1 |
63 |
julius |
// ----------------------------------------------------------------------------
|
2 |
|
|
|
3 |
|
|
// SystemC OpenRISC 1000 Debug Unit: implementation
|
4 |
|
|
|
5 |
|
|
// Copyright (C) 2008 Embecosm Limited <info@embecosm.com>
|
6 |
|
|
// Copyright (C) 2009 ORSoC
|
7 |
|
|
|
8 |
|
|
// Contributor Jeremy Bennett <jeremy.bennett@embecosm.com>
|
9 |
|
|
// Contributor Julius Baxter <julius@orsoc.se>
|
10 |
|
|
|
11 |
|
|
// This file is part of the GDB interface to the cycle accurate model of the
|
12 |
|
|
// OpenRISC 1000 based system-on-chip, ORPSoC, built using Verilator.
|
13 |
|
|
|
14 |
|
|
// This program is free software: you can redistribute it and/or modify it
|
15 |
|
|
// under the terms of the GNU Lesser General Public License as published by
|
16 |
|
|
// the Free Software Foundation, either version 3 of the License, or (at your
|
17 |
|
|
// option) any later version.
|
18 |
|
|
|
19 |
|
|
// This program is distributed in the hope that it will be useful, but WITHOUT
|
20 |
|
|
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
21 |
|
|
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
|
22 |
|
|
// License for more details.
|
23 |
|
|
|
24 |
|
|
// You should have received a copy of the GNU Lesser General Public License
|
25 |
|
|
// along with this program. If not, see <http://www.gnu.org/licenses/>.
|
26 |
|
|
|
27 |
|
|
// ----------------------------------------------------------------------------
|
28 |
|
|
|
29 |
|
|
// $Id$
|
30 |
|
|
|
31 |
|
|
#include <iostream>
|
32 |
|
|
#include <iomanip>
|
33 |
|
|
|
34 |
|
|
#include "DebugUnitSC.h"
|
35 |
|
|
#include "Utils.h"
|
36 |
|
|
|
37 |
|
|
|
38 |
|
|
using sc_core::sc_event;
|
39 |
|
|
using sc_core::sc_fifo;
|
40 |
|
|
using sc_core::sc_module_name;
|
41 |
|
|
|
42 |
|
|
|
43 |
|
|
//-----------------------------------------------------------------------------
|
44 |
|
|
//! Constructor for the Debug Unit
|
45 |
|
|
|
46 |
|
|
//! This module is entirely subservient to the GDB server. It has no SystemC
|
47 |
|
|
//! processes of its own. It provides services via calls to its API.
|
48 |
|
|
|
49 |
|
|
//! The current scan chain is marked as undefined, and the current JTAG scan
|
50 |
|
|
//! chain is maked as undefined.
|
51 |
|
|
|
52 |
|
|
//! Caches for SPR and memory access are initialized.
|
53 |
|
|
|
54 |
|
|
//! This makes use of the Embecosm cycle accurate SystemC JTAG interface.
|
55 |
|
|
|
56 |
|
|
//! @see Embecosm Application Note 5 "Using JTAG with SystemC: Implementation
|
57 |
|
|
//! of a Cycle Accurate Interface"
|
58 |
|
|
//! (http://www.embecosm.com/download/ean5.html)
|
59 |
|
|
|
60 |
|
|
//! @param[in] name Name of this module, passed to the parent
|
61 |
|
|
//! constructor.
|
62 |
|
|
//! @param[in] _tapActionQueue Pointer to fifo of actions to be performed by
|
63 |
|
|
//! the JTAG interface
|
64 |
|
|
//-----------------------------------------------------------------------------
|
65 |
|
|
DebugUnitSC::DebugUnitSC (sc_module_name name,
|
66 |
|
|
sc_fifo<TapAction *> *_tapActionQueue) :
|
67 |
|
|
sc_module (name),
|
68 |
|
|
tapActionQueue (_tapActionQueue),
|
69 |
|
|
stallState (UNKNOWN),
|
70 |
|
|
currentScanChain (OR1K_SC_UNDEF)
|
71 |
|
|
{
|
72 |
|
|
#ifdef NOCACHE
|
73 |
|
|
npcCacheIsValid = false; // Always cache NPC
|
74 |
|
|
#else
|
75 |
|
|
sprCache = new SprCache ();
|
76 |
|
|
memCache = new MemCache ();
|
77 |
|
|
#endif
|
78 |
|
|
|
79 |
|
|
} // DebugUnitSC ()
|
80 |
|
|
|
81 |
|
|
|
82 |
|
|
//-----------------------------------------------------------------------------
|
83 |
|
|
//! Destructor
|
84 |
|
|
|
85 |
|
|
//! Free up data structures
|
86 |
|
|
//-----------------------------------------------------------------------------
|
87 |
|
|
DebugUnitSC::~DebugUnitSC ()
|
88 |
|
|
{
|
89 |
|
|
#ifndef NOCACHE
|
90 |
|
|
delete memCache;
|
91 |
|
|
delete sprCache;
|
92 |
|
|
#endif
|
93 |
|
|
|
94 |
|
|
} // ~DebugUnitSC
|
95 |
|
|
|
96 |
|
|
|
97 |
|
|
//-----------------------------------------------------------------------------
|
98 |
|
|
//! Reset the Debug Unit
|
99 |
|
|
|
100 |
|
|
//! This is just a reset of the JTAG. It is quite possible to reset the debug
|
101 |
|
|
//! unit without resetting the whole target.
|
102 |
|
|
|
103 |
|
|
//! @note Must be called from a SystemC thread, because of the use of wait()
|
104 |
|
|
//-----------------------------------------------------------------------------
|
105 |
|
|
void
|
106 |
|
|
DebugUnitSC::resetDebugUnit ()
|
107 |
|
|
{
|
108 |
|
|
sc_event *done = new sc_event();
|
109 |
|
|
TapActionReset *resetAction;
|
110 |
|
|
|
111 |
|
|
// Create and queue the reset action and wait for it to complete
|
112 |
|
|
resetAction = new TapActionReset (done);
|
113 |
|
|
tapActionQueue->write (resetAction);
|
114 |
|
|
wait (*done);
|
115 |
|
|
|
116 |
|
|
delete resetAction;
|
117 |
|
|
delete done;
|
118 |
|
|
|
119 |
|
|
} // resetDebugUnit ()
|
120 |
|
|
|
121 |
|
|
|
122 |
|
|
//-----------------------------------------------------------------------------
|
123 |
|
|
//! Reset the processor
|
124 |
|
|
|
125 |
|
|
//! Read the RISCOP register, OR in the reset bit and write it back.
|
126 |
|
|
|
127 |
|
|
//! After reset, the processor is known to be unstalled.
|
128 |
|
|
//-----------------------------------------------------------------------------
|
129 |
|
|
void
|
130 |
|
|
DebugUnitSC::reset ()
|
131 |
|
|
{
|
132 |
|
|
writeRiscop (readRiscop () | RISCOP_RESET);
|
133 |
|
|
stallState = UNKNOWN;
|
134 |
|
|
|
135 |
|
|
} // reset ()
|
136 |
|
|
|
137 |
|
|
|
138 |
|
|
//-----------------------------------------------------------------------------
|
139 |
|
|
//! Stall the processor
|
140 |
|
|
|
141 |
|
|
//! Read the RISCOP register, OR in the stall bit and write it back.
