| 1 |
412 |
julius |
//*****************************************************************************
|
| 2 |
|
|
// DISCLAIMER OF LIABILITY
|
| 3 |
|
|
//
|
| 4 |
|
|
// This file contains proprietary and confidential information of
|
| 5 |
|
|
// Xilinx, Inc. ("Xilinx"), that is distributed under a license
|
| 6 |
|
|
// from Xilinx, and may be used, copied and/or disclosed only
|
| 7 |
|
|
// pursuant to the terms of a valid license agreement with Xilinx.
|
| 8 |
|
|
//
|
| 9 |
|
|
// XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION
|
| 10 |
|
|
// ("MATERIALS") "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
|
| 11 |
|
|
// EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING WITHOUT
|
| 12 |
|
|
// LIMITATION, ANY WARRANTY WITH RESPECT TO NONINFRINGEMENT,
|
| 13 |
|
|
// MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. Xilinx
|
| 14 |
|
|
// does not warrant that functions included in the Materials will
|
| 15 |
|
|
// meet the requirements of Licensee, or that the operation of the
|
| 16 |
|
|
// Materials will be uninterrupted or error-free, or that defects
|
| 17 |
|
|
// in the Materials will be corrected. Furthermore, Xilinx does
|
| 18 |
|
|
// not warrant or make any representations regarding use, or the
|
| 19 |
|
|
// results of the use, of the Materials in terms of correctness,
|
| 20 |
|
|
// accuracy, reliability or otherwise.
|
| 21 |
|
|
//
|
| 22 |
|
|
// Xilinx products are not designed or intended to be fail-safe,
|
| 23 |
|
|
// or for use in any application requiring fail-safe performance,
|
| 24 |
|
|
// such as life-support or safety devices or systems, Class III
|
| 25 |
|
|
// medical devices, nuclear facilities, applications related to
|
| 26 |
|
|
// the deployment of airbags, or any other applications that could
|
| 27 |
|
|
// lead to death, personal injury or severe property or
|
| 28 |
|
|
// environmental damage (individually and collectively, "critical
|
| 29 |
|
|
// applications"). Customer assumes the sole risk and liability
|
| 30 |
|
|
// of any use of Xilinx products in critical applications,
|
| 31 |
|
|
// subject only to applicable laws and regulations governing
|
| 32 |
|
|
// limitations on product liability.
|
| 33 |
|
|
//
|
| 34 |
|
|
// Copyright 2006, 2007, 2008 Xilinx, Inc.
|
| 35 |
|
|
// All rights reserved.
|
| 36 |
|
|
//
|
| 37 |
|
|
// This disclaimer and copyright notice must be retained as part
|
| 38 |
|
|
// of this file at all times.
|
| 39 |
|
|
//*****************************************************************************
|
| 40 |
|
|
// ____ ____
|
| 41 |
|
|
// / /\/ /
|
| 42 |
|
|
// /___/ \ / Vendor: Xilinx
|
| 43 |
|
|
// \ \ \/ Version: 3.0
|
| 44 |
|
|
// \ \ Application: MIG
|
| 45 |
|
|
// / / Filename: ddr2_phy_write.v
|
| 46 |
|
|
// /___/ /\ Date Last Modified: $Date: 2008/12/23 14:26:00 $
|
| 47 |
|
|
// \ \ / \ Date Created: Thu Aug 24 2006
|
| 48 |
|
|
// \___\/\___\
|
| 49 |
|
|
//
|
| 50 |
|
|
//Device: Virtex-5
|
| 51 |
|
|
//Design Name: DDR2
|
| 52 |
|
|
//Purpose:
|
| 53 |
|
|
//Reference:
|
| 54 |
|
|
// Handles delaying various write control signals appropriately depending
|
| 55 |
|
|
// on CAS latency, additive latency, etc. Also splits the data and mask in
|
| 56 |
|
|
// rise and fall buses.
|
| 57 |
|
|
//Revision History:
|
| 58 |
|
|
// Rev 1.1 - For Dual Rank parts support ODT logic corrected. PK. 08/05/08
|
| 59 |
|
|
//*****************************************************************************
|
| 60 |
|
|
|
| 61 |
|
|
`timescale 1ns/1ps
|
| 62 |
|
|
|
| 63 |
|
|
module ddr2_phy_write #
|
| 64 |
|
|
(
|
| 65 |
|
|
// Following parameters are for 72-bit RDIMM design (for ML561 Reference
|
| 66 |
|
|
// board design). Actual values may be different. Actual parameters values
|
| 67 |
|
|
// are passed from design top module ddr2_mig module. Please refer to
|
| 68 |
|
|
// the ddr2_mig module for actual values.
