1 |
412 |
julius |
//*****************************************************************************
|
2 |
|
|
// DISCLAIMER OF LIABILITY
|
3 |
|
|
//
|
4 |
|
|
// This file contains proprietary and confidential information of
|
5 |
|
|
// Xilinx, Inc. ("Xilinx"), that is distributed under a license
|
6 |
|
|
// from Xilinx, and may be used, copied and/or disclosed only
|
7 |
|
|
// pursuant to the terms of a valid license agreement with Xilinx.
|
8 |
|
|
//
|
9 |
|
|
// XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION
|
10 |
|
|
// ("MATERIALS") "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
|
11 |
|
|
// EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING WITHOUT
|
12 |
|
|
// LIMITATION, ANY WARRANTY WITH RESPECT TO NONINFRINGEMENT,
|
13 |
|
|
// MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. Xilinx
|
14 |
|
|
// does not warrant that functions included in the Materials will
|
15 |
|
|
// meet the requirements of Licensee, or that the operation of the
|
16 |
|
|
// Materials will be uninterrupted or error-free, or that defects
|
17 |
|
|
// in the Materials will be corrected. Furthermore, Xilinx does
|
18 |
|
|
// not warrant or make any representations regarding use, or the
|
19 |
|
|
// results of the use, of the Materials in terms of correctness,
|
20 |
|
|
// accuracy, reliability or otherwise.
|
21 |
|
|
//
|
22 |
|
|
// Xilinx products are not designed or intended to be fail-safe,
|
23 |
|
|
// or for use in any application requiring fail-safe performance,
|
24 |
|
|
// such as life-support or safety devices or systems, Class III
|
25 |
|
|
// medical devices, nuclear facilities, applications related to
|
26 |
|
|
// the deployment of airbags, or any other applications that could
|
27 |
|
|
// lead to death, personal injury or severe property or
|
28 |
|
|
// environmental damage (individually and collectively, "critical
|
29 |
|
|
// applications"). Customer assumes the sole risk and liability
|
30 |
|
|
// of any use of Xilinx products in critical applications,
|
31 |
|
|
// subject only to applicable laws and regulations governing
|
32 |
|
|
// limitations on product liability.
|
33 |
|
|
//
|
34 |
|
|
// Copyright 2006, 2007, 2008 Xilinx, Inc.
|
35 |
|
|
// All rights reserved.
|
36 |
|
|
//
|
37 |
|
|
// This disclaimer and copyright notice must be retained as part
|
38 |
|
|
// of this file at all times.
|
39 |
|
|
//*****************************************************************************
|
40 |
|
|
// ____ ____
|
41 |
|
|
// / /\/ /
|
42 |
|
|
// /___/ \ / Vendor: Xilinx
|
43 |
|
|
// \ \ \/ Version: 3.0
|
44 |
|
|
// \ \ Application: MIG
|
45 |
|
|
// / / Filename: ddr2_infrastructure.v
|
46 |
|
|
// /___/ /\ Date Last Modified: $Date: 2008/12/23 14:26:00 $
|
47 |
|
|
// \ \ / \ Date Created: Wed Aug 16 2006
|
48 |
|
|
// \___\/\___\
|
49 |
|
|
//
|
50 |
|
|
//Device: Virtex-5
|
51 |
|
|
//Design Name: DDR2
|
52 |
|
|
//Purpose:
|
53 |
|
|
// Clock generation/distribution and reset synchronization
|
54 |
|
|
//Reference:
|
55 |
|
|
//Revision History:
|
56 |
|
|
// Rev 1.1 - Parameter CLK_TYPE added and logic for DIFFERENTIAL and
|
57 |
|
|
// SINGLE_ENDED added. PK. 6/20/08
|
58 |
|
|
// Rev 1.2 - Loacalparam CLK_GENERATOR added and logic for clocks generation
|
59 |
|
|
// using PLL or DCM added as generic code. PK. 10/14/08
|
60 |
|
|
//*****************************************************************************
|
61 |
|
|
|
62 |
|
|
`timescale 1ns/1ps
|
63 |
|
|
|
64 |
|
|
module ddr2_infrastructure #
|
65 |
|
|
(
|
66 |
|
|
// Following parameters are for 72-bit RDIMM design (for ML561 Reference
|
67 |
|
|
// board design). Actual values may be different. Actual parameters values
|
68 |
|
|
// are passed from design top module ddr2_mig module. Please refer to
|
69 |
|
|
// the ddr2_mig module for actual values.