|
142 |
|
|
//-----------------------------------------------------------------------------
|
143 |
|
|
void
|
144 |
|
|
DebugUnitSC::stall ()
|
145 |
|
|
{
|
146 |
|
|
writeRiscop (/*readRiscop () |*/ RISCOP_STALL);
|
147 |
|
|
stallState = STALLED;
|
148 |
|
|
|
149 |
|
|
} // stall ()
|
150 |
|
|
|
151 |
|
|
|
152 |
|
|
//-----------------------------------------------------------------------------
|
153 |
|
|
//! Unstall the processor
|
154 |
|
|
|
155 |
|
|
//! Read the RISCOP register, AND out the stall bit and write it back. After
|
156 |
|
|
//! this the NPC cache will be invalid.
|
157 |
|
|
|
158 |
|
|
//! @note Don't be tempted to read back for confirmation. Single stepping
|
159 |
|
|
//! will already have stalled the processor again!
|
160 |
|
|
//-----------------------------------------------------------------------------
|
161 |
|
|
void
|
162 |
|
|
DebugUnitSC::unstall ()
|
163 |
|
|
{
|
164 |
|
|
writeRiscop (/*readRiscop () & ~RISCOP_STALL*/ 0);
|
165 |
|
|
stallState = UNKNOWN;
|
166 |
|
|
|
167 |
|
|
#ifdef NOCACHE
|
168 |
|
|
npcCacheIsValid = false; // Always cache NPC
|
169 |
|
|
#else
|
170 |
|
|
// Clear the caches
|
171 |
|
|
sprCache->clear ();
|
172 |
|
|
memCache->clear ();
|
173 |
|
|
#endif
|
174 |
|
|
|
175 |
|
|
} // unstall ()
|
176 |
|
|
|
177 |
|
|
|
178 |
|
|
//-----------------------------------------------------------------------------
|
179 |
|
|
//! Report if the processor is stalled.
|
180 |
|
|
|
181 |
|
|
//! A stalled processor cannot spontaneously "unstall", so if the stallState
|
182 |
|
|
//! flag is STALLED, that value is returned. Otherwise the target is
|
183 |
|
|
//! interrogated to determine the status.
|
184 |
|
|
|
185 |
|
|
//! @return TRUE if the processor is known to be stalled
|
186 |
|
|
//-----------------------------------------------------------------------------
|
187 |
|
|
bool
|
188 |
|
|
DebugUnitSC::isStalled ()
|
189 |
|
|
{
|
190 |
|
|
if (STALLED == stallState)
|
191 |
|
|
{
|
192 |
|
|
return true;
|
193 |
|
|
}
|
194 |
|
|
|
195 |
|
|
uint32_t riscop = readRiscop ();
|
196 |
|
|
/* For some reason the reset bit is skipped over somewhere, so we should
|
197 |
|
|
just get riscop = 1 if it's stalled */
|
198 |
|
|
|
199 |
|
|
//stallState = (RISCOP_STALL == (riscop & RISCOP_STALL)) ? STALLED : UNKNOWN;
|
200 |
|
|
stallState = riscop ? STALLED : UNKNOWN;
|
201 |
|
|
|
202 |
|
|
return STALLED == stallState;
|
203 |
|
|
|
204 |
|
|
} // isStalled ()
|
205 |
|
|
|
206 |
|
|
|
207 |
|
|
//-----------------------------------------------------------------------------
|
208 |
|
|
//! Read the value of an OpenRISC 1000 Special Purpose Register
|
209 |
|
|
|
210 |
|
|
//! First see if we have the value in the cache, and if so return
|
211 |
|
|
//! it. Otherwise, select the RISC_DEBUG scan chain and read from JTAG,
|
212 |
|
|
//! storing the result in the cache.
|
213 |
|
|
|
214 |
|
|
//! @param[in] sprNum The SPR to read
|
215 |
|
|
|
216 |
|
|
//! @return The value of the SPR
|
217 |
|
|
//-----------------------------------------------------------------------------
|
218 |
|
|
uint32_t
|
219 |
|
|
DebugUnitSC::readSpr (uint16_t sprNum)
|
220 |
|
|
{
|
221 |
|
|
uint32_t cachedValue;
|
222 |
|
|
|
223 |
|
|
#ifdef NOCACHE
|
224 |
|
|
// Always check NPC cache
|
225 |
|
|
if ((STALLED == stallState) && (sprNum == SPR_NPC) && npcCacheIsValid)
|
226 |
|
|
{
|
227 |
|
|
return npcCachedValue;
|
228 |
|
|
}
|
229 |
|
|
#else
|
230 |
|
|
// Use any cached value if we are stalled.
|
231 |
|
|
if ((STALLED == stallState) && sprCache->read (sprNum, cachedValue))
|
232 |
|
|
{
|
233 |
|
|
return cachedValue; // Already there, no more to do
|
234 |
|
|
}
|
235 |
|
|
#endif
|
236 |
|
|
|
237 |
|
|
// Read the value
|
238 |
|
|
selectDebugModule (OR1K_SC_CPU0);
|
239 |
|
|
cachedValue = readJtagReg (sprNum);
|
240 |
|
|
|
241 |
|
|
#ifdef NOCACHE
|
242 |
|
|
// Always update the NPC cache
|
243 |
|
|
if ((STALLED == stallState) && (sprNum == SPR_NPC))
|
244 |
|
|
{
|
245 |
|
|
npcCachedValue = cachedValue;
|
246 |
|
|
npcCacheIsValid = true;
|
247 |
|
|
}
|
248 |
|
|
#else
|
249 |
|
|
// Update the cache if we are stalled
|
250 |
|
|
if (STALLED == stallState)
|
251 |
|
|
{
|
252 |
|
|
sprCache->write (sprNum, cachedValue, sprNum == SPR_NPC);
|
253 |
|
|
}
|
254 |
|
|
#endif
|
255 |
|
|
|
256 |
|
|
return cachedValue;
|
257 |
|
|
|
258 |
|
|
} // readSpr ()
|
259 |
|
|
|
260 |
|
|
|
261 |
|
|
//-----------------------------------------------------------------------------
|
262 |
|
|
//! Write the value of an OpenRISC 1000 Special Purpose Register
|
263 |
|
|
|
264 |
|
|
//! First look to see if we are stalled and the value is cached. If the value
|
265 |
|
|
//! has not changed, then we need to no more. Otherwise cache the value prior
|
266 |
|
|
//! to writing it.
|
267 |
|
|
|
268 |
|
|
//! Select the RISC_DEBUG scan chain and write to JTAG
|
269 |
|
|
|
270 |
|
|
//! @param[in] sprNum The SPR to write
|
271 |
|
|
//! @param[in] value The value to write
|
272 |
|
|
//-----------------------------------------------------------------------------
|
273 |
|
|
void
|
274 |
|
|
DebugUnitSC::writeSpr (uint16_t sprNum,
|
275 |
|
|
uint32_t value)
|
276 |
|
|
{
|
277 |
|
|
#ifdef NOCACHE
|
278 |
|
|
// Always cache the NPC
|
279 |
|
|
if ((STALLED == stallState) && (SPR_NPC == sprNum))
|
280 |
|
|
{
|
281 |
|
|
// Have we already cached this NPC value?
|
282 |
|
|
if (npcCacheIsValid && (value == npcCachedValue))
|
283 |
|
|
{
|
284 |
|
|
return;
|
285 |
|
|
}
|
286 |
|
|
else
|
287 |
|
|
{
|
288 |
|
|
npcCachedValue = value;
|
289 |
|
|
npcCacheIsValid = true;
|
290 |
|
|
}
|
291 |
|
|
}
|
292 |
|
|
#else
|
293 |
|
|
if (STALLED == stallState)
|
294 |
|
|
{
|
295 |
|
|
// Have we already cached this value?