|
| 69 |
|
|
parameter DQ_WIDTH = 72,
|
| 70 |
|
|
parameter CS_NUM = 1,
|
| 71 |
|
|
parameter ADDITIVE_LAT = 0,
|
| 72 |
|
|
parameter CAS_LAT = 5,
|
| 73 |
|
|
parameter ECC_ENABLE = 0,
|
| 74 |
|
|
parameter ODT_TYPE = 1,
|
| 75 |
|
|
parameter REG_ENABLE = 1,
|
| 76 |
|
|
parameter DDR_TYPE = 1
|
| 77 |
|
|
)
|
| 78 |
|
|
(
|
| 79 |
|
|
input clk0,
|
| 80 |
|
|
input clk90,
|
| 81 |
|
|
input rst90,
|
| 82 |
|
|
input [(2*DQ_WIDTH)-1:0] wdf_data,
|
| 83 |
|
|
input [(2*DQ_WIDTH/8)-1:0] wdf_mask_data,
|
| 84 |
|
|
input ctrl_wren,
|
| 85 |
|
|
input phy_init_wren,
|
| 86 |
|
|
input phy_init_data_sel,
|
| 87 |
|
|
output reg dm_ce,
|
| 88 |
|
|
output reg [1:0] dq_oe_n,
|
| 89 |
|
|
output reg dqs_oe_n ,
|
| 90 |
|
|
output reg dqs_rst_n ,
|
| 91 |
|
|
output wdf_rden,
|
| 92 |
|
|
output reg [CS_NUM-1:0] odt ,
|
| 93 |
|
|
output [DQ_WIDTH-1:0] wr_data_rise,
|
| 94 |
|
|
output [DQ_WIDTH-1:0] wr_data_fall,
|
| 95 |
|
|
output [(DQ_WIDTH/8)-1:0] mask_data_rise,
|
| 96 |
|
|
output [(DQ_WIDTH/8)-1:0] mask_data_fall
|
| 97 |
|
|
);
|
| 98 |
|
|
|
| 99 |
|
|
localparam MASK_WIDTH = DQ_WIDTH/8;
|
| 100 |
|
|
localparam DDR1 = 0;
|
| 101 |
|
|
localparam DDR2 = 1;
|
| 102 |
|
|
localparam DDR3 = 2;
|
| 103 |
|
|
|
| 104 |
|
|
// (MIN,MAX) value of WR_LATENCY for DDR1:
|
| 105 |
|
|
// REG_ENABLE = (0,1)
|
| 106 |
|
|
// ECC_ENABLE = (0,1)
|
| 107 |
|
|
// Write latency = 1
|
| 108 |
|
|
// Total: (1,3)
|
| 109 |
|
|
// (MIN,MAX) value of WR_LATENCY for DDR2:
|
| 110 |
|
|
// REG_ENABLE = (0,1)
|
| 111 |
|
|
// ECC_ENABLE = (0,1)
|
| 112 |
|
|
// Write latency = ADDITIVE_CAS + CAS_LAT - 1 = (0,4) + (3,5) - 1 = (2,8)
|
| 113 |
|
|
// ADDITIVE_LAT = (0,4) (JEDEC79-2B)
|
| 114 |
|
|
// CAS_LAT = (3,5) (JEDEC79-2B)
|
| 115 |
|
|
// Total: (2,10)
|
| 116 |
|
|
localparam WR_LATENCY = (DDR_TYPE == DDR3) ?
|
| 117 |
|
|
(ADDITIVE_LAT + (CAS_LAT) + REG_ENABLE ) :
|
| 118 |
|
|
(DDR_TYPE == DDR2) ?