|
70 |
|
|
parameter CLK_PERIOD = 3000,
|
71 |
|
|
parameter CLK_TYPE = "DIFFERENTIAL",
|
72 |
|
|
parameter DLL_FREQ_MODE = "HIGH",
|
73 |
|
|
parameter RST_ACT_LOW = 1
|
74 |
|
|
)
|
75 |
|
|
(
|
76 |
|
|
input sys_clk_p,
|
77 |
|
|
input sys_clk_n,
|
78 |
|
|
input sys_clk,
|
79 |
|
|
input clk200_p,
|
80 |
|
|
input clk200_n,
|
81 |
|
|
input idly_clk_200,
|
82 |
|
|
output clk0,
|
83 |
|
|
output clk90,
|
84 |
|
|
output clk200,
|
85 |
|
|
output clkdiv0,
|
86 |
|
|
input sys_rst_n,
|
87 |
|
|
input idelay_ctrl_rdy,
|
88 |
|
|
output rst0,
|
89 |
|
|
output rst90,
|
90 |
|
|
output rst200,
|
91 |
|
|
output rstdiv0
|
92 |
|
|
);
|
93 |
|
|
|
94 |
|
|
// # of clock cycles to delay deassertion of reset. Needs to be a fairly
|
95 |
|
|
// high number not so much for metastability protection, but to give time
|
96 |
|
|
// for reset (i.e. stable clock cycles) to propagate through all state
|
97 |
|
|
// machines and to all control signals (i.e. not all control signals have
|
98 |
|
|
// resets, instead they rely on base state logic being reset, and the effect
|
99 |
|
|
// of that reset propagating through the logic). Need this because we may not
|
100 |
|
|
// be getting stable clock cycles while reset asserted (i.e. since reset
|
101 |
|
|
// depends on PLL/DCM lock status)
|
102 |
|
|
localparam RST_SYNC_NUM = 25;
|
103 |
|
|
localparam CLK_PERIOD_NS = CLK_PERIOD / 1000.0;
|
104 |
|
|
localparam CLK_PERIOD_INT = CLK_PERIOD/1000;
|
105 |
|
|
|
106 |
|
|
// By default this Parameter (CLK_GENERATOR) value is "PLL". If this
|
107 |
|
|
// Parameter is set to "PLL", PLL is used to generate the design clocks.
|
108 |
|
|
// If this Parameter is set to "DCM",
|
109 |
|
|
// DCM is used to generate the design clocks.
|
110 |
|
|
localparam CLK_GENERATOR = "PLL";
|
111 |
|
|
|
112 |
|
|
wire clk0_bufg;
|
113 |
|
|
wire clk0_bufg_in;
|
114 |
|
|
wire clk90_bufg;
|
115 |
|
|
wire clk90_bufg_in;
|
116 |
|
|
wire clk200_bufg;
|
117 |
|
|
wire clk200_ibufg;
|
118 |
|
|
wire clkdiv0_bufg;
|
119 |
|
|
wire clkdiv0_bufg_in;
|
120 |
|
|
wire clkfbout_clkfbin;
|
121 |
|
|
wire locked;
|
122 |
|
|
reg [RST_SYNC_NUM-1:0] rst0_sync_r /* synthesis syn_maxfan = 10 */;
|
123 |
|
|
reg [RST_SYNC_NUM-1:0] rst200_sync_r /* synthesis syn_maxfan = 10 */;
|
124 |
|
|
reg [RST_SYNC_NUM-1:0] rst90_sync_r /* synthesis syn_maxfan = 10 */;
|
125 |
|
|
reg [(RST_SYNC_NUM/2)-1:0] rstdiv0_sync_r /* synthesis syn_maxfan = 10 */;
|
126 |
|
|
wire rst_tmp;
|
127 |
|
|
wire sys_clk_ibufg;
|
128 |
|
|
wire sys_rst;
|
129 |
|
|
|
130 |
|
|
assign sys_rst = RST_ACT_LOW ? ~sys_rst_n: sys_rst_n;
|
131 |
|
|
|
132 |
|
|
