1 |
412 |
julius |
//*****************************************************************************
|
2 |
|
|
// DISCLAIMER OF LIABILITY
|
3 |
|
|
//
|
4 |
|
|
// This file contains proprietary and confidential information of
|
5 |
|
|
// Xilinx, Inc. ("Xilinx"), that is distributed under a license
|
6 |
|
|
// from Xilinx, and may be used, copied and/or disclosed only
|
7 |
|
|
// pursuant to the terms of a valid license agreement with Xilinx.
|
8 |
|
|
//
|
9 |
|
|
// XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION
|
10 |
|
|
// ("MATERIALS") "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
|
11 |
|
|
// EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING WITHOUT
|
12 |
|
|
// LIMITATION, ANY WARRANTY WITH RESPECT TO NONINFRINGEMENT,
|
13 |
|
|
// MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. Xilinx
|
14 |
|
|
// does not warrant that functions included in the Materials will
|
15 |
|
|
// meet the requirements of Licensee, or that the operation of the
|
16 |
|
|
// Materials will be uninterrupted or error-free, or that defects
|
17 |
|
|
// in the Materials will be corrected. Furthermore, Xilinx does
|
18 |
|
|
// not warrant or make any representations regarding use, or the
|
19 |
|
|
// results of the use, of the Materials in terms of correctness,
|
20 |
|
|
// accuracy, reliability or otherwise.
|
21 |
|
|
//
|
22 |
|
|
// Xilinx products are not designed or intended to be fail-safe,
|
23 |
|
|
// or for use in any application requiring fail-safe performance,
|
24 |
|
|
// such as life-support or safety devices or systems, Class III
|
25 |
|
|
// medical devices, nuclear facilities, applications related to
|
26 |
|
|
// the deployment of airbags, or any other applications that could
|
27 |
|
|
// lead to death, personal injury or severe property or
|
28 |
|
|
// environmental damage (individually and collectively, "critical
|
29 |
|
|
// applications"). Customer assumes the sole risk and liability
|
30 |
|
|
// of any use of Xilinx products in critical applications,
|
31 |
|
|
// subject only to applicable laws and regulations governing
|
32 |
|
|
// limitations on product liability.
|
33 |
|
|
//
|
34 |
|
|
// Copyright 2006, 2007, 2008 Xilinx, Inc.
|
35 |
|
|
// All rights reserved.
|
36 |
|
|
//
|
37 |
|
|
// This disclaimer and copyright notice must be retained as part
|
38 |
|
|
// of this file at all times.
|
39 |
|
|
//*****************************************************************************
|
40 |
|
|
// ____ ____
|
41 |
|
|
// / /\/ /
|
42 |
|
|
// /___/ \ / Vendor: Xilinx
|
43 |
|
|
// \ \ \/ Version: 3.0
|
44 |
|
|
// \ \ Application: MIG
|
45 |
|
|
// / / Filename: ddr2_ctrl.v
|
46 |
|
|
// /___/ /\ Date Last Modified: $Date: 2008/12/23 14:26:00 $
|
47 |
|
|
// \ \ / \ Date Created: Wed Aug 30 2006
|
48 |
|
|
// \___\/\___\
|
49 |
|
|
//
|
50 |
|
|
//
|
51 |
|
|
//Device: Virtex-5
|
52 |
|
|
//Design Name: DDR/DDR2
|
53 |
|
|
//Purpose:
|
54 |
|
|
// This module is the main control logic of the memory interface. All
|
55 |
|
|
// commands are issued from here according to the burst, CAS Latency and the
|
56 |
|
|
// user commands.
|
57 |
|
|
//Reference:
|
58 |
|
|
//Revision History:
|
59 |
|
|
// Rev 1.2 - Fixed auto refresh to activate bug. KP 11-19-2007
|
60 |
|
|
// Rev 1.3 - For Dual Rank parts support CS logic modified. KP. 05/08/08
|
61 |
|
|
// Rev 1.4 - AUTO_REFRESH_WAIT state modified for Auto Refresh flag asserted
|
62 |
|
|
// immediately after calibration is completed. KP. 07/28/08
|
63 |
|
|
// Rev 1.5 - Assignment of bank_valid_r is modified to fix a bug in
|
64 |
|
|
// Bank Management logic. PK. 10/29/08
|
65 |
|
|
//*****************************************************************************
|
66 |
|
|
|
67 |
|
|
`timescale 1ns/1ps
|
68 |
|
|
|
69 |
|
|
module ddr2_ctrl #
|
70 |
|
|
(
|
71 |
|
|
// Following parameters are for 72-bit RDIMM design (for ML561 Reference
|
72 |
|
|
// board design). Actual values may be different. Actual parameters values
|
73 |
|
|
// are passed from design top module ddr2_mig module. Please refer to
|
74 |
|
|
// the ddr2_mig module for actual values.
|
75 |
|
|
parameter BANK_WIDTH = 2,
|
76 |
|
|
parameter COL_WIDTH = 10,
|
77 |
|
|
parameter CS_BITS = 0,
|
78 |
|
|
parameter CS_NUM = 1,
|
79 |
|
|
parameter ROW_WIDTH = 14,
|
80 |
|
|
parameter ADDITIVE_LAT = 0,
|
81 |
|
|
parameter BURST_LEN = 4,
|
82 |
|
|
parameter CAS_LAT = 5,
|
83 |
|
|
parameter ECC_ENABLE = 0,
|
84 |
|
|
parameter REG_ENABLE = 1,
|
85 |
|
|
parameter TREFI_NS = 7800,
|
86 |
|
|
parameter TRAS = 40000,
|
87 |
|
|
parameter TRCD = 15000,
|
88 |
|
|
parameter TRRD = 10000,
|
89 |
|
|
parameter TRFC = 105000,
|
90 |
|
|
parameter TRP = 15000,
|
91 |
|
|
parameter TRTP = 7500,
|
92 |
|
|
parameter TWR = 15000,
|
93 |
|
|
parameter TWTR = 10000,
|
94 |
|
|
parameter CLK_PERIOD = 3000,
|
95 |
|
|
parameter MULTI_BANK_EN = 1,
|
96 |
|
|
parameter TWO_T_TIME_EN = 0,
|
97 |
|
|
parameter DDR_TYPE = 1
|
98 |
|
|
)
|
99 |
|
|
(
|
100 |
|
|
input clk,
|
101 |
|
|
input rst,
|
102 |
|
|
input [2:0] af_cmd,
|
103 |
|
|
input [30:0] af_addr,
|
104 |
|
|
input af_empty,
|
105 |
|
|
input phy_init_done,
|
106 |
|
|
output ctrl_ref_flag,
|
107 |
|
|
output ctrl_af_rden,
|
108 |
|
|
output reg ctrl_wren,
|
109 |
|
|
output reg ctrl_rden,
|
110 |
|
|
output [ROW_WIDTH-1:0] ctrl_addr,
|
111 |
|
|
output [BANK_WIDTH-1:0] ctrl_ba,
|
112 |
|
|
output ctrl_ras_n,
|
113 |
|
|
output ctrl_cas_n,
|
114 |
|
|
output ctrl_we_n,
|
115 |
|
|
output [CS_NUM-1:0] ctrl_cs_n
|
116 |
|
|
);
|
117 |
|
|
|
118 |
|
|
// input address split into various ranges
|
119 |
|
|
localparam ROW_RANGE_START = COL_WIDTH;
|
120 |
|
|
localparam ROW_RANGE_END = ROW_WIDTH + ROW_RANGE_START - 1;
|
121 |
|
|
localparam BANK_RANGE_START = ROW_RANGE_END + 1;
|
122 |
|
|
localparam BANK_RANGE_END = BANK_WIDTH + BANK_RANGE_START - 1;
|
123 |
|
|
localparam CS_RANGE_START = BANK_RANGE_START + BANK_WIDTH;
|
124 |
|
|
localparam CS_RANGE_END = CS_BITS + CS_RANGE_START - 1;
|
125 |
|
|
// compare address (for determining bank/row hits) split into various ranges
|
126 |
|
|
// (compare address doesn't include column bits)
|
127 |
|
|
localparam CMP_WIDTH = CS_BITS + BANK_WIDTH + ROW_WIDTH;
|
128 |
|
|
localparam CMP_ROW_RANGE_START = 0;
|
129 |
|
|
localparam CMP_ROW_RANGE_END = ROW_WIDTH + CMP_ROW_RANGE_START - 1;
|
130 |
|
|
localparam CMP_BANK_RANGE_START = CMP_ROW_RANGE_END + 1;
|
131 |
|
|
localparam CMP_BANK_RANGE_END = BANK_WIDTH + CMP_BANK_RANGE_START - 1;
|
132 |
|
|
localparam CMP_CS_RANGE_START = CMP_BANK_RANGE_END + 1;
|
133 |
|
|
localparam CMP_CS_RANGE_END = CS_BITS + CMP_CS_RANGE_START-1;
|
134 |
|
|
|
135 |
|
|
localparam BURST_LEN_DIV2 = BURST_LEN / 2;
|
136 |
|
|
localparam OPEN_BANK_NUM = 4;
|
137 |
|
|
localparam CS_BITS_FIX = (CS_BITS == 0) ? 1 : CS_BITS;
|
138 |
|
|
|
139 |
|
|
// calculation counters based on clock cycle and memory parameters
|
140 |
|
|
// TRAS: ACTIVE->PRECHARGE interval - 2
|
141 |
|
|
localparam integer TRAS_CYC = (TRAS + CLK_PERIOD)/CLK_PERIOD;
|
142 |
|
|
// TRCD: ACTIVE->READ/WRITE interval - 3 (for DDR2 factor in ADD_LAT)
|
143 |
|
|
localparam integer TRRD_CYC = (TRRD + CLK_PERIOD)/CLK_PERIOD;
|
144 |
|
|
localparam integer TRCD_CYC = (((TRCD + CLK_PERIOD)/CLK_PERIOD) >
|
145 |
|
|
ADDITIVE_LAT )?