|
| 119 |
|
|
(ADDITIVE_LAT + (CAS_LAT-1) + REG_ENABLE ) :
|
| 120 |
|
|
(1 + REG_ENABLE );
|
| 121 |
|
|
|
| 122 |
|
|
// NOTE that ODT timing does not need to be delayed for registered
|
| 123 |
|
|
// DIMM case, since like other control/address signals, it gets
|
| 124 |
|
|
// delayed by one clock cycle at the DIMM
|
| 125 |
|
|
localparam ODT_WR_LATENCY = WR_LATENCY - REG_ENABLE;
|
| 126 |
|
|
|
| 127 |
|
|
wire dm_ce_0;
|
| 128 |
|
|
reg dm_ce_r;
|
| 129 |
|
|
wire [1:0] dq_oe_0;
|
| 130 |
|
|
reg [1:0] dq_oe_n_90_r1;
|
| 131 |
|
|
reg [1:0] dq_oe_270;
|
| 132 |
|
|
wire dqs_oe_0;
|
| 133 |
|
|
reg dqs_oe_270;
|
| 134 |
|
|
reg dqs_oe_n_180_r1;
|
| 135 |
|
|
wire dqs_rst_0;
|
| 136 |
|
|
reg dqs_rst_n_180_r1;
|
| 137 |
|
|
reg dqs_rst_270;
|
| 138 |
|
|
reg ecc_dm_error_r;
|
| 139 |
|
|
reg ecc_dm_error_r1;
|
| 140 |
|
|
reg [(DQ_WIDTH-1):0] init_data_f;
|
| 141 |
|
|
reg [(DQ_WIDTH-1):0] init_data_r;
|
| 142 |
|
|
reg [3:0] init_wdf_cnt_r;
|
| 143 |
|
|
wire odt_0;
|
| 144 |
|
|
reg rst90_r /* synthesis syn_maxfan = 10 */;
|
| 145 |
|
|
reg [10:0] wr_stages ;
|
| 146 |
|
|
reg [(2*DQ_WIDTH)-1:0] wdf_data_r;
|
| 147 |
|
|
reg [(2*DQ_WIDTH/8)-1:0] wdf_mask_r;
|
| 148 |
|
|
wire [(2*DQ_WIDTH/8)-1:0] wdf_ecc_mask;
|
| 149 |
|
|
|
| 150 |
|
|
reg [(2*DQ_WIDTH/8)-1:0] wdf_mask_r1;
|
| 151 |
|
|
wire wdf_rden_0;
|
| 152 |
|
|
reg calib_rden_90_r;
|
| 153 |
|
|
reg wdf_rden_90_r;
|
| 154 |
|
|
reg wdf_rden_90_r1;
|
| 155 |
|
|
reg wdf_rden_270;
|
| 156 |
|
|
|
| 157 |
|
|
always @(posedge clk90)
|
| 158 |
|
|
rst90_r <= rst90;
|
| 159 |
|
|
|
| 160 |
|
|
//***************************************************************************
|
| 161 |
|
|
// Analysis of additional pipeline delays:
|
| 162 |
|
|
// 1. dq_oe (DQ 3-state): 1 CLK90 cyc in IOB 3-state FF
|
| 163 |
|
|
// 2. dqs_oe (DQS 3-state): 1 CLK180 cyc in IOB 3-state FF
|
| 164 |
|
|
// 3. dqs_rst (DQS output value reset): 1 CLK180 cyc in FF + 1 CLK180 cyc
|
| 165 |
|
|
// in IOB DDR
|
| 166 |
|
|
// 4. odt (ODT control): 1 CLK0 cyc in IOB FF
|
| 167 |
|
|
// 5. write data (output two cyc after wdf_rden - output of RAMB_FIFO w/
|
| 168 |
|
|
// output register enabled): 2 CLK90 cyc in OSERDES
|
| 169 |
|
|
//***************************************************************************
|
| 170 |
|
|
|
| 171 |
|
|
// DQS 3-state must be asserted one extra clock cycle due b/c of write
|
| 172 |
|
|
// pre- and post-amble (extra half clock cycle for each)
|
| 173 |
|
|
assign dqs_oe_0 = wr_stages[WR_LATENCY-1] | wr_stages[WR_LATENCY-2];
|
| 174 |
|
|
|
| 175 |
|
|
// same goes for ODT, need to handle both pre- and post-amble (generate
|
| 176 |
|
|
// ODT only for DDR2)
|
| 177 |
|
|
// ODT generation for DDR2 based on write latency. The MIN write
|
| 178 |
|
|
// latency is 2. Based on the write latency ODT is asserted.