|
296 |
|
|
uint32_t cachedValue;
|
297 |
|
|
if (sprCache->read (sprNum, cachedValue) &&
|
298 |
|
|
(value == cachedValue))
|
299 |
|
|
{
|
300 |
|
|
return; // Already there, no more to do
|
301 |
|
|
}
|
302 |
|
|
else
|
303 |
|
|
{
|
304 |
|
|
sprCache->write (sprNum, value, sprNum == SPR_NPC);
|
305 |
|
|
}
|
306 |
|
|
}
|
307 |
|
|
#endif
|
308 |
|
|
|
309 |
|
|
// Write the SPR
|
310 |
|
|
selectDebugModule (OR1K_SC_CPU0);
|
311 |
|
|
writeJtagReg (sprNum, value);
|
312 |
|
|
|
313 |
|
|
} // writeSpr ()
|
314 |
|
|
|
315 |
|
|
|
316 |
|
|
//-----------------------------------------------------------------------------
|
317 |
|
|
//! AND the contents of an SPR with a value
|
318 |
|
|
|
319 |
|
|
//! A convenience combination of read and write
|
320 |
|
|
|
321 |
|
|
//! @param[in] sprNum The SPR to write
|
322 |
|
|
//! @param[in] value The value to AND into the register
|
323 |
|
|
//-----------------------------------------------------------------------------
|
324 |
|
|
void
|
325 |
|
|
DebugUnitSC::andSpr (uint16_t sprNum,
|
326 |
|
|
uint32_t value)
|
327 |
|
|
{
|
328 |
|
|
writeSpr (sprNum, readSpr (sprNum) & value);
|
329 |
|
|
|
330 |
|
|
} // andSpr ()
|
331 |
|
|
|
332 |
|
|
|
333 |
|
|
//-----------------------------------------------------------------------------
|
334 |
|
|
//! OR the contents of an SPR with a value
|
335 |
|
|
|
336 |
|
|
//! A convenience combination of read and write
|
337 |
|
|
|
338 |
|
|
//! @param[in] sprNum The SPR to write
|
339 |
|
|
//! @param[in] value The value to OR into the register
|
340 |
|
|
//-----------------------------------------------------------------------------
|
341 |
|
|
void
|
342 |
|
|
DebugUnitSC::orSpr (uint16_t sprNum,
|
343 |
|
|
uint32_t value)
|
344 |
|
|
{
|
345 |
|
|
writeSpr (sprNum, readSpr (sprNum) | value);
|
346 |
|
|
|
347 |
|
|
} // orSpr ()
|
348 |
|
|
|
349 |
|
|
|
350 |
|
|
//-----------------------------------------------------------------------------
|
351 |
|
|
//! Read a 32-bit word from the OpenRISC 1000 memory
|
352 |
|
|
|
353 |
|
|
//! Select the WISHBONE scan chain, then write the register. The data is in
|
354 |
|
|
//! model endianness and passed on without modification.
|
355 |
|
|
|
356 |
|
|
//! @todo Provide code to check if the read was from a valid address.
|
357 |
|
|
|
358 |
|
|
//! @param[in] addr The address to read from
|
359 |
|
|
|
360 |
|
|
//! @return The 32-bit value read
|
361 |
|
|
//-----------------------------------------------------------------------------
|
362 |
|
|
uint32_t
|
363 |
|
|
DebugUnitSC::readMem32 (uint32_t addr)
|
364 |
|
|
{
|
365 |
|
|
uint32_t cachedValue;
|
366 |
|
|
|
367 |
|
|
#ifndef NOCACHE
|
368 |
|
|
// Use any cached value if we are stalled.
|
369 |
|
|
if ((STALLED == stallState) && memCache->read (addr, cachedValue))
|
370 |
|
|
{
|
371 |
|
|
return cachedValue; // Already there, no more to do
|
372 |
|
|
}
|
373 |
|
|
#endif
|
374 |
|
|
|
375 |
|
|
// Read the value
|
376 |
|
|
selectDebugModule (OR1K_SC_WISHBONE);
|
377 |
|
|
cachedValue = readJtagReg (addr);
|
378 |
|
|
|
379 |
|
|
#ifndef NOCACHE
|
380 |
|
|
// Update the cache if we are stalled
|
381 |
|
|
if (STALLED == stallState)
|
382 |
|
|
{
|
383 |
|
|
memCache->write (addr, cachedValue);
|
384 |
|
|
}
|
385 |
|
|
#endif
|
386 |
|
|
|
387 |
|
|
return cachedValue;
|
388 |
|
|
|
389 |
|
|
} // readMem32 ()
|
390 |
|
|
|
391 |
|
|
|
392 |
|
|
//-----------------------------------------------------------------------------
|
393 |
|
|
//! Write a 32-bit word to the OpenRISC 1000 memory
|
394 |
|
|
|
395 |
|
|
//! Select the WISHBONE scan chain, then write the register. The data is in
|
396 |
|
|
//! model endianness and passed on without modification.
|
397 |
|
|
|
398 |
|
|
//! @todo Provide code to check if the write was to a valid address.
|
399 |
|
|
|
400 |
|
|
//! @param[in] addr The address to write to
|
401 |
|
|
//! @param[in] value The 32-bit value to write
|
402 |
|
|
|
403 |
|
|
//! @return True if the write was successful. For now all writes are
|
404 |
|
|
// successful.
|
405 |
|
|
//-----------------------------------------------------------------------------
|
406 |
|
|
bool
|
407 |
|
|
DebugUnitSC::writeMem32 (uint32_t addr,
|
408 |
|
|
uint32_t value)
|
409 |
|
|
{
|
410 |
|
|
#ifndef NOCACHE
|
411 |
|
|
if (STALLED == stallState)
|
412 |
|
|
{
|
413 |
|
|
// Have we already cached this value?
|
414 |
|
|
uint32_t cachedValue;
|
415 |
|
|
if (memCache->read (addr, cachedValue) &&
|
416 |
|
|
(value == cachedValue))
|
417 |
|
|
{
|
418 |
|
|
return true; // Already there, no more to do
|
419 |
|
|
}
|
420 |
|
|
else
|
421 |
|
|
{
|
422 |
|
|
memCache->write (addr, value); // Write for the future
|
423 |
|
|
}
|
424 |
|
|
}
|
425 |
|
|
#endif
|
426 |
|
|
|
427 |
|
|
// Write the memory
|
428 |
|
|
selectDebugModule (OR1K_SC_WISHBONE);
|
429 |
|
|
writeJtagReg (addr, value);
|
430 |
|
|
|
431 |
|
|
return true;
|
432 |
|
|
|
433 |
|
|
} // writeMem32 ()
|
434 |
|
|
|
435 |
|
|
|
436 |
|
|
//-----------------------------------------------------------------------------
|
437 |
|
|
//! Read a byte from the OpenRISC 1000 main memory
|
438 |
|
|
|
439 |
|
|
//! All we can get are 32-bits words, so we have to unpick the value.
|
440 |
|
|
|
441 |
|
|
//! The underlying 32-bit routines take target endian arguments and return
|
442 |
|
|
//! target endian results. We need to convert to host endianness to access the
|
443 |
|
|
//! relevant byte.
|
444 |
|
|
|
445 |
|
|
//! @todo Provide code to check if the read was from a valid address.
|
446 |
|
|
|
447 |
|
|
//! @note Read bytes from memory mapped devices at your peril!