|
146 |
|
|
((TRCD+CLK_PERIOD)/ CLK_PERIOD) - ADDITIVE_LAT : 0;
|
147 |
|
|
// TRFC: REFRESH->REFRESH, REFRESH->ACTIVE interval - 2
|
148 |
|
|
localparam integer TRFC_CYC = (TRFC + CLK_PERIOD)/CLK_PERIOD;
|
149 |
|
|
// TRP: PRECHARGE->COMMAND interval - 2
|
150 |
|
|
// for precharge all add 1 extra clock cycle
|
151 |
|
|
localparam integer TRP_CYC = ((TRP + CLK_PERIOD)/CLK_PERIOD) +1;
|
152 |
|
|
// TRTP: READ->PRECHARGE interval - 2 (Al + BL/2 + (max (TRTP, 2tck))-2
|
153 |
|
|
localparam integer TRTP_TMP_MIN = (((TRTP + CLK_PERIOD)/CLK_PERIOD) >= 2)?
|
154 |
|
|
((TRTP + CLK_PERIOD)/CLK_PERIOD) : 2;
|
155 |
|
|
localparam integer TRTP_CYC = TRTP_TMP_MIN + ADDITIVE_LAT
|
156 |
|
|
+ BURST_LEN_DIV2 - 2;
|
157 |
|
|
// TWR: WRITE->PRECHARGE interval - 2
|
158 |
|
|
localparam integer WR_LAT = (DDR_TYPE > 0) ? CAS_LAT + ADDITIVE_LAT - 1 : 1;
|
159 |
|
|
localparam integer TWR_CYC = ((TWR + CLK_PERIOD)/CLK_PERIOD) +
|
160 |
|
|
WR_LAT + BURST_LEN_DIV2 ;
|
161 |
|
|
// TWTR: WRITE->READ interval - 3 (for DDR1, TWTR = 2 clks)
|
162 |
|
|
// DDR2 = CL-1 + BL/2 +TWTR
|
163 |
|
|
localparam integer TWTR_TMP_MIN = (TWTR + CLK_PERIOD)/CLK_PERIOD;
|
164 |
|
|
localparam integer TWTR_CYC = (DDR_TYPE > 0) ? (TWTR_TMP_MIN + (CAS_LAT -1)
|
165 |
|
|
+ BURST_LEN_DIV2 ): 2;
|
166 |
|
|
|
167 |
|
|
// TRTW: READ->WRITE interval - 3
|
168 |
|
|
// DDR1: CL + (BL/2)
|
169 |
|
|
// DDR2: (BL/2) + 2. Two more clocks are added to
|
170 |
|
|
// the DDR2 counter to account for the delay in
|
171 |
|
|
// arrival of the DQS during reads (pcb trace + buffer
|
172 |
|
|
// delays + memory parameters).
|
173 |
|
|
localparam TRTW_CYC = (DDR_TYPE > 0) ? BURST_LEN_DIV2 + 4 :
|
174 |
|
|
(CAS_LAT == 25) ? 2 + BURST_LEN_DIV2 : CAS_LAT + BURST_LEN_DIV2;
|
175 |
|
|
|
176 |
|
|
localparam integer CAS_LAT_RD = (CAS_LAT == 25) ? 2 : CAS_LAT;
|
177 |
|
|
|
178 |
|
|
// Make sure all values >= 0 (some may be = 0)
|
179 |
|
|
localparam TRAS_COUNT = (TRAS_CYC > 0) ? TRAS_CYC : 0;
|
180 |
|
|
localparam TRCD_COUNT = (TRCD_CYC > 0) ? TRCD_CYC : 0;
|
181 |
|
|
localparam TRRD_COUNT = (TRRD_CYC > 0) ? TRRD_CYC : 0;
|
182 |
|
|
localparam TRFC_COUNT = (TRFC_CYC > 0) ? TRFC_CYC : 0;
|
183 |
|
|
localparam TRP_COUNT = (TRP_CYC > 0) ? TRP_CYC : 0;
|
184 |
|
|
localparam TRTP_COUNT = (TRTP_CYC > 0) ? TRTP_CYC : 0;
|
185 |
|
|
localparam TWR_COUNT = (TWR_CYC > 0) ? TWR_CYC : 0;
|
186 |
|
|
localparam TWTR_COUNT = (TWTR_CYC > 0) ? TWTR_CYC : 0;
|
187 |
|
|
localparam TRTW_COUNT = (TRTW_CYC > 0) ? TRTW_CYC : 0;
|
188 |
|
|
|
189 |
|
|
// Auto refresh interval
|
190 |
|
|
localparam TREFI_COUNT = ((TREFI_NS * 1000)/CLK_PERIOD) - 1;
|
191 |
|
|
|
192 |
|
|
// memory controller states
|
193 |
|
|
localparam CTRL_IDLE = 5'h00;
|
194 |
|
|
localparam CTRL_PRECHARGE = 5'h01;
|
195 |
|
|
localparam CTRL_PRECHARGE_WAIT = 5'h02;
|
196 |
|
|
localparam CTRL_AUTO_REFRESH = 5'h03;
|
197 |
|
|
localparam CTRL_AUTO_REFRESH_WAIT = 5'h04;
|
198 |
|
|
localparam CTRL_ACTIVE = 5'h05;
|
199 |
|
|
localparam CTRL_ACTIVE_WAIT = 5'h06;
|
200 |
|
|
localparam CTRL_BURST_READ = 5'h07;
|
201 |
|
|
localparam CTRL_READ_WAIT = 5'h08;
|
202 |
|
|
localparam CTRL_BURST_WRITE = 5'h09;
|
203 |
|
|
localparam CTRL_WRITE_WAIT = 5'h0A;
|
204 |
|
|
localparam CTRL_PRECHARGE_WAIT1 = 5'h0B;
|
205 |
|
|
|
206 |
|
|
|
207 |
|
|
reg [CMP_WIDTH-1:0] act_addr_r;
|
208 |
|
|
wire [30:0] af_addr_r;
|
209 |
|
|
reg [30:0] af_addr_r1;
|
210 |
|
|
reg [30:0] af_addr_r2;
|
211 |
|
|
reg [30:0] af_addr_r3;
|
212 |
|
|
wire [2:0] af_cmd_r;
|
213 |
|
|
reg [2:0] af_cmd_r1;
|
214 |
|
|
reg [2:0] af_cmd_r2;
|
215 |
|
|
reg af_valid_r;
|
216 |
|
|
reg af_valid_r1;
|
217 |
|
|
reg af_valid_r2;
|
218 |
|
|
reg [CS_BITS_FIX :0] auto_cnt_r;
|
219 |
|
|
reg auto_ref_r;
|
220 |
|
|
reg [(OPEN_BANK_NUM*CMP_WIDTH)-1:0] bank_cmp_addr_r;
|
221 |
|
|
reg [OPEN_BANK_NUM-1:0] bank_hit;
|
222 |
|
|
reg [OPEN_BANK_NUM-1:0] bank_hit_r;
|
223 |
|
|
reg [OPEN_BANK_NUM-1:0] bank_hit_r1;
|
224 |
|
|
reg [OPEN_BANK_NUM-1:0] bank_valid_r;
|
225 |
|
|
reg bank_conflict_r;
|
226 |
|
|
reg conflict_resolved_r;
|
227 |
|
|
reg ctrl_af_rden_r;
|
228 |
|
|
reg conflict_detect_r;
|
229 |
|
|
wire conflict_detect;
|
230 |
|
|
reg cs_change_r;
|
231 |
|
|
reg cs_change_sticky_r;
|
232 |
|
|
reg [ROW_WIDTH-1:0] ddr_addr_r;
|
233 |
|
|
wire [ROW_WIDTH-1:0] ddr_addr_col;
|
234 |
|
|
wire [ROW_WIDTH-1:0] ddr_addr_row;
|
235 |
|
|
reg [BANK_WIDTH-1:0] ddr_ba_r;
|
236 |
|
|
reg ddr_cas_n_r;
|
237 |
|
|
reg [CS_NUM-1:0] ddr_cs_n_r;
|
238 |
|
|
reg ddr_ras_n_r;
|
239 |
|
|
reg ddr_we_n_r;
|
240 |
|
|
reg [4:0] next_state;
|
241 |
|
|
reg no_precharge_wait_r;
|
242 |
|
|
reg no_precharge_r;
|
243 |
|
|
reg no_precharge_r1;
|
244 |
|
|
reg phy_init_done_r;
|
245 |
|
|
reg [4:0] precharge_ok_cnt_r;
|
246 |
|
|
reg precharge_ok_r;
|
247 |
|
|
reg [4:0] ras_cnt_r;
|
248 |
|
|
reg [3:0] rcd_cnt_r;
|
249 |
|
|
reg rcd_cnt_ok_r;
|
250 |
|
|
reg [2:0] rdburst_cnt_r;
|
251 |
|
|
reg rdburst_ok_r;
|
252 |
|
|
reg rdburst_rden_ok_r;
|
253 |
|
|
reg rd_af_flag_r;
|
254 |
|
|
wire rd_flag;
|
255 |
|
|
reg rd_flag_r;
|
256 |
|
|
reg [4:0] rd_to_wr_cnt_r;
|
257 |
|
|
reg rd_to_wr_ok_r;
|
258 |
|
|
reg ref_flag_r;
|
259 |
|
|
reg [11:0] refi_cnt_r;
|
260 |
|
|
reg refi_cnt_ok_r;
|
261 |
|
|
reg rst_r
|
262 |
|
|
/* synthesis syn_preserve = 1 */;
|
263 |
|
|
reg rst_r1
|
264 |
|
|
/* synthesis syn_maxfan = 10 */;
|
265 |
|
|
reg [7:0] rfc_cnt_r;
|
266 |
|
|
reg rfc_ok_r;
|
267 |
|
|
reg [3:0] row_miss;
|
268 |
|
|
reg [3:0] row_conflict_r;
|
269 |
|
|
reg [3:0] rp_cnt_r;
|
270 |
|
|
reg rp_cnt_ok_r;
|
271 |
|
|
reg [CMP_WIDTH-1:0] sb_open_add_r;
|
272 |
|
|
reg [4:0] state_r;
|
273 |
|
|
reg [4:0] state_r1;
|
274 |
|
|
wire sm_rden;
|
275 |
|
|
reg sm_rden_r;
|
276 |
|
|
reg [2:0] trrd_cnt_r;
|
277 |
|
|
reg trrd_cnt_ok_r;
|
278 |
|
|
reg [2:0] two_t_enable_r;
|
279 |
|
|
reg [CS_NUM-1:0] two_t_enable_r1;
|
280 |
|
|
reg [2:0] wrburst_cnt_r;
|
281 |
|
|
reg wrburst_ok_r;
|
282 |
|
|
reg wrburst_wren_ok_r;
|
283 |
|
|
wire wr_flag;
|
284 |
|
|
reg wr_flag_r;
|
285 |
|
|
reg [4:0] wr_to_rd_cnt_r;
|
286 |
|
|
reg wr_to_rd_ok_r;
|
287 |
|
|
|
288 |
|
|
// XST attributes for local reset "tree"
|
289 |
|
|
// synthesis attribute shreg_extract of rst_r is "no";
|
290 |
|
|
// synthesis attribute shreg_extract of rst_r1 is "no";
|
291 |
|
|
// synthesis attribute equivalent_register_removal of rst_r is "no"
|
292 |
|
|
|
293 |
|
|
//***************************************************************************
|
294 |
|
|
|
295 |
|
|
// sm_rden is used to assert read enable to the address FIFO
|
296 |
|
|
assign sm_rden = ((state_r == CTRL_BURST_WRITE) ||
|
297 |
|
|
(state_r == CTRL_BURST_READ)) ;
|
298 |
|
|
|
299 |
|
|
// Assert this when approaching refresh and not in an access
|
300 |
|
|
reg ref_approaching;
|
301 |
|
|
always @(posedge clk)
|
302 |
|
|
ref_approaching <= (refi_cnt_r >= (TREFI_COUNT -80)) & ~af_valid_r2;
|
303 |
|
|
|
304 |
|
|
reg ref_just_happened;
|
305 |
|
|
always @(posedge clk)
|
306 |
|
|
ref_just_happened <= (refi_cnt_r < 12'h30) & ~af_valid_r2;
|
307 |
|
|
|
308 |
|
|
|
309 |
|
|
// assert read flag to the adress FIFO
|
310 |
|
|
assign ctrl_af_rden = (sm_rden || rd_af_flag_r) & !(ref_approaching | ref_just_happened);
|
311 |
|
|
|
312 |
|
|
// local reset "tree" for controller logic only. Create this to ease timing
|
313 |
|
|
// on reset path. Prohibit equivalent register removal on RST_R to prevent
|
314 |
|
|
// "sharing" with other local reset trees (caution: make sure global fanout
|
315 |
|
|
// limit is set to large enough value, otherwise SLICES may be used for
|
316 |
|
|
// fanout control on RST_R.