|
| 179 |
|
|
generate
|
| 180 |
|
|
if ((DDR_TYPE != DDR1) && (ODT_TYPE > 0))begin: gen_odt_ddr2
|
| 181 |
|
|
if(ODT_WR_LATENCY > 2)
|
| 182 |
|
|
assign odt_0 =
|
| 183 |
|
|
wr_stages[ODT_WR_LATENCY-1] |
|
| 184 |
|
|
wr_stages[ODT_WR_LATENCY-2] |
|
| 185 |
|
|
wr_stages[ODT_WR_LATENCY-3] ;
|
| 186 |
|
|
else
|
| 187 |
|
|
assign odt_0 =
|
| 188 |
|
|
wr_stages[ODT_WR_LATENCY] |
|
| 189 |
|
|
wr_stages[ODT_WR_LATENCY-1] |
|
| 190 |
|
|
wr_stages[ODT_WR_LATENCY-2] ;
|
| 191 |
|
|
end else
|
| 192 |
|
|
assign odt_0 = 1'b0;
|
| 193 |
|
|
endgenerate
|
| 194 |
|
|
|
| 195 |
|
|
assign dq_oe_0[0] = wr_stages[WR_LATENCY-1] | wr_stages[WR_LATENCY];
|
| 196 |
|
|
assign dq_oe_0[1] = wr_stages[WR_LATENCY-1] | wr_stages[WR_LATENCY-2];
|
| 197 |
|
|
assign dqs_rst_0 = ~wr_stages[WR_LATENCY-2];
|
| 198 |
|
|
assign dm_ce_0 = wr_stages[WR_LATENCY] | wr_stages[WR_LATENCY-1]
|
| 199 |
|
|
| wr_stages[WR_LATENCY-2];
|
| 200 |
|
|
|
| 201 |
|
|
// write data fifo, read flag assertion
|
| 202 |
|
|
generate
|
| 203 |
|
|
if (DDR_TYPE != DDR1) begin: gen_wdf_ddr2
|
| 204 |
|
|
if (WR_LATENCY > 2)
|
| 205 |
|
|
assign wdf_rden_0 = wr_stages[WR_LATENCY-3];
|
| 206 |
|
|
else
|
| 207 |
|
|
assign wdf_rden_0 = wr_stages[WR_LATENCY-2];
|
| 208 |
|
|
end else begin: gen_wdf_ddr1
|
| 209 |
|
|
assign wdf_rden_0 = wr_stages[WR_LATENCY-2];
|
| 210 |
|
|
end
|
| 211 |
|
|
endgenerate
|
| 212 |
|
|
|
| 213 |
|
|
// first stage isn't registered
|
| 214 |
|
|
always @(*)
|
| 215 |
|
|
wr_stages[0] = (phy_init_data_sel) ? ctrl_wren : phy_init_wren;
|
| 216 |
|
|
|
| 217 |
|
|
always @(posedge clk0) begin
|
| 218 |
|
|
wr_stages[1] <= wr_stages[0];
|
| 219 |
|
|
wr_stages[2] <= wr_stages[1];
|
| 220 |
|
|
wr_stages[3] <= wr_stages[2];
|
| 221 |
|
|
wr_stages[4] <= wr_stages[3];
|
| 222 |
|
|
wr_stages[5] <= wr_stages[4];
|
| 223 |
|
|
wr_stages[6] <= wr_stages[5];
|
| 224 |
|
|
wr_stages[7] <= wr_stages[6];
|
| 225 |
|
|
wr_stages[8] <= wr_stages[7];
|
| 226 |
|
|
wr_stages[9] <= wr_stages[8];
|
| 227 |
|
|
wr_stages[10] <= wr_stages[9];
|
| 228 |
|
|
end
|
| 229 |
|
|
|
| 230 |
|
|
// intermediate synchronization to CLK270
|
| 231 |
|
|
always @(negedge clk90) begin
|
| 232 |
|
|
dq_oe_270 <= dq_oe_0;
|
| 233 |
|
|
dqs_oe_270 <= dqs_oe_0;
|
| 234 |
|
|
dqs_rst_270 <= dqs_rst_0;
|
| 235 |
|
|
wdf_rden_270 <= wdf_rden_0;
|
| 236 |
|
|
end
|
| 237 |
|
|
|
| 238 |
|
|
// synchronize DQS signals to CLK180
|
| 239 |
|
|
always @(negedge clk0) begin
|
| 240 |
|
|
dqs_oe_n_180_r1 <= ~dqs_oe_270;
|
| 241 |
|
|
dqs_rst_n_180_r1 <= ~dqs_rst_270;
|
| 242 |
|
|
end
|
| 243 |
|
|
|
| 244 |
|
|
// All write data-related signals synced to CLK90
|
| 245 |
|
|
always @(posedge clk90) begin
|
| 246 |
|
|
dq_oe_n_90_r1 <= ~dq_oe_270;
|
| 247 |
|
|
wdf_rden_90_r <= wdf_rden_270;
|
| 248 |
|
|
end
|
| 249 |
|
|
|
| 250 |
|
|
// generate for wdf_rden and calib rden. These signals
|
| 251 |
|
|
// are asserted based on write latency. For write
|
| 252 |
|
|
// latency of 2, the extra register stage is taken out.