assign clk0 = clk0_bufg;
|
133 |
|
|
assign clk90 = clk90_bufg;
|
134 |
|
|
assign clk200 = clk200_bufg;
|
135 |
|
|
assign clkdiv0 = clkdiv0_bufg;
|
136 |
|
|
|
137 |
|
|
generate
|
138 |
|
|
if(CLK_TYPE == "DIFFERENTIAL") begin : DIFF_ENDED_CLKS_INST
|
139 |
|
|
//***************************************************************************
|
140 |
|
|
// Differential input clock input buffers
|
141 |
|
|
//***************************************************************************
|
142 |
|
|
|
143 |
|
|
IBUFGDS_LVPECL_25 SYS_CLK_INST
|
144 |
|
|
(
|
145 |
|
|
.I (sys_clk_p),
|
146 |
|
|
.IB (sys_clk_n),
|
147 |
|
|
.O (sys_clk_ibufg)
|
148 |
|
|
);
|
149 |
|
|
|
150 |
|
|
IBUFGDS_LVPECL_25 IDLY_CLK_INST
|
151 |
|
|
(
|
152 |
|
|
.I (clk200_p),
|
153 |
|
|
.IB (clk200_n),
|
154 |
|
|
.O (clk200_ibufg)
|
155 |
|
|
);
|
156 |
|
|
|
157 |
|
|
end/* else if(CLK_TYPE == "SINGLE_ENDED") begin : SINGLE_ENDED_CLKS_INST
|
158 |
|
|
//**************************************************************************
|
159 |
|
|
// Single ended input clock input buffers
|
160 |
|
|
//**************************************************************************
|
161 |
|
|
|
162 |
|
|
IBUFG SYS_CLK_INST
|
163 |
|
|
(
|
164 |
|
|
.I (sys_clk),
|
165 |
|
|
.O (sys_clk_ibufg)
|
166 |
|
|
);
|
167 |
|
|
|
168 |
|
|
IBUFG IDLY_CLK_INST
|
169 |
|
|
(
|
170 |
|
|
.I (idly_clk_200),
|
171 |
|
|
.O (clk200_ibufg)
|
172 |
|
|
);
|
173 |
|
|
// This is being instantiated inside another design. these signals are properly generated elsewhere -- jb
|
174 |
|
|
end*/
|
175 |
|
|
endgenerate
|
176 |
|
|
assign sys_clk_ibufg = sys_clk;
|
177 |
|
|
//assign idly_clk_200 = clk200_ibufg;
|
178 |
|
|
assign clk200_bufg = idly_clk_200;
|
179 |
|
|
|
180 |
|
|
/*
|
181 |
|
|
BUFG CLK_200_BUFG
|
182 |
|
|
(
|
183 |
|
|
.O (clk200_bufg),
|
184 |
|
|
.I (clk200_ibufg)
|
185 |
|
|
);
|
186 |
|
|
*/
|
187 |
|
|
//***************************************************************************
|
188 |
|
|
// Global clock generation and distribution
|
189 |
|
|
//***************************************************************************
|
190 |
|
|
|
191 |
|
|
generate
|
192 |
|
|
if (CLK_GENERATOR == "PLL") begin : gen_pll_adv
|
193 |
|
|
PLL_ADV #
|
194 |
|
|
(
|
195 |
|
|
.BANDWIDTH ("OPTIMIZED"),
|
196 |
|
|
.CLKIN1_PERIOD (CLK_PERIOD_NS),
|
197 |
|
|
.CLKIN2_PERIOD (10.000),
|
198 |
|
|
.CLKOUT0_DIVIDE (CLK_PERIOD_INT),
|
199 |
|
|
.CLKOUT1_DIVIDE (CLK_PERIOD_INT),
|
200 |
|
|
.CLKOUT2_DIVIDE (CLK_PERIOD_INT*2),
|
201 |
|
|
.CLKOUT3_DIVIDE (1),
|
202 |
|
|
.CLKOUT4_DIVIDE (1),
|
203 |
|
|
.CLKOUT5_DIVIDE (1),
|
204 |
|
|
.CLKOUT0_PHASE (0.000),