|
317 |
|
|
always @(posedge clk) begin
|
318 |
|
|
rst_r <= rst;
|
319 |
|
|
rst_r1 <= rst_r;
|
320 |
|
|
end
|
321 |
|
|
|
322 |
|
|
//*****************************************************************
|
323 |
|
|
// interpret commands from Command/Address FIFO
|
324 |
|
|
//*****************************************************************
|
325 |
|
|
|
326 |
|
|
assign wr_flag = (af_valid_r2) ? ((af_cmd_r2 == 3'b000) ? 1'b1 : 1'b0): 1'b0;
|
327 |
|
|
assign rd_flag = (af_valid_r2) ? ((af_cmd_r2 == 3'b001) ? 1'b1 : 1'b0): 1'b0;
|
328 |
|
|
|
329 |
|
|
always @(posedge clk) begin
|
330 |
|
|
rd_flag_r <= rd_flag;
|
331 |
|
|
wr_flag_r <= wr_flag;
|
332 |
|
|
end
|
333 |
|
|
|
334 |
|
|
//////////////////////////////////////////////////
|
335 |
|
|
// The data from the address FIFO is fetched and
|
336 |
|
|
// stored in two register stages. The data will be
|
337 |
|
|
// pulled out of the second register stage whenever
|
338 |
|
|
// the state machine can handle new data from the
|
339 |
|
|
// address FIFO.
|
340 |
|
|
|
341 |
|
|
// This flag is asserted when there is no
|
342 |
|
|
// cmd & address in the pipe. When there is
|
343 |
|
|
// valid cmd & addr from the address FIFO the
|
344 |
|
|
// af_valid signals will be asserted. This flag will
|
345 |
|
|
// be set the cycle af_valid_r is de-asserted.
|
346 |
|
|
always @(posedge clk) begin
|
347 |
|
|
// for simulation purposes - to force CTRL_AF_RDEN low during reset
|
348 |
|
|
if (rst_r1)
|
349 |
|
|
rd_af_flag_r <= 1'd0;
|
350 |
|
|
else if (rd_af_flag_r) // jb - probably should find a way to stop this toggling all the time
|
351 |
|
|
rd_af_flag_r <= 0; // jb
|
352 |
|
|
else if((ctrl_af_rden_r) ||
|
353 |
|
|
(/*rd_af_flag_r &&*/ (af_valid_r || af_valid_r1))) // Fixed bug where third addresses would get lost (pulled off fifo and then clobbered by other value later, thus ignored/skipped) - just make sure we don't get too excited and pull too many off at once - jb
|
354 |
|
|
rd_af_flag_r <= 1'd0;
|
355 |
|
|
else if (~af_valid_r1 || ~af_valid_r)
|
356 |
|
|
rd_af_flag_r <= 1'd1;
|
357 |
|
|
|
358 |
|
|
end // always @ (posedge clk)
|
359 |
|
|
|
360 |
|
|
|
361 |
|
|
|
362 |
|
|
// First register stage for the cmd & add from the FIFO.
|
363 |
|
|
// The af_valid_r signal gives the status of the data
|
364 |
|
|
// in this stage. The af_valid_r will be asserted when there
|
365 |
|
|
// is valid data. This register stage will be updated
|
366 |
|
|
// 1. read to the FIFO and the FIFO not empty
|
367 |
|
|
// 2. After write and read states
|
368 |
|
|
// 3. The valid signal is not asserted in the last stage.
|
369 |
|
|
always @(posedge clk) begin
|
370 |
|
|
if (rst_r1)begin
|
371 |
|
|
af_valid_r <= 1'd0;
|
372 |
|
|
end else begin
|
373 |
|
|
if (ctrl_af_rden_r || sm_rden_r || ~af_valid_r1
|
374 |
|
|
|| ~af_valid_r2)begin
|
375 |
|
|
af_valid_r <= ctrl_af_rden_r;
|
376 |
|
|
end
|
377 |
|
|
end
|
378 |
|
|
end
|
379 |
|
|
|
380 |
|
|
// The output register in the FIFO is used. The addr
|
381 |
|
|
// and command are already registered in the FIFO.
|
382 |
|
|
assign af_addr_r = af_addr;
|
383 |
|
|
assign af_cmd_r = af_cmd;
|
384 |
|
|
|
385 |
|
|
// Second register stage for the cmd & add from the FIFO.
|
386 |
|
|
// The af_valid_r1 signal gives the status of the data
|
387 |
|
|
// in this stage. The af_valid_r will be asserted when there
|
388 |
|
|
// is valid data. This register stage will be updated
|
389 |
|
|
// 1. read to the FIFO and the FIFO not empty and there
|
390 |
|
|
// is no valid data on this stage
|
391 |
|
|
// 2. After write and read states
|
392 |
|
|
// 3. The valid signal is not asserted in the last stage.
|
393 |
|
|
always@(posedge clk) begin
|
394 |
|
|
if (rst_r1)begin
|
395 |
|
|
af_valid_r1 <= 1'd0;
|
396 |
|
|
af_addr_r1 <= {31{1'bx}};
|
397 |
|
|
af_cmd_r1 <= {3{1'bx}};
|
398 |
|
|
end else if (~af_valid_r1 || sm_rden_r ||
|
399 |
|
|
~af_valid_r2) begin
|
400 |
|
|
af_valid_r1 <= af_valid_r;
|
401 |
|
|
af_addr_r1 <= af_addr_r;
|
402 |
|
|
af_cmd_r1 <= af_cmd_r;
|
403 |
|
|
end
|
404 |
|
|
end
|
405 |
|
|
|
406 |
|
|
// The state machine uses the address and command in this
|
407 |
|
|
// register stage. The data is fetched from the second
|
408 |
|
|
// register stage whenever the state machine can accept new
|
409 |
|
|
// addr. The conflict flags are also generated based on the
|
410 |
|
|
// second register stage and updated when the new address
|
411 |
|
|
// is loaded for the state machine.
|
412 |
|
|
always@(posedge clk) begin
|
413 |
|
|
if (rst_r1)begin
|
414 |
|
|
af_valid_r2 <= 1'd0;
|
415 |
|
|
af_addr_r2 <= {31{1'bx}};
|
416 |
|
|
af_cmd_r2 <= {3{1'bx}};
|
417 |
|
|
bank_hit_r <= {OPEN_BANK_NUM{1'bx}};
|
418 |
|
|
bank_conflict_r <= 1'bx;
|
419 |
|
|
row_conflict_r <= 4'bx;
|
420 |
|
|
end else if(sm_rden || ~af_valid_r2)begin
|
421 |
|
|
af_valid_r2 <= af_valid_r1;
|
422 |
|
|
af_addr_r2 <= af_addr_r1;
|
423 |
|
|
af_cmd_r2 <= af_cmd_r1;
|
424 |
|
|
if(MULTI_BANK_EN)begin
|
425 |
|
|
bank_hit_r <= bank_hit;
|
426 |
|
|
row_conflict_r <= row_miss;
|
427 |
|
|
bank_conflict_r <= (~(|bank_hit));
|
428 |
|
|
end else begin
|
429 |
|
|
bank_hit_r <= {OPEN_BANK_NUM{1'b0}};
|
430 |
|
|
bank_conflict_r <= 1'd0;
|
431 |
|
|
row_conflict_r[0] <= (af_addr_r1[CS_RANGE_END:ROW_RANGE_START]
|
432 |
|
|
!= sb_open_add_r[CMP_WIDTH-1:0]);
|
433 |
|
|
end
|
434 |
|
|
end
|
435 |
|
|
end // always@ (posedge clk)
|
436 |
|
|
|
437 |
|
|
//detecting cs change for multi chip select case
|
438 |
|
|
generate
|
439 |
|
|
if(CS_NUM > 1) begin: gen_cs_change
|
440 |
|
|
always @(posedge clk) begin
|
441 |
|
|
if(sm_rden || ~af_valid_r2)begin
|
442 |
|
|
cs_change_r <= af_addr_r1[CS_RANGE_END:CS_RANGE_START] !=
|
443 |
|
|
af_addr_r2[CS_RANGE_END:CS_RANGE_START] ;
|
444 |
|
|
cs_change_sticky_r <=
|
445 |
|
|
af_addr_r1[CS_RANGE_END:CS_RANGE_START] !=
|
446 |
|
|
af_addr_r2[CS_RANGE_END:CS_RANGE_START] ;
|
447 |
|
|
end else
|
448 |
|
|
cs_change_r <= 1'd0;
|
449 |
|
|
end
|
450 |
|
|
end // block: gen_cs_change
|
451 |
|
|
else begin: gen_cs_0
|
452 |
|
|
always @(posedge clk) begin
|
453 |
|
|
cs_change_r <= 1'd0;
|
454 |
|
|
cs_change_sticky_r <= 1'd0;
|
455 |
|
|
end
|
456 |
|
|
end
|
457 |
|
|
endgenerate
|
458 |
|
|
|
459 |
|
|
assign conflict_detect = (MULTI_BANK_EN) ?