|
448 |
|
|
|
449 |
|
|
//! @param[in] addr The address to read from
|
450 |
|
|
//! @return The byte read
|
451 |
|
|
//-----------------------------------------------------------------------------
|
452 |
|
|
uint8_t
|
453 |
|
|
DebugUnitSC::readMem8 (uint32_t addr)
|
454 |
|
|
{
|
455 |
|
|
uint32_t word = Utils::ttohl (readMem32 (addr & 0xfffffffc));
|
456 |
|
|
uint8_t *bytes = (uint8_t *)(&word);
|
457 |
|
|
int offset = addr & 0x3;
|
458 |
|
|
|
459 |
|
|
return bytes[offset];
|
460 |
|
|
|
461 |
|
|
} // readMem8 ()
|
462 |
|
|
|
463 |
|
|
|
464 |
|
|
//-----------------------------------------------------------------------------
|
465 |
|
|
//! Write a byte to the OpenRISC 1000 main memory
|
466 |
|
|
|
467 |
|
|
//! All we can get are 32-bits words, so we have to read the current value and
|
468 |
|
|
//! construct the new value to write back.
|
469 |
|
|
|
470 |
|
|
//! The underlying 32-bit routines take target endian arguments and return
|
471 |
|
|
//! target endian results. We need to convert to host endianness to alter the
|
472 |
|
|
//! relevant byte.
|
473 |
|
|
|
474 |
|
|
//! @note Write bytes to memory mapped devices at your peril!
|
475 |
|
|
|
476 |
|
|
//! @todo Provide code to check if the write was to a valid address.
|
477 |
|
|
|
478 |
|
|
//! @param[in] addr The address to write to
|
479 |
|
|
//! @param[in] value The byte to write
|
480 |
|
|
|
481 |
|
|
//! @return True if the write was successful. For now all writes are
|
482 |
|
|
// successful.
|
483 |
|
|
//-----------------------------------------------------------------------------
|
484 |
|
|
bool
|
485 |
|
|
DebugUnitSC::writeMem8 (uint32_t addr,
|
486 |
|
|
uint8_t value)
|
487 |
|
|
{
|
488 |
|
|
uint32_t currWord = Utils::ttohl (readMem32 (addr & 0xfffffffc));
|
489 |
|
|
uint8_t *currBytes = (uint8_t *)(&currWord);
|
490 |
|
|
int offset = addr & 0x3;
|
491 |
|
|
|
492 |
|
|
currBytes[offset] = value;
|
493 |
|
|
|
494 |
|
|
return writeMem32 (addr & 0xfffffffc, Utils::htotl (currWord));
|
495 |
|
|
|
496 |
|
|
} // writeMem8 ()
|
497 |
|
|
|
498 |
|
|
|
499 |
|
|
//-----------------------------------------------------------------------------
|
500 |
|
|
//! Get the debug interface CPU0 control register value
|
501 |
|
|
|
502 |
|
|
//! @return The value in the RISCOP register
|
503 |
|
|
//-----------------------------------------------------------------------------
|
504 |
|
|
uint32_t
|
505 |
|
|
DebugUnitSC::readRiscop ()
|
506 |
|
|
{
|
507 |
|
|
selectDebugModule (OR1K_SC_CPU0);
|
508 |
|
|
|
509 |
|
|
int drLen; // Size of the data register
|
510 |
|
|
|
511 |
|
|
uint32_t calc_recv_crc = 0, recv_crc, status_ret;
|
512 |
|
|
|
513 |
|
|
drLen = 1+4+32+52+4+32;
|
514 |
|
|
|
515 |
|
|
// Initialize the register fields
|
516 |
|
|
uint64_t *dRegIn = new uint64_t [(drLen + 63) / 64];
|
517 |
|
|
uint64_t *dRegOut = new uint64_t [(drLen + 63) / 64];
|
518 |
|
|
|
519 |
|
|
// Write the READ command
|
520 |
|
|
clearBits (dRegIn, drLen);
|
521 |
|
|
|
522 |
|
|
packBits (dRegIn, 0, 1, 0);
|
523 |
|
|
packBits (dRegIn, 0+1, 4, BITREV(0x3,4)); // We're reading CPU0 control reg
|
524 |
|
|
uint32_t crc32_send = crc32 (dRegIn, 0+1+4, 0);
|
525 |
|
|
packBits (dRegIn, 0+1+4, 32, BITREV(crc32_send,32));
|
526 |
|
|
|
527 |
|
|
// Allocate a SystemC completion event
|
528 |
|
|
sc_event *done = new sc_event();
|
529 |
|
|
|
530 |
|
|
// Loop until status is OK and CRCs match.
|
531 |
|
|
do
|
532 |
|
|
{
|
533 |
|
|
TapActionDRScan *dRScan = new TapActionDRScan (done, dRegIn, drLen);
|
534 |
|
|
tapActionQueue->write (dRScan);
|
535 |
|
|
wait (*done);
|
536 |
|
|
dRScan->getDRegOut (dRegOut);
|
537 |
|
|
delete dRScan;
|
538 |
|
|
status_ret = unpackBits (dRegOut,1+4+32+52,4);
|
539 |
|
|
calc_recv_crc = crc32(dRegOut,52+4,1+4+32);
|
540 |
|
|
recv_crc = BITREV(unpackBits (dRegOut,1+4+32+52+4,32),32);
|
541 |
|
|
}
|
542 |
|
|
while ((0 != status_ret) || ( calc_recv_crc != recv_crc));
|
543 |
|
|
|
544 |
|
|
// All done
|
545 |
|
|
uint32_t res = BITREV(unpackBits (dRegOut, (1+4+32),2),2);
|
546 |
|
|
|
547 |
|
|
delete [] dRegIn;
|
548 |
|
|
delete [] dRegOut;
|
549 |
|
|
delete done;
|
550 |
|
|
return res;
|
551 |
|
|
} // readRiscop ()
|
552 |
|
|
|
553 |
|
|
|
554 |
|
|
//-----------------------------------------------------------------------------
|
555 |
|
|
//! Set the RISCOP control register
|
556 |
|
|
|
557 |
|
|
//! Convenience function. Select the REGISTER scan chain, write the new value.
|
558 |
|
|
|
559 |
|
|
//! @param[in] value The value to write into the RISCOP register
|
560 |
|
|
//-----------------------------------------------------------------------------
|
561 |
|
|
void
|
562 |
|
|
DebugUnitSC::writeRiscop (uint32_t value)
|
563 |
|
|
{
|
564 |
|
|
selectDebugModule (OR1K_SC_CPU0);
|
565 |
|
|
|
566 |
|
|
int drLen; // Size of the data register
|
567 |
|
|
|
568 |
|
|
uint32_t calc_recv_crc = 0, recv_crc, status_ret;
|
569 |
|
|
|
570 |
|
|
drLen = 1+4+32+52+4+32;
|
571 |
|
|
|
572 |
|
|
// Initialize the register fields
|
573 |
|
|
uint64_t *dRegIn = new uint64_t [(drLen + 63) / 64];
|
574 |
|
|
uint64_t *dRegOut = new uint64_t [(drLen + 63) / 64];
|
575 |
|
|
|
576 |
|
|
// Write the READ command
|
577 |
|
|
clearBits (dRegIn, drLen);
|
578 |
|
|
|
579 |
|
|
packBits (dRegIn, 0, 1, 0);
|
580 |
|
|
packBits (dRegIn, 0+1, 4, BITREV(0x4,4)); // We're writing CPU0 control reg
|
581 |
|
|
packBits (dRegIn, 5, 1, value&RISCOP_RESET); // First bit is reset
|
582 |
|
|
packBits (dRegIn, 6, 1, (value&RISCOP_STALL)>>1); // Next bit is stall
|
583 |
|
|
/* Next 50 bits should be zero */
|
584 |
|
|
uint32_t crc32_send = crc32 (dRegIn, 1+4+52, 0);
|
585 |
|
|
packBits (dRegIn, 1+4+52, 32, BITREV(crc32_send,32));
|
586 |
|
|
|
587 |
|
|
// Allocate a SystemC completion event
|
588 |
|
|
sc_event *done = new sc_event();
|
589 |
|
|
|
590 |
|
|
// Loop until status is OK and CRCs match.