|
| 253 |
|
|
generate
|
| 254 |
|
|
if (WR_LATENCY > 2) begin
|
| 255 |
|
|
always @(posedge clk90) begin
|
| 256 |
|
|
// assert wdf rden only for non calibration opertations
|
| 257 |
|
|
wdf_rden_90_r1 <= wdf_rden_90_r &
|
| 258 |
|
|
phy_init_data_sel;
|
| 259 |
|
|
// rden for calibration
|
| 260 |
|
|
calib_rden_90_r <= wdf_rden_90_r;
|
| 261 |
|
|
end
|
| 262 |
|
|
end else begin
|
| 263 |
|
|
always @(*) begin
|
| 264 |
|
|
wdf_rden_90_r1 = wdf_rden_90_r
|
| 265 |
|
|
& phy_init_data_sel;
|
| 266 |
|
|
calib_rden_90_r = wdf_rden_90_r;
|
| 267 |
|
|
end
|
| 268 |
|
|
end // else: !if(WR_LATENCY > 2)
|
| 269 |
|
|
endgenerate
|
| 270 |
|
|
|
| 271 |
|
|
// dm CE signal to stop dm oscilation
|
| 272 |
|
|
always @(negedge clk90)begin
|
| 273 |
|
|
dm_ce_r <= dm_ce_0;
|
| 274 |
|
|
dm_ce <= dm_ce_r;
|
| 275 |
|
|
end
|
| 276 |
|
|
|
| 277 |
|
|
// When in ECC mode the upper byte [71:64] will have the
|
| 278 |
|
|
// ECC parity. Mapping the bytes which have valid data
|
| 279 |
|
|
// to the upper byte in ecc mode. Also in ecc mode there
|
| 280 |
|
|
// is an extra register stage to account for timing.
|
| 281 |
|
|
|
| 282 |
|
|
genvar mask_i;
|
| 283 |
|
|
generate
|
| 284 |
|
|
if(ECC_ENABLE) begin
|
| 285 |
|
|
for (mask_i = 0; mask_i < (2*DQ_WIDTH)/72;
|
| 286 |
|
|
mask_i = mask_i+1) begin: gen_mask
|
| 287 |
|
|
assign wdf_ecc_mask[((mask_i*9)+9)-1:(mask_i*9)] =
|
| 288 |
|
|
{&wdf_mask_data[(mask_i*8)+(7+mask_i):mask_i*9],
|
| 289 |
|
|
wdf_mask_data[(mask_i*8)+(7+mask_i):mask_i*9]};
|
| 290 |
|
|
end
|
| 291 |
|
|
end
|
| 292 |
|
|
endgenerate
|
| 293 |
|
|
|
| 294 |
|
|
generate
|
| 295 |
|
|
if (ECC_ENABLE) begin:gen_ecc_reg
|
| 296 |
|
|
always @(posedge clk90)begin
|
| 297 |
|
|
if(phy_init_data_sel)
|
| 298 |
|
|
wdf_mask_r <= wdf_ecc_mask;
|
| 299 |
|
|
else
|
| 300 |
|
|
wdf_mask_r <= {(2*DQ_WIDTH/8){1'b0}};
|
| 301 |
|
|
end
|
| 302 |
|
|
end else begin
|
| 303 |
|
|
always@(posedge clk90) begin
|
| 304 |
|
|
if (phy_init_data_sel)
|
| 305 |
|
|
wdf_mask_r <= wdf_mask_data;
|
| 306 |
|
|
else
|
| 307 |
|
|
wdf_mask_r <= {(2*DQ_WIDTH/8){1'b0}};
|
| 308 |
|
|
end
|
| 309 |
|
|
end
|
| 310 |
|
|
endgenerate
|
| 311 |
|
|
|
| 312 |
|
|
always @(posedge clk90) begin
|
| 313 |
|
|
if(phy_init_data_sel)
|
| 314 |
|
|
wdf_data_r <= wdf_data;
|
| 315 |
|
|
else
|
| 316 |
|
|
wdf_data_r <={init_data_f,init_data_r};
|
| 317 |
|
|
end
|
| 318 |
|
|
|
| 319 |
|
|
// Error generation block during simulation.