|
460 |
|
|
((|(row_conflict_r[3:0] & bank_hit_r[3:0]))
|
461 |
|
|
| bank_conflict_r) & af_valid_r2 :
|
462 |
|
|
row_conflict_r[0] & af_valid_r2;
|
463 |
|
|
|
464 |
|
|
always @(posedge clk) begin
|
465 |
|
|
conflict_detect_r <= conflict_detect;
|
466 |
|
|
sm_rden_r <= sm_rden;
|
467 |
|
|
af_addr_r3 <= af_addr_r2;
|
468 |
|
|
ctrl_af_rden_r <= ctrl_af_rden & ~af_empty;
|
469 |
|
|
end
|
470 |
|
|
|
471 |
|
|
// conflict resolved signal. When this signal is asserted
|
472 |
|
|
// the conflict is resolved. The address to be compared
|
473 |
|
|
// for the conflict_resolved_r will be stored in act_add_r
|
474 |
|
|
// when the bank is opened.
|
475 |
|
|
always @(posedge clk) begin
|
476 |
|
|
conflict_resolved_r <= (act_addr_r ==
|
477 |
|
|
af_addr_r2[CS_RANGE_END:ROW_RANGE_START]);
|
478 |
|
|
if((state_r == CTRL_ACTIVE))
|
479 |
|
|
act_addr_r <= af_addr_r2[CS_RANGE_END:ROW_RANGE_START];
|
480 |
|
|
end
|
481 |
|
|
|
482 |
|
|
//***************************************************************************
|
483 |
|
|
// Bank management logic
|
484 |
|
|
// Semi-hardcoded for now for 4 banks
|
485 |
|
|
// will keep multiple banks open if MULTI_BANK_EN is true.
|
486 |
|
|
//***************************************************************************
|
487 |
|
|
|
488 |
|
|
genvar bank_i;
|
489 |
|
|
generate // if multiple bank option chosen
|
490 |
|
|
if(MULTI_BANK_EN) begin: gen_multi_bank_open
|
491 |
|
|
|
492 |
|
|
for (bank_i = 0; bank_i < OPEN_BANK_NUM;
|
493 |
|
|
bank_i = bank_i + 1) begin: gen_bank_hit1
|
494 |
|
|
// asserted if bank address match + open bank entry is valid
|
495 |
|
|
always @(*) begin
|
496 |
|
|
bank_hit[bank_i]
|
497 |
|
|
= ((bank_cmp_addr_r[(CMP_WIDTH*(bank_i+1))-1:
|
498 |
|
|
(CMP_WIDTH*bank_i)+ROW_WIDTH] ==
|
499 |
|
|
af_addr_r1[CS_RANGE_END:BANK_RANGE_START]) &&
|
500 |
|
|
bank_valid_r[bank_i]);
|
501 |
|
|
// asserted if row address match (no check for bank entry valid, rely
|
502 |
|
|
// on this term to be used in conjunction with BANK_HIT[])
|
503 |
|
|
row_miss[bank_i]
|
504 |
|
|
= (bank_cmp_addr_r[(CMP_WIDTH*bank_i)+ROW_WIDTH-1:
|
505 |
|
|
(CMP_WIDTH*bank_i)] !=
|
506 |
|
|
af_addr_r1[ROW_RANGE_END:ROW_RANGE_START]);
|
507 |
|
|
end
|
508 |
|
|
end
|
509 |
|
|
|
510 |
|
|
always @(posedge clk) begin
|
511 |
|
|
no_precharge_wait_r <= bank_valid_r[3] & bank_conflict_r;
|
512 |
|
|
bank_hit_r1 <= bank_hit_r;
|
513 |
|
|
end
|
514 |
|
|
|
515 |
|
|
always@(*)
|
516 |
|
|
no_precharge_r = ~bank_valid_r[3] & bank_conflict_r;
|
517 |
|
|
|
518 |
|
|
always@(posedge clk)
|
519 |
|
|
no_precharge_r1 <= no_precharge_r;
|
520 |
|
|
|
521 |
|
|
|
522 |
|
|
always @(posedge clk) begin
|
523 |
|
|
// Clear all bank valid bits during AR (i.e. since all banks get
|
524 |
|
|
// precharged during auto-refresh)
|
525 |
|
|
if ((state_r1 == CTRL_AUTO_REFRESH)) begin
|
526 |
|
|
bank_valid_r <= {OPEN_BANK_NUM{1'b0}};
|
527 |
|
|
bank_cmp_addr_r <= {(OPEN_BANK_NUM*CMP_WIDTH-1){1'b0}};
|
528 |
|
|
end else begin
|
529 |
|
|
if (state_r1 == CTRL_ACTIVE) begin
|
530 |
|
|
// 00 is always going to have the latest bank and row.
|
531 |
|
|
bank_cmp_addr_r[CMP_WIDTH-1:0]
|
532 |
|
|
<= af_addr_r3[CS_RANGE_END:ROW_RANGE_START];
|
533 |
|
|
// This indicates the bank was activated
|
534 |
|
|
bank_valid_r[0] <= 1'b1;
|
535 |
|
|
|
536 |
|
|
case ({bank_hit_r1[2:0]})
|
537 |
|
|
3'b001: begin
|
538 |
|
|
bank_cmp_addr_r[CMP_WIDTH-1:0]
|
539 |
|
|
<= af_addr_r3[CS_RANGE_END:ROW_RANGE_START];
|
540 |
|
|
// This indicates the bank was activated
|
541 |
|
|
bank_valid_r[0] <= 1'b1;
|
542 |
|
|
end
|
543 |
|
|
3'b010: begin //(b0->b1)
|
544 |
|
|
bank_cmp_addr_r[(2*CMP_WIDTH)-1:CMP_WIDTH]
|
545 |
|
|
<= bank_cmp_addr_r[CMP_WIDTH-1:0];
|
546 |
|
|
bank_valid_r[1] <= bank_valid_r[0];
|
547 |
|
|
end
|
548 |
|
|
3'b100:begin //(b0->b1, b1->b2)
|
549 |
|
|
bank_cmp_addr_r[(2*CMP_WIDTH)-1:CMP_WIDTH]
|
550 |
|
|
<= bank_cmp_addr_r[CMP_WIDTH-1:0];
|
551 |
|
|
bank_cmp_addr_r[(3*CMP_WIDTH)-1:2*CMP_WIDTH]
|
552 |
|
|
<= bank_cmp_addr_r[(2*CMP_WIDTH)-1:CMP_WIDTH];
|
553 |
|
|
bank_valid_r[1] <= bank_valid_r[0];
|
554 |
|
|
bank_valid_r[2] <= bank_valid_r[1];
|
555 |
|
|
end
|
556 |
|
|
default: begin //(b0->b1, b1->b2, b2->b3)
|
557 |
|
|
bank_cmp_addr_r[(2*CMP_WIDTH)-1:CMP_WIDTH]
|
558 |
|
|
<= bank_cmp_addr_r[CMP_WIDTH-1:0];
|
559 |
|
|
bank_cmp_addr_r[(3*CMP_WIDTH)-1:2*CMP_WIDTH]
|
560 |
|
|
<= bank_cmp_addr_r[(2*CMP_WIDTH)-1:CMP_WIDTH];
|
561 |
|
|
bank_cmp_addr_r[(4*CMP_WIDTH)-1:3*CMP_WIDTH]
|
562 |
|
|
<= bank_cmp_addr_r[(3*CMP_WIDTH)-1:2*CMP_WIDTH];
|
563 |
|
|
bank_valid_r[1] <= bank_valid_r[0];
|
564 |
|
|
bank_valid_r[2] <= bank_valid_r[1];
|
565 |
|
|
bank_valid_r[3] <= bank_valid_r[2];
|
566 |
|
|
end
|
567 |
|
|
endcase
|
568 |
|
|
end
|
569 |
|
|
end
|
570 |
|
|
end
|
571 |
|
|
end else begin: gen_single_bank_open // single bank option
|
572 |
|
|
always @(posedge clk) begin
|
573 |
|
|
no_precharge_r <= 1'd0;
|
574 |
|
|
no_precharge_r1 <= 1'd0;
|
575 |
|
|
no_precharge_wait_r <= 1'd0;
|
576 |
|
|
if (rst_r1)
|
577 |
|
|
sb_open_add_r <= {CMP_WIDTH{1'b0}};
|
578 |
|
|
else if (state_r == CTRL_ACTIVE)
|
579 |
|
|
sb_open_add_r <= af_addr_r2[CS_RANGE_END:ROW_RANGE_START];
|
580 |
|
|
end
|
581 |
|
|
end
|
582 |
|
|
endgenerate
|
583 |
|
|
|
584 |
|
|
//***************************************************************************
|
585 |
|
|
// Timing counters
|
586 |
|
|
//***************************************************************************
|
587 |
|
|
|
588 |
|
|
//*****************************************************************
|
589 |
|
|
// Write and read enable generation for PHY
|
590 |
|
|
//*****************************************************************
|
591 |
|
|
|
592 |
|
|
// write burst count. Counts from (BL/2 to 1).
|
593 |
|
|
// Also logic for controller write enable.