|
591 |
|
|
do
|
592 |
|
|
{
|
593 |
|
|
TapActionDRScan *dRScan = new TapActionDRScan (done, dRegIn, drLen);
|
594 |
|
|
tapActionQueue->write (dRScan);
|
595 |
|
|
wait (*done);
|
596 |
|
|
dRScan->getDRegOut (dRegOut);
|
597 |
|
|
delete dRScan;
|
598 |
|
|
status_ret = unpackBits (dRegOut,1+4+32+52,4);
|
599 |
|
|
calc_recv_crc = crc32(dRegOut,4,1+4+52+32);
|
600 |
|
|
recv_crc = BITREV(unpackBits (dRegOut,1+4+52+32+4,32),32);
|
601 |
|
|
}
|
602 |
|
|
while ((0 != status_ret) || ( calc_recv_crc != recv_crc));
|
603 |
|
|
|
604 |
|
|
delete [] dRegIn;
|
605 |
|
|
delete [] dRegOut;
|
606 |
|
|
delete done;
|
607 |
|
|
|
608 |
|
|
} // writeRiscop ()
|
609 |
|
|
|
610 |
|
|
|
611 |
|
|
//-----------------------------------------------------------------------------
|
612 |
|
|
//! Select a module attached to the debug module
|
613 |
|
|
|
614 |
|
|
//! @note Must be called from a SystemC thread, because of the use of wait()
|
615 |
|
|
|
616 |
|
|
//! @param[in] chain The desired module
|
617 |
|
|
//-----------------------------------------------------------------------------
|
618 |
|
|
void
|
619 |
|
|
DebugUnitSC::selectDebugModule (int module)
|
620 |
|
|
{
|
621 |
|
|
|
622 |
|
|
if (module == currentScanChain)
|
623 |
|
|
{
|
624 |
|
|
return;
|
625 |
|
|
}
|
626 |
|
|
else
|
627 |
|
|
{
|
628 |
|
|
currentScanChain = module;
|
629 |
|
|
}
|
630 |
|
|
|
631 |
|
|
sc_event *done = new sc_event();
|
632 |
|
|
TapActionIRScan *iRScan;
|
633 |
|
|
TapActionDRScan *dRScan;
|
634 |
|
|
|
635 |
|
|
// Create and queue the IR-Scan action for DEBUG (no CRC)
|
636 |
|
|
iRScan = new TapActionIRScan (done, DEBUG_IR, JTAG_IR_LEN);
|
637 |
|
|
tapActionQueue->write (iRScan);
|
638 |
|
|
wait (*done);
|
639 |
|
|
|
640 |
|
|
delete iRScan;
|
641 |
|
|
|
642 |
|
|
// Initialize the register fields
|
643 |
|
|
uint64_t *dRegIn = new uint64_t [(DUSEL_DR_LEN + 63) / 64];
|
644 |
|
|
uint64_t *dRegOut = new uint64_t [(DUSEL_DR_LEN + 63) / 64];
|
645 |
|
|
|
646 |
|
|
clearBits (dRegIn, DUSEL_DR_LEN);
|
647 |
|
|
packBits (dRegIn, DUSEL_SEL_OFF, DUSEL_SEL_LEN, 0x1);
|
648 |
|
|
packBits (dRegIn, DUSEL_OPCODE_OFF, DUSEL_OPCODE_LEN, bit_reverse_data(module,4));
|
649 |
|
|
uint32_t crc32_send = crc32 (dRegIn, DUSEL_CRC_OFF, 0);
|
650 |
|
|
packBits (dRegIn, DUSEL_CRC_OFF, DUSEL_CRC_LEN, bit_reverse_data(crc32_send,32) );
|
651 |
|
|
uint32_t calc_recv_crc = 0, recv_crc, status_ret;
|
652 |
|
|
// Loop until status is OK and CRCs match.
|
653 |
|
|
do
|
654 |
|
|
{
|
655 |
|
|
TapActionDRScan *dRScan = new TapActionDRScan (done, dRegIn, DUSEL_DR_LEN);
|
656 |
|
|
tapActionQueue->write (dRScan);
|
657 |
|
|
wait (*done);
|
658 |
|
|
dRScan->getDRegOut (dRegOut);
|
659 |
|
|
delete dRScan;
|
660 |
|
|
status_ret = unpackBits (dRegOut, DUSEL_RESP_STATUS_OFF, DUSEL_RESP_STATUS_LEN);
|
661 |
|
|
calc_recv_crc = crc32(dRegOut, DUSEL_RESP_STATUS_LEN, DUSEL_RESP_STATUS_OFF);
|
662 |
|
|
recv_crc = bit_reverse_data(unpackBits (dRegOut, DUSEL_RESP_CRC_OFF, DUSEL_RESP_CRC_LEN),32);
|
663 |
|
|
}
|
664 |
|
|
while ((0 != status_ret) || ( calc_recv_crc != recv_crc));
|
665 |
|
|
|
666 |
|
|
delete [] dRegIn;
|
667 |
|
|
delete [] dRegOut;
|
668 |
|
|
delete done;
|
669 |
|
|
|
670 |
|
|
} // selectDebugModule()
|
671 |
|
|
|
672 |
|
|
|
673 |
|
|
//-----------------------------------------------------------------------------
|
674 |
|
|
//! Read a 32-bit value via the debug interface
|
675 |
|
|
|
676 |
|
|
//! @note Must be called from a SystemC thread, because of the use of wait()
|
677 |
|
|
|
678 |
|
|
//! @param[in] addr The address of the register
|
679 |
|
|
|
680 |
|
|
//! @return The register value read
|
681 |
|
|
//-----------------------------------------------------------------------------
|
682 |
|
|
uint32_t
|
683 |
|
|
DebugUnitSC::readJtagReg (uint32_t addr)
|
684 |
|
|
{
|
685 |
|
|
int drLen; // Size of the data register
|
686 |
|
|
|
687 |
|
|
uint32_t calc_recv_crc = 0, recv_crc, status_ret;
|
688 |
|
|
|
689 |
|
|
drLen = 125; // Size of write command command (bigger than data read)
|
690 |
|
|
|
691 |
|
|
// Initialize the register fields
|
692 |
|
|
uint64_t *dRegIn = new uint64_t [(drLen + 63) / 64];
|
693 |
|
|
uint64_t *dRegOut = new uint64_t [(drLen + 63) / 64];
|
694 |
|
|
|
695 |
|
|
// Write the READ command
|
696 |
|
|
clearBits (dRegIn, drLen);
|
697 |
|
|
|
698 |
|
|
packBits (dRegIn, 0, 1, 0);
|
699 |
|
|
packBits (dRegIn, 0+1, 4, BITREV(0x2,4)); // We're writing a command
|
700 |
|
|
packBits (dRegIn, 1+4, 4, BITREV(0x6,4)); // Access type, 0x6 = 32-bit READ
|
701 |
|
|
packBits (dRegIn, 1+4+4, 32, BITREV(addr,32)); // Address
|
702 |
|
|
packBits (dRegIn, 1+4+4+32, 16, BITREV(0x3,16)); // Length (always 32-bit,n=(32/8)-1=3)
|
703 |
|
|
uint32_t crc32_send = crc32 (dRegIn, 1+4+4+32+16, 0);
|
704 |
|
|
packBits (dRegIn, 1+4+4+32+16, 32, BITREV(crc32_send,32));
|
705 |
|
|
|
706 |
|
|
// Allocate a SystemC completion event
|
707 |
|
|
sc_event *done = new sc_event();
|
708 |
|
|
|
709 |
|
|
// Loop until status is OK and CRCs match.
