1 |
412 |
julius |
//*****************************************************************************
|
2 |
|
|
// DISCLAIMER OF LIABILITY
|
3 |
|
|
//
|
4 |
|
|
// This file contains proprietary and confidential information of
|
5 |
|
|
// Xilinx, Inc. ("Xilinx"), that is distributed under a license
|
6 |
|
|
// from Xilinx, and may be used, copied and/or disclosed only
|
7 |
|
|
// pursuant to the terms of a valid license agreement with Xilinx.
|
8 |
|
|
//
|
9 |
|
|
// XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION
|
10 |
|
|
// ("MATERIALS") "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
|
11 |
|
|
// EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING WITHOUT
|
12 |
|
|
// LIMITATION, ANY WARRANTY WITH RESPECT TO NONINFRINGEMENT,
|
13 |
|
|
// MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. Xilinx
|
14 |
|
|
// does not warrant that functions included in the Materials will
|
15 |
|
|
// meet the requirements of Licensee, or that the operation of the
|
16 |
|
|
// Materials will be uninterrupted or error-free, or that defects
|
17 |
|
|
// in the Materials will be corrected. Furthermore, Xilinx does
|
18 |
|
|
// not warrant or make any representations regarding use, or the
|
19 |
|
|
// results of the use, of the Materials in terms of correctness,
|
20 |
|
|
// accuracy, reliability or otherwise.
|
21 |
|
|
//
|
22 |
|
|
// Xilinx products are not designed or intended to be fail-safe,
|
23 |
|
|
// or for use in any application requiring fail-safe performance,
|
24 |
|
|
// such as life-support or safety devices or systems, Class III
|
25 |
|
|
// medical devices, nuclear facilities, applications related to
|
26 |
|
|
// the deployment of airbags, or any other applications that could
|
27 |
|
|
// lead to death, personal injury or severe property or
|
28 |
|
|
// environmental damage (individually and collectively, "critical
|
29 |
|
|
// applications"). Customer assumes the sole risk and liability
|
30 |
|
|
// of any use of Xilinx products in critical applications,
|
31 |
|
|
// subject only to applicable laws and regulations governing
|
32 |
|
|
// limitations on product liability.
|
33 |
|
|
//
|
34 |
|
|
// Copyright 2006, 2007, 2008 Xilinx, Inc.
|
35 |
|
|
// All rights reserved.
|
36 |
|
|
//
|
37 |
|
|
// This disclaimer and copyright notice must be retained as part
|
38 |
|
|
// of this file at all times.
|
39 |
|
|
//*****************************************************************************
|
40 |
|
|
// ____ ____
|
41 |
|
|
// / /\/ /
|
42 |
|
|
// /___/ \ / Vendor: Xilinx
|
43 |
|
|
// \ \ \/ Version: 3.0
|
44 |
|
|
// \ \ Application: MIG
|
45 |
|
|
// / / Filename: ddr2_phy_ctl_io.v
|
46 |
|
|
// /___/ /\ Date Last Modified: $Date: 2008/12/23 14:26:00 $
|
47 |
|
|
// \ \ / \ Date Created: Thu Aug 24 2006
|
48 |
|
|
// \___\/\___\
|
49 |
|
|
//
|
50 |
|
|
//Device: Virtex-5
|
51 |
|
|
//Design Name: DDR2
|
52 |
|
|
//Purpose:
|
53 |
|
|
// This module puts the memory control signals like address, bank address,
|
54 |
|
|
// row address strobe, column address strobe, write enable and clock enable
|
55 |
|
|
// in the IOBs.
|
56 |
|
|
//Reference:
|
57 |
|
|
//Revision History:
|
58 |
|
|
//*****************************************************************************
|
59 |
|
|
|
60 |
|
|
`timescale 1ns/1ps
|
61 |
|
|
|
62 |
|
|
module ddr2_phy_ctl_io #
|
63 |
|
|
(
|
64 |
|
|
// Following parameters are for 72-bit RDIMM design (for ML561 Reference
|
65 |
|
|
// board design). Actual values may be different. Actual parameters values
|
66 |
|
|
// are passed from design top module ddr2_mig module. Please refer to
|
67 |
|
|
// the ddr2_mig module for actual values.