|
| 320 |
|
|
// Error will be displayed when all the DM
|
| 321 |
|
|
// bits are not zero. The error will be
|
| 322 |
|
|
// displayed only during the start of the sequence
|
| 323 |
|
|
// for errors that are continous over many cycles.
|
| 324 |
|
|
generate
|
| 325 |
|
|
if (ECC_ENABLE) begin: gen_ecc_error
|
| 326 |
|
|
always @(posedge clk90) begin
|
| 327 |
|
|
//synthesis translate_off
|
| 328 |
|
|
wdf_mask_r1 <= wdf_mask_r;
|
| 329 |
|
|
if(DQ_WIDTH > 72)
|
| 330 |
|
|
ecc_dm_error_r
|
| 331 |
|
|
<= (
|
| 332 |
|
|
(~wdf_mask_r1[35] && (|wdf_mask_r1[34:27])) ||
|
| 333 |
|
|
(~wdf_mask_r1[26] && (|wdf_mask_r1[25:18])) ||
|
| 334 |
|
|
(~wdf_mask_r1[17] && (|wdf_mask_r1[16:9])) ||
|
| 335 |
|
|
(~wdf_mask_r1[8] && (|wdf_mask_r1[7:0]))) && phy_init_data_sel;
|
| 336 |
|
|
else
|
| 337 |
|
|
ecc_dm_error_r
|
| 338 |
|
|
<= ((~wdf_mask_r1[17] && (|wdf_mask_r1[16:9])) ||
|
| 339 |
|
|
(~wdf_mask_r1[8] && (|wdf_mask_r1[7:0]))) && phy_init_data_sel;
|
| 340 |
|
|
ecc_dm_error_r1 <= ecc_dm_error_r ;
|
| 341 |
|
|
if (ecc_dm_error_r && ~ecc_dm_error_r1) // assert the error only once.
|
| 342 |
|
|
$display ("ECC DM ERROR. ");
|
| 343 |
|
|
//synthesis translate_on
|
| 344 |
|
|
end
|
| 345 |
|
|
end
|
| 346 |
|
|
endgenerate
|
| 347 |
|
|
|
| 348 |
|
|
//***************************************************************************
|
| 349 |
|
|
// State logic to write calibration training patterns
|
| 350 |
|
|
//***************************************************************************
|
| 351 |
|
|
|
| 352 |
|
|
always @(posedge clk90) begin
|
| 353 |
|
|
if (rst90_r) begin
|
| 354 |
|
|
init_wdf_cnt_r <= 4'd0;
|
| 355 |
|
|
init_data_r <= {64{1'bx}};
|
| 356 |
|
|
init_data_f <= {64{1'bx}};
|
| 357 |
|
|
end else begin
|
| 358 |
|
|
init_wdf_cnt_r <= init_wdf_cnt_r + calib_rden_90_r;
|
| 359 |
|
|
casex (init_wdf_cnt_r)
|
| 360 |
|
|
// First stage calibration. Pattern (rise/fall) = 1(r)->0(f)
|
| 361 |
|
|
// The rise data and fall data are already interleaved in the manner
|
| 362 |
|
|
// required for data into the WDF write FIFO
|
| 363 |
|
|
4'b00xx: begin
|
| 364 |
|
|
init_data_r <= {DQ_WIDTH{1'b1}};
|
| 365 |
|
|
init_data_f <= {DQ_WIDTH{1'b0}};
|
| 366 |
|
|
end
|
| 367 |
|
|
// Second stage calibration. Pattern = 1(r)->1(f)->0(r)->0(f)
|
| 368 |
|
|
4'b01x0: begin
|
| 369 |
|
|
init_data_r <= {DQ_WIDTH{1'b1}};
|
| 370 |
|
|
init_data_f <= {DQ_WIDTH{1'b1}};
|
| 371 |
|
|
end
|
| 372 |
|
|
4'b01x1: begin
|
| 373 |
|
|
init_data_r <= {DQ_WIDTH{1'b0}};
|
| 374 |
|
|
init_data_f <= {DQ_WIDTH{1'b0}};
|
| 375 |
|
|
end
|
| 376 |