|
710 |
|
|
do
|
711 |
|
|
{
|
712 |
|
|
TapActionDRScan *dRScan = new TapActionDRScan (done, dRegIn, 125);
|
713 |
|
|
tapActionQueue->write (dRScan);
|
714 |
|
|
wait (*done);
|
715 |
|
|
dRScan->getDRegOut (dRegOut);
|
716 |
|
|
delete dRScan;
|
717 |
|
|
status_ret = unpackBits (dRegOut,1+4+4+32+16+32,4);
|
718 |
|
|
calc_recv_crc = crc32(dRegOut,4,1+4+4+32+16+32);
|
719 |
|
|
recv_crc = BITREV(unpackBits (dRegOut,1+4+4+32+16+32+4,32),32);
|
720 |
|
|
}
|
721 |
|
|
while ((0 != status_ret) || ( calc_recv_crc != recv_crc));
|
722 |
|
|
|
723 |
|
|
clearBits (dRegIn, drLen);
|
724 |
|
|
packBits (dRegIn, 0, 1, 0);
|
725 |
|
|
packBits (dRegIn, 0+1, 4, 0x0); // We're GO'ing command
|
726 |
|
|
crc32_send = crc32 (dRegIn,1+4,0);
|
727 |
|
|
packBits (dRegIn, 1+4, 32, BITREV(crc32_send,32)); // CRC
|
728 |
|
|
|
729 |
|
|
uint32_t result;
|
730 |
|
|
// Loop until status is OK and CRCs match.
|
731 |
|
|
do
|
732 |
|
|
{
|
733 |
|
|
TapActionDRScan *dRScan = new TapActionDRScan (done, dRegIn, (1+4+32+36+((3+1)*8)));
|
734 |
|
|
tapActionQueue->write (dRScan);
|
735 |
|
|
wait (*done);
|
736 |
|
|
dRScan->getDRegOut (dRegOut);
|
737 |
|
|
delete dRScan;
|
738 |
|
|
status_ret = BITREV(unpackBits (dRegOut,1+4+32+((3+1)*8),4),4);
|
739 |
|
|
if (status_ret)
|
740 |
|
|
{
|
741 |
|
|
printf("readJtagReg(): Addr: 0x%.8x Status err: 0x%x\n",addr,status_ret);
|
742 |
|
|
result = 0;
|
743 |
|
|
break;
|
744 |
|
|
}
|
745 |
|
|
calc_recv_crc = crc32(dRegOut,((3+1)*8)+4,1+4+32);
|
746 |
|
|
recv_crc = BITREV(unpackBits (dRegOut,1+4+32+((3+1)*8)+4,32),32);
|
747 |
|
|
result = BITREV(unpackBits (dRegOut, (1+4+32), ((3+1)*8)),32);
|
748 |
|
|
|
749 |
|
|
}
|
750 |
|
|
while ((0 != status_ret) || ( calc_recv_crc != recv_crc));
|
751 |
|
|
|
752 |
|
|
// All done
|
753 |
|
|
|
754 |
|
|
delete [] dRegIn;
|
755 |
|
|
delete [] dRegOut;
|
756 |
|
|
delete done;
|
757 |
|
|
return result;
|
758 |
|
|
|
759 |
|
|
} // readJtagReg ()
|
760 |
|
|
|
761 |
|
|
|
762 |
|
|
//-----------------------------------------------------------------------------
|
763 |
|
|
//! Write a 32-bit value via the debug interface
|
764 |
|
|
|
765 |
|
|
//! @note Must be called from a SystemC thread, because of the use of wait()
|
766 |
|
|
|
767 |
|
|
//! @param[in] addr The address of the register
|
768 |
|
|
//! @param[in] data The register data to write
|
769 |
|
|
//-----------------------------------------------------------------------------
|
770 |
|
|
void
|
771 |
|
|
DebugUnitSC::writeJtagReg (uint32_t addr,
|
772 |
|
|
uint32_t data)
|
773 |
|
|
{
|
774 |
|
|
int drLen; // Size of the data register
|
775 |
|
|
|
776 |
|
|
uint32_t calc_recv_crc = 0, recv_crc, status_ret;
|
777 |
|
|
|
778 |
|
|
drLen = 125; // Size of write command command (bigger than data read)
|
779 |
|
|
|
780 |
|
|
// Initialize the register fields
|
781 |
|
|
uint64_t *dRegIn = new uint64_t [(drLen + 63) / 64];
|
782 |
|
|
uint64_t *dRegOut = new uint64_t [(drLen + 63) / 64];
|
783 |
|
|
|
784 |
|
|
// Write the READ command
|
785 |
|
|
clearBits (dRegIn, drLen);
|
786 |
|
|
|
787 |
|
|
packBits (dRegIn, 0, 1, 0);
|
788 |
|
|
packBits (dRegIn, 0+1, 4, BITREV(0x2,4)); // We're writing a command
|
789 |
|
|
packBits (dRegIn, 1+4, 4, BITREV(0x2,4)); // Access type, 0x2 = 32-bit WRITE
|
790 |
|
|
packBits (dRegIn, 1+4+4, 32, BITREV(addr,32)); // Address
|
791 |
|
|
packBits (dRegIn, 1+4+4+32, 16, BITREV(0x3,16)); // Length (always 32-bit,n=(32/8)-1=3)
|
792 |
|
|
uint32_t crc32_send = crc32 (dRegIn, 1+4+4+32+16, 0);
|
793 |
|
|
packBits (dRegIn, 1+4+4+32+16, 32, BITREV(crc32_send,32));
|
794 |
|
|
|
795 |
|
|
// Allocate a SystemC completion event
|
796 |
|
|
sc_event *done = new sc_event();
|
797 |
|
|
|
798 |
|
|
// Loop until status is OK and CRCs match.
|
799 |
|
|
do
|
800 |
|
|
{
|
801 |
|
|
TapActionDRScan *dRScan = new TapActionDRScan (done, dRegIn, 125);
|
802 |
|
|
tapActionQueue->write (dRScan);
|
803 |
|
|
wait (*done);
|
804 |
|
|
dRScan->getDRegOut (dRegOut);
|
805 |
|
|
delete dRScan;
|
806 |
|
|
status_ret = unpackBits (dRegOut,1+4+4+32+16+32,4);
|
807 |
|
|
calc_recv_crc = crc32(dRegOut,4,1+4+4+32+16+32);
|
808 |
|
|
recv_crc = BITREV(unpackBits (dRegOut,1+4+4+32+16+32+4,32),32);
|
809 |
|
|
}
|
810 |
|
|
while ((0 != status_ret) || ( calc_recv_crc != recv_crc));
|
811 |
|
|
|
812 |
|
|
clearBits (dRegIn, drLen);
|
813 |
|
|
packBits (dRegIn, 0, 1, 0);
|
814 |
|
|
packBits (dRegIn, 0+1, 4, 0x0); // We're GO'ing command
|
815 |
|
|
packBits (dRegIn, 0+1+4, 32, BITREV(data,32)); // Add in data
|
816 |
|
|
crc32_send = crc32 (dRegIn,1+4+32,0);
|
817 |
|
|
packBits (dRegIn, 1+4+32, 32, BITREV(crc32_send,32)); // CRC
|
818 |
|
|
|
819 |
|
|
// Loop until status is OK and CRCs match.