|
594 |
|
|
always @(posedge clk) begin
|
595 |
|
|
if (state_r == CTRL_BURST_WRITE) begin
|
596 |
|
|
wrburst_cnt_r <= BURST_LEN_DIV2;
|
597 |
|
|
end else if (wrburst_cnt_r >= 3'd1)
|
598 |
|
|
wrburst_cnt_r <= wrburst_cnt_r - 1;
|
599 |
|
|
end // always @ (posedge clk)
|
600 |
|
|
|
601 |
|
|
|
602 |
|
|
always @(posedge clk) begin
|
603 |
|
|
if (rst_r1) begin
|
604 |
|
|
ctrl_wren <= 1'b0;
|
605 |
|
|
end else if (state_r == CTRL_BURST_WRITE) begin
|
606 |
|
|
ctrl_wren <= 1'b1;
|
607 |
|
|
end else if (wrburst_wren_ok_r)
|
608 |
|
|
ctrl_wren <= 1'b0;
|
609 |
|
|
end
|
610 |
|
|
|
611 |
|
|
|
612 |
|
|
always @(posedge clk) begin
|
613 |
|
|
if ((state_r == CTRL_BURST_WRITE)
|
614 |
|
|
&& (BURST_LEN_DIV2 > 2))
|
615 |
|
|
wrburst_ok_r <= 1'd0;
|
616 |
|
|
else if ((wrburst_cnt_r <= 3'd3) ||
|
617 |
|
|
(BURST_LEN_DIV2 <= 2))
|
618 |
|
|
wrburst_ok_r <= 1'b1;
|
619 |
|
|
end
|
620 |
|
|
|
621 |
|
|
// flag to check when wrburst count has reached
|
622 |
|
|
// a value of 1. This flag is used in the ctrl_wren
|
623 |
|
|
// logic
|
624 |
|
|
always @(posedge clk) begin
|
625 |
|
|
if(wrburst_cnt_r == 3'd2)
|
626 |
|
|
wrburst_wren_ok_r <=1'b1;
|
627 |
|
|
else
|
628 |
|
|
wrburst_wren_ok_r <= 1'b0;
|
629 |
|
|
end
|
630 |
|
|
|
631 |
|
|
|
632 |
|
|
// read burst count. Counts from (BL/2 to 1)
|
633 |
|
|
always @(posedge clk) begin
|
634 |
|
|
if (state_r == CTRL_BURST_READ) begin
|
635 |
|
|
rdburst_cnt_r <= BURST_LEN_DIV2;
|
636 |
|
|
end else if (rdburst_cnt_r >= 3'd1)
|
637 |
|
|
rdburst_cnt_r <= rdburst_cnt_r - 1;
|
638 |
|
|
end // always @ (posedge clk)
|
639 |
|
|
|
640 |
|
|
|
641 |
|
|
always @(posedge clk) begin
|
642 |
|
|
if (rst_r1) begin
|
643 |
|
|
ctrl_rden <= 1'b0;
|
644 |
|
|
end else if (state_r == CTRL_BURST_READ) begin
|
645 |
|
|
ctrl_rden <= 1'b1;
|
646 |
|
|
end else if (rdburst_rden_ok_r)
|
647 |
|
|
ctrl_rden <= 1'b0;
|
648 |
|
|
end
|
649 |
|
|
|
650 |
|
|
// the rd_burst_ok_r signal will be asserted one cycle later
|
651 |
|
|
// in multi chip select cases if the back to back read is to
|
652 |
|
|
// different chip selects. The cs_changed_sticky_r signal will
|
653 |
|
|
// be asserted only for multi chip select cases.
|
654 |
|
|
always @(posedge clk) begin
|
655 |
|
|
if ((state_r == CTRL_BURST_READ)
|
656 |
|
|
&& (BURST_LEN_DIV2 > 2))
|
657 |
|
|
rdburst_ok_r <= 1'd0;
|
658 |
|
|
else if ((rdburst_cnt_r <=( 3'd3 - cs_change_sticky_r)) ||
|
659 |
|
|
(BURST_LEN_DIV2 <= 2))
|
660 |
|
|
rdburst_ok_r <= 1'b1;
|
661 |
|
|
end
|
662 |
|
|
|
663 |
|
|
// flag to check when rdburst count has reached
|
664 |
|
|
// a value of 1. This flag is used in the ctrl_rden
|
665 |
|
|
// logic
|
666 |
|
|
always @(posedge clk) begin
|
667 |
|
|
if (rdburst_cnt_r == 3'd2)
|
668 |
|
|
rdburst_rden_ok_r <= 1'b1;
|
669 |
|
|
else
|
670 |
|
|
rdburst_rden_ok_r <= 1'b0;
|
671 |
|
|
end
|
672 |
|
|
|
673 |
|
|
|
674 |
|
|
//*****************************************************************
|
675 |
|
|
// Various delay counters
|
676 |
|
|
// The counters are checked for value of <= 3 to determine the
|
677 |
|
|
// if the count values are reached during different commands.
|
678 |
|
|
// It is checked for 3 because
|
679 |
|
|
// 1. The counters are loaded during the state when the command
|
680 |
|
|
// state is reached (+1)
|
681 |
|
|
// 2. After the <= 3 condition is reached the sm takes two cycles
|
682 |
|
|
// to transition to the new command state (+2)
|
683 |
|
|
//*****************************************************************
|
684 |
|
|
|
685 |
|
|
// tRP count - precharge command period
|
686 |
|
|
always @(posedge clk) begin
|
687 |
|
|
if (state_r == CTRL_PRECHARGE)
|
688 |
|
|
rp_cnt_r <= TRP_COUNT;
|
689 |
|
|
else if (rp_cnt_r != 4'd0)
|
690 |
|
|
rp_cnt_r <= rp_cnt_r - 1;
|
691 |
|
|
end
|
692 |
|
|
|
693 |
|
|
always @(posedge clk) begin
|
694 |
|
|
if (state_r == CTRL_PRECHARGE)
|
695 |
|
|
rp_cnt_ok_r <= 1'd0;
|
696 |
|
|
else if (rp_cnt_r <= 4'd3)
|
697 |
|
|
rp_cnt_ok_r <= 1'd1;
|
698 |
|
|
end
|
699 |
|
|
|
700 |
|
|
// tRFC count - refresh-refresh, refresh-active
|
701 |
|
|
always @(posedge clk) begin
|
702 |
|
|
if (state_r == CTRL_AUTO_REFRESH)
|
703 |
|
|
rfc_cnt_r <= TRFC_COUNT;
|
704 |
|
|
else if (rfc_cnt_r != 8'd0)
|
705 |
|
|
rfc_cnt_r <= rfc_cnt_r - 1;
|
706 |
|
|
end
|
707 |
|
|
|
708 |
|
|
always @(posedge clk) begin
|
709 |
|
|
if (state_r == CTRL_AUTO_REFRESH)
|
710 |
|
|
rfc_ok_r <= 1'b0;
|
711 |
|
|
else if(rfc_cnt_r <= 8'd3)
|
712 |
|
|
rfc_ok_r <= 1'b1;
|
713 |
|
|
end
|
714 |
|
|
|
715 |
|
|
// tRCD count - active to read/write
|
716 |
|
|
always @(posedge clk) begin
|
717 |
|
|
if (state_r == CTRL_ACTIVE)
|
718 |
|
|
rcd_cnt_r <= TRCD_COUNT;
|
719 |
|
|
else if (rcd_cnt_r != 4'd0)
|
720 |
|
|
rcd_cnt_r <= rcd_cnt_r - 1;
|
721 |
|
|
end
|
722 |
|
|
|
723 |
|
|
always @(posedge clk) begin
|
724 |
|
|
if ((state_r == CTRL_ACTIVE)
|
725 |
|
|
&& (TRCD_COUNT > 2))
|
726 |
|
|
rcd_cnt_ok_r <= 1'd0;
|
727 |
|
|
else if (rcd_cnt_r <= 4'd3)
|
728 |
|
|
rcd_cnt_ok_r <= 1;
|
729 |
|
|
end
|
730 |
|
|
|
731 |
|
|
// tRRD count - active to active
|
732 |
|
|
always @(posedge clk) begin
|
733 |
|
|
if (state_r == CTRL_ACTIVE)
|
734 |
|
|
trrd_cnt_r <= TRRD_COUNT;
|
735 |
|
|
else if (trrd_cnt_r != 3'd0)
|
736 |
|
|
trrd_cnt_r <= trrd_cnt_r - 1;
|
737 |
|
|
end
|
738 |
|
|
|
739 |
|
|
always @(posedge clk) begin
|
740 |
|
|
if (state_r == CTRL_ACTIVE)
|
741 |
|
|
trrd_cnt_ok_r <= 1'd0;
|
742 |
|
|
else if (trrd_cnt_r <= 3'd3)
|
743 |
|
|
trrd_cnt_ok_r <= 1;
|
744 |
|
|
end
|
745 |
|
|
|
746 |
|
|
// tRAS count - active to precharge
|
747 |
|
|
always @(posedge clk) begin
|
748 |
|
|
if (state_r == CTRL_ACTIVE)
|
749 |
|
|
ras_cnt_r <= TRAS_COUNT;
|
750 |
|
|
else if (ras_cnt_r != 5'd0)
|
751 |
|
|
ras_cnt_r <= ras_cnt_r - 1;
|
752 |
|
|
end
|
753 |
|
|
|
754 |
|
|
// counter for write to prcharge
|
755 |
|
|
// read to precharge and
|
756 |
|
|
// activate to precharge
|
757 |
|
|
// precharge_ok_cnt_r is added with trtp count,
|
758 |
|
|
// there can be cases where the sm can go from
|
759 |
|
|
// activate to read and the act->pre count time
|
760 |
|
|
// would not have been satisfied. The rd->pre
|
761 |
|
|
// time is very less. wr->pre time is almost the
|