|
205 |
|
|
.CLKOUT1_PHASE (90.000),
|
206 |
|
|
.CLKOUT2_PHASE (0.000),
|
207 |
|
|
.CLKOUT3_PHASE (0.000),
|
208 |
|
|
.CLKOUT4_PHASE (0.000),
|
209 |
|
|
.CLKOUT5_PHASE (0.000),
|
210 |
|
|
.CLKOUT0_DUTY_CYCLE (0.500),
|
211 |
|
|
.CLKOUT1_DUTY_CYCLE (0.500),
|
212 |
|
|
.CLKOUT2_DUTY_CYCLE (0.500),
|
213 |
|
|
.CLKOUT3_DUTY_CYCLE (0.500),
|
214 |
|
|
.CLKOUT4_DUTY_CYCLE (0.500),
|
215 |
|
|
.CLKOUT5_DUTY_CYCLE (0.500),
|
216 |
|
|
.COMPENSATION ("SYSTEM_SYNCHRONOUS"),
|
217 |
|
|
.DIVCLK_DIVIDE (1),
|
218 |
|
|
.CLKFBOUT_MULT (CLK_PERIOD_INT),
|
219 |
|
|
.CLKFBOUT_PHASE (0.0),
|
220 |
|
|
.REF_JITTER (0.005000)
|
221 |
|
|
)
|
222 |
|
|
u_pll_adv
|
223 |
|
|
(
|
224 |
|
|
.CLKFBIN (clkfbout_clkfbin),
|
225 |
|
|
.CLKINSEL (1'b1),
|
226 |
|
|
.CLKIN1 (sys_clk_ibufg),
|
227 |
|
|
.CLKIN2 (1'b0),
|
228 |
|
|
.DADDR (5'b0),
|
229 |
|
|
.DCLK (1'b0),
|
230 |
|
|
.DEN (1'b0),
|
231 |
|
|
.DI (16'b0),
|
232 |
|
|
.DWE (1'b0),
|
233 |
|
|
.REL (1'b0),
|
234 |
|
|
.RST (sys_rst),
|
235 |
|
|
.CLKFBDCM (),
|
236 |
|
|
.CLKFBOUT (clkfbout_clkfbin),
|
237 |
|
|
.CLKOUTDCM0 (),
|
238 |
|
|
.CLKOUTDCM1 (),
|
239 |
|
|
.CLKOUTDCM2 (),
|
240 |
|
|
.CLKOUTDCM3 (),
|
241 |
|
|
.CLKOUTDCM4 (),
|
242 |
|
|
.CLKOUTDCM5 (),
|
243 |
|
|
.CLKOUT0 (clk0_bufg_in),
|
244 |
|
|
.CLKOUT1 (clk90_bufg_in),
|
245 |
|
|
.CLKOUT2 (clkdiv0_bufg_in),
|
246 |
|
|
.CLKOUT3 (),
|
247 |
|
|
.CLKOUT4 (),
|
248 |
|
|
.CLKOUT5 (),
|
249 |
|
|
.DO (),
|
250 |
|
|
.DRDY (),
|
251 |
|
|
.LOCKED (locked)
|
252 |
|
|
);
|
253 |
|
|
end else if (CLK_GENERATOR == "DCM") begin: gen_dcm_base
|
254 |
|
|
DCM_BASE #
|
255 |
|
|
(
|
256 |
|
|
.CLKIN_PERIOD (CLK_PERIOD_NS),
|
257 |
|
|
.CLKDV_DIVIDE (2.0),
|
258 |
|
|
.DLL_FREQUENCY_MODE (DLL_FREQ_MODE),
|
259 |
|
|
.DUTY_CYCLE_CORRECTION ("TRUE"),
|
260 |
|
|
.FACTORY_JF (16'hF0F0)
|
261 |
|
|
)
|
262 |
|
|
u_dcm_base
|
263 |
|
|
(
|
264 |
|
|
.CLK0 (clk0_bufg_in),
|
265 |
|
|
.CLK180 (),
|
266 |
|
|
.CLK270 (),
|
267 |
|
|
.CLK2X (),
|
268 |
|
|
.CLK2X180 (),
|
269 |
|
|
.CLK90 (clk90_bufg_in),
|
270 |
|
|
.CLKDV (clkdiv0_bufg_in),
|
271 |
|
|
.CLKFX (),
|
272 |
|
|
.CLKFX180 (),
|
273 |
|
|
.LOCKED (locked),
|
274 |
|
|
.CLKFB (clk0_bufg),
|
275 |
|
|
.CLKIN (sys_clk_ibufg),
|
276 |
|
|
.RST (sys_rst)
|
277 |
|
|
);
|
278 |
|
|
end
|
279 |
|
|
endgenerate
|
280 |
|
|
|
281 |
|
|
BUFG U_BUFG_CLK0
|
282 |
|
|
(
|
283 |
|
|
.O (clk0_bufg),
|
284 |
|
|
.I (clk0_bufg_in)
|
285 |
|
|
);
|
286 |
|
|
|
287 |
|
|
BUFG U_BUFG_CLK90
|
288 |
|
|
(
|
289 |
|
|
.O (clk90_bufg),
|
290 |
|
|
.I (clk90_bufg_in)
|
291 |
|
|
);
|
292 |
|
|
|
293 |
|
|
BUFG U_BUFG_CLKDIV0
|
294 |
|
|
(
|
295 |
|
|