|
68 |
|
|
parameter BANK_WIDTH = 2,
|
69 |
|
|
parameter CKE_WIDTH = 1,
|
70 |
|
|
parameter COL_WIDTH = 10,
|
71 |
|
|
parameter CS_NUM = 1,
|
72 |
|
|
parameter TWO_T_TIME_EN = 0,
|
73 |
|
|
parameter CS_WIDTH = 1,
|
74 |
|
|
parameter ODT_WIDTH = 1,
|
75 |
|
|
parameter ROW_WIDTH = 14,
|
76 |
|
|
parameter DDR_TYPE = 1
|
77 |
|
|
)
|
78 |
|
|
(
|
79 |
|
|
input clk0,
|
80 |
|
|
input clk90,
|
81 |
|
|
input rst0,
|
82 |
|
|
input rst90,
|
83 |
|
|
input [ROW_WIDTH-1:0] ctrl_addr,
|
84 |
|
|
input [BANK_WIDTH-1:0] ctrl_ba,
|
85 |
|
|
input ctrl_ras_n,
|
86 |
|
|
input ctrl_cas_n,
|
87 |
|
|
input ctrl_we_n,
|
88 |
|
|
input [CS_NUM-1:0] ctrl_cs_n,
|
89 |
|
|
input [ROW_WIDTH-1:0] phy_init_addr,
|
90 |
|
|
input [BANK_WIDTH-1:0] phy_init_ba,
|
91 |
|
|
input phy_init_ras_n,
|
92 |
|
|
input phy_init_cas_n,
|
93 |
|
|
input phy_init_we_n,
|
94 |
|
|
input [CS_NUM-1:0] phy_init_cs_n,
|
95 |
|
|
input [CKE_WIDTH-1:0] phy_init_cke,
|
96 |
|
|
input phy_init_data_sel,
|
97 |
|
|
input [CS_NUM-1:0] odt,
|
98 |
|
|
output [ROW_WIDTH-1:0] ddr_addr,
|
99 |
|
|
output [BANK_WIDTH-1:0] ddr_ba,
|
100 |
|
|
output ddr_ras_n,
|
101 |
|
|
output ddr_cas_n,
|
102 |
|
|
output ddr_we_n,
|
103 |
|
|
output [CKE_WIDTH-1:0] ddr_cke,
|
104 |
|
|
output [CS_WIDTH-1:0] ddr_cs_n,
|
105 |
|
|
output [ODT_WIDTH-1:0] ddr_odt
|
106 |
|
|
);
|
107 |
|
|
|
108 |
|
|
reg [ROW_WIDTH-1:0] addr_mux;
|
109 |
|
|
reg [BANK_WIDTH-1:0] ba_mux;
|
110 |
|
|
reg cas_n_mux;
|
111 |
|
|
reg [CS_NUM-1:0] cs_n_mux;
|
112 |
|
|
reg ras_n_mux;
|
113 |
|
|
reg we_n_mux;
|
114 |
|
|
|
115 |
|
|
|
116 |
|
|
|
117 |
|
|
//***************************************************************************
|
118 |
|
|
|
119 |
|
|
|
120 |
|
|
|
121 |
|
|
|
122 |
|
|
// MUX to choose from either PHY or controller for SDRAM control
|
123 |
|
|
|
124 |
|
|
generate // in 2t timing mode the extra register stage cannot be used.
|
125 |
|
|
if(TWO_T_TIME_EN) begin // the control signals are asserted for two cycles
|
126 |
|
|
always @(*)begin
|
127 |
|
|
if (phy_init_data_sel) begin
|
128 |
|
|
addr_mux = ctrl_addr;
|
129 |
|
|
ba_mux = ctrl_ba;
|
130 |
|
|
cas_n_mux = ctrl_cas_n;
|
131 |
|
|
cs_n_mux = ctrl_cs_n;
|
132 |
|
|
ras_n_mux = ctrl_ras_n;
|
133 |
|
|
we_n_mux = ctrl_we_n;
|
134 |
|
|
end else begin
|
135 |
|
|
addr_mux = phy_init_addr;
|
136 |
|
|
ba_mux = phy_init_ba;
|
137 |
|
|
cas_n_mux = phy_init_cas_n;
|
138 |
|
|
cs_n_mux = phy_init_cs_n;
|
139 |
|
|
ras_n_mux = phy_init_ras_n;
|
140 |
|
|
we_n_mux = phy_init_we_n;
|
141 |
|
|
end
|
142 |
|
|
end
|
143 |
|
|
end else begin
|
144 |
|
|
always @(posedge clk0)begin // register the signals in non 2t mode
|
145 |
|
|
if (phy_init_data_sel) begin