762 |
|
|
// same as act-> pre
|
763 |
|
|
always @(posedge clk) begin
|
764 |
|
|
if (state_r == CTRL_BURST_READ) begin
|
765 |
|
|
// assign only if the cnt is < TRTP_COUNT
|
766 |
|
|
if (precharge_ok_cnt_r < TRTP_COUNT)
|
767 |
|
|
precharge_ok_cnt_r <= TRTP_COUNT;
|
768 |
|
|
end else if (state_r == CTRL_BURST_WRITE)
|
769 |
|
|
precharge_ok_cnt_r <= TWR_COUNT;
|
770 |
|
|
else if (state_r == CTRL_ACTIVE)
|
771 |
|
|
precharge_ok_cnt_r <= TRAS_COUNT;
|
772 |
|
|
else if (precharge_ok_cnt_r != 5'd0)
|
773 |
|
|
precharge_ok_cnt_r <= precharge_ok_cnt_r - 1;
|
774 |
|
|
end
|
775 |
|
|
|
776 |
|
|
always @(posedge clk) begin
|
777 |
|
|
if ((state_r == CTRL_BURST_READ) ||
|
778 |
|
|
(state_r == CTRL_BURST_WRITE)||
|
779 |
|
|
(state_r == CTRL_ACTIVE))
|
780 |
|
|
precharge_ok_r <= 1'd0;
|
781 |
|
|
else if(precharge_ok_cnt_r <= 5'd3)
|
782 |
|
|
precharge_ok_r <=1'd1;
|
783 |
|
|
end
|
784 |
|
|
|
785 |
|
|
// write to read counter
|
786 |
|
|
// write to read includes : write latency + burst time + tWTR
|
787 |
|
|
always @(posedge clk) begin
|
788 |
|
|
if (rst_r1)
|
789 |
|
|
wr_to_rd_cnt_r <= 5'd0;
|
790 |
|
|
else if (state_r == CTRL_BURST_WRITE)
|
791 |
|
|
wr_to_rd_cnt_r <= (TWTR_COUNT);
|
792 |
|
|
else if (wr_to_rd_cnt_r != 5'd0)
|
793 |
|
|
wr_to_rd_cnt_r <= wr_to_rd_cnt_r - 1;
|
794 |
|
|
end
|
795 |
|
|
|
796 |
|
|
always @(posedge clk) begin
|
797 |
|
|
if (state_r == CTRL_BURST_WRITE)
|
798 |
|
|
wr_to_rd_ok_r <= 1'd0;
|
799 |
|
|
else if (wr_to_rd_cnt_r <= 5'd3)
|
800 |
|
|
wr_to_rd_ok_r <= 1'd1;
|
801 |
|
|
end
|
802 |
|
|
|
803 |
|
|
// read to write counter
|
804 |
|
|
always @(posedge clk) begin
|
805 |
|
|
if (rst_r1)
|
806 |
|
|
rd_to_wr_cnt_r <= 5'd0;
|
807 |
|
|
else if (state_r == CTRL_BURST_READ)
|
808 |
|
|
rd_to_wr_cnt_r <= (TRTW_COUNT);
|
809 |
|
|
else if (rd_to_wr_cnt_r != 5'd0)
|
810 |
|
|
rd_to_wr_cnt_r <= rd_to_wr_cnt_r - 1;
|
811 |
|
|
end
|
812 |
|
|
|
813 |
|
|
always @(posedge clk) begin
|
814 |
|
|
if (state_r == CTRL_BURST_READ)
|
815 |
|
|
rd_to_wr_ok_r <= 1'b0;
|
816 |
|
|
else if (rd_to_wr_cnt_r <= 5'd3)
|
817 |
|
|
rd_to_wr_ok_r <= 1'b1;
|
818 |
|
|
end
|
819 |
|
|
|
820 |
|
|
always @(posedge clk) begin
|
821 |
|
|
if(refi_cnt_r == (TREFI_COUNT -1))
|
822 |
|
|
refi_cnt_ok_r <= 1'b1;
|
823 |
|
|
else
|
824 |
|
|
refi_cnt_ok_r <= 1'b0;
|
825 |
|
|
end
|
826 |
|
|
|
827 |
|
|
// auto refresh interval counter in refresh_clk domain
|
828 |
|
|
always @(posedge clk) begin
|
829 |
|
|
if ((rst_r1) || (refi_cnt_ok_r)) begin
|
830 |
|
|
refi_cnt_r <= 12'd0;
|
831 |
|
|
end else begin
|
832 |
|
|
refi_cnt_r <= refi_cnt_r + 1;
|
833 |
|
|
end
|
834 |
|
|
end // always @ (posedge clk)
|
835 |
|
|
|
836 |
|
|
// auto refresh flag
|
837 |
|
|
always @(posedge clk) begin
|
838 |
|
|
if (refi_cnt_ok_r) begin
|
839 |
|
|
ref_flag_r <= 1'b1;
|
840 |
|
|
end else begin
|
841 |
|
|
ref_flag_r <= 1'b0;
|
842 |
|
|
end
|
843 |
|
|
end // always @ (posedge clk)
|
844 |
|
|
|
845 |
|
|
assign ctrl_ref_flag = ref_flag_r;
|
846 |
|
|
|
847 |
|
|
//refresh flag detect
|
848 |
|
|
//auto_ref high indicates auto_refresh requirement
|
849 |
|
|
//auto_ref is held high until auto refresh command is issued.
|
850 |
|
|
always @(posedge clk)begin
|
851 |
|
|
if (rst_r1)
|
852 |
|
|
auto_ref_r <= 1'b0;
|
853 |
|
|
else if (ref_flag_r)
|
854 |
|
|
auto_ref_r <= 1'b1;
|
855 |
|
|
else if (state_r == CTRL_AUTO_REFRESH)
|
856 |
|
|
auto_ref_r <= 1'b0;
|
857 |
|
|
end
|
858 |
|
|
|
859 |
|
|
|
860 |
|
|
// keep track of which chip selects got auto-refreshed (avoid auto-refreshing
|
861 |
|
|
// all CS's at once to avoid current spike)
|
862 |
|
|
always @(posedge clk)begin
|
863 |
|
|
if (rst_r1 || (state_r1 == CTRL_PRECHARGE))
|
864 |
|
|
auto_cnt_r <= 'd0;
|
865 |
|
|
else if (state_r1 == CTRL_AUTO_REFRESH)
|
866 |
|
|
auto_cnt_r <= auto_cnt_r + 1;
|
867 |
|
|
end
|
868 |
|
|
|
869 |
|
|
// register for timing purposes. Extra delay doesn't really matter
|
870 |
|
|
always @(posedge clk)
|
871 |
|
|
phy_init_done_r <= phy_init_done;
|
872 |
|
|
|
873 |
|
|
always @(posedge clk)begin
|
874 |
|
|
if (rst_r1) begin
|
875 |
|
|
state_r <= CTRL_IDLE;
|
876 |
|
|
state_r1 <= CTRL_IDLE;
|
877 |
|
|
end else begin
|
878 |
|
|
state_r <= next_state;
|
879 |
|
|
state_r1 <= state_r;
|
880 |
|
|
end
|
881 |
|
|
end
|
882 |
|
|
|
883 |
|
|
//***************************************************************************
|
884 |
|
|
// main control state machine
|
885 |
|
|
//***************************************************************************
|
886 |
|
|
|
887 |
|
|
always @(*) begin
|
888 |
|
|
next_state = state_r;
|
889 |
|
|
(* full_case, parallel_case *) case (state_r)
|
890 |
|
|
CTRL_IDLE: begin
|
891 |
|
|
// perform auto refresh as soon as we are done with calibration.
|
892 |
|
|
// The calibration logic does not do any refreshes.
|
893 |
|
|
if (phy_init_done_r)
|
894 |
|
|
next_state = CTRL_AUTO_REFRESH;
|
895 |
|
|
end
|
896 |
|
|
|
897 |
|
|
CTRL_PRECHARGE: begin
|
898 |
|
|
if (auto_ref_r)
|
899 |
|
|
next_state = CTRL_PRECHARGE_WAIT1;
|
900 |
|
|
// when precharging an LRU bank, do not have to go to wait state
|
901 |
|
|
// since we can't possibly be activating row in same bank next
|
902 |
|
|
// disabled for 2t timing. There needs to be a gap between cmds
|
903 |
|
|
// in 2t timing
|
904 |
|
|
else if (no_precharge_wait_r && !TWO_T_TIME_EN)
|
905 |
|
|
next_state = CTRL_ACTIVE;
|
906 |
|
|
else
|
907 |
|
|
next_state = CTRL_PRECHARGE_WAIT;
|
908 |
|
|
end
|
909 |
|
|
|
910 |
|
|
CTRL_PRECHARGE_WAIT:begin
|
911 |
|
|
if (rp_cnt_ok_r)begin
|
912 |
|
|
if (auto_ref_r)
|
913 |
|
|
// precharge again to make sure we close all the banks
|
914 |
|
|
next_state = CTRL_PRECHARGE;
|
915 |
|
|
else
|
916 |
|
|
next_state = CTRL_ACTIVE;
|
917 |
|
|
end
|
918 |
|
|
end
|
919 |
|
|
|
920 |
|
|
CTRL_PRECHARGE_WAIT1:
|
921 |
|
|
if (rp_cnt_ok_r)
|
922 |
|
|
next_state = CTRL_AUTO_REFRESH;
|
923 |
|
|
|
924 |
|
|
CTRL_AUTO_REFRESH:
|
925 |
|
|
next_state = CTRL_AUTO_REFRESH_WAIT;
|
926 |
|
|
|
927 |
|
|
CTRL_AUTO_REFRESH_WAIT:
|
928 |
|
|
//staggering Auto refresh for multi
|
929 |
|
|
// chip select designs. The SM waits
|
930 |
|
|
// for the rfc time before issuing the
|
931 |
|
|
// next auto refresh.