|
|
// MIG 2.1: Changed Stage 3/4 training pattern
|
| 377 |
|
|
// Third and fourth stage calibration patern =
|
| 378 |
|
|
// 11(r)->ee(f)->ee(r)->11(f)-11(r)->ee(f)->ee(r)->11(f)
|
| 379 |
|
|
4'b1000: begin
|
| 380 |
|
|
init_data_r <= {DQ_WIDTH/4{4'h1}};
|
| 381 |
|
|
init_data_f <= {DQ_WIDTH/4{4'hE}};
|
| 382 |
|
|
end
|
| 383 |
|
|
4'b1001: begin
|
| 384 |
|
|
init_data_r <= {DQ_WIDTH/4{4'hE}};
|
| 385 |
|
|
init_data_f <= {DQ_WIDTH/4{4'h1}};
|
| 386 |
|
|
end
|
| 387 |
|
|
4'b1010: begin
|
| 388 |
|
|
init_data_r <= {(DQ_WIDTH/4){4'h1}};
|
| 389 |
|
|
init_data_f <= {(DQ_WIDTH/4){4'hE}};
|
| 390 |
|
|
end
|
| 391 |
|
|
4'b1011: begin
|
| 392 |
|
|
init_data_r <= {(DQ_WIDTH/4){4'hE}};
|
| 393 |
|
|
init_data_f <= {(DQ_WIDTH/4){4'h1}};
|
| 394 |
|
|
end
|
| 395 |
|
|
default: begin
|
| 396 |
|
|
init_data_f <= {(2*DQ_WIDTH){1'bx}};
|
| 397 |
|
|
init_data_r <= {(2*DQ_WIDTH){1'bx}};
|
| 398 |
|
|
end
|
| 399 |
|
|
endcase
|
| 400 |
|
|
end
|
| 401 |
|
|
end
|
| 402 |
|
|
|
| 403 |
|
|
//***************************************************************************
|
| 404 |
|
|
|
| 405 |
|
|
always @(posedge clk90)
|
| 406 |
|
|
dq_oe_n <= dq_oe_n_90_r1;
|
| 407 |
|
|
|
| 408 |
|
|
always @(negedge clk0)
|
| 409 |
|
|
dqs_oe_n <= dqs_oe_n_180_r1;
|
| 410 |
|
|
|
| 411 |
|
|
always @(negedge clk0)
|
| 412 |
|
|
dqs_rst_n <= dqs_rst_n_180_r1;
|
| 413 |
|
|
|
| 414 |
|
|
// generate for odt. odt is asserted based on
|
| 415 |
|
|
// write latency. For write latency of 2
|
| 416 |
|
|
// the extra register stage is taken out.
|
| 417 |
|
|
generate
|
| 418 |
|
|
if (ODT_WR_LATENCY > 2) begin
|
| 419 |
|
|
always @(posedge clk0) begin
|
| 420 |
|
|
odt <= 'b0;
|
| 421 |
|
|
odt[0] <= odt_0;
|
| 422 |
|
|
end
|
| 423 |
|
|
end else begin
|
| 424 |
|
|
always @ (*) begin
|
| 425 |
|
|
odt = 'b0;
|
| 426 |
|
|
odt[0] = odt_0;
|
| 427 |
|
|
end
|
| 428 |
|
|
end
|
| 429 |
|
|
endgenerate
|
| 430 |
|
|
|
| 431 |
|
|
assign wdf_rden = wdf_rden_90_r1;
|
| 432 |
|
|
|
| 433 |
|
|
//***************************************************************************
|
| 434 |
|
|
// Format write data/mask: Data is in format: {fall, rise}
|
| 435 |
|
|
//***************************************************************************
|
| 436 |
|
|
|
| 437 |
|
|
assign wr_data_rise = wdf_data_r[DQ_WIDTH-1:0];
|
| 438 |
|
|
assign wr_data_fall = wdf_data_r[(2*DQ_WIDTH)-1:DQ_WIDTH];
|
| 439 |
|
|
assign mask_data_rise = wdf_mask_r[MASK_WIDTH-1:0];
|
| 440 |
|
|
assign mask_data_fall = wdf_mask_r[(2*MASK_WIDTH)-1:MASK_WIDTH];
|
| 441 |
|
|
|
| 442 |
|
|
endmodule
|