|
146 |
|
|
addr_mux <= ctrl_addr;
|
147 |
|
|
ba_mux <= ctrl_ba;
|
148 |
|
|
cas_n_mux <= ctrl_cas_n;
|
149 |
|
|
cs_n_mux <= ctrl_cs_n;
|
150 |
|
|
ras_n_mux <= ctrl_ras_n;
|
151 |
|
|
we_n_mux <= ctrl_we_n;
|
152 |
|
|
end else begin
|
153 |
|
|
addr_mux <= phy_init_addr;
|
154 |
|
|
ba_mux <= phy_init_ba;
|
155 |
|
|
cas_n_mux <= phy_init_cas_n;
|
156 |
|
|
cs_n_mux <= phy_init_cs_n;
|
157 |
|
|
ras_n_mux <= phy_init_ras_n;
|
158 |
|
|
we_n_mux <= phy_init_we_n;
|
159 |
|
|
end
|
160 |
|
|
end
|
161 |
|
|
end
|
162 |
|
|
endgenerate
|
163 |
|
|
|
164 |
|
|
//***************************************************************************
|
165 |
|
|
// Output flop instantiation
|
166 |
|
|
// NOTE: Make sure all control/address flops are placed in IOBs
|
167 |
|
|
//***************************************************************************
|
168 |
|
|
|
169 |
|
|
// RAS: = 1 at reset
|
170 |
|
|
(* IOB = "FORCE" *) FDCPE u_ff_ras_n
|
171 |
|
|
(
|
172 |
|
|
.Q (ddr_ras_n),
|
173 |
|
|
.C (clk0),
|
174 |
|
|
.CE (1'b1),
|
175 |
|
|
.CLR (1'b0),
|
176 |
|
|
.D (ras_n_mux),
|
177 |
|
|
.PRE (rst0)
|
178 |
|
|
) /* synthesis syn_useioff = 1 */;
|
179 |
|
|
|
180 |
|
|
// CAS: = 1 at reset
|
181 |
|
|
(* IOB = "FORCE" *) FDCPE u_ff_cas_n
|
182 |
|
|
(
|
183 |
|
|
.Q (ddr_cas_n),
|
184 |
|
|
.C (clk0),
|
185 |
|
|
.CE (1'b1),
|
186 |
|
|
.CLR (1'b0),
|
187 |
|
|
.D (cas_n_mux),
|
188 |
|
|
.PRE (rst0)
|
189 |
|
|
) /* synthesis syn_useioff = 1 */;
|
190 |
|
|
|
191 |
|
|
// WE: = 1 at reset
|
192 |
|
|
(* IOB = "FORCE" *) FDCPE u_ff_we_n
|
193 |
|
|
(
|
194 |
|
|
.Q (ddr_we_n),
|
195 |
|
|
.C (clk0),
|
196 |
|
|
.CE (1'b1),
|
197 |
|
|
.CLR (1'b0),
|
198 |
|
|
.D (we_n_mux),
|
199 |
|
|
.PRE (rst0)
|
200 |
|
|
) /* synthesis syn_useioff = 1 */;
|
201 |
|
|
|
202 |
|
|
// CKE: = 0 at reset
|
203 |
|
|
genvar cke_i;
|
204 |
|
|
generate
|
205 |
|
|
for (cke_i = 0; cke_i < CKE_WIDTH; cke_i = cke_i + 1) begin: gen_cke
|
206 |
|
|
(* IOB = "FORCE" *) FDCPE u_ff_cke
|
207 |
|
|
(
|
208 |
|
|
.Q (ddr_cke[cke_i]),
|
209 |
|
|
.C (clk0),
|
210 |
|
|
.CE (1'b1),
|
211 |
|
|
.CLR (rst0),
|
212 |
|
|
.D (phy_init_cke[cke_i]),
|
213 |
|
|
.PRE (1'b0)
|
214 |
|
|
) /* synthesis syn_useioff = 1 */;
|
215 |
|
|
end
|
216 |
|
|
endgenerate
|
217 |
|
|
|
218 |
|
|
// chip select: = 1 at reset
|
219 |
|
|
// For unbuffered dimms the loading will be high. The chip select
|
220 |
|
|
// can be asserted early if the loading is very high. The
|
221 |
|
|
// code as is uses clock 0. If needed clock 270 can be used to
|
222 |
|
|
// toggle chip select 1/4 clock cycle early. The code has
|
223 |
|
|
// the clock 90 input for the early assertion of chip select.