|
932 |
|
|
if (auto_cnt_r < (CS_NUM))begin
|
933 |
|
|
if (rfc_ok_r )
|
934 |
|
|
next_state = CTRL_AUTO_REFRESH;
|
935 |
|
|
end else if (rfc_ok_r)begin
|
936 |
|
|
if(auto_ref_r)
|
937 |
|
|
// MIG 2.3: For deep designs if Auto Refresh
|
938 |
|
|
// flag asserted immediately after calibration is completed
|
939 |
|
|
next_state = CTRL_PRECHARGE;
|
940 |
|
|
else if ( wr_flag || rd_flag)
|
941 |
|
|
next_state = CTRL_ACTIVE;
|
942 |
|
|
end
|
943 |
|
|
|
944 |
|
|
CTRL_ACTIVE:
|
945 |
|
|
next_state = CTRL_ACTIVE_WAIT;
|
946 |
|
|
|
947 |
|
|
CTRL_ACTIVE_WAIT: begin
|
948 |
|
|
if (rcd_cnt_ok_r) begin
|
949 |
|
|
if ((conflict_detect_r && ~conflict_resolved_r) ||
|
950 |
|
|
auto_ref_r) begin
|
951 |
|
|
if (no_precharge_r1 && ~auto_ref_r && trrd_cnt_ok_r)
|
952 |
|
|
next_state = CTRL_ACTIVE;
|
953 |
|
|
else if(precharge_ok_r)
|
954 |
|
|
next_state = CTRL_PRECHARGE;
|
955 |
|
|
end else if ((wr_flag_r) && (rd_to_wr_ok_r))
|
956 |
|
|
next_state = CTRL_BURST_WRITE;
|
957 |
|
|
else if ((rd_flag_r)&& (wr_to_rd_ok_r))
|
958 |
|
|
next_state = CTRL_BURST_READ;
|
959 |
|
|
end
|
960 |
|
|
end
|
961 |
|
|
|
962 |
|
|
// beginning of write burst
|
963 |
|
|
CTRL_BURST_WRITE: begin
|
964 |
|
|
if (BURST_LEN_DIV2 == 1) begin
|
965 |
|
|
// special case if BL = 2 (i.e. burst lasts only one clk cycle)
|
966 |
|
|
if (wr_flag)
|
967 |
|
|
// if we have another non-conflict write command right after the
|
968 |
|
|
// current write, then stay in this state
|
969 |
|
|
next_state = CTRL_BURST_WRITE;
|
970 |
|
|
else
|
971 |
|
|
// otherwise, if we're done with this burst, and have no write
|
972 |
|
|
// immediately scheduled after this one, wait until write-read
|
973 |
|
|
// delay has passed
|
974 |
|
|
next_state = CTRL_WRITE_WAIT;
|
975 |
|
|
end else
|
976 |
|
|
// otherwise BL > 2, and we have at least one more write cycle for
|
977 |
|
|
// current burst
|
978 |
|
|
next_state = CTRL_WRITE_WAIT;
|
979 |
|
|
// continuation of write burst (also covers waiting after write burst
|
980 |
|
|
// has completed for write-read delay to pass)
|
981 |
|
|
end
|
982 |
|
|
|
983 |
|
|
CTRL_WRITE_WAIT: begin
|
984 |
|
|
if ((conflict_detect) || auto_ref_r) begin
|
985 |
|
|
if (no_precharge_r && ~auto_ref_r && wrburst_ok_r)
|
986 |
|
|
next_state = CTRL_ACTIVE;
|
987 |
|
|
else if (precharge_ok_r)
|
988 |
|
|
next_state = CTRL_PRECHARGE;
|
989 |
|
|
end else if (wrburst_ok_r && wr_flag)
|
990 |
|
|
next_state = CTRL_BURST_WRITE;
|
991 |
|
|
else if ((rd_flag) && (wr_to_rd_ok_r))
|
992 |
|
|
next_state = CTRL_BURST_READ;
|
993 |
|
|
end
|
994 |
|
|
|
995 |
|
|
CTRL_BURST_READ: begin
|
996 |
|
|
if (BURST_LEN_DIV2 == 1) begin
|
997 |
|
|
// special case if BL = 2 (i.e. burst lasts only one clk cycle)
|
998 |
|
|
if (rd_flag)
|
999 |
|
|
next_state = CTRL_BURST_READ;
|
1000 |
|
|
else
|
1001 |
|
|
next_state = CTRL_READ_WAIT;
|
1002 |
|
|
end else
|
1003 |
|
|
next_state = CTRL_READ_WAIT;
|
1004 |
|
|
end
|
1005 |
|
|
|
1006 |
|
|
CTRL_READ_WAIT: begin
|
1007 |
|
|
if ((conflict_detect) || auto_ref_r)begin
|
1008 |
|
|
if (no_precharge_r && ~auto_ref_r && rdburst_ok_r)
|
1009 |
|
|
next_state = CTRL_ACTIVE;
|
1010 |
|
|
else if (precharge_ok_r)
|
1011 |
|
|
next_state = CTRL_PRECHARGE;
|
1012 |
|
|
// for burst of 4 in multi chip select
|
1013 |
|
|
// if there is a change in cs wait one cycle before the
|
1014 |
|
|
// next read command. cs_change_r will be asserted.
|
1015 |
|
|
end else if (rdburst_ok_r && rd_flag && ~cs_change_r)
|
1016 |
|
|
next_state = CTRL_BURST_READ;
|
1017 |
|
|
else if (wr_flag && (rd_to_wr_ok_r))
|
1018 |
|
|
next_state = CTRL_BURST_WRITE;
|
1019 |
|
|
end
|
1020 |
|
|
endcase
|
1021 |
|
|
end
|
1022 |
|
|
|
1023 |
|
|
//***************************************************************************
|
1024 |
|
|
// control signals to memory
|
1025 |
|
|
//***************************************************************************
|
1026 |
|
|
|
1027 |
|
|
always @(posedge clk) begin
|
1028 |
|
|
if ((state_r == CTRL_AUTO_REFRESH) ||
|
1029 |
|
|
(state_r == CTRL_ACTIVE) ||
|
1030 |
|
|
(state_r == CTRL_PRECHARGE)) begin
|
1031 |
|
|
ddr_ras_n_r <= 1'b0;
|
1032 |
|
|
two_t_enable_r[0] <= 1'b0;
|
1033 |
|
|
end else begin
|
1034 |
|
|
if (TWO_T_TIME_EN)
|
1035 |
|
|
ddr_ras_n_r <= two_t_enable_r[0] ;
|
1036 |
|
|
else
|
1037 |
|
|
ddr_ras_n_r <= 1'd1;
|
1038 |
|
|
two_t_enable_r[0] <= 1'b1;
|
1039 |
|
|
end
|
1040 |
|
|
end
|
1041 |
|
|
|
1042 |
|
|
always @(posedge clk)begin
|
1043 |
|
|
if ((state_r == CTRL_BURST_WRITE) ||
|
1044 |
|
|
(state_r == CTRL_BURST_READ) ||
|
1045 |
|
|
(state_r == CTRL_AUTO_REFRESH)) begin
|
1046 |
|
|
ddr_cas_n_r <= 1'b0;
|
1047 |
|
|
two_t_enable_r[1] <= 1'b0;
|
1048 |
|
|
end else begin
|
1049 |
|
|
if (TWO_T_TIME_EN)
|
1050 |
|
|
ddr_cas_n_r <= two_t_enable_r[1];
|
1051 |
|
|
else
|
1052 |
|
|
ddr_cas_n_r <= 1'b1;
|
1053 |
|
|
two_t_enable_r[1] <= 1'b1;
|
1054 |
|
|
end
|
1055 |
|
|
end
|
1056 |
|
|
|
1057 |
|
|
always @(posedge clk) begin
|
1058 |
|
|
if ((state_r == CTRL_BURST_WRITE) ||
|
1059 |
|
|
(state_r == CTRL_PRECHARGE)) begin
|
1060 |
|
|
ddr_we_n_r <= 1'b0;
|
1061 |
|
|
two_t_enable_r[2] <= 1'b0;
|
1062 |
|
|
end else begin
|
1063 |
|
|
if(TWO_T_TIME_EN)
|
1064 |
|
|
ddr_we_n_r <= two_t_enable_r[2];
|
1065 |
|
|
else
|
1066 |
|
|
ddr_we_n_r <= 1'b1;
|
1067 |
|
|
two_t_enable_r[2] <= 1'b1;
|
1068 |
|
|
end
|
1069 |
|
|
end
|
1070 |
|
|
|
1071 |
|
|
// turn off auto-precharge when issuing commands (A10 = 0)
|
1072 |
|
|
// mapping the col add for linear addressing.