.O (clkdiv0_bufg),
|
296 |
|
|
.I (clkdiv0_bufg_in)
|
297 |
|
|
);
|
298 |
|
|
|
299 |
|
|
|
300 |
|
|
//***************************************************************************
|
301 |
|
|
// Reset synchronization
|
302 |
|
|
// NOTES:
|
303 |
|
|
// 1. shut down the whole operation if the PLL/ DCM hasn't yet locked (and
|
304 |
|
|
// by inference, this means that external SYS_RST_IN has been asserted -
|
305 |
|
|
// PLL/DCM deasserts LOCKED as soon as SYS_RST_IN asserted)
|
306 |
|
|
// 2. In the case of all resets except rst200, also assert reset if the
|
307 |
|
|
// IDELAY master controller is not yet ready
|
308 |
|
|
// 3. asynchronously assert reset. This was we can assert reset even if
|
309 |
|
|
// there is no clock (needed for things like 3-stating output buffers).
|
310 |
|
|
// reset deassertion is synchronous.
|
311 |
|
|
//***************************************************************************
|
312 |
|
|
|
313 |
|
|
assign rst_tmp = sys_rst | ~locked | ~idelay_ctrl_rdy;
|
314 |
|
|
|
315 |
|
|
// synthesis attribute max_fanout of rst0_sync_r is 10
|
316 |
|
|
always @(posedge clk0_bufg or posedge rst_tmp)
|
317 |
|
|
if (rst_tmp)
|
318 |
|
|
rst0_sync_r <= {RST_SYNC_NUM{1'b1}};
|
319 |
|
|
else
|
320 |
|
|
// logical left shift by one (pads with 0)
|
321 |
|
|
rst0_sync_r <= rst0_sync_r << 1;
|
322 |
|
|
|
323 |
|
|
// synthesis attribute max_fanout of rstdiv0_sync_r is 10
|
324 |
|
|
always @(posedge clkdiv0_bufg or posedge rst_tmp)
|
325 |
|
|
if (rst_tmp)
|
326 |
|
|
rstdiv0_sync_r <= {(RST_SYNC_NUM/2){1'b1}};
|
327 |
|
|
else
|
328 |
|
|
// logical left shift by one (pads with 0)
|
329 |
|
|
rstdiv0_sync_r <= rstdiv0_sync_r << 1;
|
330 |
|
|
|
331 |
|
|
// synthesis attribute max_fanout of rst90_sync_r is 10
|
332 |
|
|
always @(posedge clk90_bufg or posedge rst_tmp)
|
333 |
|
|
if (rst_tmp)
|
334 |
|
|
rst90_sync_r <= {RST_SYNC_NUM{1'b1}};
|
335 |
|
|
else
|
336 |
|
|
rst90_sync_r <= rst90_sync_r << 1;
|
337 |
|
|
|
338 |
|
|
// make sure CLK200 doesn't depend on IDELAY_CTRL_RDY, else chicken n' egg
|
339 |
|
|
// synthesis attribute max_fanout of rst200_sync_r is 10
|
340 |
|
|
always @(posedge clk200_bufg or negedge locked)
|
341 |
|
|
if (!locked)
|
342 |
|
|
rst200_sync_r <= {RST_SYNC_NUM{1'b1}};
|
343 |
|
|
else
|
344 |
|
|
rst200_sync_r <= rst200_sync_r << 1;
|
345 |
|
|
|
346 |
|
|
|
347 |
|
|
assign rst0 = rst0_sync_r[RST_SYNC_NUM-1];
|
348 |
|
|
assign rst90 = rst90_sync_r[RST_SYNC_NUM-1];
|
349 |
|
|
assign rst200 = rst200_sync_r[RST_SYNC_NUM-1];
|
350 |
|
|
assign rstdiv0 = rstdiv0_sync_r[(RST_SYNC_NUM/2)-1];
|
351 |
|
|
|
352 |
|
|
endmodule
|