|
820 |
|
|
do
|
821 |
|
|
{
|
822 |
|
|
TapActionDRScan *dRScan = new TapActionDRScan (done, dRegIn, (1+4+((3+1)*8)+32+36));
|
823 |
|
|
tapActionQueue->write (dRScan);
|
824 |
|
|
wait (*done);
|
825 |
|
|
dRScan->getDRegOut (dRegOut);
|
826 |
|
|
delete dRScan;
|
827 |
|
|
status_ret = unpackBits (dRegOut,1+4+32+32,4);
|
828 |
|
|
calc_recv_crc = crc32(dRegOut,4,1+4+32+32);
|
829 |
|
|
recv_crc = BITREV(unpackBits (dRegOut,1+4+32+32+4,32),32);
|
830 |
|
|
}
|
831 |
|
|
while ((0 != status_ret) || ( calc_recv_crc != recv_crc));
|
832 |
|
|
|
833 |
|
|
delete [] dRegIn;
|
834 |
|
|
delete [] dRegOut;
|
835 |
|
|
delete done;
|
836 |
|
|
|
837 |
|
|
} // writeJtagReg ()
|
838 |
|
|
|
839 |
|
|
|
840 |
|
|
//-----------------------------------------------------------------------------
|
841 |
|
|
//! Clear the bits in a data register
|
842 |
|
|
|
843 |
|
|
//! We always clear whole 64-bit words, not just the minimum number of
|
844 |
|
|
//! bytes. It saves all sorts of confusion when debugging code.
|
845 |
|
|
|
846 |
|
|
//! @note It is the caller's responsibility to make sure the date register
|
847 |
|
|
//! array is large enough.
|
848 |
|
|
|
849 |
|
|
//! @param[in,out] regArray The data register to clear
|
850 |
|
|
//! @param[in] regBits Size of the data register (in bits)
|
851 |
|
|
//-----------------------------------------------------------------------------
|
852 |
|
|
void
|
853 |
|
|
DebugUnitSC::clearBits (uint64_t regArray[],
|
854 |
|
|
int regBits)
|
855 |
|
|
{
|
856 |
|
|
memset ((char *)regArray, 0, ((regBits + 63) / 64) * 8);
|
857 |
|
|
|
858 |
|
|
} // clearBits ()
|
859 |
|
|
|
860 |
|
|
|
861 |
|
|
//-----------------------------------------------------------------------------
|
862 |
|
|
//! Set a bit field in a data register
|
863 |
|
|
|
864 |
|
|
//! The field is cleared, the supplied value masked and then ored into the
|
865 |
|
|
//! vector.
|
866 |
|
|
|
867 |
|
|
//! @note It is the caller's responsibility to make sure the date register
|
868 |
|
|
//! array is large enough.
|
869 |
|
|
|
870 |
|
|
//! @param[in,out] regArray The data register
|
871 |
|
|
//! @param[in] fieldOffset Start of the field (in bits)
|
872 |
|
|
//! @param[in] fieldBits Size of the field (in bits)
|
873 |
|
|
//! @param[in] fieldVal Value to set in the field
|
874 |
|
|
//-----------------------------------------------------------------------------
|
875 |
|
|
void
|
876 |
|
|
DebugUnitSC::packBits (uint64_t regArray[],
|
877 |
|
|
int fieldOffset,
|
878 |
|
|
int fieldBits,
|
879 |
|
|
uint64_t fieldVal)
|
880 |
|
|
{
|
881 |
|
|
fieldVal &= (1ULL << fieldBits) - 1ULL; // Mask the supplied value
|
882 |
|
|
|
883 |
|
|
int startWord = fieldOffset / 64;
|
884 |
|
|
int endWord = (fieldOffset + fieldBits - 1) / 64;
|
885 |
|
|
|
886 |
|
|
fieldOffset = fieldOffset % 64; // Now refers to target word
|
887 |
|
|
|
888 |
|
|
// Deal with the startWord. Get enough bits for the mask and put them in the
|
889 |
|
|
// right place
|
890 |
|
|
uint64_t startMask = ((1ULL << fieldBits) - 1ULL) << fieldOffset;
|
891 |
|
|
|
892 |
|
|
regArray[startWord] &= ~startMask;
|
893 |
|
|
regArray[startWord] |= fieldVal << fieldOffset;
|
894 |
|
|
|
895 |
|
|
// If we were all in one word, we can give up now.
|
896 |
|
|
if (startWord == endWord)
|
897 |
|
|
{
|
898 |
|
|
return;
|
899 |
|
|
}
|
900 |
|
|
|
901 |
|
|
// Deal with the endWord. Get enough bits for the mask. No need to shift
|
902 |
|
|
// these up - they're always at the bottom of the word
|
903 |
|
|
int bitsToDo = (fieldOffset + fieldBits) % 64;
|
904 |
|
|
uint64_t endMask = (1ULL << bitsToDo) - 1ULL;
|
905 |
|
|
|
906 |
|
|
regArray[endWord] &= ~endMask;
|
907 |
|
|
regArray[endWord] |= fieldVal >> (fieldBits - bitsToDo);
|
908 |
|
|
|
909 |
|
|
} // packBits ()
|
910 |
|
|
|
911 |
|
|
|
912 |
|
|
//-----------------------------------------------------------------------------
|
913 |
|
|
//! Extract a bit field from a data register
|
914 |
|
|
|
915 |
|
|
//! The field is cleared, the supplied value masked and then ored into the
|
916 |
|
|
//! vector.
|
917 |
|
|
|
918 |
|
|
//! @note It is the caller's responsibility to make sure the date register
|
919 |
|
|
//! array is large enough.
|
920 |
|
|
|
921 |
|
|
//! @param[in,out] regArray The data register
|
922 |
|
|
//! @param[in] fieldOffset Start of the field (in bits)
|
923 |
|
|
//! @param[in] fieldBits Size of the field (in bits)
|
924 |
|
|
|
925 |
|
|
//! @return The value in the field
|
926 |
|
|
//-----------------------------------------------------------------------------
|
927 |
|
|
uint64_t
|
928 |
|
|
DebugUnitSC::unpackBits (uint64_t regArray[],
|
929 |
|
|
int fieldOffset,
|
930 |
|
|
int fieldBits)
|
931 |
|
|
{
|
932 |
|
|
int startWord = fieldOffset / 64;
|
933 |
|
|
int endWord = (fieldOffset + fieldBits - 1) / 64;
|
934 |
|
|
|
935 |
|
|
fieldOffset = fieldOffset % 64; // Now refers to target word
|
936 |
|
|
|
937 |
|
|
// Deal with the startWord. Get enough bits for the mask and put them in the
|
938 |
|
|
// right place
|
939 |
|
|
uint64_t startMask = ((1ULL << fieldBits) - 1ULL) << fieldOffset;
|
940 |
|
|
uint64_t res = (regArray[startWord] & startMask) >> fieldOffset;
|
941 |
|
|
|
942 |
|
|
// If we were all in one word, we can give up now.
|
943 |
|
|
if (startWord == endWord)
|
944 |
|
|
{
|
945 |
|
|
res &= (1ULL << fieldBits) - 1ULL; // Mask off any unwanted bits
|
946 |
|
|
return res;
|
947 |
|
|
}
|
948 |
|
|
|
949 |
|
|
// Deal with the endWord. Get enough bits for the mask. No need to shift
|
950 |
|
|
// these up - they're always at the bottom of the word
|
951 |
|
|
int bitsToDo = (fieldOffset + fieldBits) % 64;
|
952 |
|
|
uint64_t endMask = (1ULL << bitsToDo) - 1ULL;
|
953 |
|
|
|
954 |
|
|
res = res | ((regArray[endWord] & endMask) << (fieldBits - bitsToDo));
|
955 |
|
|
res &= (1ULL << fieldBits) - 1ULL; // Mask off any unwanted bits
|
956 |
|
|
return res;
|
957 |
|
|
|
958 |
|
|
} // unpackBits ()
|
959 |
|
|
|
960 |
|
|
|
961 |
|
|
//-----------------------------------------------------------------------------
|
962 |
|
|
//! Compute CRC-8-ATM
|
963 |
|
|
|
964 |
|
|
//! The data is in an array of uint64_t, for which we use the first size bits
|
965 |
|
|
//! to compute the CRC.