|
1073 |
|
|
generate
|
1074 |
|
|
if (TWO_T_TIME_EN) begin: gen_addr_col_two_t
|
1075 |
|
|
if (COL_WIDTH == ROW_WIDTH-1) begin: gen_ddr_addr_col_0
|
1076 |
|
|
assign ddr_addr_col = {af_addr_r3[COL_WIDTH-1:10], 1'b0,
|
1077 |
|
|
af_addr_r3[9:0]};
|
1078 |
|
|
end else begin
|
1079 |
|
|
if (COL_WIDTH > 10) begin: gen_ddr_addr_col_1
|
1080 |
|
|
assign ddr_addr_col = {{(ROW_WIDTH-COL_WIDTH-1){1'b0}},
|
1081 |
|
|
af_addr_r3[COL_WIDTH-1:10], 1'b0,
|
1082 |
|
|
af_addr_r3[9:0]};
|
1083 |
|
|
end else begin: gen_ddr_addr_col_2
|
1084 |
|
|
assign ddr_addr_col = {{(ROW_WIDTH-COL_WIDTH-1){1'b0}}, 1'b0,
|
1085 |
|
|
af_addr_r3[COL_WIDTH-1:0]};
|
1086 |
|
|
end
|
1087 |
|
|
end
|
1088 |
|
|
end else begin: gen_addr_col_one_t
|
1089 |
|
|
if (COL_WIDTH == ROW_WIDTH-1) begin: gen_ddr_addr_col_0_1
|
1090 |
|
|
assign ddr_addr_col = {af_addr_r2[COL_WIDTH-1:10], 1'b0,
|
1091 |
|
|
af_addr_r2[9:0]};
|
1092 |
|
|
end else begin
|
1093 |
|
|
if (COL_WIDTH > 10) begin: gen_ddr_addr_col_1_1
|
1094 |
|
|
assign ddr_addr_col = {{(ROW_WIDTH-COL_WIDTH-1){1'b0}},
|
1095 |
|
|
af_addr_r2[COL_WIDTH-1:10], 1'b0,
|
1096 |
|
|
af_addr_r2[9:0]};
|
1097 |
|
|
end else begin: gen_ddr_addr_col_2_1
|
1098 |
|
|
assign ddr_addr_col = {{(ROW_WIDTH-COL_WIDTH-1){1'b0}}, 1'b0,
|
1099 |
|
|
af_addr_r2[COL_WIDTH-1:0]};
|
1100 |
|
|
end
|
1101 |
|
|
end
|
1102 |
|
|
end
|
1103 |
|
|
endgenerate
|
1104 |
|
|
|
1105 |
|
|
// Assign address during row activate
|
1106 |
|
|
generate
|
1107 |
|
|
if (TWO_T_TIME_EN)
|
1108 |
|
|
assign ddr_addr_row = af_addr_r3[ROW_RANGE_END:ROW_RANGE_START];
|
1109 |
|
|
else
|
1110 |
|
|
assign ddr_addr_row = af_addr_r2[ROW_RANGE_END:ROW_RANGE_START];
|
1111 |
|
|
endgenerate
|
1112 |
|
|
|
1113 |
|
|
|
1114 |
|
|
always @(posedge clk)begin
|
1115 |
|
|
if ((state_r == CTRL_ACTIVE) ||
|
1116 |
|
|
((state_r1 == CTRL_ACTIVE) && TWO_T_TIME_EN))
|
1117 |
|
|
ddr_addr_r <= ddr_addr_row;
|
1118 |
|
|
else if ((state_r == CTRL_BURST_WRITE) ||
|
1119 |
|
|
(state_r == CTRL_BURST_READ) ||
|
1120 |
|
|
(((state_r1 == CTRL_BURST_WRITE) ||
|
1121 |
|
|
(state_r1 == CTRL_BURST_READ)) &&
|
1122 |
|
|
TWO_T_TIME_EN))
|
1123 |
|
|
ddr_addr_r <= ddr_addr_col;
|
1124 |
|
|
else if (((state_r == CTRL_PRECHARGE) ||
|
1125 |
|
|
((state_r1 == CTRL_PRECHARGE) && TWO_T_TIME_EN))
|
1126 |
|
|
&& auto_ref_r) begin
|
1127 |
|
|
// if we're precharging as a result of AUTO-REFRESH, precharge all banks
|
1128 |
|
|
ddr_addr_r <= {ROW_WIDTH{1'b0}};
|
1129 |
|
|
ddr_addr_r[10] <= 1'b1;
|
1130 |
|
|
end else if ((state_r == CTRL_PRECHARGE) ||
|
1131 |
|
|
((state_r1 == CTRL_PRECHARGE) && TWO_T_TIME_EN))
|
1132 |
|
|
// if we're precharging to close a specific bank/row, set A10=0
|
1133 |
|
|
ddr_addr_r <= {ROW_WIDTH{1'b0}};
|
1134 |
|
|
else
|
1135 |
|
|
ddr_addr_r <= {ROW_WIDTH{1'bx}};
|
1136 |
|
|
end
|
1137 |
|
|
|
1138 |
|
|
always @(posedge clk)begin
|
1139 |
|
|
// whenever we're precharging, we're either: (1) precharging all banks (in
|
1140 |
|
|
// which case banks bits are don't care, (2) precharging the LRU bank,
|
1141 |
|
|
// b/c we've exceeded the limit of # of banks open (need to close the LRU
|
1142 |
|
|
// bank to make room for a new one), (3) we haven't exceed the maximum #
|
1143 |
|
|
// of banks open, but we trying to open a different row in a bank that's
|
1144 |
|
|
// already open
|
1145 |
|
|
if (((state_r == CTRL_PRECHARGE) ||
|
1146 |
|
|
((state_r1 == CTRL_PRECHARGE) && TWO_T_TIME_EN)) &&
|
1147 |
|
|
bank_conflict_r && MULTI_BANK_EN)
|
1148 |
|
|
// When LRU bank needs to be closed
|
1149 |
|
|
ddr_ba_r <= bank_cmp_addr_r[(3*CMP_WIDTH)+CMP_BANK_RANGE_END:
|
1150 |
|
|
(3*CMP_WIDTH)+CMP_BANK_RANGE_START];
|
1151 |
|
|
else begin
|
1152 |
|
|
// Either precharge due to refresh or bank hit case
|
1153 |
|
|
if (TWO_T_TIME_EN)
|
1154 |
|
|
ddr_ba_r <= af_addr_r3[BANK_RANGE_END:BANK_RANGE_START];
|
1155 |
|
|
else
|
1156 |
|
|
ddr_ba_r <= af_addr_r2[BANK_RANGE_END:BANK_RANGE_START];
|
1157 |
|
|
end
|
1158 |
|
|
end
|
1159 |
|
|
|
1160 |
|
|
// chip enable generation logic
|
1161 |
|
|
generate
|
1162 |
|
|
// if only one chip select, always assert it after reset
|
1163 |
|
|
if (CS_BITS == 0) begin: gen_ddr_cs_0
|
1164 |
|
|
always @(posedge clk)
|
1165 |
|
|
if (rst_r1)
|
1166 |
|
|
ddr_cs_n_r[0] <= 1'b1;
|
1167 |
|
|
else
|
1168 |
|
|
ddr_cs_n_r[0] <= 1'b0;
|
1169 |
|
|
// otherwise if we have multiple chip selects
|
1170 |
|
|
end else begin: gen_ddr_cs_1
|
1171 |
|
|
if(TWO_T_TIME_EN) begin: gen_2t_cs
|
1172 |
|
|
always @(posedge clk)
|
1173 |
|
|
if (rst_r1)
|
1174 |
|
|
ddr_cs_n_r <= {CS_NUM{1'b1}};
|
1175 |
|
|
else if ((state_r1 == CTRL_AUTO_REFRESH)) begin
|
1176 |
|
|
// if auto-refreshing, only auto-refresh one CS at any time (avoid
|
1177 |
|
|
// beating on the ground plane by refreshing all CS's at same time)
|
1178 |
|
|
ddr_cs_n_r <= {CS_NUM{1'b1}};
|
1179 |
|
|
ddr_cs_n_r[auto_cnt_r] <= 1'b0;
|
1180 |
|
|
end else if (auto_ref_r && (state_r1 == CTRL_PRECHARGE)) begin
|
1181 |
|
|
ddr_cs_n_r <= {CS_NUM{1'b0}};
|
1182 |
|
|
end else if ((state_r1 == CTRL_PRECHARGE) && ( bank_conflict_r
|
1183 |
|
|
&& MULTI_BANK_EN))begin
|
1184 |
|
|
// precharging the LRU bank
|
1185 |
|
|
ddr_cs_n_r <= {CS_NUM{1'b1}};
|
1186 |
|
|
ddr_cs_n_r[bank_cmp_addr_r[(3*CMP_WIDTH)+CMP_CS_RANGE_END:
|
1187 |
|
|
(3*CMP_WIDTH)+CMP_CS_RANGE_START]] <= 1'b0;
|
1188 |
|
|
end else begin
|
1189 |
|
|
// otherwise, check the upper address bits to see which CS to assert
|
1190 |
|
|
ddr_cs_n_r <= {CS_NUM{1'b1}};
|
1191 |
|
|
ddr_cs_n_r[af_addr_r3[CS_RANGE_END:CS_RANGE_START]] <= 1'b0;
|
1192 |
|
|
end // else: !if(((state_r == CTRL_PRECHARGE) ||...
|
1193 |
|
|
end else begin: gen_1t_cs // block: gen_2t_cs
|
1194 |
|
|
always @(posedge clk)
|
1195 |
|
|
if (rst_r1)
|
1196 |
|
|
ddr_cs_n_r <= {CS_NUM{1'b1}};
|
1197 |
|
|
else if ((state_r == CTRL_AUTO_REFRESH) ) begin
|
1198 |
|
|
// if auto-refreshing, only auto-refresh one CS at any time (avoid
|
1199 |
|
|
// beating on the ground plane by refreshing all CS's at same time)
|
1200 |
|
|
ddr_cs_n_r <= {CS_NUM{1'b1}};
|
1201 |
|
|
ddr_cs_n_r[auto_cnt_r] <= 1'b0;
|
1202 |
|
|
end else if (auto_ref_r && (state_r == CTRL_PRECHARGE) ) begin
|
1203 |
|
|
ddr_cs_n_r <= {CS_NUM{1'b0}};
|
1204 |
|
|
end else if ((state_r == CTRL_PRECHARGE) &&
|
1205 |
|
|
(bank_conflict_r && MULTI_BANK_EN))begin
|
1206 |
|
|
// precharging the LRU bank
|
1207 |
|
|
ddr_cs_n_r <= {CS_NUM{1'b1}};
|
1208 |
|
|
ddr_cs_n_r[bank_cmp_addr_r[(3*CMP_WIDTH)+CMP_CS_RANGE_END:
|
1209 |
|
|
(3*CMP_WIDTH)+CMP_CS_RANGE_START]] <= 1'b0;
|
1210 |
|
|
end else begin
|
1211 |
|
|
// otherwise, check the upper address bits to see which CS to assert
|
1212 |
|
|
ddr_cs_n_r <= {CS_NUM{1'b1}};
|
1213 |
|
|
ddr_cs_n_r[af_addr_r2[CS_RANGE_END:CS_RANGE_START]] <= 1'b0;
|
1214 |
|
|
end // else: !if(((state_r == CTRL_PRECHARGE) ||...
|
1215 |
|
|
end // block: gen_1t_cs
|
1216 |
|
|
end
|
1217 |
|
|
endgenerate
|
1218 |
|
|
|
1219 |
|
|
// registring the two_t timing enable signal.
|
1220 |
|
|
// This signal will be asserted (low) when the
|
1221 |
|
|
// chip select has to be asserted.
|
1222 |
|
|
always @(posedge clk)begin
|
1223 |
|
|
if(&two_t_enable_r)
|
1224 |
|
|
two_t_enable_r1 <= {CS_NUM{1'b1}};
|
1225 |
|
|
else
|
1226 |
|
|
two_t_enable_r1 <= {CS_NUM{1'b0}};
|
1227 |
|
|
end
|
1228 |
|
|
|
1229 |
|
|
assign ctrl_addr = ddr_addr_r;
|
1230 |
|
|
assign ctrl_ba = ddr_ba_r;
|
1231 |
|
|
assign ctrl_ras_n = ddr_ras_n_r;
|
1232 |
|
|
assign ctrl_cas_n = ddr_cas_n_r;
|
1233 |
|
|
assign ctrl_we_n = ddr_we_n_r;
|
1234 |
|
|
assign ctrl_cs_n = (TWO_T_TIME_EN) ?
|
1235 |
|
|
(ddr_cs_n_r | two_t_enable_r1) :
|
1236 |
|
|
ddr_cs_n_r;
|
1237 |
|
|
|
1238 |
|
|
endmodule
|
1239 |
|
|
|