|
224 |
|
|
|
225 |
|
|
genvar cs_i;
|
226 |
|
|
generate
|
227 |
|
|
for(cs_i = 0; cs_i < CS_WIDTH; cs_i = cs_i + 1) begin: gen_cs_n
|
228 |
|
|
if(TWO_T_TIME_EN) begin
|
229 |
|
|
(* IOB = "FORCE" *) FDCPE u_ff_cs_n
|
230 |
|
|
(
|
231 |
|
|
.Q (ddr_cs_n[cs_i]),
|
232 |
|
|
.C (clk0),
|
233 |
|
|
.CE (1'b1),
|
234 |
|
|
.CLR (1'b0),
|
235 |
|
|
.D (cs_n_mux[(cs_i*CS_NUM)/CS_WIDTH]),
|
236 |
|
|
.PRE (rst0)
|
237 |
|
|
) /* synthesis syn_useioff = 1 */;
|
238 |
|
|
end else begin // if (TWO_T_TIME_EN)
|
239 |
|
|
(* IOB = "FORCE" *) FDCPE u_ff_cs_n
|
240 |
|
|
(
|
241 |
|
|
.Q (ddr_cs_n[cs_i]),
|
242 |
|
|
.C (clk0),
|
243 |
|
|
.CE (1'b1),
|
244 |
|
|
.CLR (1'b0),
|
245 |
|
|
.D (cs_n_mux[(cs_i*CS_NUM)/CS_WIDTH]),
|
246 |
|
|
.PRE (rst0)
|
247 |
|
|
) /* synthesis syn_useioff = 1 */;
|
248 |
|
|
end // else: !if(TWO_T_TIME_EN)
|
249 |
|
|
end
|
250 |
|
|
endgenerate
|
251 |
|
|
|
252 |
|
|
// address: = X at reset
|
253 |
|
|
genvar addr_i;
|
254 |
|
|
generate
|
255 |
|
|
for (addr_i = 0; addr_i < ROW_WIDTH; addr_i = addr_i + 1) begin: gen_addr
|
256 |
|
|
(* IOB = "FORCE" *) FDCPE u_ff_addr
|
257 |
|
|
(
|
258 |
|
|
.Q (ddr_addr[addr_i]),
|
259 |
|
|
.C (clk0),
|
260 |
|
|
.CE (1'b1),
|
261 |
|
|
.CLR (1'b0),
|
262 |
|
|
.D (addr_mux[addr_i]),
|
263 |
|
|
.PRE (1'b0)
|
264 |
|
|
) /* synthesis syn_useioff = 1 */;
|
265 |
|
|
end
|
266 |
|
|
endgenerate
|
267 |
|
|
|
268 |
|
|
// bank address = X at reset
|
269 |
|
|
genvar ba_i;
|
270 |
|
|
generate
|
271 |
|
|
for (ba_i = 0; ba_i < BANK_WIDTH; ba_i = ba_i + 1) begin: gen_ba
|
272 |
|
|
(* IOB = "FORCE" *) FDCPE u_ff_ba
|
273 |
|
|
(
|
274 |
|
|
.Q (ddr_ba[ba_i]),
|
275 |
|
|
.C (clk0),
|
276 |
|
|
.CE (1'b1),
|
277 |
|
|
.CLR (1'b0),
|
278 |
|
|
.D (ba_mux[ba_i]),
|
279 |
|
|
.PRE (1'b0)
|
280 |
|
|
) /* synthesis syn_useioff = 1 */;
|
281 |
|
|
end
|
282 |
|
|
endgenerate
|
283 |
|
|
|
284 |
|
|
// ODT control = 0 at reset
|
285 |
|
|
genvar odt_i;
|
286 |
|
|
generate
|
287 |
|
|
if (DDR_TYPE > 0) begin: gen_odt_ddr2
|
288 |
|
|
for (odt_i = 0; odt_i < ODT_WIDTH; odt_i = odt_i + 1) begin: gen_odt
|
289 |
|
|
(* IOB = "FORCE" *) FDCPE u_ff_odt
|
290 |
|
|
(
|
291 |
|
|
.Q (ddr_odt[odt_i]),
|
292 |
|
|
.C (clk0),
|
293 |
|
|
.CE (1'b1),
|
294 |
|
|
.CLR (rst0),
|
295 |
|
|
.D (odt[(odt_i*CS_NUM)/ODT_WIDTH]),
|
296 |
|
|
.PRE (1'b0)
|
297 |
|
|
) /* synthesis syn_useioff = 1 */;
|
298 |
|
|
end
|
299 |
|
|
end
|
300 |
|
|
endgenerate
|
301 |
|
|
|
302 |
|
|
endmodule
|