generates new crc, sending in new bit input_bit */
|
| 1004 |
|
|
uint32_t
|
| 1005 |
|
|
DebugUnitSC::crc32(uint64_t dataArray[],
|
| 1006 |
|
|
int size,
|
| 1007 |
|
|
int offset)
|
| 1008 |
|
|
{
|
| 1009 |
|
|
uint32_t crc = 0xffffffff;
|
| 1010 |
|
|
for (int i = offset; i < size+offset; i++)
|
| 1011 |
|
|
{
|
| 1012 |
|
|
uint32_t d = ((dataArray[i / 64] >> (i % 64)) & 1) ? 0xfffffff : 0x0000000;
|
| 1013 |
|
|
uint32_t crc_32 = ((crc >> 31)&1) ? 0xfffffff : 0x0000000;
|
| 1014 |
|
|
crc <<= 1;
|
| 1015 |
|
|
crc = crc ^ ((d ^ crc_32) & DBG_CRC32_POLY);
|
| 1016 |
|
|
}
|
| 1017 |
|
|
|
| 1018 |
|
|
return crc;
|
| 1019 |
|
|
}
|
| 1020 |
|
|
|
| 1021 |
|
|
uint32_t
|
| 1022 |
|
|
DebugUnitSC::bit_reverse_swar_2(uint32_t x)
|
| 1023 |
|
|
{
|
| 1024 |
|
|
return (((x&0xaaaaaaaa)>>1)|((x&0x55555555)<<1));
|
| 1025 |
|
|
}
|
| 1026 |
|
|
uint32_t
|
| 1027 |
|
|
DebugUnitSC::bit_reverse_swar_4(uint32_t x)
|
| 1028 |
|
|
{
|
| 1029 |
|
|
x=(((x&0xaaaaaaaa)>>1)|((x&0x55555555)<<1));
|
| 1030 |
|
|
x=(((x&0xcccccccc)>>2)|((x&0x33333333)<<2));
|
| 1031 |
|
|
return x;
|
| 1032 |
|
|
}
|
| 1033 |
|
|
uint32_t
|
| 1034 |
|
|
DebugUnitSC::bit_reverse_swar_8(uint32_t x)
|
| 1035 |
|
|
{
|
| 1036 |
|
|
x=(((x&0xaaaaaaaa)>>1)|((x&0x55555555)<<1));
|
| 1037 |
|
|
x=(((x&0xcccccccc)>>2)|((x&0x33333333)<<2));
|
| 1038 |
|
|
x=(((x&0xf0f0f0f0)>>4)|((x&0x0f0f0f0f)<<4));
|
| 1039 |
|
|
return x;
|
| 1040 |
|
|
}
|
| 1041 |
|
|
uint32_t
|
| 1042 |
|
|
DebugUnitSC::bit_reverse_swar_16(uint32_t x)
|
| 1043 |
|
|
{
|
| 1044 |
|
|
x=(((x&0xaaaaaaaa)>>1)|((x&0x55555555)<<1));
|
| 1045 |
|
|
x=(((x&0xcccccccc)>>2)|((x&0x33333333)<<2));
|
| 1046 |
|
|
x=(((x&0xf0f0f0f0)>>4)|((x&0x0f0f0f0f)<<4));
|
| 1047 |
|
|
x=(((x&0xff00ff00)>>8)|((x&0x00ff00ff)<<8));
|
| 1048 |
|
|
return x;
|
| 1049 |
|
|
}
|
| 1050 |
|
|
uint32_t
|
| 1051 |
|
|
DebugUnitSC::bit_reverse_swar_32(uint32_t x)
|
| 1052 |
|
|
{
|
| 1053 |
|
|
x=(((x&0xaaaaaaaa)>>1)|((x&0x55555555)<<1));
|
| 1054 |
|
|
x=(((x&0xcccccccc)>>2)|((x&0x33333333)<<2));
|
| 1055 |
|
|
x=(((x&0xf0f0f0f0)>>4)|((x&0x0f0f0f0f)<<4));
|
| 1056 |
|
|
x=(((x&0xff00ff00)>>8)|((x&0x00ff00ff)<<8));
|
| 1057 |
|
|
x=(((x&0xffff0000)>>16)|((x&0x0000ffff)<<16)); // We could be on 64-bit arch!
|
| 1058 |
|
|
return x;
|
| 1059 |
|
|
}
|
| 1060 |
|
|
|
| 1061 |
|
|
uint32_t
|
| 1062 |
|
|
DebugUnitSC::bit_reverse_data(uint32_t data, int length){
|
| 1063 |
|
|
if (length == 2) return bit_reverse_swar_2(data);
|
| 1064 |
|
|
if (length == 4) return bit_reverse_swar_4(data);
|
| 1065 |
|
|
if (length == 8) return bit_reverse_swar_8(data);
|
| 1066 |
|
|
if (length == 16) return bit_reverse_swar_16(data);
|
| 1067 |
|
|
if (length == 32) return bit_reverse_swar_32(data);
|
| 1068 |
|
|
// Long and laborious way - hopefully never gets called anymore!
|
| 1069 |
|
|
uint32_t reverse=0;
|
| 1070 |
|
|
for (int i=0;i<length;i++) reverse |= (((data>>i)&1)<<(length-1-i));
|
| 1071 |
|
|
return reverse;
|
| 1072 |
|
|
}
|