|
966 |
|
|
|
967 |
|
|
//! @Note I am using the same algorithm as the ORPSoC debug unit, but I
|
968 |
|
|
//! believe its function is broken! I don't believe the data bit should
|
969 |
|
|
//! feature in the computation of bits 2 & 1 of the new CRC.
|
970 |
|
|
|
971 |
|
|
//! @Note I've realized that this is an algorithm for LSB first, so maybe it
|
972 |
|
|
//! is correct!
|
973 |
|
|
|
974 |
|
|
//! @param dataArray The array of data whose CRC is desired
|
975 |
|
|
//! @param size The number of bits in the data
|
976 |
|
|
//-----------------------------------------------------------------------------
|
977 |
|
|
uint8_t
|
978 |
|
|
DebugUnitSC::crc8 (uint64_t dataArray[],
|
979 |
|
|
int size)
|
980 |
|
|
{
|
981 |
|
|
uint8_t crc = 0;
|
982 |
|
|
|
983 |
|
|
for (int i = 0; i < size; i++)
|
984 |
|
|
{
|
985 |
|
|
uint8_t d = (dataArray[i / 64] >> (i % 64)) & 1;
|
986 |
|
|
uint8_t oldCrc7 = (crc >> 7) & 1;
|
987 |
|
|
uint8_t oldCrc1 = (crc >> 1) & 1;
|
988 |
|
|
uint8_t oldCrc0 = (crc >> 0) & 1;
|
989 |
|
|
uint8_t newCrc2 = d ^ oldCrc1 ^ oldCrc7; // Why d?
|
990 |
|
|
uint8_t newCrc1 = d ^ oldCrc0 ^ oldCrc7; // Why d?
|
991 |
|
|
uint8_t newCrc0 = d ^ oldCrc7;
|
992 |
|
|
|
993 |
|
|
crc = ((crc << 1) & 0xf8) | (newCrc2 << 2) | (newCrc1 << 1) | newCrc0;
|
994 |
|
|
}
|
995 |
|
|
|
996 |
|
|
return crc;
|
997 |
|
|
|
998 |
|
|
} // crc8 ()
|
999 |
|
|
|
1000 |
|
|
/* Crc of current read or written data. */
|
1001 |
|
|
uint32_t crc_r, crc_w = 0;
|
1002 |
|
|
|
1003 |
|
|
/* Generates new crc, sending in new bit input_bit */
|
1004 |
|
|
uint32_t
|
1005 |
|
|
DebugUnitSC::crc32(uint64_t dataArray[],
|
1006 |
|
|
int size,
|
1007 |
|
|
int offset)
|
1008 |
|
|
{
|
1009 |
|
|
uint32_t crc = 0xffffffff;
|
1010 |
|
|
for (int i = offset; i < size+offset; i++)
|
1011 |
|
|
{
|
1012 |
|
|
uint32_t d = ((dataArray[i / 64] >> (i % 64)) & 1) ? 0xfffffff : 0x0000000;
|
1013 |
|
|
uint32_t crc_32 = ((crc >> 31)&1) ? 0xfffffff : 0x0000000;
|
1014 |
|
|
crc <<= 1;
|
1015 |
|
|
crc = crc ^ ((d ^ crc_32) & DBG_CRC32_POLY);
|
1016 |
|
|
}
|
1017 |
|
|
|
1018 |
|
|
return crc;
|
1019 |
|
|
}
|
1020 |
|
|
|
1021 |
|
|
uint32_t
|
1022 |
|
|
DebugUnitSC::bit_reverse_swar_2(uint32_t x)
|
1023 |
|
|
{
|
1024 |
|
|
return (((x&0xaaaaaaaa)>>1)|((x&0x55555555)<<1));
|
1025 |
|
|
}
|
1026 |
|
|
uint32_t
|
1027 |
|
|
DebugUnitSC::bit_reverse_swar_4(uint32_t x)
|
1028 |
|
|
{
|
1029 |
|
|
x=(((x&0xaaaaaaaa)>>1)|((x&0x55555555)<<1));
|
1030 |
|
|
x=(((x&0xcccccccc)>>2)|((x&0x33333333)<<2));
|
1031 |
|
|
return x;
|
1032 |
|
|
}
|
1033 |
|
|
uint32_t
|
1034 |
|
|
DebugUnitSC::bit_reverse_swar_8(uint32_t x)
|
1035 |
|
|
{
|
1036 |
|
|
x=(((x&0xaaaaaaaa)>>1)|((x&0x55555555)<<1));
|
1037 |
|
|
x=(((x&0xcccccccc)>>2)|((x&0x33333333)<<2));
|
1038 |
|
|
x=(((x&0xf0f0f0f0)>>4)|((x&0x0f0f0f0f)<<4));
|
1039 |
|
|
return x;
|
1040 |
|
|
}
|
1041 |
|
|
uint32_t
|
1042 |
|
|
DebugUnitSC::bit_reverse_swar_16(uint32_t x)
|
1043 |
|
|
{
|
1044 |
|
|
x=(((x&0xaaaaaaaa)>>1)|((x&0x55555555)<<1));
|
1045 |
|
|
x=(((x&0xcccccccc)>>2)|((x&0x33333333)<<2));
|
1046 |
|
|
x=(((x&0xf0f0f0f0)>>4)|((x&0x0f0f0f0f)<<4));
|
1047 |
|
|
x=(((x&0xff00ff00)>>8)|((x&0x00ff00ff)<<8));
|
1048 |
|
|
return x;
|
1049 |
|
|
}
|
1050 |
|
|
uint32_t
|
1051 |
|
|
DebugUnitSC::bit_reverse_swar_32(uint32_t x)
|
1052 |
|
|
{
|
1053 |
|
|
x=(((x&0xaaaaaaaa)>>1)|((x&0x55555555)<<1));
|
1054 |
|
|
x=(((x&0xcccccccc)>>2)|((x&0x33333333)<<2));
|
1055 |
|
|
x=(((x&0xf0f0f0f0)>>4)|((x&0x0f0f0f0f)<<4));
|
1056 |
|
|
x=(((x&0xff00ff00)>>8)|((x&0x00ff00ff)<<8));
|
1057 |
|
|
x=(((x&0xffff0000)>>16)|((x&0x0000ffff)<<16)); // We could be on 64-bit arch!
|
1058 |
|
|
return x;
|
1059 |
|
|
}
|
1060 |
|
|
|
1061 |
|
|
uint32_t
|
1062 |
|
|
DebugUnitSC::bit_reverse_data(uint32_t data, int length){
|
1063 |
|
|
if (length == 2) return bit_reverse_swar_2(data);
|
1064 |
|
|
if (length == 4) return bit_reverse_swar_4(data);
|
1065 |
|
|
if (length == 8) return bit_reverse_swar_8(data);
|
1066 |
|
|
if (length == 16) return bit_reverse_swar_16(data);
|
1067 |
|
|
if (length == 32) return bit_reverse_swar_32(data);
|
1068 |
|
|
// Long and laborious way - hopefully never gets called anymore!
|
1069 |
|
|
uint32_t reverse=0;
|
1070 |
|
|
for (int i=0;i<length;i++) reverse |= (((data>>i)&1)<<(length-1-i));
|
1071 |
|
|
return reverse;
|
1072 |
|
|
}
|